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Abstract

Adjacency lists are the most fundamental storage structure in existing graph database
management systems (GDBMSs) to index input graphs. Adjacency lists are universally
linked-list like per-vertex structures that allow access to a set of edges that are all adjacent
to a vertex. In several systems, adjacency lists can also allow efficient access to subsets
of a vertex’s adjacent edges that satisfy a fixed set of predicates, such as those that have
the same label, and support a fixed set of ordering criteria, such as sorting by the ID
of destination vertices of the edges. This thesis describes a highly-flexible indexing sub-
system for GDBMSs, which consists of two components. The primary component called A+
indexes store adjacency lists, which compared to existing adjacency lists, provide flexibility
to users in three aspects: (1) in addition to per-vertex adjacency lists, users can define per-
edge adjacency lists; (2) users can define adjacency lists for sets of edges that satisfy a wide
range of predicates; and (3) provide flexible sorting criteria. Indexes in existing GDBMS,
such as adjacency list, B+ tree, or hash indexes, index as elements the vertices or edges
in the input graph. The second component of our indexing sub-system is secondary B+
tree and bitmap indexes that index aggregate properties of adjacency lists in A+ indexes.
Therefore, our secondary indexes effectively index adjacency lists as elements. We have
implemented our indexing sub-system on top of the Graphflow GDBMS. We describe our
indexes, the modifications we had to do to Graphflow’s optimizer, and our implementation.
We provide extensive experiments demonstrating both the flexibility and efficiency of our
indexes on a large suite of queries from several application domains.
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Chapter 1

Introduction

The term graph database management system (GDBMS) in its contemporary usage refers
to data management software such as Neo4j [34], JanusGraph [25], Tigergraph [43], and
Graphflow [26, 33] that adopt the property graph data model [36]. In this model, ap-
plication data is represented as a set of nodes, which primarily represent the entities in
the application, and directed edges, which represent the connections among pairs of enti-
ties. Each node and edge has a unique ID and an arbitrary number of key value properties.
GDBMSs have lately gained popularity among a very wide range of applications from fraud
detection and risk assessment in financial sector to recommendations in e-commerce and
social networks [40]. One reason GDBMSs appeal to users is that GDBMSs are broadly
optimized to perform fast traversal-like operations on graphs, which leads to efficient query
evaluation. This is done primarily, and universally, by indexing the edges in an input graph
in some variant of an adjacency list structure [9]. These lists store sets of edges that are:
(i) maintained and accessible (only) per vertex; (ii) pre-satisfy some predicates; and (iii)
can be sorted according to some property of the edges. Different systems have different
but fixed design decisions for the predicates and either fixed or a limited sorting criteria of
the lists, optimizing each system to be efficient on a different but restricted set of queries.
In this thesis, we describe a highly flexible adjacency list indexing sub-system that consists
of two components. The primary component of our indexing sub-system consists of A+
indexes that are adjacency list indexes that can: (i) be maintained and accessible both
per vertex and per edge; (ii) store edges that pre-satisfy a wide range of properties; and
(iii) be sorted according to a wide range of criterion. A+ indexes allow users to optimize
a GDBMS to be efficient for a much wider range of queries than existing GDBMSs. The
second component of our indexing sub-system consists of secondary B+ tree and bitmap
indexes that index aggregate properties of the adjacency lists on A+ indexes. We have
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Customer
type: Enum
balance: Int
creation: DateTime

Account
name: String
gender: Enum
customerSince: Int

friends
owns

transaction
type: Enum
amount: Int
date: DateTime

transfer

since: Int
currency: Enum 
amount: Int
date: DateTime

relative

Figure 1.1: Financial Property Graph Schema

implemented our indexing sub-system on top of the Graphflow GDBMS [26].

In the rest of this introductory section, we first discuss the strengths and limitations of
existing adjacency lists in GDBMSs in Section 1.1 and then give an overview of how A+
indexes address their limitations in Section 1.2. In Section 1.3, we describe our secondary
indexes and finally in Section 1.4 give an outline of the thesis. Figure 1.1 shows the schema
of the property graph that we use as our running example. The graph represents bank
accounts and customers and the relationships between these entities. We assume vertices
and edges have IDs stored, respectively, in vID and eID properties, and each edge also
has srcID and dstID properties indicating, respectively, the vertex IDs of its source and
destination. We note that in many GDBMSs, such as Neo4j, Graphflow, or JanusGraph,
the label property of the edges, and the label property of the vertices are treated as a
special property that the system and its query language treat as first-class citizens1. We
use the openCypher [38] query language of Neo4j in our running examples.

1.1 Overview of Adjacency Lists in Existing Systems

Existing GDBMSs, as well as many other graph processing software [32, 41], index their
input graphs in adjacency lists that are associated with vertices. That is, given the ID of
a vertex v, there is a fast access path to the edges adjacent to v. Often systems maintain
two lists for each v, a forward and a backward adjacency list, which are linked list-like data
structures that store the set of edges that are, respectively, outgoing from or incoming to
v. Adjacency lists are accessed by database operators primarily when matching different

1Some systems refer to edge or vertex label as type as well. We uniformly refer to
them as label properties.
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query edges in a query Q (specificallly, the subgraph pattern of Q). GDBMSs evaluate a
query Q in one or more steps, where in each step an operator takes a partial match t of
Q and accesses the edges adjacent to one or more of the vertices in t and extends t to a
larger partial match of Q. For example, in Neo4j this operation is done by the Expand
operator, in Graphflow by the Extend/Intersect (E/I) operator.

Example 1.1.1 Consider the following query that returns all 2-paths starting with a node
representing a customer Alice:

MATCH (a1)−[z1]−>(a2)−[z2]−>(a3) WHERE a1.name = ‘Alice’

Above, ai and and zj are variable names given to, respectively, the query vertices and query
edges. In every GDBMS we are aware of, this query is evaluated in three steps: (1) scan
the nodes and find a node, say with vID 1 (v1), with name Alice and match this to variable
a1; (2) use v1 to access Alice’s forward adjacency list (or lists) and extend a1 to a1→a2

edges; and (3) use the matched a2’s vIDs to access their forward adjacency lists and extend
a1→a2’s to a1→a2→a3 paths.

Since the adjacency lists of existing GDBMSs are associated with vertices, a common
predicate satisfied by the edges in an adjacency list is that they have the same srcID,
for forward lists, or same dstID, for backward lists. Several systems go beyond this basic
predicate by partitioning the adjacency lists into more refined lists that pre-satisfy other
predicates. Neo4j, JanusGraph, and the previous version of Graphflow described in ref-
erence [33], partition the edges according to the special label property. Conceptually,
for each vertex v and label l, the predicate these refined lists pre-satisfy is that for each
e, e.label=l. This allows efficient processing of subgraph queries when query edges are
restricted to specific labels:

Example 1.1.2 Consider the following query that returns all transfers made from the
accounts owned by Alice:

MATCH (a1)−[z1:OWNS]−>(a2)−[z2:TRANSFER]−>(a3) WHERE a1.name = ‘Alice’

The “z1:OWNS”’ is syntactic sugar in Cypher for the z1.label=OWNS predicate. A system
with the refined adjacency lists described above can have an efficient plan for this query by
finding the Alice node as before and directly accessing all of Alice’s OWNS edges to detect the

3



account nodes owned by Alice, and finally directly accessing the TRANSFER edges of these
accounts, where the OWNS and TRANSFER edges are accessible and maintained as separate
lists. The advantage gained by the refined adjacency lists is that the query plan does not
have to run the label=OWNS/TRANSFER predicate on any edge, as the system ensures that
these predicates are pre-satisfied by the edges in the accessed adjacency lists.

Several prototype graph algorithm implementations in literature use slightly more refined
adjacency lists, e.g. where edges have the same edge labels as well as the same destination
vertex label [7]. We are unaware of more refined adjacency lists in existing systems.

Although the adjacency list designs of existing system allow efficient processing of some
queries, they are also restrictive in the following aspects.

Restriction 1: Limited Predicates

The design decisions about what the predicates that edges in adjacency lists pre-satisfy is
system-specific and fixed. The lists of existing systems will not be highly optimized beyond
queries that access edges with the same edge label and possibly by vertex label, as the next
example demonstrates:

Example 1.1.3 Consider querying the transactions from Alice’s accounts made in US
dollars currency:

MATCH (a1)−[z1:OWNS]−>(a2)−[z2]−>(a3)
WHERE a1.name = ‘Alice’ AND z2.currency=USD

Here the query plans of existing systems will read all TRANSFER edges from the accounts
owned by Alice and, for each edge, read its currency and verify whether or not it is USD.

If queries accessing transactions in USD are important and frequent for an application,
maintaining a direct access to those edges would be beneficial. Similarly one can consider
applications benefiting from direct access to edges that satisfy numerous other predicates
both on: (i) edge properties, e.g., transfers with amount>1000 USD; as well as (ii) proper-
ties on the destination nodes of the edges, e..g, transfers made to accounts with balance>
5000.
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Restriction 2: Per-vertex Adjacency List Limitation

In some queries, extending the notion of adjacency from vertices to edges may be beneficial.

Example 1.1.4 Consider the following query, which is the core of a very important and
popular class of queries in financial fraud detection2.

MATCH (a1)−[z1:TRANSFER]−>(a2)−[z2:TRANSFER]−>(a3)−[z2:TRANSFER]−>(a4)
WHERE z1.eID=17 AND z2.amount < z1.amount AND z3.amount < z2.amount
AND z2.date > z1.date AND z3.date > z2.date

The query is looking for a three-step money flow path from a particular TRANSFER edge
with eID 17 (call e17) with the constraint that every additional transfer happens at a later
date, and for a smaller amount. In this query the predicates compare properties of an edge
on a path with the previous edge on the same path. Suppose a system has scanned and
matched the first query edge z1 to e17, which is say an edge from vertex v2 to v3. Then
existing systems have to read all of the TRANSFER edges from v3 and filter those that have
later date values than e17 and also have the appropriate amount values.

Instead, when the next query edge to match z2 has predicates depending on the query
edge z1, these queries can be much faster evaluated if adjacency lists can be associated
with edges: a system can directly access the forward adjacency list of e17, i.e., a list of
edges whose srcID is the same as e17’s dstID, pre-satisfying the predicates required by
the query and perform the extension.

Restriction 3: Limited Edge Sorting Criteria

Finally, some systems also maintain the adjacency lists in sorted order according to some
criterion. For example, JanusGraph allows users to build local indices over the adjacency
lists that sort the edges using an edge property, say date. Let nbrID refer to the srcID

or dstID of edges in an adjacency lists that stores, respectively, the incoming or outgoing
neighbors of a node. The previous version of Graphflow sorts the edges according to the
nbrID of the edges. There are two well known benefits of sorting the edges: (1) sorting
on a property allows quick search within an adjacency list, say to find all TRANSFER edges
that were on a particular day; and (2) sorting allows fast intersections of adjacency lists on

2Private communication with two graph software providers to two banks.
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the sorted property to perform matching of multiple query edges at the same time. Most
notably, this has been demonstrated by several references [2, 5, 26, 33] studying the new
worst-case optimal join algorithms for evaluating cyclic subgraph queries:

Example 1.1.5 Consider the following query that finds all friendship triangles of Alice:

MATCH (a2)<−[z1:FRIENDS]−(a1)−[z2:FRIENDS]−>(a3), (a2)−[z3:FRIENDS]−>(a3)
WHERE a1.name = ‘Alice’

In the Graphflow system, where adjacency lists are sorted by nbrID, this query is evaluated
by a plan that scans each FRIENDS edge Alice→a2 and intersects Alice and a2’s FRIENDS

adjacency lists, which are already sorted by the nbrID values, to match the c vertices.

The benefits of this sorted-order become more prevalent when detecting larger cliques,
say cliques of 4 or 5 friends, as the system can do 3- or 4-way intersections to match 3 or
4 query edges directly. The ordering criterion in existing systems however are either fixed
or limited to values on the properties of the edges, limiting the set of queries, for which
efficient query plans using pre-sorted lists can be generated.

Example 1.1.6 Consider the following query:

MATCH (a2)<−[z1:RELATIVE]−(a1)−[z2:FRIENDS]−>(a3)
WHERE a1.name = ‘Alice’ AND a2.customerSince = a3.customerSince

If adjacency lists could be sorted by customerSince, a plan can directly intersect the
FRIENDS and RELATIVE adjacency lists of Alice to find those friends and relatives with
the same value of the customerSince property.

1.2 A+ Indexes

A+ indexes allow users to optimize a GDBMS to be efficient for a much wider range of
queries than existing GDBMSs. Specifically, A+ indexes give users more flexibility in
three dimensions to address the three limitations of existing adjacency lists we overviewed
above:
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1. Adjacency lists can be declared and maintained both per vertex and per edge. Concep-
tually, a per edge adjacency list is a set of edges that are all adjacent to a specific edge
e, either to the source or destination of e and in their forward or backward directions,
and is quickly accessible given the eID of an edge. Along with the predicate mechanism
we describe momentarily, this allows users to define fast access paths to sets of edges
that pre-satisfy predicates that depend on another adjacent edge in query, allowing the
system to generate highly efficient plans for the queries similar to Example 1.1.4.

2. Unlike existing systems, users can put custom predicates for the edges in their adjacency
lists to satisfy. For per-vertex lists , we extend the fixed predicates of existing systems,
which only depend on the properties of the edges, to also depend on the properties of
the neighbor nodes. Users can use comparisons other than equality and any number of
conjunctions in their predicates. For edge properties, the properties can also depend on
the properties of the edge for which the adjacency lists is defined. For example, these
flexible predicates allow users to declare fast access paths for queries in Examples 1.1.3
and 1.1.4.

3. Finally, users can choose to maintain their adjacency lists sorted according to any
property of the edges or the neighbor node’s properties. This allows generating several
very efficient plans that use worst-case optimal join-style multi-way intersections for
not only cyclic but also acyclic queries, as in Example 1.1.6.

In relational terms, one can think of the graph-structured data GDBMSs store as
consisting of a Vertex(vID, label, prop1, prop2, ...) and an Edge(eID, srcID,

dstID, label, prop1, prop2, ...) table. Existing adjacency lists can effectively be
thought of as partitioned materialized views over queries on these tables that are (1) are
partitioned by the srcID or dstID columns; (2) satisfy some predicates; and (3) are sorted
by some criterion. Our A+ indexes effectively generalize the types of view queries that
adjacency lists can be constructed from and how they are partitioned. We make these
connections more concrete in later chapters of these thesis.

1.3 Secondary Indices For Indexing Adjacency Lists

Adjacency lists are primarily used to speed up the database operators such as Neo4j’s
Expand and Graphflow’s E/I operators. To speed up Scan operators, say to match edges
from the entire graph that satisfy a particular predicate, traditionally database systems
use B+ tree indices to index vertices and edges. In the case of edges, a B+ tree index
allows detecting, for example, all TRANSFER edges in the entire graph on a particular date
or with a range of dates. However, often the number of edges in graphs are a lot larger
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than the vertices, so the size of a B+ tree index on the edges can be very large. For
example, a public Twitter who-follows-whom graph contains 35x more edges than vertices
(1.46B vs 41.6M). Since adjacency lists are first-class citizens in any GDBMS, GDBMSs
have the possibility to index aggregate properties on their adjacency lists. In our indexing
sub-system, in addition to all vertices and edges, each adjacency list in an A+ index is
treated as a unit of data that has an ID, aID, and is indexible. We support two secondary
indices to index these adjacency lists:

• Min/Max B+ trees on numeric properties: Users can create B+ tree indexes that
index the minimum or maximum of numeric properties of the edges in adjacency lists.
For example, if the maximum amount of the TRANSFER edges in an adjancency list is
indexed and a query plan is scanning for TRANSFER edges with more than 1000 USD, it
can find and detect all adjacency lists whose maximum is more than 1000, avoiding the
scan of many adjacency lists that are guaranteed to not contain any matching edges.
Compared to regular B+ tree indices on all edges, these aggregate B+ trees are smaller
in size but less selective as well, allowing users to tradeoff speed with index size.

• Bitmaps on categorical properties: Users can create bitmap indexes on a categori-
cal property of edges in an adjacency list, allowing the system to quickly grab lists that
contain edges with a particular value of that property. For example, users can generate
a bit map index on the currency property, and a Scan operator can quickly detect
and scan all adjacency lists that contain at least one TRANSFER in USD currency.

1.4 Thesis Outline

The outline of this thesis is as follows:

• Chapter 2 introduces A+ indexes and our secondary indices users can declare around
A+ indexes. We also make the connection between A+ indexes and materialized views
in relational databases.

• Chapter 3 describes the Graphflow systems’ query plans that use our indices, how the
optimizer generates these plans, and the changes we had to make to systems’ operators.

• Chapter 4 describes the implementation of our indexing sub-system.

• Chapter 5 presents extensive experiments demonstrating the benefits users can get from
using A+ indexes and our secondary indexes.

• Finally, Chapters 6 and 7 review related and future work, respectively.
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Chapter 2

A+ Indexes

In this chapter, we describe A+ indexes and with ample examples demonstrate their flex-
ibility. Section 2.1 describes a running example which we use throughout this chapter.
Sections 2.2 and 2.3 describe per-vertex and per-edge A+ indexes and present several ex-
amples. In Section 2.4, we make a connection between our per-vertex and per-edge A+
indexes and materialized views and query-rewriting using materialized views in relational
database management systems. Section 2.5 describes a common scenario where applica-
tions define multiple A+ indexes, one for each value of an edge or a vertex property. Section
2.6 describes our secondary indexes which can be created over the adjacency lists in an
A+ index.

2.1 Running Example

Fig 2.1 shows an example instance of the financial property graph previously described
in Fig 1.1. The dotted vertices represent Customers. Three of the Customer vertices are
highlighted for emphasis and their name property values are shown on the vertices. There
are 14 other Customer vertices, which represent the friends and relatives of the three
highlighted Customer vertices. These are drawn as small circles and their customerSince
properties are shown on them. The friends and relative edges, having labels of the
form fi and ri respectively, are represented by arrows between Customer vertices.

Solid vertices represent Account vertices. The three highlighted Customer vertices have
owns edges to the Account vertices. Account vertices have their type property shown on
them. The type property can be CHQ, representing a chequing account, or SAV, representing
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Figure 2.1: Financial Property Graph Example

a savings account. Each edge of type transfer, labeled ti, is represented by an arrow
between the Account vertices and has a date attribute which is omitted from the figure.
Instead, we give each transfer edge an ID such that ti.date < tj.date if and only if i < j.
For demonstrative purposes we will only use < comparisons on the date properties of
transfer edges in the queries in our examples. The amount property of each transfer

edge is shown in parenthesis next to its ID. $, C$, and e denote each transfer edge’s
currency as USD, CAD and Euros, respectively.
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v5 → [t2, t6, t1, t5]
v6 → [t11, t9, t10]
v8 → [t17, t15, t20]

(a) CHQ to SAV Transfers

v1 → [f1, f4, f6]
v2 → [f2, f3, f8, f9, f10]
v3 → [f4, f5]

(b) Friends

v1 → [r1, r2]
v2 → [r3]
v3 → [r4]

(c) Relatives

Figure 2.2: Per-vertex A+ index examples. Each adjacency list stores, both, the edge IDs
and the corresponding neighbor vertex IDs. For simplicity, we omit vertex IDs in these
examples. We also ignore empty adjacency lists.

2.2 Per-Vertex A+ Indexes

Formally, a per-vertex A+ index is a triple of one of the following forms:

1. (vb−[eadj]→vnbr, P, Φ)

2. (vb←[eadj]−vnbr, P, Φ)

Above (i) vb represents the vertices that the adjacency lists will be bound to; (ii) eadj
represents the edges that will be indexed in the adjacency lists; and (iii) vnbr represents
the neighbors of vb along those edges. P is a set of arbitrary conjunctive predicates con-
taining literals and comparisons on properties of vb, vnbr and eadj. Finally, Φ is a property
of either eadj or vnbr on which the adjacency lists are sorted.

Example 2.2.1 Consider the following A+ index creation query, written in a syntax we
added to Cypher, and corresponding formally to the index: (vb−[eadj]→vnbr, {vb.type =
‘SAV’ AND vnbr.type = ‘CHQ’}, ∅).

CREATE A+ LIST INDEX (v1:Account)−[e:transfer]→(v2:Account)
WHERE v1.type = ’SAV’ AND v2.type = ’CHQ’

This query creates a per-vertex A+ index that, for each SAV account vertex, stores the
outgoing transfer edges to CHQ accounts. Figure 2.2a shows the actual adjacency lists this
query would generate on our running example. Note that the vnbr.type = ‘CHQ’ predicate
allows us to index edges adjacent to vertices based on a property of the neighbor vertices.
This is a feature that does not exist in the adjacency list indexes of existing GDBMSs. This
index allows an efficient access path for queries that contain paths traversing SAV account
to CHQ account edges.

11



Example 2.2.2 Consider now the following two A+ index creation queries.

CREATE A+ LIST INDEX (v1:Customer)−[e:friend]→(v2:Customer)
SORT BY v2.customerSince

CREATE A+ LIST INDEX (v1:Customer)−[e:relative]→(v2:Customer)
SORT BY v2.customerSince

These queries create two per-vertex A+ indexes that, for each customer vertex, store the
outgoing friends and relative edges, respectively. Figures 2.2b and 2.2c show the adjacency
lists generated by these queries on our running example. These adjacency lists are sorted by
the customerSince property of vnbr, which is yet another feature lacking in adjacency list
indexes of existing GDBMSs. For queries with equality predicates on this property, these
two indexes allow plans to do quick adjacency list intersections. Recall the query from
Example 1.1.6, that asked for friends and relatives of Alice that have been customers since
the same year. For this query, in the absence of these indexes, a query plan would first
match the ‘Alice’ vertex. It would then expand the match to Alice’s friends and relatives
before it can evaluate the given equality predicate. If the above indexes are present, another
query plan for this query can match the Alice vertex as before, then grab its friends and
relative adjacency lists from the indexes and simply intersect them to get the results, which
as we will demonstrate in our evaluations, is a more efficient plan.

One important property of per-vertex A+ indexes is that each edge e(src, dst) in the
input graph can appear at most once in a per-vertex A+ index. This is because e either
does not satisfy the predicates P, in which case it will not appear in the A+ index, or
e satisfies P and depending on whether the index is bound to src or dst, will appear in
only one adjacency list. As we will discuss in Chapter 3, this is why we are able to use
per-vertex A+ indexes in scan operations that scan the edges of a graph, possibly with
some predicates, as the first operation in plans. In contrast, we will not be able to use
per-edge A+ indexes in scan operations.

2.3 Per-Edge A+ Indexes

Formally, a per-edge A+ index is a triple of one of the following forms:

1. (v1−[eb]→v2−[eadj]→v3, P, Φ)
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2. (v1−[eb]→v2←[eadj]−v3, P, Φ)

3. (v3−[eadj]→v1−[eb]→v2, P, Φ)

4. (v3←[eadj]−v1−[eb]→v2, P, Φ)

Above (i) eb represents the edges that the adjacency lists will be bound to and (ii) eadj
represents the edges that will be indexed in the adjacency lists. P is a set of arbitrary
conjunctive predicates containing literals and comparisons on properties of v1, v2, v3, eb or
eadj, with the restriction that there is at least one predicate between one of v1 or eb and one
of eadj or v3, i.e., between eb and eadj, eb and v3, v1 and eadj, or v1 and v3. We will discuss
this restriction momentarily after we give an example of a per-edge A+ index. Finally, Φ
is a property of either eadj or v3 on which the adjacency lists are sorted.

Example 2.3.1 Consider the following A+ index creation command which formally cor-
responds to the index (v1−[eb]→v2−[eadj]→v3, {eb.date < eadj.date AND eadj.amount <
eb.amount}, ∅).

CREATE A+ LIST INDEX
(v1:Account)−[eb:transfer]→(v2:Account)−[eadj:transfer]→(v3:Account)
WHERE eb.date < eadj.date AND eadj.amount < eb.amount

This query creates a per-edge A+ index that, for each transfer edge, stores the outgoing
edges from its destination vertex which represent later and smaller transfers, that is edges
with a higher value of the date property but a lower value of the amount property. Figure
2.3 shows the actual adjacency lists this query would generate on our running example.
This query allows us to index edges based on a property of an adjacent edge which, again,
is a feature that does not exist in the adjacency list indexes of existing GDBMSs. This
index would be highly useful for queries containing both of the predicates it pre-satisfies. If
we take the financial fraud detection query discussed in Example 1.1.4 and execute it on our
example graph in the absence of this index, a plan would need to evaluate both the predicates
on all 2-edge transfer paths. In our example, even if all transfer edges are directly accessible
using a per-vertex A+ index of the form (v1:Account)−[e1:transfer]→(v2:Account), the
number of these 2-edge paths is 53. On the other hand, using the per-edge A+ index from
this example allows a plan to directly access the 10 2-edge paths which satisfy the given
predicates.
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t3 → [t5, t6, t14, t19]
t7 → [t11, t12]
t8 → [t11, t12]
t16 → [t17, t18]

Figure 2.3: Per-edge A+ index. As before, each adjacency list stores, both, the edge IDs
and the corresponding neighbor vertex IDs. For simplicity, we omit the vertex IDs and
also ignore empty adjacency lists.

Observe in the above example that unlike per-vertex A+ indexes, an edge e in the
graph can appear in multiple adjacency lists in the index. For example, in Figure 2.3,
the edges t11 and t12 appear both in the adjacency list for edge t7 as well as t8. We
emphasize two consequences of this. First, because edges may be duplicated in a per-edge
A+ index, we do not use them in scan operations, as we might scan and output the same
edge twice, leading to incorrect outputs. Second, recall the restriction for per-edge A+
indexes that at least one of the predicates in P has to be between one of v1 or eb and one of
eadj or v3 variables. We impose this restriction because if all the predicates are localized to a
single query edge v1−[eb]→v2 or v2−[eadj]→v3 in the definition, then we would redundantly
generate duplicate adjacency lists, and defining instead per-vertex A+ indexes would avoid
this redundancy. We give an example.

Example 2.3.2 Consider the following per-edge A+ index definition:

CREATE A+ LIST INDEX
(v1:Account)−[eb:transfer]→(v2:Account)−[eadj:transfer]→(v3:Account)
WHERE eadj.amount < $100

Now consider the checking account v7 in the input graph of our running example in Fig-
ure 2.1. For each of the four incoming edges of v7, t5, t6, t15, and t17, this per-edge
A+ index would contain the same adjacency list that consists of all outgoing edges of v7:
{t7,t8,t13}, because the predicate is localized only to a single edge. Instead, a user can
define a per-vertex A+ index with the same predicate and bound it to v7 and achieve the
same access path to the edges {t7,t8,t13}.
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2.4 Connection to Materialized Views

In relational terms, per-vertex and per-edge A+ indexes can be understood as partitioned
materialized views as follows. There are multiple ways to represent a property graph as a set
of relational tables. For our purposes, let us represent the vertices and edges in the input
graph in two tables: a Vertex(vID, label, prop1, prop2, ...) and an Edge(eID,

srcID, dstID, label, prop1, prop2, ...) table, where the prop1, prop2, etc. are
the columns representing the different properties that appear on the vertices and edges of
the graph. Then the edges stored in a per vertex A+ index, say (vb−[eadj]→vnbr, P, Φ),
can conceptually be seen as a materialized view of the following SQL query:

SELECT vb.vID, eadj .eID, eadj .dstID
FROM Vertex vb, Edge eadj , Vertex vnbr
WHERE vb.vID = eadj .srcID & eadj .dstID = vnbr.vID & P

The (vb←[eadj]-vnbr, P, Φ) per-vertex A+ index definition would be similar with vb and
vnbr swapped in the WHERE clause. The bounding of A+ index to vb effectively can be
thought of as partitioning the result of this view by the vb.vID and the ordering by Φ
thought of as ordering these partitions by some property of eadj or vnbr (equivalently we
could rewrite the view with an ORDER BY clause that first sorts by vb.vID and then by
Φ).

Similarly, the edges stored in a per-edge A+ index, say (v1−[eb]→v2−[eadj]→v3, P, Φ),
can conceptually be seen as a materialized view of the following SQL query:

SELECT eb.eID, eadj .eID, eadj .dstID,
FROM Vertex v1, Edge eb, Vertex v2, Edge eadj , Vertex v2
WHERE v1.vID = eb.srcID & eb.dstID = v2.vID = eadj .srcID & eadj .dstID = v3.vID & P

The bounding to eb can be thought of as partitioning the result of this view by the
eb.eID and the ordering by Φ thought of as ordering these partitions by some property
of eadj or v3. Existing systems support adjacency lists that only fall under the first type
of materialized views and that only support a fixed set of predicates P and the ordering
criteria φ. The flexibility of our A+ indexes is its ability to support two types of views
and the arbitrary predicates and ordering users can use in defining these views.
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Finally, as we will discuss in Chapter 3, our use of these A+ indexes in query optimiza-
tion can be thought of as query rewriting using materialized views. Although our work is
built on top of a native GDBMSs, we believe these connections can give insights into how
similar A+ indexes can be developed on non-native GDBMSs that are developed on top
of RDBMSs, such as Oracle’ GDBMSs [39].

2.5 Defining Multiple A+ Indexes

The adjacency lists in the previous version of Graphflow and Neo4j that we described in
Chapter 1 effectively give the system an efficient access path to each type of edge each
vertex has. This is an example of an important and common scenario where an application
may need a set of A+ indexes (per-vertex or per-edge), one for each value that a vertex or
edge property can take in an equality predicate, that differ only in that predicate. Instead
of defining these A+ indexes one by one, we have added syntactic sugar to our A+ index
definition queries, where the user can define a single A+ index and use the asterisk (*)
symbol in an equality predicate on a vertex or edge property to indicate that the system
should generate one A+ index for each possible value of that property. We give an example:

Example 2.5.1 Consider the Cypher command below.

CREATE A+ LIST INDEX (v1:Account)−[e:transfer]→(v2:Account)
WHERE v1.type = ∗ AND v2.type = ∗

This query effectively creates four A+ indexes for each combination of values that vb.type
and vnbr.type can take over [CHQ, SAV]. As we will discuss in Chapter 4, when there is
single asterisk in such definitions, our implementation adopts an efficient CSR-like physical
layout, which we refer to as partitioned A+ indexes, to store all of the expanded A+
indexes.

2.6 Secondary Indexes on A+ Indexes

Database systems treat certain units of data as indexable elements in their indices based
on properties of these elements. In RDBMSs, these indexible elements are tuples of tables.
For example a B+ tree index in an RDBMS can index tuples, identified by some tuple
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ID, based on a property of that tuple, allowing fast access for queries that have range or
equality predicates on the property. Similarly, existing GDBMSs treat vertices and edges
in graphs as indexable elements. For example, JanusGraph [25] supports hash map indexes
to index both vertices and edges on a property.

One problem with indexes over edges is that often the number of edges in real-world
graphs are very large, so these indexes can be quite large and require significant memory.
The organization of the edges in GDBMSs in adjacency lists allows a GDBMS to treat
adjaceny lists also as indexable elements, based on an aggregate property of the edges
stored in these adjacency lists. As we show in this section, this can allow GDBMSs to
support indexes over individual edges that are much smaller in size. As we will show
however that these secondary indexes will also be less selective than indexes directly over
individual edges. The purpose of these secondary indexes is primarily to avoid scanning
adjacency lists that do not store any edges satisfying a given predicate in the query.

We have implemented two types of secondary indexes that index aggregate properties
of adjacency lists. Each secondary index is over a per-vertex A+ index L in the system and
will index an aggregate property of each adjacency list in L. We do not support secondary
indexes over per-edge A+ indexes because, recall that, per-edge A+ indexes can store each
edge multiple times across different adjacency lists. Therefore, we cannot use them in scan
operators.

2.6.1 Min/Max B+ Tree Indexes Over Numeric Edge Properties

These indexes are used to index the minimum or the maximum value of a numeric edge
property over all the edges in an adjacency list, for every adjacency list in an A+ index.
Figures 2.4a and 2.4b respectively show a full B+ tree index and a min value B+ tree
index over the amount property of the transfer edges in the A+ index shown previously
in Figure 2.2a. To evaluate the predicate e.amount ≤ 5, a plan can use the full B+ tree
index to instantly access t11 in its scan operation. Another plan can use the smaller min
value B+ tree index to narrow down the search to vertex v6 by ignoring the vertices, whose
adjacency lists are guaranteed to contain only edges with amounts greater than 5. The
predicate then needs to be applied on only the three edges in the adjacency list of v6 and
the seven edges in the adjacency lists of v5 and v8 can be completely ignored. Hence,
for selective range and equality predicates, secondary min/max B+ tree indexes can bring
significant performance benefits while being smaller than full B+ tree indexes.
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(b) A min value B+ tree for every adjacency list in the A+ index.

Figure 2.4: B+ Tree index examples. Each B+ tree has a fanout of 2 and the pointers
between the leaf nodes are omitted from these examples.

2.6.2 BitMap Indexes over Categorical Edge Properties

A bitmap index is useful for indexing edge properties having a small domain of values. In
min/max B+ tree secondary indexes, the indexed aggregate property of an adjacency list li
is either mine∈li(e.property) or maxe∈li(e.property). In bitmap indexes, for each value, VAL,
in the domain of a property, the aggregate property of the adjacency lists that is indexed can
be thought of as the output of the following disjunctive query: ∨e∈li(e.property = V AL).
For queries with equality edge predicates, a scan operator can use a map index to discard
all adjacency lists which have no edges satisfying the predicate. As an example, Figure 2.1
shows a map index which exists for the currency edge property on the A+ index shown in
Figure 2.2a. If a query contains the edge predicate e.currency = ‘CAD’, a scan operator
will only access the adjacency list of v5, saving the cost of predicate evaluation on the six
edges present in the adjacency lists of v6 and v8. These map indexes can be extended to
disjunctive queries of arbitrary predicates on the edges. For example, a system can keep
a list of all adjacency lists of an A+ index, that have at least one edge whose amount >
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v5 v6 v8

CAD: 1 0 0
USD: 1 1 1
EURO: 0 1 1

Table 2.1: Categorical Property Secondary Index

1000.

Although it is not the focus of this thesis, we have also implemented B+ tree indexes
that index vertex and edge properties for the completeness of the secondary indexes com-
ponent of Graphflow.
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Chapter 3

Query Plans and DP Optimizer

This chapter describes, both the background on the Graphflow system and the modifica-
tions we had to make to the system for it to appropriately use our indexing subsystem.
Section 3.1 describes the system’s operators and for each operator, our modifications to it.
Section 3.2 describes the new plan space for queries and a modified plan cost estimation
technique that takes into account the usage of our new indexes. Section 3.3 describes the
system’s dynamic programming-based optimizer and our modifications to it.

3.1 Graphflow Operators

The version of the Graphflow system [33] on which we build this work supports only edge
and vertex labeled subgraph queries. In this work, we consider a wider range of queries that
can also contain predicates on the vertex and edge properties. So in this work, a query
Q(GQ, P ) consists of a labeled subgraph pattern GQ(VQ, EQ), and a set of conjunctive
predicates P on properties of the query vertices and edges in GQ. The previous version of
the system consisted of three operators: Scan, Extend/Intersect (E/I), and HashJoin.
We review the Scan and E/I operators and the modifications we made to them in this
section. The HashJoin operator was used to join two sub-queries, each consisting of at
least two edges. We removed the HashJoin operator for our study because we focus on
indexes in this study and the availability of the indexes does not affect the use of HashJoin
in query plans. HashJoin in reference [33] was primarily used to decompose a subgraph
query into multiple components. To support arbitrary predicates, some of which may not
already be pre-satisfied in A+ indexes available in the system, we also added a new Filter

operator that is capable of evaluating predicates on vertex and edge properties.
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We note that Graphflow’s query execution follows the Volcano model [18], where oper-
ators pass each other tuples that are outputs of a sub-query of Q, i.e., a query that consist
of a subset of the query vertices and edges in GQ and a subset of the predicates P . We
next give an overview of Graphflow’s operators and our modifications.

3.1.1 Scan

Graphflow contains two Scan operators:

ScanVertex

The ScanVertex operator matches a single query vertex from GQ and passes the ID of the
vertex to the next operator in the plan. Previously, this operator needed to loop over every
vertex in the graph. Our modifications allow the operator to now use a B+ tree index on a
vertex property to evaluate a predicate, if required, and only pass the IDs of the satisfying
vertices to the next operator.

ScanEdge

The ScanEdge operator matches a single query edge from GQ and passes the edge’s ID and
the IDs of its source and destination vertices to the next operator in the plan. Previously,
the operator did this by iterating over each edge in every default forward adjacency list in
the system. We have made the following modifications:

1. A+ index usage: The operator can now be configured to scan over the adjacency
lists in any A+ index in the system. If the query edge has predicates on it and an
A+ index A pre-satisfies all or a subset of these predicates (but no extra predicates),
a ScanEdge operator can use A. Furthermore, if the adjacency lists in the A+ index
are sorted on some edge or neighbor vertex property, say e.amount, an additional
predicate on the sort order property, say e.amount > 500 may be provided. To
evaluate the predicate, the operator does a binary search over each adjacency list
and scans only the edges satisfying the additional predicate.

2. Regular B+ tree index on edges usage: The operator can be configured with
an edge predicate, say e.amount > 500, and a regular B+ tree index that indexes
edges on the edge property in the predicate, say e.amount. Using the B+ tree index,
the operator directly accesses only those edges which satisfy the predicate.
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3. Secondary index usage: The operator can be configured with: (i) an A+ index
A; (ii) one of the secondary min/max B+ tree or bitmap indexes B on the given
A+ index; and (iii) a predicate. The operator uses the secondary index B and the
predicate to filter out any adjacency lists from the A+ index which are guaranteed
to not contain any satisfying edges, as described in Sections 2.6.1 and 2.6.2. For
example if B is max B+ tree index on amount property of edges and the predicate is
e.amount > 500, the operator avoids scanning the adjacency lists whose maximum
amount value is at most 500 and only scans the edges in the remaining adjacency
lists and applies the predicate to those edges.

3.1.2 Extend/Intersect (E/I)

a1 a2

a3

(a) Extend

a1 a2

a3

(b) Intersect

a1

a3a2

(c) Multi-extend

Figure 3.1: E/I Operations

The E/I operator in the previous version of Graphflow was used for extending a partial
match of a query Q by one query vertex. The operator took as input a tuple t of (k-
1)-matches, i.e., a match of a sub-query Qk−1 that consists of k − 1 query vertices, and
extended t to one or more k-matches. The E/I operator was configured with one or more
adjacency list descriptors (ALDs), one for each query edge connecting Qk−1 to the k’th
query vertex being extended to. Each ALD was a (i, dir, te) tuple, where i represents the
index of a vertex in t, dir was either forward or backwards and te was the label of the
edge the ALD represented. If a single ALD was provided, i.e., there is a single query edge
between Qk−1 and the k’th query vertex, a simple extend operation was done as shown
in Figure 3.1a. If multiple ALDs were provided, a fast multi-way intersection operation
was done as shown in Figure 3.1b. This required each adjacency list to be sorted by the
neighbor vertex IDs. We have made the following modifications:

1. A+ index usage: The E/I operator can now use any A+ index (per-vertex or
per-edge) in the system. Each ALD has an additional indexID field for the ID of the
A+ index to be used to match the edge the ALD represents. If the indexID is the ID
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of per-edge A+ index, then the i field in the ALD will refer to a matched edge in the
k − 1-match t. If there are multiple ALDs provided, then all of the specified adjacency
lists have to be sorted by the same property and the operator will intersect the specified
adjacency lists on that property. Unlike the previous version of Graphflow, the intersection
can now extend to either: (i) 1 new query vertex, so generate a k-match, which happens if
all of the given ALDs are sorted by neighbor vertex ID; or (ii) to multiple query vertices
at the same time, if the sort predicate is on a different property. For example, recall the
query in Example 1.1.6, where we searched for Alice’s friends and relative pair who have
the same customerSince values. Then after matching the Alice vertex, an E/I operator
can intersect the friends and relative adjacency lists that are sorted by customerSince

values and extend a single query vertex to three query vertices as in Figure 3.1c.

2. Predicate evaluation: If the operation is a simple extend, as shown in Figure
3.1a, and the adjacency lists in the A+ index being used are sorted by a property of the
edge or vertex the operator is matching, a predicate on the property can also be provided
along with the ALD. The predicate is evaluated by the operator using binary search and
the operator only extends to the matches satisfying the predicate.

3.1.3 Filter

The new Filter operator always follows one of the above matching operators and is
configured with a set of predicate on the properties of query vertices and edges which have
already been matched by the previous operators in the plan. The operator applies these
predicates in order of decreasing selectivity and passes on the satisfying tuples to the next
operator in the plan.

3.2 Plan Space and Cost Estimation

Our plan space consists of linear plans that start with Scans and consist of combinations
of E/I and Filter operators that match the entire query and evaluate the predicates.
Each E/I operator needs to correctly be configured, i.e., have the right ALDs, to extend a
sub-query by one or more query vertices, and the union of the E/I operators need to have
matched the entire labeled subgraph part of the query. The union of all sets of predicates
evaluated in all operators in a query plan is equal to P , which is the set of all predicates
given in the query. We next give an example, that we will also use in describing the costs
of plans.
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Example 3.2.1 Consider the following query:

MATCH (a2)<−[z1:RELATIVE]−(a1)−[z2:FRIENDS]−>(a3)
WHERE a1.name = ‘Alice’ AND a2.customerSince = a3.customerSince AND a3.gender = ‘Male’

This is a variant of the query to find friends and relatives of Alice that have been customers
since the same year, where we also require that the friends have their gender values be Male.
Figures 3.2a, 3.2b, and 3.2c show three example plans for this query that are in our plan
space.

3.2.1 Cost Metric

In our work, we did not change Graphflow’s default cost metric, which as we explain
and demonstrate is good enough to pick efficient plans in the presence of A+ indexes.
Graphflow’s cost metric is called intersection cost [33] (i-cost), which is defined as the
sum of the lengths of the adjacency lists that will be accessed by the E/I operators of a plan
(and some default values for the ScanVertex and ScanEdge operators, which we explain
momentarily). Formally, let Qi1, ..., Qim be the m sub-queries that a plan PA evaluates
during its execution, where the original query Q is Qim. These are the sub-queries that
are evaluated in the E/I operators. And let Ai1...Aim be the adjacency list descriptors of
the E/I operators. Then i-cost of PA is defined as:

∑
Qij∈Qi1...Qim

∑
t∈Qij

∑
(i,dir)∈Ai,j

|t[i].dir| (3.1)

Here, the second summation loops over each tuple in sub-query Qij, so essentially loops
as many times as the actual cardinality of Qij, so for each intermediate tuple t that the plan
generates throughout its computation, i-cost effectively is the sum of the lengths of the
adjacency lists that are accessed in extending t to its partial matches in Qi(j+1). This is the
formal definition of i-cost. Given this definition, the system estimates the cardinalities
of different sub-queries and the sizes of the adjacency lists that will be accessed by the E/I

operators. Given these estimates, we first describe the estimated cost of each operator and
then discuss in Section 3.2.2 how these costs are estimated.

• Cost of ScanVertex and ScanEdge are respectively, the estimated number of vertices
and edges that will be scanned by ScanVertex and ScanEdge.
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Filter : a2.cust since=a3.cust since

a1a2 a3

E/I (SortedRelatives Index)

Relative Friend

Filter : a3.gender=Male

a1 a3

Friend

E/I (SortedFriends Index)

a1

V ertex Scan

(a) Plan A.

Filter : a2.cust since=a3.cust since

a1a2 a3

E/I (SortedRelatives Index)

Relative Friend

a1 a3

Friend

E/I (MaleFriends Index)

a1

V ertex Scan

(b) Plan B.

Filter : a3.gender=Male

a1a2 a3

Multi− E/I (SortedFriends
& SortedRelatives Indexes)

Relative Friend

a1

V ertex Scan

(c) Plan C.

(Qk–1 A lk) |A| µ(Qk)

(1cust L1:1
Friend−−−−→; 2cust) |L1|:5 5

(1cust L1:1
Relative−−−−−→; 2cust) |L1|:3 3

(1cust
Friend−−−−→2cust L1:1

Relative−−−−−→; 3cust) |L1|:3 3

(...; ...; ...) ... ...

(1cust
Friend−−−−→2cust L1:1

Friend−−−−→, 3cust) |L1|:5 2

L2:2
Friend−−−−→; |L2|:5

(...; ...; ...) ... ...

(d) Subgraph Catalogue.

Figure 3.2: Example of three different plans evaluating the same query and a subgraph
catalogue.

• Cost of E/I operator o is given by the following formula. Suppose that o takes as
input partial matches of sub-query Qij and extends it by one or more query vertices
to Qi(j+1) accessing one more adjacency lists coming from A+ indexes I : A1, ..., Ak.
Suppose that the edges in A+ index At pre-satisfy zero or more predicates Pt that
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are not vertex or edge labels. Then the formula we use to estimate the cost of o is:

cost(o) = µ(Qij) ∗
∑
At∈I

(
|At|

∏
pt∈Pt

µ(pt)

)

Here, µ(Qij) is the estimated cardinality the matches of Qij, |At| is the estimated
size of the adjacency list, specified by At if we ignore the non-label predicates, and
µ(pt) is the estimated selectivity of the pre-satisfied predicate pt in the adjacency list
specified by At. The formula inside the parentheses is an estimate for the size of one
adjacency list that o will access for one input tuple t. We discuss why this estimate is
broken down into an estimate of the adjacency list size by only considering the label
predicates and then selectivities of non-label predicates momentarily. The outside
summation, sums the estimated sizes of all of the adjacency lists that will be accessed
by o for one input tuple t, and the multiplication with µ(Qij) estimates the size of
the adjacency lists that o will access across all of its input tuples.

• Cost of Filter operators are ignored. This will be justified when we explain how
the cost and cardinalities are estimated momentarily.

• Cost of a plan PA is simply the sum of the costs of each operator in the plan.

3.2.2 Cost and Cardinality Estimation

Cardinality and Adjacency List Size Estimations

For labeled queries, we estimate the cardinality of each Q as well as the average lengths
of the adjacency lists that will be accessed when extending each t using the previous
Graphflow’s default estimators. Graphflow does these estimations by using a data structure
called the subgraph catalogue [33]. Briefly, the subgraph catalogue is a graph pattern-based
technique to estimate the cardinality of labeled subgraph queries. An example subgraph
catalogue is given in Figure 3.2d. Each entry in the catalogue has a key, which is a triple
(Qk−1, A, lk) that consists of of a partial labeled query Qk−1 and a list A of additional
labeled query edges one can append to Qk−1 to extend it to one more query-vertex with
label lk. The value in the catalogue for this key is a pair (|A|, µ), where |A| is the estimated
average sizes of each of the adjacency lists that would accessed to match each query edge
in A, and µ is the average cardinality of the Qk that would be formed. For example, the
fourth entry in Figure 3.2d effectively estimates the i-cost and cardinality of extending
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a 1Customer Friend−−−−→2Customer edge, where 1 and 2 are canonical labels used to indicate the
source and destination vertex, with two more Friends query edges, one from the source
and one from the destination, to form a triangle. The entry says that on average, for

each edge matching 1Customer Friend−−−−→2Customer, the size of the adjacency list from 1 and 2
both will be of length 5, and on average two triangles will form. The information in the
catalogue is used to estimate both the cardinality of each labeled sub-query as well as the
sizes of the adjacency lists that the E/I operators will use in extending partial matches by
one or more query vertex. We refer the reader for the exact formula used to estimate the
cardinalities of subgraphs to reference [33].

When there are additional non-label predicates in the query, we estimate the cardinal-
ity of queries and sizes of the adjacency lists by assuming independence and multiplying
the estimates we get from the catalogue with each non-label predicate’s selectivity. Our
current implementation supports numeric valued properties. The system uses equi-width
histograms [24] that are kept on each numeric property, which are used to estimate the
selectivities of non-label predicates. This explains why in E/I operators’ costs we break
the estimate of the adjacency list sizes into an adjacency list estimate size with only label
predicates, which is done using the catalogue, and then multiplying this estimate with the
selectivities of the non-label predicates on the query edge.

Final Cost Estimates of Operators

• ScanVertex and ScanEdge: If ScanVertex reads labeled vertices, the system keeps
track of the number of vertices with different labels and those numbers are used.
Similarly ScanEdge operator’s cost is estimated as the number of edges that will be
scanned and the system keeps track of the number of edges with different labels.
Recall that if the A+ index ScanEdge is configured with is sorted on a property and
there is a predicate, the operator also evaluates this query with binary search. In this
case, we multiply the estimate of the cost of the ScanEdge with the selectivity of the
predicate. We ignore the cost of the binary search as we noticed that incorporating
that into our estimates does not make visible difference in the quality of the plans
we pick. If ScanEdge uses a secondary index, we estimate the number of adjacency
lists that will be scanned by operator. For B+ tree secondary indexes this is done by
maintaining a histogram of the min or max values of the indexed values. For bitmap
indexes, we keep the exact selectivities directly for each categorical value.

• E/I: We use the cost formula in Equation 3.2.1 using the estimation technique
described above. The only additional detail is that similar to ScanEdge operator, the
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E/I operators that use only a single adjacency list that is sorted on some property
can be configured with an additional predicate. In this case, we use Equation 3.2.1
to estimate the cost of the operator ignoring this extra predicate (so only considering
the label and non-label predicates satisfied by the A+ index that the operator will
use) and then multiply this estimate with the selectivity of the additional predicate.

We end this section by giving an example of cost estimation, which will also justify why
we ignore the costs of Filter operators.

Example 3.2.2 Consider the query in Example 3.2.1 above and consider the catalogue
information in Figure 3.2d. We also assume the existence of the vertex-bound A+ indexes
in the system from Example 2.2.2, which would contain the friend and relative edges
of vertices sorted by their customerSince properties. We will refer to these A+ indexes
as SortedFriends and SortedRelatives. We also assume there is one more A+ index
in the system, which we refer to as MaleFriends and is defined as:

CREATE A+ LIST INDEX (v1:Customer)−[e:friend]→(v2:Customer)
WHERE v2.gender = ‘Male’

Let us calculate the costs of the three plans shown in Figures 3.2a, 3.2b, and 3.2c on a
graph that we assume contains 10 vertices.

• Plan A: The ScanVertex will have an i-cost of 10 and output 10 vertices, the first
E/I according to the first entry in the catalogue will have an adjacency list of size
5 on average, so incurring a cost of 10*5=50 and we also estimate, looking at the
µ field of the first catalogue entry that this operator will output 10*5 = 50 partial
matches. Then, we ignore the cost of the following Filter, but assuming 50% of the
customers are male, we estimate that the cardinality of its output will be 25. The
next E/I operator will take 25 tuples and looking at the third catalogue entry will
access adjacency list of size 3 on average, son incurring an i-cost of 75, so the total
i-cost will be 10 + 50 + 75 = 135.

• Plan B: Has 10 i-cost for ScanVertex as before but uses a more selective MaleFriends
A+ index. So the i-cost of the first E/I operator is 10*5*0.5 = 25. The second
E/I operator is the same as Plan A’s second E/I operator, i.e., that take the same
number of tuples and use exactly the same A+ index for its extension, so the i-cost

of Plan B would be 10 + 25 + 75 = 110. We emphasize that because Plan B used a
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more selective A+ index than Plan A, that already pre-satisfied a predicate that Plan
A had to explicitly evaluate through a filter, Plan B’s second E/I operator has less
cost that Plan B’s. This justifies why we ignore the costs of filters. Instead of adding
extra costs to Plan A for having to evaluate an additional predicate, we reduce the
cost of Plan B for not having to evaluate the predicate.

• Plan C: Has 10 i-cost for ScanVertex as before. The next E/I operator now per-
forms an intersection by accessing two adjacency lists from two A+ indexes, which
according to the first two entries of the catalogue will have sizes of 5 and 3, respec-
tively. So its i-cost will be 10*8, so the total cost of the plan will be 10 + 80 =
90.

3.3 DP Cost Based Optimizer

In the absence of a HashJoin operator, Graphflow has a dynamic programming cost based
optimizer which takes as input a query Q(GQ(VQ, EQ), P ) and starts by first enumerating
all possible single vertex (Scan Vertex) and two vertex (Scan Edge) plans. Next, for
k = 2..|VQ|, the optimizer computes and stores the lowest cost plan1 for each sub-query
Qk, by considering an extension from every Qk−1 which contains one fewer query vertex
than Qk. As we describe momentarily, we will relax this to look for extensions to Qk

from smaller sub-queries Q1...Qk−2 to as well. The output of the optimizer is the lowest
estimated cost plan for Q. Next, we describe our modifications to the optimizer. For
reference, Algorithm 1 shows the pseudocode for our modified optimizer. The optimizer
consults the IndexStore, which stores all information about the A+ and secondary indexes
the system maintains, e.g., the predicates that each A+ index satisfies.

3.3.1 Modifications to the Optimizer

Predicate Evaluation

Following every matching operator, the modified optimizer checks if any predicates can be
evaluated. All Filter operators are pushed as far down as possible and predicates are set
to be evaluated in order of decreasing selectivity.

1We have removed the sub-query map because the effects of intersection caching are
irrelevant to our study of indexes in this work.
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Algorithm 1 Modified DP Optimization Algorithm

Input: Q(VQ, EQ, PQ)
1: QPMap = ∅
2: enumerateAllVertexAndEdgeScans(Q, QPMap);
3: for k = 2, ..., |VQ| do
4: for Vk ⊆ V s.t. |Vk| = k do
5: Qk(Vk, Ek, Pk) = ΠVk

Q;
6: // Extends and intersections
7: for vj ∈ Vk let Qk–1(Vk–1, Ek–1, Pk–1) = ΠVk–vjQk do
8: Pnew = Pk - Pk−1;
9: for iCombination ∈ getAllIndexCombinations(Qk−1, Qk) do

10: Pr = getUnsatisfiedPredicates(Pnew, iCombination)
11: plan = QPMap(Qk–1).extend(Qk, iCombination).filter(Pr);
12: if cost(plan) < cost(QPMap(Qk)) then
13: QPMap(Qk) = plan;

14: // Multi-extends
15: for j = 1, ..., i - 2 do
16: for Vj ⊆ Vi s.t. |Vj| = j let Qj = ΠVj

Qi do
17: if Qj in QPMap then
18: for Ve ∈ getDisjointVertexSets(Qj, Qk) do
19: Qi = ΠVj+VeQk; Pnew = Pk - Pi;
20: for iCombination ∈ getAllIndexCombinations(Qi, Qk) do
21: plan = QPMap(Qi).extend(Qk, iCombination).filter(Pr);
22: if cost(plan) < cost(QPMap(Qk)) then
23: QPMap(Qk) = plan;

24: return QPMap(Q);
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E/I Enumeration

As in the previous version of Graphflow, the optimizer searches for extensions from each
Qk−1 to Qk using one more A+ indexes. Since these sub-queries can have non-label pred-
icates, the optimizer searches the IndexStore for all A+ indexes, per-vertex or per-edge,
that could extend Qk−1 to Qk and the lists of additional label or non-label predicates
these possible extensions could satisfy. The details of this search is omitted and is done
in the getAllIndexCombinations call on line 9. This is where we make a connection to
query rewriting using materialized views. If we think about A+ indexes as materialized
views, the optimizer effectively searches for possible query rewrites, where different A+
index extensions effectively with a single join satisfy different predicates in the query. For
each possible extension, the optimizer keeps track of the additional predicates that the
possible extensions would not satisfy and adds a Filter operator to the plans with the
appropriate predicates on line 10. Then using the cost estimation techniques we described,
the optimizer in lines 12 and 13 pick the lowest estimated cost of extending Qk−1 to Qk.
In addition , in lines 15-23, the optimizer also looks for extending all smaller sub-queries
Q1, ..., Qk−2 to Qk directly.
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Chapter 4

Implementation

This chapter describes the implementation of our A+ and secondary indexes. Section 4.1
describes the structure of Graphflow’s adjacency lists in memory. Section 4.2 describes
how A+ indexes are implemented how they are stored in the index store. And finally,
Section 4.3 describes our implementation of secondary B+ tree and map indexes.

4.1 Adjacency Lists

Every adjacency list in Graphflow is a unit of contiguous data in memory, holding informa-
tion about the incoming or outgoing edges for either a vertex or an edge. Every adjacency
list consists of primitive arrays containing edge IDs and the corresponding neighbor vertex
IDs.

4.1.1 Partitioned Adjacency Lists

Recall from Section 2.5 that for equality predicates, users may use the asterisk (*) notation
to create multiple A+ indexes, one for each value in the domain of a categorical property.
If a single such predicate exists in the index creation query, instead of creating multiple
A+ indexes for every value of the property, we create a single A+ index which holds
partitioned adjacency lists. A partitioned adjacency list is a CSR-like structure which,
apart from holding arrays for edge and neighbor vertex IDs, contains two additional arrays.
One of these arrays contains all the unique values of the property which are present in the
adjacency list on the stored vertices or edges. The second array contains a pointer for each
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USD, CAD
↓ ↓

v5 → [e4, e1, e2, e5, e6]

Figure 4.1: Partitioned adjacency list example for e.currency = *. Edge e4 has USD
currency while edges e1, e2, e5 and e6 have CAD.

of these values to groups in the adjacency list which consist of vertices or edges, all having
the same specific value of the property. Figure 4.1 shows an example of such a partitioned
adjacency list.

4.2 A+ Indexes

Every A+ index defined in Graphflow is assigned a unique name and consists of a contiguous
array of adjacency lists. Per-vertex A+ indexes take a vertex ID and return an adjacency
list using a map in which each global vertex ID is mapped to a local array index in the
adjacency lists array. The array index is a local vertex ID defined per label where for a
given vertex label with m vertices, the local vertex IDs assigned are from 0 to m-1. The
mapping for global to local vertex IDs is stored in a single object shared between all indexes
and with the vertex property columnar store. Each per-edge A+ index contains its own
mapping from global edge IDs to array indices in the adjacency lists array. The mapping
in all indexes compacts the size of the array for a smaller memory footprint.

Index creation queries are treated as regular queries in Graphflow. Query plans for these
queries have an additional special SINK operator appended to the end which is responsible
for aggregating the result of the query into adjacency lists and encapsulating them into
an index structure. Fixed pre-defined query execution plans exist in the system for the
creation of new indexes.

4.2.1 Index Store

Every A+ index in Graphflow is assigned a unique name and stored in the index store data
structure. The default indexes in the system cannot be dropped and no filtering predicates
can be defined on them.

The index store uses a linear index matching technique to look for stored indexes of
a particular form. It is necessary to look for exact matches to safeguard against creat-
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ing duplicate indexes in the system. The query optimizer, in addition to exact matches,
requires partial index matches as well because indexes having predicates which partially
match the predicates in a query can be used for query execution. For every edge extension,
the query optimizer gives the index store an index descriptor, which stores the label of
the query edge, the labels of the source and destination vertices and the predicates on the
edge and the vertices. The index store first does a map lookup for all indexes matching the
(SourceVertexLabel, EdgeLabel, DestinationVertexLabel) triple in the descriptor.
Then, it goes through each index match one at a time and compares the predicates the
index pre-satisfies with the predicates provided in the descriptor. If an index has more
restrictive predicates than those in the query, the index is discarded. A list of matching
indexes is returned to the optimizer.

4.2.2 Default Index Configuration

The default index configuration in Graphflow consists of two A+ indexes existing for ev-
ery (SourceVertexLabel, EdgeLabel, DestinationVertexLabel) combination in the
graph. One index is for incoming edges and the other one for outgoing edges. Each index
has a sorting on the IDs of neighbor vertices.

Database administrators have the option to provide a storage configuration file

to update these default indexes. An update to a default index may involve changing the
sort on it from neighbor ID to vertex or edge property. These operations give DBAs
freedom to mold the data layout to suit the schema of their datasets and the needs of their
workloads. There may be a small memory cost associated with these update operations
because some types of adjacency lists require more memory than others. Our experiments
in Chapter 5 show that, with a small cost to memory, these configuration changes can
bring significant performance improvement to query runtime.

4.3 Secondary Index Implementation in Graphflow

Secondary B+ tree and map indexes must be defined on top of existing A+ indexes. The
index store keeps track of every A+ index’s auxiliary indexes. Whenever a plan is using
a specific A+ index for the initial Edge Scan operator and an indexed property predicate
is present in the query, an auxiliary index is selected and the operator is given an iterator
over this auxiliary index. This allows the operator to discard adjacency lists which have
no edges that satisfy the predicate. The following Filter operator in the plan therefore
has less work to do.
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B+ Tree Indexes

We use a standard implementation of B+ tree written from scratch. The keys in the B+
tree are always int property values. When the index is created on a partitioned A+ index,
the values are of the primitive long datatype where the first 32 bits represent the global
ID of the vertex and the last 32 represent the index of the partition in the adjacency list.
If the index is created for a regular A+ index, the values are of datatype int and represent
the global vertex ID. In both cases, an iterator over the A+ index uses its global vertex
ID to local array index map to grab the adjacency list corresponding to the global vertex
ID and gives it to the operator.

Bitmap Indexes

A bitmap index is a collection of bitmaps, in which for each value in the domain of the
indexed property, a bitmap is created, with the number of bits equal to the number of
adjacency lists in the A+ index. Each index, therefore, holds as many bitmaps as the values
in the domain of the indexed property. For a bitmap corresponding to any given property
value, a True bit represents the existence of an edge in the corresponding adjacency list
with the same value of the property.
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of A+ and auxiliary indexes. Our experiments
are demonstrative and aim to answer the following questions:

1. A+ index performance: How is the performance of A+ indexes compared to
different types of default storage schemes found in existing GDBMSs? And what is
the trade-off between performance benefits and memory usage?

2. Optimizer goodness: How good are the plans our optimizer picks for various A+
index configurations including workload specific ones?

3. Auxiliary Indexes performance: How efficient are auxiliary B+ tree and Bitmap
indexes? What is the exact memory performance trade-off they provide compared to
secondary indexes that index all edges.

Our preliminary results comparing against other systems, such as Neo4j showed that our
performance is faster on a broad range of queries. Such baseline comparisons are common
in the database community but we think there is little to learn from them because there are
many fundamental differences between Graphflow and existing GDBMSs, so attributing
them to A+ indexes is difficult. For completeness of this work, in future work, we plan to
conduct several comparative evaluations.
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5.1 Hardware Setup

For all our experiments, we use a single machine that has two Intel E5-2670 @2.6GHzCPUs
and 512 GB of RAM. The machine has 16 physical cores and 32 logical cores. We only use
one logical core. We set the maximum size of the JVM heap to 500 GB and keep JVM’s
default minimum size.

5.2 Queries & Datasets

In our evaluation, we focus on queries whose subgraph structure is acyclic1 for two reasons.
First, the edge label partitioned adjacency lists that are sorted by neighbour IDs, which
were used in the previous version of Graphflow and described in reference [33], are good for
queries whose structures are cyclic. So, we instead focus on sets of acyclic queries which
require different adjacency list structures. Second there is evidence that overwhelming
majority of graph queries are acyclic in practice. For example, reference [10], which studies
query logs that consist of over 180 million SPARQL queries over four different knowledge
graphs and reports that 99.95% of the submitted queries were acyclic.

We rely on two datasets to build query workloads for two different applications:

• Application 1: Social Network Analysis:
We use the LDBC SnB2 data generator to create synthetic social network graphs.
Figure 5.1 shows the schema of the LDBC SnB graph. The data generator allows
choosing a scaling factor to control for the size of the generated graph.

• Application 2: Fraud Detection:
We are unaware of an existing public financial dataset, so we repurpose the LiveJournal
dataset from SNAP [30]. LiveJournal is a Russian social networking service. The
dataset contains 4.8M nodes and 68.9M edges. We modify the dataset such that each
node is an ACCOUNT vertex and each edge represents a TRANSFER between two
accounts. Nodes have a numerical property BALANCE in the range 0 to 50,000 and
edges have three properties: (1) Date: a unix time stamp (5 years ago to present); (2)
Amount: in the range 1 to 1,000; and (3) Currency: USD, CAD, or Euro.

1We note however that the relational versions of some of our queries over a Vertex and
an Edge table are cyclic when we consider their join hypergraphs. In a join hypergraph,
each node is an attribute and each hyperedge is a relational table, so in our case either the
Vertex or Edge table.

2LDBC = Linked Data Benchmark Council & SnB = Social Network Benchmark

37



Figure 5.1: LDBC SnB Schema
(Obtained from LDBC SnB specification document v0.32).

5.3 A+ Index Performance

A+ indexes provide performance benefits by helping with label and predicate filtering in
a query. We demonstrate the flexibility of our A+ indexes and the performance benefits
as well as memory and speed-up trade-offs. In this section, we compare different index
configurations on the two aforementioned applications. Reasoning about the workload,
in our case demonstrative queries selected per application, we create a workload specific
index configuration, which we compare with baseline index configurations. We overview
the index configurations below.

5.3.1 Baseline Index Configurations

There three baseline index configurations we compare against:
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• Simple: The configuration is made of two indexes, the forward and backward adja-
cency lists sorted by neighbour vertex ID.

• Neo4J: The configuration builds on top of the Simple configuration by adding the
predicate e.label=?. This is effectively Neo4j’s [35] default adjacency list configura-
tion.

• Graphflow: Two indexes exists, forward and backward adjacency lists, for each
(SourceVertexLabel, EdgeLabel, DestinationVertexLabel) triple in the sys-
tem. Each adjacency is sorted by neighbour vertex ID with no predicates applied.
As described in Chapter 4, this is the default index configuration for Graphflow.

5.3.2 Workload-specific Index Configuration

The workload specific index configuration depends on the application we will be testing. We
will have two workload-specific configurations, one for each application. The configuration
in this case updates the Graphflow index configuration and is expected to represent the
indexes a DBA would naturally create.

5.3.3 Comparison per Application

For each application, we present the set of demonstrative queries and then the plan spectrum
charts i.e. the set of all plans generated with their run-time. The plan spectrum charts
contain the plan our query optimizer picks which is shown by an × marker. Since the
optimizer relies on dynamic programming and for each subquery picks the best plan, we
introduce the notion of a finalist plan. For a query Q with n vertices, a finalist plan is a
plan which does not get pruned for any subquery of Q and is chosen or pruned only when
picking the best plan for Q. The plan spectrums contain the finalist plans as filled colored
circles and pruned plans as circles with a hollow middle.

Social Network Analysis

The goal of this experiment is to test the performance benefits brought by our per-vertex
A+ indexes. We focus on comparisons where the memory required for each baseline con-
figuration and workload-specific configuration is very similar. Specifically we will keep the
number of edges indexed in any configuration similar, although there will be minor mem-
ory consumption differences between in each configuration due to several implementation
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a:Comment b:Person c:Forum

WHERE b.gender=Male, c.creationDate>=P -50, a.length>=P -50

hasCreator hasMember

(a) Q1.

a:Person b:Post c:Tag d:Forum e:Person

WHERE e.gender=Male, a.browserUsed=Chrome, d.creationDate>P -75, e1.date<P -50

e1:likes hasTag hasTag hasMember

(b) Q2.

a:Person b:Person c:Person d:Person
Knows Knows

WHERE a.birthday>b.birthday, c.birthday<d.birthday

Knows

(c) Q3.

a:Forum b:Person

WHERE b.gender=Male, e1.date>P -90, e2.date>P -90, e3.date>P -90

c:Post

d:Comment e:Tag

hasMember e1.likes

e2.likes e3.hasInterest

(d) Q4.

a:Organizationb:Person c:Person

e:Postd:Post f :Person g:Person

worksAt worksAt

hasCreatorhasCreator knows knows

WHERE b.gender=Male, c.gender=Female, f.birthday=g.birthday, d.creationDate= e.creationDate

(e) Q5.

Figure 5.2: Social Network Application Queries.
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details that we will explain. Our goal is to demonstrate that with minimal additional mem-
ory costs, users can configure their adjacency lists to specific workloads to gain significant
performance benefits.

Figure 5.2 shows 5 demonstrative queries we consider for a social network analysis
application. We use the P-X notation in predicates to represent a value of the predicate
property at the Xth percentile. For example, the predicate e1.date < P-51 has a selectivity
of 50% because half the values of date property lie below the 51th percentile.

The workload-specific configuration for this application updates some of the A+ in-
dexes in the default Graphflow configuration in two possible ways: (i) by adding a sorting
criteria; and/or (ii) by “partitioning” the A+ index with an equality match-all (*) pred-
icate on a vertex or edge property. Recall that the default Graphflow configuration has
one A+ index for each (SourceVertexLabel, EdgeLabel, DestinationVertexLabel)

combination. The updates we do to the indexes in the default configuration are shown in
Table 5.1. Any index in the default Graphflow configuration that is not shown in the table
is also part of the workload-specific configuration as is. Consider the indexes 7 and 10 in
Table 5.1 that add gender = * predicate to two default indexes. Q1, Q2, Q4, and Q5, which
all contain an equality predicate on gender, will gain speed-ups from these two indexes.
For example, in the presence of index 10, the Person vertices with a specific value of the
gender property can be quickly accessed when extending forward from a Forum vertex or,
in the presence of index 7, backwards from an Organisation vertex.

Figure 5.3 shows the plan spectrum charts for this application. First, we expect the
Simple configuration to have worse plans than the other configurations because the plans
in every other configuration avoid the execution of label predicates whereas the plans
in the Simple configuration require explicitly executing these predicates in extra Filter

operations. Second, we expect the workload-specific configuration to shift the plan space
of Graphflow configuration’s plan space as the indexes allow for more efficient plans.

The plans spectrums of these queries are shown in Figure 5.3. For all queries except
Q5, the spectrum of plans under the Simple configuration is worse than other plans. Our
understanding of why there are plans for Q5 under the Simple configuration that are more
efficient than Neo4j and Graphflow configuration is not complete. We suspect this is due
to a CPU caching effect that is happening in those plans under the Simple configuration
but at the time of writing, we could not fully investigate the issue. More importantly,
we emphasize that for all queries the plans under the workload-specific configurations are
significantly faster than Graphflow configuration as well as the others. The spectrums
demonstrate the robustness of A+ indexes as even the worst plans under the workload-
specific configuration are broadly better than the best plan under other configurations.
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Figure 5.3: Social network application plan spectrum charts. S represents the Simple

configuration, N represents the Neo4j configuration, G represents the default Graphflow
configuration and C represents the Workflow Specific Configuration.
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Num. Index Sorting Property Predicate

1 a:Person b:Post
e:likes

e.date -

2 a:Personb:Post
e:likes

e.date a.browserUsed = *

3 a:Person b:Comment
e:likes

e.date -

4 a:Personb:Comment
e:likes

e.date -

5 a:Person b:Person
e:knows

b.birthYear -

6 a:Personb:Person
e:knows

a.birthYear -

7 a:Personb:Organization
e:studyAt

- a.gender = *

8 b:Person a:Post
e:hasCreator

a.creationDate -

9 b:Person a:Comment
e:hasCreator

a.length -

10 a:Forum b:Person
e:hasMember

e.date b.gender = *

11 a:Forumb:Person
e:hasMember

e.date -

12 a:Forumb:Tag
e:hasTag

a.creationDate -

Table 5.1: Social network application workload specific configuration.

This indicates that even if the optimizer makes mistakes, it will still able to pick highly
efficient plans for this workload.

Table 5.2 summarizes the memory usage, best plan, and the picked plan run-time for
each configuration on the 5 queries. We compare the memory usage of each configuration
relative to the memory usage of the Simple configuration. The Neo4j configuration is
significantly more expensive because every adjacency list stored is partitioned by edge
labels and needs to store the labels of the edges it is storing, as well as pointers to their
corresponding partitions. The indexes in the Graphflow configuration are not partitioned
but multiple adjacency lists exist for each vertex in the different default indexes. This
makes it more expensive than the Simple configuration but for the SNB dataset, it is cheaper
than Neo4j and brings slight performance benefits. The workload specific configuration
is slightly more expensive than Neo4j and Graphflow because it updates the Graphflow

configuration and partitions some of the indexes.
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Simple Neo4j G.flow Specific
Mem (MBs) 513 (1x) 706 (1.38x) 686 (1.33x) 784 (1.53x)

Q1
Best 13.9 12.2 10.9 1.5
Selected 21.7 12.2 10.9 1.7

Q2
Best 1.8 2.0 1.3 0.2
Selected 2.5 2.1 1.6 0.5

Q3
Best 1.9 0.9 0.9 0.2
Selected 2.0 1.2 1.1 0.3

Q4
Best 8.4 2.0 2.0 0.8
Selected 8.4 11.0 16.0 1.0

Q5
Best 9.9 13.9 12.0 0.7
Selected 16.7 14.5 12.7 0.9

Table 5.2: Social network application memory usage and run-time (secs) trade-off.

Fraud Detection Queries

The goal of this experiment is to demonstrate when per-edge A+ indexes are preferable over
per-vertex A+ indexes and to test the performance benefits they bring. Figure 5.4 shows 4
demonstrative queries we consider for a fraud detection application. These queries are all
variants of money flow queries motivated by a real fraud detection application at a large
e-commerce company’s payment system, whose name we omit due to privacy reasons3.

Table 5.3 lists the indexes for VB and EB, the two workload specific configurations we
create for this application. Both configurations build upon the Graphflow configuration,
where VB, the per-vertex A+ index configuration adds the first two indexes and EB, the
per-edge A+ index configuration only adds the last index. Unlike the workload specific
configuration for the Social Network Analysis application, we do not modify the indexes
in the Graphflow configuration for this experiment. These default indexes are also not
dropped because the indexes in our workload specific configurations all have filtering pred-
icates and doing so will render the configurations useless for queries not present in our
workload.

Figure 5.5 shows the plan spectrum charts for these queries. Since the queries for this
experiment are expensive and are being executed on a large graph, it is prohibitive to
run every possible plan. We therefore only run the top ten plans, which the optimizer
thinks are cheapest, for each query. As before, among the three baseline configurations,

3Private communication with employees of the company.
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v0:Account v1:Account v2:Account v3:Account
e1:Transfer e2:Transfer

WHERE ∀ i, vi.balance>vi+2.balance, ei.date<ei+1.date, ei.amount>ei+1.amount,
∀j, k, ej.currency=ek.currency, v0.balance<2450, ∀ l 6= 0, vl.balance<2500

e3:Transfer

(a) Query 1.

v0:Account

v1:Account v2:Account v3:Account v4:Account

v5:Accountv6:Account

e1:Transfer

e2:Transfer e3:Transfer

WHERE ∀ i, vi.balance>vi+2.balance, ei.date<ei+1.date, ei.amount>ei+1.amount
∀j, kej.currency=ek.currency, v0.balance<2250, v4.balance<2250, ∀i /∈{0,4}, vi<2500

e4:Transfer

e5:Transfer

e6:Transfer

(b) Query 2.

v0:Account v1:Account v2:Account

v3:Account

v5:Account v4:Account

WHERE ∀ i, v0.balance<2450, ∀i, vi.balance<2500
∀(i,j)∈{(0, 2), (0, 3), (1, 5), (3, 6)}, vi.balance>vj.balance,
∀(i,j)∈{(1, 2), (1, 3), (3, 4), (4, 6), (5, 6)}, ei.date<ej.date,
ei.amount>ej.amount, ei.currency<ej.currency,

v6:Account

e1:Transfer e2:Transfer

e3:Transfer

e4:Transfer

e6:Transfere5:Transfer

(c) Query 3.

v0:Account v1:Account v2:Account

WHERE ∀ i, vi.balance>vi+2.balance, v2.balance=v4.balance, v0.balance<2450, ∀j 6= 0 : vj.balance<2500
∀ i, j∈{(1,2),(3,4)} ei.date<ej.date, ei.amount>ej.amount, ei.currency=ej.currency

v3:Accountv4:Account
e1:Transfere3:Transfer e2:Transfere4:Transfer

(d) Query 4.

Figure 5.4: Fraud Detection Application Queries.
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Index Sorting Predicates

a:Account b:Account
e:Transfer

e.date a.bal < 2500

a:Account b:Account
e:Transfer

e.date b.bal < 2500

a:Account b:Account c:Account
eb:Transfer eadj:Transfer

c.bal c.bal < a.bal,
eadj.date > eb.date ,
eadj.amt < eb.amt,
eadj.curr = eb.curr

Table 5.3: Fraud detection application workload specific configurations. The first two
indexes are used for a per-vertex configuration and the last is used for a per-edge configu-
ration.

Simple Neo4j G.flow PVertex PEdge
Mem (GBs) 1.74 (1x) 2.0 (1.15x) 1.74 (1x) 1.84 (1.05x) 1.77 (1.02x)

Q1
Best 3.9 3.1 3.1 2.1 0.9
Selected 4.1 4.2 3.9 2.6 1.1

Q2
Best 2.9 2.8 2.0 2.1 0.6
Selected 5.8 6.5 5.0 3.7 0.6

Q3
Best 3.2 3.5 3.6 2.3 0.7
Selected 4.2 4.3 3.6 3.3 0.7

Q4
Best 9.2 10.0 8.6 5.0 0.9
Selected 10.3 11.6 9.9 6.2 0.9

Table 5.4: Fraud detection application memory usage and run-time (secs) trade-off.

the spectrums in Figure 5.5 show that the Graphflow configuration slightly outperforms
the other two. From the spectrums, we see that the per-edge A+ index configuration,
EB, outperforms the per-vertex A+ index configuration, VB. This is because the queries in
our workload contain a lot of predicates between adjacent edges which are pre-satisfied by
index in the per-edge A+ index configuration.

Table 5.4 summarizes the memory usage, best plan, and the picked plan run-time for
each configuration on the 4 queries for this experiment. Recall from Table 5.2 that, for the
social network analysis application, every configuration was significantly more expensive
compared to the Simple configuration. This is not the case for this experiment because
all the nodes in the dataset are of a single label, Account, and all the edge are of label
Transfer. For the Neo4j configuration, this means that each adjacency list will effectively
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Figure 5.5: Fraud detection application plan spectrum charts. S represents the Simple

configuration, N represents the Neo4j configuration, G represents the default Graphflow
configuration, VB represents the per-vertex workflow specific configuration and EB

represents the per-edge workload specific configuration.

have only one partition. For the Graphflow configuration, this means that the indexes
are identical to the indexes in the Simple configuration. Both our workload specific con-
figurations for this experiment use an insignificant amount of additional memory because
the predicate pre-satisfied by the indexes these configurations add are very selective. The
per-edge A+ index configuration in this experiment is shown to bring a magnitude of
performance improvement, using 12% less memory than the Neo4j configuration.

5.4 Optimizer Goodness

From the prior Section 5.3, each of the spectrums contained a × marker which showed
the plan picked by the optimizer. Furthermore, the spectrums contained two types of
plans, the finalists and the pruned ones. When many different indexes can be used for
each extension during query planning, two questions arise: (1) How far is the optimizer’s
selection from the best plan? (2) Does the optimizer prune the correct plans, i.e. plans
with less selective indexes?

To answer these questions, instead of testing index configurations one at a time, we
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Figure 5.6: Optimizer Goodness Spectrum Charts.

append them to each other in this experiment. The Neo4j configuration, for example, now
also contains all the indexes from the previous Simple configuration. The final workload
specific configuration contains all the indexes from every other configuration. We run this
experiment using Q1 and Q3 from Figure 5.2 on 0.3 scale of the SNB graph. We limit the
number of generated plans to 50, so if the optimizer generates more, we rely on sampling.
Figure 5.6 shows the spectrums for both these queries. It can be seen that the optimizer
still picks good plans in the presence of many different indexes.

5.5 Auxiliary Indexes Performance

The goal of the experiments in this section is to demonstrate that our secondary indexes can
help reduce runtime of queries with highly selective predicates. For the experiments in the
previous section, the property values of the nodes and edges that we put on LiveJournal
were uniformally distributed. For these experiments, we make the amount property on
edges normally distributed with a mean of 50 and a standard deviation of 15. This roughly
gives us a range of values between 0 and 100. Next, instead of the three uniformally
distributed values of the currency property on these edges as before, we put 9 values with
a predetermined selectivity of each. All our queries in this experiment have a single edge
and a single edge predicate.
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Figure 5.7: Secondary index experiments.

5.5.1 B+ Tree Indexes

Figure 5.7a shows our results for single edge queries with the predicates e.amount < x,
where x ∈ {1, 5, 10, 25}. Both the B+ tree indexes were created on the default backward
adjacency lists index of the graph. The full B+ tree index was indexing every edge while
the secondary B+ tree index was indexing the min aggregate of every adjacency list in the
index. The size of the full B+ tree index was ∼592 MBs while the secondary B+ index was
only using ∼16 MBs (98% smaller) of storage. It is apparent from the graph in Figure 5.7a
that a secondary B+ tree index on an A+ index can be quite useful for highly selective
predicates.

5.5.2 Bitmap Indexes

Figure 5.7b shows our results for single edge queries with the predicates e.currency = x,
where x is one 5 different values with pre-determined selectivitities. The bitmap index is
created on the default backward adjacency lists index of the graph. The size of generated
bitmap index is 3.65 MBs. From the graph in Figure 5.7b, it is apparent that such an index
can also be quite useful for highly selective predicates. Full map indexes, which allow O(1)
access to edges satisfying an equality predicate, are not a part of this work but we expect
them to be faster and more expensive in terms of storage than our bitmap indexes.
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Chapter 6

Related Work

We begin this chapter by reviewing related work in existing adjacency list indexes in RDF
systems and GDBMSs in Section 6.1. In Section 6.2, we review other indexes for queries
other than the subgraph queries and predicates that we consider in this thesis. Finally, in
Section 6.3, we review work in using materialized views in query optimization.

6.1 Indexes in RDF and Graph Systems

Previous work has studied indexing techniques for RDF systems which generally store data
in the form of tables. Reference [1] outlines a technique for vertically partitioning RDF
data by creating a table for each property in the data. Hexastore [44] takes this approach
further by creating indexes for each RDF element, instead of just for properties. RDF-
3X [37] creates B+ tree indexes on a giant triples table. SAP Hana [23] uses adjacency
lists as indexes on top of relational tables to speed up graph queries. These approaches
focus on tabular storage models, which is common in RDF systems. In contrast, our work
focuses on native adjacency list storage which is commonly a linked-list like structured in
native GDBMSs.

For systems storing the edges in adjacency list structures, a common technique is to
store them in a compressed sparse row (CSR) format [9]. CSR is a compression technique
for matrices in which non-zero values for every row of the matrix are stored in partitions in
a contiguous array and pointers are used to access the values for any specific row. To our
best knowledge, no existing GDBMS uses CSR storage but many existing graph processing
systems, such as Green-Marl and Ligra adapt this type storage as it is known to give good
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cache locality and decreases the size of the adjacency lists stored. Some of prior work
study different aspects of CSR storage format. For example, reference [42] studies CSR-
like partitioning techniques for large arrays containing incoming and outgoing edges, based
on source and destination vertices. Reference [13] uses a similar technique in addition
to re-pairing for graph compression in memory. Finally, [8] outlines a CSR-like structure
for compressed contiguous adjacency lists (adjacency table). Our work does not focus on
optimizing the physical layout of the edges in memory; instead we focus on providing fine
grained control over which edges are stored in adjacency lists.

6.2 Other Indexes in Graph Databases

In this thesis, we introduced A+ indexes, which allow flexible adjacency list indexes for
GDBMS, and demonstrated how A+ indexes can speed up query evaluation for subgraph
queries with predicates. We next review prior work that have introduced advanced indexes
to speed up other classes of queries: (i) complex subgraph queries; (ii) shortest paths
queries; and (iii) regular path queries.

• Complex subgraph queries: Many approaches rely on indexes to speed up complex
subgraph queries. GADDI [47] records the distance of each 2-label pair in the graph.
Indexes in [48, 50] use a signature representing neighborhoods within a given dis-
tance for each vertex. Certain techniques index all of the triangles in the graph.
Finally certain techniques rely on light weight indexes as part of the algorithms,
these technique build a small index per query which provides faster access to query
vertex candidates and are different from techniques indexing the whole graph over
time. Our A+ indexes technique aims to provide speedups to a workload set and be
maintained while these light weight indexes in the case of DP-iso [22] and CECI [6]
for example provide speedups over the query for that particular run-time instance.

• Shortest paths queries: Evaluating shortest paths require indexing for speedups as
well. Reference [14] uses a 2-hop cover, which is a collection of shortest paths such
that any two vertices vi and vj, the shortest path between them is a concatenation
of two paths from the collection. Reference [45] explores orbit adjacency instead of
vertex adjacency and local symmetry to obtain compact breadth-first-search trees to
speedup the queries. Another type of work requires the top-k shortest path indexes
for applications such as link prediction. Finally, reference [3] needs to find top-k
shortest path and relies on the pruned landmark labelling technique [4], which keeps
track of distance label for vertices to build an index and obtain the top-k shortest
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paths from it quickly. All of these indexes are highly specialized for the shortest path
queries meanwhile A+ indexes are general and can be used with classic shortest path
algorithms.

• Regular path queries (RPQs): RPQs check the existence of a path between two
nodes. There has been a lot of regular path queries using path indexes for examples
in the context of XML [31] but we do not go into them in detail here.

6.3 Using Materialized Views in Query Optimization

Reference [20] outlines two types of approaches to using views in query optimization, based
directly on the style of the optimizers in which these approaches are integrated into: (i)
System-R style; and (ii) transformational approaches. Because Graphflow’s optimizer is
bottom-up System-R style optimizer, our approach falls under the former group. Briefly, in
this approach, as plans for sub-queries are being considered, the optimizer checks if there are
any views that overlaps with the sub-query, partially or fully, and can be used to generate
an efficient plan. Our approach falls under this approach, where our optimizer effectively
asks the IndexStore for matches of sub-query being enumerated in an A+ index and if
presence of A+ Indexes, uses. As described in Chapter 2, Section 2.4, for our edge-bound
A+ indexes, we perform a non-trivial query rewrite, which, to our best knowledge, cannot
be done in existing RDBMS and GDBMSs. The transformational approaches perform the
view selection as a logical transformation rule, as done for example by reference [16] in a
prior version of Oracle DBMS, as well as several other work, such as references [15, 17].
We refer the reader to reference [20], for a more extensive overview of the work in this
literature.

The question of finding overlaps between views and sub-queries is formally known as the
query containment problem, which is the problem of determining if the outputs of one query
Q1 is contained in the output of Q2 under all possible database instances. An extensive
literature review of this problem is beyond the scope of this thesis but many aspect of this
problem, such as containment of conjunctive queries [12], recursive queries [11], or queries
with predicates that contain arithmetic comparisons [49] have been extensively studied in
prior literature. Our current work limits A+ indexes to only contain conjunctive predicates,
so our optimizer when selecting A+ indexes to use in query plans effectively performs
query containment checks for conjunctive queries, as well as arithmetic containment. For
example, our optimizer can select an A+ index with a predicate v1.age > 500 to evaluate
a query with predicate v1.age > 1000.
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Finally, our queries in relational terms are select-project-join queries, where the joins
are inner joins. Several prior work use materialized views with outer joins [29] and aggre-
gations [19, 46], which are queries we have not studied in the context of graph databases.

53



Chapter 7

Conclusions and Future Work

In this thesis, we described a new indexing sub-system that consists primarily of A+ in-
dexes, which are indexes that allow users to define both per-vertex and per-edge adjacency
lists that can satisfy a wide range of predicates on the edges that are stored. In addition
to A+ indexes, our indexing subsystem consists of secondary B+ tree and bit map indexes
that index aggregate properties of the adjacency lists in A+ indexes. We implemented our
indexing sub-system on top of the Graphflow GDBMS. We described the modifications
we had to do to our optimizer to use A+ indexes during query evaluation and presented
performance evaluations of our indexing sub-system.

Noticeably missing from this work is the maintenance of the indexes in our work in the
presence of updates to the graph. The codebase on which our work is based currently does
not support updates. Users ingest data from csv files, which are turned into an in-memory
representation. Users can create and drop indexes on the base graph but cannot update
the graph. One main direction of future work is how to efficiently support updates. We
see two main research questions here. First, in the presence of multiple indexes, which
are effectively materialized views, what kind of multi-query optimizations can be applied
to maintain all of the indexes together. Second, if the indexes are sorted, what kind of
physical implementation would allow their maintenance efficiently.

Another future work direction is to apply these techniques to non-native GDBMSs
that directly use an underlying RDBMS. We believe it is very interesting and important
to understand the modifications that are required to the underlying RDBMS to support
A+ indexes, and the performance benefits these may bring to non-native GDBMSs.
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