
Domain Ordering and Box Cover
Problems for Beyond Worst-Case

Join Processing

by

Kaleb Alway

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Kaleb Alway 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Join queries are a fundamental computational task in relational database management
systems. For decades, complex joins were most often computed by decomposing the query
into a query plan made of a sequence of binary joins. However, for cyclic queries, this type
of query plan is sub-optimal. The worst-case run time of any such query plan exceeds the
number of output tuples for any query instance.

Recent theoretical developments in join query processing have led to join algorithms
which are worst-case optimal, meaning that they run in time proportional to the worst-
case output size for any query with the same shape and the same number of input tuples.
Building on these results are a class of algorithms providing bounds which go beyond this
worst-case output size by exploiting the structure of the input instance rather than just
the query shape.

One such algorithm, Tetris, is worst-case optimal and also provides an upper bound
on its run time which depends on the minimum size of a geometric box certificate for the
input query. A box certificate is a subset of a box cover whose union covers every tuple
which is not present in the query output. A box cover is a set of n-dimensional boxes which
cover all of the tuples not contained in the input relations. Many query instances admit
different box certificates and box covers when the values in the attributes’ domains are
ordered differently. If we permute the input query according to a domain ordering which
admits a smaller box certificate, use the permuted query as input to Tetris, then transform
the result back with the inverse domain ordering, we can compute the query faster than
was possible if the domain ordering was fixed. If we can efficiently compute an optimal
domain ordering for a query, then we can state a beyond worst-case bound that is stronger
than what is provided by Tetris [1].

This thesis defines several optimization problems over the space of domain orderings
where the objective is to minimize the size of either the minimum box certificate or the
minimum box cover for the given input query. We show that most of these problems are
NP-hard. We also provide approximation algorithms for several of these problems.

The most general version of the box cover minimization problem we will study, BoxMinPDomF,
is shown to be NP-hard, but we can compute an approximation of size Õ((K∗�)a·r), where
K∗� is the minimum box cover size under any domain ordering, a is the maximum degree of
an attribute in the query graph, and r is the maximum number of attributes in a relation.
This result allows us to compute join queries in time Õ(N + (K∗�)a·r·(w+1) +Z), where N is
the number of input tuples, w is the treewidth of the query, and Z is the number of output
tuples. This is a new beyond worst-case bound. There are queries for which this bound is
exponentially smaller than any bound provided by Tetris.

iii

The most general version of the box certificate minimization problem we study, CertMinPDomF,
is also shown to be NP-hard. It can be computed exactly if the minimum box certificate
size is at most 3, but no approximation algorithm for an arbitrary minimum size is known.
Finding such an approximation algorithm is an important direction for future research.

iv

Acknowledgements

First, I would like to thank my supervisors, Semih Salihoglu and Eric Blais, for their
excellent guidance and weekly brainstorming sessions over the past 2 years.

I would like to thank my thesis readers, Anna Lubiw and Ian Munro. I would also like
to thank Anna for her helpful suggestions which led to the proofs of Theorems 5.9 and
5.15.

I would like to thank my family for all the love and support over these 2 years and during
all the years that brought me to this point. I would especially like to thank my parents
Mike and Carla, my sister Mikayla, and my grandma Linda. You gave me everything I
needed to accomplish this and more.

I would like to thank Sana for the constant support and encouragement throughout
this process. I could not have done this without you.

There are several other groups of people I would like to thank for keeping me company
during this time, including my Sarnia friends John, Dylan, and Franklin; my ISG alumni
friends Max, Kevin, Ten, Leonard, Larry, Marie, Ed, Bryan, Travis, Chantelle, Abraham,
Rob, Sean, and Akshaya; my other undergrad friends Harry, Adam, and Brandon; my
undergrad roommates Luke, Ryan, Adam, Shane, Dan, and Grant; and my office mates
Alex, Tiasa, and Harry.

Lastly, I would like to thank everyone else who touched my life in some way.

v

Dedication

This thesis is dedicated to the memory of my grandpa (Papa), Ted Alway.

vi

Table of Contents

List of Tables ix

List of Figures x

Abbreviations xi

List of Symbols xiii

1 Introduction 1

2 Preliminaries and Research Questions 6

2.1 Query Graphs and Notions of Width . 8

2.2 Gap Boxes, Box Covers, and Box Certificates 10

2.3 Tetris . 12

2.4 Research Questions . 16

3 Related Work 19

3.1 Box Cover Problems . 19

3.1.1 2 Dimensions . 19

3.1.2 3 or More Dimensions . 21

3.2 Join Algorithms . 21

3.2.1 Worst-Case Optimal Join Algorithms 22

3.2.2 Beyond Worst-Case Optimal Join Algorithms 22

vii

4 Generating a Box Cover 25

5 Domain Ordering Problems 28

5.1 A Poorly Ordered Query . 30

5.2 Reordering One Attribute in a 2D Relation 31

5.2.1 BoxMinPColF is NP-hard . 32

5.2.2 Approximating BoxMinPColF . 34

5.3 Reordering Both Attributes in a 2D Relation 37

5.4 Reordering All Attributes in an n-ary Relation 45

5.4.1 Dividing Relations into Hyperplanes 45

5.4.2 Approximating BoxMinPDomF on a Single Relation 46

5.5 Minimizing the Box Cover for Multiple Relations 51

5.5.1 BoxMinPDomF and Join Processing 55

5.6 Minimizing the Box Certificate for Multiple Relations 56

6 Conclusions 62

References 64

APPENDICES 69

A Tetris Subsumes Generic Join 70

B Finding an Optimal Bit Ordering 72

B.1 Finding an Optimal Bit Ordering . 73

B.2 Minimizing the GBO-Consistent Box Cover 74

B.2.1 Generating GBO-Consistent Gap Boxes 76

B.2.2 Finding the Optimal GBO for a Single Relation 77

B.2.3 Finding an Optimal GBO for Multiple Relations 80

C Box Covers and Boolean Algebra 83

viii

List of Tables

6.1 A summary of the hardness and approximation results in this thesis 63

ix

List of Figures

1.1 Queries with different box certificate sizes which are equivalent up to re-
ordering the attributes’ domains . 4

2.1 A relation represented as a list of tuples (left) and its geometric representa-
tion where each shaded square is a tuple (right) 7

2.2 An example of a box cover and box certificate 11

2.3 The recursion tree formed by TetrisSkeleton on a simple example . . . 15

2.4 A relation whose box cover size can be decreased by changing the domain
ordering . 17

5.1 A matrix, its BNR strings, and its corresponding interval matrix 35

5.2 An example of the 2 Consecutive Block Minimization Problem (2ConBlk-
MinP) input matrix M and its corresponding M ′ matrix 39

5.3 An illustration of how adjacent, distinct A-hyperplanes form the boundaries
of the gap boxes of R . 47

5.4 A query for which the optimal certificate size and optimal box cover size
occur under different domain orderings . 58

B.1 A relation whose box cover size can be decreased by changing the bit ordering
or domain ordering . 73

x

Abbreviations

BoxMinPColF Column Flexible Box Cover Minimization Problem 32–34, 37, 38, 63

BoxMinPDomF Domain Flexible Box Cover Minimization Problem iii, 18, 29, 30, 45, 46,
49–52, 54–56, 58, 62, 63

BoxMinPGBO Global Bit Order Box Cover Minimization Problem 63, 76, 78, 80, 81

BoxMinPRowColF Row and Column Flexible Box Cover Minimization Problem 37, 38,
44, 45, 50, 63

CertMinPBitF Bit Flexible Certificate Minimization Problem 63, 73–76, 80

CertMinPDomF Domain Flexible Box Certificate Minimization Problem iv, 18, 29, 30,
56, 58–63

CertMinPGBO Global Bit Order Certificate Minimization Problem 63, 75, 76, 80, 82

IntBlkMinPColF Column Flexible Interval Block Minimization Problem 35–37

2ConBlkMinP 2 Consecutive Block Minimization Problem x, 38, 39

BoxMinP Box Cover Minimization Problem 20, 34

ConBlkMinP Consecutive Block Minimization Problem 32, 33, 36–38

GAO global attribute order 70, 71, 74

GBO global bit order 74–81

GenOrdConMaxP Generalized Ordering Constraint Maximization Problem 80, 81

xi

OrdConMaxP Ordering Constraint Maximization Problem 78–80

SAO splitting attribute order 12–14, 16, 55, 70, 71

xii

List of Symbols

N the number of input tuples for a query

Z the number of output tuples for a query

n the number of attributes in a query

m the number of relations in a query

d each attribute’s domain values are stored in d bits of memory

R a relation

A an attribute

Q a join query

w the treewidth of a query

K�(Q) the minimum box cover size for the query Q

C�(Q) the minimum box certificate size for the query Q over all box covers of Q

σ a domain ordering

σ(Q) the query obtained from Q by permuting the attributes according to σ

xiii

Chapter 1

Introduction

Join query processing is an important part of any database management system [41]. In
particular, natural joins over attributes with discrete, finite domains are useful for many
applications such as for subgraph queries in social network data [49] and for joining fact
and dimension relations in data warehouses [8]. This type of query is also general enough
to express constraint satisfaction problems [26]. In this thesis we will exclusively study this
type of join query. We take as input a query Q which consists of a set of relations R over
a set of attributes A. Each relation in R is a set of tuples over a subset of the attributes
in A.

As the demand grows for applications to process and analyze larger quantities of data,
the need for efficient join algorithms increases. Many different algorithms have been de-
signed and implemented in database management systems. Run time upper bounds for
these algorithms are dependent on several different parameters, including the number of
input tuples N , and the number of output tuples Z. Many of these upper bounds also
incorporate parameters related to the shape of the query graph, such as the number of
relations m, the number of attributes n, the treewidth w, the fractional edge cover number
ρ, and the fractional hypertree width fhtw. These quantities will be defined precisely in
Chapter 2.

Yannakakis’ algorithm is a well known join algorithm for acyclic queries which runs in
time O(N + Z) [52]. This algorithm was later generalized to a version which runs in time
O(Nw + Z) [12] for queries with arbitrary treewidth w. Atserias, Grohe, and Marx [3]
proved a bound, now known as the AGM bound, on the worst-case output size for a query
based on the number of tuples in each relation and the fractional edge cover number of the
query graph. Several algorithms have been shown to be worst-case optimal in the sense

1

that their run time is bounded by the AGM bound [37, 36, 50]. A worst-case optimal join
algorithm can be combined with Yannakakis’ algorithm to compute any join query in time
O(N fhtw + Z) [18].

Treewidth, fractional hypertree width, and other related notions depend only on the
query graph, and say nothing about the specific tuples in the input relations. However,
not all queries with the same query graph are equally difficult to compute. Tighter run
time bounds are possible for query instances which are simpler or more nicely structured
than the instances which give output sizes close to the AGM bound.

In recent years, a class of join algorithms which provide “beyond worst-case” run time
bounds have been introduced [35, 1, 39, 22]. One such algorithm, from Abo Khamis et al.,
is called Tetris [1]. We will first introduce three important terms required to understand
Tetris and the results of this thesis. These terms will be defined formally in Section 2.2.

• A gap box is an n-dimensional box which covers an area of an input relation where
there are no tuples.

• A box cover is a set of gap boxes B such that for each relation R in the query and
each tuple t not in R, there is some gap box in B which contains t. The minimum
box cover size for a query Q is denoted K�(Q).

• A box certificate for a box cover B is a subset of B whose union is equal to the union
of all the gap boxes in B. The minimum box certificate size for a box cover B is
denoted C�(B). The minimum box certificate size for any box cover of the query Q
is dentoed C�(Q).

An example of a box cover and box certificate is depicted in Figure 2.2 of the following
chapter. Tetris takes as input a box cover B for the query instead of the usual input tuples.
Tetris is worst-case optimal because it meets the AGM bound, but it also provides beyond
worst-case bounds which are dependent on C�(B). Two of the run time bounds provided

by Tetris are Õ
((
C�(B)

)w+1
+ Z

)
and Õ

((
C�(B)

)n/2
+ Z

)
. Throughout this thesis, the

Õ-notation will hide any poly-logarithmic factors in N and Z, as well as the query graph
dependent factors n and m. These parameters are constant when the query shape is fixed,
so we consider them to be constants in our analysis. C�(B) is at most N and can be much
smaller than N , giving bounds which can be much tighter than the AGM bound.

Tetris takes a pre-constructed box cover as input, so the cost of computing a box cover
is not included in the upper bounds it provides. Throughout this thesis we will focus on
the setting where we begin with the tuples as input, construct a corresponding box cover,

2

and then call Tetris. Better results can be obtained if box covers are indexed and reused so
that they are not recomputed for each query, but this thesis will not discuss that case. We
will show in Chapter 4 that it is possible to construct a box cover B for Q in Õ(N) time

such that the minimum box certificate size for B is in Õ
(
C�(Q)

)
. Starting from the input

tuples, we can use this process to construct a box cover to use as input to Tetris, which

yields total runtime bounds of Õ
(
N +

(
C�(Q)

)w+1
+ Z

)
and Õ

(
N +

(
C�(Q)

)n/2
+ Z

)
.

When C�(Q) = o(N), these bounds can be asymptotically much better than the AGM
bound and fractional hypertree width bound.

However, there are simple queries which can be geometrically complex and require a
large box certificate. In many cases, these simple queries can be modified by reordering
each attributes’ domain so that a smaller box certificate is possible. Figure 1.1 shows an
example of this. The queries Q and Q′ are both triangle queries joining three relations
with two attributes each, and the output of both queries is empty. These queries are
equivalent up to reordering the domains of each attribute. That is, we reorder the rows
and columns of the grid in Figure 1.1a to obtain Figure 1.1b. In this figure, σ is the set of
three permutations on the domains of A,B, and C which transforms Q into Q′. Despite
this similarity between Q and Q′, Q requires a larger box cover than Q′, because each
white grid cell in Figure 1.1a must have a unit gap box covering it, while the white cells in
Figure 1.1b can be covered by a total of 6 gap boxes. For these queries, every gap box in
the box cover must also be part of the box certificate, although this is not true in general.
This means C�(Q) = 96 and C�(Q′) = 6, so Tetris will run faster on Q′ than on Q.

By extending the domains of the attributes in this example and repeating the same
pattern, the difference in box certificate sizes can be made arbitrarily large. If the input
query looks like Q, and we can efficiently find a domain ordering which transforms Q into
Q′, then we can compute the join faster by running Tetris on Q′ instead.

Examples such as this motivate the problems studied in this thesis. We would like to
find a permutation, or domain ordering, σ∗ on the domains of the attributes in A such that
the permuted relation, σ∗(Q), admits a box certificate of minimum size. Unfortunately,
little is known about solving this problem efficiently. In this thesis, we simply show that
the problem is NP-hard, and that it can be solved efficiently in the very restricted case
where the minimum box certificate size over all domain orderings is at most 3.

Instead, the majority of this thesis will focus on the related problem of finding a domain
ordering for Q that minimizes the size of the minimum box cover for the permuted query
σ∗(Q). We will see in Section 5.6 that there are queries for which the ordering that
minimizes the box cover size can be very different from the ordering that minimizes the
certificate size. However, since the box certificate size is less than or equal to the box

3

(a) Q = R on S on T

R S T

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000

001

010

011

100

101

110

111

A

B

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000

001

010

011

100

101

110

111

B
C

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000

001

010

011

100

101

110

111

A

C

(b) Q′ = R′ on S′ on T ′ = σ(R) on σ(S) on σ(T)

R′ S ′ T ′

0
0
0

0
0
0

0
1
0

0
0
1

1
0
0

0
1
0

1
1
0

0
1
1

0
0
1

1
0
0

0
1
1

1
0
1

1
0
1

1
1
0

1
1
1

1
1
1

000 000

010 001

100 010

110 011

001 100

011 101

101 110

111 111

A, σ(A)

B
,σ

(B
)

0
0
0

0
0
0

0
1
0

0
0
1

1
0
0

0
1
0

1
1
0

0
1
1

0
0
1

1
0
0

0
1
1

1
0
1

1
0
1

1
1
0

1
1
1

1
1
1

000 000

010 001

100 010

110 011

001 100

011 101

101 110

111 111

B, σ(B)

C
,σ

(C
)

0
0
0

0
0
0

0
1
0

0
0
1

1
0
0

0
1
0

1
1
0

0
1
1

0
0
1

1
0
0

0
1
1

1
0
1

1
0
1

1
1
0

1
1
1

1
1
1

000 000

010 001

100 010

110 011

001 100

011 101

101 110

111 111

A, σ(A)

C
,σ

(C
)

Figure 1.1: Queries with different box certificate sizes which are equivalent up to reordering
the attributes’ domains

cover size, there are still queries for which minimizing the box cover size by reordering
the domain yields a better run time bound than any provided by Tetris without domain
reordering.

We will show that this problem is also NP-hard. However, Corollary 5.21 shows that we

can efficiently compute a domain ordering which yields a box cover of size Õ
((
K�(σ∗(Q))

)a·r)
where K�(σ∗(Q)) is the minimum box cover size under the optimal domain ordering σ∗, a
is the maximum number of relations any single attribute appears in, and r is the maximum
number of attributes in a relation. Since a and r are constant when the query shape is
fixed, this is a polynomial-factor approximation to the optimal solution. Theorems 5.22
and 5.23 state the following new bounds on join run time by combining Corollary 5.21 with

4

Tetris’ bounds.

Õ
(
N +

(
K�(σ∗(Q))

)a·r·(w+1)
+ Z

)
Õ
(
N +

(
K�(σ∗(Q))

)a·r·n/2
+ Z

)
The thesis is organized as follows. Chapter 2 reviews prerequisites about join queries,

join algorithms, box covers, and Tetris. Chapter 3 reviews several related results from
the literature about box cover problems and join algorithms. In Chapter 4, we present an
algorithm which computes a box cover B for any query Q such that the box certificate for
B is of minimum size. In Chapter 5, we study several general domain ordering problems.
We start by aiming to minimizing the box cover size of a single 2-dimensional relation in
Sections 5.2 and 5.3. Even this case is shown to be NP-hard. Section 5.4 generalizes this to
n-dimensional relations and presents an approximation algorithm which the aforementioned
upper bounds are based upon. This algorithm is extended to multiple relations in Section
5.5, and Section 5.5.1 states Theorems 5.22 and 5.23. Finally, Chapter 6 consolidates all
the findings in this thesis and identifies several open questions.

5

Chapter 2

Preliminaries and Research
Questions

This chapter will provide several definitions and fundamental results which are necessary
to explain the results of this thesis. Then, we will identify the research questions that this
thesis seeks to solve. To begin, we will define the database model we will be working with,
as well as our notion of a join query.

Definition 2.1 (Database, Attribute, Relation). A database D = (R,A) is a collec-
tion of relations R over a set of attributes A. Each attribute A ∈ A is a variable over a
discrete, finite domain denoted dom(A). For simplicity, in this thesis we will assume all
attributes are stored in d bits, so dom(A) is always equivalent to the set of binary strings
{0, 1}d and the set of non-negative integers {0, 1, . . . , 2d − 1}. Each relation R ∈ R is a
set of tuples over a subset of attributes attr(R) ⊆ A. If attr(R) = {A,B,C}, for example,
then we often denote R by R(A,B,C) and each tuple t ∈ R is of the form t = 〈a, b, c〉
where a ∈ dom(A), b ∈ dom(B), and c ∈ dom(C). If t ∈ R and A ∈ attr(R), the value for
A in t is denoted t.A.

Throughout this thesis, we will often discuss the geometric representation of a relation.
A relation R over n attributes can be thought of as a subset of an n-dimensional hypercube
H with one vertex at 0 and side lengths all equal to 2d, extending in the positive direction
along each dimension. Each axis is labelled with the domain values, in order, of some
attribute A ∈ attr(R). Each individual value a ∈ dom(A) corresponds to a unit interval
on the A-axis. Then every possible tuple t ∈ ×A∈attr(R)dom(A) naturally corresponds to
a unit hypercube within H. The geometric representation of R is the union of the unit

6

R
A B

000 010
001 001
010 000
010 100
010 101
010 110
010 111
011 000
100 000
101 000
101 100
101 101
101 110
101 111
110 001
111 010

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

001

010

011

100

101

110

111

A

B

Figure 2.1: A relation represented as a list of tuples (left) and its geometric representation
where each shaded square is a tuple (right)

hypercubes corresponding to each tuple in R. An example of this in the 2-dimensional
case is shown in Figure 2.1, where the blue shaded grid cells are part of the geometric
representation of R.

There are two relational algebra operators we will use in this thesis. The selection
operator, denoted σP (R) for some relation R and some predicate P , is defined as

σP (R) = {t ∈ R : P}

The projection operator, denoted πA′(R) for some relation R and a set of attributesA′ ⊆ A,
is defined as

πA′(R) = {t′ ∈ ×A∈A′dom(A) : ∃t ∈ ×A∈A such that t.A = t′.A, ∀A ∈ A′}

We can now give the formal definition of a join query.

7

Definition 2.2 (Join query). A join query is a pair Q = (R,A) where R is a set of
relations over the set of attributes A. The relations in R are the inputs of Q. The output
of Q is a relation J =onR∈R R with attr(J) = A. A tuple t ∈ ×A∈Adom(A) is in J if and
only if πattr(R)t ∈ R for each R ∈ R. For the join of two relations R(A1, . . . , AnR

) and
S(B1, . . . , BnS

), formally Q = ({R, S}, {A1, . . . , AnR
, B1, . . . , BnS

}), we will also use the
notation R(A1, . . . , AnR

) on S(B1, . . . , BnS
), or R on S when the attributes of the relations

are clear.

In all of the asymptotic analysis in this thesis, the Õ-notation hides any poly-logarthmic
factors in N and Z, where N is the total number of input tuples summed over all relations
in Q, and Z is the number of output tuples for Q. This notation will also hide any
polynomial factors in d, since d is assumed to be of size O(logN). It will also hide any
factors of n, the number of attributes in Q, and m, the number of relations in Q, because
these parameters are fixed by the query shape. In general, the notation Õ(f(N)) represents
the bound

O
(
f(N) · p

(
log(N + Z)

)
· q(d) · g(m,n)

)
where p and q are polynomials of degree at most m+ n, and g is an arbitrary function.

The next section will build upon these definitions by defining several quantities that
describe the shape of a join query.

2.1 Query Graphs and Notions of Width

Many join algorithms have worst-case run times which depend on features of the query
graph for the input query. The query graph is defined as follows.

Definition 2.3 (Query graph). The query graph for Q = (R,A) is the hypergraph
H(Q) = (V, E) with vertex set V = A and the hyperedge set E = {attr(R) : R ∈ R}.

One common metric measuring the complexity of a query’s shape is its treewidth. Any
join can be computed in O(Nw + Z) time, where w is its treewidth, N is the number of
input tuples, and Z is the number of output tuples, using a generalization of Yannakakis’
algorithm [52, 12]. To understand exactly what this bound says, we need to define tree
decomposition and treewidth.

Definition 2.4 (Tree decomposition). For a hypergraph H = (V, E), a tree decomposi-
tion of H is a pair D = (T , φ) where T is a tree and φ : V (T)→ 2V maps each vertex in
T to a subset of V . D must satisfy the following properties.

8

1. For each E ∈ E , there must be some vertex t of T such that E ⊆ φ(t)

2. For each v ∈ V , the set t(v) = {t ∈ V (T) : v ∈ φ(t)} must form a non-empty
connected subtree of T

Definition 2.5 (Treewidth). The treewidth of a tree decomposition D = (T , φ) of H is
maxt∈V (T) |φ(t)| − 1. The treewidth of H is the minimum treewidth over all tree decompo-
sitions of H. The treewidth of a query Q is the treewidth of H(Q).

In 2008, Atserias, Grohe, and Marx published an important result that would come to
be known as the AGM bound [3]. The AGM bound is a worst-case upper bound on the
number of output tuples for a join query based on the shape of the query graph and the
number of tuples in each relation. The AGM bound is defined in terms of a fractional edge
cover for the query graph.

Definition 2.6 (Fractional edge cover). For a hypergraph H = (V, E), a fractional
edge cover for H is a collection of real numbers ρE ∈ [0, 1] for each E ∈ E such that∑
{E∈E:v∈E} ρE ≥ 1 for each vertex v ∈ V . The minimum fractional edge cover is the

fractional edge cover ρ∗ which minimizes the objective function
∑

E∈E ρ
∗
E.

For the query Q = (R,A), if F is the set of all fractional edge covers for H(Q), then
the AGM bound is

AGM(Q) = min
ρ∈F

∏
R∈R

(NR)ρR

Example 2.7. Consider the triangle query, Q = R(A,B) on S(B,C) on T (A,C). Suppose
the relations R, S, and T have N tuples each. The query graph for Q is a 3-cycle (a
triangle), whose minimum fractional edge cover is ρ∗R = ρ∗S = ρ∗T = 1

2
. The AGM bound

for this query is
AGM(Q) = Nρ∗R ·Nρ∗S ·Nρ∗T = N3/2

Therefore, the output of Q has at most N3/2 tuples.

A join algorithm which runs in time Õ(AGM(Q)) is said to be worst-case optimal.
Another quantity which is dependent on fractional edge covers is the fractional hypertree
width. Any join query can be computed in time Õ(N fhtw+Z), where fhtw is the fractional
hypertree width of Q, by combining Yannakakis’ algorithm with a worst-case optimal join
algorithm [18].

9

Definition 2.8 (Fractional hypertree width). The fractional hypertree width of a tree
decomposition D = (T , φ) of H is maxt∈V (T) ρ

∗(φ(t)), where ρ∗(φ(t)) denotes the mini-
mum fractional edge cover of the subgraph of H(Q) induced by the vertex set φ(t). The
fractional hypertree width of H is the minimum fractional hypertree width over all tree de-
compositions of H. The fractional hypertree width of a query Q is the fractional hypertree
width of H(Q).

2.2 Gap Boxes, Box Covers, and Box Certificates

The work of Abo Khamis, Ngo, Ré, and Rudra [1] introduced a new geometric framework
for processing join queries. The join algorithm Tetris takes as input a geometric box cover
of the query instead of the usual input tuples and has a run time that depends on the
minimum size of a box certificate for the input box cover.

In order to understand the join processing upper bounds provided by Tetris, we need
to define gap boxes, box covers, and box certificates.

Definition 2.9 (Box, Gap box). Let R ∈ R and let attr(R) = {A1, A2, . . . , AnR
}. A box

for R is an nR-tuple of intervals b = 〈I1, I2, . . . , InR
〉 where each Ij is a contiguous interval

Ij = [a1, a2] with a1, a2 ∈ dom(Aj) and a1 ≤ a2. A tuple t ∈ ×A∈attr(R)dom(A) is covered
by b, denoted t ∈ b, if t.Aj ∈ Ij for each j ∈ [nR]. The box b is a gap box for R if there is
no t ∈ R such that t ∈ b. When a gap box b is given as input to Tetris, it is “extended”
to an n-tuple with one interval for each of the n attributes in A. If Ai 6∈ attr(R), then
b.Ai = [0, 2d − 1]. We will refer to b and the extended version of b interchangeably.

Definition 2.10 (Box cover). A box cover for a relation R ∈ R is a set of gap boxes B
such that for each tuple t ∈ R, t 6∈ ∪b∈Bb and for each tuple t 6∈ R, there exists b ∈ B such
that t ∈ B. The set of box covers for R is denoted B(R). The minimum box cover size for
R is denoted K�(R). A box cover for a query Q is a set of box covers B = {B1, . . . , Bm}
such that each Bi is a box cover for Ri ∈ R = {R1, . . . , Rm}. The minimum total box
cover size for Q is denoted K�(Q).

Definition 2.11 (Box certificate). A box certificate for a box cover B of Q is a subset
C ⊆ ∪B∈BB such that ∪b∈Cb = ∪B∈B ∪b∈B b. The set of box certificates for a box cover
B is denoted C(B). The minimum box certificate size for a box cover B is denoted C�(B).
The minimum box certificate size for Q over all possible box covers is denoted C�(Q).

Example 2.12. Consider the query Q = R(A,B) on S(B,C) where each attribute has a
3-bit domain. Figure 2.2 shows an instance of this query. The blue shaded cells are tuples

10

R
A B

000 000
000 101
011 001
011 100
110 100
111 000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

001

010

011

100

101

110

111

A

B

S
B C

010 000
010 001
010 110
011 000
110 000
110 110

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

001

010

011

100

101

110

111

C

B

Figure 2.2: An example of a box cover and box certificate

in the relations, (the extensions of) the black and red outlined gap boxes are part of the box
cover, and (the extensions of) the red outlined gap boxes are also part of the box certificate
C. The 4 boxes in the certificate in their non-extended form are

〈
[000, 111], [010, 011]

〉
and〈

[000, 111], [110, 111]
〉

from R(A,B), and
〈
[000, 001], [000, 111]

〉
and

〈
[100, 101], [000, 111]

〉
from S(B,C). By extending these boxes in attribute order (A,B,C), this certificate is
written as

C =
{〈

[000, 111], [110, 111], [000, 111]
〉
,
〈
[000, 111], [110, 111], [000, 111]

〉
,〈

[000, 111], [000, 001], [000, 111]
〉
,
〈
[000, 111], [100, 101], [000, 111]

〉}
Note that these 4 gap boxes cover the entire output space, so the output of the query is
empty.

This definition of gap boxes generalizes 2-dimensional axis-aligned rectangles to an

11

arbitrary number of dimensions. For the majority of this thesis, this is the type of gap
boxes we will be working with. However, the gap boxes which Tetris takes as input are not
of this form. Instead, Tetris takes a specific type of gap boxes called dyadic gap boxes.

Definition 2.13 (Dyadic box, Dyadic gap box). A dyadic box for relation R over nR
attributes is an nR-tuple b = 〈s1, s2, . . . , snR

〉 where each si is a binary string of length at
most d. We will use ∗ to denote the empty string. Semantically, b is equivalent to the
general box b′ obtained from b by replacing each si with the interval [si0

d−|si|, si1
d−|si|]. A

dyadic gap box is defined analogously to a general gap box.

Similarly, we define dyadic box covers for R, dyadic box covers for Q, and dyadic box
certificates for a dyadic box cover.

Dyadic boxes are a particularly useful analytical tool for join query processing because
there are far fewer dyadic boxes than there are general boxes. This allows us to perform
certain operations on dyadic boxes in Õ(1) time which would not be possible with general
boxes. In particular, Lemma 2.14, states that there are not many dyadic gap boxes which
contain any given tuple. Even better, Lemma 2.15 informs us that by restricting ourselves
to only dyadic box certificates, we do not increase the size of the minimum box certificate
by more than a poly-logarithmic factor. These facts are key ingredients to the upper
bounds provided by Tetris.

Lemma 2.14 (Proposition B.12 in [1]). Let R be a relation and nR = |attr(R)|. For

any tuple t 6∈ R, the number of dyadic gap boxes from R which contain t is O(dnR) = Õ(1).

Lemma 2.15 (Proposition B.15 in [1]). For every box certificate C, there is a dyadic

box certificate of size O((2d)n|C|) = Õ(|C|).

In the next section, we will review the Tetris algorithm and state two of the upper
bounds it provides.

2.3 Tetris

In order to understand the bounds provided by Tetris, we will review the algorithm itself.
At a high level, Tetris begins with the input box cover, and performs a series of ordered ge-
ometric resolutions (defined momentarily) according to the splitting attribute order (SAO)
to combine the dyadic gap boxes and determine whether they cover the entire output space.
Every time an output tuple is encountered, it is reported as output and then inserted as a
unit gap box, and the process continues.

12

Definition 2.16 (Splitting attribute order). A splitting attribute order (SAO) is a
permutation σ = (A1, . . . , An) of the n attributes in Q which is passed as input to Tetris.
Tetris splits dyadic boxes on the attributes according to σ.

Definition 2.17 (Ordered geometric resolution). An ordered geometric resolution of
two dyadic boxes w1 and w2 produces a new dyadic box w ⊆ w1 ∪ w2 and must take the
following form for some 1 ≤ i ≤ n and some binary strings s1, . . . , si−1, t1, . . . , ti−1, x,
where the attributes are ordered according to the SAO σ = (A1, . . . , An).

w1 =〈s1, s2, . . . , si−1, x0, ∗, . . . , ∗〉
w2 =〈t1, t2, . . . , ti−1, x1, ∗, . . . , ∗〉
w =〈s1 ∩ t1, s2 ∩ t2, . . . , si−1 ∩ ti−1, x, ∗, . . . , ∗〉

For each j < i, either sj must be a prefix of tj or tj must be a prefix of sj. Then sj ∩ tj
denotes the shorter of the two strings sj and tj. w1 and w2 must differ by only the last bit
in attribute Ai. For all j > i, we must have w1.Aj = w2.Aj = ∗. If all these conditions
hold, then the ordered geometric resolution w of w1 and w2 is well-defined.

Algorithm 1 is the recursive subroutine which does most of the work in Tetris. The
global set of dyadic boxes K can be thought of as a knowledge base which contains all of
the gap boxes the algorithm has learned so far. The knowledge base is initialized as empty,
and it grows as Algorithm 1 is called repeatedly. Algorithm 1 takes as input a dyadic box
b, and returns a pair (v, w) where v is True if b is a subset of ∪a∈Ka. In this case, w will
be some box in K which contains b. The box w may be either a box from the original box
cover, or a box which was added to K after some previous resolution on line 22. Otherwise,
v is False, and w is a tuple (a unit box) not covered by any box in K.

The Resolve call on line 21 performs ordered geometric resolution on w1 and w2, and
it is indeed well defined. This is shown by induction in [1]. If that line is reached, then
the if-conditions on lines 10 and 16 ensure that b1 ⊆ w1 and b2 ⊆ w2, so the resolvent w
satisfies b ⊆ w.

The SplitFirstThickDimension call on line 8 simply splits b into two halves based
on the next available bit in the SAO. That is, if

b = 〈s1, s2, . . . , si−1, si, ∗, . . . , ∗〉

where the length of si is less than d, then

b1 =〈s1, s2, . . . , si−1, si0, ∗, . . . , ∗〉
b2 =〈s1, s2, . . . , si−1, si1, ∗, . . . , ∗〉

13

Algorithm 1 Recursive subroutine of Tetris which determines whether b is covered by the
boxes in K (Algorithm 1 in [1])

1: TetrisSkeleton(b):
2: Global parameters: global set of dyadic gap boxes K, SAO σ = (A1, . . . , An)
3: if there is a box a ∈ K such that b ⊆ a then
4: return (True, a)
5: else if b is a unit box then
6: return (False, b)
7: else
8: (b1, b2) := SplitFirstThickDimension(b, σ)
9: (v1, w1) := TetrisSkeleton(b1)
10: if v1 is False then
11: return (False, w1)
12: else if b ⊆ w1 then
13: return (True, w1)
14: end if
15: (v2, w2) := TetrisSkeleton(b2)
16: if v2 is False then
17: return (False, w2)
18: else if b ⊆ w2 then
19: return (True, w2)
20: end if
21: w := Resolve(w1, w2)
22: K := K ∪ {w}
23: return (True, w)
24: end if

From this definition, there is a straightforward inductive proof which shows that b always
takes the required form, so this step is well-defined [1].

Example 2.18. Let Q be as defined in Example 2.12 and Figure 2.2. Suppose that K
contains the 4 boxes in the box certificate C. Figure 2.3 shows how these boxes can be
written as dyadic boxes, and it shows the recursion tree formed when TetrisSkeleton
(Algorithm 1) is called on b = 〈∗, ∗, ∗〉 with this knowledge base K. The nodes are labelled
with the value of b for the respective recursive call. The nodes numbered 1, 2, and 3
correspond to the recursive calls where ordered geometric resolutions are performed on
line 21. At node 1, the boxes 〈∗, 00, ∗〉 and 〈∗, 01, ∗〉 are resolved to obtain 〈∗, 0, ∗〉. At

14

K =
{
〈∗, 01, ∗〉, 〈∗, 11, ∗〉, 〈∗, 10, ∗〉, 〈∗, 00, ∗〉

}
〈∗, ∗, ∗〉

〈0, ∗, ∗〉

3: 〈00, ∗, ∗, 〉

1: 〈00, 0, ∗〉

〈00, 00, ∗〉 〈00, 01, ∗〉

2: 〈00, 1, ∗〉

〈00, 10, ∗〉 〈00, 11, ∗〉

Figure 2.3: The recursion tree formed by TetrisSkeleton on a simple example

node 2, 〈∗, 10, ∗〉 and 〈∗, 11, ∗〉 are resolved to obtain 〈∗, 1, ∗〉. At node 3, 〈∗, 0, ∗〉 and
〈∗, 1, ∗〉 are resolved to obtain 〈∗, ∗, ∗〉 which covers the entire output space, so no further
resolutions are needed.

Algorithm 2 presents the pseudocode for the main algorithm, Tetris. The dyadic box
b = 〈∗, . . . , ∗〉 is the box which covers the entire output space. Tetris repeatedly calls
TetrisSkeleton on b until the entire space is covered by boxes in K. Tetris takes the
box cover B of the query Q as input, but it initializes the knowledge base K to the empty
set. This ensures boxes from B are added only when necessary, which is important for
proving the certificate-based upper bounds.

Theorem 2.19 states one run time upper bound that Tetris (Algorithm 2) provides. By
adding an additional load balancing preprocessing step before calling Tetris, Theorem 2.20
can be proven as well. Both of these bounds depend on the box certificate size of the input
box cover, C�(B). These results motivate finding box covers for Q of minimum size in
order to improve these upper bounds on Tetris’ run time. In Chapter 4, we show that it is
possible to efficiently compute a box cover for Q which minimizes the certificate size when
the domain ordering is fixed.

15

Algorithm 2 The Tetris algorithm (Algorithm 2 in [1])

1: Tetris(B):
2: K := ∅
3: J := ∅
4: (v, w) := TetrisSkeleton(〈∗, . . . , ∗〉)
5: while v = False do
6: B′ := {a ∈ B : w ⊆ a}
7: if B′ = ∅ then
8: J := J ∪ {w}
9: B′ := {w}
10: end if
11: K := K ∪ B′
12: (v, w) := TetrisSkeleton(〈∗, . . . , ∗〉)
13: end while
14: return J

Theorem 2.19 (Theorem 4.9 in [1]). If Q has treewidth w, there exists an SAO σ such

that, on box cover B of Q and σ, Tetris runs in time Õ(C�(B)w+1 + Z), where Z is the
number of output tuples for Q.

Theorem 2.20 (Theorem 4.11 in [1]). If Q has n attributes, on input box cover B,

Tetris computes the result of Q in time Õ(C�(B)n/2 +Z), where Z is the number of output
tuples for Q.

The following section will introduce the research questions we intend to study in this
thesis, and lay the groundwork for how we intend to reduce a query’s box certificate size.

2.4 Research Questions

Since Tetris takes a box cover as input, and we are working in the setting where the tuples
of the relations are input, it is necessary to construct a box cover from the input tuples
before invoking Tetris. An algorithm to generate a box cover B for Q in Õ(N) time is

known [1], however, it provides no upper bounds on C�(B) other than C�(B) ≤ Õ(N).
This motivates our first research question.

16

Domain ordering σA = (001, 010, 100, 110, 000, 011, 101, 111)

R
A B

001 000
010 000
100 000
110 000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

A

B
σA(R)

A B
000 000
001 000
010 000
011 000

00
1

00
0

01
0

00
1

10
0

01
0

11
0

01
1

00
0

10
0

01
1

10
1

10
1

11
0

11
1

11
1

000

A, σA(A)

B
Figure 2.4: A relation whose box cover size can be decreased by changing the domain
ordering

Research Question 1. Given a query Q under a fixed domain ordering where the relations
are stored as arrays of input tuples, how can we efficiently construct a box cover B for Q
such that C�(B) = Õ

(
C�(Q)

)
?

The first contribution of this thesis is presented in Chapter 4, where Theorem 4.2 shows
that we can construct such a box cover in Õ(N) time.

Consider the relation R(A,B) depicted in Figure 2.4. Attributes A and B both have
domains {0, 1}3, although only the value B = 000 is depicted in the image. The following
set of gap boxes forms a box cover for R.

B =
{〈

[000, 111], [001, 111]
〉
,
〈
[000, 000], [000, 000]

〉
,
〈
[011, 011], [000, 000]

〉
,〈

[101, 101], [000, 000]
〉
,
〈
[111, 111], [000, 000]

〉}
It is easy to verify that B is a minimum size box cover for R. This is unsatisfactory,

because R is structurally a very simple relation. It can be written as a Cartesian product
R = RA × RB = {001, 010, 100, 110} × {000}. If the values of RA formed a consecutive
interval in dom(A), we could cover the gaps of R with only 2 gap boxes. If we were free to
reorder the columns of R, we could do so in a way that makes all of these 4 A-values one

17

consecutive interval. Assuming all boxes from R are part of the minimum box certificate,
if we use this reordered relation and the corresponding box cover as input to Tetris, we
obtain a better upper bound for the run time of Tetris (from Theorems 2.19 and 2.20) than
otherwise possible.

This example motivates our second research question. We will allow ourselves the free-
dom to reorder the values of dom(A) according to an arbitrary domain ordering. A domain
ordering σ is a set of permutations σA ∈ Sdom(A) for each attribute A ∈ A. Any value in
dom(A) can be mapped to any position in the permuted domain dom(σA(A)). Figure 2.4
shows the “best” domain ordering for the relation R, in the sense that it minimizes the
box certificate size. σA can be stored as an array of length at most N , the number of
input tuples, because there is no need to store domain values which do not occur anywhere
in the query. These values are implicitly placed consecutively at the end of the ordering
where they can all be covered by a single gap box. This technical detail ensures that we
can transform relations in Õ(N) time.

Research Question 2. Given a query Q = (R,A), can we efficiently compute a domain
ordering σ for the attributes in A such that the certificate size of the permuted query,
C�(σ(Q)), is minimized?

If so, we can compute the domain ordering as a preprocessing step, transform the input
according to the ordering, generate box covers of the transformed query to use as input
to Tetris, and then transform Tetris’ output back to the original ordering afterwards. If
P is the run time taken to compute the optimal ordering on Q and N is the number of
input tuples, then by Theorem 4.2 the total preprocessing time will be Õ(P +N). All the
algorithms to find orderings we will discuss in this thesis will have run time Ω(N), so the

Õ(N) cost of generating all maximal dyadic gap boxes for a query will not be a bottleneck.

In Chapter 5 we will define two minimization problems, CertMinPDomF and BoxMinPDomF,
which aim to find a domain ordering which minimizes the box certificate size of Q and the
box cover size of Q, respectively. We will show that both of these problems are NP-hard.
Little more is known about CertMinPDomF; we show that it can be computed exactly in the
very limited case where the minimum certificate size under any domain ordering is at most
3. For BoxMinPDomF we obtain a more positive result. We show that BoxMinPDomF can
be approximated in Õ(N) time to a polynomial factor. This yields the new join processing
upper bounds given by Theorems 5.22 and 5.23.

18

Chapter 3

Related Work

This thesis draws from results in two disparate areas of research. Box cover problems,
where the goal is to cover a polygon with as few rectangles as possible, are reviewed in
Section 3.1. Join algorithms in relational database management systems are reviewed in
Section 3.2.

3.1 Box Cover Problems

Much of this thesis focuses on finding a relation R over n attributes which has a small box
cover. The notion of a box cover for a relation was defined in Chapter 2. Informally, a
box cover is a set of n-dimensional rectangles which cover all the tuples which are not in
R. The tuples not in the relation R form a set of n-dimensional, axis-aligned, rectilinear
polytopes. These polytopes are not necessarily convex, and they may have holes. The
problem of covering a polytope with a minimum number of boxes has been previously
studied, primarily in the 2-dimensional case.

3.1.1 2 Dimensions

Most of the existing literature on box cover problems considers the input to be a polygon,
represented as a list of vertices, and the objective is to cover the interior of the polygon
using as few rectangles as possible. These results are largely still applicable to covering
the gaps of a 2-dimensional relation, provided that the polygons are allowed to have holes.
The gaps of a 2-dimensional relation will form a set of one or more rectilinear polygons,

19

each of which may have holes. The number of vertices in these polygons is bounded (up
to a constant factor) by the number of tuples in the relation, since each vertex is formed
where one or more tuples in R are adjacent to some tuple not in R.

The specific problem of finding a minimum rectangle covering for a rectilinear polygon
with holes has been well studied. In this thesis, we will refer to this problem as the Box
Cover Minimization Problem (BoxMinP). BoxMinP is known to be NP-complete, even
when the polygon is hole-free [11]. Furthermore, the problem is known to be MaxSNP-
hard for polygons with holes, so there is no polynomial-time approximation scheme for it
unless P=NP [5].

Franzblau [15] designed a simple algorithm for BoxMinP and showed that it approxi-
mates the optimal solution to a factor of O(log n), where n is the number of vertices in the
polygon. If the polygon is hole-free, the approximation factor improves to 2. Anil Kumar
and Ramesh [29] showed a tighter approximation ratio of O(

√
log n) for the same algorithm

on polygons with holes. This is the best known approximation factor for this problem, and
it is not known whether a better ratio is possible. This algorithm and its approximation
results will serve as motivation for the approach we use in Section 5.2. BoxMinP can also
be cast as an instance of the Boolean basis problem, which provides a characterization of
a class of rectilinear polygons for which the box cover problem is tractable [32]. We also
discuss these connections further in Appendix C.

There is a special case of BoxMinP which is not NP-hard. A polygon P is vertically
convex if any vertical line between two points in P is contained entirely within P . When
P is rectilinear and vertically convex, the minimum number of rectangles required to cover
P can be computed in polynomial time [16].

There is also a more general version of the problem for which a similar approximation
ratio is possible. For the set P of polygons with only obtuse interior angles, of which
rectilinear polygons are a subset, an algorithm exists to approximate the minimum number
of rectangles needed to cover any p ∈ P to an O(log n) factor [19]. The same paper also
shows an exponential-time algorithm which yields a constant approximation factor.

Other research in this area considers a variant of BoxMinP where the input is a matrix
of Boolean values, often representing a black and white image [33, 43]. This version of the
problem is less useful for finding box covers of relations because the input size is no longer
bounded by the number of tuples in the relation – the tuples which are not in the relation
are counted as well.

Another variant of this problem considers covering the input polygon with squares in-
stead of rectangles. This is a more restricted problem which happens to be decidedly easier.
Levcopoulos and Gudmundsson [31] presented a polynomial-time algorithm for the square

20

cover problem on any polygon with only obtuse interior angles with an approximation
factor of 14. Zwoźniak [53] presented a polynomial-time algorithm for the same problem
which produces a square cover of size at most 10.5n+µ, where µ is the size of the minimum
square cover.

Chan and Grant [7] showed that many types of geometric set cover problems, including
covering a set of points with axis-aligned rectangles, are APX-hard, so these problems have
no polynomial-time approximation scheme unless P=NP.

Whether there exists a polynomial-time, constant-factor approximation algorithm for
covering a rectilinear polygon with rectangles remains an open question. This problem is
solved for hole-free polygons, but not for any more general case. This question is of inde-
pendent interest, but is not vitally important to this thesis because our asymptotic analysis
hides all constants and polylogarithmic factors in the Õ notation – so an improvement from
an O(

√
log n) approximation to a constant-factor approximation does not affect our upper

bounds. It is important for this thesis to understand if any of these results generalize to
more than 2 dimensions.

3.1.2 3 or More Dimensions

There is very little written about the more general case of covering an n-dimensional
polytope with n-dimensional rectangles. In the 3-dimensional case, a polynomial-time
algorithm has been published which determines whether a polyhedron P can be covered
by the union of polyhedra P1 ∪ P2 under any translation and rotation of P1 and P2 [51].

Similarly, the sphere covering problem involves covering an n-dimensional space with
spheres, and lower bounds on the density of the sphere cover are known [4, 14]. The sphere
covering problem is dual to the sphere packing problem. A survey of results on geometric
packing and covering problems can be found in [48]. A book on sphere packings is [10].

Despite the lack of closely related prior work, we will show in Chapter 4 that construct-
ing a box cover for a relation over any number of attributes can be done efficiently enough
for our purposes.

3.2 Join Algorithms

Join queries have always been an important part of data processing tasks. There are several
classical join algorithms, such as nested loop join, hash join, and sort-merge join [41, p.

21

454], which have been widely used in database management systems for decades. These
algorithms are simple and used to join only two relations. They are often combined using
a variety of heuristics to form a query plan for an arbitrarily large join query [28, 45, 46].
Finding the join plan of this type which minimizes the size of the intermediate results is
known to be NP-hard [42]. Even though asymptotically faster alternatives exist, these
algorithms are still widely used because of their simplicity and the large body of research
focused on low-level optimizations and parallelization for these algorithms [30, 44, 13].

Yannakakis’ algorithm [52] is an important early result which computes acyclic queries
in time O(N +Z).1 This result was later generalized to an algorithm for arbitrary queries

which runs in time Õ(Nw + Z), where w is the treewidth of the query [12].

3.2.1 Worst-Case Optimal Join Algorithms

In 2008, Atserias, Grohe, and Marx published an important result that would come to
be known as the AGM bound [3]. The AGM bound is a worst-case upper bound on the
number of output tuples for a join query based on the shape of the query graph and the
number of input tuples. We defined the AGM bound in Section 2.1. A join algorithm is
said to be worst-case optimal if it runs in time Õ(AGM(Q)). This result was surprising
when it was published, because it showed that the classical join plans were not worst-case
optimal, even for simple cyclic queries such as the triangle query.

In the following years, several worst-case optimal join algorithms were developed, such
as NPRR [36] and Generic Join [37]. One algorithm which predated all of these algo-
rithms, called Leapfrog Triejoin, was later shown to be worst-case optimal too [50]. An
implementation of Leapfrog Triejoin has been experimentally shown to outperform classi-
cal join algorithms on some common benchmark data [9]. Grohe and Marx also introduced
the notion of fractional hypertree width and presented an algorithm that runs in time
Õ(N fhtw + Z), which also matches the AGM bound. A recent survey on worst-case opti-
mal join algorithms can be found in [34].

3.2.2 Beyond Worst-Case Optimal Join Algorithms

Worst-case optimal join algorithms are an asymptotic improvement over classical join al-
gorithms, but there are query instances where the worst-case AGM bound is still unsat-
isfactory. For example, if the output of a join query Q is empty, and there exists a short

1A query with treewidth 1 is called acyclic.

22

proof that the output is empty, we would like to be able to compute the query quicker than
Ω(AGM(Q)). There are several algorithms which provide upper bounds that are beyond
worst-case optimal in this sense.

Other algorithms work for queries of any shape, but seek to exploit highly structured
or skewed parts of the input relations. Olteanu and Závodný [39] developed two factorized
representations of relations, and designed an algorithm with a run time dependent on the
size of the factorized input representations. This represents an improvement on the AGM
bound for inputs with compact factorized representations.

Joglekar and Ré [22] developed an algorithm which takes advantage of degree informa-
tion to place a tighter bound on the output size, and therefore computation time. The
algorithm is aware of how the input data is skewed, and uses that to split the input into
subqueries that can be bounded more tightly than the AGM bound. In a similar vein, tak-
ing into account other constraints on the input has allowed information theoretical bounds
tighter than the AGM bound, such as functional dependencies [17] and more general degree
constraints [2].

Another measure of the simplicity of a query instance’s structure is its certificate size. A
comparison certificate C is a set of comparisons between tuples in the sorted input instance
which suffices to verify that the output of the query is correct. Ngo, Nguyen, Ré, and Rudra
[35] developed the Minesweeper join algorithm, which runs in time Õ(|C|w+1 + Z), where
Z is the number of output tuples and w is the treewidth of the query. Abo Khamis, Ngo,
Ré, and Rudra built upon this result by developing a new, geometric notion of a certificate,
the box certificates which we reviewed in Section 2.2. They also designed Tetris, a join
algorithm with run time bounds dependent on the box certificate size, as we reviewed in
Section 2.3. For every comparison certificate C, there is a corresponding box certificate of
size at most |C|. In this sense, box certificates are stronger than comparison certificates,
and Tetris subsumes the certificate-based results of Minesweeper. Tetris is also worst-case
optimal, and we show in Appendix A that its run time is bounded by the run time of
Generic Join on any input.

While the factorized bounds, degree-based bounds, and certificate-based bounds all
improve on the AGM bound for certain classes of input queries, the relationships between
these bounds are not known. The results of this thesis improve on the box certificate-based
bounds provided by Tetris for a large class of queries, but we do not make a connection
between our bounds and factorized or degree-based bounds. It is left to future work to make
connections between the different types of beyond worst-case bounds, and to determine
whether domain orderings can also be used to obtain tighter factorized and degree-based
bounds.

23

As discussed in the previous chapter, this thesis explores choosing the domain ordering
of the attributes in order to minimize the size of the box certificate. Since box certificates
are powerful enough for Tetris to subsume and improve on the AGM bound and comparison
certificate-based upper bounds, any tighter bounds represent a further improvement. The
following two chapters present this thesis’ contributions in this direction.

24

Chapter 4

Generating a Box Cover

Since Tetris takes a box cover of the input query Q as input, and our relations are stored
as arrays of tuples, it is necessary to compute a box cover for Q as a preprocessing step.
This preprocessing could be performed whenever a relation is updated and the box cover
for each relation could be stored as an index to prevent computing the same box cover
multiple times. Generally, we assume the worst case, where we must compute the box
cover from scratch for every query. As the first contribution of this thesis, we show that
one can generate a box cover which is guaranteed to contain the minimum size dyadic box
certificate in Õ(N) time.

For any relation R with N tuples, there exists a box cover (and a dyadic box cover) for

R of size Õ(N). This follows from Lemmas 2.14 and 2.15. Furthermore, the total number

of maximal dyadic gap boxes for R is in Õ(N).

Definition 4.1 (Maximal dyadic gap box). A dyadic gap box b for R is maximal if
for all A ∈ A and for all strict prefixes b′.A of b.A, there exists a tuple t ∈ R such that the
dyadic box b′ obtained from b by replacing the entry b.A with b′.A satisfies t′ ∈ A.

Algorithm 3 generates all these maximal boxes in Õ(N) time, as proven in Theorem
4.2.

Theorem 4.2. For any relation R with N ≥ 1 tuples, Algorithm 3 generates all maximal
dyadic gap boxes of R in Õ(N) time.

Proof. Claim 1: Algorithm 3 generates all maximal dyadic gap boxes for the relation R.

25

Algorithm 3 Generate all maximal dyadic gap boxes for R

1: GenAllMaxBoxes(R):
2: B := ∅
3: B := ∅
4: for t ∈ R do
5: for every dyadic box b such that t ∈ b do
6: for A ∈ attr(R) such that b.A 6= ∗ do
7: Let b′ be obtained from b by flipping the last bit of b.A
8: B := B ∪ {b′}
9: B := B ∪ {b}
10: end for
11: end for
12: end for
13: return B \B

Let b′ be a maximal dyadic gap box for R. Let A be an attribute of R for which b′

specifies at least one bit. Let b be the dyadic box obtained from b′ by flipping the last
bit of b′.A. Since b′ is maximal, b contains at least one tuple t ∈ R. Since b is a dyadic
box containing t, some iteration of the for-loop on line 5 will reach the same box b. In the
for-loop on line 6, A will be reached at some iteration. In that iteration, the dyadic box b′

that is constructed on line 7 will be exactly the box b′ we started with. Thus b′ is added
to the set B. Since b′ is a gap box and therefore does not contain any tuples in R, b′ will
not be added to B at any point, and so b′ will be returned by Algorithm 3. Note that the
returned set does not contain any non-gap boxes of R, since every box which contains any
tuple of R is added to B.

Claim 2: Algorithm 3 has run time Õ(N).

The for-loop on line 4 has N iterations. The for-loop on line 5 has Õ(1) iterations
by Lemma 2.14. The for-loop on line 6 has n iterations. The interior of the loops takes
constant time. The total for these three nested for-loops is therefore O(n·N) = Õ(N) time.
The set difference on line 13 can be done by sorting both B and B, then iterating through
both in lockstep to compute the difference. This takes Õ(N logN) = Õ(N) time.

Theorem 4.2 implies that running Algorithm 3 as a preprocessing step is sufficient
to generate a box cover which contains the minimum size box certificate. We make this
explicit as follows.

26

Corollary 4.3. Given a query Q = (R,A) stored as arrays of input tuples, by using
Algorithm 3 as a preprocessing step and then calling Tetris on the resulting box cover, we
obtain the following two upper bounds for computing Q.

Õ
(
N +

(
C�(Q)

)w+1
+ Z

)
Õ
(
N +

(
C�(Q)

)n/2
+ Z

)
Proof. By definition, there is some box cover B = (B1, . . . , Bm) and a corresponding box
certificate C ∈ C(B) such that |C| = C�(Q). By Lemma 2.15, we may assume B contains

only dyadic gap boxes and still satisfies |C| = Õ(C�(Q)). Without loss of generality, we
may assume that all dyadic gap boxes in B are maximal. Otherwise, we could replace any
non-maximal box b with some maximal box b′ such that b ⊆ b′ without increasing the size
of the box cover. By running Algorithm 3 on each relation in R, Theorem 4.2 implies that
we generate a set of box covers B′ = (B′1, . . . , B

′
m) such that Bi ⊆ B′i for each i ∈ [m]. This

means that C is also a box certificate for B′. By Theorems 2.19 and 2.20, the run time

of Tetris with B′ as input is bounded by Õ
((
C�(Q)

)w+1
+ Z

)
and Õ

((
C�(Q)

)n/2
+ Z

)
,

where w is the treewidth of Q, n is the number of attributes, and Z is the number of
output tuples. In total, this yields the two bounds in the corollary statement.

These are the best bounds we can get from Theorems 2.19 and 2.20 when the query
instance Q is fixed, since C�(Q) is the minimum certificate size for Q. In order to improve
on this bound, we must modify Q in some way which reduces the box certificate size. The
next chapter explores one such way to modify Q: by changing the domain ordering.

27

Chapter 5

Domain Ordering Problems

In this chapter we will begin studying several optimization problems over the space of
domain orderings. We aim to find the minimum box certificate size or box cover size which
is possible under any domain ordering for the query. To begin, we will define a domain
ordering.

Definition 5.1 (Domain ordering). A domain ordering for a query Q = (R,A) is
a tuple of |A| permutations σ = (σA)A∈A where each σA ∈ Sdom(A) is a permutation of
dom(A).

Example 5.2. Let A and B be relations over 2-bit domains. Define a relation R as follows.
R is presented under the default domain ordering [00, 01, 10, 11] for both attributes.

R(A,B) =
{
〈00, 00〉, 〈01, 11〉, 〈10, 00〉, 〈11, 11〉

}
Consider the domain ordering σ where

σA = σB =

00 7→ 00
01 7→ 10
10 7→ 11
11 7→ 01

For notational convenience, we write this as σA = σB = (00, 11, 01, 10). Then σ(R) is the
following relation.

σ(R)(A,B) =
{
〈00, 00〉, 〈10, 01〉, 〈11, 00〉, 〈01, 01〉

}
28

The choice of domain ordering can have a massive effect on the box certificate size for
the query. Section 5.1 defines a class of queries which have box certificates of size Ω(N)

under the default domain ordering, but have box certificates of size Õ(1) under another
domain ordering. This illustrates that the choice of domain ordering is important.

There are two distinct optimization problems we will study in this chapter. The primary
goal is to find the domain ordering which induces a box certificate of minimum size. The
certificate size is the quantity which directly influences the worst-case run time of Tetris.
However, the minimum box cover size is an upper bound on the minimum certificate size,
so we will also study algorithms which aim to find a domain ordering which induces a
box cover of minimum size. We have defined previously two quantities related to these
problems. C�(Q) denotes the minimum box certificate size of Q, and K�(Q) denotes the
minimum box cover size of Q. More precisely,

C�(Q) = min
B∈B(Q)

min
C∈C(B)

|C|

K�(Q) = min
B∈B(Q)

|B|

where B(Q) is the set of all box covers for Q and C(B) is the set of all box certificates for
the box cover B. The problems we will study are defined as follows.

Definition 5.3 (CertMinPDomF). The Domain Flexible Box Certificate Minimization
Problem (CertMinPDomF) takes as input a query Q = (R,A), where each relation is stored
as a list of its tuples. It produces a domain ordering σ∗ for Q such that

C�(σ∗(Q)) = min
σ
C�(σ(Q))

Definition 5.4 (BoxMinPDomF). The Domain Flexible Box Cover Minimization Prob-
lem (BoxMinPDomF) takes as input a join query Q = (R,A) where A is a set of attributes
and R is a set of relations over A. The output of BoxMinPDomF is a domain ordering σ∗

such that
K�(σ∗(Q)) = min

σ
K�(σ(Q))

In order to build up to solving these general problems, we will start with the special
case when the input is just a single relation. It is not very meaningful to think of Q as a
join query in this case. We are working with a single relation R over some set of attributes
A, and we would like to find a domain ordering σ∗ which minimizes the size of the box cover
necessary to cover σ∗(R). In this case, there is no difference between the total number of
boxes in the cover and the certificate size, since every box in a minimal cover is necessarily

29

part of the certificate. We will focus only on minimizing the number of boxes needed to
cover R.

The simplest possible version of this problem is when we also have only one attribute
A. In this case we can easily compute the optimal domain ordering for A. Start with
an empty ordering σ. For every a ∈ dom(A), if the tuple 〈a〉 ∈ R, then place a at the
beginning of σ, otherwise place a at the end of σ. The result of this iterative process is a
domain ordering σ for A which admits a box cover for R of size 1, since every tuple not in
R lies in a consecutive block in σ(R). So the one-dimensional case can be solved exactly
in polynomial time. Adding a second attribute makes the problem considerably harder.

In Section 5.2, we take the next small step forward and try to find the optimal domain
ordering of only one attribute in a single 2D relation. Section 5.3 takes the next step by
seeking the optimal domain ordering for both attributes in a single 2D relation. Section 5.4
generalizes the problem further to a single relation over an arbitrary number of attributes
n. In Section 5.5, we finally study BoxMinPDomF on any number of relations and attributes,
and present a loose approximation algorithm. In Section 5.6 we present the limited results
we obtained for CertMinPDomF in general.

In Appendix B, we study a subclass of domain ordering problems that we call bit
ordering problems. These problems restrict our choice of orderings so that we can only
change the ordering of the bits of each attribute’s domain instead of ordering the entire
domain arbtirarily. The bit ordering results we obtain are weaker than our results for
general domain ordering, but they are presented in the appendix as a starting point for
future research.

5.1 A Poorly Ordered Query

The choice of domain ordering can have a significant effect on the certificate size for Q,
and therefore on the run time of Tetris on Q. Example 5.5 demonstrates the difference a
domain ordering can make. This example is a generalization of Figure 1.1 and is adapted
from the proof of Lemma G.5 in [1].

Example 5.5. Let Bn = {1i−10 : i ∈ [n− 1]} ∪ {1n−1}. We will use this set to define our
query. For any integers n ≥ 2 and d ≥ 0, define Qn,d = (R,A) by A = {A1, . . . , An} and
R = {Ri,j(Ai, Aj) : i, j ∈ [n]} as follows. Each attribute Ai has a (d + n− 2)-bit domain,
so dom(Ai) = {0, 1}d+n−2. For each i, j ∈ [n], the relation Ri,j is defined as

Ri,j(Ai, Aj) =
{
〈p1s1, p2s2〉 :

(
p1, p2 ∈ {0, 1}d ∧ s1, s2 ∈ {0, 1}n−2 ∧ (s1 6= s2 ∨ s1 6∈ Bn−1)

)}
30

Informally, this definition ensures that only the last n−2 bits in each attribute matter,
while the first d bits vary over all possible values for any fixed value of the last n − 2
bits. When n = 3, Q3,d is a triangle query in which each relation contains the Cartesian
products of all the even numbers with all the even numbers and all the odd numbers with
all the odd numbers. Q3,2 is the specific instance of this query which was illustrated in
Figure 1.1.

For each i, j ∈ [n], the set of unit boxes

Bi,j = {〈p1s, p2s〉 : p1, p2 ∈ {0, 1}d ∧ s ∈ Bn−1}

is the minimum size box cover for Ri,j under the default domain ordering. It is worth
noting that the join result of Qn,d is empty, and furthermore, every box b ∈ Bi,j must be
part of the certificate. If any one of these boxes is removed, the query is no longer empty.
This means the optimal certificate size for this domain ordering is Ω(22d). Given these gap
boxes, Tetris must perform Ω(2nd) resolutions to compute this join, as shown in Lemma
G.5 of [1].

However, under a different domain ordering, we can obtain a much better run time
for Tetris. Consider a domain ordering σ∗ where for each attribute Ai and each string
s ∈ Bn−1, the domain values with their last n− 2 bits equal to s are placed consecutively
in σ∗Ai

. Under this ordering, for each i, j ∈ [n] and each s ∈ Bn−1, the gap tuples{
〈p1s, p2s〉 : p1, p2 ∈ {0, 1}d

}
can be covered by a single gap box. Then each relation requires only n − 2 = Õ(1) gap
boxes to cover all of its gaps. The query Q3,2 under such an ordering σ∗ was also shown
in Figure 1.1. Again, each of these boxes must be part of the certificate. The certificate
size is Õ(1) since it depends only on n, which is a query-dependent constant. Under this

domain ordering, and given this set of boxes, Tetris is able to compute Qn,d in Õ(1) time.

5.2 Reordering One Attribute in a 2D Relation

In this section, we consider a setting in which there is only one relation R over two at-
tributes. We will model this relation as an m×n Boolean matrix M where Mi,j = 1 if and
only if the tuple 〈i, j〉 is not in R. Instead of taking an array of tuples as input, we are
taking all n×m Boolean entries of M as input. In this model, a box cover for M is a set
of rectangles which covers all the 1-cells of M and does not cover any 0-cells of M . This

31

definition ensures that a box cover of M corresponds exactly to a box cover of the relation
R. It is important to note that the number of entries in M is greater than or equal to the
number of tuples in R, so the hardness results we present for problems which take M as
an input also apply for the version of the problems which instead takes an array of tuples
in R as an input. This is because an array of the tuples in R is the same size as an array
of all the 0-cells in M , which is less than or equal to size of M .

For now, we are interested in finding the best domain ordering we can get when we are
only allowed to reorder the domain of one of the two attributes. In terms of the matrix M ,
we are looking for a permutation σc on the columns of M such that the permuted matrix
σc(M) admits a box cover of minimum size. This problem is defined precisely as follows.

Definition 5.6 (BoxMinPColF). The Column Flexible Box Cover Minimization Problem
(BoxMinPColF) takes as input an m × n Boolean matrix M and produces an ordering σ∗c
on the columns of M such that

K�(σ∗c (M)) = min
σc

K�(σc(M))

In Section 5.2.1, we will show that BoxMinPColF is NP-hard. In Section 5.2.2, we show
that in a restrictive special case, BoxMinPColF is approximable to an Õ(1) factor.

5.2.1 BoxMinPColF is NP-hard

A similar problem to BoxMinPColF is known as the Consecutive Block Minimization Prob-
lem (ConBlkMinP). We can show that BoxMinPColF is NP-hard with a simple reduction
from ConBlkMinP. In order to define ConBlkMinP, we need to define the notion of a
consecutive block.

Definition 5.7 (Consecutive block). In a Boolean matrix M , a consecutive block is a
maximal consecutive run of 1-cells in a single row of M , where each is bounded on the left
by either the beginning of the row or a 0-cell, and bounded on the right by either the end
of the row or a 0-cell.

We will use cb(M) to denote the total number of consecutive blocks in M , summed
over all rows.

Definition 5.8 (ConBlkMinP). The Consecutive Block Minimization Problem (ConBlk-
MinP) takes as input an m × n Boolean matrix M and produces a permutation σ∗c ∈ Sn
on the columns of M such that

cb(σ∗c (M)) = min
σc

cb(σc(M))

32

ConBlkMinP has been previously studied and is known to be NP-complete [27]. It is a
generalization of the consecutive ones problem, which returns true if there exists a column
ordering σc such that each row of σc(M) contains at most one consecutive block. The
consecutive ones problem is more widely studied, and can be solved in polynomial time [6].
Theorem 5.9 shows, via a reduction from ConBlkMinP, that BoxMinPColF is NP-hard.

Theorem 5.9. BoxMinPColF is NP-hard.

Proof. We will prove this via a polynomial-time reduction from ConBlkMinP.

Let M be an m×n Boolean matrix input to ConBlkMinP. Define a transformed matrix
M ′ as follows. Add all the rows of M to M ′. Between each pair of consecutive rows, add
one additional row containing all 0-cells. A small example of this transformation is seen
below.

M =

1 0 1 0
0 1 0 1
1 1 0 0

⇒M ′ =

1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0
1 1 0 0

Note that M ′ is a (2m− 1)× n matrix, which is polynomial size with respect to M . It

suffices to prove that for any column ordering σc, cb(σc(M)) = k if and only if σc(M
′) has

a minimal box cover of size at most k.

Suppose that cb(σc(M)) = k. Every consecutive block in σc(M) also appears as a
consecutive block in the corresponding row of σc(M

′). This block c in σc(M
′) can be

covered by a single box b of height 1 and length equal to the length of c. Every 1-cell in
σc(M

′) corresponds to some consecutive block of σc(M), so the set of all k of these boxes
b forms a box cover of σc(M

′) of size k.

Conversely, suppose that B is a minimal box cover for σc(M
′) of size k. Since there

is no 1-cell in M ′ that has another 1-cell immediately above or below it, each box b ∈ B
has height 1. Furthermore, we may assume without loss of generality that the length of b
is maximal, bounded on the left by the beginning of the matrix or a 0-cell, and bounded
on the right by the end of the matrix or a 0-cell. In other words, the 1-cells covered by b
are exactly a consecutive block in σc(M

′). Additionally, no two boxes b1, b2 ∈ B can cover
the same consecutive block, or B is not a minimal box cover. Thus, σc(M

′) has exactly k
consecutive blocks, and so σc(M) also has exactly k consecutive blocks.

33

5.2.2 Approximating BoxMinPColF

Although BoxMinPColF is NP-hard, we can explore some approaches to approximate it.
One natural approach is to generalize algorithms which approximate the Box Cover Mini-
mization Problem (BoxMinP), the problem of finding the minimum size box cover for M
when the ordering of the rows and columns is fixed. If we can find a column ordering which
minimizes the number of boxes produced by some approximation algorithm for BoxMinP,
then this ordering is also an approximation for BoxMinPColF.

Consider the BoxMinP approximation algorithm of Anil Kumar and Hamesh [29]. In
this section, we refer to this algorithm as ApproxMinCover. ApproxMinCover yields
a box cover which is an O(

√
log n)-factor approximation of the minimum box cover, where

n is the vertical complexity of the rectilinear polygon formed by the 1-cells of the input
matrix. For our purposes, it suffices to note that the vertical complexity is loosely bounded
by the number of 1-cells (alternatively, the number of 0-cells) in the input matrix.

ApproxMinCover uses a simple heuristic. For each vertical consecutive block of 1-
cells in the input matrix M , place one box of width 1 spanning the whole consecutive block.
Then, extend each of these boxes horizontally in both directions as far as possible while
still covering only 1-cells. Finally, remove any duplicate boxes created by this process.

Consider how the box cover generated by ApproxMinCover changes if we permute
the columns of the input matrix. The initial width-1 boxes generated in the first step do not
change, since they each span only one column. When these boxes are extended horizontally,
how far they can be extended depends on the ordering of the columns. The box b is
extended until it is bounded on either side by columns which “block” b in the sense that
they contain a 0-cell somewhere in the vertical span of b. If the column where b originated
is moved closer to a blocking column for b, the result is a smaller box being generated.
These changes in the positions of blocking columns affect the number of duplicate boxes
we end up removing in the last step of the algorithm, which determines the size of the
resulting box cover.

Suppose that a column c1 in the input matrix M contains a vertical consecutive block
of 1-cells which starts at the i-th row of M and ends at the j-th row of M . We say that
c1 contains the interval [i, j]. ApproxMinCover must generate a box b which vertically
spans from row i to row j, and no further. Suppose another column c2 also contains a
vertical consecutive block from row i to row j. If we can extend b horizontally from c1 to c2
without hitting a blocking column for b in between, then the box corresponding to the con-
secutive block in c2 will be removed as a duplicate in the last step of ApproxMinCover,
which decreases the size of the generated box cover by 1.

34

M :
1 :
2 :
3 :
4 :

0 1 0 1 0
1 1 0 1 0
0 1 1 1 1
0 0 0 1 0

BNR strings for M :

[2, 2] : R B N R N R R
[1, 3] : R R B R N R R
[3, 3] : R R N B N B R
[1, 4] : R R R R B R R

Interval matrix M ′ for M :
[2, 2] :
[1, 3] :
[3, 3] :
[1, 4] :

1 ∗ 0 ∗ 0
0 1 0 ∗ 0
0 ∗ 1 ∗ 1
0 0 0 1 0

Figure 5.1: A matrix, its BNR strings, and its corresponding interval matrix

For any particular vertical interval [i, j], let us define three types of columns. There
are black columns, which contain exactly the interval [i, j]. There are neutral columns,
which contain some interval [`, k] ⊃ [i, j]. There are red columns, which contain at least
one 0-cell between row i and row j (inclusive). In other words, for interval I = [i, j], black
columns exactly contain I, neutral columns contain an interval I ′ ⊃ I, and red columns
block I.

For each unique interval I which is contained in any column of M , any box cover of M
generated by ApproxMinCover will contain at least one box with a vertical span which
is exactly equal to I. Looking only at the column ordering and the type of each column with
respect to I, we can determine how many boxes I will contribute to the box cover generated
by ApproxMinCover. Consider the sequence of black, neutral, and red columns as a
string of the characters B,N and R (respectively) from left to right as they appear in M ,
where the left and right boundaries of the matrix are “red” for all intervals. An example
of these strings can be found in Figure 5.1. Then, the number of boxes contributed by I
is exactly the number of matches for the regular expression B(N) ∗ R in this string. Let
BNR(M, I) denote this number of matches. We can define a corresponding minimization
problem as follows.

Definition 5.10 (IntBlkMinPColF). The Column Flexible Interval Block Minimization
Problem (IntBlkMinPColF) takes as input an m × n Boolean matrix M and produces a
column ordering σ∗c ∈ Sn such that∑

I∈I(σ∗c (M))

BNR(σ∗c (M), I) = min
σc

∑
I∈I(σc(M))

BNR(σc(M), I)

where I(M) is the set of vertical intervals [i, j] contained in any column of M .

As the above discussion illustrates, IntBlkMinPColF produces an ordering which mini-
mizes the size of the box cover produced by ApproxMinCover. This problem is closely

35

related to ConBlkMinP, as shown by the following two results. Theorem 5.11 shows that
IntBlkMinPColF is NP-hard by a reduction from ConBlkMinP, and Theorem 5.12 shows
that for a special case of the problem, when no interval has any neutral columns in M ,
IntBlkMinPColF is approximable to a 3

2
factor by a similar, converse reduction to ConBlk-

MinP.

Theorem 5.11. IntBlkMinPColF is NP-hard.

Proof. We will prove this by a polynomial-time reduction from ConBlkMinP.

Let M be an m × n Boolean matrix as input to ConBlkMinP. Construct the matrix
M ′ by inserting a row of all 0-cells between each adjacent pair of rows in M . Then every
vertical consecutive block in M ′ spans only one row, and therefore the intersection between
any two distinct intervals I1, I2 ∈ I(M ′) is empty (I1 ∩ I2 = ∅). This means there are no
neutral columns for any interval in I(M ′), only black and red columns.

Each interval I ∈ I(M ′) corresponds to one row r from the original matrix M . Since
there are no neutral columns for I, for any column ordering σc, the number of horizontal
consecutive blocks of 1-cells in σc(r) is exactly equal to the number of consecutive blocks
of black columns for I in σc(M

′), which is equal to BNR(σc(M
′), I). That is, cb(M ′) =∑

I∈I(M ′) BNR(M ′, I). By a simple observation, we also have cb(M ′) = cb(M). Thus, σc is
optimal for IntBlkMinPColF on M ′ if and only if σc is optimal for ConBlkMinP on M .

The proof of Theorem 5.11 used the fact that when there are no neutral columns for
any interval contained in any column of M , IntBlkMinPColF is essentially the same problem
as ConBlkMinP. We can characterize this property as being satisfied by M whenever there
are no two intervals in any two columns of M such that one of the intervals is a strict
subset of the other. Theorem 5.12 states this characterization and shows that in this case,
we can approximate IntBlkMinPColF to a constant factor.

Theorem 5.12. Let M be an input matrix to IntBlkMinPColF. If there are no two intervals
I1, I2 ∈ I(M) such that I1 ⊂ I2, then IntBlkMinPColF on M can be approximated in
polynomial time to a factor of 3

2
.

Proof. Let M be an m × n input matrix to IntBlkMinPColF such that no two intervals
I1, I2 ∈ I(M) satisfy I1 ⊂ I2. This implies that for any I ∈ I(M), there are no neutral
columns in M . Let k = |I(M)|. Define the k × n Boolean matrix M ′ by adding one row
for each interval I ∈ I(M) in arbitrary order as follows. If column j is a black column for
interval I, then set M ′

I,j = 1. Otherwise, column j is red for I, so set M ′
I,j = 0.

36

Call M ′ an interval matrix. An example of such a matrix is shown in Figure 5.1, with
neutral columns represented as *-cells. For the purposes of this reduction, however, there
will be no *-entries.

For any column ordering σc, a consecutive block of 1-cells in σc(M
′) corresponds ex-

actly to a consecutive block of black columns for the corresponding interval in σc(M)
followed by either a red column or the end of the matrix. Thus the number of consecu-
tive blocks of 1-cells in row I of σc(M

′) is equal to BNR(σc(M), I), and so cb(σc(M
′)) =∑

I∈I(M) BNR(σ(M), I).

It has been shown that ConBlkMinP can be approximated in polynomial time to a factor
of 3

2
via a reduction from the metric travelling salesman problem [21], which completes the

proof.

Since IntBlkMinPColF minimizes the number of boxes created by ApproxMinCover,
Theorem 5.12 also implies that BoxMinPColF can be approximated to an Õ(1) factor under
the same conditions. Furthermore, the number of intervals in I(M) is polynomial with
respect to the number of 0-cells in M . If we ignore any columns of M which are all 1-cells,
since these can be placed last in our column ordering and covered with a single box, then
the interval matrix for M is also polynomial in size with respect to the number of 0-cells
in M . This means that this Õ(1) approximation for BoxMinPColF still runs in polynomial
time, even for the version of the problem which takes an array of tuples as input instead
of the full matrix M .

5.3 Reordering Both Attributes in a 2D Relation

In this section we will take the next natural step to generalizing BoxMinPColF. We are still
working with a single relation R over exactly two attributes, but we are free to reorder the
domains of both attributes. When we model R as an m× n Boolean matrix M as we did
in the previous section, we are now looking for a pair of orderings σ = (σr, σc) on the rows
and columns of M respectively which induce a minimum size box cover of σ(M). This new
problem can be defined precisely as follows.

Definition 5.13 (BoxMinPRowColF). The Row and Column Flexible Box Cover Min-
imization Problem (BoxMinPRowColF) takes as input an m × n Boolean matrix M and
produces a pair of orderings σ∗ = (σ∗r , σ

∗
c) of the rows and columns of M such that

K�(σ∗(M)) = min
σ
K�(σ(M))

37

Since Section 5.2 showed that BoxMinPColF is NP-hard, it is reasonable to expect that
BoxMinPRowColF is NP-hard is well. Theorem 5.15 provides the polynomial-time reduction
necessary to prove this. The reduction is from 2ConBlkMinP, a variant of ConBlkMinP in
which each row of the input matrix has at most two 1-cells. 2ConBlkMinP was shown to
be NP-hard in a note by S. Haddadi [20].

Definition 5.14 (2ConBlkMinP). The 2ConBlkMinP takes as input an m×n Boolean
matrix M such that each row of M contains at most 2 1-cells. The output of the problem
is an ordering σ∗c ∈ Sn on the columns of M such that

cb(σ∗c (M)) = min
σc

cb(σ(M))

Theorem 5.15. BoxMinPRowColF is NP-hard.

Proof. Let M be an n × m Boolean matrix input to 2ConBlkMinP. We will construct a
(4n) × (m + 2n) matrix M ′ to use as input to BoxMinPRowColF. For each row ri (i ∈ [n])
in M , we will insert four rows into M ′. Let Si be the set of columns which contain 1-cells
in row ri of M . Let eS be the row vector of length m + 2n with value 1 on all indices in
S ⊆ [m+ 2n], and value 0 everywhere else.

pi,1 = e{m+2i−1)}

ri,1 = eS∪{m+2i−1}

ri,2 = eS∪{m+2i}

pi,2 = e{m+2i}

An example of this transformation from M to M ′ is shown in Figure 5.2.

To prove this theorem, it suffices to prove that there exists an ordering σc on the
columns of M such that cb(σc(M)) = k if and only if there exists orderings σ′ = (σ′r, σ

′
c)

on the rows and columns of M ′ such that M ′ admits a box cover of size k + 2n.

Proving one direction of this claim is simple. If there exists an ordering σc on the
columns of M such that cb(σc(M)) = k, then set σ′r equal to the default ordering on the
rows of M ′ as defined above. Also, set the last 2n columns in σ′c equal to the default
ordering of the last 2n columns of M ′. Then, set the first m columns in σ′c equal to σc.
Then, the 1-cells in the first m columns of σ′(M ′) can be covered by k boxes, and the
1-cells in the last 2n columns can be covered by 2n boxes, for a total box cover size of
k + 2n.

38

M =

1 0 1 0
0 0 1 1
0 1 1 0

M ′ =

0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

Figure 5.2: An example of the 2ConBlkMinP input matrix M and its corresponding M ′

matrix

Proving the converse is significantly more involved. Let σ′ = (σ′r, σ
′
c) be an ordering on

the rows and columns of M ′ such that σ′(M ′) admits a box cover B of size k+ 2n. We will
show through a sequence of steps that we can transform σ′r to exactly match the default
ordering of M ′ and we can transform σ′c so that the last 2n columns exactly match the last
2n columns in the default ordering of M ′. After each step, we will modify the box cover B
to cover σ′(M ′) under the modified σ′, without increasing the total number of boxes in B.

Before we list the steps of this process, we need two definitions. Two rows ri,j and rk,`
in M ′ (i, k ∈ [n] and j, ` ∈ {1, 2}) are equivalent if ri and rk are equal rows in M (ie. ri
and rk have 1-cells in the same columns in M). A run of equivalent rows is a sequence R
of one or more ri,j rows which are consecutive in σ′r such that all rows in R are equivalent
to one another.

Below are the steps we will take to reorder σ′. For each step, we will prove that we can
reorder σ′ such that the claim is true of σ′(M ′) without increasing the number of boxes,
assuming that all of the previous claims hold.

1. Every ri,j row can be made adjacent to some equivalent rk,` row.

2. Every run of equivalent ri,j rows can be made to have even length.

39

3. Every run of equivalent ri,j rows can be made to have length 2.

4. The padding rows pi,j can be made adjacent to their matching ri,j rows.

5. The row order σ′r can be made to exactly match the default row order of M ′.

6. The column order σ′c can be made to exactly match the default column order of M ′

on the last 2n columns.

Step 1

Claim. Every ri,j row can be made adjacent to some equivalent rk,` row.

Let r1 := ri,j be a row which is not adjacent to any equivalent row. Let r2 := rk,` be
any row equivalent to r1. Since r1 is not adjacent to any equivalent row, and there are an
even number of rows equivalent to r1, there must be some run R of rows equivalent to r1
with odd length. If R has length 1, we assume r2 is the one row in R, and therefore r2 is
not adjacent to any equivalent row. If R has length at least 3, we assume r2 is the second
row in R, and therefore r2 is not adjacent to pk,`. Let p1 := pi,j and let p2 := pk,`. Let cp1
be the column where p1 has a 1-cell, and let cp2 be the column where p2 has a 1-cell. Let c1
and c2 be the columns where r1 and r2 both have 1-cells. Let b1 ∈ B be the box covering
the padding column in r1 with greatest width. Let b2 ∈ B be the box covering the padding
column in r2 with greatest width. Let b3 ∈ B be the box covering the padding column in
p1. Let b4 ∈ B be the box covering the padding column in p2.

Our approach in this step will be to remove the rows r1, r2, p1, and p2 from M ′, then
insert them in the order (p1, r1, r2, p2) at the bottom of M ′. In this order, the 1-cells of
these 4 rows can be covered by at most 4 boxes, regardless of the column ordering. A
box of width 1 and height 2 can be used to cover the two 1-cells in each of the columns
in {c1, c2, cp1, cp2}. To show that this action does not increase the number of boxes in B,
it suffices to show that there are at least 4 boxes which can be removed from B when we
remove these 4 rows from M ′. We will split our analysis into four cases.

1. b1 6= b3 and b2 6= b4. In this case, all of {b1, b2, b3, b4} are distinct and all 4 of these
boxes are removed when we remove the rows r1, r2, p1, p2.

2. b1 6= b3 and b2 = b4. Since b2 = b4, r2 is adjacent to p2. By our previous assumptions
about r2, this means r2 is not adjacent to any equivalent row. Without loss of
generality, assume that p2 is directly below r2. Let r3 be the row directly above r2.
r3 is not equivalent to r2, so there exists a box b5 covering at least one of c1 or c2 in

40

r2 which has height 1, since it cannot extend vertically to either p2 or r3. b5 is not
equal to b2, because b2 has height 2. Now, the set of boxes {b1, b2, b3, b5} is a set of 4
distinct boxes which are removed when we remove the rows {r1, r2, p1, p2}.

3. b1 = b3 and b2 6= b4. Since b1 = b3, r1 is adjacent to p1. Suppose without loss of
generality that p1 is directly above r1. Let r3 be the row directly below r1. Since r1
is not adjacent to any equivalent rows, r3 is not equivalent to r1. Therefore, there is
a box b6 ∈ B covering at least one of c1 or c2 in r1 which has height 1, since it cannot
extend vertically to either p1 or r3. b6 is not equal to b1, since b1 has height 2. Now
the set of boxes {b1, b2, b4, b6} is a set of 4 distinct boxes which are removed when we
remove the rows {r1, r2, p1, p2}.

4. b1 = b3 and b2 = b4. This case can be proven by combining the arguments from the
previous two cases. Since b2 = b4, we can define the box b5 exactly as in case 2. Since
b1 = b3, we can define the box b6 exactly as in case 3. Then, {b1, b2, b5, b6} is a set of
4 distinct boxes which are removed from B when we remove the rows {r1, r2, p1, p2}.

Step 2

Claim. Every run of equivalent ri,j rows can be made to have even length.

Let R1 be a run of equivalent ri,j rows of odd length. By the claim of step 1, R1 has
length at least 3. Let r1 be the second row in R1. Since R1 has odd length and there are an
even number of total rows equivalent to r1, there exists another run R2 of rows equivalent
to r1 with odd length. R2 also has length at least 3.

Let cp1 be the column which has a 1-cell only in r1 and its corresponding padding row.
Let b ∈ B be the box which covers cp1 in r1. Since r1 is not adjacent to its padding row, b
has height 1. If we remove r1 from M ′, b can be removed. By inserting r1 directly below
the first row in R2, a unit box can be used to cover cp1 in r1.

Let r2 be the first row in R2. Let c1 and c2 be the two columns of M ′ where r1 and
r2 share 1-cells. To cover these other two 1-cells in r1, we can extend vertically the boxes
covering c1 and c2 in r2. We may assume these boxes can be extended vertically, because
at most two of the rows in R2 have their c1 (or c2) cell covered by a box which streches
horizontally from a padding column. That is, there is some row in R2 where the box
covering the c1 (or c2) cell can be extended vertically to cover the c1 (or c2) cell of r1. This
ensures that this transformation can be made without increasing the number of boxes in
B. After this, both R1 and R2 have even length. Continue this process until step 2 is
complete.

41

Step 3

Claim. Every run of equivalent ri,j rows can be made to have length 2.

Let R be a run of equivalent ri,j rows of length greater than 2. Since R has even length,
R has length at least 4. Let r1 be the second row in R and let r2 be the third row in R.
Since R has length at least 4, neither r1 nor r2 are adjacent to their respective padding
rows, p1 and p2. Furthermore, we would like to claim the boxes covering the padding
columns in r1 and r2 have width 1. We will split into two cases. Below, c1 and c2 are the
two columns where r1 and r2 both have 1-cells.

1. c1 and c2 are adjacent. At most 2 of the rows in R have their padding columns
adjacent to (c1, c2) on either side. This means there is some row r3 in R for which
the box b covering c1 and c2 does not also cover its padding column. b can be
extended vertically to cover c1 and c2 in all rows of R. Then, any boxes covering
padding columns for rows in R can be replaced with boxes of width 1, and all of the
1-cells in the rows of R remain covered.

2. c1 and c2 are not adjacent. At most 2 rows in R have their padding columns adjacent
to c1 on either side. This means there is some row r3 in R for which the box b covering
c1 does not also cover its padding column. b can be extended vertically to cover c1 in
all rows of R. The same argument can be applied for c2. Then, any boxes covering
padding columns for rows in R can be replaced with boxes of width 1, and all 1-cells
in the rows of R remain covered.

Now, removing p1 and p2 removes two boxes from B, since unit boxes must be covering
the single 1-cells in p1 and p2. Inserting (p1, p2) in order in between r1 and r2, we can
cover the 1-cells in (cp1, p1) and (cp2, p2) by extending vertically the width 1 boxes covering
(cp1, r1) and (cp2, r2). This splits any boxes which vertically streched from r1 to r2 into two.
There were at most two such boxes, so the total number of boxes in B does not increase.
Now R is split into two distinct runs of equivalent r-rows, one of length 2 and one of length
|R| − 2. This process can be repeated until all runs have length exactly 2.

Step 4

Claim. The padding rows pi,j can be made adjacent to their matching ri,j rows.

Let r1 := ri,j be a row which is not adjacent to its padding row p1 := pi,j. By the
claim of step 3, we know r1 is adjacent to exactly one equivalent r-row, r2. Let p2 be the

42

padding row matching r2. Let c1 and c2 be the columns where r1 and r2 share 1-cells. Let
cp1 be the column which has 1-cells only in r1 and p1. Let cp2 be the column which has
1-cells only in r2 and p2. Let b1 be the box which covers the 1-cell in row r1 and column
cp1 of greatest width. Let b2 be the box which covers the 1-cell in row r2 and column cp2
of greatest width. Let b3 be the box which covers the 1-cell in p1. Let b4 be the box which
covers the 1-cell in p2. We will split into two cases.

1. r2 is adjacent to p2. In this case, similar to our argument in step 1, there exists a
box b5 ∈ B with height 1 which covers c1 or c2 (or both) in r2. By removing the
rows {r1, r2, p1, p2}, the 4 distinct boxes {b1, b2, b3, b5} are all removed from B. By
inserting the rows (p1, r1, r2, p2) in order at the bottom of the matrix, we can cover
their 1-cells with at most 4 boxes, so the total number of boxes in B does not increase.

2. r2 is not adjacent to p2. In this case, r1 is not adjacent to p1 and r2 is not adjacent to
p2, so {b1, b2, b3, b4} is a set of 4 distinct boxes in B which are removed if we remove
rows {r1, r2, p1, p2}. By inserting the rows (p1, r1, r2, p2) in order at the bottom of
the matrix, we can cover their 1-cells with at most 4 boxes, so the total number of
boxes in B does not increase.

We can repeat this process until all ri,j rows are adjacent to their matching pi,j rows.

Step 5

Claim. The row order σ′r can be made to exactly match the default row order of M ′.

By the claims of steps 3 and 4, all of the rows are now divided into separate 4-row units
containing a run of two equivalent ri,j rows surrounded by their two matching padding
rows. There are no boxes in B which can stretch vertically across two or more of these
separate units, because there are no two pi,j rows which share a 1-cell. Thus, we are free
to reorder these units arbitrarily. Order the units so that for all i, the i-th unit contains
two ri,j rows which correspond to the i-th row of the original matrix M . The resulting
row order σ′r is then equal to the default ordering of the rows in M ′, since there exists a
column ordering which transforms σ′r(M

′) back to the original M ′. This is sufficient for
our purposes.

Step 6

Claim. The column order σ′c can be made to exactly match the default column order of
M ′ on the last 2n columns.

43

For each padding row pi,j, the box b covering the single 1-cell in pi,j has width 1. By
step 4, each padding row is adjacent to its corresponding ri,j row. This means b extends
vertically to also cover the only other 1-cell in its column. Therefore, by moving this
column to the right side of the matrix, we do not increase the total number of boxes in B.

Once all of these padding columns have been moved to the right, the boxes covering all
of their 1-cells all have width 1. Thus, we can reorder them to exactly match the last 2n
columns in the default ordering of M ′ without modifying any boxes in B.

After these 6 steps, the only difference between M ′ and σ′(M ′) is the ordering of the
first m columns. In σ′(M ′), the last 2n columns contain an indepenent set of 1-cells of
size 2n, by taking the single 1-cell from each of the pi,j rows. All of these 2n 1-cells are
independent from all of the 1-cells in the first m columns of σ′c.

Let σc be the ordering of the first m columns in σ′c. We claim that the first m columns
contain an independent size of size cb(σc(M)). First, any two 1-cells in separate 4-row
units are independent from one another, because the padding rows between them contain
only 0-cells on the first m columns. If a row of σc(M) has only one consecutive block, then
add a 1-cell from the corresponding 4-row unit to the indepenent set. If a row of σc(M)
contains two consecutive blocks, then there are two 1-cells in the first m columns of the
corresponding 4-row unit which are independent from one another. Add both of these to
the independent set. Combining the independent sets from the first m columns and the
last 2n columns, we obtain an indepenent set of size cb(σc(M)) + 2n.

Furthermore, there exists a box cover for σ′(M ′) of size cb(σc(M)) + 2n. All of the
1-cells in the last 2n columns can be covered by 2n boxes. For row ri in M , if σc(ri)
contains 1 consecutive block, then the 1-cells in the first m columns of the corresponding
4-row unit in σ′(M ′) can be covered by a single 2× 2 box. If σc(ri) contains 2 consecutive
blocks, then the 1-cells in the first m columns of the corresponding 4-row unit in σ′(M ′)
can be covered by two 2× 1 boxes. In total, this yields a box cover of size cb(σc(M)) + 2n.

Since our initial assumption was that σ′(M ′) has a box cover of size k+2n, this implies
that cb(σc(M)) ≤ k, which completes the reduction.

This hardness result is important for all the more general versions of BoxMinPRowColF

we will study in later sections, because it implies that they are NP-hard as well. As of
this writing, there are no known algorithms to approximate BoxMinPRowColF with a tighter
approximation ratio than the one presented in Section 5.4 which works for a single relation
over any number of attributes.

44

5.4 Reordering All Attributes in an n-ary Relation

In this section we will remove the restriction that our single relation R has exactly two
attributes. Instead, suppose R is defined over n attributes A1, A2, . . . , An. We will no
longer model R as a Boolean matrix. Instead, we assume R is stored as an array of its
tuples in arbitrary order. This problem is simply BoxMinPDomF on a single input relation.
The first observation we can make about BoxMinPDomF on a single relation is that it is
NP-hard. This follows from Theorem 5.15, which implies that it is NP-hard when n = 2,
and therefore NP-hard in general. For any number of attributes greater than 1, we can
invoke BoxMinPDomF on any BoxMinPRowColF problem with all attributes except two set to
a constant value. In the rest of this section, we will work towards establishing an efficient
approximation algorithm for BoxMinPDomF on a single relation. Section 5.4.1 develops
some machinery necessary to prove our approximation upper bound, and Section 5.4.2
presents the algorithm.

5.4.1 Dividing Relations into Hyperplanes

In the simplest case, suppose that the domain ordering σ∗ for R which minimizes the box
cover size satisfies K�(σ∗(R)) = 1. Fix an arbitrary attribute Ai and let b be the single
box in the minimum box cover of σ∗(R). We can partition the domain of Ai into two sets:
Ai,b = {a ∈ dom(Ai) : a ∈ πAi

(b)} and Ai,b = {a ∈ dom(Ai) : a 6∈ πAi
(b)}. Here, the

notation πAi
(b) denotes the set of Ai domain values spanned by the box b. That is, each

element a ∈ dom(Ai) is either spanned by the box b or it is not. Since there is only one box
in the cover, this partition is the only meaningful way to differentiate between two values
of dom(Ai) in R. Consider the domain ordering σi obtained by placing all the domain
elements in Ai,b first in any order, followed by all the elements in Ai,b. Do this for each
i ∈ [n] to obtain the ordering σ = (σ1, σ2, . . . , σn) which recovers the box b and therefore
attains the minimum box cover size of 1.

This approach yields an exact optimal solution when the minimum box cover size is
1. Intuitively, any domain values which intersect the same set of boxes in the minimum
box cover should be placed adjacent to one another. This idea can be generalized to an
approximation algorithm which works for any minimum box cover size. In order to make
this generalization, the following definition is necessary.

Definition 5.16 (Ai-hyperplane). Let A = {A1, A2, . . . , An}. Let i ∈ [n] and let a ∈
dom(Ai). The Ai-hyperplane defined by a is the relation H(R,Ai, a) = πA\{Ai}(σAi=a(R)).
The set of Ai-hyperplanes in R is the set of unique relations in the collection {H(R,Ai, a) :

45

a ∈ dom(Ai)} and is denoted H(R,Ai). The number of Ai-hyperplanes in R is the size of
H(R,Ai).

The Ai-hyperplane defined by a can be thought of as a “slice” of the n-dimensional space
occupied by R containing only the (n− 1)-dimensional subspace where the Ai attribute is
fixed to the value a. This is a natural generalization of “rows” and “columns” which were
useful for discussing 2-dimensional relations in Sections 5.2 and 5.3. For each attribute
Ai and domain ordering σ, we would like to relate the number of Ai-hyperplanes to the
minimum box cover size for σ(R). Lemma 5.17 establishes this useful relationship.

Lemma 5.17. Let σ be a domain ordering for R. Then for each i ∈ [n], the number of
Ai-hyperplanes in R is at most 2 ·K�(σ(R)) + 1.

Proof. Let i ∈ [n]. Let H1 = H(R,Ai, a1) and H2 = H(R,Ai, a2) be two distinct Ai-
hyperplanes such that a1 and a2 are adjacent in σi. Then there is some tuple t which is
in one of H1 or H2 but not the other. Without loss of generality, assume t ∈ H1 and
t 6∈ H2. This means that the tuple t1 = 〈a1, t〉 ∈ R and t2 = 〈a2, t〉 6∈ R. Let B be the
minimum size box cover for σ(R). Let b ∈ B be a box containing t2. Since t1 ∈ R, b
does not also contain t1. Since t1 and t2 are adjacent in σi, H1 and H2 form one of the
two boundaries of the box b which are perpendicular to the Ai-axis. The faces of the box
b which bound it in the Ai dimension form bounded hyperplanes which are geometrically
perpendicular to any line parallel to the Ai-axis. These faces are therefore parallel to every
Ai-hyperplane. Every box b ∈ B has exactly two such boundaries, since it is defined over
attribute Ai by the contiguous range in dom(Ai) which it spans. Therefore, the number of
pairs of adjacent, distinct Ai-hyperplanes in σi is at most 2 ·K�(σ(R)). Figure 5.3 shows
an example of this in the 2-dimensional case.

If h = |H(R,Ai)| is the number of Ai-hyperplanes in R, then the number of pairs of
adjacent, distinct Ai-hyperplanes in σi is at least h− 1, with this minimum being attained
if all identical Ai-hyperplanes are placed in consecutive blocks. Thus, h ≤ 2 ·K�(σ(R)) +
1.

Lemma 5.17 suggests an idea for an approximation algorithm for BoxMinPDomF on a
single relation. This algorithm is presented in the next section.

5.4.2 Approximating BoxMinPDomF on a Single Relation

Let σ∗ be the optimal domain ordering for R. In this section, we will let k = K�(σ∗(R)) be
the minimum box cover size for R over all domain orderings. If for each i ∈ [n] we construct

46

H1 = H(R,A, 00)

H2 = H(R,A, 01)

H3 = H(R,A, 10)

H4 = H(R,A, 11)

H1, H2 form left boundary of b1, b2
H2, H3 form left boundary of b3
H3, H4 form right boundary of b1

R

H
1
:

00

H
2
:

01

H
3
:

10

H
4
:

11

00

01

10

11

b1

b2

b3

A

B

Figure 5.3: An illustration of how adjacent, distinct A-hyperplanes form the boundaries of
the gap boxes of R

an ordering σi by placing identical Ai-hyperplanes in consecutive blocks, this effectively
divides σ(R) geometrically into at most (2k)n grid boxes of identical hyperplanes in each
direction, by Lemma 5.17. Each grid box is either filled entirely with tuples from R or
does not contain any tuples from R. Each grid box that does not contain any tuples from
R can then be covered by a single gap box, yielding a box cover for σ(R) of size at most

(2k)n = Õ(kn).

Algorithm 5 presents the pseudocode for this approach. Algorithm 4 is a subroutine
which takes a relation R and an attribute A, and splits dom(A) into a set of buckets such
that elements in the same bucket all have identical A-hyperplanes in R. Lemma 5.18 proves
the correctness and verifies the Õ(N) run time of this subroutine. Algorithm 5 iterates over
each attribute and calls Algorithm 4 to compute a corresponding set of buckets. Then, it
iterates over the boxes defined by the Cartesian product of these buckets, and generates a
gap box for any empty grid cell, resulting in an ordering σ and corresponding box cover
for σ(R). Theorem 5.19 proves Algorithm 5’s correctness and verifies its run time.

Lemma 5.18. Let R be a relation with A ∈ attr(R) and N = |R|. Then Algorithm 4 runs

in time Õ(N) on input R and A. Furthermore, Algorithm 4 partitions dom(A) into Õ(k)

47

Algorithm 4 Partition dom(A) into buckets, grouping by equivalent A-hyperplanes

1: SplitBucket(R,A):
2: φ := any attribute ordering of {A1, . . . , An} which places A first
3: Sort R lexicographically according to φ
4: T := ∅
5: for a ∈ πA(R) do
6: T .add([a, σA=a(R)])
7: end for
8: Sort T in ascending order of |σA=a(R)|
9: W := ∅
10: j := 0
11: while j < |T | do
12: i := T [j].|σA=a(R)|
13: Ti := {[a, σA=a(R)] ∈ T : |σA=a(R)|}
14: Sort Ti lexicographically according to σA=a(R)
15: k := 0
16: while k < |Ti| do
17: P := Ti[k][2]
18: W := {a ∈ dom(A) : [a, σA=a(R)] ∈ Ti}
19: W .add(W)
20: k := k + |W |
21: end while
22: j := j + |Ti|
23: end while
24: return W

buckets where k = K�(σ(R)) for any domain ordering σ.

Proof. The first sort of R on line 3 requires O(N logN) comparisons, and each comparison

takes Õ(1) time.

The for-loop beginning on line 5 simply iterates over the sorted relation R and generates
triplets representing groups of tuples which share the same A-value. This takes O(N) time.

The sort of T on line 8 similarly takes O(N logN) comparisons with each comparison

taking Õ(1) time.

The main while-loop beginning on line 11 iterates over the sorted T in ascending order
of the size, i, of the sub-relations that each element in T corresponds to. For each i,

48

suppose there are ki elements of T with size i. Note then that
∑

i i · ki = N . For each
i, we sort the elements with size i on line 14 to ensure that all A-values with identical
A-hyperplanes in R are adjacent. Then, the interior while-loop beginning on line 16 splits
these A-values into buckets such that each bucket contains only A-values with identical A-
hyperplanes in R. Constructing the buckets W on line 18 can be done in a total of O(ki · i)
time by advancing in the array Ti and comparing the corresponding A-hyperplanes until a
difference is found. Comparing two A-hyperplanes in Ti takes Õ(i) time. The run time of
this is therefore dominated by the sorting, which requires O(ki log ki) comparisons, each of

which has cost Õ(i). Thus, the total run time of the iteration of the line 11 while-loop is

Õ(i · ki log ki). Summing over all i, we get∑
1≤i≤N

i · ki log ki ≤ logN
∑

1≤i≤N

i · ki = N logN = Õ(N)

Since SplitBucket places all elements in dom(A) with identical A-hyperplanes in
R together, Lemma 5.17 implies that the number of buckets returned is at most 2k =
Õ(k).

Algorithm 5 Compute an ordering and box cover which approximates BoxMinPDomF on
a single relation

1: ApproxBoxMinP1(R(A1, . . . , An)):
2: for A ∈ {A1, . . . , An} do
3: W [A] := SplitBucket(R,A)
4: σ[A] := Flatten(W [A])
5: end for
6: B := ∅
7: for (W1, . . . ,Wn) ∈ (W [A1], . . . ,W [An]) do
8: if (b = (W1 × · · · ×Wn)) ∩R = ∅ then
9: B := B ∪ {b}
10: end if
11: end for
12: return (σ,B)

Theorem 5.19. Let R(A1, . . . , An) be a single relation input to BoxMinPDomF. Let σ∗ be
an optimal domain ordering for BoxMinPDomF on R. On input R, Algorithm 5 will produce
a domain ordering σ and corresponding box cover B of size Õ(kn) in time Õ(N+kn), where
N is the number of tuples in R and k = K�(σ∗(R)).

49

Proof. First we will analyze the run time of the for-loop beginning on line 2. It iterates
over each attribute A ∈ A and calls SplitBuckets to construct W [A], a partition of the

domain of A into some number of buckets. By Lemma 5.18, this takes Õ(N) time and
partitions dom(A) into buckets of elements with identical A-hyperplanes. The Flatten
function simply takes an array of arrays and flattens it into a single array, maintaining
that elements of dom(A) from the same bucket will remain as a consecutive block in the
resulting array. This can be done in O(N) time. The run time of this for-loop is therefore

Õ(n ·N) = Õ(N).

Now we examine the for-loop beginning on line 7, which iterates over the grid cells
formed by the intersections of the buckets created for each attribute and adds a box to our
cover if the grid cell is empty. By Lemma 5.17, we have |W [Ai]| ≤ 2k for each i ∈ [n]. So

this loop iterates at most (2k)n = Õ(kn) times. The if-statement in the loop takes Õ(1)

time, so this for-loop takes Õ(kn) time, bringing the total run time for ApproxBoxMinP1

to Õ(N + kn).

For each (W1, . . . ,Wn) ∈ W [A1]× · · · ×W [An], any tuples t1, t2 ∈ W1× · · · ×Wn must
satisfy t1 ∈ R ∧ t2 ∈ R or t1 6∈ R ∧ t2 6∈ R, since the Ai-hyperplanes for their Ai-values are
identical for any i ∈ [n]. This implies the generated set of boxes B is indeed a box cover
of σ(R).

It is worth noting that Algorithms 4 and 5 completely ignore any domain values which
do not appear in any tuple of the input relation R. These domain values are implicitly
assumed to be placed at the end of the resulting domain ordering σ. Their corresponding
hyperplanes can then be covered by a single box without affecting the asymptotic size of
the resulting box cover.

Revisiting Section 5.3, we can also observe that Algorithm 5 can be easily adapted into
an algorithm which approximates BoxMinPRowColF. For an optimal domain ordering σ∗ of
the input matrix M , this algorithm would produce a box cover of size Õ((K�(σ∗(M)))2).

The simple notion that values with identical A-hyperplanes in R should be adjacent
to one another yielded the results of this section. Future work on this problem should
look into other approaches which may lead to better approximation ratios. For example,
BoxMinPDomF is connected to problems in Boolean algebra. Some notes on these connec-
tions are presented in Appendix C.

50

5.5 Minimizing the Box Cover for Multiple Relations

This section expands on the results of Section 5.4 by generalizing Algorithm 5 to work
with more than one input relation. We are now focusing on BoxMinPDomF in general.
We defined this problem at the beginning of Chapter 5. In this setting, we take a query
Q = (R,A) as input, where each relation in R is represented as a list of its tuples. We
are seeking an ordering on the domains of each of the attributes in A which yields a box
cover for Q of minimum size.

We would like to generalize ApproxBoxMinP1 (Algorithm 5 from Section 5.4) so
that it can be used to approximate BoxMinPDomF. It would be convenient to run Ap-
proxBoxMinP1 on each relation R ∈ R separately to obtain an approximately optimal
domain ordering σ. However, if an attribute A ∈ A is in the attribute sets for two different
relations R1, R2 ∈ R, then the ordering σA must be the same for both R1 and R2. For
any two values a1, a2 ∈ dom(A) such that H(R1, A, a1) = H(R1, A, a2), it may be the case
that H(R2, A, a1) 6= H(R2, A, a2). It is not always possible to construct an ordering σA on
dom(A) such that all identical A-hyperplanes are placed in consecutive blocks in both R1

and R2.

In order to avoid this problem while maintaining an efficient algorithm, we can use
the following process to obtain a good ordering of dom(A). First, partition dom(A) into
buckets of identical A-hyperplanes in R1, just as we did in the single relation case. Note
that within a single bucket, the ordering of the domain values does not affect any box
cover of R1, so long as all the elements remain in a single consecutive block. For each of
the resulting buckets W ⊆ dom(A), we can further partition W into buckets of identical
A-hyperplanes in R2. If the optimal ordering σ∗ yields a box cover for σ∗(R1) of size k1
and a box cover for σ∗(R2) of size k2, then this process results in a set of buckets of size

Õ(k1k2) which partitions dom(A) and where each bucket contains elements with identical
A-hyperplanes in both R1 and R2.

This process easily generalizes to any number of relations. We can continue partitioning
the resulting buckets until we have iterated over all R ∈ R such that A ∈ attr(R). Algo-
rithm 6 presents the pseudocode for this approach, which is a generalization of Algorithm
5 and also uses Algorithm 4 as a subroutine. Theorem 5.20 provides the approximation
ratio and verifies the run time of this algorithm.

Theorem 5.20. Let Q = (R,A) be a query with a total of N input tuples. Let σ∗ be an
optimal domain ordering for BoxMinPDomF on Q. Then Algorithm 6 produces a domain

51

Algorithm 6 Compute an approximation to BoxMinPDomF and a corresponding box cover

1: ApproxBoxMinP(Q = (R,A)):
2: for A ∈ A do
3: W [A] := {∪R∈R:A∈attr(R)πA(R)}
4: for R ∈ R : A ∈ attr(R) do
5: Sort R by A-value
6: W ′ := ∅
7: for W ∈ W [A] do
8: W ′.add(SplitBucket(σA∈W (R), A))
9: W ′.add(W \ πA(R))
10: end for
11: W [A] :=W ′
12: end for
13: σ[A] := Flatten(W [A])
14: end for
15: for R ∈ R do
16: B[R] := ∅
17: {A1, . . . , An} := attr(R)
18: for (W1, . . . ,Wn) ∈ (W [A1], . . . ,W [An]) do
19: if (b = (W1 × · · · ×Wn)) ∩R = ∅ then
20: B[R] := B[R] ∪ {b}
21: end if
22: end for
23: end for
24: return (σ,B)

ordering σ and a box cover for Q of size Õ(K) in time Õ(N +K), where

K =
∑
R1∈R

∏
A∈attr(R1)

∏
R2:A∈attr(R2)

K�(σ∗(R2))

Proof. First we will analyze the run time of the for-loop beginning on line 2. It iterates over
each attribute A ∈ A and constructs W [A], a partition of the domain of A into buckets.
W [A] is initialized to have all the domain values of A which occur anywhere in Q in a
single bucket. Note that after each iteration of the second for-loop beginning on line 4,
W [A] remains a valid partition in the sense that any specific domain element is contained
in exactly one bucket. Thus, the total number of elements in the buckets of W [A] is at

52

most N .

The for-loop beginning on line 4 iterates over each relation R such that A ∈ attr(R),
and the innermost for-loop beginning on line 7 iterates over all the buckets currently in the
partition W [A] and further partitions each of these into buckets which contain elements
with identical A-hyperplanes in R by invoking SplitBucket (Algorithm 4). On line 8,
σA∈W (R) denotes the subrelation of tuples in R whose A-value is in the bucket W . This

relation can be computed in Õ(|W | + |σA∈W (R)|) time by iterating over W and doing a
binary search in R for each A-value. By Lemma 5.18, the SplitBucket subroutine call
takes Õ(|σA∈W (R)|) time. On line 9, we add one additional bucket containing the values

from W which do not appear in R. This can also be done in Õ(|W |) time.

Since
∑

W∈W[A](|W |+|σA∈W (R)|) ≤ 2N , the total amount of work done in one iteration

of the for-loop on line 4 is Õ(N). There are at most |A| iterations of this for-loop, and
there are |R| iterations of the for-loop on line 2. Both of these quantities are constant

when the query shape is fixed, so the total run time of the for-loop on line 2 is Õ(N).

Now, we analyze the run time of the for-loop beginning on line 15. It iterates over each
relation R ∈ R and then over all possible grid cells formed by the corresponding buckets of
the attributes of R. An upper bound on the number of such grid cells is an upper bound
on the run time of this for-loop.

Lemma 5.18 implies that the final number of buckets in W [A] is at most

Õ

 ∏
R:A∈attr(R)

K�(σ∗(R))

Thus, the number of grid cells formed in the relation R1 by the buckets from attr(R1)

is bounded by

Õ

 ∏
A∈attr(R1)

∏
R2:A∈attr(R2)

K�(σ∗(R2))

Summing over all relations, we can place the following bound on the total number of

iterations of the inner for-loop on line 18, and therefore also on the number of gap boxes
in the box cover B produced by ApproxBoxMinP.

∑
R∈R

|B[R]| ≤ Õ

∑
R1∈R

∏
A∈attr(R1)

∏
R2:A∈attr(R2)

K�(σ∗(R2))

 = Õ(K)

53

Theorem 5.20 provides a reasonably tight and granular upper bound on the box cover
size produced by Algorithm 6. If we have additional information about individual relations
in R, such as bounds on the number of boxes which come from each relation in the optimal
solution, then it would be possible to place a tighter bound on the output size using the
same algorithm and lemmas. On the other hand, we can also simplify the result of this
theorem to obtain a looser bound that is easier to work with. Corollary 5.21 provides one
such simplification of this theorem which depends only on the minimum box cover size, the
maximum degree of any vertex in the query graph, and the maximum size of any hyperedge
in the query graph.

Corollary 5.21. Let Q = (R,A) be a query with a total of N input tuples. Let σ∗ be an
optimal domain ordering for BoxMinPDomF on Q, and let k = K�(σ∗(Q)). Then on input

Q, Algorithm 6 computes a domain ordering σ and a corresponding box cover of size Õ(ka·r)

in time Õ(N+ka·r), where a = maxA∈A |{R ∈ R : A ∈ attr(R)}| and r = maxR∈R |attr(R)|.

Proof. Note that for each R ∈ R we have k ≥ K�(σ∗(R)). Let |C| be the total size of the
box covers produced by Algorithm 6 on input Q. We can apply Theorem 5.20 here with
ordering σ∗ and then use the inequality K�(σ∗(R)) ≤ k to obtain the following.

|C| ≤ Õ

∑
R1∈R

∏
A∈attr(R1)

∏
R2:A∈attr(R2)

K�(σ∗(R2))

≤ Õ

∑
R1∈R

∏
A∈attr(R1)

∏
R2:A∈attr(R2)

k

≤ Õ

∑
R1∈R

∏
A∈attr(R1)

ka

≤ Õ

(∑
R1∈R

ka·r

)
= Õ(ka·r)

Other similar variants and simplifications of Theorem 5.20 are possible. As of this
writing, these loose approximation ratios are the best known polynomial-time results for
BoxMinPDomF. This is the last box cover problem we will study in this thesis. In Section

54

5.6, we study the analogue of BoxMinPDomF which minimizes the box certificate size. First,
we will examine what the results of this section mean for computing join queries.

5.5.1 BoxMinPDomF and Join Processing

Theorem 5.20 and Corollary 5.21 are the first results in this thesis which are applicable to
a join query with any number of attributes, relations, and input tuples. Using Algorithm 6
as a preprocessing step before calling Tetris allows us to express a new upper bound on the
run time of join queries. Algorithm 7 presents the simple pseudocode for this approach.

Algorithm 7 Preprocess the Tetris input to obtain a better domain ordering

1: TetrisReordered(Q, φ):
2: (σ,B) := ApproxBoxMinP(Q) (Algorithm 6)
3: J := Tetris(B, φ)
4: return σ−1(J)

Theorems 5.22 and 5.23 state two of the bounds we obtain from Algorithm 7. Recall
that H(Q) denotes the query graph for Q.

Theorem 5.22. Let Q = (R,A) be a join query. Let σ∗ be an optimal solution to
BoxMinPDomF on Q and let k = K�(σ∗(Q)). Then there exists an SAO φ such that
Algorithm 7 computes Q in time

Õ(N + ka·r·(w+1) + Z)

where N is the number of input tuples, Z is the number of output tuples, a is the maximum
degree of a vertex in H(Q), r is the maximum size of a hyperedge in H(Q), and w is the
treewidth of Q.

Proof. This is a straightforward combination of Theorem 2.19 and Corollary 5.21. The call
to ApproxBoxMinP takes Õ(N + ka·r) time and returns a box cover B of size Õ(ka·r).
The box certificate size is bounded by the box cover size, so the Tetris call runs in time
Õ(|B|w+1 +Z) = Õ(ka·r·(w+1) +Z). The resulting output relation J has size Z. Converting

J back to the original ordering can be done in Õ(Z) time if σ is stored in ordered arrays,

where the reverse lookup of each domain value can be done in Õ(1) time.

55

Theorem 5.23. Let Q = (R,A) be a join query. Let σ∗ be an optimal solution to
BoxMinPDomF on Q and let k = K�(σ∗(Q)). Then Algorithm 7 computes Q in time

Õ(N + ka·r·n/2 + Z)

where N is the number of input tuples, Z is the number of output tuples, a is the maximum
degree of a vertex in H(Q), r is the maximum size of a hyperedge in H(Q), and n = |A|.

Proof. Similarly, this theorem is a straightforward combination of Theorem 2.20 and Corol-
lary 5.21.

In the next section, we will see that these bounds are not always better than the bounds
of Theorems 2.19 and 2.20. However, the example in Section 5.1 demonstrates that there
are queries for which these bounds are exponentially smaller than any bound provided by
Tetris with a fixed domain ordering.

5.6 Minimizing the Box Certificate for Multiple Re-

lations

In this section we will finally turn our attention to the domain ordering problem which
most directly affects the run time of Tetris. Instead of minimizing the box cover size, we
now seek to minimize the box certificate size for a query Q = (R,Q) with any number of
relations over any number of attributes. This problem, CertMinPDomF, was defined at the
beginning of Chapter 5.

As mentioned in previous sections, when the input is a single relation, minimizing the
box cover size and minimizing the certificate size are the same problem. Theorem 5.15
proved that the single relation, two attribute case of CertMinPDomF is NP-hard, thus the
problem is NP-hard in general. Example 5.24 demonstrates that there are queries for
which the ordering which minimizes the box cover size can be very different from the
ordering which minimizes the certificate size. This serves to illustrate that BoxMinPDomF

and CertMinPDomF are indeed distinct problems.

Example 5.24. Let k be an even positive integer and consider the query

Qk = R1(A,B) on R2(A,B) on R3(A,B) on R4(A,B)

56

where the relations are defined as follows. C1 and C2 are intermediate relations we will use
to define R1, . . . , R4.

C1(A,B) =

k/2⋃
i=0

{
〈2i, i〉, 〈2i+ 1, i〉, 〈2i, k − i− 1〉, 〈2i+ 1, k − i− 1〉,

〈k + 2i, i〉, 〈k + 2i+ 1, i〉, 〈k + 2i, k − i− 1〉, 〈k + 2i+ 1, k − i− 1〉
}

C2(A,B) =

k/2⋃
i=0

{
〈2i, k + i〉, 〈2i+ 1, k + i〉, 〈2i, 2k − i− 1〉, 〈2i+ 1, 2k − i− 1〉,

〈k + 2i, k + i, 〉, 〈k + 2i+ 1, k + i〉, 〈k + 2i, 2k − i− 1〉, 〈k + 2i+ 1, 2k − i− 1〉
}

R1(A,B) =
(
([0, k − 1]× [0, k − 1]) ∪ ([k, 2k − 1]× [0, k − 1])

∪ ([0, k − 1]× [k, 2k − 1])
)
\ C1

R2(A,B) =
(
([0, k − 1]× [0, k − 1]) ∪ ([k, 2k − 1]× [0, k − 1])

∪ ([k, 2k − 1]× [k, 2k − 1])
)
\ C1

R3(A,B) =
(
([0, k − 1]× [k, 2k − 1]) ∪ ([k, 2k − 1]× [k, 2k − 1])

∪ ([0, k − 1]× [0, k − 1])
)
\ C2

R4(A,B) =
(
([0, k − 1]× [k, 2k − 1]) ∪ ([k, 2k − 1]× [k, 2k − 1])

∪ ([k, 2k − 1]× [0, k − 1])
)
\ C2

Since all four relations are defined over the same two attributes, this query is simply
an intersection of the four relations. The instance of this query when k = 6 is shown in
Figure 5.4. The tuples of the relations are shaded in blue.

Let σ1 = (0, 1, . . . , 2k− 1) and σ2 = (0, 1, k, k+ 1, 3, 4, k+ 2, k+ 3, . . . , k− 2, k− 1, 2k−
2, 2k − 1). Consider the two domain orderings σC = (σ1, σ1) and σK = (σ2, σ1). σC is
the “natural” ordering for the query (the ordering in which the query was defined), and
the optimal box cover size for Qk under this ordering is K�(σC(Qk)) = 8k − 4, since each
relation Ri can be covered by 2k − 1 boxes. However, the optimal certificate size under
this ordering is C�(σC(Qk)) = 4, by taking the single largest gap box from each relation.
This illustrates that the certificate size can be much smaller than the box cover size.

57

Under the ordering σK , the size of the optimal box cover decreases, but the size of
the optimal certificate increases. The transformed relation is also presented in Figure 5.4.
Here, each relation can be covered by 3

2
k− 1 boxes, so K�(σK(Q)) = 6k− 4. But the large

boxes which were used as the certificate under the previous ordering have been split into
k
2

pieces under this ordering, so C�(σK(Qk)) = 2k. This illustrates that an ordering with
a better box cover size does not necessarily have a better certificate size.

Q6 = R1(A,B) on R2(A,B) on R3(A,B) on R4(A,B)

σ1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

σ2 = (0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 10, 11)

(a) Q6 under ordering σC = (σ1, σ1)

σC(R1) σC(R2) σC(R3) σC(R4)

A

B

A

B

A

B

A
B

(b) Q6 under ordering σK = (σ2, σ1)

σK(R1) σK(R2) σK(R3) σK(R4)

A

B

A

B

A

B

A

B

Figure 5.4: A query for which the optimal certificate size and optimal box cover size occur
under different domain orderings

Example 5.24 confirms that CertMinPDomF is a distinct problem from BoxMinPDomF.
Algorithm 6, which approximates BoxMinPDomF, does not provide any bound directly

58

related to the minimum box certificate size.

In fact, very little is known about approximating CertMinPDomF. We are, however, able
to solve the problem exactly in the very restricted case where the minimum box certificate
size is at most 3, and the query result is empty. This follows from the fact that if the entire
output space can be covered by 3 gap boxes from some 3 input relations, one of these 3
gap boxes must span the entire domains of all the attributes except one. Proposition 5.25
states the result formally.

Proposition 5.25. If Q = (R,A) is a query for which the output is empty and there exists
a domain ordering σ∗ for Q such that C�(σ∗(Q)) ≤ 3, then CertMinPDomF on Q can be
solved in polynomial time.

Proof. If C�(σ∗(Q)) ≤ 3, then there is a box cover for σ∗(Q) which admits a box certificate
C of size at most 3.

Claim: There is a box b ∈ C and an attribute A ∈ A with values a1, a2 ∈ dom(A)
such that b = [a1, a2]×

(
×A′∈A\{A} dom(A′)

)
. In other words, b is a gap box which spans

some interval from a1 to a2 over attribute A and spans the entire domain of every other
attribute in the query.

Proof of claim: This claim can be proven by counting how many “corners” of the output
space are covered by the 3 boxes in the certificate. A corner is a tuple in the output space
where the value for each attribute A is either the first value in σ∗A or the last value in σ∗A.
Suppose that all 3 boxes in C have at least 2 attributes for which they do not span the
entire domain. Suppose b ∈ C does not span the entire domain of A or B. Then b either
does not span the last value in σ∗A, or does not span the first value in σ∗A. The same can
be said of b and σ∗B. The total number of corners in the output space is 2n, where n = |A|.
The restrictions on b mean that it can cover at most 2n−2 corners. 3 · 2n−2 < 2n, so the
boxes in C do not cover all the corners of the output space, a contradiction. Therefore the
claim holds.

Without loss of generality, we may assume that the values in the interval [a1, a2] are
the last values in σ∗A. If they were not, we could modify σ∗A by moving the interval [a1, a2]
to the end of σ∗A without increasing the number of boxes required for the certificate. For
some relation R ∈ R such that A ∈ attr(R), b corresponds to a set of elements in dom(A)
which do not appear in R. For each relation R and each attribute A ∈ attr(R), we obtain
a partial ordering for σA by placing all elements of dom(A) which do not appear in R
at the beginning of σA. This ensures that some box which is a “candidate” for b will be
recoverable under the domain ordering we are constructing.

59

Algorithm 8 Compute a domain ordering matching the optimal certificate size when
C�(σ∗(Q)) ≤ 3

1: ComputeCertMinPLeq3(Q = (R,A), i):
2: if i = 1 then
3: if ∃R ∈ R such that R = ∅ then
4: return arbitrary domain ordering σ
5: else
6: return False
7: end if
8: end if
9: for R ∈ R do
10: for A ∈ attr(R) do
11: D := {a ∈ dom(A) : a 6∈ πA(R)}
12: σ := ComputeCertMinPLeq3(σA 6∈D(Q), i− 1)
13: if σ 6= False then
14: σ[A] := append(σ[A], D)
15: return σ
16: else
17: return False
18: end if
19: end for
20: end for

Algorithm 8 iterates over all these candidates b with the for-loops on lines 9 and 10.
Here, b is the box which spans the elements in D on attribute A, but spans the entire
domains of each other attribute. Fixing this b, Algorithm 8 recursively solves this problem
(line 12) on the query Q′ obtained from Q by restricting each relation R ∈ R to R′ = {t ∈
R : t.A 6∈ D} and restricting the domain of A to dom(A) \D.

SinceQ has an optimal certificate size of at most 3, for some R and A, Q′ has an optimal
certificate size of at most 2. Inductively, this recursion occurs at most twice before we reach
the base case, where the optimal certificate is of size 1, and Q′ is a query containing at
least one empty relation. If ComputeCertMinPLeq3 is initially called with parameter
i = 3, any recursive paths with length longer than 3 will be terminated within the if-block
on line 1, ensuring that this algorithm runs in polynomial time.

Proposition 5.25 shows that CertMinPDomF can be solved exactly in polynomial time if
we add two strong assumptions aboutQ. The proof of this proposition does not apply when

60

the minimum certificate size is 4 or greater, because the claim that begins the proof does not
hold in those cases. Beyond this result and NP-hardness, nothing more is known about
CertMinPDomF. An important direction for future research is finding an approximation
algorithm for CertMinPDomF in general, since such an algorithm would directly decrease
the upper bound on Tetris’ run time.

61

Chapter 6

Conclusions

The previous chapters defined several domain ordering problems, and presented various
hardness and approximation results for them. In Appendix B, we present preliminary
results for several bit ordering problems, a subclass of domain ordering problems. Our
results for all of these problems are summarized in Table 6.1.

The results for the domain ordering problems in Chapter 5 are more substantial and
promising. We established a polynomial-time, polynomial-factor approximation algorithm
(Algorithm 6) for BoxMinPDomF using only the simple observation that identicalA-hyperplanes
should be made adjacent to one another whenever possible. Since this algorithm provides
a bound for arbitrary join queries, it allowed us to prove Theorems 5.22 and 5.23, new
beyond worst-case join processing bounds. These were obtained by adding an efficient
preprocessing step to Tetris (Algorithm 7), improving on any previously known bound in
cases where the input has a bad domain ordering.

The approximation factor to BoxMinPDomF used in these bounds is a high-degree poly-
nomial when the query shape is complex. The question remains open whether this approx-
imation factor can be improved to a smaller polynomial, or better yet, to an Õ(1) sub-
polynomial factor. Despite the loose worst-case approximation factor, there exist queries
such as the example in Section 5.1 for which Algorithm 6 produces a box cover of size
exponentially smaller than what would be possible without domain reordering. On these
queries, Algorithm 7 runs faster than any previously known join algorithm.

Unfortunately, these positive results for BoxMinPDomF did not generalize to provide
similar results for CertMinPDomF, the analogous box certificate minimization problem.
Since the box certificate size directly influences the run time of Tetris, approximating

62

Problem Type NP-hard Approximable

BoxMinPColF
Domain ordering

Cover & cert.

Yes

Theorem 5.9

Õ(1) if no sub-intervals

Theorem 5.12

BoxMinPRowColF
Domain ordering

Cover & cert.

Yes

Theorem 5.15

Õ
(
K�(σ∗(Q))2

)
Theorem 5.19

BoxMinPDomF

single-relation

Domain ordering

Cover & cert.

Yes

Theorem 5.15

Õ
(
K�(σ∗(Q))n

)
Theorem 5.19

BoxMinPDomF
Domain ordering

Cover

Yes

Theorem 5.15

Õ(K�(σ∗(Q))a·r
)

Corollary 5.21

CertMinPDomF
Domain ordering

Certificate

Yes

Theorem 5.15

Exact if C�(σ∗(Q)) ≤ 3

Proposition 5.25

CertMinPBitF
Bit ordering

Certificate
–

Õ(1) for single rel. & attr.

Corollary B.12

CertMinPGBO
Bit ordering

Certificate
–

Õ(1) for single relation

Corollary B.12

BoxMinPGBO
Bit ordering

Cover

Yes when Q not fixed

Corollary B.16

Õ(1) for single relation

Corollary B.12

Table 6.1: A summary of the hardness and approximation results in this thesis

CertMinPDomF (or proving an inapproximability result) is the most important open prob-
lem identified in this thesis.

The bit ordering problems studied in Appendix B remain largely unsolved. It remains
an open question whether CertMinPBitF or CertMinPGBO can be solved in Õ(poly(N))
time when the query shape is constant. One direction for future research is to either
find such an algorithm, or prove that these problems are NP-hard even when the query
shape is constant. Finding an Õ(1)-factor approximation algorithm for the general case
of any of these problems would also be valuable, since it would yield a new beyond-worst
case join processing bound. Another direction for future research is discussed briefly in
Appendix C. Box cover problems are related to problems in Boolean algebra. Exploring
these connections further may lead to better results for CertMinPDomF and BoxMinPDomF.

63

References

[1] Mahmoud Abo Khamis, Hung Q Ngo, Christopher Ré, and Atri Rudra. Joins via geo-
metric resolutions: Worst case and beyond. ACM Transactions on Database Systems
(TODS), 41(4):22, 2016.

[2] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with
functional dependencies. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’16, pages 327–342, New York,
NY, USA, 2016. ACM.

[3] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for
relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[4] RP Bambah and H Davenport. The covering of n-dimensional space by spheres.
Journal of the London Mathematical Society, 1(2):224–229, 1952.

[5] Piotr Berman and Bhaskar DasGupta. Complexities of efficient solutions of rectilinear
polygon cover problems. Algorithmica, 17(4):331–356, 1997.

[6] Kellogg S Booth and George S Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer
and System Sciences, 13(3):335–379, 1976.

[7] Timothy M Chan and Elyot Grant. Exact algorithms and APX-hardness results for
geometric set cover. In Proc. 23rd Canadian Conference on Computational Geometry,
pages 431–436, 2011.

[8] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP
technology. ACM Sigmod Record, 26(1):65–74, 1997.

64

[9] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient
join query evaluation in a parallel database system. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’15, pages 63–
78, New York, NY, USA, 2015. ACM.

[10] John Horton Conway and Neil James Alexander Sloane. Sphere Packings, Lattices
and Groups, volume 290. Springer Science & Business Media, 2013.

[11] Joseph C Culberson and Robert A Reckhow. Covering polygons is hard. J. Algorithms,
17(1):2–44, 1994.

[12] Rina Dechter and Judea Pearl. Tree-clustering schemes for constraint-processing.
In Proceedings of the Seventh AAAI National Conference on Artificial Intelligence,
AAAI’88, pages 150–154. AAAI Press, 1988.

[13] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R Stone-
braker, and David A. Wood. Implementation techniques for main memory database
systems. In Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’84, pages 1–8, New York, NY, USA, 1984. ACM.

[14] Paul Erdős and CA Rogers. The covering of n-dimensional space by spheres. Journal
of the London Mathematical Society, 1(3):287–293, 1953.

[15] Deborah S. Franzblau. Performance guarantees on a sweep-line heuristic for cover-
ing rectilinear polygons with rectangles. SIAM Journal on Discrete Mathematics,
2(3):307–321, 1989.

[16] Deborah S Franzblau and Daniel J Kleitman. An algorithm for covering polygons
with rectangles. Information and Control, 63(3):164–189, 1984.

[17] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and
treewidth bounds for conjunctive queries. J. ACM, 59(3):16:1–16:35, June 2012.

[18] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM
Transactions on Algorithms (TALG), 11(1):4, 2014.

[19] Joachim Gudmundsson and Christos Levcopoulos. Close approximations of minimum
rectangular coverings. Journal of combinatorial optimization, 3(4):437–452, 1999.

[20] Salim Haddadi. A note on the NP-hardness of the consecutive block minimization
problem. International Transactions in Operational Research, 9:775–777, 11 2002.

65

[21] Salim Haddadi and Zoubir Layouni. Consecutive block minimization is 1.5-
approximable. Information Processing Letters, 108(3):132 – 135, 2008.

[22] Manas R Joglekar and Christopher M Ré. It’s all a matter of degree: Using degree
information to optimize multiway joins. In 19th International Conference on Database
Theory (ICDT 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[23] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Springer, 1972.

[24] KH Kim and FW Roush. Inclines and incline matrices: A survey. Linear Algebra and
its Applications, 379:457–473, 2004.

[25] Ki Hang Kim. Boolean Matrix Theory and Applications, volume 70. Dekker, 1982.

[26] Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and con-
straint satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[27] L. Kou. Polynomial complete consecutive information retrieval problems. SIAM Jour-
nal on Computing, 6(1):67–75, 1977.

[28] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of nonrecursive
queries. In Proceedings of the 12th International Conference on Very Large Data
Bases, pages 128–137. Morgan Kaufmann Publishers Inc., 1986.

[29] VS Anil Kumar and H Ramesh. Covering rectilinear polygons with axis-parallel rect-
angles. SIAM Journal on Computing, 32(6):1509–1541, 2003.

[30] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki Moon.
Parallel data processing with mapreduce: A survey. SIGMOD Rec., 40(4):11–20,
January 2012.

[31] Christos Levcopoulos and Joachim Gudmundsson. Approximation algorithms for cov-
ering polygons with squares and similar problems. In International Workshop on
Randomization and Approximation Techniques in Computer Science, pages 27–41.
Springer, 1997.

[32] Anna Lubiw. The boolean basis problem and how to cover some polygons by rectan-
gles. SIAM Journal on Discrete Mathematics, 3(1):98–115, 1990.

[33] Dipen Moitra. Finding a minimal cover for binary images: An optimal parallel algo-
rithm. Algorithmica, 6(1-6):624–657, 1991.

66

[34] Hung Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open
problems. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, SIGMOD/PODS ’18, pages 111–124, New York, NY,
USA, 2018. ACM.

[35] Hung Q Ngo, Dung T Nguyen, Christopher Ré, and Atri Rudra. Beyond worst-case
analysis for joins with Minesweeper. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 234–245.
ACM, 2014.

[36] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms. Journal of the ACM (JACM), 65(3):16, 2018.

[37] Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: New developments
in the theory of join algorithms. CoRR, abs/1310.3314, 2013.

[38] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[39] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query
results. ACM Transactions on Database Systems (TODS), 40(1):2, 2015.

[40] Phillip L Poplin and Robert E Hartwig. Determinantal identities over commutative
semirings. Linear Algebra and its Applications, 387:99–132, 2004.

[41] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw
Hill, 2000.

[42] Wolfgang Scheufele and Guido Moerkotte. On the complexity of generating opti-
mal plans with cross products. In Proceedings of the 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 238–248. ACM, 1997.

[43] David S Scott and S Sitharama Iyengar. TID – a translation invariant data structure
for storing images. Communications of the ACM, 29(5):418–429, 1986.

[44] Eugene J Shekita, Honesty C Young, and Kian-Lee Tan. Multi-join optimization for
symmetric multiprocessors. In Proceedings of the 19th International Conference on
Very Large Data Bases, pages 479–492. Morgan Kaufmann Publishers Inc., 1993.

[45] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and randomized
optimization for the join ordering problem. The VLDB Journal, 6(3):191–208, August
1997.

67

[46] Arun Swami and Anoop Gupta. Optimization of large join queries. In Proceedings of
the 1988 ACM SIGMOD International Conference on Management of Data, SIGMOD
’88, pages 8–17, New York, NY, USA, 1988. ACM.

[47] Yijia Tan. On invertible matrices over antirings. Linear Algebra and its Applications,
423(2-3):428–444, 2007.

[48] Gábor Fejes Tóth and Wlodzimierz Kuperberg. A survey of recent results in the theory
of packing and covering. In New Trends in Discrete and Computational Geometry,
pages 251–279. Springer, 1993.

[49] Charalampos E Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In Proceedings of the 2008 8th IEEE International
Conference on Data Mining, pages 608–617. IEEE Computer Society, 2008.

[50] Todd L. Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm.
In Proc. 17th International Conference on Database Theory (ICDT), pages 96–106,
2014.

[51] Cao An Wang, Bo-Ting Yang, and Binhai Zhu. On some polyhedra covering problems.
Journal of Combinatorial Optimization, 4(4):437–447, 2000.

[52] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the 7th
International Conference on Very Large Data Bases, pages 82–94. VLDB Endowment,
1981.

[53] Grazyna Zwoźniak. A better approximation algorithm for covering polygons with
squares. Technical report, Institute of Computer Science, University of Wroclaw,
1998.

68

APPENDICES

69

Appendix A

Tetris Subsumes Generic Join

The join algorithms Tetris and Generic Join are both known to run in time Õ(AGM(Q))
for some global attribute order (GAO) [1, 37]. It is also known that the certificate-based
bounds for Tetris are much smaller than the AGM bound for many queries. Intuitively,
these facts seem to suggest that the worst-case runtime of Tetris is bounded by the runtime
of Generic Join on the same input query. Theorem A.2 confirms that this intuition is true.

The proof of this theorem is a generalization of the proof that Tetris meets the AGM
bound given in [1]. The theorem statement uses the terms GAO and SAO. This terminology
is also borrowed from [1]. In this context, the GAO is the ordering of the attributes of Q
that Generic Join will process the query in. The SAO is the ordering of the attributes that
Tetris will process the query in. In order to state the theorem we need one more definition.

Definition A.1. SAO-consistent gap boxes are dyadic gap boxes of the form

〈s1, s2, . . . , si, ∗, . . . , ∗〉

for some i ∈ {1, . . . , |A|}, where the attributes are sorted according to the SAO and |sj| = d
for all j < i.

Theorem A.2. Let Q = (R,A) be a join query. Let TGJ(Q) be the runtime of Generic
Join on Q with fixed GAO σ. Then with SAO σ and σ-consistent gap boxes, Tetris computes
Q in time Õ(TGJ(Q)).

Proof. We will proceed by induction on |A|. When |A| = 1, there is only one choice of
SAO, and Q is an intersection of |R| single-attribute relations, which Generic Join solves

in time Õ(minR∈R |R|).

70

Let R = argminR∈R|R|. Consider the tree T consisting of all the boxes b that Tetris
visits in all its recursive calls while computing Q. Each leaf of T is either covered by a
gap box or is an output tuple. Consider any tuple t ∈ R. t is either an output tuple,
in which case it is a leaf of T , or it is covered by a gap box from another relation. Any
gap box leaf of T which does not contain any tuples t ∈ R can be assumed to be a gap
box from R. So the number of leaves of T is at most the sum of |R| and the number of

gap boxes from R, which is bounded by Õ(|R|). Therefore the number of nodes in T is in

Õ(|R|) = Õ(minR∈R |R|).

Now suppose that n = |A| > 1, and assume that the theorem statement holds whenever
for any query with fewer than n attributes. Generic-Join chooses an arbitrary set I ⊂ A
such that I 6= ∅ and I 6= A to split the query. Since the GAO is fixed to σ, we know the
attributes in I come before the attributes in A \ I in σ.

Let B1 be the set of boxes Tetris visits which have all wildcards in the attributes of
A \ I. Tetris visits these boxes exactly as if it were computing the join QI =onR∈R πI(R).
That is, Tetris will visit the node with the first d · |I| bits specified (and will not find a box
which covers it) if and only if the corresponding tuple t ∈ QI . Therefore, by induction,

|B1| ∈ Õ(TGJ(QI)).

Now for each t ∈ QI , let B2(t) be the set of boxes Tetris visits which have no wildcards
in the I attributes, and the bits in I which are fully specified correspond to the tuple t.
Tetris visits the boxes in B2(t) exactly as if it were computing Qt =onR∈RA\I πA\I(σI=t(R)).
Note that since the GAO is fixed, all the I sets chosen by the Qt subqueries will indeed
be compatible with the SAO of Tetris. By induction, |B2(t)| ∈ Õ(TGJ(Qt)). Generic Join
recursively computes the queries QI and Qt for each t ∈ QI , so TGJ(Q) ≤ TGJ(QI) +∑

t∈Qi
TGJ(Qt).

Combining the above facts, we have the following where TTet(Q) is the runtime of Tetris
on Q.

TTet(Q) = Õ(|B1|+
∑
t∈QI

|B2(t)|) ≤ Õ(TGJ(QI) +
∑
t∈QI

TGJ(Qt)) ≤ Õ(TGJ(Q))

71

Appendix B

Finding an Optimal Bit Ordering

In this appendix we will explore the benefits of changing the bit ordering that Tetris uses
to compute join queries.

Definition B.1 (Bit ordering). Given a query Q = (R,A) where each attribute A ∈ A
has dom(A) = {0, 1}d, a bit ordering of Q is a tuple of |A| permutations φ = (φA)A∈A ∈
×A∈ASd. That is, each φA is a permutation of the d bits of dom(A).

We will use φ(Q) to denote the query obtained by permuting all the attributes and
relations of Q according to φ. When we run Tetris on Q with bit ordering φ, this means
the dyadic gap boxes passed to Tetris must be consistent with φ.

Example B.2. Let A and B be attributes with 3-bit domains. Consider the relation
R(A,B) containing the tuples {〈001, 010〉, 〈001, 101〉, 〈100, 110〉}. By default, we assume
the bit ordering is φA = φB = (1, 2, 3). If we change the bit ordering so that φA = (3, 2, 1)
and φB = (2, 1, 3), then φ(R) = {〈100, 100〉, 〈100, 011〉, 〈001, 110〉}.

Bit orderings are less general than domain orderings, because for any query Q and
any bit ordering φ of Q, there is a corresponding domain ordering σ of Q such that
φ(Q) = σ(Q), but the converse is not true. Figure B.1 helps to illustrate this. Here, φ is
the optimal bit ordering, and σ is the optimal domain ordering. We can obtain a smaller
box cover for σ(R) than we can for φ(R).

72

Bit ordering φA = (1, 3, 2)
Domain ordering σA = (001, 010, 100, 110, 000, 011, 101, 111)

R
A B

001 000
010 000
100 000
110 000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

A

B

φA(R)
A B

001 000
010 000
100 000
101 000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

A

B

σA(R)
A B

000 000
001 000
010 000
011 000

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000

A

B

Figure B.1: A relation whose box cover size can be decreased by changing the bit ordering
or domain ordering

B.1 Finding an Optimal Bit Ordering

The example query we defined in Section 5.1 has an Ω(N) size box certificate under the

default domain ordering, but under a good domain ordering it has an Õ(1) size box cer-
tificate. A similarly small box certificate can be obtained by choosing a good bit ordering.
In fact, any bit ordering which places the last n − 2 bits first also yields a box certificate
of size Õ(1) for this query. This motivates finding the bit ordering that minimizes the
certificate size of the input query. The problem is defined as follows.

Definition B.3 (CertMinPBitF). The Bit Flexible Certificate Minimization Problem
(CertMinPBitF) takes as input a query Q = (R,A) and produces a bit ordering φ∗ such

73

that
C�(φ∗(Q)) = min

φ
C�(φ(R))

In Example 5.5, each attribute has d bits which are irrelevant to the query in the sense
that for each k ∈ [d] and t ∈ Ri,j, whenever (t.A)k = 1, the tuple t′ obtained from t by
flipping bit k of t.A to 0 also satisfies t′ ∈ Ri,j. If bit k is placed last in the bit ordering
for A, then no maximal dyadic gap box will specify a prefix for attribute A of length d,
because such a box could always be made larger by removing the d-th bit without covering
any tuples in R. This means that any bits which satisfy this “irrelevant” property should
be placed last in the ordering for their attribute if we aim to decrease number of gap boxes.

This notion of an irrelevant bit is actually a special case of bit influence, a well studied
concept in the analysis of Boolean functions [38, Ch. 2]. Let R be a relation over n
attributes, each with a d-bit domain. Each tuple can then be thought of as a binary string
of length n · d. Consider the Boolean function fR : {0, 1}n·d → {0, 1} defined by fR(t) = 1
if and only if t ∈ R. Then the bit i in attribute A is irrelevant to the query, as described
above, if and only if the corresponding bit in fR has influence equal to 0.

The heuristic which moves bits with 0 influence to the end is enough to solve CertMinPBitF

on Example 5.5, but its usefulness is limited to the small subset of queries which have bits
with 0 influence. Beyond this, nothing more is known about solving this version of the
problem. The next section presents some more fruitful results about a restricted version
of CertMinPBitF.

B.2 Minimizing the GBO-Consistent Box Cover

A more restrictive notion of a dyadic gap box is a GBO-consistent dyadic gap box.

Definition B.4 (GBO). Suppose Q has n attributes, each over d bits. A global bit order
(GBO) σ ∈ Sdn is a permutation of all the bits in Q.

A GBO is a generalization of a GAO where we set one global order for all of the bits in
all of the attributes of the query instead of a global order just for the attributes themselves.

Definition B.5 (GBO-consistent dyadic gap box). Let φ ∈ Sdn be a fixed GBO. A
φ-consistent dyadic gap box for the relation R(AR) is a binary string b ∈ {0, 1, ∗}k for
some k ∈ [dn] such that bi = ∗ if and only if φ(i) is a bit from attribute A and A 6∈ AR.
Furthermore, b must not contain any tuples in R.

74

Similar to an ordinary dyadic gap box, a tuple t is contained in b if t(φ(i)) = b(i)
or b(i) = ∗ for all i ≤ k. A φ-consistent box cover for Q is a set of φ-consistent boxes
which cover the gaps in all relations of Q. A φ-consistent box certificate is a subset of a
φ-consistent box cover whose union is equal to the union of all the boxes in the cover.

Example B.6. LetA, B, and C be attributes with 3-bit domains with bit labels (a1, a2, a3),
(b1, b2, b3), and (c1, c2, c3), respectively. Let Q = ({R(A,B), S(B,C)}, {A,B,C}). Sup-
pose that R = {〈000, 000〉} under the default bit ordering. Consider the GBO φ =
(a1, b1, c1, a2, b2, c2, a3, b3, c3). Then b = 1 and b′ = 00∗01 are examples of valid φ-consistent
dyadic gap boxes for R. b = 00 is not a φ-consistent dyadic gap box for R because it con-
tains a tuple of R. b = ∗1 is also not a φ-consistent dyadic gap box for R because bit b1 is
specified and a1 is not, but R is defined over both A and B and a1 comes before b1 in φ.

We will use CGBO(Q) and KGBO(Q) to denote the minimum size GBO-consistent box
certificate and GBO-consistent box cover respectively for a fixed GBO. More precisely,

CGBO(Q) = min
B∈BGBO(Q)

min
C∈C(B)

|C|

KGBO(Q) = min
B∈BGBO(Q)

|B|

where BGBO(Q) is the set of GBO-consistent box covers of Q and C(B) is the set of
certificates for the box cover B.

GBO-consistent dyadic boxes are more restrictive than dyadic boxes because for any
GBO φ and φ-consistent dyadic box b, there is a corresponding bit ordering for Q and
dyadic box b′ such that b and b′ cover the same tuples. However, the converse is not
necessarily true.

As we will see in Section B.2.1, any query Q under any GBO φ admits a φ-consistent
box cover of size Õ(N) where N is the number of input tuples. In fact, the minimum size
of a φ-consistent box cover depends on the number of pairs of tuples in the query which
are lexicographically consecutive according to φ.

With these definitions in mind, we can define a more restricted version of CertMinPBitF,
and a similar problem where the objective is to minimize the size of the box cover instead
of the size of the certificate.

Definition B.7 (CertMinPGBO). The Global Bit Order Certificate Minimization Prob-
lem (CertMinPGBO) takes as input a query Q = (R,A) and produces a GBO φ∗ such
that

CGBO(φ∗(Q)) = min
φ
CGBO(φ(Q))

75

Definition B.8 (BoxMinPGBO). The Global Bit Order Box Cover Minimization Problem
(BoxMinPGBO) takes as input a query (Q) = (R,A) and produces a GBO φ∗ such that

KGBO(φ∗(Q)) = min
φ
KGBO(φ(Q))

As discussed in Chapter 5, the minimum box cover size is an upper bound on the mini-
mum certificate size, and if there is only one relation in the query, then these two problems
are the same. In the coming sections we will present two results about BoxMinPGBO, and
determine if these results say anything about CertMinPGBO and CertMinPBitF.

B.2.1 Generating GBO-Consistent Gap Boxes

Before proving these results, let’s deepen our understanding of the problem. Let φ be a
GBO and let R be a relation with φ-consistent dyadic box cover B. Suppose b1, b2 ∈ B
and b1 ∩ b2 6= ∅. If b1 6⊆ b2 and b2 6⊆ b1, then there are some bits i and j such that i 6= j,
b1(i) 6= ∗, b1(j) = ∗, b2(i) = ∗, and b2(j) 6= ∗. Since b1 and b2 are φ-consistent, both come
from R, and b1 specifies bit i but not j, we must have φ(i) ≤ φ(j). Similarly, we must
have φ(j) ≤ φ(i), a contradiction. Thus, we must have b1 ⊆ b2 or vice-versa, and so any
minimal φ-consistent dyadic box cover of R contains mutually disjoint boxes.

Consider the ordering π ∈ SR on the tuples in R obtained by sorting R lexicographically
according to the GBO φ. Let B be a φ-consistent dyadic box cover for R. For any b ∈ B,
there are two tuples t1, t2 ∈ R such that all the tuples covered by b lie lexicographically
between t1 and t2 in π. Conversely, for every two tuples t1, t2 ∈ R which are adjacent in
π, there must be a box b ∈ B which lies lexicographically between t1 and t2 if and only if
t1 and t2 are not direct neighbours in the lexicographical order of {0, 1}dn.

Furthermore, every gap between two such tuples t1, t2 ∈ R can be covered by Õ(1)
φ-consistent dyadic boxes. This follows from Proposition B.14 in [1]. Algorithm 9 presents
how this is done in pseudocode. It generates a φ-consistent dyadic box cover of R of
size Õ(Ng), where Ng is the number of tuples t in R for which the tuple t′ after t in π
does not come immediately after t in the lexicographical ordering of {0, 1}nd. Therefore,
if we can efficiently compute a GBO which minimizes Ng, we can efficiently approximate
BoxMinPGBO (and CertMinPGBO) in the single-relation case. The following section shows
exactly how we can do this.

76

Algorithm 9 Generate a φ-consistent box cover for R and GBO φ

1: GenGboBoxes(R, φ):
2: Sort R according to φ
3: B := ∅
4: for 0 ≤ i < |R| − 1 do
5: s := longest common prefix of R[i], R[i+ 1]
6: (a, b) := (R[i] = sa ∧R[i+ 1] = sb)
7: for 0 ≤ j < |a| do
8: if a[j] = 0 then
9: B := B ∪ {sa[0, . . . , j − 1]1}
10: end if
11: end for
12: for 0 ≤ j < |b| do
13: if b[j] = 1 then
14: B := B ∪ {sb[0, . . . , j − 1]0}
15: end if
16: end for
17: end for

B.2.2 Finding the Optimal GBO for a Single Relation

Let Q contain a single relation R, and let t1, t2 ∈ R. t1 and t2 are directly consecutive
according to a GBO φ if and only if there exists some integer i and binary string s such that
t1 = s01i and t2 = s10i. In this case, there must be exactly one bit i for which t1(i) = 0
and t2(i) = 1. In fact, this condition is sufficient to ensure that there exists a GBO such
that t1 directly precedes t2. If so, the bits of relation R are partitioned into three different
types: P1(t1, t2) = {j : t1(j) = t2(j)}, P2(t1, t2) = {j : t1(j) = 1 ∧ t2(j) = 0, and the single
bit i which satisfies t1(i) = 0∧ t2(i) = 1. t1 directly precedes t2 according to GBO φ if and
only if all the bits in P1(t1, t2) come before i in φ and all the bits in P2(t1, t2) come after i
in φ. These conditions form what we will call an ordering constraint.

Definition B.9 (Ordering constraint). An ordering constraint over a set of d bits is a
triple c = (P1, i, P2) where P1, P2 ⊆ [d], i ∈ [d], P1 ∪{i}∪P2 = [d], and P1, {i}, and P2 are
all disjoint. A GBO φ is said to satisfy c if all the bits in P1 come before i in φ and all the
bits in P2 come after i in φ.

For every pair of tuples t1, t2 ∈ R, we can quickly find the bit i and sets P1(t1, t2) and
P2(t1, t2) which define the ordering constraint C(t1, t2) on the GBO which must be satisfied

77

in order for t1 to directly precede t2 according to the GBO. Let C(R) be the set of ordering
constraints generated by all pairs of tuples in R. For each pair of tuples t1, t2 ∈ R, we
can determine the corresponding ordering constraint (if one exists) in O(d) = Õ(1) time.

Iterating over all pairs of tuples, we can compute C(R) in Õ(N2) time. If we can find a
GBO which satisfies the maximum number of constraints from C(R) in polynomial time,

then we can minimize Ng for R in polynomial time, giving us a polynomial-time Õ(1)
approximation algorithm for BoxMinPGBO in the single-relation case. The problem we
want to solve is defined as follows.

Definition B.10 (OrdConMaxP). The Ordering Constraint Maximization Problem
(OrdConMaxP) takes as input a set of unique ordering constraints C and for each c ∈ C
a corresponding positive integer weight wc and produces a GBO φ∗ such that∑

c∈C(φ∗)

wc = min
φ

∑
c∈C(φ)

wc

where C(φ) ⊆ C is the set of constraints satisfied by φ.

OrdConMaxP can be solved with a simple dynamic programming algorithm presented
in Algorithm 10. Theorem B.11 verifies that this algorithm is correct. As discussed above,
this immediately yields Corollary B.12.

Theorem B.11. Algorithm 10 solves OrdConMaxP in polynomial time.

Proof. First, some clarifications about what Algorithm 10 is doing. The input C is an array
of all the unique ordering constraints and W is an array of their corresponding weights.

The Flatten subroutine used on line 25 takes as input an array of sets and returns
a corresponding one-dimensional array by appending each of the member sets together, in
order. The array P defined on line 2 is an array of partial solutions corresponding to GBOs
such that Flatten(P [i]) is optimal if C[i] is the constraint satisfied with the largest value
of |C[i].P1|. P [i] is a partition of the d bits into any number of sets, which can be stored
as an array of sets. O[i] is the total weight of constraints guaranteed to be satisfied by
the partial solution P [i]. Note that each input constraint c alone admits a partial solution
[c.P1, {c.i}, c.P2] which is only guaranteed to satisfy c. The Combine subroutine used
on line 20 takes as input two partial solutions which can be simultaneously satisfied and
produces a partial solution which satisfies both. The condition of the if-statement on line
10 ensures that the two partial solutions passed to Combine can indeed be simultaneously
satisfied.

78

Algorithm 10 Compute a GBO which solves OrdConMaxP

1: OcmpDP(C,W):
2: P := array of partial solutions of length |C|
3: O := array of integers of length |C|
4: for i := 1 to dn do
5: for j := 1 to |C| − 1 do
6: if |C[j].P1| = i− 1 then
7: m := 0
8: u := false

9: for k := 1 to |C| − 1 do
10: if C[k].P1 ∪ C[k].i ⊆ C[j].P1 and O[k] > m then
11: m := O[k]
12: u := k
13: end if
14: end for
15: if u = false then
16: O[j] := W [j]
17: P [j] := C[j]
18: else
19: O[j] := W [j] +O[u]
20: P [j] := Combine(C[j], P [u])
21: end if
22: end if
23: end for
24: end for
25: return Flatten(P [argmaxiO[i]])

Now, let’s verify that Algorithm 10 produces the optimal solution. Let S ⊆ C be the
maximum weight set of constraints which can satisfied by a single GBO φ∗.

For a constraint C[i], let C[i](φ) be a predicate which is true if and only if φ satisfies
C[i]. For each 0 ≤ i < |C|, let φi be a GBO such that OPTi = W [i] +

∑
j∈Si

W [j] is
maximized, where Si = {j : |C[j].P1| < |C[i].P1| ∧ C[j](φi)}.

Let C[i] be an input constraint and let k = |C[i].P1|. If k = 0, then F [i] is the only
term of the sum in OPTi, and so P [i] indeed produces a partial solution which satisfies at
least OPTi constraints.

Suppose that k ≥ 1 and assume inductively that Algorithm 10 sets P [j] to a partial

79

solution which satisfies at least OPTi constraints for every j in Si. Note that OPTi =
W [i]+maxj∈Si

OPTj, because the constraint C[i] leaves us free to rearrange the first k bits
of φi to satisfy as many simultaneously satisfiable constraints as possible. By induction,
Algorithm 10 does this on line 20 when it calls Combine on the maximum weight partial
solution so far and the current constraint C[i]. Thus the inductive assumption holds for
all i.

On line 25, we return a GBO corresponding to the partial solution which satisfies
the maximum number of possible constraints over all i, which is an optimal solution to
OrdConMaxP.

Algorithm 10 runs in time O(dn|C|2) = Õ(|C|2), which is polynomial in |C|.

Corollary B.12. If Q contains only one relation, BoxMinPGBO on Q can be approximated
to an Õ(1)-factor in polynomial time.

Corollary B.12 also applies to CertMinPGBO, since the problems are equivalent in the
single-relation case. Furthermore, if this single relation has only one attribute, Corollary
B.12 applies to CertMinPBitF as well.

B.2.3 Finding an Optimal GBO for Multiple Relations

We would like to generalize these results to any BoxMinPGBO instance with more than one
relation. The general version is more complex because not every relation in the query is
defined over all attributes of the query. If A 6∈ attr(R), then the placement of the bits of
A in the GBO has no effect on the GBO-consistent box cover of R. We can capture this
difference by generalizing our definition of an ordering constraint to contain an extra set,
P3, that holds all the bits which the constraint is indifferent towards.

Definition B.13 (Generalized ordering constraint). A generalized ordering constraint
over d bits is a 4-tuple c = (P1, i, P2, P3) such that P1, P2, P3 ⊆ [d] and i ∈ [d] such that
the sets P1, {i}, P2, and P3 partition the set [d]. c is satisfied by φ if the bits in P1 occur
before bit i in φ and the bits of P2 occur after i in φ.

For these generalized constraints, we can define a maximization problem analogous to
OrdConMaxP.

Definition B.14 (GenOrdConMaxP). The Generalized Ordering Constraint Maxi-
mization Problem (GenOrdConMaxP) takes as input a collection of generalized ordering
constraints C and produces a GBO φ∗ which satisfies the maximum number of constraints
in C.

80

Unfortunately, this problem is NP-hard, as shown in Theorem B.15. This means it is
not a viable avenue to obtain an approximation algorithm for BoxMinPGBO.

Theorem B.15. GenOrdConMaxP is NP-hard.

Proof. We will prove this by a reduction from the maximum independent set problem. The
maximum independent set problem takes as input a graph G and returns an independent
set S ⊆ V (G) of maximum size. This problem is known to be NP-complete [23].

Let the graph G be an input graph to maximum independent set with n vertices. We
will define a set of n generalized ordering constraints over n+ 1 bits corresponding to this
graph, with each constraint corresponding to one vertex.

For each node v ∈ V (G), define one bit labelled Av. We will also define one additional
“separator” bit labelled M . Our set of n+ 1 bits is B = {Av : v ∈ V (G)}∪{M}. For each
node v, we will define a single constraint, cv = (AN(v),M, {Av}, B \ (AN(v) ∪ {M,Av})),
where AN(v) = {Au : (u, v) ∈ E(G)}.

Now, if G has an independent set S of size k, then the constraints in the set CS = {cv :
v ∈ S} can all be satisfied by the GBO φ which places all bits in AS = {Av : v ∈ S} last,
then M before them, and then the remaining bits first. Since there are no edges between
vertices in S, all the constraints in CS are satisfied by φ. Therefore, φ satisfies |CS| = k
constraints.

Conversely, suppose there exists a GBO φ which satisfies k of the constraints we have
defined. Let C be this set of k constraints, and let S = {v : cv ∈ C} ⊆ V (G). Suppose that
u, v ∈ S. Then, since φ satisfies cu and cv, both Au and Av must appear after M in φ. If
(u, v) ∈ E(G), then φ satisfying cu implies that Av appears before M in φ, a contradiction.
So (u, v) 6∈ E(G), and therefore S is an independent set in G of size k.

Theorem B.15 can be used to show that BoxMinPGBO is NP-hard, as shown by Corollary
B.16. However, this reduction only applies when the query shape is not fixed, because the
number of tuples created is only 2m, where m is the number of relations in the query.
When the query is fixed, and we consider m to be Õ(1), as we do for all of the analysis in

this thesis, we see that this reduction does not preclude the possibility of an Õ(poly(N))
algorithm for BoxMinPGBO.

Corollary B.16. BoxMinPGBO is NP-hard when the query shape is not fixed.

Proof. We can reduce GenOrdConMaxP to BoxMinPGBO by creating a single-bit attribute
Ab for each bit b which appears in any constraint, and a relation Rc for each constraint

81

c = (P1, i, P2, P3). Rc should be defined over the attributes corresponding to the bits
in P1 ∪ {i} ∪ P2, and should contain exactly two tuples which are made adjacent to one
another if and only if the constraint c is satisfied. Applying Theorem B.15, this means
CertMinPGBO is NP-hard.

82

Appendix C

Box Covers and Boolean Algebra

This appendix will discuss some connections between box cover problems and Boolean
algebra where the arithmetic operations are defined as follows.

0 + 0 = 0 0 · 0 = 0

0 + 1 = 1 0 · 1 = 0

1 + 0 = 1 1 · 0 = 0

1 + 1 = 1 1 · 1 = 1

The set of Boolean vectors under these arithmetic operations do not form a vector space,
so we cannot apply results from linear algebra to problems in Boolean algebra. However,
these operations do form a commutative semiring, which is a widely studied algebraic
construct. Furthermore, there is an abundance of literature specifically studying problems
in Boolean algebra. Boolean algebra provides more structure than a general semiring. A
book covering many concepts in Boolean matrix theory is [25]. A slightly more general
version of this theory is surveyed in [24]. Concepts from linear algebra have been extended
to commutative semirings in many works, including [40, 47].

There are many definitions and results for Boolean algebra which share useful properties
with their analogous linear algebra counterparts. In particular, we can define the Boolean
rank of a matrix as follows.

Definition C.1. The Boolean rank of an m×n Boolean matrix M is the minimum integer
r such that there exists an m× r matrix A and an r × n matrix B satisfying M = AB.

83

When studying the single-relation, 2-dimensional domain ordering problem in Sections
5.2 and 5.3, we considered the input to be an m × n Boolean matrix M , and we sought
a domain ordering that induced the minimum size box cover for all the 1-cells in M .
Under Boolean algebra, a box cover can serve to satisfy the definition of Boolean rank, as
demonstrated with the following small matrix.

0 1 1
1 1 1
1 1 0

 =

0 1 1
0 1 1
0 0 0

+

0 0 0
1 1 0
1 1 0

 =

1
1
0

 [0 1 1
]
+

0
1
1

 [1 1 0
]

=

1 0
1 1
0 1

[0 1 1
1 1 0

]

In this equation, the leftmost matrix has Boolean rank at most 2, a direct consequence
of the fact that it has a box cover of size 2. Lemma C.2 proves this is true in general.

Lemma C.2. If a Boolean matrix M has a box cover of size k, then the Boolean rank of
M is at most k.

Proof. Let b1, . . . , bk be a set of k rectangles which cover the 1-cells of M . For each bi, let ri
and ci be the indicator vectors for the set of rows and columns spanned by bi, respectively.
Then it is easy to see thatM =

∑k
i=1 ric

T
i . Let R = [r1, · · · , rk] and C = [c1, · · · , ck]. Under

Boolean algebra, we can rewrite the aforementioned sum as M =
∑k

i=1 ric
T
i = RCT , so M

has Boolean rank at most k.

Unfortunately, the converse of Lemma C.2 is not true. However, if we change our notion
of a “box” from a contiguous rectangle to a generalized rectangle defined by arbitrary
subsets of the rows and columns of M , then the converse is true. Finding a minimum size
Boolean basis for a matrix is equivalent to finding a minimum size generalized box cover
for the matrix.

This observation was made by Lubiw [32], where she notes that a generalized box cover
for the swath matrix of M is equivalent to a (contiguous) box cover of the original matrix
M . We will not define the swath matrix here, but it is a Boolean matrix of polynomial size
with respect to M . A class of swath matrices for which minimizing the generalized box
cover is tractable is given in [32]. This yields a class of Boolean matrices for which finding
the minimal box cover is tractable when the order of the rows and columns is fixed. When
we reorder the rows and columns of M , the swath matrix of M changes. Examining how
the swath matrix changes when the original matrix is permuted is an interesting direction
for future research.

84

	List of Tables
	List of Figures
	Abbreviations
	List of Symbols
	Introduction
	Preliminaries and Research Questions
	Query Graphs and Notions of Width
	Gap Boxes, Box Covers, and Box Certificates
	Tetris
	Research Questions

	Related Work
	Box Cover Problems
	2 Dimensions
	3 or More Dimensions

	Join Algorithms
	Worst-Case Optimal Join Algorithms
	Beyond Worst-Case Optimal Join Algorithms

	Generating a Box Cover
	Domain Ordering Problems
	A Poorly Ordered Query
	Reordering One Attribute in a 2D Relation
	BoxMinPColF is NP-hard
	Approximating BoxMinPColF

	Reordering Both Attributes in a 2D Relation
	Reordering All Attributes in an n-ary Relation
	Dividing Relations into Hyperplanes
	Approximating BoxMinPDomF on a Single Relation

	Minimizing the Box Cover for Multiple Relations
	BoxMinPDomF and Join Processing

	Minimizing the Box Certificate for Multiple Relations

	Conclusions
	References
	APPENDICES
	Tetris Subsumes Generic Join
	Finding an Optimal Bit Ordering
	Finding an Optimal Bit Ordering
	Minimizing the GBO-Consistent Box Cover
	Generating GBO-Consistent Gap Boxes
	Finding the Optimal GBO for a Single Relation
	Finding an Optimal GBO for Multiple Relations

	Box Covers and Boolean Algebra

