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Abstract  

With the high requirement of increasing people’s living standards and building a more 

sustainable society, electrochemical energy storage devices with large energy density, high power 

density, and long term durability are greatly needed to mitigate the consumption of fossil fuels. 

Among all those well-known energy storage systems, zinc-air batteries are one of the most 

appealing candidates due to sufficient and inexpensive resources applied, promising energy density, 

as well as the high reduction potential of zinc. However, Zn-air batteries always suffer from 

relatively high overpotential, which is predominantly originated from the sluggish kinetics of 

oxygen electrocatalytic reactions. Enormous efforts have been devoted to the development of 

active bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution 

reaction (OER). 

Although noble-metal catalysts, such as platinum, iridium, and their alloys have been proved 

to own outstanding electrochemical performances for oxygen electrocatalysis, their insufficient 

catalytic bifunctionality, rarity and high cost hinder the commercial utilization. As a result, the 

design and synthesis of cost-effective, robust and highly stable bifunctional electrocatalysts to 

replace noble metal catalysts for zinc-air batteries are greatly desirable to realize the 

commercialization of Zn-air batteries. In recent years, the metal-organic frameworks (MOFs) are 

burgeoning as attractive precursors for the fabrication of transition-metal-based bifunctional 

oxygen electrocatalysts with controllable nanostructures due to the structural and compositional 

advantages of the MOF.  
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Herein, a layered Co-hexamine coordination framework is prepared and used as an efficient 

precursor to synthesize high-performance ORR/OER bifunctional electrocatalyst featured with 

cobalt oxide and cobalt phosphide heterostructured structure (denoted as CoO/CoxP). This design 

not only generates a high surface area to expose more active sites but also guarantees the excellent 

bifunctionality by integrating the cobalt phosphide and cobalt oxide, which are specifically active 

to OER and ORR, respectively. Moreover, the synergistic effects of these nanoparticles, as well as 

the superior structural features, can further boost the catalytic activities. As a result, CoO/CoxP 

outperforms the state-of-art non-noble metal catalysts and the noble metal benchmark with a half-

wave potential of 0.86 V for ORR and a low potential of 1.60 V to generate a current density of 10 

mA cm-2 for OER. The promising bifunctional catalytic activity thus makes it highly promising to 

be implemented in rechargeable Zinc-air battery.  
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1. Introduction 

Over the past decades, the continuous consumption of energy, the environmental pollution as 

well as the exhaustion of fossil fuels prompts the development of alternative energy storage and 

conversion systems such as Li-ion batteries, fuel cells, metal-air batteries, etc1, 2. Since the 

electrochemical batteries have been successfully applied in portable devices in the 1990s, the fast 

development of smart devices and electric vehicles technologies pave the way to invent more 

powerful, stable, and efficient energy storage systems3. Among various kinds of batteries, the 

rechargeable metal-air battery is one of the most satisfactory choices for its high energy density, 

low cost and the plentiful fuel, air.4, 5. Because the cathode of a metal-air battery is air without a 

solid electrochemical active material loaded on the electrode, the metal anode is the key factor to 

determine the capacity of the metal-air battery. Among various options of metals with the potential 

of serving as the metal anode, Li and Zn have attracted most of the interests of researches5. 

Unfortunately, Li-O2 battery requires an inert atmosphere to prevent the highly reactive Li metal 

anode from reacting with the moisture in the air during the process of fabrication and operation 

Moreover, the organic electrolytes of most Li-air battery systems are expensive and 

flammable6. By contrast, zinc with the advantages of having decent energy density (1218 Wh kg-

1), abundant and non-precious zinc metals could be a more suitable metal anode7. Moreover, Zn-

air batteries possess other positive properties such as using more economical and eco-friendly 

aqueous electrolytes, having suitable working voltage (~1.66 V), intrinsic safety, etc8.  
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Even though the reactions between metals and oxygen are spontaneous, the sluggish kinetics 

of the oxygen reactions at the cathode usually cause large overpotential during charging and 

discharging process which retards the commercialization of Zin-air batteries. To overcome the 

kinetic issue, catalysts are necessitated to accelerate oxygen electrocatalysis. Noble metals like Ir, 

Ru, Pt, and their composites are commonly recognized as the efficient catalysts due to their 

outstanding catalytic performance9. However, the high cost and limited reserves of noble metals 

restricted their widespread application. Motivated by this challenge, substantial researches have 

been done to exploit inexpensive alternatives such as transition metal oxide catalysts10-12, transition 

metal phosphide catalysts13-15, perovskite catalysts16, layered metal hydroxide catalysts17, etc.  

Metal-organic frameworks (MOFs) are a class of crystalline compounds consisting of metal 

ions coordinated to organic ligands to form one-, two-, or three- dimensional materials with well-

defined morphologies, large specific surface area, and well-dispersed metal nanoparticles. The 

unique compositional and morphological features enable MOF and MOF-derived materials to be 

utilized as functional materials for energy conversions based on ORR, OER, HER electrocatalysis, 

etc18-20. In recent years, emerging works have proved that the advantages of intrinsically good 

reactivity, optimized electronic conductivity, and boosted ionic and gas diffusion of MOF-derived 

catalysts help to improve the bifunctionality of the electrocatalysts21, 22. 

In this work, Cobalt(II) nitrate hexahydrate serves as the source of metal ions, while hexamine 

acts as an organic ligand, and the derived Co-hexamine coordination framework is then utilized as 

an efficient two-dimensional precursor. A following low-temperature phosphorization method was 

carried out to synthesize CoO/CoxP heterostructured nanoparticles. This design combines the 
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advantages of cobalt phosphide and CoO, which possess excellent OER and ORR activity, 

respectively. Besides, the synergistic effects of these nanoparticles, as well as the superior 

structural features, promote the catalytic activities. Detailed results and analysis will be presented 

in the results and discussion section. 

 

1.1. Thesis Organization 

Section 2 will describe the fundamental knowledge of oxygen reduction reaction, oxygen 

evolution reaction. Besides, MOF and MOF-derived bifunctional electrocatalysts will be 

demonstrated by order of classification, following with a short literature review.  

Section 3 will include all of the characterization techniques applied to obtain the results. The 

characterization methods consist of physical characterization techniques, such as TEM, SEM, 

XRD, and XPS, as well as electrochemical characterization techniques, for example, LSV. 

Section 4 describes the motivation of designing the Co-HMT-derived CoO/CoxP 

heterostructure catalyst and the experimental methods. And then Section 5 provides the results and 

corresponding discussion. As the last part of the thesis, Section 6 presents the conclusion of the 

project and posts future works.  
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2. Background 

2.1. Oxygen Reduction Reaction 

2.1.1. Mechanism of ORR 

Oxygen reduction reaction has been extensively investigated over the last century for it plays 

an important role in energy conversion, particularly in the field of metal-air batteries and fuel cells. 

In general, the ORR in the cathode of zinc-air battery proceeds through the following steps: 

(1) O2 diffuses and adsorbs on the surface of catalyst; 

(2) Electrons transfer from anode to the cathode and O2 is reduced at the catalyst/oxygen 

interface; 

(3) The reduction product desorbs from catalyst surface and then transfers to the zinc 

anode via the electrolyte 

Regarding the exact mechanism of the oxygen reduction reaction, oxygen reduction in 

aqueous solution mainly follows two different pathways: either a direct 4-electron reduction 

pathway from oxygen to water or an indirect 2-electron reduction pathway from oxygen to 

peroxide. For the indirect pathway, the unfavorable intermediate product of corrosive peroxide 

may cause low electrochemical energy efficiency and instability23-25. The other direct 4-electron 

pathway is considered to be the most desirable way. The competition of these two pathways is 

highly associated with the selectivity of the catalyst26. And from the zinc-air battery point of view, 

ORR catalysts with high 4-electron pathway selectivity are critical for batteries achieving high 
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working efficiency and energy density27.  

The thermodynamic potential values of ORR is various at different pH values. Thus, the 

reaction can be presented in different forms relying on the medium at which the reaction takes 

place. At the alkaline electrolyte, two different pathways can be written as follows (all of the 

potentials are versus SHE): 

𝑂2(𝑔) + 2𝐻2𝑂(𝑎𝑞) + 4𝑒− → 4𝑂𝐻−(𝑙)        E0= +0.401 V                    (1) 

𝑂2(𝑔) + 𝐻2𝑂(𝑎𝑞) + 2𝑒− → 𝐻𝑂2
−(𝑙) + 𝑂𝐻−  E0= -0.076 V                      (2) 

At the acidic medium, oxygen reactions are represented as the equation (3) and equation (4): 

𝑂2(𝑔) + 4𝐻+(𝑎𝑞) + 4𝑒− → 2𝐻2𝑂(𝑙)          E0= +1.229 V                   (3) 

𝑂2(𝑔) + 2𝐻+(𝑎𝑞) + 2𝑒− → 𝐻2𝑂2(𝑙)          E0= +0.670 V                   (4) 

For peroxides produced in 2-electron transfer pathway, they are unstable and can be further 

reduced in the acidic solution (equation (5)), and in the alkaline electrolyte (equation (6)): 

𝐻2𝑂2(𝑎𝑞) + 2𝐻+(𝑎𝑞) + 2𝑒− → 2𝐻2𝑂(𝑙)      E0= +1.770 V                    (5) 

𝐻2𝑂(𝑙) + 𝐻𝑂2
−(𝑎𝑞) + 2𝑒− → 3𝑂𝐻−(𝑎𝑞)     E0= +0.870 V                     (6) 

Because catalyzed ORR is a multi-step reaction, investigating the rate-determining step is 

more meaningful than the overall reaction rate. In general, one typical mechanism for the oxygen 

reduction reaction occurs in the alkaline electrolyte has been presented for metal-based 

electrocatalysts, which involves the formation of several intermediates including O2*, HOO*, O*, 

and HO* (* represents a single surface active site): 

∗ +𝑂2 → 𝑂2 ∗                                                            (7) 

𝑂2 ∗ +𝐻2𝑂 + 𝑒− → 𝐻𝑂𝑂 ∗ +𝑂𝐻−                                           (8) 
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𝐻𝑂𝑂 ∗ +𝑒− → 𝑂 ∗ +𝑂𝐻−                                                  (9) 

𝑂 ∗ +𝐻2𝑂 + 𝑒− → 𝐻𝑂 ∗ +𝑂𝐻−                                              (10) 

𝐻𝑂 ∗ +𝑒− → 𝑂𝐻−                                                         (11) 

The generation of those oxygenated adsorbates plays a vital role in determining the catalytic 

performance. A French chemist Paul Sabatier presented a qualitative concept in electrocatalysts 

named Sabatier principle. As described in principle, a promising catalytic activity requires neither 

too strong nor too weak interactions between the catalysts and the substrates28. Extremely strong 

interactions result in the low substrate, intermediates, or products dissociation rates. Thus, further 

reactions will not be available on the catalytic surface. On the other hand, too weak interactions 

hinder the formation of chemical bonds between the catalyst and substrate, hence no reaction will 

happen. Therefore, obtaining the energy barriers of different elementary reaction steps mentioned 

above is important for identifying the rate-determining step of the overall ORR. However, it’s 

unpractical to get the energy barriers by the experimental method, and researchers usually 

accomplish them via computational methods, for example, the density functional theory29, 30.  

Specifically, the oxygen reaction electron-transfer number is calculated by the Koutecky-

Levich (K-L) equation, which is described as equation (26) and equation (27) in the experimental 

section. The K-L equation expresses the relationships between the measured electric current 

density form an electrochemical reaction and the kinetic activity as well as the mass transport of 

reactants. Since the loading on the electrode is low enough, the actual reactive surface area can be 

approximately equal to the area of the electrode. Thus, the equation includes the terms of measured 

current, the kinetic current, and the mass transport current. Among them, the kinetic current can 
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be modeled by BV equation, while the mass transfers current relies on the electrochemical setup 

and amount of stirring. Generally, the data is collected by measuring the current at different rotation 

speeds. As shown in Figure 1, the inverse measured current is plotted versus the inverse square 

root of rotation speeds. The slope represents the inverse Levich constant, and then the electron-

transfer numbers can be obtained by extrapolating the equation (27). 

 

Figure 1: Koutecky-Levich plots 

 

2.1.2. Kinetics of ORR 

It’s desirable for the ORR to take place at a potential close to the thermodynamic potential. 

To get close to the thermodynamic potentials, the charge transfer kinetics for oxygen reduction 

reaction must be as quick as possible. In electrochemistry, the over-potential usually used to 
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describe the kinetics of reactions. Overpotential stands for the potential difference between a 

thermodynamically determined reduction potential of a half-reaction and the potential where the 

redox event is experimentally obtained31. For ORR, the onset potential is a very important index 

used to define the over-potential of redox reaction occurring on the surface of the electrodes 

modified by catalysts, the equation shows as follows: 

𝜂 = 𝐸𝑜𝑛𝑠𝑒𝑡 − 𝐸𝑒𝑞                                                        (12) 

in which 𝐸𝑜𝑛𝑠𝑒𝑡 represents the potential at which the ORR current starts to rise and 𝐸𝑒𝑞 is 

the equilibrium potential. The difference 𝜂 is called over-potential or polarization. There are three 

distinct types of over-potential (polarization) as shown in equation (13): 

𝜂 = 𝜂𝑎𝑐𝑡 + 𝜂𝑐𝑜𝑛𝑐 + 𝑖𝑅                                                    (13) 

in which: 

𝜂𝑎𝑐𝑡  is the activation over-potential (polarization), which is the potential difference 

describing the electron transfer kinetics of an electrochemical reaction, so it can also be called 

“electron transfer potential”.  

𝜂𝑐𝑜𝑛𝑐 is the concentration over-potential (polarization). This potential difference is induced 

by the concentration differences of charge-carriers between solution and the electrode surface. 

𝜂𝑐𝑜𝑛𝑐 describes the mass transfer limitations related to the electrochemical process. 

𝑖𝑅  is the resistance over-potential. This function includes aspects of surface polarization 

capacitance, electrolyte diffusion, as well as some other counter electromotive forces. 
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Figure 2: Diagram shows the polarization curve of PEMFC32 

 

As shown in Figure 2, 𝜂𝑎𝑐𝑡  is present and most dominant at small polarization current 

density. As for the 𝜂𝑐𝑜𝑛𝑐, it’s always predominant at large polarization current density, in this 

region, the reaction rate relies on the ability of charge-carriers to diffuse to the electrode surface.  

The Butler-Volmer (BV) equation (equation (14)) describes the relationship of the over-

potential and the net current at equilibrium, which is one of the most fundamental relationships in 

electrochemistry.  

𝑗 = 𝑗0 {𝑒𝑥𝑝 (𝛼
𝑛𝐹

𝑅𝑇
𝜂) − 𝑒𝑥𝑝 (−[1 − 𝛼]

𝑛𝐹

𝑅𝑇
𝜂)}                                  (14) 

where 𝑗 stands for the ORR current density, 𝑗0 is the exchange current density as the current 

density in both the cathodic and anodic directions at the equilibrium potential, n is the electro-

transfer number during the reaction process, 𝛼 is the transfer coefficient, 𝜂 is the over-potential 

mentioned above, 𝐹 is the Faraday constant, 𝑅 is gas constant, 𝑇 is the Kelvin temperature. 
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The two terms of BV equation reflect the low over-potential (𝜂𝑐𝑜𝑛𝑐) region and the high over-

potential (𝜂𝑎𝑐𝑡) region, respectively. What’s more, because of the irreversibility nature of oxygen 

reactions, the generated reaction currents at higher over-potentials are more appropriately be 

presented as: 

𝑗𝑎 = 𝑗0𝑒𝑥𝑝 (𝛼
𝑛𝐹

𝑅𝑇
𝜂)                                                      (15) 

𝑗𝑐 = −𝑗0𝑒𝑥𝑝 (−𝛼
𝑛𝐹

𝑅𝑇
𝜂)                                                   (16) 

in which the subscripts “a” and “c” stand for anodic and cathodic, respectively. 

And then the BV equation can simplify to the Tafel equation which is specifically the 

semilogarithmic form of equation (15) and (16), as shown in equation (17): 

𝜂 =
𝑅𝑇

𝛼𝐹
𝑙𝑛𝑗0 −

𝑅𝑇

𝛼𝐹
𝑙𝑛𝑗 = 𝑎 − 𝑏𝑙𝑛𝑗                                            (17) 

where: 

a and b are Tafel constants (for a given reaction and temperature), the values of these constants 

usually depend on the properties of the material, the condition of the electrode surface, the 

electrolyte components, temperature, and so on. Tafel equation plays an important role in the 

determination of the kinetics of the electron-transfer process. A plot of over-potential versus 𝑙𝑛𝑗 

known as the Tafel plot, thus, the constant b is also called Tafel slope. The value of Tafel slope is 

reaction mechanism indicator, which can directly provide the information to judge the catalytic 

activity. Usually, the smaller the value of the Tafel slope, the better the oxygen reaction activities. 

On the other hand, with higher Tafel slope, the over-potential increases faster with current density. 
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2.1.3. Other Important Concepts of ORR 

Figure 3. demonstrates a typical ORR polarization curve, from which several ORR kinetics 

performance indicators are indicated. 

 

Figure 3: Typical ORR polarization curve of Pt/C catalyst from RDE system33 

 

𝑗𝐿 is the diffusion-limiting current density, it occurs at the concentration polarization region. 

Under 𝑗𝐿 , the reactant concentration on the electrode surface close to zero, which means the 

oxygen reaches the fastest diffusion rate. According to equation (20), for a certain electrode 

reaction (electron-transfer number as a constant), the diffusion-limiting current density is only 

determined by the rotation speed. As a result, for different materials, the oxygen reductions take 

place via different pathways which will reflect on the electron-transfer numbers, resulting in 
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different diffusion-limiting current densities. In conclusion, 𝑗𝐿 is the intrinsic property of certain 

catalyst material. Usually, the higher 𝑗𝐿 observed, the higher the current flow through the unit 

area, the faster the reaction dynamics. 

The onset potential (Eonset) is usually defined as the potential at the current density of 0.1 mA 

cm-1, while the half-wave potential (E1/2) is the potential at the half diffusion-limiting current 

density. Both of these potentials are intrinsically the same, which are applied to measure the over-

potential of the reaction. However, the onset potential describes more about the thermodynamics 

of the reactions, while the half-wave potential reflects comprehensive activities of the 

electrocatalysts from the thermodynamic and kinetic aspects.  

 

2.2. Oxygen Evolution Reaction 

The evolution of oxygen in the alkaline electrolyte is a relatively ambiguous process, and thus, 

the reaction pathways differ according to the catalysts and active sites34. Generally accepted OER 

reaction mechanisms comprise the reverse process of ORR via four consecutive protons and 

electron transfer steps35. The mechanisms equations are presented below: 

∗ +𝑂𝐻− → 𝑂𝐻 ∗ +𝑒−                                                    (18) 

𝐻𝑂 ∗ +𝑂𝐻− → 𝑂 ∗ +𝐻2𝑂 + 𝑒−                                            (19) 

𝑂 ∗ +𝑂𝐻− → 𝐻𝑂𝑂 ∗ +𝑒−                                                 (20) 

𝐻𝑂𝑂 ∗ +𝑂𝐻− → 𝑂2 ∗ +𝐻2𝑂 + 𝑒−                                          (21) 

𝑂2 ∗→∗ +𝑂2                                                            (22) 
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For the oxygen reduction reaction, it occurs at the three-phase interface of catalyst-oxygen-

electrolyte. As for the oxygen evolution reaction, the mechanism mainly revels at a two-phase 

reaction zone (oxide surfaces and oxidized metal surfaces). The reaction kinetics of OER is similar 

to the ORR, which is greatly controlled by the binding energy of adsorbing oxygen species on the 

reactive sites. Understanding the relations of the oxygen evolution reaction activities and the 

difference of binding strengths between oxygen intermediates of various classes of catalyst 

materials through theoretical calculation can help to develop active electrocatalysts for OER36.  

The sluggish four-electron transfer process of OER and the difficult oxygen-oxygen double 

bond formation are the main bottlenecks of improving OER efficiency, which requires active 

electrocatalysts. The state-of-the-art oxygen evolution catalyst are noble-metal-based catalysts, 

such as Ir, Ru, IrO2, and RuO2, but are fairly expensive. It’s highly impressive to replace these 

high-cost noble metal catalysts by a class of catalyst materials consisting of transition-metal oxides 

and phosphides37. For these materials, surface metal cations usually serve as the OER active sites, 

which can combine with those oxygen species during the OER to form stable intermediates. These 

intermediates on the metal surfaces generate the activation barriers, which influence the rate-

determining step and then the OER rates.  

Analogous to the ORR, the OER performances are judged by the overpotential and Tafel slope. 

The potential at a current density of 10mA cm-2 is the criterion to evaluate the thermodynamic 

performances of different OER catalysts, thus, the overpotential of oxygen evolution reaction is 

the difference between this criterion potential and standard hydrogen potential. On the other hand, 

as reported in the ORR section, the value of the Tafel slope is the reaction mechanism indicator, 
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which can directly provide the information to judge the OER catalytic activity. Similarly, the 

smaller Tafel slope indicates better catalytic kinetics. 

 

2.3. MOF-Derived Bifunctional ORR&OER Catalysts 

Most of the MOF-derived oxygen electrocatalysts are carbon-based catalysts with satisfying 

electronic conductivity and structural porosity. The advantages and shortcomings of three main 

types of MOF-derived materials and their design methodologies are demonstrated in Figure 42. 

 

Figure 4: Illustration of the benefits and drawbacks of MOF-derived oxygen catalysts and the 

developing strategies2 

 

As we can see from the image, carbon-based MOF-derived catalyst usually have promising 

electronic conductivity and high porosity. Specifically, Metal-free carbon catalysts are lacking 

ORR and OER activities. As for the transition metal-nitrogen-carbon catalysts, they always 

demonstrate satisfactory ORR catalytic activity while poor OER activity. The carbon-based 

transition metal compound catalysts outperform these three types of catalysts by their promising 
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bifunctionality. In the next part of this section, literature reviews will be presented. 

 

2.3.1. Transition Metal-Nitrogen-Carbon Composites 

This type of catalyst consists of transition metal-nitrogen-carbon materials, transition metal 

alloys, and even single transition metal atom catalysts. In 2016, Xia’s group reported a method to 

convert Co-ZIF-67 into a high graphitized degree hollow framework consisting of cobalt particles 

decorated N-doped CNT frameworks38. A void-abundant and N-doped CNTs frameworks shell is 

synthesized by the calcination of the ZIF precursor. The as-prepared catalyst exhibited lower ORR 

overpotential than commercial Pt/C catalyst. This work paved the way of designing various MOF-

derived transition metal-nitrogen-carbon composites bifunctional electrocatalysts. 

Among all the TM-N-C mono-functional catalyst materials, Co-N-C materials are well 

investigated for bot oxygen reduction reaction and oxygen evolution reaction applied for either 

primary or rechargeable zinc-air batteries. Co-N-C electrocatalysts can be prepared using different 

MOF precursors, such as ZIF-67 (with a Co node)39, ZIF-8 (with a Zn node)40, core-shell ZIF-

8@ZIF-6741, DUT-58 (Co) MOF42, enantiotopic chiral 3D MOFs43, 44, etc. Except for cobalt, other 

transition metals were also synthesized into TM-N-C, such as Cu-N-C45 and Fe-N-C46.  

In fact, the activity of TM-N-C composites catalysts depends on not only transition metal-

nitrogen sites but also the electronic structure of carbon, which can be optimized by modifying the 

transition metal core. Transition metal alloys such as NiFe alloy47, CoFe alloy48, FeCu alloy49, 

ZnCo alloy50, etc, have been developed for ORR and OER bifunctional electrocatalysts. Single 
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transition metal atom catalysts usually exhibit promising activity towards oxygen reactions for the 

single-atom metal can provide improved active sites in the aspects of quantity and quality. In the 

past ten years, extensive investigations have focused on designing single-atom electrocatalyst even 

though it’s difficult to precisely control the synthesis process and characterize the single-atom 

active sites. 

 

2.3.2. Carbon-Based Transition Metal Compounds 

Although TM-N-C composites electrocatalysts are promising ORR catalysts, as illustrated in 

Figure 4, they always suffer from high OER overpotential. To design high-efficiency bifunctional 

catalysts requires further improvement of the OER activity. Carbon-based transition metal 

compounds including metal oxides, metal hydroxides, metal phosphides, metal nitrides, metal 

sulfides, and metal carbides have been developed. Figure 5 shows the strategies for gaining carbon-

based transition metal compound materials from metal-organic framework precursors. 
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Figure 5: Strategies for gaining MOF-derived carbon-based transition metal compound2 

 

The first way is to directly obtain carbon-based transition metal compound materials from the 

calcination of MOF precursors51, 52. The second method is to convert or partially transfer the metal 

particles by well-conditioned thermal reactions53-55. Another method is to generate metal 

compounds through coating, depositing, or other integration methodologies11, 56, 57. 

 

2.3.3. Metal-free Carbon Catalysts 

Comparing with the previous two types of MOF-derived electrocatalysts, more studies on the 

bifunctionality of metal-free carbons are still required. Some pioneering investigations on this 

catalyst materials provide valuable experience for its further development. Usually, the metal-free 

carbon materials are obtained by the high-temperature sintering process and then leaving N-doped 
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carbon frameworks with highly-dispersed pores as well as extremely high surface areas. For this 

strategy, ZIF-8 is the most popular precursor for Zn intermediates are likely to evaporate under 

high temperature58. Metal-free carbon catalyst is a sort of promising ORR electrocatalysts, while 

it suffers from insufficient OER activity. Other than generating N-C active sites by nitrogen doping, 

several other heteroatoms have also been introduced such as boron59 and phosphorus60, for 

improving the OER activity of MOF-derived metal-free carbon catalysts. 

 

3. Physical and Electrochemical Characterization Methods 

This section introduces the physical and electrochemical characterization techniques which 

are important tools to help to quantitatively compare samples. The physical characterization 

methods including transmission electron microscopy (TEM), scanning electron microscopy (SEM), 

X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) are used to determine the 

crystal structure, morphology, and chemical composition. The electrochemical measurement by 

the three-electrode testing system is used to reveal the thermodynamic and kinetic activities of the 

as-prepared catalysts towards ORR and OER. 

 

3.1. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is probably one of the most popular and versatile methods 
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available for viewing the topological features, structure, and atomic compositions by utilizing 

focused high-energy electrons beam scanning the material surface. SEM can analyze both organic 

and inorganic samples, which enables its widespread application across various fields (e.g., 

biology and materials science). Benefiting from the short wavelength of electrons (1.23 nm) and 

accompanied by electromagnetic condenser lenses, SEM usually can obtain promising 

magnification (50Ⅹ-200000Ⅹ) and better resolution (< 1 nm) to reveal the surface morphology 

of nanomaterials. SEM requires that the scanned material surface must be electronically 

conductive. For those unconducive samples, conductive nanoparticles like gold and carbon are 

usually sputtered on the surface of them to fulfill this requirement. 

As shown in Figure 6, the operation of SEM uses a beam gun to release electrons serving as 

an illumination source. And then, the electrons are accelerated up to dozens of keV energy. After 

that, the high energy electron beams are focused into the electromagnetic lens. The finely focused 

beams are then injected to the surface of the specimen. Generally, several types of electrons are 

generated when the electrons hit the specimen surface, revealing various information of the sample. 

The secondary electrons, produced by the specimen atoms ionization, can be translated into the 

topography and morphology signals. Backscattered electrons escaping from the material surface 

usually reveal the composition information by showing different contrasts. During the deexcitation 

process, another type of electron called Auger electrons is produced by absorbing the released 

energy, which provides the information associated with the chemical composition of the top few 

atomic layers of the sample. 

Electromagnetic lenses are introduced for the purpose of focusing the spread beams. 
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Specifically, the electromagnetic lenses are made by coils and wires. The pathway of electron 

beams is simply adjusted when they are going through the coils with flow current. The first lens is 

called anode plate which is used to diverge the electron beams. Then two condenser lenses and an 

aperture are applied for the convergence and collimation of the beams. Besides, the parallel beams 

are focused into a fine probe on the sample surface by an objective lens with certain 

demagnification. 

 

Figure 6: Schematic diagram of a scanning electron microscope (SEM) 

 

 



21 

 

3.2. Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique with higher resolution 

(< 1 Å) and higher magnification (500Ⅹ-2000000Ⅹ) that widely applied to directly investigate 

materials for imaging their morphological and crystallographic information, such as the crystal 

lattice structure and atomic-scale defects. Same as SEM, the TEM is usually used in a wide range 

of various fields such as in-situ reaction investigation, nanotechnology, biology, etc. 

 
Figure 7: Schematic diagram of a transmission electron microscope (TEM) 
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Figure 7 presents the components of a TEM which can be mainly classified into three parts. 

Viewing from the top, the condenser lens system consists of an electron gun, two condenser lenses, 

and an aperture. The electrons are emitted from the electron gun through Schottky, thermionic, or 

field emission. The condenser system determines the illumination of the specimen by controlling 

the aperture. Specifically, the electron beams transmit through the specimen after being focused 

by those electromagnetic lenses. The second part is called the imaging system which is composed 

of an objective lens, an objective aperture, a selected area diffraction aperture, an intermediate lens, 

a projector lens, as well as an observation system for the images and diffraction pattern. The 

distributed electrons finally hit on a fluorescent screen which will display an image through a 

photographic emulsion. Moreover, for modern technology, a digital camera is usually installed in 

TEM instruments to record he obtained images followed with the analysis by PCs. Last but not 

least, to keep the chamber clean and generate controllable electron beams, a vacuum system is 

always needed. Typical, the specimen must be less than 100 nm thick and prepared on an ultra-

thin Cu grid. During the operation, as the electron beams are interacting with the specimen atoms, 

simultaneously undergoing elastic and inelastic scattering.  

Besides imaging characterizations and atomic morphology of the material’s surface, the 

chemical composition can be obtained by applying the energy-loss spectrum of electron-energy-

loss spectroscopy (EELS), and the crystal structures coupled with lattice parameters can be 

observed by the selected area electron diffraction (SAED), respectively. 
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3.3. X-ray Diffraction (XRD) 

XRD is a popular technique that is used to investigate crystal structures and chemical 

components of the materials. The basic operation principle is to utilize the feature that X-ray can 

be diffracted in the crystal lattice to generate an interference pattern. And then the intensities of 

those patterns will be detected and collected as the information of the lattice planes. Basically, the 

XRD consists of three elements: an X-ray tube, a sample holder, and an X-ray detector. The X-ray 

source of XRD is usually copper and molybdenum. As shown in Figure 8, the detector and X-ray 

tube rotate together, or only X-ray tube moves. When the X-ray tube irradiates with a certain 

incident angle, the corresponding diffraction angles are detected. Therefore, the information of the 

lattice is related to both incident position and intensity. 

 
Figure 8: Schematic diagram of XRD layout 
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Figure 9: Operational diagram of Bragg’s Law 

 

Bragg’s law is always used to relate the lattice spacing and X-ray incident angles, which is 

presented in the following well-known brief equation: 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆                                                             (23) 

in which: d is lattice spacing, 𝜃 stands for the X-ray incident angle (half of the peak position), 

n is an integer, and 𝜆 represents X-ray wavelength. 

Furthermore, from the XRD patterns, the grain size of the sample powder can be deduced 

from the Debye-Scherrer equation which is given below: 

𝜏 =
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
                                                            (24) 

where: 𝜏 is the mean size of the ordered crystalline, k is a shape factor, 𝛽 is line broadening 

at half of the maximum intensity of the peak, 𝜃 stands for the X-ray incident angle (half of the 

peak position), and 𝜆 represents X-ray wavelength. 
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3.4. X-ray Photoelectron Spectroscopy (XPS) 

XPS is a method that provides information on the elemental composition, empirical formula, 

electronic structure of atoms, chemical and electronic states of the certain elements exist in a 

material. What’s more, except for showing what elements exist within a film, it also demonstrates 

what elements they are bonded to.  

The basic principle of XPS is mainly related to energy conservation. X-rays are firstly 

generated and hit the sample, resulting ejected electrons are captured by the detectors and analyzers 

to form XPS signals. The schematic of the XPS setup is shown in Figure 10. Especially, the total 

energy introducing to the system is equal to the X-ray’s energy before bombarding at the sample, 

which can be calculated by the known wavelength. After interacting with the sample atoms, 

electrons will be released from the sample with new kinetic energy according to the photoelectric 

effect. As a result, it’s easy to obtain the amount of energy that is absorbed by the atoms of the 

sample. The resulted absorbed energy value represents the binding energy (also called ionization 

energy) of the atom, The binding energy tells us the orbitals from which those electrons are 

activated and emitted and the information of the chemical bonds. What’s more, the electrons 

configurations and fingerprints for atoms of the material can be obtained due to distinct binding 

energies of different electron shells. 
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Figure 10: Basic components of an XPS system 

 

3.5. Electrochemical Measurements 

To evaluate the electrochemical performance of the as-prepared catalysts, a serious of tests 

were carried out in a three-electrode system.  

Voltammetry experiments are used in analytical chemistry by measuring the current as the 

potential is varied. To carry out such an experiment, one requires at least two electrodes. The first 

one is a working electrode, which applies a certain desired potential and manages to generate 

charges transfer from and to the catalyst material on it. The other electrode is an auxiliary electrode 

which plays the role of supplying electrons as well as a reference potential to the working electrode. 

However, this two-electrode system has some disadvantages. One of the most serious problems is 

that for a single electrode, it’s hard to maintain a constant and stable potential while passing current 

to counter the redox reactions occurring at the working electrode. The three-electrode system 
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provides a possible way to solve this issue. A reference electrode and a counter are introduced into 

the system for the functions of providing a reference potential versus working electrode and 

supplying electrons, respectively. For the reference electrode, without current passing by, it only 

serves as a reference in measuring the working electrode’s potential. On the other hand, all the 

current required to balance the current occurring at the working electrode during the redox 

reactions passes through the counter electrode. The three-electrode system is usually designed as 

a rotating disk electrode (RDE), which is shown in Figure 11. 

 

Figure 11: Three-electrode system setup 

 

All the electrochemical characterization results are gained by applying linear sweep 

voltammetry tests in RDE. Linear sweep voltammetry is one of the most popular voltammetric 

methods to evaluate the catalytic activities towards ORR and OER, where the working electrode 

current is measured and the potential between the reference and working electrodes is swept 

linearly with time. As the potential is applied to the working electrode, the molecules on the surface 
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of the electrode are oxidized or reduced and then travel away to let new molecules come and 

contact with the material surface. At the same time, the electrons flow in or out of the electrode 

generate a current which directly evaluates the electrons exchange rates via the electrode-

electrolyte interface. When the kinetic current becomes higher than the diffusion rate of oxidizing 

or reducing species between electrolyte and electrode surface, the current reaches a plateau. Taking 

ORR as an example, Figure 3 shows an LSV result of ORR of a certain catalyst. As described 

before, from LSV data, we can evaluate the thermodynamic and kinetic performances of the 

catalysts by half-wave potential, onset potential, diffusion-limiting current density, K-L plot, Tafel 

slope, etc.  

During the operation process, the rotation of the electrode aims to keep the dynamic stability 

of the oxygen concentration on the electrode surface. The electrode reactions consist of five 

elementary steps: mass transfer, adsorption, surface reaction, desorption, and mass transfer. 

Oxygen reduced extremely fast on the electrode surface, which means the oxygen concentration 

close to the electrode surface drop fast. When oxygen is enough, the current is controlled by 

reaction dynamics, where the Faradic current (current induced by redox reactions) increases with 

the enlarging of overpotential. On the other hand, when the oxygen concentration on the electrode 

surface isn’t high enough, the Faradic current won’t increase with larger overpotential, and the 

reaction current is mainly determined by the oxygen transfer process. Thus, the electrode rotation 

speed determines the thickness of the diffusion layer on the electrode surface, where oxygen 

concentration keeps dynamic stability. The higher of the speed, the larger amount of oxygen 

moving from the bulk electrolyte to the electrode surface, thus, more abundant reactants and larger 
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reaction current.  

 

4. Experiment and Characterization 

Of various types of methods used to mitigate the oxygen reaction overpotential, MOF-derived 

metal oxide and metal phosphides have shown great promise. Some researches have demonstrated 

that cobalt phosphide has a good OER activity61, 62. While on the aspect of ORR activity, it has 

been reported the highly exposed (211) crystal face of CoP makes it an efficient catalyst63. 

However, in general, cobalt phosphides are lacking activities towards ORR than other efficient 

electrocatalysts. Up to now, a lot of works have been done to illustrate the outstanding ORR 

activity of cobalt oxide64, 65. However, its OER activity is rather insufficient for poor electronic 

conductivity and structural stability66. Zhu’s group revealed that the conjugate interface between 

CoP and CoO result in the redistribution effect of electrons, promotes the adsorption of OH- anions, 

and thus synergistically optimizes Gibbs free energies for the OER process15. At the same time, 

the interdoping effect of O-P bond between the interface improves the electron transfer, thus 

enhances the ORR activity. 

The purpose of this work is to design a promising bifunctional electrocatalyst for ORR and 

OER. In this section, Co-HMT-derived CoO/CoxP heterostructured nanoparticles catalyst is 

demonstrated, as well as three contrast samples including pure CoO nanoparticles, CoxP 

nanoparticles, and physically mixed CoO+CoxP catalyst. Particularly, the CoO/CoxP 
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heterostructured nanoparticles catalyst can achieve better bifunctionality than other samples 

including benchmark Pt/Ir catalyst. 

 

4.1. Preparation of the CoO/CoxP heterostructured nanoparticles 

Typically, 2.07g cobalt nitrate (Co(NO3)2·6H2O) and 1g hexamine (HMT: C6H12N4) with a 

molar ratio of 1:1 were dissolved in 30ml and 50ml absolute ethanol separately. The next step was 

to add the former solution dropwise into another one under vigorous stirring. We also investigate 

the effect of Co(NO3)2/HMT molar ratio on the final morphology of the product, where we only 

changed the adding amount of Co(NO3)2·6H2O with the quantities of HMT and ethanol kept 

constant. Upon the solutions were mixed, the pink precipitate was immediately generated, which 

demonstrated the formation of Co-HMT nanosheets. The mixed solution was further kept stirring 

for 12 h for full reaction. After that, the designated Co-HMT bulk crystal was gained by vacuum 

filtration and washed by ethanol for several times to remove unreactive species, and then dried at 

80℃ overnight in a vacuum oven. 

Sodium hypophosphite (NaPH2O2) was selected as the P source for the subsequent 

phosphorization process. Specifically, the Co-HMT nanosheets and NaPH2O2 were mixed with a 

certain ratio (Co/P=1:10), and then directly calcinated at 400℃ for 2 h in an Ar atmosphere at a 

heating rate of 5℃ min-1. The obtained final products were designated CoO/CoxP. The schematic 

of the synthesis procedure is illustrated in Figure 12a and b. 
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Step 1: Dissolve and mix the metal salt and organic ligand into ethanol and stir for 12h, then obtain 

the precursor by vacuum filtration, finally dry at 80℃ overnight in a vacuum oven. 

 

Figure 12: Schematic of the preparation of Co-HMT precursor 

 

Step 2: Calcinate the precursor with NaPH2O2 at 400℃ for 2 h in an Ar atmosphere at a heating 

rate of 5℃ min-1 

 

Figure 13: Schematic of the preparation of CoO/CoxP catalyst 
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4.2. Materials Characterization 

The microscopic morphology and structure of the as-prepared catalyst materials were carried 

out by transmission electron microscopy (TEM, JEOL 2010F) and scanning electron microscopy 

(UltraPlus FESEMs (with EDX/OIM); FEI Quanta Feg 250 ESEM (with EDX)). X-Ray 

Diffraction (A Rigaku MiniFlex 600 X-ray diffractometer with the source of a Cu Kα irradiation) 

was applied to study the crystal structures. X-ray photoelectron spectroscopy (XPS) data was 

collected by a Thermal Scientific K-Alpha spectrometer to investigate the surface chemical 

environment of the samples. A Gaussian-Lorentzian mix is used for analyzing XPS peaks. “Shirley” 

type background was selected as the background while analyzing. Meanwhile, the binding energy 

scale was calibrated to fix the C sp3 peak at 284.8eV67.  

 

4.3. Electrochemical Performance Measurement  

The electrochemical performance of as-prepared catalysts on ORR and OER was carried out 

on an electrochemical workstation (Biologic VSP 300). The oxygen reactions were measured in a 

three-electrode glass cell system in 0.1M KOH solution under standard pressure and temperature. 

A saturated calomel electrode (SCE) and graphite rod were used as the reference and counter 

electrodes, respectively. The working electrode is a glassy carbon rotating disk electrode (RDE) 

with an effective surface area of 0.196 cm-2. All of the tested results were finally calibrated to the 

reversible hydrogen electrode (RHE) based on the Nernst equation:  
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𝐸𝑅𝐻𝐸 = 𝐸𝑆𝐶𝐸 + 0.241 + 0.059 × 𝑝𝐻                                          (25) 

To obtain a homogeneous catalyst ink, 5mg of the as-developed catalyst was dispersed into 

the 1000µL solution consisting of 960µL ethanol and 40µL Nafion, followed by ultrasonication 

for 30min. Then, 21µL of the as-prepared ink was pipetted dropwise on the glassy carbon surface 

to achieve a loading of 0.53mg cm-2. Commercial precious Pt/C (28wt.% Pt) and Ir/C (20wt.% Ir) 

catalysts were used as the benchmark references and prepared according to the same procedure. 

The measurement was conducted by linear sweep voltammetry (LSV) from -1 to 0 V (versus SCE) 

for ORR and from -0.1 to 0.8 V (versus SCE) for OER with the scan rate of 5 mV s-1 and a rotating 

speed of 1600 rpm. During the process of testing, O2 or N2 was always purged into 0.1M KOH 

solution for 30min before ORR or OER measurements, respectively. Furthermore, a series of LSV 

at a scan rate of 5 mV s-1 with the rotating speed ranging from 400 rpm to 1600 rpm were carried 

out to study the kinetics of the as-synthesized and commercial catalysts. All the measured 

polarization curves were calibrated by IR compensation in the alkaline electrolyte. The electron-

transfer number per molecule is calculated based on the Koutechy-Levich (K-L) equation: 

1
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1
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+

1

𝐽𝐾
=

1

𝐵𝜔1/2
+

1

𝐽𝐾
                                                  (26) 

B = 0.62nF𝐶0(𝐷0)
2/3𝑣−1/6                                               (27) 

where: J is the measured current density; JK is the kinetic current density; JL is the diffusion-

limiting current density; B is Levich slope; ω is the rotating speed (rad s-1); n is electron transfer 

number; F stands for Faraday constant (96485 C mol-1); C0 (1.2×10-3 mol L-1) is the bulk 

concentration of oxygen; D0 (1.9×10-5 cm2 s-1) is the diffusion coefficient of oxygen; v (0.01 cm2 

s-1) refers to the kinetic viscosity of the electrolyte.  
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4.4. Results and Discussion 

The brief and general synthesis strategy of heterostructured CoO/CoxP nanoparticles is 

demonstrated in Figure 12. Overall, the preparation process can be divided into two steps, which 

involves the synthesis of Cobalt-hexamine (Co-HMT) as the precursor via a wet chemistry method 

and a subsequent low-temperature annealing process. Herein, we take CoO/CoxP as an example to 

illustrate these processes. Firstly, the pink precipitation of Co-HMT nanosheets can be immediately 

generated by the mixing of Co(NO3)2 and HMT with a molar ratio of 1:1 in anhydrous ethanol. 

According to the previous research, from the coordination chemistry point of view, the HMT 

molecule serves as bridging ligand to connect transition metal ions through chemical coordination 

to form MOFs with different morphologies68.  

 

Figure 14: XRD pattern of Co-HMT with molar ratios of 0.5, 1, 2 and the pristine HMT. 
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In Figure 14, the powder X-ray diffraction (XRD) patterns of Co-HMT MOFs with a series 

of Co(NO3)2/HMT molar ratios as well as pristine HMT were measured. The notable diffraction 

differences between Co-HMT and pure HMT indicate that Co-HMT is successfully synthesized 

by the coordination of Co species and HMT ligands. In fact, the as-synthesized bulk crystal is the 

stack of Co-HMT layer by layer. Based on the previous researches from other groups, in the Co-

HMT MOFs, a supermolecular chain of [Co(NO3)2(HMT)(H2O)2]n is formed69. At the same time, 

different unit chains are connecting through ubiquitous hydrogen bonds of OH…N and OH…O70, 

resulting in the bulk-like Co-HMT nanosheets.  

 

Figure 15: SEM images of Co-HMT with molar ratios of (a)0.5, (b)1, (c)2, and (d) the structure 

after sonication treatment 

 

Further investigation of the structure of the as-prepared bulk-like Co-HMT nanosheet is 
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obtained by the scanning electron microscopy (SEM). The Co-HMT framework presents a spindle-

shaped bulk morphology (Figure 15 (a), (b), (c)), some of the bulks even stack into the flower-like 

stack, which may occur due to the hydrogen bonding interactions. In order to prove the spindle-

shaped bulks are stacked layer by layer, the Co-HMT sample is exfoliated by sonication in ethanol 

for 10 minutes. The resultant shows a multilevel structure (Figure 15 (d)) as expected because of 

the weak hydrogen bonds. 

The second step is to convert the Co-HMT bulk frameworks into CoO/CoxP composite 

nanoparticles through a direct low-temperature (400℃) phosphating process at a high temperature 

increasing rate (5℃/min). During the pyrolysis, the HMT ligands serve as a rich nitrogen source, 

while sodium hypophosphite acts as a phosphorus source. Other than that, the HMT plays the role 

of reductant reducing the Co2+ species to Co nanoparticles, thus resulting in CoO, CoP and Co2P 

nanoparticles. As reported by other work before, a huge amount of reducing gases of NH3, CH2O 

and NO are sharply released during the fast phosphorization process68. The sharply escaping gases 

then break the connections between layers and generate a large number of pores with various 

diameters. Besides, these escaping gases, as well as PH3 which comes from the decomposition of 

sodium hypophosphite, make it possible to reduce cobalt ions into cobalt nanoparticles directly 

under rather a low temperature of phosphorization. Herein, to prove the existence of simple 

substance Co metal during the pyrolysis process, Co-HMT phosphorized at 320℃ (designed as 

Co-HMT-320) was applied. As we can see from XRD patterns (Figure 16), the pattern for Co-

HMT-320 has several peaks that can be well indexed to metallic Co (PDF#15-0806), Co2P 

(PDF#65-2380) and even some weak peaks of CoO (PDF#48-1719). The metallic Co found in 
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Co2P likely originated from a concomitant reduction of cobalt precursor species in the presence of 

the well-known reducing agent (NH3, CH2O, NO, and PH3) for metal ions71-74. The peaks of Co 

appearing at the XRD pattern verify the reducing effect of HMT transferring Co2+ species into Co 

during the low-temperature pyrolysis.  

 

Figure 16: XRD pattern of Co-HMT phosphorized at 320℃. 

 

The XRD diffraction patterns (figure 17) of Co-HMT-400 before and after phosphorization 

demonstrate the formation of CoO, Co2P, and CoP nanoparticles. Apparently, complex diffraction 

peaks between 5o and 30o disappear after the process of phosphorization, indicating the formation 

of ordered crystalline phases. As revealed in Figure 17, the distinct characteristic peaks at 36.50o, 

42.40o, and 61.52o were attributed to the (111), (200), and (220) crystal faces of CoO (PDF#43-
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1004). On the other hand, the phosphorized product of CoP presented the characteristic diffraction 

peaks at 31.60o, 46.23o, and 48.13o, corresponding to (011), (112), and (211) planes of CoP 

(PDF#29-0497). Beyond that, characteristic diffraction peaks at 40.72o was also detected, which 

is indexed to the (112) crystal face of Co2P (PDF#65-2380). Here for clarity, the detected CoP and 

Co2P are denoted as CoxP
15, 75. Thus the sample can be designated as CoO/CoxP. The transmission 

electron microscopy (TEM) (Figure 17)also revealed those nanoparticles on the nanosheets.  

 

Figure 17: XRD pattern of CoO/CoxP powders. 
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Figure 18: XRD patterns of CoO/CoxP powders. 

 

As shown in the TEM images in Figure 18, layered material with pores of various diameters 

was generated during the synthesis process. This morphology may provide large surface area, thus 

more active sites are exposed. Besides, nanoparticles with the diameters of around 15 nm are finely 

distributed on the substrate, which also proves the existence of CoO and/or CoxP nanoparticles. 

Further evidence of the lattice parameters of these nanoparticles is needed to be measured by 

HRTEM. Typically, during the low-temperature calcination process, the cobalt atoms dissolved 

out of the metal-organic framework and were reduced by those escaping gases, leaving a nitrogen-

rich framework. It’s commonly known that catalysts with large surface area and high pore volume 
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usually demonstrate satisfactory catalytic activity. Herein, we are investigating the pore 

distribution conditions of the catalysts by the nitrogen adsorption-desorption method. Besides 

illustrating the high density of active sites of the as-prepared catalysts by physical characterization, 

we are doing an experiment to study the ample catalytic sites interface via electrochemical 

measurement. Unfortunately, these experiments are on the process at present, which can not be 

presented here. 

At the same time, the contrast samples ware successfully synthesized, the pure CoO 

nanoparticles catalyst was prepared by calcinating Co-HMT precursor without P source, while 

Co2P/CoP nanoparticle catalyst was synthesized by phosphorizing Co-HMT at 500℃, the XRD 

patterns (Figure 19 (a) and (b)) are shown below: 

 

Figure 19: XRD patterns of (a) pure CoO powders, and (b) Co2P/CoP powders. 
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Figure 20: XPS spectra of (a) Co 2p, (b) P 2p, and (c) O 1s for CoO/CoxP catalyst. 

 

To acquire further insights into the chemical coordination state of the CoO/CoxP catalyst, XPS 

analysis was carried out on the product. Figure 20 a-c represent Co 2p, P 2p, and O 1s of the XPS 

spectrum for the CoO/CoxP catalyst, respectively. In the high-resolution Co 2p spectra, the peak 

traced at 778.9, and 781.8 eV are attributed to Co 2p3/2, while the peak at 786.5 eV represents the 

satellite peak of Co 2p3/2. Among them, the peak at 778.9 eV is ascribed to Co-P bond. The peak 

at 781.8 eV stands for Co2+ form of the oxidized Co species, indicating the formation of CoO from 

metallic Co76. The Co 2p1/2 spectra contains two main peaks at 793.8, 797.9, as well as 802.6 eV, 
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corresponding to cobalt phosphide, oxidized cobalt species, and satellite peak, respectively77, 78. 

These Co 2p2/3 and Co 2p1/2 core peaks including satellite peaks can be attributed to the specific 

Co-P bond originating from CoP-Co2P component79. Specifically, the binding energy of 778.9 eV 

is positively shifted compared with that of pristine CoP (778.4 eV), suggesting that the Co2P 

species in CoxP play an essential role in tunning the CoP electronic structure, thus making CoxP a 

more effective electron donor. Simultaneously, in the P 2p spectrum, peaks corresponding to P 

2p3/2, and P 2p1/2 appear at 129.7, and 130.7 eV, respectively. Compared to the simple substance P 

(130.0 eV), there is a negative shift for the P 2P3/2 binding energy (129.7 eV), further indicating P 

atoms take the valence electrons from the Co atoms in CoxP. Apart from the synergistic effect 

between CoP and Co2P species; the electronic interaction also occurred between CoO and CoxP 

components during the phosphating process. As exhibited in Figure 20 (c), the peaks present at 

531.5 and 533 eV in the O 1s spectra are attributed to Co-O and P-O bonds. Due to the transitional 

interface formed between the O and P atoms lattice structures, the binding energy of Co-O and P-

O slightly shift. Specifically, the binding energy (531.5 eV) of Co-O showed a 0.1 eV negative 

shift while the peak of Co-P (533 eV) exhibited a positive shift of 0.4 eV76. Besides, the binding 

energy (133.9 eV) of P-O in the P 2p spectra (Figure 18 (b)) also confirms the formation of  

interface between two phases of CoO and CoxP species. 

Hitherto, the two-dimensional MOF-derived CoO/CoxP nanoparticles have been successfully 

prepared. Inspired by the features demonstrated above, the products are believed to have a huge 

potential as a promising bifunctional electrocatalyst for zinc-air batteries. The ORR and OER 

activities of the as-prepared CoO/CoxP were evaluated via linear sweep voltammetry (LSV) in 0.1 
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M KOH electrolyte. To stick out the morphological and compositional superiority of the 

heterostructured CoO/CoxP catalyst, the LSV measurements of pure CoO, CoxP, and CoO+CoxP 

(prepared by mechanically mixing CoO, Co2P, and CoP nanoparticles) were conducted as well. 

Furthermore, 28 wt. % Pt/C and 20 wt. % Ir/C commercial catalysts were also measured as the 

state-of-art benchmarks of ORR and OER, respectively. Overall, the iR-compensated polarization 

curves of various samples tested at a rotation speed of 1600 rpm are illustrated in Figure 21.  

 

Figure 21: ORR curves of various catalysts in O2-saturated 0.1 M KOH solution at a rotating 

speed of 1600 rpm. 

 

Among all the catalysts, pure CoP/Co2P nanoparticles exhibit the lowest onset potential (Eonset) 

of 0.86V (versus RHE) and smallest diffusion-limited current density of 3.6 mA cm-2. Compared 

to CoP/Co2P, CoO nanoparticles show higher Eonset and diffusion-limited current density of 0.87 V 

(versus RHE) and 5.1 mA cm-2, respectively. Similar to CoO, the CoO+CoxP nanoparticles 
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demonstrate an onset potential of 0.88 V (versus RHE) and diffusion-limited current density of 4.8 

mA cm-2. The increasing Eonset and diffusion-limited current density of the latter two catalysts are 

probably due to the superior ORR activity of CoO to CoP and Co2P. Benefiting from the ample 

catalyst/electrolyte interface for active sites originating from high pore volume, as well as the bi-

synergetic effect of heterostructured distributed CoO/CoxP nanoparticles, CoO/CoxP performs a 

dramatically improvement on the ORR activity, with a higher onset potential of 0.93 V (versus 

RHE) and diffusion-limited current density of 5.6 mA cm-2. Although this onset potential still can’t 

keep up with that of commercial Pt/C catalyst (0.98 V versus RHE), CoO/CoxP exhibits a 

competitive half-wave potential (E1/2) of 0.86 V (versus RHE), which is only 20mV lower than 

Pt/C but much positive than that of CoO (0.81 V versus RHE), CoP/CoxP (0.82 V versus RHE), 

and CoO+CoxP (0.82 V versus RHE). The fast electrochemical ORR kinetics of CoO/COxP is 

further investigated by the calculated Tafel slopes.  

 

Figure 22: Tafel plots of various catalysts at 1600 rpm in O2-saturated 0.1 M KOH. 
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Figure 22 shows that Tafel slopes of CoO/CoxP (52.9 mV dec-1) is lower than other samples, 

and even the Pt/C (63.5 mV dec-1), illustrating the fastest ORR kinetics.  

 

Figure 23: LSV curves of CoO/CoxP at different rotating speeds (inset: K-L plots obtained under 

various potentials). 

 

As shown in Figure 23, polarization curves were measured at several rotation speeds ranging 

from 400 rpm to 1600 rpm. Due to the efficient mass transfer of O2 from KOH electrolyte to the 

electrode surface, the limited current densities plateaus uniformly increases as the rotation speed 

rising. Apart from the ORR activity, the catalytic selectivity is an obbligato factor in judging the 

catalysts as well. The linearity of the Koutecky-Levich (K-L) plots at different potentials suggest 

the first-order reaction kinetics about the concentration of dissolved O2
80, 81. The electron-transfer 

number (n ≈ 4) occurring during the ORR process is obtained from the K-L plots, indicating the 

reaction prefers to reduce O2 to OH- directly through a fast four-electron-transfer pathway.  
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The application of bifunctional electrocatalyst requires not only promising ORR activity but 

also excellent OER performance. Herein, we also investigated the oxygen evolution activities to 

confirm the bifunctional property of CoO/CoxP. Figure 24 illustrates iR-compensated OER LSV 

curves of all the electrodes in N2-saturated 0.1 M KOH.  

 

Figure 24: ORR curves of various catalysts in N2-saturated 0.1 M KOH solution at a rotating 

speed of 1600 rpm. 

 

The overpotential for OER at a current density of 10 mA cm-2 is usually a standard to judge 

OER activity82. Among all the prepared catalysts, CoO/CoxP shows the lowest potential (1.6 V 

versus RHE) at the current density of 10 mA cm-2. While for Ir/C, CoO, CoP/Co2P, and CoO+CoxP 

catalysts, the potentials are 1.64 V, 1.66 V, 1.61 V, and 1.65 V, respectively. Specifically, the over-

potential of CoO/CoxP at the current density of 10 mA cm-2 is 370 mV, suggesting its superb OER 

activity. Besides, CoO/CoxP shows the smallest Tafel slope of 101 mV dec-1 relative to the others 

(Figure 25), revealing the fast OER kinetics on CoO/CoxP.  
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Figure 25: Tafel plots of various catalysts at 1600 rpm in N2-saturated 0.1 M KOH. 

 

 

Figure 26: Differences between the ORR E1/2 and OER Ej=10 of different catalysts. 

 

Basing on the above results and analysis, CoO/CoxP has shown promising electrochemical 

activities towards ORR and OER. To reveal the bifunctional activity more intuitively, both the 

ORR half-wave potentials and OER potentials at the current density of 10 mA cm-2 are integrated 
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(Figure 26). The CoO/CoxP catalyst exhibits the smallest gap (potential difference between ORR 

E1/2 and OER potential at 10 mA cm-2) of 0.74 V among all the as-prepared samples, including 

commercial Pt/C coupled with Ir/C (0.76 V). Moreover, the horizontal dotted line representing the 

thermodynamic potential (E0(OH-/O2)=1.23 V) serves as a reference to reflect the overpotential 

regarding ORR and OER.  

 

5. Conclusions of the Thesis and Future Works 

5.1. Conclusions of the Thesis 

In this thesis, we have designed a CoO/CoxP heterostructured nanoparticles electrocatalyst by 

in situ coupling CoO nanoparticles with Co2P and CoP nanoparticles instead of simply physically 

mixing them. During the synthesis process, Cobalt(II) nitrate hexahydrate was the transition metal 

salt, while HMT played the role of organic ligand, a layered Co-HMT framework was prepared as 

an efficient precursor. The final product was obtained by a following low-temperature 

phosphorization strategy, during which a huge amount of reducing gases was sharply released to 

exfoliate the layered structure apart.  

XRD, TEM, SEM, and XPS were used to confirm and analyze the morphology and the 

chemical environment of the catalysts. XRD patterns confirmed the formation of Co-HMT with 

various molar ratios and illustrated the compositions of as-prepared catalysts. The lamellar 

structure of the MOF bulk crystal precursor was proved by SEM images. TEM was carried out to 
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investigate the particles, revealing that the particles with the diameter around 15 nm were 

uniformly distributed. What’s more, viewing from the TEM images, pores with different diameters 

could be observed. The interaction between CoO and CoxP nanoparticles and the energy adjusting 

effect between Co2P and CoP nanoparticles were revealed by XPS. 

In order to study the ORR and OER activities, the electrochemical performances of the as-

prepared electrocatalyst were measured in a three-electrode system. The LSV results are 

summarized in Table 1: 

Table 1: Summary of the bifunctional activities of as-prepared catalysts for ORR and OER 

 

 

Catalysts 

ORR OER Bifunctionality 

Onset 

potential 

(V) 

Half-wave 

potential 

(E1/2, V) 

Diffusion-

limited current 

density 

(mA cm-2) 

Potential at 

10 mA cm-2 

(Ej=10, V) 

∆𝑬 = 𝑬𝒋=𝟏𝟎 − 𝑬𝟏/𝟐 

Pt/C+Ir/C 0.98 0.88 5.7 1.64 0.76 

CoO/CoxP 0.93 0.86 5.6 1.60 0.74 

CoO+CoxP 0.88 0.82 4.8 1.61 0.79 

CoO 0.87 0.81 5.1 1.65 0.84 

Co2P/CoP 0.86 0.82 3.6 1.66 0.84 

Note: All potentials presented in this table are demonstrated versus reversible hydrogen electrode (RHE) and obtained 

in 0.1 M KOH solution using the glassy carbon working electrode. 

 

In summary, CoO/CoxP displays the smallest potential gap among all these catalysts, 

demonstrating its promising bifunctionality towards ORR and OER. Specifically, comparing with 

the pure CoO, Co2P/CoP, and CoO+CoxP catalysts, the CoO/CoxP catalyst has the highest half-

wave potential of 0.86 V, the highest diffusion-limiting current density of 5.6 mA cm-2, and the 

lowest overpotential at 10 mA cm-2 for OER. In addition, both ORR (52.9 mV dec-1)and OER (101 

mV dec-1)Tafel slopes of CoO/CoxP outperform other materials, which show the best kinetic 
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activity of this catalyst. Furthermore, such desirable low potential difference (0.74 V) and 

overpotential show competitive catalytic bifunctionality of CoO/CoxP catalyst when comparing 

with the most of well-developed bifunctional oxygen electrocatalysts reported in recent years 

(Table 2).  

Table 2:Summary of the ORR and OER activities of recently reported bifunctional electrocatalysts 

 

 

Catalyst 

ORR: 

half-wave 

potential 

(E1/2, V) 

OER: 

potential at 

10 mA cm-2 

(Ej=10, V) 

∆𝑬 = 𝑬𝒋=𝟏𝟎 − 𝑬𝟏/𝟐 
 

Reference 

CoO/CoxP 0.86 1.60 0.74 This work 

CoS2/SKJ 0.84 1.58 0.74 
ACS Nano 2019 13 

(6), 7062-7072 

CoO0.87S0.13/GN 0.83 1.59 0.76 
Adv. Mater. 2017, 

29, 1702526 

3DOM-

Co@TiOxNy 
0.84 1.62 0.78 

Adv. Mater. 2019, 

31, 1806761 

Co/Co3O4@PGS 0.89 1.58 0.69 
Adv. Energy Mater. 

2018, 8, 1702900 

CoFe/N-GCT 0.79 1.67 0.88 
Angew. Chem. 2018, 

130, 16398-16402 

Co@Co3O4/NC 0.80 1.65 0.85 
Angew. Chem., Int. 

Ed. 2016, 55, 4087 

NC-Co SA 0.87 1.59 0.72 
ACS Catal. 2018, 8, 

8961−8969 

CoP@CC 0.67 1.68 1.01 
Nanoscale, 2017, 9, 

18977 

CoP@mNSP-C 0.90 1.64 0.74 
small 2017,13, 

1702068 

CoxOy/NC 0.80 1.66 0.86 
Angew. Chem. Int. 

Ed. 2014, 53, 8508. 

Note: All potentials presented in this table are demonstrated versus reversible hydrogen electrode (RHE) and obtained 

in 0.1 M KOH solution using the glassy carbon working electrode. 

 

The increase in performance can be attributed to the interpenetrating interfaces between 
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cobalt oxide and cobalt phosphide, and also the synergistic effect between cobalt phosphides. 

Meanwhile, the unique morphology originating from the layered Co-HMT framework endow this 

catalyst with the benefit of abundant catalyst/electrolyte interfaces for catalytic active sites. 

 

5.2. Future works 

Although the electrochemical performance of the obtained catalyst is good, further 

optimization of the ratios of CoO: CoxP and Co2P: CoP needs to be done to investigate the 

influences of the amount of metal oxides and metal phosphides as well as metal content within 

metal phosphides to the oxygen reaction activity, respectively. 

Further results of nitrogen adsorption and desorption and double-layer capacitance 

measurements are needed to prove the high surface area of the catalyst material and the abundant 

exposing active sites. 

To develop the promising bifunctional electrocatalysts for ORR and OER and applied in the 

zinc-air battery requires not only great ORR and OER electrochemical activities, but also 

promising durability and stability. The stability to ORR and OER are usually tested by 

chronoamperometric (CA) measurement. In addition, the catalyst should be further assembled into 

zinc-air batteries for the galvanostatic cycling stability test. Other than the stability measurement 

of the zinc-air batteries, specific capacity, electrochemical impedance spectroscopy, rate 

capabilities measurement, etc, should also be applied.  
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