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Abstract

Quantum dots are a promising source of entangled photon pairs. Recent advances have

shown nearly dephasing-free entanglement from quantum dots embedded in semiconductor

nanowires. An outstanding challenge with these sources is the presence of the so-called

fine-structure splitting, which is the lifting of spin degeneracy of the exciton state due to

quantum dot potential asymmetry. This fine-structure splitting causes the output state

to precess rapidly, which is degrades the quality of measured entanglement due to finite

detector temporal response and is undesirable for applications where preparation of a

consistent state is needed. The effects of fine-structure splitting can be “erased” once the

photons have been emitted using a flexible all-optical approach. This optical fine-structure

eraser scheme requires a rapidly rotating half-waveplate, which cannot be implemented

with commercially available off-the-shelf systems. This thesis presents the operation of

an electro-optic modulator which can emulate a rotating half-waveplate at the required

speeds, and demonstrates frequency conversion with an efficiency of 92%.
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Chapter 1

Introduction and overview

Quantum dots are a promising source of entangled photons which have the potential to

provide nearly on-demand operation. One of the primary outstanding challenges is fine-

structure splitting (FSS), which results in rapid precession of emitted states. A proposal for

erasing the state precession requires a rapidly rotating half-waveplate (HWP). This thesis

presents a potential fast (hundreds of MHz to a few GHz) rotating HWP implementation

capable of meeting the requirements of the FSS eraser.

Chapter 2 explains why quantum dots are worth pursuing as sources and provides

information on the structure and operation of the nanowire-embedded quantum dot source

the rotating HWP was designed to be used with. Chapter 3 provides background on the

origins and effects of FSS, as well as how to erase it. Chapter 4 introduces the particular

type of electro-optic modulator (EOM) which can be used to emulate a rotating HWP.

Chapter 5 describes measurements made to demonstrate the desired operation of the EOM.
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Chapter 2

Nanowire-embedded quantum dots as

sources of entangled photon pairs

The purpose of this chapter is to show why erasing FSS in a quantum dot is a useful

goal. I will discuss uses and requirements of entangled photons, explain why quantum

dots present an attractive alternative to spontaneous parametric downconversion (SPDC)

sources, and provide a brief overview and performance comparison of various nanostruc-

tures for extracting photons from quantum dots.

2.1 Uses and requirements for entangled photon pairs

Entanglement was first postulated in 1935 as the Einstein, Podolsky and Rosen (EPR)

paradox [3]. Though it was intended to suggest that quantum mechanics was an incomplete

theory because it violated local realism, Bell [4] and later Clauser, Horne, Shimony and

Holt [5] proposed experiments that use it as a way to disprove the so-called hidden variable

theories proposed as an alternative.

Though early interest in entanglement was focused on fundamental quantum optics

experiments, there has been considerable interest over recent decades in applications that
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make use of entanglement and other quantum mechanical effects for metrology [6], sensing

[7], increasing the density [8] and security [9] of communication, and performing classi-

cally impracticable computing tasks such as factoring large numbers [10] and simulating

quantum systems [11, 12].

The polarization state of photons has been a favoured physical system for demon-

strating and making use of entanglement since the earliest experiments, particularly for

quantum communication schemes where photons’ vanishingly small nonlinear interaction

in most media is a desirable quality. The control of polarization states of light has been

well understood for over a century, and the increasing ubiquity of commercial fibre-optic

communication technologies has led to a variety of robust, low-cost options for generating,

controlling and detecting polarized light.

2.1.1 Requirements

The main requirements of a source of entangled photon pairs are high entanglement fidelity,

indistinguishability, extraction efficiency and low multi-pair emission [13]. Additional de-

sirable features include the possibility for integration on photonic chips and with existing

telecommunication infrastructure, low cost and ease of fabrication and operation, and scal-

ability.

In a source with high indistinguishability, photon pairs generated at different times are

quantum mechanically identical. Low multi-pair emission means that for each trigger, no

more than one pair of entangled photons is emitted. Extraction efficiency refers to the

probability that a photon is generated and collected by optics. Fidelity is a measure of

how similar two quantum systems are, and entanglement fidelity is a way of quantifying

how entangled a system is by describing its fidelity to the closest maximally entangled

state.
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2.2 Sources of entangled photon pairs

There are a number of physical systems which can be used to generate entangled photon

pairs. The first source to violate Bell’s inequality used an atomic cascade in sodium atoms

[14], though this method was abandoned in favour of semiconductor devices due to the

technical advantages, which include the relative ease and low cost of fabrication and use,

as well as the greater potential for scalability and compatibility with integrated optics.

Orieux et al.’s review article provides an overview of these devices and recent developments

in the field [15].

An alternative to directly generating entanglement was proposed in Knill, Laflamme

and Millburn’s 2001 proposal for linear optical quantum computing (LOQC) [16], which

opened the possibility of generating entanglement using only a single photon source, linear

optics, and photodetectors. The process relies on the interference of two indistinguishable

photons at a beamsplitter to generate path entanglement through the Hong-Ou-Mandel

effect [17]. A controlled-not (CNOT) gate, which generates entanglement and is a basic el-

ement of LOQC [18], was experimentally realized using integrated optics shortly thereafter

[19]. The success of a linear optical CNOT gate can be at most 75% [20]. Though this

doesn’t degrade the quality of entanglement because it is possible to identify and discard

photons from unsuccessful attempts, it does make deterministic operation impossible.

In the following section, I’ll discuss the fundamental performance limitation of SPDC,

its current state-of-the-art, and discus why quantum dots have the potential to outperform

SPDC if current technical challenges are overcome.

2.2.1 Spontaneous parametric downconversion

SPDC sources have been considered the best source of high quality polarization-entangled

photon pairs since Kwiat et al.’s 1995 violation of Bell’s inequality using an SPDC source

[21]. More recently, they were used in all three loophole-free tests of Bell’s theorem in-

dependently published in 2015 [22, 23, 24]. Entanglement is generated in SPDC sources
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by sending photons with frequency ω0 an momentum k0 into a non-linear optical crystal,

which has some probability of interacting with each photon to produce two photons with

frequencies ω1+ω2 = ω0 and momenta k1+k2 = k0. Due to dispersion and birefringence in

the crystal, the photons must meet specific phase-matching conditions, giving predictable

polarizations and directions of emission. SPDC sources are relatively inexpensive and can

be operated at room temperature, though the need for optical pumping (which is expensive

and bulky) limits their commercial potential.

Though the quality of SPDC sources continues to improve as technical challenges are

overcome, their brightness is fundamentally limited by their statistical nature [25]. As the

intensity of the pulsed or continuous wave (CW) excitation is increased, so does the prob-

ability of emitting multiple pairs of entangled photons. The fidelity of the entangled state

is degraded, because there is a chance that the two photons chosen will be from different

pairs, which would have no quantum correlations. Efforts to achieve higher count rates

without degrading fidelity require considerable sophistication and complexity, and have

included temporal multiplexing by using smaller pulses with a higher repetition rate [26]

and other multiplexing techniques, as well as using non-linear effects to create a blockade

[27].

Fidelity of Poissonian sources

We can find the fidelity over multiple measurements by considering an ensemble state

[28] where one photon is chosen from both the idler and signal modes for each pulse that

generates at least one pair. We’ll ignore any imperfections in the collection and detection

of the photons to get the “best case scenario”. The probability that a pulse will generate

n pairs of photons is given by the Poisson distribution [29]

P (n) = e−µ
µn

n!
(2.1)

where µ is the probability of generating a pair of photons with a single pulse, and e−µ is a

normalization constant so that the total probability over every possible number of photon

pairs is unity.
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Our pair source efficiency, which we’ll define as the probability of generating at least

one pair of photons, rather than the probability of generating a single pair (these two

definitions are equivalent for sources which display perfect antibunching, meaning there is

zero chance of multiple photons being emitted at the same time), is

B = 1− P (0) = 1− e−µ (2.2)

If each pair of photons has perfect fidelity to a known maximally entangled pure state

ρ0 = |Ψ〉〈Ψ|, our measured density operator, considering only pulses where n ≥ 1 pairs of

photons have been generated is

ρ =
1

1− P (0)

∞∑
n=1

P (n) (Ps(n)ρ0 + Pd(n)ρd) (2.3)

where Ps(n) = 1
n

is the probability the two measured photons are from the same pair,

Pd(n) = n−1
n

= 1 − 1
n

is the probability that they are from different pairs, and ρd =

Tri[ρ0] ⊗ Trs[ρ0] describes the case where the measured photons are from different pairs

[30]. The fidelity to ρ0 is [15]

F = Tr[ρρ0] =
1

1− P (0)

∞∑
n=1

P (n)

(
Ps(n) +

1

2
Pd(n)

)
(2.4)

Figure 2.1 shows the relationship between equations 2.4 and 2.2. Because we only mea-

sure cases where at least one pair of photons is emitted, the fidelity approaches 1, the value

we would expect for a maximally entangled state, as the pair source efficiency approaches

zero. It approaches 0.5, the value we would expect for a state with zero entanglement, as

the pair source efficiency approaches 100%.

2.2.2 Quantum Dots

Quantum dots are semiconductor structures typically consisting of a few thousand atoms

surrounded by a higher bandgap material in all three dimensions. The high degree of
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Figure 2.1: Plot of fidelity to a maximally entangled state (F ) versus probability of gener-

ating a pair of photons per pulse (B) for SPDC sources.

confinement leads to a density of state function consisting of discrete levels. In a symmetric

quantum dot, these levels produce optical spectra similar to orbitals in atoms, and for this

reason quantum dots are often referred to as “artificial atoms”.

Benson et al. proposed in 2000 that a quantum dot could be used to generate entangle-

ment through a similar process to an atomic cascade [31]. This so-called “exciton-biexciton

cascade” is the process most commonly used to generate entangled photons using quantum

dots, and is explained in greater detail in Section 3.1.

A “biexciton” refers to the state of a quantum dot when there are two electrons and

two holes occupying its ground state. Due to the Pauli exclusion principle, there can be

only one spin up and one spin down each of both the electrons and holes in the ground

state. This leads to antibunching if the time it takes for the quantum dot to relax back to

the ground state is much longer than the optical or electrical pulse that populates it. This

allows for deterministic operation, as we can populate the quantum dot with a very high

probability without risking multi-pair emission. Due to binding energy, the biexciton has

a lower energy than twice that of an exciton, which means that photons emitted from the
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two steps of recombination will have slightly different wavelengths and can be separated.

Performance barriers

Despite their promise, quantum dots continue to be outperformed by SPDC for most

applications due to the lower quality of entanglement and low collection efficiencies. One

of the primary ways fidelity is degraded in quantum dots is through dephasing. This

can be caused by a variety of mechanisms, including quantum dot asymmetry and the

electromagnetic environment around the dot due to stray magnetic fields, electric fields, or

charged particles.

Measured entanglement can be lower than actual entanglement due to imperfections in

detection, such as long integration times over a rapidly evolving state [2]. The evolution

of the state is caused by FSS, which is discussed in Section 3.2.

2.2.3 Nanostructures for extracting photons

A photon is only useful if it can be collected. While quantum dot sources can generate pho-

ton pairs with very high efficiency, difficulties collecting and directing the emitted photons

into an optical system so that they can be used reduce the brightness considerably. For this

reason, they are typically embedded in nanostructures. A review of recent developments

in the field of quantum dot polarization-entangled photon sources with a comparison of

nanostructures was published by Huber et al. in 2018 [32].

Extraction efficiency in bare quantum dots

Bare quantum dots typically have extraction efficiencies of less than 2% due to two factors:

total internal reflection and omnidirectional emission [33]. Consider a quantum dot on a

substrate with index of refraction n surrounded by free-space or some material with a re-

fractive index close to 1 (see Figure 2.2). To achieve the symmetric 3D confinement needed,
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QD

Figure 2.2: Factors affecting extraction efficiency of a bare quantum dot (black) embedded

in a substrate (grey). More than 97% of the photons do not exit the substrate (red dotted

lines), either because they are emitted in the wrong direction, or because they are reflected

back into the substrate at the interface. A substantial portion of the photons which exit

the substrate are emitted outside of the acceptance angle of the first lens (orange dot-dash

lines). Only photons which both exit the device and enter the first lens are extracted and

directed into the optical system for further use (green dashed lines).
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the lower bandgap quantum dot region needs to be completely surrounded by the higher

bandgap substrate material. Assuming the quantum dot is approximately symmetric,

photons will be emitted in all directions with roughly equal probability. Using the critical

angle of incidence for total internal reflection at the substrate edge θc = arcsin (n−1), we

can compute the fraction of photons that would be emitted within a cone with half angle

θc (and would be able to exit the device)

∫ θc
0

sin (φ)dφ∫ π
0

sin (φ)dφ
=

1

2
(1− cos θc) =

1

2

(
1−

√
1− 1

n2

)
(2.5)

For an InP substrate, which has a refractive index of about 3.4, the critical angle of

incidence for total internal reflection is approximately θc = 17.1o and the fraction of light

that can exit the device is about 2.2%. For GaAs (n ≈ 3.5), the critical angle is θc = 16.6o

and the fraction of light that exits the device is about 2.1%.

Collection efficiency further limits our extraction efficiency, as collection optics have

a finite acceptance angle. This would limit our extraction efficiency to 50% even if the

photons weren’t reflected or refracted at the substrate-air interface and the first lens had

acceptance angle of 90o. The numerical aperture of lenses and objectives are typically

much lower. Coupling to waveguides requires further consideration of the mode profile in

addition to acceptance angle which leads to greater losses.

As we’ve seen, our extraction efficiency can be improved by increasing the direction-

ality of the quantum dot’s emission so that more photons make it to the surface of the

surrounding material, increasing the portion of photons which are aren’t reflected back

into the substrate at the surface, and improving the directionality and mode profile of the

emission from the surface of the substrate so that the photons can be collected by a lens

or waveguide.
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Types of nanostructures

Extraction efficiency for quantum dot nanostrucutres is generally thought of as a product of

the coupling efficiency (or the portion of emitted photons which are coupled to the desired

mode of the nanostructure) and the collection efficiency (or the portion of photons from the

desired mode which can be collected by a lens once emitted). Nanostructures for improving

quantum dot extraction efficiency can be categorized by which of these factors they target

for improvement. Geometric approaches focus on reducing total internal reflection and

increasing directionality of emitted photons (lens). Micropillars increase emission into a

desired mode though Purcell enhancement (cavity), while nanowires suppress emission into

undesirable modes (waveguide).

Geometric approach The geometric approach creates a structure immediately above

the quantum dot that reduces total internal reflection and reduces the emission angle of

the light. It doesn’t effect the quantum dot itself, but rather acts on the photons through

reflection and refraction once they have been emitted. A reflective structure can be added

below the quantum dot to redirect photons emitted in the wrong direction. A recent

example is Chen et al.’s “photonic antenna” which has a fidelity of (90 ± 3)% and a pair

source efficiency of (37.2± 0.2)% [34].

Cavity approach The operating principle of these is the Purcell effect, which acceler-

ates spontaneous emission into a desired mode in the weak coupling regime of a cavity [29].

This is typically achieved by embedding a layer of self-assembled quantum dots between

two distributed Bragg reflector (DBR) mirrors, with the top one being slightly less reflec-

tive, then etching a micropillar around a quantum dot identified as having desirable optical

properties in photoluminescence measurements. The fabrication process is extremely tech-

nically challenging and typically not deterministic, though improvements continue to be

made [35].

The cavity approach is generally preferred for single quantum dot photon sources,

as in addition to increasing extraction efficiency they improve the indistinguishability of
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photons emitted by subsequent pulses [36]. The microcavity approach is difficult to apply

to entangled photon sources, because the narrow wavelength bandwidth of the cavities

precludes efficient coupling of both the exciton and biexciton photons which usually have

different wavelengths due to the biexciton binding energy. In 2010 Dousse et al. [37]

realized a bright quantum dot source with a pair emission probability per pulse of 12%

and entanglement fidelity of 67% using a double-micropillar structure. The two pillars’

separation was tuned to produce two different narrowband cavity modes which the exciton

and biexciton could couple to. Although attractive, realization of the double-micropillar

structure is technically complex and a repeat demonstration has not been made.

A recent variation of this is Wang et al.’s [38] circular Bragg grating bull’s-eye cavity,

which offers broad-band coupling. Their source combines high fidelity and pair efficiency

(36.7% and 90%, respectively), values almost identical to Chen et al.

Waveguide approach Instead of stimulating spontaneous emission into a desired mode,

waveguide structures suppress spontaneous emission into all other modes. This allows for

good coupling over a wide range of photon energies, removing the difficulty of coupling to

both the exciton and biexciton photons.

Tapered nanowires with a quantum dot embedded on-axis can be grown determinis-

tically, and have robust insensitivity to small variations in fabrication parameters. The

fabrication process involves placing gold particles on a substrate at regular intervals, un-

der which narrow columns of the substrate material will start vapour-liquid-solid growth.

The quantum dots are integrated by briefly introducing an additional element into to the

growth reactor. After further axial growth, the width of the nanowires is increased to

encase the quantum dot radially by raising the temperature to favour radial growth and

suppress axial growth. A narrow taper at the tip, which reduces reflection by allowing

the coupled mode to leak adiabatically, can be produced by not completely suppressing

axial growth. The nanowires can be transferred onto a broadband mirror (typically gold),

though precise positioning is crucial to avoid destructive interference. Our most recently

published results for this type of device give a fidelity of 88% at a pair source efficiency of

1.6% [2].
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Figure 2.3: Comparison of the performance of entangled photon sources consisting of

quantum dots embedded in different nanostructures described in the previous section to

the theoretical upper limit and actual performance of SPDC sources. Adapted and modified

from [43] with assistance from the author.

2.2.4 Performance comparison

Figure 2.3 plots the entanglement fidelity and pair source efficiency for the sources dis-

cussed above. In addition to currently producing lower fidelity pairs, most quantum dot

sources still require cryogenic cooling (generally to 4K) to minimize dephasing, making

them expensive and difficult to transport relative to SPDC sources. Like SPDC sources,

they are mostly still optically pumped, further limiting portability. There is, however,

nothing in principle prohibiting the development of quantum dot sources that have a bet-

ter combination of brightness and entanglement fidelity than is achievable with SPDC, are

electrically-pumped [39], and can be operated at higher temperatures [40].
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2.3 Device particulars

A detailed account of how the quantum dot whose fine-structure this experiment set out

to erase was grown at the National Research Council of Canada is beyond the scope of this

thesis, as I was not involved in the sample’s fabrication or characterization. The interested

reader is directed to [44, 45] for fabrication details.

The nanowires are grown using a selective-area (SA) vapor–liquid–solid (VLS) process,

represented schematically in Figure 2.4. 20nm gold particles, which are deposited in a grid

pattern at the centre of holes in an SiO2 mask on the InP wafer, catalyse growth of the

nanowire core. The quantum dot is grown at this stage by briefly introducing As into the

growth chamber, resulting in an few-nanometres (∼ 6nm) thick InAsP section in the InP

nanowire core. Once the core has reached the desired height, the growth conditions are

changed to allow deposition along the bare InP of the nanowire and wafer (in the holes

in the SiO2 mask). The precise growth conditions determine how much upwards versus

outwards growth is favoured during this stage, giving the smooth taper the nanowire tip.

2.3.1 Structure and properties

Electronic properties of bulk InP and InAsP

Electrons in the lowest energy conduction band in wurtzite InP and InAsP occupy an s-like

orbital with band angular momentum L = 0, which with the electron spin S = 1/2 gives

total angular momentum J = 1/2 with a projection along the z-axis jz = ±1/2. Holes

at the top of the valence band occupy one of 3 p-like (L = 1) orbitals, which in wurtzite

are non-degenerate due to anisotropy between the c-axis ([001] direction, along the axis of

the nanowire), the the plane perpendicular to it ((001) plane, along the nanowire’s radial

direction) (crystal field splitting), and spin-orbit coupling.

The lowest of the three p-like sub-bands is a few hundred meV below the top of the

valence band (145.0meV in InP and 352.7meV in InAs [46]), and can be disregarded. The
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Figure 2.4: Schematic illustration of the SA-VLS growth process: (a) The nanowires are

grown on a patterned substrate consisting of circular openings in a SiO2 mask in which

gold catalysts are deposited by a self-aligned lift-off process. (b) The nanowire core is

grown using growth conditions that promote catalyzed growth while minimizing substrate

growth. (c) Conversely, the nanowire cladding is grown by minimizing catalyzed growth

while promoting substrate growth. Reprinted with permission from [44]. Copyright 2012

American Chemical Society.

energy separation between the top two sub-bands (typically labelled heavy and light holes)

is 59.2meV in InP and 35.4meV in InAs [46]. This separation is increased with tight

confinement and there is typically minimal intersub-band mixing observed in quantum

dots [47], so we will consider only heavy holes, which have J = 3/2, jz = ±3/2.

Bandgap and effective mass values are shown in Table 2.1. Note that there are different

values depending on whether we are parallel to the crystal’s c-axis (axial direction), or

perpendicular to it (radial direction).

The quantum dot can be approximated by a cylindrical or “hockey puck” shape with

a diameter of 25 − 30nm and a height of ∼ 6nm [45, 47]. The confining potential can be

written as a product of the axial and radial components V (x, y, z) = V (z)V (r). We’ll now

consider each component separately.
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InP InAs InAs0.25P0.75

Bandgap Eg [eV] 1.494 0.467 1.237

Axial electron effective mass m∗e‖/m0 0.0947 0.0370 0.0803

Axial heavy hole effective mass m∗hh‖/m0 1.0646 0.9738 1.0419

Radial electron effective mass m∗e⊥/m0 0.1183 0.0416 0.0991

Radial heavy hole effective mass m∗hh⊥/m0 0.1988 0.1046 0.1753

Table 2.1: Bandgap and effective masses in wurtzite InP and InAs [46]. Values for

InAs0.25P0.75 were obtained by linear interpolation between the values for InP and InAs.

Axial confinement

The axial potential is well approximated by a finite square well (see Figure 2.5). The con-

finement energies are found by numerically solving the following transcendental equations,

which arise from application of even or odd boundary conditions

kInP =

kInAsP tan
(
kInAsP

L
2

)
, Even

−kInAsP cot
(
kInAsP

L
2

)
, Odd

(2.6)

where kInP =
√

2mInP (E + ∆E)/~ and kInAsP =
√

2mInAsP∆E/~, and mInP,InAsP are the

effective masses along the axial direction in InP and InAsP from Table 2.1. The ground

state confinement energy is the lowest energy even solution, and the first excited state

confinement is the lowest energy odd solution. The confinement energy as a function of

quantum dot height computed using the values in Table 2.1 is shown in Figure 2.5.

Note that for a typical quantum dot (L < 6nm) only the ground state is available for

both electrons and holes, and the separation between the ground state and first excited

state is much larger than the separation between states in the radial direction (see Figure

2.6). This means that the energy level structure near the ground state is determined by

the radial confinement.
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Figure 2.5: Axial confinement of electrons and holes. The left figure shows a schematic

representation of the quantum dot embedded in the nanowire above a energy level diagram

for the region of interest. The right plot shows numerical solutions to Equation 2.6 for

the electron ground state (Ee
0(L)) and first excited state, and the heavy hole ground state

(Ehh
0 (L)) and first excited state.

Radial confinement

The potential in the radial plane is a finite circular well. The bound solutions are of the

form [48]

ψm(r, φ) ∝

J|m|(kInAsP r)e(imφ), r ≤ R

K|m|(kInP r)e
(imφ), r > R

(2.7)

where Jm is a Bessel function of the first kind, Km is a modified Bessel function of the

second kind, r is the radial distance from the centre of the quantum dot, and φ is an angle

providing the second parameter needed to describe the position within the radial plane. A

transcendental equation for energy can be found by imposing continuity at the boundary,

and taking the ratio of the function and its first derivative to eliminate the normalization

factor
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kInAsP
J ′|m|(kInAsP r)

J|m|(kInAsP r)
= kInP

K ′|m|(kInP r)

K|m|(kInP r)
(2.8)

Numerical solutions, along with solutions evenly spaced above the ground state (as

would be expected with a harmonic oscillator) are shown in Figure 2.6. The solutions are

similar to those for a isotropic harmonic oscillator, and experimental observations have

validated this approximation for self-assembled quantum dots [47].
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Figure 2.6: Radial confinement of electrons and holes. Solid lines are numerical solutions

to Equation 2.8 for the electrons (Ee
0,1,2,3,4(R), left) and heavy holes (Ehh

0,1,2,3,4(R), right).

Dashed lines are evenly spaced solutions above the ground state Ee,hh
0 (R).

Figure 2.7 shows the energy of the exciton ground state (E0 = Eg +E0(L) +E0(R)) as

a function of the quantum dot height and radius using values for E0(L) = Ee
0(L) +Ehh

0 (L)
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Figure 2.7: Numerical solutions for exciton ground state energy as a function of quantum

dot dimensions.

and E0(R) = Ee
0(R) + Ehh

0 (R) from Figures 2.5 and 2.6, and Eg for In0.75As0.25P from

Table 2.1.

Solutions to the 2-dimensional isotropic harmonic oscillator have energies

E = ~ω(nx + ny + 1) (2.9)

where nx,y = 0, 1, 2, ... . Defining n = nx + ny, we have energy levels En = ~ω(n + 1)

with degeneracies of gn =

(
1 + n

n

)
= n+ 1 = 1, 2, 3, ... . The energy levels are commonly

labelled following the convention for atomic orbitals as ‘s’, ‘p’, ‘d’, etc. Each energy level

can be occupied by two electrons/holes of opposite spin (Pauli exclusion principle).

When excited non-resonantly, a brief, high-intensity, above-bandgap pulse produces

electrons and holes, some of which fall into the quantum dot and will tend to relax to

lower energy states through phonon interactions. The pulse intensity is set high enough to

ensure that enough electrons and holes are generated that the lowest energy level becomes

occupied with near certainty (See Figure 2.8). A detailed description of excitation schemes

19



Conduction bandConduction band

Valence bandValence band

s-shell

p-shell

d-shell

s-shell

p-shell

d-shell

λpump

Figure 2.8: Non-resonant excitation of quantum dot showing a schematic representation

of the harmonic radial confinement potential with the density of states of the solutions.

and performances can be found in [49]. For our purposes, we will consider recombination

starting with a biexciton in its ground state without specifying how that came to be.
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Chapter 3

Quantum dot fine-structure splitting

3.1 Biexciton-exciton cascade

3.1.1 Optical selection rules

As discussed in the previous section, the quantum dot’s ground state is occupied by heavy

holes with jz = ±3/2 and electrons with jz = ±1/2 and the biexciton will include one

spin up and one spin down each of both the electrons (|↑↓〉) and holes (|⇑⇓〉). A photon

emitted via recombination has to have the same angular momentum as the electron and

hole, so the optically allowed combinations of electron and heavy hole recombinations are

|↑⇓〉 and |↓⇑〉, which have net angular momenta of −1 and +1 producing photons that are

left and right circularly polarized, respectively.

3.1.2 Polarization state

There are two possible recombination paths (see Figure 3.1), one each for the two possible

exciton states |XL〉 = |↑⇓〉 and |XR〉 = |↓⇑〉. In the absence of which-path information,
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Figure 3.1: The two possible radiative recombination paths for a biexciton in a quantum

dot with zero FSS. Red arrows represent the emission of a right circularly polarized photon,

and blue arrows a left circularly polarized photon.

the two decay paths |↑⇓↓⇑〉 → |LXX , XR〉 → |LXX , RX〉 and |↑⇓↓⇑〉 → |RXX , XL〉 →
|RXX , LX〉 combine to form the entangled final two-photon state Ψ = 1√

2
(|LR〉+ |RL〉).

We can rewrite this in the HV basis using |R〉 = 1√
2

(|H〉+ i|V 〉) and |L〉 = 1√
2

(|H〉 − i|V 〉):
|Ψ〉 = 1√

2
(|HH〉+ |V V 〉), which is a Bell state.
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3.2 Fine-structure splitting cause and results

FSS is a difference in energy between the two possible exciton states |XL〉 = |↑⇓〉 and

|XR〉 = |↓⇑〉. The FSS energy δ is proportional to [50]

δ = 2Kβξ(1− ξ) 1

(lehy )3
(3.1)

where K is a constant that depends on the quantum dot material properties, β = |〈Ψe|Ψh〉|2

is proportional to the overlap between the electron and hole wavefunctions, lehy is the length

along y of the exciton’s electron and hole hybrid wavefunction, and ξ = (lehy /l
eh
x ) is related

to the eccentricity of the exciton wavefunction. Asymmetry in the confining potential

causes a non-zero value of (1− ξ), which occurs when the solutions in the xy plane are no

longer well approximated by the isotropic parabolic potential used in Section 2.3.1, but is

instead closer to an asymmetric parabolic potential. Strain and quantum dot composition

also contribute to the FSS.

3.2.1 Time evolution of polarization state

When the fine structure splitting is non-zero the exciton eigenstates, symmetric |XH〉 =
1√
2
(|XR〉+ |XL〉) and antisymmetric |XV 〉 = −i√

2
(|XR〉−|XL〉) superpositions of the spin-up

and spin-down exciton states, are separated by FSS energy δ [51].

The spin-up or spin-down exciton state left by the emission of the biexciton photon

is a superposition of the eigenstates of the exchange interaction Hamiltonian (see [51]

for Hamiltonian with derivation). The Hamiltonian does not depend on time, so we can

write the solution to the time dependent Schrödinger equation as a superposition of its

eigenstates, with the probability amplitudes determined by the initial preparation.

Our two recombinations paths for biexciton to exciton from the degenerate case can

be rewritten in the eigenbasis: |XXL, XR〉 → 1√
2
(|HXX〉 − i|VXX〉)(|XH〉 + i|XV 〉) and
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|XXR, XL〉 → 1√
2
(|HXX〉 + i|VXX〉)(|XH〉 − i|XV 〉). In the absence of which path infor-

mation where we have an equal superposition of the two paths, the total state can be

written: 1√
2
(|LXX , XR〉 + |RXX , XL〉) = 1√

2
(|HXX , XH〉 + |VXX , XV 〉). The exciton state

evolves with time due to the non-degeneracy, precessing with frequency δ/~. The biexciton

photon remains entangled to the exciton spin state to conserve angular momentum, so the

states will evolve with time together:

|PhXX , XQD〉 =
∑
n

ane
iEnt/~|ψn〉 (3.2)

=
1√
2
ei(Eo+δ/2)t/~|HXX , XH〉+

1√
2
ei(Eo−δ/2)t/~|VXX , XV 〉 (3.3)

=
1√
2
ei(Eo+δ/2)t/~

(
|HXX , XH〉+ e−iδt/~|VXX , XV 〉

)
(3.4)

The final two-photon state after the exciton recombines after time τ = tX − tXX (tX is

the time of the exciton tXX is the time of the biexiton emission), neglecting global phase,

is

|Ψ〉 =
1√
2

(
|HH〉+ e−iδτ/~|V V 〉

)
(3.5)

The difference in concurrence between the Bell states |Φ+〉 = 1√
2
(|HH〉 + |V V 〉) and

|Φ−〉 = 1√
2
(|HH〉 − |V V 〉) oscillates:

〈Φ+|Ψ〉 − 〈Φ−|Ψ〉 =
1

2
(1 + e−iδτ/~)− 1

2
(1− e−iδτ/~) (3.6)

= e−iδτ/~ (3.7)

This has been observed experimentally (see figure 3.2), which validates the proposed

mechanism and provides a sensitive measurement of the FSS (δ/~ = 795.52± 0.35MHz for

the quantum dot the setup described in this thesis was designed for) [2].

While it does not destroy entanglement, FSS is nonetheless undesirable for many appli-

cations. Many protocols require the ability to prepare a particular known entangled state,
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A, R, L} and the measurement polarization projections as H/V
(horizontal/vertical), D/A (diagonal/antidiagonal), and R/L
(right/left). Here, i and j represent polarization of the X and
XX analyzer, respectively. With that, the likelihood pij of
measuring a correlation in the projection ⟨ij| within Δt reads as

δ τ= |⟨ |Ψ ⟩| ∗ Δp ij t n t g t t( ( , ) ( , )) ( )ij X
2

(2)

where n(t, τX) = 1/τXe
−t/τX describes the probability of an

exciton decay with time constant τX, ∗ is the convolution, and
g(t) denotes the detector systems’ timing resolution function.
Therefore, the number of measured correlation counts per
time bin becomes Nij = pijN0Δt where N0 is the number of
collected biexciton−exciton pairs.
On the basis of this mathematical description, the decay of

the sum of the correlation counts HH + VV is proportional to
the exciton lifetime, τX. We plotted the sum of these
correlation counts, HH + VV, with blue squares in Figure 2a
from which we extracted τX = 847 ± 6 ps. Furthermore, eq 1
describes an oscillation of the quantum state between the two
B e l l s t a t e s |Φ ⟩ = | ⟩ + | ⟩+ RL LR( )1

2
a n d

|Φ ⟩ = | ⟩ + | ⟩− RR LL( )1
2

with a period of ℏ/δ. Therefore,

plotting the measured correlations (RL + LR) − (RR + LL)
reveals quantum oscillations9,10 between the two Bell states as
shown by the red circles in Figure 2a. The quantum oscillation
allowed us to accurately measure the FSS to be 795.52 ± 0.35
MHz, an accuracy which is unachievable with typical
spectroscopic techniques.27 We note that the exciton lifetime
and FSS completely describe the quantum state evolution as
noted in eq 1.
For the entanglement measurements in Figure 2, the QD

was excited very close to saturation with an excitation power of
112 nW. The correlations between the X and XX photons were
measured in all possible 36 projections28 ⟨ij| instead of the
minimal necessary29 16. This enabled us to perform a better
density matrix reconstruction based on a maximum likelihood
approximation.29,30 We calculated the density matrices using
multiple time windows with a width of Δt = 100 ps during the
radiative decay of the exciton. Four representative density
matrices are shown in the inset of Figure 2. Inset A represents
the density matrix at the highest measured concurrence.

Figure 2. Dephasing free entanglement. (a) Two-photon correlation measurements depicting the sum of the HH plus VV projections together with
(RL + LR) − (RR + LL) showing quantum oscillations. The quantum oscillations appear because the latter term is proportional to the difference of
the Bell states Φ+ = 1/√2(|RL⟩ + |LR⟩) and Φ− = 1/√2(|RR⟩ + |LL⟩). The gray shaded areas indicate times with the highest concurrence (A) and
times with the smallest imaginary value of the density matrix (B−D). (b) The concurrence extracted from the measurement as a function of time
delay, t, for all 36 projections. Each data point contains the correlation counts for a Δt = 100 ps time window. The gray area indicates a 2σ
concurrence error based on counting statistics. (c) The simulation shows the outcome of a fit free model of the quantum dot, which is in close
agreement with the measurement shown in (a). The gray shaded areas indicate times with the highest concurrence (A) and times with the smallest
imaginary value of the density matrix (B−D). (d) The concurrence measurement (green solid circles) is superimposed with the simulation (solid
red line). The simulation is in very good agreement with the measurement over the entire exciton lifetime, indicating dephasing free entangled
photon generation.
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times with the smallest imaginary value of the density matrix (B−D). (b) The concurrence extracted from the measurement as a function of time
delay, t, for all 36 projections. Each data point contains the correlation counts for a Δt = 100 ps time window. The gray area indicates a 2σ
concurrence error based on counting statistics. (c) The simulation shows the outcome of a fit free model of the quantum dot, which is in close
agreement with the measurement shown in (a). The gray shaded areas indicate times with the highest concurrence (A) and times with the smallest
imaginary value of the density matrix (B−D). (d) The concurrence measurement (green solid circles) is superimposed with the simulation (solid
red line). The simulation is in very good agreement with the measurement over the entire exciton lifetime, indicating dephasing free entangled
photon generation.
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C

Figure 3.2: Quantum oscillations due to FSS in a quantum dot. The top figure shows

the actual measurement result, and the bottom a simulation of expected measurement.

Reprinted (adapted) with permission from [2]. Copyright 2019 American Chemical Society.

and this is only achievable with a precessing state by post-selecting photons within a nar-

row window of the exciton lifetime. Even when post-selecting, the rapid state precession

degrades the measured quality of entanglement, as detectors have finite response times

and will therefore necessarily integrate the evolving state over a time window of nonzero

width, giving a measured ensemble that is not coherent. For these reasons, it is desirable

to correct or “erase” the FSS.
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3.3 Universal fine-structure splitting eraser scheme

Most approaches to date have focused on eliminating or compensating for the conditions

leading to FSS within the quantum dot itself. These have included selecting growth meth-

ods which produce more symmetric dots and post-selecting dots with small FSS [52, 53],

accelerating the exciton decay rate to reduce the effect of FSS [37], or using electric, mag-

netic or strain fields to reduce contributions from the electon-hole overlap β or the exciton

wavefunction eccentricity ξ to Equation 3.1 [50]. These approaches are technically chal-

lenging, as they involve fabricating structures around existing sources.

The method presented in this thesis (published in [1]) is novel as it acts on the polariza-

tion state of the photons once they have been emitted without discarding a large percentage

of the entangled photons. This approach is device-independent, and can be applied to any

quantum dot with a FSS of up to tens of GHz (10GHz ≈ 40µeV). The additional optical

elements increase the overall device footprint, which may make it less desirable than other

approaches in applications where compactness or portability are important factors.

3.3.1 HWP frequency shifting

When circularly polarized light is passed through a HWP rotating at frequency ω, the

output will have its frequency shifted by 2ω. Garetz and Arnold [54] describe the behaviour

using Jones calculus and provide a physical explanation in terms of conservation of angular

momentum (similar to how light reflecting off of a moving mirror is Doppler shifted due to

conservation of linear momentum). Mueller calculus cannot be used for this derivation, as

it does not take into account the time varying nature of the electric fields.

A linear retarder is a device which affects the polarization of light by shifting the relative

phase of two perpendicular components of the electric field without affecting the light’s

overall intensity. The Jones matrix for a linear retarder with retardance φ and fast axis θ

is

LR(φ, θ) =

(
cos(φ/2) + i sin(φ/2) cos(2θ) i sin(φ/2) sin(2θ)

i sin(φ/2) sin(2θ) cos(φ/2)− i sin(φ/2) cos(2θ)

)
(3.8)
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Consider right circularly polarized light passing through a rotating HWP (discarding

the global phase)

LR(π, ωt)R =

(
cos(2ωt) sin(2ωt)

sin(2ωt) − cos(2ωt)

)
1√
2

(
1

i

)

=
1√
2

(
cos(2ωt) + i sin(2ωt)

sin(2ωt)− i cos(2ωt)

)

=
1√
2

(
cos(2ωt) + i sin(2ωt)

−i(cos(2ωt) + i sin(2ωt))

)

=
1√
2

(
1

−i

)
exp(2iωt)

= Le2iωt

Writing the electric field of the output beam, we can see that for an input of right

circularly polarized light with frequency ω0, the output is left circularly polarized light

with frequency ω0 + 2ω

~E = <
(
eiω0tLe2iωt

)
= <

(
ei(ω0+2ω)tL

)
(3.9)

Similarly, if circularly polarized light is passed through a HWP rotating in the direc-

tion opposite to the direction of polarization, the light will have its polarization direction

reversed and its frequency shifted down by twice the waveplate’s rate of rotation.

3.3.2 Optical fine-structure splitting eraser scheme

A fast rotating HWP’s frequency shifting can be used to correct the fine-structure energy

splitting (see Figure 3.3). The photons are first separated into biexciton (blue) and exciton

(orange) paths using a diffraction grating (recall that the exciton an biexciton photons have

different wavelengths due to the biexciton binding energy). The two paths are then sent

through quarter-waveplate (QWP)s at±45o to rotate the linearly polarized states such that
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the higher energy |H〉XX and |V 〉X become left circularly polarized and the lower energy

|V 〉XX and |H〉X become right circularly polarized. When passed through a rotating HWP,

the higher energy left circularly polarized (LCP) will be shifted to a lower energy and the

lower energy right circularly polarized (RCP) will be shifted to a higher energy. The end

result is no energy splitting.

Fig. 3

Citation
A. Fognini, A. Ahmadi, S. J. Daley, M. E. Reimer, V. Zwiller, "Universal fine-structure eraser for quantum dots," Opt. Express  26,  24487-24496 (2018);
https://www.osapublishing.org/oe/abstract.cfm?URI=oe-26-19-24487

Image © 2018 Optical Society of America under the terms of the and may be used for noncommercial purposes only. Report a copyright concern regarding this image.

Figure 3.3: FSS eraser scheme. Prepared by A. Fognini and published in [1].

The HWP rotation frequency needs to shift the LCP frequency down by δ/2~ and

the RCP frequency up by δ/2~ to get them to be at the same energy. Recall that a HWP

rotating at frequency ω shifts circularly polarized light by 2ω, meaning the needed rotation

frequency is ωHWP =δ/4~ or fHWP =δ/8π~.
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Chapter 4

Electro-optic fast half-waveplate

This chapter discusses the principles of how an electro-optic device can be used to rotate

the polarization of light in a manner similar to a waveplate.

4.1 Polarization modulators

The rotation matrix (which is the lower 3 × 3 portion of a Mueller matrix) for a linear

retarder is [55]

LR(φ, θ) =

 cos2(2θ) + cos(φ) sin2(2θ) (1− cos(φ)) cos(2θ) sin(2θ) − sin(φ) sin(2θ)

(1− cos(φ)) cos(2θ) sin(2θ) cos(φ) cos2(2θ) + sin2(2θ) sin(φ) cos(2θ)

sin(φ) sin(2θ) − sin(φ) cos(2θ) cos(φ)

 (4.1)

where φ is the retardance (or phase shift) and θ is the angle of the retarder’s fast axis.

Variable polarization retarders, or modulators, typically have either a fixed retardance with

a variable axis, or a fixed axis with a variable retardance. The two different scenarios are

illustrated in Figure 4.1.

Variable axis modulators are typically realized by mounting a waveplate in a manual

or motorized rotation stage. The rate of rotation is slow, at less than 1000 revolutions per
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Figure 4.1: Index ellipse illustrating the difference between linear retarders with a fixed

retardance and a variable axis (blue dashed), versus a fixed axis and a variable retardance

(red dash-dot). The retardance φ in Equation 4.1 is a function of the difference in index

of refraction between the fast (na) and slow (nb) axes (see Equation 4.3).

.

second [55]. They can also be realized using ferro-electric liquid crystal cells, which have

switching speeds on the order of 10µs [56].

Variable retardance modulators can be realized using liquid crystal cells (switching

speeds of 5-100ms), electro-optic crystals (speeds of tens of GHz), photo-elastic effects

(speeds of tens of kHz), or magneto-optic effects (which produces circular, rather than

linear, retardance) [55].

None of these options provide us with both the type (rotating axis, fixed retardance)

and speed (500MHz) of modulation we require. The next section introduces a variable axis

retarder implemented using an electro-optic crystal which performs the type of modulation

we need at the speed needed.
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4.2 Electro-optic variable axis modulators

One solution is to use an atypical elecro-optic modulator geometry to vary the retardance

of an electro-optic crystal along multiple axes in a way that imitates the behaviour of a

fixed retardance, variable axis retarder, as first proposed by Buhrer et al. in 1962 [57].

4.2.1 The linear electro-optic effect

Crystal optics

Amorphous dielectric materials such as glasses which have random distribution of molecules

tend to have macroscopic optical properties which do not depend on direction, and are said

to be isotropic [58]. Even if the molecules forming the glass have properties that depend

on direction (i.e. are ANisotropic), at macroscopic scales the effects of these tend to

average out due to the random distribution. Crystals, by definition, do not have randomly

distributed molecules. If the unit cells making up the crystal are not perfectly isotropic,

then the macroscopic properties of the crystal will display anisotropy.

Optically anisotropic materials display different indices of refraction for light polarized

along one or more of their axes. We represent the optical properties of anisotropic crystals

using an impermeability tensor η, which can be visualized using its corresponding index

ellipsoid (Figure 4.2). The retardance φ encountered by polarized light propagating along

axis ~k through a material of length L, φ = (na − nb)L/λ is found by taking the lengths of

the major (na) and minor (nb) axes of the ellipse in the plane perpendicular to the direction

of propagation.

The most general form of an ellipsoid centred at the origin is given by the quadric

equation 1 = η11x
2
1 +η22x

2
2 +η33x

2
3 +η12x1x2 +η13x1x3 +η23x2x3 =

∑
ij ηijxixj. This can be

represented by a matrix (with some redundancy due to permutation symmetry ηij = ηji):

η =

η11 η12 η13

η12 η22 η23

η13 η23 η33


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Figure 4.2: The index ellipsoid used for visualizing a material’s optical anisotropy.

In the absence of any forces acting on the crystal, the off-axis terms will all be zero and

the principal indices are the intercepts of the ellipsoid with the principal axes. In matrix

form, they are the solutions to:


1
n2
1

0 0

0 1
n2
2

0

0 0 1
n2
3

 =

η11 0 0

0 η22 0

0 0 η33



Electrically-induced anisotropy

Anything which distorts the positions, orientations or shapes of the unit cells or atoms

of a crystal can lead to changes in the refractive indices of the crystal [59]. Dispersion is

the most commonly observed phenomenon of this nature. Above a certain frequency, light

passing through a crystal will interact resonantly with its electrons and in doing so change
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the refractive index of the material. At much higher frequencies, the light will resonantly

interact with the crystal lattice. These interactions lead to a frequency-dependent index

of refraction, which causes wavelength-dependent pulse widening or contraction of signals

which is an well-studied effect that is important in fibre optic communications. This effect

is linear, meaning that the frequency dependence is the same for all intensities of light.

Certain crystals also display significant responses to low-frequency electric fields. The

two most significant effects are the linear electro-optic (Pockels effect), which is propor-

tional to the applied field, and quadratic electro-optic (Kerr effect), which is proportional

to the square of the applied field. For this project, we are exclusively interested in the

Pockels effect. Due to constraints on crystal symmetry and electric field symmetry to ob-

serve the effect, only crystals lacking an inversion centre display the Pockels effect, and the

ways in which the field deforms the index ellipsoid depend primarily on crystal symmetry.

The effect of electric fields on the crystal along each of the principal axes is described

by three matrices, one for each orthogonal component of the applied electric field. Due to

the aforementioned redundancies, they are often written in a contracted form where the

six possible coefficients of each matrix form the columns of a 6-by-3 matrix.



r1,k=1 r1,k=2 r1,k=3

r2,k=1 r2,k=2 r2,k=3

r3,k=1 r3,k=2 r3,k=3

r4,k=1 r4,k=2 r4,k=3

r5,k=1 r5,k=2 r5,k=3

r6,k=1 r6,k=2 r6,k=3


⇔




r1,k=1 r6,k=1 r5,k=1

r6,k=1 r2,k=1 r4,k=1

r5,k=1 r4,k=1 r3,k=1


r1,k=2 r6,k=2 r5,k=2

r6,k=2 r2,k=2 r4,k=2

r5,k=2 r4,k=2 r3,k=2


r1,k=3 r6,k=3 r5,k=3

r6,k=3 r2,k=3 r4,k=3

r5,k=3 r4,k=3 r3,k=3



(4.2)

The new index ellipsoid is found by adding the changes to the original ellipsoid:

ηij( ~E) = ηij(~0) +
∑
k

rijkEk
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In general, the principal axes of the new ellipsoid may be rotated from their original

position. As the off-axis terms vanish when the coordinate system is aligned with the ellip-

soid’s principal axes, the position of the new principal axes can be found by diagonalizing

the matrix η to D. The matrix V which satisfies D = V−1ηV consists of η’s eigenvalues

along the columns, meaning that the eigenvectors point to the direction of the new axes.

The lengths of the ellipsoid’s principal axes are the diagonal elements of D, which are also

the eigenvalues of η [58].

We can describe the effect on the polarization of monochromatic light with wavelength

λ propagating through an slab of non-chiral anisotropic material with index ellipsoid η

of thickness t along direction ~k using the Mueller matrix for a linear retarder (Equation

4.1). There is a one to one relationship between the angle θ and the direction of the fast

axis found by diagonalizing the matrix. The retardance φ is found from the lengths of

the principal axes in the plane perpendicular to the direction of propagation (na and nb in

Figure 4.2):

φ =
t(na − nb)

λ
(4.3)

4.2.2 Lithium niobate

Buhrer et al.’s proposal works with any electro-optic crystal with a 3-fold rotation axis,

including symmetry groups cubic 23 and 43m, hexagonal 6’ and 6m2, and trigonal 3, 32 and

3m [57]. Lithium niobate (LiNbO3) is an ideal material for our implementation, as it has a

compatible crystal symmetry (trigonal 3m), a high electro-optic response (meaning lower

voltages can be used), excellent transparency in the IR range, high Currie temperature

(which makes fabrication and handling easier and ensures good thermal stability) and

good signal quality. High quality LiNbO3 wafers are readily available at relatively low

prices as the majority of early research work in integrated optics focused on LiNbO3, and

it continues to be widely used as a substrate material in commercial integrated optics

devices [60]. Campbell et al. [61] were the first to successfully implement Buhrer et al.’s

scheme using LiNbO3 in 1971.
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Lithium niobate has a crystal structure consisting of stacks of alternating lithium,

niobium, and vacancies surrounded by oxygen octahedra. The stacks are used for defining

the crystal’s mirror planes and axis locations. It is a trigonal (meaning that it is symmetric

for 2π/3 rotations) 3m (meaning it has three vertical mirror planes) crystal. In the absence

of an electric field, lithium niobate is a positive uniaxial crystal, meaning that the index

ellipsoid is an oblate spheroid with the index of refraction being uniform in the xy plane

(n1 = n2 = no = 2.25 at λ = 840nm and T = 25oC [62]), and having a smaller index of

refraction in the z direction (n3 = ne = 2.17), which is its fast axis.

Note that the standard x-axis lies in one of the crystal’s mirror planes, while the y-axis

does not. The result of this is that even though the index ellipsoid forms a circle in the xy

plane when ~E = ~0, the crystal responds differently to fields applied along the x and y axes.

The Pockels coefficients for trigonal 3m crystals are shown below. In lithium niobate, the

values of the coefficients at high modulation frequencies (RF or greater) and wavelengths

close to 633 nm are r51 = 18.2 pm/V, r22 = 3.4 pm/V, r13 = 7.7 pm/V and r33 = 28.8

pm/V [62].

r =



0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0


(4.4)

4.2.3 Lithium niobate variable axis retarder

Rewriting r in its less compact notation, we can express the index ellipsoid as a function

of any electric field ~E:

η̄( ~E) = η̄(~0) +
∑
k

r̄kEk =


1
n2
o
− r22E2 + r13E3 −r22E1 r51E1

−r22E1
1
n2
o

+ r22E2 + r13E3 r51E2

r51E1 r51E2
1
n2
e

+ r33E3

 (4.5)
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Now that we have the general form, we can constrain η to follow Burher et al.’s scheme.

This involves three simplifications:

1. We propagate along the z-axis. This allows us to only consider the intersection of

the ellipsoid with the xy plane.

2. There is no field in the direction of propagation (i.e. E3 = 0).

3. There are electric fields in the x and y axes which are modulated in quadrature. We

can express them as E1 = Eo sin(ωt), E2 = Eo cos(ωt)

Applying these simplifications yields:

η̄ =

[
1
n2
o
− r22Eo cos(ωdt) −r22Eo sin(ωdt)

−r22Eo sin(ωdt)
1
n2
o

+ r22Eo cos(ωdt)

]
(4.6)

Diagonalizing the matrix:

D = V −1η̄V

=

[
− 1√

2
sin(tωd) cos2(tωd/2)

1
2

sin(tωd) sin2(tωd/2)

]
η̄

[
− cot(tωd/2) tan(tωd/2)

1 1

]

=

[
1
n2
o

+ Eor22 0

0 1
n2
o
− Eor22

]
(4.7)

We can find the direction of the major and minor axes from the columns of V :

θa = arctan

(
− tan

(
tωd
2

))
= −tωd

2
(4.8)

θb = arctan

(
cot

(
tωd
2

))
= −tωd

2
± π

2
(4.9)

The indices of refraction along the major and minor axes in the rotated frame of reference

are found by solving:

1

n2
b

=
1

n2
o

+ Eor22 =⇒ nb = no(1 + Eor22n
2
o)
−1/2 ≈ no −

1

2
Eor22n

3
o (4.10)
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Figure 4.3: The index ellipse for the fast HWP described in Equation 4.6.

Similarly,

na ≈ no +
1

2
Eor22n

3
o (4.11)

We are now able to write an approximate expression for the effective birefringence of our

simulated HWP:

∆n = na − nb ≈ Eor22n
3
o (4.12)

In conclusion, by propagating along the z direction and applying fields in quadrature

along the x and y directions with strengths Eo and frequency ωd we get a variable-axis

retarder rotating with frequency ωd/2 and having a birefringence of Eor22n
3
o.
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4.3 Integrated optics

4.3.1 Why use a waveguide?

Campbell et al.’s device was capable of shifting 632.8nm light at a maximum rate of 110

MHz, well below the speed we need, while requiring a hefty 15W of input power [61]. This

is because they were using bulk optics, meaning that the device did not act as a waveguide.

This requires that the electrode separation be much larger than the beam diameter, which

causes problems as a larger electrode separation requires a larger applied voltage to achieve

the same electric field. Campbell et al.’s device, with an electrode separation of 1mm, had

a half-wave voltage of 194 V. The challenges of producing high-voltage high-frequencies

signals are further exacerbated by the fact that a crystal with two parallel plates acts as

a capacitor, meaning that at high frequencies the power required increases substantially

(Campbell et al. estimated an extra 1.6 W/MHz for their device).

The half-wave voltage (or voltage required to achieve a π phase shift) of a device can

be found by combining equations 4.12 and 4.3 (setting φ = π) with E = V/d, where d is

the electrode separation and V is the applied voltage,

Vπ =
dλπ

tr22n3
o

(4.13)

where λ is the optical wavelength, and t is the device length. The half-wave voltage can

be reduced in two ways: by reducing the electrode separation or by increasing the length

of the device. Increasing the length beyond a few centimetres is undesirable, both because

longer devices have greater optical loss (the absorption coefficient of bulk LiNbO3 is about

α = 0.3cm−1 in the near-infrared region, or about a 30% loss in intensity over 10cm [63])

and greater electrical losses.

The separation of the electrodes can be greatly reduced by coupling the light into a

waveguide, thereby both reducing the beam’s diameter and fixing its location in the device.

For this reason, as well as for integration with optical fibres or other integrated optics,

modern EOMs feature a waveguide. The increase in speed and reduction in power are
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quite remarkable. For example, Qin et al. demonstrated a LiNbO3 variable-axis modulator

capable of shifting 780nm light at a rate of 2 GHz, with a half-wave voltage of about 20V

and a driving power of 1W [64]. This is an order of magnitude reduction in both voltage and

power from what was required by Campbell et al., while also having an order of magnitude

increase in operating frequency.

4.3.2 Waveguide fabrication methods

There exist a number of methods for fabricating waveguides in lithium niobate [65, 66].

The most common by far are titanium diffusion and proton exchange; however, the device

supplied to us makes use of zinc oxide diffusion.

In proton exchange, lithium niobate is exposed to a liquid source of hydrogen (such as

benzoic acid) at a high temperature, causing Li+ ions to be replaced by H+ ions which

increases ne and decreases no. This technique does not work for variable-axis retarders, as

waveguides made this way behave similar to polarization maintaining fibres and can only

guide light polarized parallel to the z-axis.

Waveguides formed by titanium diffusion are able to support multiple polarization

modes, but are highly susceptible to photorefractive damage at wavelengths below 1550nm.

Photorefractive damage refers to optically induced changes in the index of refraction which

are the result of charge migration. Electrons from impurities are excited to the conduction

band and migrate until they fall into traps. Over time, this can lead to the formation of

a net electric field, which changes the refractive index through the electro-optic effect .

While these effects occur in all lithium niobate, titanium diffusion significantly lowers the

damage threshold by increasing the number of electron donors (damage thresholds are as

low as tens of nW for single mode waveguides at 633nm [67]). While this is not a problem

for the quantum dot signal, as a practical matter it is necessary to be able to use beams of

a few microwatts at least to align the experiment and perform preliminary characterization

measurements to determine appropriate input signals.
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The device supplied for this experiment used zinc oxide diffusion, first proposed and

demonstrated by Young et al. [68]. These waveguides are able to support polarizations

aligned along both axes and have much higher photorefractive damage thresholds than

titanium diffusion (Young et al. reported it to be 4 orders of magnitude higher).

4.3.3 Electrode Geometry

Our device has electrodes patterned onto the top (see figure 4.4). Instead of generating x

and y fields by applying a voltage across perpendicular sets of electrodes, the field compo-

nents are generated by applying common and differential voltages to the outer electrodes.

We still apply sinusoidal signals to two channels, but they have different characteristics

than in the perpendicular pairs of electrodes case. There are four independent signal

parameters that allow for control of the field:

1. Amplitude of the sinusoidal signals (both will require the same amplitude due to

symmetry): Controls the overall strength of the field applied

2. Relative phase shift: controls the relative strength of the field in the x and y directions

by varying the portion of the signal which is common vs differential (The signal is

100% common when the two signals are perfectly in phase, 100% differential when

they are perfectly out of phase, and 50% common and 50% differential when they are

applied in quadrature). This also controls the rotation direction of the waveplate.

3. Common DC offset (corrects one component of waveguide birefringence)

4. Differential DC offset (corrects other component of waveguide birefringence)

While it is possible to correct the waveguide birefringence with either a common or

differential DC offset alone, in the general case a much lower voltage is required if a linear

combination of the two is used.
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Figure 4.4: Digram comparing how x and y fields are produced by applying common (top

right panel) and differential (bottom right panel) voltages to the surface electrodes in a

waveguide EOM to the electrode geometry used in a bulk optical device such as those

proposed by Burher et al. [57] and Campbell et al. [61] (left panels).

4.4 Device particulars

The device used for this experiment was purchased from SRICO1. The devices are similar

to those supplied by SRICO to [64], except with different waveguide dimensions to sup-

port operation at 890nm. The devices have a 3cm electrode length along a ZnO diffused

waveguide in the 3.2-4.4cm-long x-cut LiNbO3 wafers. The wafer is housed in a package

with SMA connectors to which the electrodes are connected. A fabrication method similar

to that described in [69] was used by the supplier.

1Website: https://www.srico.com/
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Chapter 5

Device characterization

5.1 Optical coupling

Before the behaviour of the EOM can be studied, good optical coupling to the device’s

waveguide needs to be achieved and verified.

5.1.1 Mounting

The device was mounted using a 5-axis stage with an F=30mm lens in a 1-axis (along the

beam axis) linear stage mounted to the same platform to collimate the output beam. The

light was coupled in using an Olympus LMPlan5xIR objective (NA: 0.1) on a 4-axis stage.

Both stages were mounted to a small breadboard to facilitate movement of the set up. See

Figure 5.1.

The light can be coupled into the waveguide by looking at the output mode on using

a pellicle and CCD camera or on an IR card. The output beam path is aligned using 4 of

the 5-axis stage’s degrees of freedom (x position, y position, tip, tilt), and the coupling is

achieved using the 4-axis stage’s degrees of freedom (x position, y position, tip, tilt) and

one of the 5-axis stage’s degrees of freedom (z position).
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Figure 5.1: Top-view photo of opto-mechanical set up for coupling light in and out of

EOM. Light passes from the left to the right of the image.

5.1.2 Mode profile

The output mode of the EOM waveguide is shown in Figure 5.2. The mode has a sim-

ilar width in both directions, and is approximately Gaussian in the plane parallel to the

device surface. The mode in the plane perpendicular to the device’s surface shows some

asymmetry, likely due to the waveguide being adjacent to the device’s surface.
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Figure 5.2: EOM waveguide mode profile imaged on a CCD camera. Plots show cross-

sections along lines shown in false-colour image.

Note that the laser spot size was too large for the waveguide, resulting in some of the

light passing though the crystal outside of the waveguide. We had an excess of intensity

available and only light which passed through the waveguide remained collimated after

passing through the collimating lens, so for simplicity we used an iris placed some distance

after from the collimating lens rather than using a telescope to change the beam size.

5.2 DC polarization tomography measurements

Characterization with low-frequency signals is a lower-complexity first step to measure

the device’s responsiveness to applied voltages and estimate how much RF power will be

required. We used measurements in 18 polarization bases with a slowly varying applied

voltage to characterize the voltage dependence of the device birefringence.
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5.2.1 Principles

In order to completely describe the effect of a lossless optical element on polarization, we

need to find the values of the nine components of its rotation matrix, which is the lower

right 3x3 portion of its Mueller matrix

M =


1 0 0 0

0 m11 m12 m13

0 m21 m22 m23

0 m31 m32 m33

 (5.1)

State preparation

We start by preparing an input polarization of H, D, or R. We first polarize the input light

to H using a polarizing beamsplitter (PBS)


0.5 0.5 0 0

0.5 0.5 0 0

0 0 0 0

0 0 0 0



si0

si1

si2

si3

 =


0.5si0 + 0.5s01

0.5si0 + 0.5si1

0

0

 , I0


1

1

0

0

 (5.2)

We then select an appropriate waveplate to rotate the state to the desired input polar-

ization. No rotation is required for the case of H, so we simply remove the input waveplate

entirely.

We use a HWP (LR(φ = π, θ = 22.5o)) to get diagonally polarized light
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



I0

I0

0

0

 = I0


1

0

1

0

 (5.3)
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We use a QWP (LR(φ = π/2, θ = 45o)) to get right circularly polarized light


1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0



I0

I0

0

0

 = I0


1

0

0

1

 (5.4)

In this way we can prepare H, D and RCP polarized light with intensity I0. Using k = 1

to denote the no waveplate case, k = 2 to denote the HWP case and k = 3 to denote the

QWP case we can represent our input state as
I0

I0δ1,k

I0δ2,k

I0δ3,k

 (5.5)

where δn,k is the Kronecker delta function.

State interaction

Once we have prepared the input state, we can pass the beam through the device under

investigation. 
1 0 0 0

0 m11 m12 m13

0 m21 m22 m23

0 m31 m32 m33




I0

I0δ1,k

I0δ2,k

I0δ3,k

 = I0


1

m1k

m2k

m2k

 (5.6)

We now have a polarization state whose Stokes parameters correspond to one of the

columns of the Mueller matrix of the device under study.
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State measurement

We will use a non-polarizing beamsplitter (NPBS) with transmission factor T = 1 − R

to provide information on the total intensity of the beam (S0). After the NPBS, the

polarization is unchanged but the total intensity is I ′ = I0 − IBS = R
T
IBS

We then use a second waveplate and HWP to get information about each of the other

three Stokes parameters (S1,S2,S3).

We use no waveplate to get information on S1
0.5 0.5 0 0

0.5 0.5 0 0

0 0 0 0

0 0 0 0




R
T
IBS

R
T
IBSm1k

R
T
IBSm2k

R
T
IBSm2k

 = 0.5
R

T
IBS


1 +m1k

1 +m1k

0

0

 (5.7)

We use a HWP (φ = π, θ = 22.5o) to get information on S2
0.5 0.5 0 0

0.5 0.5 0 0

0 0 0 0

0 0 0 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




R
T
IBS

R
T
IBSm1k

R
T
IBSm2k

R
T
IBSm2k

 = 0.5
R

T
IBS


1 +m2k

1 +m2k

0

0

 (5.8)

We use a HWP (φ = π/2, θ = 45o) to get information on S3
0.5 0.5 0 0

0.5 0.5 0 0

0 0 0 0

0 0 0 0




1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0




R
T
IBS

R
T
IBSm1k

R
T
IBSm2k

R
T
IBSm2k

 = 0.5
R

T
IBS


1−m3k

1−m3k

0

0

 (5.9)

Our S0 values, which are what are measured on the photodiodes, give us the relationship

IPBS =
R

2T
IBS(1 + (1− 2δ3,j)mjk) (5.10)
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We now have measurements which allow us to figure out all nine values of the rotation

matrix. We determine which column we are probing by choosing our input waveplate, and

which row we are measuring by choosing our output waveplate.

5.2.2 Set up

We used the experimental set up shown in Figure 5.3 to measure the voltage-dependent

polarization modulation of the EOM.

PBS 1PBS 1 WP 2WP 2WP 1WP 1 EOMEOM PBS 2

NPBS

70:30

NPBS

70:30

B

A

Common: +V

Differential:  -V

+V

From  

Laser

PD 2

PD 1

Oscilloscope

Figure 5.3: Experimental set up for measuring the EOM Mueller matrix as a function of

electrode voltage.

We input a triangular waveform with a peak to peak voltage of 10V, and recorded two

sets, one with the common input voltage configuration and one with the differential voltage

configuration, of the 9 output waveforms for different permutations of WP 1 and WP 2

described in subsection 5.2.1. Each of the 18 measurements included four waveforms: the

voltage applied to EOM port A, the voltage applied to EOM port B, the signal from the
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photodiode on the reflection port of the NPBS, and the signal from photodiode after the

HWP.

We assume that the two photodiode signals are related to the optical intensity by

some linear factor: VBS = αBSIBS and VPBS = αPBSIPBS. Then becomes VPBS =
αPBS

αBS

R
2T
VBS(f(mjk)). If we define C = αPBS

αBS

R
2T

, which should be a constant independent of

time or applied voltage and V = VPBS/VBS, we now have

Vjk = C(1 + (1− 2φ3,j)mjk) (5.11)

where we use no waveplate, a HWP at 22.2o and a HWP at 45o for WP 1 to get j = 1, 2, 3

respectively, and no waveplate, a HWP at 22.2o and a HWP at 45o for WP 2 to get

k = 1, 2, 3.

5.2.3 Results

The curves are shown in Figure 5.4. There is an inadequate amount of the response

measured (less than a full period for all of the curves) to get a good fit to the data; however,

there are three main conclusions which can be drawn from a qualitative inspection:

1. There is a substantial portion, but less than the entirety, of a full period visible. This

suggests that the half-wave voltage (Vπ) is larger than 10V but likely less than 20V.

2. The VRL local minima are non-zero in both the common and differential case. This

suggests that the waveguide birefringence is not aligned with the direction of the

fields generated by either differential or common voltages.

These results were used to inform the selection of electronic components. A DC source

with two channels capable of supplying up to ±35V and amplifiers with a rail voltage of

24V were selected for trying to perform RF frequency shifting.
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5.3 RF frequency shifting

The goal of demonstrating efficient RF frequency shifting is to:

1. Validate the ability of the device to operate as a good approximation of a rotating

HWP.

2. Determine the appropriate signal parameters to achieve good operation. These values

will be used in future experiments.

5.3.1 Principles

Errors in the phase, amplitude or DC offset of applied signals results in incomplete conver-

sion of the carrier signal, conversion of the signal to the undesired sideband, and generation

of higher harmonics. The effects of various errors in terms of x and y field is summarized

in Table 5.1

In the case of an integrated optics EOM using the electrode geometry in Figure 4.4, the

field-magnitude maladjustment is due to the amplitude of the signals (which are equal in

both electrodes), the amplitude imbalance and phase imbalance maladjustments are both

caused by improper phase between the two electrode signals, and the DC bias in drive

field error is caused by waveguide birefringence and corrected by application of a DC bias

(which will in general be a different value for each electrode).

5.3.2 Methods

Signal generation

The sinsoidal signals were generated using a Texas Instruments DAC38RF82EVM digital-

to-analog converter (DAC) evaluation module. The device can be configured to generate
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Table 5.1: Contributions of modulating signal maladjustments to undesired output-beam

components by frequency and polarization. Reprinted from [61] with permission of pub-

lisher. c©1971, IEEE.

sinusoidal signals using its on-chip oscillator. Code written by Andreas Fognini1 can be

used to control the frequency (0-4 GHz with a step size of 0.00003 Hz), phase (360 degree,

with 0.005 degree steps), and amplitude (1023 steps). For this experiment, the frequency

was set at 350 MHz.

I measured the relationship between the amplitude setting in the code and the output

power. The results are shown in Table 5.2.

There is a slight difference in response between channels A and B; however, it is within

1% for all amplitudes and less than the expected discrepancies between channels introduced

by other electrical components so the difference was ignored. Note that the signals are

applied to both ports of each of the electrodes, rather than terminating one of the terminals.

1Code available at https://github.com/afognini/PyDualDDS
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Input 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Measured Ch A 1.33 26.4 53.5 76.2 106 133 160 187 213 241 268

[mVrms] Ch B 1.33 26.1 53.2 80.8 108 135 163 191 218 246 273

Table 5.2: Amplitude setting versus measured output amplitude for DAC. All measure-

ments have an uncertainty of 500µV.

This reduced the power loss in the system, and was feasible due to the relatively low

frequency of operation (hundreds of MHz rather than tens of GHz).

After the DAC and attenuator, the signal was sent to a MiniCircuits ZHL-20W-52-S

high power amplifier. At 350MHz the amplifier has a gain of 50.5dB and an output power

at the 1dB compression point of 43.8dBm according to the supplier, which means the input

signal should be kept well below -6.7dBm to minimize distortion. The DAC can produce

signals up to about 0.27Vrms (1.638dBm), so attenuation well over 8.5dB is needed to

ensure safe operation with minimal distortion. We choose to start with a large attenuation

and decrease it as needed while searching for the correct amplitude.

Set up

A schematic of the optical an electrical set up is shown in Figure 5.5. The laser is a

Thorlabs DBR852P distributed bragg reflector diode laser with a centre wavelength of

852nm (352THz) and a linewidth of ≤ 10MHz. PBS and HWPs are used together as

circular polarizers (+45 o passes right circularly polarized (R) light and -45 o passes left

circularly polarized (L) light). The HWP was used to correct for the effects of a device

birefringence which did not appear to be correlated with degradation in the quality of

signal conversion.

The frequency of the output light was measured using a Thorlabs SA200-8B scanning

Fabry-Perot interferometer, which has a 1.5 GHz free spectral range (FSR) and a finesse

of at least 200 (250 typical). The cavity length was controlled using a function generator
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applying a low-frequency (< 10Hz) triangle waveform whose offset and amplitude were

adjusted as needed to centre the desired peaks within the scanning range.

Parameter sweeping

Each of the undesirable peaks in Table 5.1 can be contributed to by multiple maladjust-

ments, and we observed that changing one parameter has an effect on the input setting

to actual output relationship for the other parameters, probably due to changes in the

impedance of the EOM. Both of these factors make it infeasible to independently optimize

each parameter.

Due to the sensitivity of the measurement (each sample is 4 MHz apart, which cor-

responds to a shift in wavelength of only 0.01nm), the position of the peaks moves with

time due to very slight fluctuations in temperature and current supplied by the laser’s

controller. This makes it impossible to label peaks based on absolute position alone. This,

along with the equal spacing between all of the peaks and wide variation in heights down

to undetectably levels makes it extremely challenging to label each of the peaks in a data

set without referring to other data sets. This made extracting the optimal parameters from

an automated parameter sweep infeasible.

Table 5.1 still provides useful information which can help with intuition when manually

optimizing the parameters, particularly when using a circular polariser to look at the carrier

and sideband (RCP and LCP respectively for an input polarization of RCP) separately.

Setting amplitudes and running a continuous sweep of the relative phase while manually

adjusting the DC offset proved to be a successful approach.

5.3.3 Results

Figure 5.6 shows the signal from the Fabry Perot interferometer’s photodiode for the best

achieved signal, with the peaks labelled.
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EOM off

No polarizer (SB and CB)

R polarizer (CB only)

L polarizer (SB only)

𝜔଴ ± 𝜔 𝜔଴ ∓ 𝜔𝜔଴𝜔଴ ± 2𝜔

Figure 5.6: Signal from fabry-perot interferometer over a single bias voltage scan for four

measurement configurations, showing frequency shifting. The first curve (green dashed

line) shows the frequency content of the beam when no signal is applied to the EOM

electrodes, with all of the power in the carrier band (ω0). For the second curve (black solid

line) the EOM is turned on and no polariser is used at the output (i.e. the PBS in front

of the interferometer is removed). Note that almost all of the power is in one of the side

bands (ω0 ± ω), though there is still some power in the carrier band, undesired side band

(ω0∓ω) and the second-harmonic for the desired side band (ω0± 2ω). For the third curve

(red dot-dot-dash line) the QWP in front of the interferometer is set at +45o and the PBS

is replaced, allowing only RCP light to pass. For the final curve (blue dot-dash line) the

QWP in front of the interferometer is set at −45o, allowing only LCP light to pass. Note

that all of the undesired peaks are completely suppressed.

The peaks have separations of 87-88 sample points, and we expect them to be 350 MHz

apart, meaning the samples are approximately 4 MHz apart. Using the cavity’s FSR and

typical finesse, we expect a resolution of approximately 7.5 MHz. A Lorentzian fit to the
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carrier band peak with the EOM off yields a FWHM of 19± 2 MHz.

Using numerical integration to compute the approximate area under each curve after

subtracting the background level, the percentage of power found in each peak when no

polariser is used are: desired side band: 92.6%, carrier band: 3.3%, opposite side band:

2.5%, second-order side band: 1.6%.

The settings used for the curve in Figure 5.6 are:

DC A: -13.19 V

DC B: +15.73 V

Phase: 350o

Amplitude: 0.95 - 14dB

The amplitude setting of 0.95 corresponds to an output of approximately 257mVrms

or 1.209dBm. With an attenuation of -14dB the power after the amplifier is therefore

approximately 37.7dBm, which corresponds to a peak voltage of about 24V for a 50ohm

system. The impedance of the EOM is unknown and varies with applied signal, and though

applying the signal to both ends of each electrode simultaneously should result in a similar

voltage, if not power, being applied. It is also worth noting that the required DC bias

drifts slightly over the course of several minutes due to charge migration [62]. The effect

can be mitigated by adjusting the bias as needed, minimizing the length of time the device

is operated continuously, and taking breaks to allow the charges to relax back by removing

the bias or applying a bias of reverse polarity.
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Figure 5.4: Low frequency polarization tomography of EOM electro-optic response for

differential and common cases. The y-axis is Vjk = VPBS/VBS computed from the output

of the two photodiodes in Figure 5.4.
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Figure 5.5: Schematic representation of the optical and electrical set up for performing

and measuring frequency shifting.
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Chapter 6

Summary and future steps

Quantum dots are a promising source of entangled photons which have the potential to

overcome the limitations of SPDC sources making on-demand operation possible. Pho-

tonic nanostructures such as semiconductor nanowires increase collection efficiencies from

quantum dots, and sources with little or no dephasing have already been demonstrated. A

remaining challenge is the state precession caused by FSS, which can be compensated or

erased using standard optical components and a fast rotating HWP.

An EOM made from x-cut lithium niobate can be used to emulate a HWP rotating at

speeds up to tens of GHz, which makes erasing FSS of up to a few tens of µeV possible.

I present data showing a conversion efficiency of 92% at a wavelength of 852nm and a

modulation frequency of 350 MHz.

Future steps involve demonstrating frequency conversion with single photons, and even-

tually implementing the fine-structure eraser scheme on an entangled photon source.
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