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Abstract

In this thesis, we explore the proposal that near the end of its lifetime, a Schwarzschild black
hole will undergo a quantum transition into a ‘white hole’: an object which is precisely
the time-reversal of the black hole. This transition takes the form of quantum tunnelling.
In order to evaluate the tunnelling amplitude, we characterize the region where quantum
gravity effects dominate as enclosed by intersecting hypersurfaces on which the trace of
the extrinsic curvature is equal to zero. This allows us to recover the tunnelling amplitude
as specified by the boost angle between the normals to these hypersurfaces. The long-term
aim of this work is to find the complex solutions to the vacuum Einstein equations in the
quantum gravity region, and thus provide a complete explanation for what happens to a
black hole after it evaporates.
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Chapter 1

Introduction & Background

1.1 Black Holes and White Holes

What happens to a black hole after it evaporates is a long-standing question. Classical
general relativity predicts that at the centre of a black hole, there is a singularity where
space and time end. This prediction is unrealistic, because it fails to take into account
the quantum effects that dominate when gravity becomes very strong. It is well-known
that a black hole’s mass decreases with the passage of time via Hawking radiation [48,49].
Hawking’s description of black hole evaporation is based on quantum field theory in curved
spacetime; it utilises a mean-field approximation that breaks down before the mass of the
black hole reaches the Planck scale (mPl =

√
~c/G ≈ 2.176 × 10−8kg). We would like to

investigate what happens to the black hole and the matter trapped inside it as we approach
the Planck regime.

There are many theories concerning what happens to the matter that falls into a black
hole. In this thesis, we explore the proposal that when the mass of a black hole reaches the
Planck regime, it does not simply disappear; instead, it undergoes a quantum transition
whereby the black hole horizon evolves into a white hole horizon. The possibility of a black-
to-white hole transition was first proposed by John Lighton Synge in 1950 [82], and it has
more recently been studied using loop quantum gravity techniques [7, 8]. In the quantum
transition region, Einstein’s general relativity is violated by quantum effects. The transition
from black hole to white hole takes the form of quantum tunnelling, and we deduce an
approximation for the tunnelling amplitude. After the tunnelling process occurs, the matter
that was trapped inside the black hole can slowly escape. It has been suggested that the
black-to-white hole transition could result in some observable astrophysical phenomena
such as Fast Radio Bursts (FRBs) or high-energy cosmic rays [11,12].

Our study has some limitations. In particular, although various authors [13, 76] have
claimed that the black hole to white hole scenario offers a resolution to the information
loss paradox, we do not expect our current work to solve the information loss problem.
The reasons for this are:

• We do not consider the time-dependence of the black-to-white hole transition. Since
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information loss is time-dependent, our static study will not provide any insight into
what happens to the matter that falls into a black hole.

• We have not considered the evolution of the black hole before or after the quantum
transition. If the evaporation and ‘leaking out’ processes are not sufficiently long
compared to the time taken for the transition, it may not be appropriate to model
black hole to white hole tunnelling as a static process.

• Studying the black hole to white hole transition does not explain what happens to
the information that has fallen into the black hole during the Hawking evaporation
process.

• We are only considering the tunnelling transition itself, and aiming to deduce the
tunnelling amplitude. We are not proposing any mechanism by which the information
that has fallen inside the black hole is allowed to leak out of the white hole after the
transition occurs.

This thesis is organised as follows. In Chapter 1, we review the geometric properties of black
and white holes, and discuss the regions of spacetime in which Einstein’s general relativity is
violated. We describe the black-to-white hole tunnelling proposal and consider the current
state of knowledge regarding this topic. In Chapter 2 we introduce the spacetime we would
like to study: the Schwarzschild black hole. We discuss the validity and usefulness of various
coordinate systems used to describe the Schwarzschild black hole. Penrose diagrams are
reviewed for the general Schwarzschild spacetime and for the black-to-white hole transition.
Since the transition takes the form of quantum tunnelling, we revise the basics of quantum
tunnelling in Chapter 3. We give a simple example of one-dimensional tunnelling through
a rectangular potential barrier, and review the path integral formulation from which we
obtain an expression for the coefficient of transmission for tunnelling. In Chapter 4 we begin
to study the specifics of our chosen spacetime, and deduce its full gravitational action. We
find that the action is dependent on the boost angle between the normal vectors to the
surfaces characterizing the ‘quantum gravity region’ in which general relativity is violated.
We calculate the geodesics defining these surfaces in Chapter 5, and use them to compute
the boost angle in Chapter 6. We find that using the Kruskal coordinates yields a finite
boost angle in the region close to and on the black hole horizon. We plot the boost angle in
the interior region, the exterior region and on the horizon, and we consider the implications
of these results for the probability of black-to-white hole quantum tunnelling. Finally, in
Chapter 7 we consider the limitations of our calculations and identify interesting areas for
future study.

1.1.1 What is a White Hole?

A white hole is the time-reversed version of a black hole. In a white hole, matter
can only move outwards. White holes could represent the future of all black holes: various
authors have proposed that after most of the black hole’s mass has evaporated via Hawking
radiation and it approaches the Planck mass, it quantum tunnels into a white hole from
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which the matter that fell inside can ‘bounce’ out [13, 76]. This quantum transition is
allowed since the laws of general relativity break down at the Planck scale and Einstein’s
equations are no longer valid.

From the outside, the geometry of a white hole is indistinguishable from that of a black
hole [13]. The standard Schwarzschild line element with signature (−,+,+,+) is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (1.1)

where rs is the Schwarzschild radius rs = 2GM
c2

for a black hole of mass M and we define
f(r) = 1− rs

r
. dΩ2 is the metric on a unit two-sphere [15]:

dΩ2 = dθ2 + sin2 θdφ2. (1.2)

When r > rs, the line element in Equation 1.1 describes both the exterior of a black hole
and the exterior of a white hole. The difference between black and white holes becomes
apparent at the horizon r = rs: the consequence of time reversal is that for a white hole
the matter is outgoing rather than infalling as it was for the black hole. This means that
the matter that fell inside is allowed to escape after the quantum transition occurs. Since
the mass of the white hole is very small and its horizon is Planck size, we expect the matter
to leak out very slowly; the white hole can thus be viewed as a long-lived remnant of the
black hole [13].

1.1.2 Interior Geometry of a Black Hole

As the mass of a black hole decreases via Hawking radiation, its interior geometry is
altered. The interior is composed of spacelike surfaces of topology S × R where S is a
circle; i.e. it is a long cylinder. As time passes and the black hole evaporates, the length
of the cylinder increases while its radius decreases (see Figure 1.1). It has been shown by
Christodoulou and De Lorenzo [23] that although the area of the black hole’s horizon will
be very small near the end of its evaporation, the length of the cylinder will continue to
increase linearly with time.

The age of a black hole is of no consequence to the exterior geometry. An old black
hole that has evaporated to mass M has the same exterior geometry as a young black hole
of the same mass [13]. However, the interior geometry of these two holes will be very
different: the volume of the older black hole’s interior will be much larger than that of the
young hole.

1.1.3 Quantum Tunnelling from a Black Hole to a White Hole

As discussed above, the mass of a black hole decreases with time via Hawking radiation.
When the mass approaches the Planck mass mPl, the strong distortion of spacetime geom-
etry means that general relativity is no longer valid and Einstein’s equations are violated
for a brief interval of time [22, 25, 28, 45, 78]. During this interval, the causal structure
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Figure 1.1: Interior geometry of an old black hole. As time passes, the length of the
cylinder increases while its radius decreases. Diagram courtesy of [13].

predicted by classical general relativity is altered [35,36,51,53,62].
It was previously thought that black holes will eventually radiate away all their mass,

and simply ‘disappear’. In the words of Stephen Hawking, ‘quantum theory will cause
black holes to radiate and lose mass. It seems that they will eventually disappear com-
pletely, taking with them the information inside them’ [47]. We no longer believe that
this is the case. Instead of disappearing, the black hole will undergo a quantum transition
into a white hole [4,46,63,64]. This transition takes the form of quantum tunnelling. The
information trapped inside can then slowly leak out, and the white hole might eventually
disappear completely [40,68].

The probability for a black hole to tunnel into a white hole is small until the black hole
has evaporated so much so that its mass is of the order of the Planck mass, mPl =

√
~c/G.

This means that the tunnelling probability will not become significant until near the end of
the evaporation process. The probability p scales the same way as the standard tunnelling
factor:

p ∼ e−SE/~ (1.3)

where SE is the Euclidean action. For a stationary black hole of mass m, we can approxi-
mate SE ∼ Gm2/c [13], so that

p ∼ e−(m/mPl)
2

. (1.4)

It is clear from Equation 1.4 that as m→ mPl, the tunnelling probability becomes of order
unity. This result has been derived more thoroughly by Christodoulou et al. in [22,25].

There are two distinct regions of a Schwarzschild black hole in which quantum effects
dominate and Einstein’s general relativity alone is no longer sufficient to describe the
physics. These are:

1. The central Schwarzschild singularity r = 0, where curvature becomes extremely
large.

2. The tunnelling region near the horizon r = rs, where the black hole undergoes a
quantum transition into a white hole.
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Figure 1.2: Penrose diagram of a classical black hole. The dashed line represents the black
hole’s horizon. The dotted line is a Cauchy surface Σ, and S is a two-dimensional sphere
at the point at which the surface Σ crosses the horizon. A and B are the regions in which
Einstein’s general relativity is violated.

Following [13], we will refer to the regions corresponding to 1 and 2 as A and B. Figure
1.2 is a Penrose diagram of a classical black hole. The dashed line represents the horizon,
and the dotted line is a Cauchy surface Σ that crosses the horizon at some time v. The
section of Σ which is inside the horizon is denoted by Σi. We can fix Σi by considering
a two-dimensional spacelike sphere S in four-dimensional Minkowski space. This sphere
determines a preferred three-dimensional ball Σi bounded by S: the one with maximum
volume. Choosing Σi to have maximal volume provides an invariant definition of the
‘volume inside S’ [13].

Region A is characterized by the large curvature of spacetime as we get close to the
singularity at the centre of the black hole, and it is inclusive of the singularity. Region
B is near the end of the evaporation: the area of the black hole horizon decreases until
it reaches Region B. The quantum gravitational effects in A and B are distinct, and we
must therefore consider the two regions separately.

Region A

The curvature of our spacetime increases as we move towards the singularity at the
centre of the black hole, and the Schwarzschild radius rs (which is a temporal coordinate
inside the hole) decreases. When the curvature approaches Planckian values, quantum
gravitational effects become significant and the laws of classical general relativity are no
longer applicable [77, 88].

The interior geometry of an old black hole is a long cylinder (see Section 1.1.2). With
the passage of time, its length increases and its radius decreases. The interior volume V
scales as

V ∼ m4/
√
~. (1.5)
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A

B

Figure 1.3: Spacetime diagram for a black-to-white hole transition. The dashed lines are
the black hole horizon (below) and the white hole horizon (above). Regions A (enclosed by
the red curves) and B are the regions in which general relativity is insufficient to describe
the Schwarzschild black hole.

Bianchi et al. justified this result in [13]. In the classical limit ~ → 0 the interior volume
of the black hole diverges with V → ∞. In regions of high curvature where quantum
gravitational effects become significant, V remains finite. When the radius of the cylinder
reaches some minimal value, it ‘bounces back’: the radius begins to increase while the
length decreases. We recognize this bounce as the quantum transition from a black hole to
a white hole state. Analytic continuation of the Einstein equations across the singularity
makes this transition possible.

Region B

For Region B, we are interested in quantum effects that occur when a sufficient amount
of time has passed since the gravitational collapse. An upper bound for this time can be
inferred from the Hawking radiation: ∼ m3

0/~ where m0 is the initial mass of the black
hole [13]. It has previously been assumed that Hawking evaporation will continue after the
curvature reaches Planckian values. We now believe this to be false, since the usual laws
of general relativity are not valid at high curvature. Figure 1.3 is a spacetime diagram
depicting a black-to-white hole transition. The dashed lines show the black hole horizon
(below) and the white hole horizon (above). The high curvature region, Region A, is
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represented by the area enclosed by the red curves. It has been shown in [28, 45] that the
Einstein equations are satisfied everywhere on this spacetime except for the regions A and
B, including the area between the black and white hole horizons (enclosed by the dashed
lines in Figure 1.3). The quantum transition happens between these two horizons: the
tunnelling process results in the black hole interior turning into a white hole interior of the
same mass. The size of the white hole horizon is equal to that of the black hole, and is
likely to be very small since we expect the black hole to approach the Planck mass before
the probability of tunnelling becomes significant. The interior volume of the white hole will
be very large, due to the elongation of the black hole’s geometry during its evaporation.
Its lifetime will be dependent on the age of the black hole, since the white hole’s evolution
is the time-reversed evolution of the black hole.

The time taken for the quantum transition has been calculated by Christodoulou and
D’Ambrosio using a spinfoam model to be ∆τ ∼ m [22]. It was also shown in [22] that the
probability of tunnelling per unit time, p, scales as

p ∼ e−m
2/~, (1.6)

where m is the mass of the black hole at the time of the tunnelling. As stated above, the
time taken for the black hole to evaporate to Planckian mass is proportional to m3

0/~, and
we can therefore say that the lifetime of the black hole

τbh ∼ m3
0/~ (1.7)

and
∆τ ∼

√
~, (1.8)

which means that Region B is Planckian in size.

1.2 Counter-Proposal

As previously mentioned, the black-to-white hole tunnelling proposal is one of many
theories concerning what happens to the matter that falls into a black hole. We now
briefly consider a recent result from loop quantum gravity which suggests that the quantum
bounce experienced by an old black hole does not in fact lead to the evolution of its horizon
into a white hole horizon. Alesci et al. [2] propose an alternative model of the interior
geometry of the Schwarzschild black hole, in which the transition to a white hole does not
occur. This work builds on a previous study where an effective Hamiltonian constraint was
derived for the Schwarzschild geometry starting from the full loop quantum gravity (LQG)
Hamiltonian constraint [1]. The expectation value for this effective Hamiltonian constraint
was computed for coherent states sharply peaked around a spherically symmetric geometry.
The new constraint serves as a replacement for the Hamiltonian constraint of general
relativity. In [2], the effective Hamiltonian constraint is used to study the interior region of
the Schwarzschild black hole. The authors choose two different coherent states, and show
that in each case the classical Schwarzschild singularity is replaced by a quantum bounce (as
predicted by loop quantum cosmology [6,9]) followed by a homogeneous expanding universe
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Figure 1.4: An artist’s impression of a black-to-white hole transition. Image courtesy
of [76].

with no evidence of the formation of a white hole horizon. Their effective description of
the Schwarzschild interior geometry has the following properties:

• All dominant quantum gravity corrections in the full LQG theory are also present in
the effective Hamiltonian Heff .

• In the classical limit ~→ 0, Heff reduces to the classical value predicted by general
relativity.

• The effective metric is in accordance with the classical metric at low curvature, and
diverges from it when the Planck scale is approached.

Alesci et al. show that for each choice of coherent state, the metric function Λ(τ) does not
vanish at any time τ < 0, which means that there is no formation of a white hole horizon
after the quantum bounce. An advantage of this proposal is that it circumvents the large
quantum effects that occur near the classical event horizon of the Schwarzschild black hole.
However, it is limited by its dependence on the choice of coherent states.

1.3 Conclusion

In this chapter we introduced the proposal that we would like to study: a black hole
approaching the Planck mass will quantum tunnel into a white hole from which the matter
that was trapped inside can slowly leak out. We discussed the geometries of black and white
holes and described the two regions of a black hole spacetime in which general relativity

8



fails. Finally we considered a recent counter-proposal to black-to-white hole tunnelling. In
the next chapter we revise the Schwarzschild black hole, and explore various ways in which
we can represent the black-to-white hole transition using spacetime diagrams.
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Chapter 2

The Schwarzschild Black Hole

Recall that we would like to study the quantum transition from a black hole to a
white hole in the context of the Schwarzschild black hole. In this chapter, we revise the
Schwarzschild black hole and some of the many coordinate systems that may be used to
describe it, and discuss the merits of using different coordinates. We expect the quantum
transition to occur in the vicinity of the black hole horizon r = rs (this will be further
discussed in Chapters 6 and 7) and it is therefore useful to work in a coordinate system
that is well-defined at this point, such as the Kruskal coordinates.

2.1 The Schwarzschild Metric & Birkhoff’s Theorem

The Schwarzschild solution is an exact and unique solution of Einstein’s field equations
in a vacuum. It may be used to describe any static and spherically symmetric object,
including a black hole. In spherical coordinates {t, r, θ, φ}, the Schwarzschild metric is

ds2 = −

(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2 (2.1)

where rs is the Schwarzschild radius defined in Section 1.1.1 and dΩ2 = dθ2+sin2 θdφ2 is the
metric on a unit 2-sphere. From now on we will use natural units such that c = ~ = G = 1.
In these units the Schwarzschild radius is rs = 2M where M is the mass of the black hole.
If we let f(r) = 1− rs

r
as in Section 1.1.1, then

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (2.2)

(Equation 1.1). The mass of the black hole M can be time-dependent, but the external
spacetime described by the Schwarzschild metric must be static.

Birkhoff’s theorem states that any spherically symmetric solution of Einstein’s vac-
uum equations must be static and asymptotically flat. We must also be able to recover
the Minkowski metric when M → 0. This implies that the external spacetime of any
such solution must be described by the Schwarzschild metric, Equation 2.1. An important
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u v

outgoing ray

ingoing ray

Figure 2.1: A spacetime diagram showing the (u, v) coordinates. Ingoing and outgoing
massless particles or ‘rays’ are oriented at 45◦.

consequence of Birkhoff’s theorem is that a spherical mass distribution cannot emit gravi-
tational waves [66]. The proof of this theorem is nontrivial and and we will therefore not
cover it here: for a rigorous treatment, see Hawking & Ellis [48].

2.2 Kruskal Coordinates

It is clear from Equation 2.1 that the Schwarzschild metric in {t, r, θ, φ} coordinates is
not only singular at the centre of the black hole (r = 0), but also when r = 2M . The
singularity at r = 2M is a coordinate singularity, meaning that we may circumvent it by
introducing a new coordinate system to describe the Schwarzschild spacetime. There are
many choices we could make for these new coordinates, including those defined by Kruskal
and Szekeres.

Consider massless particles that move radially in spacetime described by the Schwarzschild
metric. The t and r coordinates will vary, but θ and φ are time-independent. We refer to
particles for which r is decreasing as ‘ingoing’, and particles with increasing r as ‘outgoing’.
It can be easily shown (see for example [73]) that the ingoing particles move along curves
with v = constant and outgoing particles move along curves with u = constant, where

v = t+ r∗ (2.3a)

u = t− r∗ (2.3b)

and r∗ =

∫
dr

1− rs/r
= r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣. (2.3c)

v is called ‘advanced time’, and u is called ‘retarded time’. As can be seen in Figure 2.1, the
massless particles move along paths oriented at 45◦, just as they would in flat Minkowski
spacetime. This property makes the (u, v) coordinates ideal for describing radial null
geodesics. Rewriting Equation 2.1 in terms of the (u, v) coordinates, we find that

ds2 = −

(
1− 2M

r

)
dudv + r2dΩ2. (2.4)
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r in the above equation is no longer a coordinate: it is merely used to define r∗ in terms
of u and v by

r∗(r) =
1

2
(v − u). (2.5)

Substituting in f(r) = 1− rs
r

, the metric can be recast in the form

ds2 = −f(r)dudv + r2dΩ2. (2.6)

The r = rs surface now occurs at v − u = −∞, which is still a coordinate singularity. We
would like to try and avoid this singularity. For this purpose, we consider the surfaces close
to r = rs, on which we can approximate

r∗ ' rs ln

∣∣∣∣ rrs − 1

∣∣∣∣. (2.7)

Rearranging this equation gives

r∗

rs
' ln

∣∣∣∣ rrs − 1

∣∣∣∣
⇒ er

∗/rs ' ±

(
r

rs
− 1

)
⇒ r

rs
' 1± er∗/rs (2.8)

where the upper and lower signs correspond to surfaces with r > rs and r < rs respectively.
Using Equation 2.5, we can rewrite this as

r

rs
' 1± e(v−u)/2rs . (2.9)

The function f may therefore be written as

f ' 1−

(
1± e(v−u)/2rs

)−1

. (2.10)

Since v−u→∞ when r → rs, we can approximate Equation 2.10 by its first-order Taylor
expansion to give

f ' ±e(v−u)/2rs . (2.11)

The Schwarzschild metric can then be approximated by

ds2 ' ∓(e−u/2rsdu)(ev/2rsdv) + r2dΩ2. (2.12)

We now introduce the null Kruskal coordinates U and V such that

U = ∓e−u/2rs and V = ev/2rs . (2.13)
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We would like to use these new null coordinates to describe the entire spacetime. For this
purpose, we first return to the exact expression for r∗ (Equation 2.3c) and use it to express
r as a function of U and V . Rearranging Equation 2.3c, we find

r∗

rs
− r

rs
= ln

∣∣∣∣ rrs − 1

∣∣∣∣
⇒ er∗/rse−r/rs = ±

(
r

rs
− 1

)

⇒ er
∗/rs = ±er/rs

(
r

rs
− 1

)
. (2.14)

We know that r∗ = 1
2
(v − v), so

er∗/rs = e
1
2

(v−u)/rs

= e−u/2rsev/2rs

= ∓UV. (2.15)

Substituting this result into Equation 2.14 yields an expression defining r as a function of
U and V :

er/rs

(
r

rs
− 1

)
= −UV. (2.16)

We now have all the information required to rewrite the Schwarzschild metric in terms of
the null Kruskal coordinates. We find that

ds2 = −32M3

r
e−r/2MdUdV + r2dΩ2. (2.17)

Unlike the metric in Equation 2.1, Equation 2.17 is nonsingular on the r = rs surface. By
rewriting the Schwarzschild metric in null Kruskal coordinates U and V , we have succeeded
in circumventing the singularity at r = rs.

Figure 2.2 is a diagram depicting the Kruskal spacetime. Outgoing rays move along
curves of constant U , and ingoing rays move along curves of constant V . Surfaces of
constant r correspond to UV = const., and as such there are two copies of each constant r
surface in a Kruskal diagram. As an example, the r = rs surface corresponds to UV = 0 for
which we could have either U = 0 or V = 0. Region I is the region of spacetime covered by
the Schwarzschild coordinates. Use of the Kruskal coordinates facilitates the continuation
of the Schwarzschild metric through the r = 2M singularity into region II. We refer to the
Kruskal coordinates as the ‘maximal extension’ of the Schwarzschild spacetime; the regions
III and IV are not usually required and they exist only in the Kruskal representation.

2.3 Eddington-Finkelstein Coordinates

As mentioned above, regions III and IV in the Kruskal diagram are not generally required
to describe the spacetime, and the Kruskal coordinates can be inconvenient when one is
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Figure 2.2: The Kruskal spacetime. Region I is described by the Schwarzschild coordinates,
and the Kruskal coordinates allow continuation of the metric into region II. Regions III
and IV exist only in the maximal extension of the Schwarzschild spacetime.

performing calculations. It therefore makes sense to define some simpler coordinates which
are still nonsingular at r = 2M . Let u and v be defined as in Equations 2.3a and 2.3b.
(v, r) and (u, r) are ingoing and outgoing Eddington-Finkelstein coordinates respectively.
In ingoing Eddington-Finkelstein coordinates (v, r), the Schwarzschild metric (Equation
2.1) becomes

ds2 = −

(
1− rs

r

)
dv2 + 2dvdr + r2dΩ2. (2.18)

The (v, r) coordinates represent regions I and II of the Kruskal diagram. In outgoing
coordinates (u, r) the metric is

ds2 = −

(
1− rs

r

)
dv2 − 2dudr + r2dΩ2, (2.19)

and the (u, r) coordinates describe regions IV and I of Figure 2.2. Eddington-Finkelstein
coordinates can be used to construct spacetime diagrams, but these diagrams will not have
both ingoing and outgoing rays propagating at 45◦ as in the Kruskal diagram. Figure 2.3
is an Eddington-Finkelstein spacetime diagram. Ingoing rays move along paths defined
by dv = 0, i.e. oriented at 45◦. The direction of outgoing rays is not constant, since
dv
dr

= 2
1−rs/r .

2.4 Spacetime Diagram for the Schwarzschild Black Hole

Penrose diagrams are an extremely useful tool for illustrating the causal structure of
a particular spacetime. Locally a Penrose diagram is conformally equivalent to the ac-
tual spacetime metric, meaning that angles are preserved. In order to represent the
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Figure 2.3: An Eddington-Finkelstein spacetime diagram, courtesy of [65].

Ũ Ṽ
Ũ + Ṽ = π/2

Ũ + Ṽ = −π/2

Ũ = −π/2

Ṽ = π/2

Ṽ = −π/2

Ũ = π/2

Figure 2.4: A spacetime diagram of the compactified coordinates defined by the transfor-
mations in Equations 2.20.

Schwarzschild spacetime using a Penrose diagram, we must first map the coordinates U and
V defined in Section 2.2 into a finite domain. We do this by applying the transformations

Ũ = arctanU (2.20a)

and Ṽ = arctanV. (2.20b)

These transformations are useful because they allow us to map the whole Schwarzschild
spacetime described by the coordinates U and V , which have infinite range, into a finite
domain in the Ũ -Ṽ plane. The disadvantage of this mapping is that it introduces new
coordinate singularities at the boundaries of the spacetime. Figure 2.4 is a spacetime
diagram of the compactified coordinates Ũ and Ṽ . In this diagram, the r = rs surfaces
occur at Ũ = 0 and Ṽ = 0. The singularities that were at r = 0 or UV = 1 are now at
Ũ + Ṽ = ±π

2
, and new singularities due to the transformation occur at (Ũ , Ṽ ) = (±π

2
,±π

2
).

Figure 2.5 is a Kruskal diagram of the Schwarzschild spacetime. The definitions of the
diagram labels are as follows:

• I + is ‘future null infinity’, and it defines the surfaces on which Ũ = π
2

and Ṽ = π
2
.

It contains the future endpoints of all outgoing null geodesics.
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Figure 2.5: A Kruskal diagram of the Schwarzschild spacetime.

• I − is ‘past null infinity’. It defines the surfaces on which Ũ = −π
2

and Ṽ = −π
2
, and

contains the past endpoints of all ingoing null geodesics.

• ‘Spacelike infinity’ i0 represents the points at which I + and I − coincide. It contains
the endpoints of all spacelike geodesics.

• ‘Future timelike infinity’ i+ defines the points (Ũ , Ṽ ) = (0, π
2
) and (Ũ , Ṽ ) = (π

2
, 0).

It contains the future endpoints of all timelike geodesics that do not terminate at
r = 0.

• ‘Past timelike infinity’ i− defines the points (Ũ , Ṽ ) = (0,−π
2
) and (Ũ , Ṽ ) = (−π

2
, 0).

It contains the past endpoints of all timelike geodesics that do not begin at r = 0.

2.5 The Event Horizon & The Apparent Horizon

In a Kruskal diagram (see Figure 2.2), all light cones are tilted at 45◦. This means
that the timelike paths followed by the light cones are only able to move towards, and not
away from the singularity at r = 0. Once an observer has crossed the surface r = rs that
separates regions I and II of the Kruskal diagram, they are unable to return or to send
signals out of the black hole. The crossing of this surface also means that an observer
outside of the black hole would not be able to detect any signals coming from within. For
this reason, we refer to the r = rs surface as the ‘event horizon’. Region II, which is inside
the event horizon of the black hole, is called the ‘black hole region’. There is a second
event horizon between regions IV and I, and we must therefore distinguish between these
two event horizons. We call the event horizon between regions I and II the ‘future horizon’,
and the ‘past horizon’ is the r = rs surface between regions IV and I. The region inside
the past horizon of the black hole (region IV) is the ‘white hole region’.

In order to define the ‘apparent horizon’ of a black hole, we must redefine the notions
of ‘outgoing’ and ‘ingoing’ rays. We will now define outgoing rays as those which travel
on curves of constant U , where r is not necessarily increasing. Similarly, ingoing rays are
those which move on curves of constant V , and r is not necessarily decreasing. We can

16



show (see [65], for example) that the expansion of a congruence1 of rays changes sign at
r = rs. We should also be able to see this from the fact that r increases along the geodesics
that are outside r = rs, but decreases along the geodesics that are inside. The expansion is
positive for U < 0, which is in the past of r = rs, and negative for U > 0 (in the future of
r = rs). We therefore refer to the r = rs surface in this context as the ‘apparent horizon’.
The concepts of ‘event horizon’ and ‘apparent horizon’ overlap; the differences between the
two types of horizon only become apparent when the spacetime is no longer static (in a
rotating black hole, for example).

2.6 The Killing Horizon

A Killing vector of the Schwarzschild spacetime is defined by

tα =
∂xα

∂t
. (2.21)

tα is timelike outside the black hole, null on the event horizon and spacelike inside the
black hole, and it satisfies the equation

gαβt
αtβ = 1− rs

r
, (2.22)

where gαβ is the spacetime metric. We refer to the r = rs surface as a ‘Killing horizon’,
because the Killing vector field is null on this surface [16]. In a static black hole spacetime
such as the one we are studying, the definitions of the event, apparent and Killing horizons
all coincide.

2.7 Spacetime Diagram for the Black-to-White Hole Transition

In this thesis we explore the proposal that when a black hole has evaporated via Hawking
radiation until its mass is on the scale of the Planck mass, it will undergo a quantum
transition into a white hole: an object that is the time-reversal of the black hole. As
stated in Section 1.1.3, this transition takes the form of quantum tunnelling. There are
various ways in which we can represent the black-to-white hole transition using spacetime
diagrams. We begin by looking at the Kruskal diagram for a Schwarzschild black hole
(Figure 2.5) and considering a null shell falling into the black hole region and a second null
shell that ‘explodes’ out of the white hole region. We then consider two different strategies
for representing the physical spacetime, which we will refer to as

1. ‘Untwisting’ of the trajectories of the null shells.

2. Gluing of two Kruskal diagrams at the central Schwarzschild singularity.

1A congruence of curves is the set of integral curves defined by a nonvanishing vector field on the
spacetime manifold.
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1. ‘Untwisting’ of the Null Trajectories

Figure 2.6 is a Kruskal diagram of the Schwarzschild spacetime, with labels as defined
in Section 2.4. The bold diagonal line with gradient −1 denotes a null shell that falls
into the black hole region. E0 and E1 are the first moments in time that quantum effects
dominate and the Einstein equations are violated, for the black and white hole regions
respectively. A null shell ‘explodes’ out of the white hole region, as shown by the bold
diagonal line with gradient 1. The corner J is the maximal extension in space of the
region in which the Einstein equations are violated; we refer to it as the corner of the
quantum gravity region. By ‘untwisting’ the trajectories of the null shells, we obtain the
Penrose diagram in Figure 2.7. In this diagram, the bold diagonal lines again represent
the infalling null shell (below) and the exploding null shell (above). The dashed lines are
the black and white hole horizons. The lines joining E1 to J and E0 to J represent the
boundaries of the quantum gravity region. In this study, we choose to define the boundary
of the quantum gravity region by the surface on which the trace of the extrinsic curvature
is zero (K = 0) and its time-reversal. We call these surfaces Σ0 and Σ1, and they meet
at the corner J = Σ0 ∩ Σ1. We will see in Chapter 4 that the choice K = 0 causes the
boundary term of the gravitational action to vanish and thus simplifies the calculation of
the tunnelling amplitude for the black-to-white hole transition. The location of the corner
J is as yet unclear. Intuitively we expect it to be near the horizon r = rs, since the
quantum transition occurs when the black hole horizon evolves into a white hole horizon.
The corner J might be just inside the horizon, just outside or on the horizon itself. The
location of the corner is critical in the calculation of the tunnelling probability, and we
discuss this open question further in Chapter 7.

2. Gluing of Two Kruskal Diagrams

An alternative way to represent the black hole to white hole transition using a spacetime
diagram is by gluing two Kruskal spacetimes at the central Schwarzschild singularity, as
shown in Figure 2.8. As in Figure 2.6, the bold diagonal line with gradient −1 is the null
shell falling into the black hole, and the corresponding line with gradient 1 is the null shell
exploding out of the white hole. The shaded region is the portion of spacetime described by
the metric of a black-to-white hole transition. Figure 2.9 shows the regions corresponding
to the physical spacetime. The corner of the quantum gravity region J is located within
the region denoted by the white diamond, which encloses the intersection of the black hole
and white hole horizons. As mentioned above, it is as yet unclear whether J is inside,
outside or on the horizon.
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Figure 2.6: A Kruskal diagram of the Schwarzschild spacetime. A null shell falls into the
black hole, and a second null shell ‘explodes’ out of the white hole. E0 and E1 are the first
moments in time when Einstein’s equations are violated for the black hole region and the
white hole region respectively. J is the maximal extension in space of the region in which
general relativity fails: we refer to J as the corner of the quantum gravity region.

2.8 Conclusion

In this chapter we reviewed the Schwarzschild black hole, and some of the different
coordinate systems that we may use to describe it. We then considered two different ways
in which to represent the physical spacetime of the tunnelling transition on a Penrose di-
agram. Since we would like to model the quantum tunnelling transition between a black
hole and a white hole, it is important to revise the basics of the phenomenon of tunnelling.
In the next chapter we do this with the aid of a simple example: tunnelling through a
one-dimensional rectangular potential barrier. Feynman’s path integral formulation and
its implications for the probability of tunnelling through a classically forbidden region are
also studied.
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Figure 2.7: A Penrose diagram corresponding to the Kruskal diagram in Figure 2.6. By
‘untwisting’ the trajectories of the null shells, we obtain a diagram representing the physical
black-to-white hole spacetime. The boundaries of the quantum gravity region are shown
by the lines joining E1 to J and E0 to J . In this thesis, we choose to define the boundary
of the quantum gravity region by the surface on which the trace of the extrinsic curvature
is zero (K = 0) and its time-reversal. The corner J may be located inside, outside or
directly on the horizon.
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Figure 2.8: Two Kruskal spacetimes are glued at the central Schwarzschild singularity. The
shaded region is the metric of a black-to-white hole transition outside a null shell falling
into the black hole and a second null shell exploding out of the white hole.
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J

Figure 2.9: The Penrose diagram corresponding to the gluing of two Kruskal spacetimes in
Figure 2.8. The bold diagonal lines are the null shell collapsing into the black hole (below)
and the null shell exploding out of the white hole (above). The corner of the quantum
gravity region J is located within the region denoted by the white diamond, which encloses
the intersection of the black hole and white hole horizons. It is as yet unclear whether J
is inside, outside or on the horizon.
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Chapter 3

Quantum Tunnelling

Since the black-to-white hole transition takes the form of quantum tunnelling, it is
important to review the basics of tunnelling theory. In this chapter, we study quan-
tum tunnelling using two different approaches: first the solution of the time-independent
Schrödinger equation, and then the path integral formalism. In both cases we use the sim-
ple example of one-dimensional tunnelling through a potential barrier. Finally we discuss
how the path integral formalism is used to obtain the coefficient of transmission through the
potential barrier. In this chapter we will leave ~ explicit in the equations, as is convention
in quantum mechanics calculations.

3.1 Historical Remarks

The phenomenon of quantum tunnelling originates from Henri Becquerel’s discovery of
natural radioactivity in 1896 [69]. Nuclear radioactivity is governed by the well-known
exponential decay law,

dN(t)

dt
= −ΓN(t)

⇒ N(t) = N0 exp(−Γt) (3.1)

where N0 is the initial number of nuclei (at time t = 0), N(t) is the number of nuclei at
time t > 0 and Γ is the probability of decay per unit time. The exponential decay law
may also be written in terms of P (t), the probability that an individual nucleus has not
decayed at time t:

P (t) =
N(t)

N0

= e−Γt. (3.2)

Quantum tunnelling in its most familiar form first emerged via George Gamow’s descrip-
tion of α-decay [37–39]. The emission of an α-particle by a nucleus is a classically forbidden
process. Gamow modelled the α-particle as being trapped inside a potential well by the
nucleus, and used the laws of quantum mechanics to show that there is a finite probability
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that the α-particle can escape this potential well via quantum tunnelling and thus be emit-
ted from the nucleus. Upon solving the Schrödinger equation for this potential, he found
that the only solutions were those with complex energies. By interpreting the complex part
of the energy as Γ

2
[70], Gamow recovered the Geiger-Nuttall law which relates the half-life

of the decay to the energy of the α-particle. Gamow also realised that the phenomenon
of quantum tunnelling is relevant in nuclear reactions; the famous ‘Gamow factor’ is a
measure of the probability of two nuclei tunnelling through the Coulomb barrier in order
to undergo a reaction such as nuclear fusion. Following this work by Gamow, Max Born
is credited with the realization that amongst many other physical phenomena, quantum
tunnelling may be used to describe the emission of electrons from the surface of a cold
metal (‘cold emission’).

3.2 Basics of Quantum Tunnelling

3.2.1 Heisenberg’s Uncertainty Principle

Tunnelling has no classical counterpart: it is a purely quantum effect. The total energy
of the tunnelling particle is given by

E =
1

2m
p2 + V (x) (3.3)

where m is the mass of the particle, p is its momentum and 1
2m
p2 is its kinetic energy. V (x)

is the height of the potential barrier. From Equation 3.3, it seems that if the energy of the
particle is less than the height of the potential barrier, its kinetic energy will be negative
and its momentum will therefore be imaginary. However, this is incorrect since so far
we have not considered the effect of Heisenberg’s Uncertainty Principle. The Uncertainty
Principle tells us that it is impossible to know both the position and momentum of the
particle with certainty at any one instant in time; if the particle is at the point x with

E < V (x), its momentum p is uncertain by an amount

√
∆p2. It can be shown (see [71],

for example) that the kinetic energy of the particle must be greater than the difference
between the height of the barrier and the total energy of the particle.

3.2.2 Tunnelling Through a Rectangular Potential Barrier

In order to illustrate the phenomenon of quantum tunnelling, we will now look at a
simple example in one dimension: the rectangular potential barrier. The potential barrier
is defined by

V (x) =


0 x < 0

V0 0 ≤ x ≤ L

0 x > L,

(3.4)

as illustrated in Figure 3.1. We will refer to the regions on the left hand side, inside
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Figure 3.1: The rectangular potential barrier defined in Equation 3.4.

the potential barrier and on the right hand side as 1, 2 and 3 respectively. Classically, a
particle with energy E < V0 would be reflected off the potential barrier and travel in the
opposite direction along the x-axis, whilst a particle with E > V0 would be transmitted
through the barrier. Quantum mechanics says that there is a small but finite probability
that a particle with E < V0 will tunnel through the potential barrier and emerge on the
other side.

The one-dimensional time-independent Schrödinger equation is[
− ~2

2m

d2

dx2
+ V (x)

]
u(x) = Eu(x) (3.5)

where the particle has momentum ~k and kinetic energy ~2k2
2m

, and k is the wavenumber.
In Region 1, the solution to this equation is

u(x) = CIe
ikx + CRe

−ikx, (3.6)

where |CI |2 and |CR|2 are the intensities of the wave incoming from the left and the wave
reflected back off the potential barrier respectively. In Region 2, the solution to Equation
3.5 is dependent on whether the energy of the particle is greater or less than the height of
the potential barrier. For E > V0, we may write the general solution as

u(x) = BeikUx +B′e−ikUx (3.7)

where kU =

√
2m(E−V0)

~ and B and B′ are constants. If E < V0, the general solution is

u(x) = De−αx +D′eαx (3.8)

where α =

√
2m(V0−E)

~ and D and D′ are constants. The solution for E < V0 is classically
forbidden. In Region 3, the solution to the time-independent Schrödinger equation is

u(x) = CT e
ikx (3.9)
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where k =
√

2mE
~ and |CT |2 is the intensity of the wave after passing through the potential

barrier. Using the condition that both u(x) and du(x)
dx

must be continuous at x = 0 and
x = L, we find that

at x = 0 : CI + CR = D +D′ (3.10)

ik(CI − CR) = −α(D −D′) (3.11)

at x = L : De−αL +D′eαL = CT e
ikL (3.12)

− α(De−αL −D′eαL) = ikCT e
ikL. (3.13)

Since the probability that the particle is at position x is proportional to |u(x)|2, the prob-
ability that it will be reflected at x = 0 is given by

R =
|CR|2

|CI |2
, (3.14)

while the probability that the particle will be transmitted through the barrier and into
Region 3 is

T =
|CT |2

|CI |2
. (3.15)

Making the approximation that the potential barrier is wide such that αL� 1 and solving
Equations 3.10-3.13 simultaneously, we arrive at an expression for the probability that the
particle will be transmitted through the barrier:

T =
|CT |2

|CI |2
=

16α2k2e−2αL

(k2 + α2)2
. (3.16)

Substituting in k =
√

2mE
~ and α =

√
2m(V0−E)

~ , we find that

T = 16

(
E(V0 − E)

V 2
0

)
e−2
√

2m(V0−E)L/~ (3.17)

which is the probability that when E < V0, the particle will travel through the classically
forbidden region. This probability is an exponentially decaying function of

• The square root of the width of the potential barrier,
√
L.

• The square root of the particle’s mass,
√
m.

• The square root of the difference between the barrier height and the energy of the
particle,

√
(V0 − E).
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A

B

Figure 3.2: Three of the infinite number of trajectories that contribute to the quantum
amplitude of a particle travelling from point A to point B.

3.3 The Path Integral Approach to Quantum Tunnelling

An alternative way to model the quantum tunnelling process is using the path integral
formulation of quantum mechanics [31]. The path integral formulation is a generalisation
of the principle of least action in classical mechanics. Consider a particle moving from an
initial spacetime point A to a final point B. Classically, the path of the particle is described
by a single unique trajectory. The path integral approach replaces the single trajectory
with a sum over the infinite number of paths that are allowed by quantum mechanics;
this sum is referred to as the ‘quantum amplitude’ (see Figure 3.2). The concept of the
path integral was first introduced by Norbert Wiener as a method of solving problems
related to Brownian motion [20, 87]. The idea was further developed by Paul Dirac in
his 1933 paper on the principle of least action and the quantum analogue of classical
Lagrangian theory [29]. However, the colossal success of the path integral formulation is
attributed to Richard Feynman, who was the first to show that the Schrödinger equation
and the canonical commutation relations of quantum mechanics can be recovered using
path integrals [32,33]. Feynman was also able to show that in the classical limit ~→ 0, the
classical path arises naturally. There are several different ways to derive the path integral
formulation, including the time-slicing derivation [21]. In this section we will not detail the
full derivation; instead, we will first introduce the key concepts and give a more qualitative
description of the path integral approach. We will then give a simple example, where the
path integral formulation is used to describe the quantum tunnelling of a particle through
a one-dimensional potential barrier.

In order to prove the success of the path integral formulation, it was essential to show
that we can recover the results of quantum mechanics from it. For this purpose, Feynman
postulated that:

1. The probability that a particle initially at point A will be at point B at a given time
is the squared modulus of a complex number called the ‘probability amplitude’.

2. The probability amplitude is obtained by adding together the contributions of all
possible paths allowed by quantum mechanics.
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3. The contribution of an individual path is proportional to eiS/~, where S is the action
given by the time integral of the Lagrangian along the path.

The sum over paths becomes an integral because the number of possible paths for any given
process is infinite. To find the probability amplitude for a given process, we integrate the
contribution of a path (postulate 3) over the space of all possible paths in between the
initial and final state, including the paths that are forbidden by classical mechanics. Each
path contributes equally in magnitude. However, the ‘phase’ of their contribution varies
from path to path. The phase is given by the classical action: the time integral of the
Lagrangian of the path [3]. This quantity will be different for each path. The varying
phase is important, because it allows individual paths to interfere with each other.

3.3.1 Path Integral for the One-Dimensional Potential Barrier

As a simple example, we consider a particle which quantum tunnels through a one-
dimensional potential barrier. We must first introduce the ‘Feynman propagator’DF (xf , xi;T, 0),
defined by the transition amplitude

DF (xf , xi;T, 0) = 〈xf |Û(T, 0)|xi〉 (3.18)

where Û(T, 0) is the unitary time-evolution operator for the system,

Û(T, 0) = exp

[
iH(T − 0)

~

]
(3.19)

and H is the Hamiltonian. The square root of the absolute value of DF is a measure of the
probability that a particle which is initially at position x = xi will be at x = xf at time
T [72]. The propagator is dependent on the integral over all possible paths of the particle,
i.e.

DF ∼
∫

[D(x)] exp
[ i
~
S(x)

]
(3.20)

where S(x) is the action corresponding to each path. It is clear from Equation 3.20 that
the probability amplitude A of a quantum transition is proportional to eiS/~, i.e. A ∼ eiS/~.
It can be useful to replace DF (xf , xi;T, 0) with its energy Fourier transform,

DF (xf , xi;E) =

∫ ∞
0

exp

(
iET

~

)
DF (xf , xi;T, 0) dT. (3.21)

In the classical limit, i.e. ~ → 0, we can use the stationary phase method to find an
approximate expression for the Feynman propagator. For details, see [52]. We find that

DF (xf , xi;T, 0) ≈ f(xf , xi) exp(iS[xcl]/~) (3.22)

where

f(xf , xi) =
1[

2iπk(xf )k(xi)
∫ xf
xi

dx
(k(x))3

]1/2
(3.23)
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and S[xcl] is the classical action for the path from (xi, 0) to (xf , T ). S[xcl] is given by

S[xcl] =

∫ xf

xi

√
2m[Ecl − V (x)] dx− EclT ′ (3.24)

where Ecl is the classical energy of the path, related to T ′ by

T ′ =

∫ xf

xi

√
m

2[Ecl − V (x)]
dx. (3.25)

Applying the stationary phase method to the energy Fourier transform of DF (Equation
3.21) yields

DF (xf , xi;E) ≈ m√
k(xf )k(xi)

exp

[
i

∫ xf

xi

kcl(x)dx

]
(3.26)

where the wavenumber k satisfies

k2 =
2mE

~2
. (3.27)

The approximation in Equation 3.26 is valid only for paths which are classically allowed; it
does not hold for the cases where quantum tunnelling occurs. However, we can generalise
the propagator to include tunnelling trajectories. Let all paths, classical and non-classical,
be denoted by xn. We can then write the propagator as

DF (xf , xi;E) =
m√

k(xf )k(xi)

∑
n

Kn (3.28)

where the coefficients Kn are determined by two rules:

1. The exponential factor in the propagator is dependent on whether the path is clas-
sically allowed or classically forbidden. In the classically allowed region, we use the
factor

exp

[
i

∫ x2

x1

k(x)dx

]
(3.29)

where k(x) =
√
k2 − V (x). In the classically forbidden region, we instead use the

factor

exp

[
−
∫ x2

x1

q(x)dx

]
(3.30)

where q(x) =
√
V (x)− k2.

2. If the particle is reflected from a turning point where classical motion is allowed, we
use a factor (−i). If the reflection is from a region where classical motion is forbidden,
we use a factor (−i/2).
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Figure 3.3: Some of the possible paths taken by the particle from xi to xf . a(E) and b(E)
are turning points of the potential barrier. The particle may undergo reflections inside the
barrier, as shown in the lower two diagrams.

Constructing the Propagator in the Classically Forbidden Region

Consider a one-dimensional potential barrier with turning points at a(E) and b(E),
where b(E) > a(E). The particle is initially at position x = xi to the left of a(E), and its
final position is x = xf (to the right of b(E)). It may travel straight through the barrier or
be reflected a number of times inside the barrier, as can be seen in Figure 3.3. In a similar
fashion to Section 3.2.2, we can study the motion of the particle in three distinct regions:

• Region 1: from the initial position x = xi to x = a(E).

• Region 2: propagation through the classically forbidden region from a(E) to b(E).

• Region 3: from x = b(E) to the final position at x = xf .

The Feynman propagator DF can then be written as

DF (xf , xi;E) =
m√

k(xf )k(xi)
exp

[
i

∫ a

xi

k(x)dx

]
×

{
Z +

(
i

2

)2

Z3 +

(
i

2

)4

Z5 + . . .

}

× exp

[
i

∫ xf

b

k(x)dx

]
(3.31)
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where

Z = exp

[
−
∫ b

a

q(x)dx

]
(3.32)

is the ‘penetration factor’ that arises in the WKB approximation. The expression in curly
brackets in Equation 3.31 is an infinite geometric series, and we can therefore simplify it
using the well-known formula for the sum of an infinite geometric series:

∞∑
k=0

ark =
a

1− r
(3.33)

where a is the first term in the series and r is the common ratio between terms. Equation
3.33 is valid only for convergent series, i.e. series with |r| < 1. For the series in Equation
3.31 we have a = Z and r = ( i

2
)2Z2, and so

∞∑
k=0

ark =
Z

1−
(
i
2

)2
Z2

=
Z

1 + 1
4
Z2
. (3.34)

Substituting this into Equation 3.31 we find that

DF (xf , xi;E) =
m√

k(xf )k(xi)
exp

[
i

∫ a

xi

k(x)dx

]
×

(
Z

1 + 1
4
Z2

)
exp

[
i

∫ xf

b

k(x)dx

]
. (3.35)

The first exponential in the above expression for the propagator corresponds to motion from
the particle’s initial position at xi to the barrier, and the Z term represents propagation
in the classically forbidden region (or ‘under the barrier’). The last exponential describes
motion from the barrier to the final position at xf . We can therefore write the coefficient
of transmission through the barrier as

|T (E)|2 =

∣∣∣∣ Z

1 + 1
4
Z2

∣∣∣∣2. (3.36)

3.4 Conclusion

In this chapter we reviewed the phenomenon of quantum tunnelling. We began with
some historical remarks and then described the basics of tunnelling with the aid of a
simple example: the one-dimensional rectangular potential barrier. By solving the time-
independent Schrödinger equation in three separate regions (the left hand side of the po-
tential barrier, inside the barrier and on the right hand side) and implementing continuity
conditions on the solution and its derivative, we derived an expression for the probability
that a particle will quantum tunnel through the classically forbidden region. We then con-
sidered how quantum tunnelling can alternatively be described using Feynman’s path inte-
gral approach. We constructed the propagator for the one-dimensional potential barrier in
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the classically forbidden region, and derived an equation for the coefficient of transmission
through the barrier. In the next chapter we specify to the Schwarzschild spacetime, and
deduce the total gravitational action for the region in which general relativity is violated
(the quantum gravity region).
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Chapter 4

Gravitational Action & The Corner
Term

In Chapter 3, we discussed the result from Feynman’s path integral formalism that the
probability amplitude A of a quantum transition is proportional to the exponential of the
complex number i multiplied by the action S:

A ∼ eiS (4.1)

where for simplicity we have employed natural units ~ = 1. Since we want to describe
the transition between a black hole and a white hole, in this case the action S will be the
gravitational action of our spacetime. Note that in order for quantum tunnelling to occur,
we expect the gravitational action to have a finite imaginary part. We begin by specifying
a four-dimensional spacetime manifold M with Lorentzian metric gµν where µ and ν are
spacetime indices, µ, ν = 0, 1, 2, 3. The metric signature is (−,+,+,+). We define the
quantum gravity region as enclosed by intersecting hypersurfaces on which the trace of the
extrinsic curvature is equal to zero, as shown in Figure 4.1. The hypersurfaces Σ0 and Σ1

meet at the corner J = Σ0∩Σ1. The boundary of the quantum gravity region is the union
of the hypersurfaces, i.e. Σ0 ∪ Σ1. The gravitational action of our spacetime is composed
of three terms corresponding to the bulk, the boundary of the quantum gravity region and
the action at the corner J [49, 50]:

S = SEH + SB + SC . (4.2)

SEH is the Einstein-Hilbert action

SEH =

∫
R
√
−g d4x, (4.3)

where g = det(gµν) and R is the Ricci scalar. SB is the boundary action and SC is the
action at the corner. Following Jubb et al. [54], we may express the Einstein-Hilbert action
in an alternative way using Cartan’s tetrad formalism. We introduce a tetrad 1-form eI

and a Lorentz connection AIJ . The field strength of A is given by [54]

F IJ = dAIJ + AIK ∧ AKJ = 2DAIJ (4.4)
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BH

WH

Σ0

Σ1
J

Figure 4.1: A Penrose diagram depicting the black-to-white hole transition. The ‘quantum
gravity region’ is enclosed by the hypersurfaces Σ0 and Σ1, on which the trace of the
extrinsic curvature is equal to zero. The hypersurfaces meet at the corner J = Σ0 ∩ Σ1.
The infalling and exploding null shells discussed in Section 2.7 are not shown in this
diagram.
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where the wedge product is with respect to the spacetime indices. In terms of these
quantities, the Einstein-Hilbert action takes the form

SEH =
1

4

∫
M
d4xεIJKMe

I ∧ eJ ∧ FKM(A) (4.5)

where I, J,K,M = 0, 1, 2, 3 are internal indices. The variation of SEH results in a bulk
term and a boundary term. Taking the variation of Equation 4.5 gives

δSEH =
1

4

(∫
M
εIJKMδe

I ∧ eJ ∧ FKM +

∫
M
εIJKMe

I ∧ δeJ ∧ FKM +

∫
M
εIJKMe

I ∧ eJ ∧ δFKM

)

=
1

4

(
2

∫
M
εIJKMδe

I ∧ eJ ∧ FKM +

∫
M
εIJKMe

I ∧ eJ ∧ δFKM

)

=
1

4

(
2

∫
M
εIJKMδe

I ∧ eJ ∧ FKM +

∫
M
εIJKMe

I ∧ eJ ∧ δ2DAKM
)

=
1

4

(
2

∫
M
εIJKMδe

I ∧ eJ ∧ FKM + 2

∫
M
εIJKMe

I ∧ eJ ∧ DδAKM
)

(4.6)

where in the second line we used the fact that the first two integrals are equal, and in the
third line we used Equation 4.4 to write the field strength FKM in terms of the connection
AKM . The first term in the above equation (the bulk term) yields Einstein’s vacuum
equations in the form

εIJKMe
J ∧ FKM = 0. (4.7)

The boundary term is expressed as the variation of the boundary action −SB, which
gives us a counterterm to be added to the total gravitational action. We require that the
pullback1 of the metric to the boundary Σ0 ∪ Σ1 has zero variation. This permits us to
move the D in the second term to the front of the integral:

− δSB =
1

2

∫
M
D(εIJKMe

I ∧ eJ ∧ δAKM). (4.8)

We can then use Stokes’ theorem to rewrite this as an integral over Σ0 ∪ Σ1:

−δSB =
1

2

∫
M
D(εIJKMe

I ∧ eJ ∧ δAKM)

= +
1

2

∫
Σ0∪Σ1

εIJKMe
I ∧ eJ ∧ δAKM . (4.9)

Since δ acts only on the connection AKM , we can take it outside of the integral:

− δSB =
1

2
δ

∫
Σ0∪Σ1

εIJKMe
I ∧ eJ ∧ AKM , (4.10)

1Suppose that φ : M → N is a smooth map between smooth manifolds M and N ; then there is an
associated linear map from the space of 1-forms on N to the space of 1-forms on M . Any covariant tensor
field (any differential form) may be pulled back to M using φ.
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and then

− SB =
1

2

∫
Σ0∪Σ1

εIJKMe
I ∧ eJ ∧ AKM (4.11)

or

SB = −1

2

∫
Σ0∪Σ1

εIJKMe
I ∧ eJ ∧ AKM . (4.12)

So far, we have not specified whether the boundary Σ0 ∪ Σ1 is spacelike, timelike or null.
We will see in Chapter 5 that the boundary of our spacetime is necessarily spacelike. We
now choose ‘adapted tetrads’ so that one of the 1-form fields eI is normal to Σ0 ∪ Σ1.
By decomposing the metric gµν into components along Σ and transverse to it, where Σ is
a single component of the boundary, we find that SB reduces to the expected Gibbons-
Hawking-York (GHY) term:

SB =

∫ √
hKd3x (4.13)

where the xs are coordinates on the boundary. h is the determinant of the induced metric
hab on Σ, and K = hab∇anb is the trace of the extrinsic curvature where nb is the normal
covector to Σ0 ∪Σ1. For details of this calculation, see [54]. Equation 4.12 is not invariant
under O(1, 3) transformations, because A transforms inhomogeneously by

A→ Λ−1AΛ + Λ−1dΛ, (4.14)

and therefore

SB → SB +
1

2

∫
Σ0∪Σ1

εIJKMe
I ∧ eJ ∧ gKM (4.15)

where g = Λ−1dΛ is in the Lie algebra of O(1, 3). We can use this gauge invariance to find
the final part of the full gravitational action: the corner term SC . The adapted frames
will not generally agree at the join of two boundary components; we need some method
for passing from one frame to the other. The method we use is as follows:

1. Make a gauge transformation in the little group2 H to make sure that two of the
frame fields from each boundary component are tangent to the join, and agree with
each other at the join.

2. Use discrete elements in O(1, 3) to ensure that the frames are related by an element
in the identity component of O(1, 3).

3. The two frames are related by a Lorentz transformation in the two-dimensional plane
of normals.

4. The corner terms are given by the change in Equation 4.12 under this O(1, 3) gauge
transformation.

2The little group H preserves the normal. It is defined by H = O(1, 2) for spacelike normals.
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We first let the spacelike hypersurfaces Σi and Σj meet along a join Jij. These hyper-
surfaces enclose the region of spacetime we are interested in studying. eI(i) and eI(j) are
the adapted frames of Σi and Σj respectively. Through gauge transformations in the little
group H, we can arrange that e2

(i) = e2
(j) and e3

(i) = e3
(j), and that both of these are orthog-

onal to the timelike plane of normals. This means that the frames e(i) and e(j) are related
by a Lorentz boost in the timelike plane of normals:

eI(i) = Λ(ij)
I
J
eJ(j). (4.16)

We define the discontinuous gauge transformation λ ∈ O(1, 1) to be the identity on Σi and
Λ(ij) on Σj:

λij = exp
[
ηKΘ

(H)
ij

]
(4.17)

where Θ
(H)
ij is the Heaviside function, equal to 0 on Σi and 1 on Σj. η is the boost angle

between the normals to Σi and Σj, and K is the boost generator. gKM = (Λ−1
(ij)dΛ(ij))

KM =

ηKKMdΘ
(H)
ij is proportional to a delta function that is peaked on the join and vanishes

on Σi and Σj. Applying the gauge transformation to the boundary term (Equation 4.15)
yields the join term

1

2

∫
Jij
ηεIJKMe

I ∧ eJKKM . (4.18)

The only non-vanishing terms in the above expression are K01 = −K10, so we find that
the corner term is defined by

SC ≡ SJij =

∫
Jij
e2 ∧ e3η =

∫
Jij
dAη (4.19)

where dA is the area element of the join. We have thus shown that the corner term of the
gravitational action is dependent only on η, the boost angle between the normals to the
hypersurfaces Σi and Σj. If the two normal vectors to the hypersurfaces are both timelike,
the boost angle is defined by

cosh η = −ni · nj (4.20)

where ni and nj are the normals to Σi and Σj respectively [54].
As previously mentioned, we choose to define the quantum gravity region as enclosed by

the hypersurface on which the trace of the extrinsic curvature is zero (K = 0) and its time
reversal. Solving Einstein’s vacuum equations in the bulk with no cosmological constant
results in a vanishing Ricci scalar, R = 0. This means that the Einstein-Hilbert action
defined in Equation 4.3 will be equal to zero, and it will not yield a contribution to the full
gravitational action S (Equation 4.2). We showed that the boundary term SB (Equation
4.13) is dependent on the extrinsic curvature K. As we are only considering the surfaces
on which K = 0, the boundary action of our spacetime will also vanish. We conclude that
the only contribution to S comes from the action at the corner SC . The Schwarzschild
geometry is spherically symmetric, which means that the corner term reduces to

SC =

∫
Jij
dAη = 4πr2η (4.21)
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where r is the radius of the corner. The full gravitational action, Equation 4.2, is then
simply

S = SC = 4πr2η. (4.22)

We note that if we were instead dealing with timelike hypersurfaces, we would find that
the corner term of the action is equal to Equation 4.19 for the spacelike case [54]. The null
case, however, is different: when the hypersurfaces are null, there is no longer a rotation
in the plane of normals. This means that the boost angle η must be equal to zero, and the
corner term (Equation 4.19) will therefore vanish.

4.1 Conclusion

In this chapter we deduced the gravitational action for the spacetime we are interested
in studying: a Schwarzschild black hole that quantum tunnels into a white hole. The
total gravitational action is composed of three terms corresponding to the bulk of the
quantum gravity region, the boundary and the corner J . The bulk term is given by
the standard Einstein-Hilbert action SEH =

∫
R
√
−g d4x. Solving Einstein’s vacuum

equations in the bulk with zero cosmological constant results in R = 0, and the bulk term
of the gravitational action therefore vanishes. We showed that the boundary term of the
action is dependent on the extrinsic curvature K, and since we are choosing to define the
quantum gravity region as enclosed by intersecting hypersurfaces on which K = 0, this
term also vanishes. The total gravitational action is solely dependent on the action at
the corner of the quantum gravity region. Following [54], we showed that the corner term
of the action may be written in terms of the boost angle η between the normals to the
hypersurfaces at their intersection. The next step in our study is to find the geodesics
describing the hypersurfaces that define the boundary of the quantum gravity region, and
use these geodesics to determine the boost angle between the normals to the hypersurfaces.
We deal with the calculation of the geodesics in the next chapter.
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Chapter 5

Finding the Maximal Surfaces

In Chapter 4 we defined the ‘quantum gravity region’ of our spacetime as the region
enclosed by the spacelike hypersurface on which the trace of the extrinsic curvature is
zero (K = 0) and its time reversal, and we showed that the gravitational action for this
spacetime is dependent only on the action at the corner of the quantum gravity region, SC .
Vanishing extrinsic curvature implies that the variation of the volume of the hypersurfaces
is equal to zero [23, 85], and we will therefore refer to them as ‘maximal surfaces’ from
this point onwards. In this section we show, following Christodoulou and De Lorenzo [23],
that the problem of finding the maximal surfaces can be reduced to the solution of a 2-
dimensional geodesic equation. We then deduce the maximal surfaces using three different
coordinate systems: Eddington-Finkelstein, Schwarzschild and Kruskal.

The line element of a generic spherically symmetric spacetime is

ds2 = gµνdx
µdxν

= gABdxAdxB + r2dΩ2 (5.1)

where µ, ν = {0, 1, 2, 3}, A,B = {0, 1} and dΩ2 = dθ2 + sin2 θdφ2 is the metric on a unit
2-sphere. We choose coordinates xµ = {t, r, θ, φ} and xA = {t, r}. We decompose the
hypersurfaces Σ into a curve γ and a 2-dimensional sphere:

Σ = γ × S2. (5.2)

Parameterizing γ by λ and choosing that γ lies in the t− r plane we have

γ : λ→ (t(λ), r(λ)). (5.3)

The coordinates describing the 2-sphere are θ and φ, and the intrinsic coordinates of Σ are
ya = {λ, θ, φ}. The line element on Σ is then

ds2
Σ = habdy

adyb

= (gABẋ
AẋB)dλ2 + r2dΩ2 (5.4)
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where hab = gµνe
µ
ae
ν
b is the induced metric on the hypersurface Σ, and eµa = ∂xµ/∂xa are

tangent vectors in Σ. Equation 5.4 is the diagonal line element, with the dots denoting
differentiation with respect to λ. The components of the induced metric are

hλλ = gABẋ
AẋB (5.5a)

hθθ = r2 (5.5b)

hφφ = r2 sin2 θ. (5.5c)

We now try to compute the volume of the hypersurface Σ. This volume may be expressed
as

V [Σ] =

∫
Σ

dy3
√

det(hab) (5.6)

where dy3 = dλdθdψ. Since hab is diagonal, we simply multiply Equations 5.5a-5.5c to find
its determinant:

det(hab) = (r4gABẋ
AẋB) sin2 θ. (5.7)

The volume V [Σ] is then

V [Σ] =

∫
Σ

√
r4gABẋAẋB sin2 θ dλdθdψ

=

∫
γ

√
r4gABẋAẋB dλ ·

∫
S2

sin θ dθdψ

= 4π

∫
γ

(g̃ABẋ
AẋB)1/2 dλ (5.8)

where g̃AB = r4gAB is a 2-dimensional auxiliary metric. Extremization of Equation 5.8
gives

ẋA∇̃Aẋ
B = 0, (5.9)

where ∇̃A is the covariant derivative in g̃AB. Since A,B = (0, 1), Equation 5.9 is a 2-
dimensional geodesic equation. Determination of the maximal surfaces has thus been
reduced to the solution of a 2-dimensional geodesic problem.

5.1 Eddington-Finkelstein Coordinates

The Schwarzschild line element ds2 = −f(r)dt2+f−1(r)dr2+r2dΩ2 is a convenient choice
for our spacetime because it is spherically symmetric. We use advanced time Eddington-
Finkelstein coordinates (v, r) where

v = t+ r∗ (5.10)

and r∗ = r + 2m ln |r − 2m|. In these coordinates the Schwarzschild line element becomes

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2, (5.11)
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and the line element on the hypersurface Σ is

ds2
Σ = (−f(r)v̇2 + 2v̇ṙ)dλ2 + r2dΩ2. (5.12)

The spacelike condition on this line element is −f(r)v̇2 + 2v̇ṙ > 0. The volume of Σ may
then be expressed as

V [Σ] = 4π

∫
γ

√
r4(−f(r)v̇2 + 2v̇ṙ) dλ, (5.13)

where the Lagrangian of a particle with motion described by the line element in Equation
5.12 is defined by

L(v, r, v̇, ṙ) =
√
r4(−f(r)v̇2 + 2v̇ṙ). (5.14)

The 2-dimensional auxiliary line element is

ds̃2 = r4(−f(r)dr2 + 2dvdr). (5.15)

We now have enough information to deduce the geodesic equations, and thus define
the K = 0 surfaces. We could use Equation 5.9, but this would require computation of
Christoffel symbols. A simpler way to find the geodesics is to use conserved quantities.
Our spacetime metric has a stationary symmetry given by the Killing vector:

ζ = ∂v = (1, 0). (5.16)

We can therefore define our conserved quantity E as

E = g̃ABζ
AẋB

= g̃00ζ
0ẋ0 + g̃01ζ

0ẋ1

= −r4f(r)v̇ + r4ṙ

⇒ E = r4(−f(r)v̇ + ṙ). (5.17)

The geodesics will be defined by v̇ and ṙ. Extremization of the volume of Σ is equivalent
to finding the equations of motion corresponding to the Lagrangian (Equation 5.14). We
take the normalization condition to be L(v, r, v̇, ṙ) = r3

s , then

r4(−f(r)v̇2 + 2v̇ṙ) = r6
s . (5.18)

Equations 5.17 and 5.18 can then be solved simultaneously to find

ṙ = ±r−4
√
E2 + r6

sr
4f(r). (5.19)

Following Christodoulou [24], we choose ṙ to be negative. This choice restricts us to the
interior of the black hole region, and thus the resulting geodesics describing the maximal
surfaces will only be valid in this region. In advanced time coordinates, the geodesics are

ṙ = −r−4
√
E2 + r6

sr
4f(r) (5.20a)

v̇ =
r6
s

E + r4ṙ
. (5.20b)
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We can repeat the above analysis using the retarded time Eddington-Finkelstein coordi-
nates (u, r) where

u = t− r∗ (5.21)

and r∗ is defined as in Equation 5.10. The resulting geodesics are

ṙ = r−4
√
E2 + r6

sr
4f(r) (5.22a)

u̇ = − r6
s

r4ṙ − E
. (5.22b)

Equations 5.20 and 5.22 define the maximal surfaces in retarded time coordinates.

5.2 Schwarzschild Coordinates

We now derive the geodesics defining the K = 0 surfaces using Schwarzschild coordinates
in addition to the Eddington-Finkelstein coordinates used above. The full Schwarzschild
line element is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (5.23)

and the line element on the hypersurface is

ds2
Σ = (−f(r)ṫ2 + f−1(r)ṙ2)dλ2 + r2dΩ2. (5.24)

In order for this hypersurface to be spacelike, we must have the expression inside the
brackets in Equation 5.24 > 0 i.e. −f(r)ṫ2 +f−1(r)ṙ2 > 0. The volume of the hypersurface
may be expressed in the same way as in Equation 5.6:

V [Σ] =

∫
Σ

dy3
√

det(hab). (5.25)

The induced metric hab is diagonal, with components

hλλ = −f(r)ṫ2 + f(r)−1ṙ2 (5.26a)

hθθ = r2 (5.26b)

hφφ = r2 sin2 θ. (5.26c)

The volume is then

V [Σ] =

∫
Σ

√
r4 sin2 θ(−f(r)ṫ2 + f(r)−1ṙ2) dλdθdψ

=

∫
γ

√
r4(−f(r)ṫ2 + f(r)−1ṙ2) dλ ·

∫
S

√
sin2 θ dθdψ

= 4π

∫
γ

√
r4(−f(r)ṫ2 + f(r)−1ṙ2) dλ, (5.27)
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and the Lagrangian of a particle whose motion is described by the line element on the
hypersurface is

L(v, r, v̇, ṙ) =

√
r4(−f(r)ṫ2 + f−1(r)ṙ2). (5.28)

Using the same approach as in Section 5.1, we set the Lagrangian equal to r3
s , giving√

r4(−f(r)ṫ2 + f−1(r)ṙ2) = r3
s . (5.29)

Our conserved quantity E is defined by E = g̃Sch.
AB ζ

AẋB with Killing vector ζ = ∂v = (1, 0).
The auxiliary Schwarzschild metric is

g̃Sch.
AB = r4gAB

=


−r4f(r) 0 0 0

0 r4f−1(r) 0 0
0 0 r6 0
0 0 0 r6 sin2 θ

 . (5.30)

E is then

E = g̃Sch.
AB ζ

AẋB

= g̃Sch.
00 ζ0ẋ0

= −r4f(r)ṫ

⇒ E = −r4f(r)ṫ. (5.31)

Solving Equations 5.29 and 5.31 simultaneously we find the geodesics defining the K = 0
surfaces to be

ṙ = ±r−4
√
E2 + r6

sr
4f(r) (5.32a)

ṫ = −Er−4f−1(r). (5.32b)

5.3 Kruskal Coordinates

To move from the Schwarzschild coordinates (t, r, θ, φ) to the Kruskal coordinates, we
introduce a new timelike coordinate T and a new spacelike coordinate R such that our
spacetime is described by (T,R, θ, φ). In terms of the (U, V ) coordinates we defined in
Chapter 2, these are

U = T −R (5.33a)

V = T +R. (5.33b)

The maximal surfaces in the (T,R) coordinates will be characterized by Ṫ and Ṙ. T and
R are defined by [17]

T =

(
r

rs
− 1

)1/2

er/2rs sinh

(
t

2rs

)
(5.34a)
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R =

(
r

rs
− 1

)1/2

er/2rs cosh

(
t

2rs

)
(5.34b)

in the exterior region of the black hole r > rs, and

T =

(
1− r

rs

)1/2

er/2rs cosh

(
t

2rs

)
(5.35a)

R =

(
1− r

rs

)1/2

er/2rs sinh

(
t

2rs

)
(5.35b)

in the interior region r < rs. These definitions lead to the relations

t

rs
= 2 tanh−1

(
T

R

)
(5.36a)

t

rs
= 2 tanh−1

(
R

T

)
(5.36b)

where Equation 5.36a is valid outside the black hole, and Equation 5.36b is valid inside. On
the union of the exterior region, the event horizon and the interior region, the Schwarzschild
radial coordinate r is defined in terms of T and R as the solution of the equation

T 2 −R2 =

(
1− r

rs

)
er/rs . (5.37)

The solution can be written as

r = rs

(
1 +W0

(
R2 − T 2

e

))
(5.38)

where W0 is the principal branch of the Lambert W function [26]. In the interior region
r < rs, we can deduce from Equation 5.37 that

0 < T 2 −R2 < 1 and T > 0. (5.39)

Conversely, for the exterior region r > rs we have

T 2 −R2 < 0 and R > 0. (5.40)

In the (T,R) coordinates, the Schwarzschild line element becomes

ds2 =
4r3

s

r
e−r/rs(−dT 2 + dR2) + r2dΩ2, (5.41)

and the auxiliary line element is

ds2
Σ = 4r3r3

se
−r/rs(dR2 − dT 2). (5.42)
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Since the definitions of the Kruskal coordinates are dependent on whether we are inside or
outside of the black hole, we must calculate the Killing vector for the interior and exterior
regions separately (although we will find that the Killing vectors for both of these regions
are in fact identical). In Schwarzschild coordinates, the Killing vector is ζ = ∂t = (0, 1).
In Kruskal coordinates, the Killing vector is defined by

ζ = ∂t =
∂

∂T

∂T

∂t
+

∂

∂R

∂R

∂t
= ∂T

∂T

∂t
+ ∂R

∂R

∂t
. (5.43)

Differentiating Equation 5.37 with respect to t gives a relation between ∂T
∂t

and ∂R
∂t

which
holds for both the exterior and interior regions:

2T
∂T

∂t
− 2R

∂R

∂t
= 0

⇒ T
∂T

∂t
= R

∂R

∂t
. (5.44)

We first deduce the Killing vector for the exterior region of the black hole. Rearranging
Equation 5.36a we find that

tanh

(
t

2rs

)
=
T

R
. (5.45)

Differentiating this equation with respect to t gives

sech2
(

t
2rs

)
2rs

=
R∂T

∂t
− T ∂R

∂t

R2
(5.46)

where on the right hand side we have used the quotient rule. Using the trigonometric
identity sech2 θ = 1− tanh2 θ, we can rewrite this as

1− T 2

R2

2rs
=
R∂T

∂t
− T ∂R

∂t

R2
. (5.47)

Solving the above equation simultaneously with Equation 5.44, we find expressions for ∂T
∂t

and ∂R
∂t

in terms of T and R:
∂T

∂t
=

R

2rs
(5.48a)

∂R

∂t
=

T

2rs
. (5.48b)

The Killing vector (Equation 5.43) for the exterior region of the black hole is then

ζ =
1

2rs
(R∂T + T∂R). (5.49)

We now calculate the Killing vector for the interior region of the black hole. Rearranging
Equation 5.36b gives

tanh

(
t

2rs

)
=
R

T
. (5.50)
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Differentiating this with respect to t leads to

sech2
(

t
2rs

)
2rs

=
T ∂R

∂t
−R∂T

∂t

T 2
(5.51)

⇒ R2 − T 2

2rs
=

1

T

∂R

∂t
(R2 − T 2) (5.52)

where in the second line we used the relation between ∂T
∂t

and ∂R
∂t

(Equation 5.44). We find
that

∂T

∂t
=

R

2rs
(5.53a)

and
∂R

∂t
=

T

2rs
, (5.53b)

and the Killing vector for the interior region of the black hole is therefore identical to that
of the exterior region:

ζ =
1

2rs
(R∂T + T∂R). (5.54)

The conserved quantity associated to this Killing vector is

E = g̃ABζ
AẋB

= 2r3r2
se
−r/rs(TṘ− ṪR). (5.55)

We notice that the Lagrangian of a particle whose motion is described the by the line
element in Equation 5.42 is

L = 4r3r3
se
−r/rs(Ṙ2 − Ṫ 2), (5.56)

and we set this Lagrangian equal to r6
s (following the method in Sections 5.1 and 5.2) so

that
4r3r3

se
−r/rs(Ṙ2 − Ṫ 2) = r6

s . (5.57)

Equation 5.55 can be rearranged to find an expression for Ṙ,

Ṙ =
1

T

(
Eer/rs

2r3r2
s

+RṪ

)
, (5.58)

which describes one of the maximal surfaces. Substituting this into Equation 5.57, we
obtain a quadratic equation in terms of Ṫ :

Ṫ 2(R2 − T 2) +
Eer/rs

r3r2
s

RṪ +
E2e2r/rs

4r6r4
s

− er/rsr3
s

4r3
T 2 = 0. (5.59)

For notational simplicity we let
α = R2 − T 2 (5.60a)
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β =
Eer/rs

r3r2
s

R (5.60b)

and γ =
E2e2r/rs

4r6r4
s

− er/rsr2
s

4r3
T 2, (5.60c)

then Ṫ is the solution of the quadratic formula

Ṫ =
−β ±

√
β2 − 4αγ

2α
, (5.61)

valid only when β2 − 4αγ > 0. Equations 5.58 and 5.61 characterize the maximal surfaces
in the Kruskal coordinates. Now we have deduced expressions for the maximal surfaces,
the next step is to calculate the boost angle between the normals to these surfaces.

5.4 Conclusion

In this chapter we derived the geodesics describing the maximal surfaces which define the
boundary of the quantum gravity region. We first used Eddington-Finkelstein coordinates,
and then repeated the calculation in both Schwarzschild and Kruskal coordinates. For
each case, the geodesics were written in terms of the conserved quantity given by the
stationary symmetry associated to the Killing vector of our spacetime. Now that we have
characterized the maximal surfaces using geodesic equations, we may use these geodesics
to find the boost angle between the normals to the maximal surfaces, and thus deduce the
corner term of the gravitational action. Chapter 6 is concerned with the calculation of the
boost angle.
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Chapter 6

Computing the Boost Angle

In Chapter 5 we deduced the geodesics characterizing the maximal surfaces defining
the quantum gravity region. The next step in our calculation is to use these geodesics
to find the boost angle between the normals to the maximal surfaces, and thus the full
gravitational action of our spacetime. Once we have an expression for the full gravitational
action, we can approximate the black-to-white hole tunnelling amplitude.

6.1 Schwarzschild Coordinates

In Schwarzschild coordinates, the maximal surfaces are described by the geodesics

ṙ = ±r−4
√
E2 + r6

sr
4f(r) (6.1a)

ṫ = −Er−4f−1(r) (6.1b)

as shown in Section 5.2. E = −r4f(r)ṫ is a conserved quantity along the geodesics. E will
be either E1 or E2 depending on whether the maximal surface has a positive or negative
gradient.

To compute the normal covector nµ to the maximal surfaces, we use two facts:

1. Tangent vectors ẋµ are orthogonal to the normals, i.e. ẋµnµ = 0 ∀ẋ.

2. Since the maximal surfaces are spacelike, the normals to them are timelike i.e. nµn
µ =

−1.

Assume that we have coordinates xµ = (t, r, θ, ψ), then

ẋµ = (ṫ, ṙ, θ̇, ψ̇)

= (ṫ, ṙ, 0, 0) (6.2)
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where the last line follows from the spherical symmetry of our spacetime. Since we are in
the (r, t)-plane we choose the normal covector to be nµ = (a, b, 0, 0). The timelike condition
(2) can be written as

gµνnµnν = −1 (6.3)

where gµν is the inverse Schwarzschild metric

gµν = diag(−f−1(r), f(r), r−2, (r sin θ)−2) (6.4)

⇒ −f−1(r)a2 + f(r)b2 = −1. (6.5)

Condition 1 gives

ẋµnµ = aṫ+ bṙ = 0

⇒ a = −bṙ
ṫ
.

Substituting this expression for a into Equation 6.5 gives

− f−1(r)
b2ṙ2

ṫ2
+ f(r)b2 = −1. (6.6)

We can then use the expressions for ṙ and ṫ in Equations 6.1a and 6.1b to deduce that

b = ±Er−3
s r−2f−1(r)

⇒ a = ±r−3
s r−2

√
E2 + r6

sr
4f(r).

We consider the maximal surface with positive gradient, Σ0. For this surface we have

nµ =
(
ε0r
−3
s r−2

√
E2

2 + r6
sr

4f(r), ε′0E2r
−3
s r−2f−1(r), 0, 0

)
(6.7)

and

nµ = gµνnν =
(
− ε0r−3

s r−2f−1(r)
√
E2

2 + r4f(r), ε′0E2r
−3
s r−2, 0, 0

)
(6.8)

where we have used the inverse Schwarzschild metric gµν (Equation 6.4) to calculate nµ.
The definition of ε0 is dependent on whether we are looking inside or outside of the black
hole horizon:

• ε0 = +1 when r > rs, since f(r) > 0 in this region.

• ε0 = −1 when r < rs, since f(r) < 0 in this region.

• ε′0 = +1 ∀r.

We assume that the conserved quantities E1 and E2 are associated to the gradients of the
maximal surfaces, so that E2 > 0 for the surface Σ0. For Σ1, we instead have

n′µ =
(
ε1r
−3
s r−2

√
E2

1 + r6
sr

4f(r), ε′1E1r
−3
s r−2f−1(r), 0, 0

)
. (6.9)

and

n′µ = gµνnν =
(
− ε1r−3

s r−2f−1(r)
√
E2

1 + r4f(r), ε′1E1r
−3
s r−2, 0, 0

)
(6.10)

where E1 < 0 and ε1 is defined in a similar way to ε0:
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Σ0

Σ1

r

t

nµ

n′µ
ηS

Figure 6.1: The (r, t) plane with the maximal surfaces Σ0 and Σ1. The angle between Σ0

and Σ1 is ηS. nµ and n′µ are the normal vectors to Σ0 and Σ1 respectively.

• ε1 = −1 when r > rs.

• ε1 = +1 when r < rs.

• ε′1 = −1 ∀r.

Figure 6.1 shows the (r, t)-plane with the maximal surfaces Σ0 and Σ1. ηS is the angle
between the maximal surfaces. The subscript S serves as a reminder that we are working
in the Schwarzschild coordinates, and the expression for the boost angle is dependent on
the chosen coordinate system. ηµ and η′µ are the normal vectors to Σ0 and Σ1 respectively.
ηS is defined in terms of the normal vectors as follows:

cosh ηS = −n′µnµ. (6.11)

cosh ηS is therefore

cosh ηS = −r−6
s r−4f−1(r)

(
− ε1ε0

√
E2

1 + r6
sr

4f(r)
√
E2

2 + r6
sr

4f(r) + ε′1ε
′
0E1E2

)
. (6.12)

Using the definitions of ε0 and ε1 above, we find that −ε1ε0 = 1 for both r > rs and r < rs,
and ε′1ε

′
0 = −1 ∀r. The boost angle ηS for both the exterior and interior regions of the

black hole is therefore given by the same expression:

cosh ηS = −r−6
s r−4f−1(r)

(√
E2

1 + r6
sr

4f(r)
√
E2

2 + r6
sr

4f(r)− E1E2

)
. (6.13)

Figure 6.2 is a MATLAB plot of the boost angle as given by Equation 6.13, as a function
of r. The blue line is the real part of ηS, and the magenta line is the imaginary part. To
produce this plot, we set rs = 1, E1 = −2 and E2 = 2. The radial coordinate r is an array
of linearly spaced points between 0 and 5, with the number of points N = 105. Inside
the black hole horizon, i.e. rs < 1, the boost angle is zero. Outside the horizon, rs > 1,
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Figure 6.2: The boost angle ηS in Schwarzschild coordinates, plotted as a function of the
radial coordinate r. The blue line is the real part of ηS, and the magenta line is the
imaginary part. The Schwarzschild radius rs = 1, and the conserved quantities are set to
E1 = −2 and E2 = 2.

the boost angle has a constant imaginary part iπ. In the region of spacetime in which
quantum tunnelling occurs, we expect the gravitational action (and thus the boost angle)
to have a finite imaginary part. On the horizon rs = 1, there is a coordinate singularity
and the real part of the boost angle is infinite. The reason for this coordinate singularity
is made clear if we look at Equation 6.13: when r = rs, f(r) = 1 − rs

r
= 0, and f−1(r)

is therefore infinite. Since cosh−1 (∞) = ∞, the boost angle ηS is infinite on the horizon
when expressed in Schwarzschild coordinates. In order to avoid this singularity, we may
instead compute the boost angle in Kruskal coordinates. In these coordinates the boost
angle is well-defined at the horizon.

6.2 Kruskal Coordinates

In Chapter 5, we deduced that in Kruskal coordinates, the maximal surfaces are defined
by the geodesics

Ṙ =
1

T

(
Eer/rs

2r3r2
s

+RṪ

)
(6.14a)

and Ṫ =
−β ±

√
β2 − 4αγ

2α
, (6.14b)
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where
α = R2 − T 2 (6.15a)

β =
Eer/rs

r3r2
s

R (6.15b)

and γ =
E2e2r/rs

4r6r4
s

− er/rsr3
s

4r3
T 2. (6.15c)

For the derivation of these geodesics, see Section 5.3. We choose to work in the R − T
plane, so the tangent vectors to the surfaces defined in Equations 6.14a and 6.14b are ẋµ =
(Ṫ , Ṙ, 0, 0). We denote the normal covectors to the maximal surfaces by nµ = (A,B, 0, 0)
where A and B are yet to be determined. To compute the normal covectors nµ, we use the
same approach as in Section 6.1. The two conditions to be satisfied are:

1. Tangent vectors ẋµ are orthogonal to the normals, i.e. ẋµnµ = 0 ∀ẋ.

2. Since the maximal surfaces are spacelike, the normals to them are timelike i.e. nµn
µ =

−1.

The first condition gives
AṪ +BṘ = 0, (6.16)

and the second gives

− A2 +B2 = −4r3
s

r
e−r/rs . (6.17)

Solving the above two equations simultaneously and using Equation 5.57 to simplify the
expression for B, we find

A = −BṘ
Ṫ

(6.18a)

B = ±4re−r/rsṪ . (6.18b)

On the union of the exterior region, the event horizon and the interior region of the black
hole, the Kruskal coordinates (R, T ) are related to the Schwarzschild radial coordinate r
by

T 2 −R2 =

(
1− r

rs

)
er/rs . (6.19)

Recall that outside the black hole horizon we have r > rs, therefore (1− r
rs

) < 0 and

T 2 −R2 < 0 and R > 0. (6.20)

Conversely, for the interior region of the black hole we have

0 < T 2 −R2 < 1 and T > 0. (6.21)
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We would like to compute the boost angle ηK in the interior region. It is as yet unclear
whether we should choose the positive or negative signs in Equations 6.14b and 6.18b. For
the purpose of producing some preliminary plots, we choose the positive signs such that

Ṫ =
−β +

√
β2 − 4αγ

2α
(6.22a)

and B = 4re−r/rsṪ (6.22b)

The normal covector n′µ is given by

n′µ =

(
−B1

Ṙ1

Ṫ1

, B1, 0, 0

)
(6.23)

where the subscript 1 corresponds to the conserved quantity E1. We choose to interpret
the conserved quantities E1 and E2 as the gradients of the maximal surfaces, so that
E1 < 0 and E2 > 0. For now we assume that our quantum gravity region is symmetric
and therefore |E1| = |E2|. For the second maximal surface we have

nµ =

(
−B2

Ṙ2

Ṫ2

, B2, 0, 0

)
(6.24)

where the subscript 2 corresponds to the conserved quantity E2 > 0. The boost angle
ηK in the Kruskal coordinates is defined in the same way as in the Schwarzschild coordi-
nates: cosh ηK = −n′µnµ. To calculate nµ, we recall the full line element in the Kruskal
coordinates:

ds2 =
4r3

s

r
e−r/rs(−dT 2 + dR2) + r2dΩ2. (6.25)

nµ is then

nµ = gµνnν =
er/rsr

4r3
s

(−1, 1, 0, 0) ·

(
−B2

Ṙ2

Ṫ2

, B2, 0, 0

)
(6.26)

=
er/rsr

4r3
s

(
B2
Ṙ2

Ṫ2

, B2, 0, 0

)
. (6.27)
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We now have all the information required to calculate the boost angle in Kruskal coordi-
nates ηK :

cosh ηK = −n′µnµ = −

(
−B1

Ṙ1

Ṫ1

, B1, 0, 0

)
· e

r/rsr

4r3
s

(
B2
Ṙ2

Ṫ2

, B2, 0, 0

)

= −e
r/rsr

4r3
s

(
−B1

Ṙ1

Ṫ1

, B1, 0, 0

)
·

(
B2
Ṙ2

Ṫ2

, B2, 0, 0

)

= −e
r/rsr

4r3
s

(
−B1B2

Ṙ1Ṙ2

Ṫ1Ṫ2

+B1B2

)

= −B1B2e
r/rsr

4r3
s

(
1− Ṙ1Ṙ2

Ṫ1Ṫ2

)

⇒ cosh ηK = −B1B2e
r/rsr

4r3
s

(
1− Ṙ1Ṙ2

Ṫ1Ṫ2

)
. (6.28)

Equation 6.28 defines the boost angle ηK in terms of the geodesics Ṙ and Ṫ . This expression
is valid for all regions of our spacetime, subject to different conditions on R and T . In
order to investigate the behaviour of the boost angle, we will plot Equation 6.28 using the
programming language MATLAB for a range of (R, T ) values.

6.2.1 The Interior Region

Figure 6.3 is a MATLAB plot of the real part of ηK in the interior region of the black
hole as a function of the Kruskal coordinates (R, T ). In order to produce this plot, we used
the expression for ηK derived above (Equation 6.28) and imposed the conditions on R and
T in the interior region: 0 < T 2 − R2 < 1 and T > 0 (Equation 6.21). R is 103 linearly
spaced values between −2 and 2, and T is 103 linearly spaced values between 0 and 2. The
Schwarzschild radius is set to rs = 1 and the conserved quantities are chosen to be E1 = −2,
E2 = 2. A two-dimensional view of Figure 6.28 in the (R, T )-plane is shown in Figure 6.4.
It is clear from these figures that the real part of ηK is dependent on both R and T , as is
expected. The plot diverges as we approach the hyperbola T 2 − R2 = 1. This divergence
makes physical sense if we consider the relation between the Kruskal and Schwarzschild
coordinates, Equation 6.19. When T 2−R2 = 1, we have

(
1− r

rs

)
er/rs = 1 and thus rs = 0.

The hyperbola T 2 −R2 = 1 therefore corresponds to the central Schwarzschild singularity
rs = 0. There is another divergence in Figure 6.3 at T = R = 0. This divergence occurs
because when T = R, α = R2− T 2 = 0 which results in a factor of 1

0
in the equation for Ṫ

(Equation 6.14b). We note that neither of the divergences described above present an issue
in our calculations, since they are in fact outside the validity of the Kruskal coordinates
inside the black hole horizon (Equation 6.21). An important feature of Figure 6.3 is that
the boost angle appears to be heavily damped in all regions of the spacetime except for
in the vicinity of the black hole horizon at T = ±R. We expect the quantum tunnelling
transition to a white hole to take place near the horizon. Since we know that the probability
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Figure 6.3: The real part of ηK in the interior region of the black hole. ηK is plotted in
MATLAB as a function of the Kruskal coordinates R and T , where R is set to 103 linearly
spaced values between −2 and 2 and T is 103 linearly spaced values between 0 and 2. The
Schwarzschild radius is set to rs = 1 and the conserved quantities are E1 = −2, E2 = 2.

Figure 6.4: A two-dimensional view of Figure 6.3 in the (R, T )-plane. The boost angle ηK
is dependent on both R and T . The lighter the shade of blue, the higher the value of ηK .
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Figure 6.5: The imaginary part of ηK in the interior region of the black hole, corresponding
to the real part in Figure 6.3.

of tunnelling is proportional to the value of the boost angle on the corner of the quantum
gravity region, it makes intuitive sense for the value of ηK to increase as we approach the
horizon. Figure 6.5 depicts the imaginary part of ηK in the interior region of the black
hole. For the chosen values of rs = 1, E1 = −2 and E2 = 2, the imaginary part of the
boost angle is zero in the entire interior region of the black hole.

6.2.2 The Exterior Region

We also plot the boost angle for the exterior region of the black hole, where r > rs. To
do this, we use Equation 6.28 and implement the conditions on R and T for the exterior
region: T 2 − R2 < 0 and R > 0 (Equation 6.20). Figure 6.6 is a plot of the real
part of ηK as a function of R and T for the exterior region with rs = 1, E1 = −2 and
E2 = 2. The value of Re(ηK) is zero far from the horizon. Similarly to the plot of ηK in
the interior region, there is a divergence at T = R = 0 because a factor of 1

0
arises in the

equation for Ṫ when R and T are equal. This divergence is irrelevant because the boundary
T = R is not included in the exterior region. As we move towards the horizon, Re(ηK)
increases to reach a maximum finite value close to the T = R boundary. This maximum
value approximately matches the value of Re(ηK) near the horizon obtained by plotting
the interior solution (≈ 9). This seems to suggest that the real part of the boost angle
might be continuous across the horizon. We will check whether this is indeed the case by
analysing the expression for ηK when r = rs and T 2 = R2 (see Section 6.2.3). Figure 6.8
shows the imaginary part of the boost angle in the exterior region of the black hole. There
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Figure 6.6: The real part of the boost angle ηK as a function of R and T for the exterior
region of the black hole. We choose rs = 1, E1 = −2 and E2 = 2.

Figure 6.7: A two-dimensional view of Figure 6.6 in the (R, T )-plane.
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Figure 6.8: The imaginary part of ηK as a function of R and T in the exterior region of
the black hole.

is a constant imaginary part of iπ everywhere outside the horizon (r > rs). This result is
in agreement with the result obtained using Schwarzschild coordinates (see Section 6.1).

6.2.3 On the Horizon

To check whether the boost angle is continuous through the black hole horizon, we must
examine the expression for ηK where r = rs and T = ±R. Equation 6.28 defines the boost
angle in Kruskal coordinates for the interior and exterior regions of the black hole. When
r = rs, Equation 6.28 simplifies to

cosh ηK = −B1B2e

4r2
s

(
1− Ṙ1Ṙ2

Ṫ1Ṫ2

)
. (6.29)

To simplify this further, we can substitute in the expressions for B1, B2, Ṙ1, Ṙ2, Ṫ1 and Ṫ2

and write ηK as a function of the Kruskal coordinates R and T only. As per Section 6.2,
B1 and B2 are defined by

B1 = 4rse
−1Ṫ1 (6.30a)

B2 = 4rse
−1Ṫ2. (6.30b)

where we have provisionally chosen the positive signs for the purpose of plotting. Substi-
tuting these expressions into Equation 6.29 results in

cosh ηK = −4e−1Ṫ1Ṫ2 + 4e−1Ṙ1Ṙ2. (6.31)
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Setting r = rs in the equation for Ṙ (Equation 6.14a), we have

Ṙ1 =
1

T

(
E1e

2r5
s

+RṪ1

)
(6.32a)

and Ṙ2 =
1

T

(
E2e

2r5
s

+RṪ2

)
. (6.32b)

The relation between Schwarzschild and Kruskal coordinates, Equation 6.19, simplifies to

T 2 −R2 = 0

⇒ T = ±R, (6.33)

so in Kruskal coordinates the horizon is characterized by the surfaces T = ±R. We will
treat the surfaces T = +R and T = −R separately. Substituting Equation 6.33 into
Equations 6.32a and 6.32b, we find

Ṙ1 = ± 1

R

(
E1e

2r5
s

+RṪ1

)
(6.34a)

and Ṙ2 = ± 1

R

(
E2e

2r5
s

+RṪ2

)
. (6.34b)

As shown in Section 5.3, Ṫ is given by the solution of the quadratic equation

Ṫ 2(R2 − T 2) +
Eer/rs

r3r2
s

RṪ +
E2e2r/rs

4r6r4
s

− er/rsr3
s

4r3
T 2 = 0. (6.35)

On the horizon we have r = rs and T 2 = R2, so the above equation simplifies to

EeR

r5
s

Ṫ +
E2e2

4r10
s

− eR2

4
= 0 (6.36)

which is linear. Solving for Ṫ we find

EeR

r5
s

Ṫ =
eR2

4
− E2e2

4r10
s

⇒ Ṫ =
r5
s

EeR

(
eR2

4
− E2e2

4r10
s

)

⇒ Ṫ =
R2r10

s − E2e

4ERr5
s

. (6.37)

Ṫ1 and Ṫ2 are therefore defined by

Ṫ1 =
R2r10

s − E2
1e

4E1Rr5
s

(6.38a)
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and Ṫ2 =
R2r10

s − E2
2e

4E2Rr5
s

. (6.38b)

We will first consider the positive branch, T = +R. Substituting Equations 6.34 and
6.38 into Equation 6.31 results in

cosh ηK = −4e−1

(
R2r10

s − E2
1e

4E1Rr5
s

)(
R2r10

s − E2
2e

4E2Rr5
s

)

+
4e−1

R2

(
E1e

2r5
s

+
R2r10

s − E2
1e

4E1r5
s

)(
E2e

2r5
s

+
R2r10

s − E2
2e

4E2r5
s

)
(6.39)

where we have chosen the positive signs in Equation 6.34. Writing the above equation in
its simplest form requires some algebraic manipulation; for details see Appendix B. We
find that Equation 6.39 reduces to an expression in terms of the conserved quantities E1

and E2 which is independent of the Kruskal coordinates R and T :

cosh ηK =
1

2

(
E1

E2

+
E2

E1

)
. (6.40)

We now consider the negative branch, T = −R. Substituting Equations 6.34 and 6.38
into Equation 6.31 with the negative signs chosen in Equation 6.34 results in the same
expression as for the positive branch (Equation 6.39), since the two negative signs in Ṙ1

and Ṙ2 cancel each other out. We may therefore say that for the sign choices we have
made, Equation 6.40 is valid for the entire region of the black hole horizon. We note that
the two equations in 6.34 need not necessarily have the same sign. The case where Ṙ1 and
Ṙ2 have different signs has not been explored in this thesis, but it is an important area for
future study. Similarly, it is possible that the signs of Ṫ1 and Ṫ2 are not the same. In order
to produce the preliminary plots above, we have made further assumptions concerning the
values of the conserved quantities E1 and E2. Since E1 and E2 characterize the maximal
surfaces and we know that the gradients of the maximal surfaces Σ0 and Σ1 will be opposite
in sign, we let E1 = −E2. This is a simplification because E1 and E2 are not necessarily
equal to the gradients of Σ0 and Σ1. For simplicity we also let |E1| = |E2|. Under these
two conditions, Equation 6.40 will reduce to

cosh ηK = −1 (6.41)

⇒ ηK = iπ. (6.42)

The above equation suggests that on the black hole horizon, the real part of the boost angle
is zero and the imaginary part is iπ. This result is surprising, since the real part of the
boost angle approaches a finite positive value (≈ 9 for rs = 2, E1 = −1 and E2 = 2) near
the horizon (see Figures 6.3 and 6.6). A real part of zero on the horizon would therefore
mean that the boost angle is discontinuous across the horizon, contrary to what we expect
when working in the Kruskal coordinates. This could suggest that the values we have
chosen for E1 and E2 are not appropriate. Further work is needed to choose these values
correctly.
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6.3 Tunnelling Amplitude

We have now deduced expressions for the boost angle ηK in the three distinct spacetime
regions: the interior of the black hole, the exterior and on the horizon. We have found that
for a particular choice of rs and the conserved quantities E1 and E2, the real part of the
boost angle tends towards a finite positive value as it approaches the horizon from either
side. As discussed in Chapter 4, the probability that a black hole will quantum tunnel into
a white hole is proportional to the gravitational action, which in our case reduces to the
action at the corner of the quantum gravity region:

S = SC = 4πr2η. (6.43)

where r is the radius of the corner. The value of the gravitational action, and thus the
tunnelling amplitude A of the quantum transition, clearly depends on the location of the
corner of the quantum gravity region (the intersection of the maximal surfaces). We expect
that the corner is in the vicinity of the black hole horizon, but it is not yet clear whether
is is just inside the horizon, just outside or exactly on the horizon. For the first two cases
we have

A ∼ eiSC ∼ exp

{
i cosh−1

(
− B1B2e

r/rsr

4r3
s

(
1− Ṙ1Ṙ2

Ṫ1Ṫ2

))}
(6.44)

where A is the tunnelling amplitude and the Bs, Ṙs and Ṫ s are defined in Section 6.2. If
the corner is instead located on the horizon, the above expression simplifies to

A ∼ eiSC ∼ exp

{
i cosh−1

(
1

2

(
E1

E2

+
E2

E1

))}
(6.45)

or

A ∼ eiSC ∼
{
i cosh−1(−1)

}
= −π (6.46)

if we assume, as in Section 6.2.3, that |E1| = |E2|. It does not make intuitive sense for
the tunnelling amplitude to be purely real, or to be independent of the maximal surfaces
defining the quantum gravity region. We can therefore conclude that Equation 6.46 is
incorrect; perhaps the corner is located a small distance away from the black hole horizon
rather than directly on it. Alternatively, it might not make sense to make the simplification
that the conserved quantities associated to the maximal surfaces (E1 and E2) have equal
magnitude. These are open questions that we will discuss further in Chapter 7.

6.4 Conclusion

In this chapter we computed the boost angle η between the normals to the maximal
surfaces defining the boundary of the quantum gravity region. We first performed this
calculation using Schwarzschild coordinates and found that the imaginary part of η is zero
in the interior of the black hole, and has a constant value of iπ in the exterior region.
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On the horizon r = rs, there is a coordinate singularity in the real part of η. For this
reason we chose to instead calculate the boost angle using Kruskal coordinates, in which
it is well-defined on the horizon. In order to produce some preliminary plots of the boost
angle, we set the Schwarzschild radius rs = 1 and chose values of E1 = −2, E2 = 2 for the
conserved quantities associated to the maximal surfaces. The correct choice of values for
E1 and E2 requires careful consideration; this is an area for future work that we discuss
further in Chapter 7. The preliminary plots of the boost angle in Kruskal coordinates
agree with the results we obtained using Schwarzschild coordinates. The real part of the
boost angle is suppressed in the majority of the interior region of the black hole (r < rs),
and increases to a finite maximum near the horizon at r = rs. Similarly for the exterior
of the black hole r > rs, the real part of η is suppressed in most of the exterior region and
increases as we approach the horizon. The imaginary part of η is zero in the interior, and
has a constant value of iπ in the exterior. As previously mentioned, we require the boost
angle to have a finite imaginary part in the region of spacetime in which the tunnelling
transition takes place. On the horizon r = rs, we found that the boost angle reduces to
η = iπ for our chosen values of the conserved quantities E1 = −2 and E2 = 2, i.e. it is
purely imaginary. Comparison with the plots of η for the interior and exterior regions of
the black hole suggests that for the values that we chose, the boost angle is not continuous
across the horizon as we expect it to be in the Kruskal coordinates. This indicates that
E1 = −2 and E2 = 2 may not be suitable choices for the conserved quantities.
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Chapter 7

Concluding Remarks & Future Work

In this thesis we investigated the proposal that near the end of its evaporation, a
black hole will not simply disappear but will instead undergo a quantum transition into
a white hole. This transition takes the form of quantum tunnelling. We chose to study
a Schwarzschild black hole, and define the region in which quantum effects dominate as
enclosed by intersecting hypersurfaces on which the trace of the extrinsic curvature is equal
to zero. We found that the gravitational action for this spacetime is dependent only on
the action term at the corner of the quantum gravity region, and the corner action is
determined by the boost angle between the normal vectors to the two intersecting hyper-
surfaces (maximal surfaces). Using Kruskal coordinates, we deduced an expression for the
boost angle dependent on how the maximal surfaces are defined. Our results indicate that
the real part of the boost angle increases from each direction (both from the exterior and
interior regions of the black hole) and reaches a finite maximum value close to the horizon.
This makes intuitive sense; since the tunnelling probability is dependent on the value of
the boost angle and we assume that the quantum transition will occur near the horizon, we
expect the angle to increase as we approach the horizon. The boost angle is zero inside the
horizon, and has a constant imaginary part in the exterior region. A constant imaginary
part in the boost angle is required in order for tunnelling to occur. Upon simplifying our
expression for the boost angle on the horizon, we found that the real part of the boost
angle appears to be discontinuous across the horizon, which does not match our expecta-
tions. However, the apparent discontinuity in the boost angle across the horizon could be
a consequence of an unsuitable choice for the values of the conserved quantities associated
to the maximal surfaces.

The characterization of the maximal surfaces is something that we would like to im-
prove our understanding of. We chose to define the quantum gravity region as enclosed
by the intersecting maximal surfaces on which the trace of the extrinsic curvature is zero.
We are as yet unsure of the location of the corner of the quantum gravity region, J . The
corner could be located either just inside, just outside or directly on the horizon; at present
we have no sufficient reason to impose the location at any of these points. A useful first
step in understanding the quantum gravity region better could be to locate the corner
by numerically solving the differential equations defining the maximal surfaces (Equation
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6.14). On the black hole horizon, we found that the boost angle is independent of the
spacetime coordinates R and T , and depends only on the conserved quantities E1 and E2

that characterize the maximal surfaces. E1 and E2 are clearly critical in the calculation of
the boost angle, so it is important that we understand how to choose their values correctly.
We would like to understand what the allowed values of E1 and E2 are for a given value
of rs.

We note that there are several limitations to our study, one of which being the fact
that we have used a static approximation to model the black hole to white hole transition.
This approximation is only valid if the time taken for the quantum transition is very small
compared to the time taken for the black hole to evaporate via Hawking radiation (and
the time taken for matter to leak out from the white hole). We have not considered the
relative timescales for these processes in this study. Additionally, this work does not offer
any insight into the solution to the information loss problem. We have not considered what
happens to the information trapped inside a black hole during Hawking evaporation, or
proposed any mechanism by which the information inside the black hole can escape after
the quantum tunnelling transition to a white hole occurs.

7.1 The Complex Solution of Einstein’s Equations

We now consider a less immediate area for future study, and a way in which we could
extend our current work. In order to deduce an expression for the probability that a Planck-
mass black hole will quantum tunnel into a white hole we have focused our analysis on the
tunnelling region B (see Section 1.1.3), where the trapping black hole horizon evolves into
an anti-trapping white hole horizon. However, to obtain a complete picture of black hole
to white hole quantum tunnelling we must also take the high curvature region (Region A)
into consideration. It is necessary to show that there is a complex solution to the Einstein
equations that extends across the Schwarzschild singularity at r = 0. For this purpose,
we consider a Schwarzschild solution first proposed by Synge in 1950 [82]. We first note
that the interior of a Schwarzschild black hole can be foliated by spacelike surfaces that
are three-dimensional cylinders, i.e. S2 ×R. The line element in each of these cylinders is
given by

ds2 = − 4τ 4

2m− τ 2
dτ 2 +

2m− τ 2

τ 2
dx2 + τ 4dΩ2 (7.1)

where τ is a temporal coordinate and x is a spatial coordinate running along a portion of
the cylinder’s axis. If we let τ < 0 and choose the Schwarzschild coordinates

t = x (7.2a)

r = τ 2, (7.2b)

we find

ds2 = −
(

1− 2m

rs

)
dt2 +

(
1− 2m

rs

)−1

dr2 + r2
sdΩ2 (7.3)
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rs = 0

Figure 7.1: A visual representation of Synge’s solution for the continuation of the
Schwarzschild line element across the singularity at rs = 0. The bottom half of the dia-
gram is the interior geometry of the black hole, and the top half is the interior geometry
of the white hole that it tunnels into. The arrow indicates how the singularity may be
circumvented by allowing the temporal coordinate τ to move to the complex plane.

which is the line element describing the interior of a Schwarzschild black hole. If we instead
choose τ > 0, Equation 7.3 describes the interior of a white hole. We can therefore view
Synge’s solution (Equation 7.1) as the natural extension of a black hole’s interior geometry
across the Schwarzschild singularity, and into the interior of a white hole.

Although Synge’s solution succeeds in describing the continuation of a black hole’s
interior geometry into that of a white hole, the method by which we avoid the central
singularity is as yet unexplained. Consider the discussion in Appendix A concerning the
semiclassical description of time-dependent quantum tunnelling. We show that allowing
time paths to move to the complex plane enables us to use semiclassical VVG theory to
model barrier tunnelling. We now propose to apply the same logic to Synge’s theory:
complexification of the temporal coordinate τ will result in a complex Schwarzschild solu-
tion which satisfies the Einstein equations exactly throughout the whole of the quantum
gravity region. Complexification of the Synge solution allows a gluing of ‘complex gravity’
everywhere from the black hole horizon to the white hole horizon.

Figure 7.1 is a visual representation of the complex Synge solution described above. The
bottom half of the diagram represents the interior geometry of an old black hole, and the
top half is the interior geometry of a white hole. The black hole would ordinarily need to
cross the central singularity at rs = 0 in order to complete the quantum transition into a
white hole. However, if we allow the temporal coordinate τ in the Synge solution to move
to the complex plane, the Schwarzschild singularity can be circumvented (as shown by the
arrow).

The ideas presented in this section are preliminary, and require a great deal of mathe-
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matical development. Time constraints have thus far prevented us from further exploration
of the complex Synge solution, but we believe it is a promising area for future study. In
order to show that we can use the complex Synge solution to describe black hole to white
hole quantum tunnelling, we must reformulate Einstein’s general relativity in terms of
complex variables. The first step in this process is to complexify the coordinates of the
spacetime metric.
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Appendix A

Time-Dependent Semiclassical
Tunnelling Through Barriers

We consider the semiclassical theory of Van Vleck and Gutzwiller, and whether we can
use this theory to describe quantum tunnelling through a potential barrier. We begin
by reviewing the results of Kenneth Kay’s paper ‘Time-dependent semiclassical tunnelling
through barriers’ [55]. Kay addresses the question of whether semiclassical VVG theory can
be used to describe time-dependent barrier tunnelling. He concludes that we may indeed
use VVG theory to model barrier tunnelling, with the caveat that classical trajectories with
both complex initial conditions and complex time paths must be taken into consideration.
As a simple example, Kay applies this technique to the propagation of a particle through a
classically forbidden one-dimensional barrier; a problem for which it would be impossible
to create a model using VVG theory without the consideration of complex time.

A.1 Semiclassical VVG Theory & Time-Dependent Tunnelling

The ‘semiclassical’ or ‘short-wavelength’ approximation to quantum mechanics arises
when we take the limit ~→ 0 in quantum mechanics in order to recover the results of clas-
sical physics [84]. Semiclassical physics has been in existence since the advent of quantum
theory: before the derivation of Schrödinger’s equation, Bohr had used the quantization
condition ∮

pdq = 2π~n (A.1)

to describe the hydrogen spectrum. This condition selects classical states whose action is
an integer multiple of 2π~ = h. It was shown by Wentzel, Kramers and Brillouin that if
we make a small adjustment to the integer n (dependent on the motion of the system),
Bohr’s quantization condition can be recovered from the time-independent Schrödinger
equation in the short-wavelength limit [14, 56, 86]. This approximation, referred to as the
‘WKB approximation’, may be used to describe the tunnelling of a particle through a one-
dimensional potential barrier.
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Almost simultaneously with the development of WKB theory, the first semiclassical form
of the quantum propagator was proposed by Van Vleck [83]. Consider a one-dimensional
system with a particle that is initially at position x at time t = 0. It tunnels through a
potential barrier and reaches its final position x at time t = T . The propagatorK(x′, x, t) =

〈x′| exp
(
−iĤt/~

)
|x〉 can be expressed as

K(x′, x, t) =
∑
traj

[D/(2πi~)]1/2eiS(x′,x,t)/~−iπν/2 (A.2)

where D = |∂2S/∂x′∂x|, and the sum is over all possible trajectories of the particle. The
action S(x′, x, t) along a path is defined by

S(x, x′, t) =

∫ t

0

[p(τ)q̇(τ)−H(q(τ), p(τ))]dτ (A.3)

where H is the Hamiltonian, and q and p are position and momentum of the particle re-
spectively. The Morse index ν is the number of times that the value of D on a particular
path is infinite. The original Van Vleck propagator was written without the phase πν/2;
this term was added later by Gutzwiller [42]. We therefore refer to Equation A.2 as the
VVG propagator. Similar to the WKB approximation, VVG theory is a short-wavelength
approximation to quantum mechanics. However, unlike WKB theory, the VVG propagator
can be generalized to higher dimensions [27]. It can be derived directly from the Feynman
propagator, if we use the stationary phase method to evaluate the integral. The stationary
phase method is necessary because it selects only the classically allowed trajectories. It
was not immediately obvious if it was possible to use semiclassical VVG theory to describe
time-dependent quantum tunnelling. Kay addresses this question, and concludes that we
may use VVG theory to describe time-dependent barrier tunnelling if we allow the particle
to follow complex time paths with complex initial conditions.

A.2 Complex Energy & Time

We denote the energy of the particle by E, and the height of the potential barrier by
V0. The initial position x is on the left side of the barrier, and the final position x′ is on
the right. There are two separate scenarios to be considered:

• Case 1: E < V0

If the energy of the particle is greater than the height of the barrier, the time taken
for the particle to travel from x to x′ is real, and thus the action S(x′, x, t) is also
real.

• Case 2: E > V0
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Figure A.1: Solid lines represent a typical WKB path from t = 0 to t = T (E1) for a real
energy E1, which circumvents the singularity at X. The final time can become real if we
allow energy to change to a complex value E2. The dashed black lines show an alternate
complex time path. The dashed red lines indicate the region in which quantum tunnelling
takes place.

If the particle’s energy is less than the barrier height, there is no real time path
that it can take. If we are to use semiclassical VVG theory to describe the tunnelling
of the particle, we must allow the time path to move to the complex plane.

Figure A.1 shows how a time path that is real-valued at the initial and final points circum-
vents a singularity X by moving to the complex plane at an intermediate point along the
path. The particle is at initial position x at time t = 0. Time advances in the real direction
until the particle reaches the barrier, where the time path is then allowed to move to the
complex plane. This movement in the negative imaginary direction can be viewed as the
tunnelling of the particle through the barrier. The region in which the tunnelling occurs
is indicated by the dashed red line in Figure A.1. During the barrier crossing, the posi-
tion of the particle remains real but its momentum becomes imaginary. After the barrier
has been crossed, time can again advance along the real axis until the particle reaches its
final position x′ at time T (E1). This time path, shown by the solid lines in Figure A.1,
represents a typical WKB path for a particle with real energy E1. The path is composed
of three segments: a real segment as the particle approaches the potential barrier, the
complex segment during which it tunnels through the barrier and the final real segment
on the other side. The total time taken for the particle to travel from x to x′ is therefore
complex, which means that the total action is also complex. It is clear from Figure A.1
that T (E1), the time at which the particle reaches x′, is imaginary. In order to obtain a
real value for the final time, we allow the energy of the particle to take a complex value
E2, such that the final time is T (E2). The path from t = 0 to t = T (E2) is not unique;
the dashed black line shows an alternative path with the same final time T (E2). Either of
these paths will result in the avoidance of the branch point X, which is a singularity of the
classical position and momentum variables in the complex plane.
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A.3 Recovering the VVG Expression

In order to show that it is valid to use VVG theory to describe time-dependent tun-
nelling, it is useful to try to recover the VVG expression (Equation A.2) from the time-
dependent propagator. The time-dependent propagator K(x′, x, t) may be written in terms
of the energy-dependent Green’s function G(x′, x, E) = 〈x′|(E − Ĥ)−1)|x〉 as

K(x′, x, t) =
i

2π

∫
exp(−iEt/~)G(x′, x, E)dE. (A.4)

According to Gutzwiller [43, 44], for a system with one degree of freedom we may express
G(x′, x, E) as

G(x′, x, E) =
1

i~
∑
traj

exp[iW (x′, x, E)/~− iπµ/2]

|q̇(T )q̇(0)|1/2
, (A.5)

where the sum is over particle trajectories with energy E, initial position x and final
position x′. q̇(0) and q̇(T ) are the initial and final velocities of the particle, where T =
T (x′, x, E) is the time along the path. µ is the Maslov index [74,75]. W is the action,

W (x′, x, E) =

∫ x′

x

p(q, E)dq, (A.6)

where p(q, E) is the momentum at position q and energy E. Alternatively we may param-
eterize the action by the time t along the path, such that

W (x′, x, E) =

∫ T

0

p(q(t), E)q̇(q(t), E)dt. (A.7)

Substituting Equation A.5 into Equation A.4 and using the stationary phase method to
evaluate the integral results in

K(x′, x, t) =
∑
traj

1

2π~

∫
exp(iφ/~− iπµ/2)

|q̇(T )q̇(0)|1/2
dE, (A.8)

where φ = −Et+W (x′, x, E). Differentiating φ with respect to E gives

∂φ

∂E
= −t+

∂W (x′, x, E)

∂E
= −t+ T (x′, x, E) (A.9)

where the last line follows from the fact that ∂W (x′, x, E)/∂E = T (x′, x, E), the total
time along the particle’s trajectory. The points of stationary phase are therefore energies
Ec that satisfy T (x′, x, Ec) = t. Using known relations between the derivatives of W and
S [44] and the fact that S(x′x, t) = W (x′, x, Ec)− Ect, we find that the VVG propagator
(Equation A.2) is recovered from the time-dependent propagator (Equation A.4).
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A.4 Special Case: The Eckart Potential

We know that the complex time paths used to determine trajectories should circumvent
particular singularities t∗. But how can we locate these singularities? For a general one-
dimensional potential energy function V (q), the singularity times are given by

t∗ =

∫ q∗

x

dq

q̇
(A.10)

where the integral is evaluated along a complex path from x to a point q∗. Numerical
techniques are usually required to perform this integral, but we find an exception in the
Eckart potential.

The Eckart potential is given by

V (q) = V0 sech2(q/a). (A.11)

There exists an analytical expression [30] for the singularity times of this potential:

t∗(±, k) =
a

v

[
− tanh−1

(
p

mv
coth(x/a)

)

± tanh−1[(E/V0)1/2] + iπ(k + 1/2)

]
(A.12)

where p = {2m[(E − V (x)]}1/2 is the value of momentum for the trajectory at the initial
point x, v ≡ (2E/m)1/2, and k = 0,±1,±2, . . .. From Equation A.12 it is clear that for the
Eckart potential, there are two infinite series of singularities corresponding to the positive
and negative signs. The singularity time relevant for the dominant tunnelling process is
t∗(+,−1).

To calculate a complex trajectory contributing to K(x′, x, t) for the Eckart potential,
we first make a guess for the complex initial momentum p(0). Application of Equation
A.12 with p = p(0) results in a complex time path that passes between the singularities
described above. The classical equations of motion ∂q(t)/∂p(0) and ∂p(t)/∂p(0) are then
integrated along this time path and the Newton-Raphson equation,

pnew(0) = p(0) +
x′ − q(t)

∂q(t)/∂p(0)
, (A.13)

is used to refine the estimate for the initial momentum. Iteration of this process gives a
converged complex trajectory which satisfies the required boundary conditions.

A.5 Tunnelling Probability

We can show that this approach successfully describes quantum tunnelling by choosing
a representation for the time-dependent propagator and recovering the WKB tunnelling
probability

P (E) = e−2θ(E)/~ (A.14)
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where θ(E) is the WKB barrier penetration integral,

θ(E) =

∫ x>

x<

√
2m[V (q)− E] dq. (A.15)

x< and x> are the turning points of the particle’s motion, at the beginning and end of the
time period in which tunnelling occurs.

As an example, we could choose the initial position-final momentum representation of

the propagator K̄(p′, x, t) ≡ 〈p′| exp
(
−iĤt/~

)
|x〉:

K̄(p′, x, t) =
∑
traj

[D̄/(2πi~)]1/2eiS̄(p′,x,t)/~−iπν̄/2. (A.16)

In the above expression, the tunnelling particle has initial position q(0) = x and final
momentum p(t) = p′. The action S̄(p′, x, t) = −ip′q(t) + S(q(t), x, t), D̄ = −|∂2S̄/∂p′∂x|,
and ν̄ is the Morse phase. Tunnelling probabilities in the limits x → ∞ and t → ∞ for
this propagator can be calculated using Zhang’s expression [89]:

P (E) = 2π~(p/p′)|K̄(p′, x, t)|2. (A.17)

Using conservation of energy arguments, we find that there is only one tunnelling trajectory
that contributes to Equation A.16 (for more detailed reasoning, see [55]). The action may
be written as

S̄(p′, x, t) = −p′x′ +W (x′, x, E)− Et (A.18)

where W (x′, x, E) is the usual WKB action, and the only complex term in S̄(p′, x, t). Since
Im W = θ(E) [55], we find that the tunnelling probability for this representation of the
propagator is reduced to the WKB probability, P (E) = e−2θ(E)/~.
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Appendix B

Boost Angle on the Horizon in
Kruskal Coordinates

For completeness, we include here the steps for simplifying the expression for the boost
angle on the horizon in Kruskal coordinates (see Section 6.2.3). Considering the positive
branch T = +R and starting from Equation 6.39, we have

cosh ηK = −4e−1

(
R2r10

s − E2
1e

4E1Rr5
s

)(
R2r10

s − E2
2e

4E2Rr5
s
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(
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cosh ηK = 4e−1
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For the negative branch T = −R, we instead choose the negative signs in Equation 6.34.
This results in

cosh ηK = −4e−1
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and the rest of the steps are identical to those for the positive branch T = +R. For both
T = +R and T = −R we therefore obtain the same expression for cosh ηK :

cosh ηK =
1

2

(
E1

E2

+
E2

E1

)
. (B.4)
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Appendix C

MATLAB Code used to produce
Figures 6.3 - 6.5

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PLOTTING THE BOOST ANGLE IN KRUSKAL COORDINATES − INTERIOR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear a l l
close a l l
r s = 1 ; % S c h w a r z s c h i l d r a d i u s
N = 1e3 ;
R = linspace (−2 ,2 ,N) ;
T = linspace (0 , 2 ,N) ;
[ R mesh , T mesh ] = meshgrid (R,T) ;
E1 = −2;
E2 = 2 ;

% pre−a l l o c a t e v a l u e s f o r c o s h e t a and e ta
co sh e ta = zeros (N) ;
eta = zeros (N) ;

for n = 1 :N % loop over T
for m = 1 :N % loop over R

% impose boundary c o n d i t i o n s f o r BH i n t e r i o r
i f T(n)ˆ2 − R(m)ˆ2 <= 0
eta (n ,m) = NaN + 1 i ∗NaN;
e l s e i f T(n)ˆ2 − R(m)ˆ2 >= 1
eta (n ,m) = NaN + 1 i ∗NaN;
else

% c a l c u l a t e r
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w0 = lambertw ( 0 , (R(m)ˆ2 − T(n )ˆ2)/exp ( 1 ) ) ;
r = r s ∗(1 + w0 ) ;

% c a l c u l a t e T dot
A1 = R(m)ˆ2 − T(n ) ˆ 2 ;
B1 = (E1∗exp( r / r s )∗R(m) ) / ( r ˆ3∗ r s ˆ 2 ) ;
C1 = (E1ˆ2∗exp(2∗ r / r s ) )/ (4∗ r ˆ6∗ r s ˆ4) − . . .

r s ˆ3∗exp( r / r s )∗ (T(n )ˆ2)/(4∗ r ˆ 3 ) ;
T1 dot = (−B1 + sqrt (B1ˆ2 − 4∗A1∗C1))/ (2∗A1 ) ;

A2 = R(m)ˆ2 − T(n ) ˆ 2 ;
B2 = (E2∗exp( r / r s )∗R(m) ) / ( r ˆ3∗ r s ˆ 2 ) ;
C2 = (E2ˆ2∗exp(2∗ r / r s ) )/ (4∗ r ˆ6∗ r s ˆ4) − . . .

r s ˆ3∗exp( r / r s )∗ (T(n )ˆ2)/(4∗ r ˆ 3 ) ;
T2 dot = (−B2 + sqrt (B2ˆ2 − 4∗A2∗C2))/ (2∗A2 ) ;

% c a l c u l a t e R dot
R1 dot = (1/T(n ) ) ∗ ( ( E1∗exp( r / r s )/(2∗ r ˆ3∗ r s ˆ2) ) + . . .

R(m)∗T1 dot ) ;
R2 dot = (1/T(n ) ) ∗ ( ( E2∗exp( r / r s )/(2∗ r ˆ3∗ r s ˆ2) ) + . . .

R(m)∗T2 dot ) ;

% c a l c u l a t e b1 and b2
b1 = 4∗ r∗exp(−r / r s )∗T1 dot ;
b2 = 4∗ r∗exp(−r / r s )∗T2 dot ;

% c a l c u l a t e e ta
co sh e ta (n ,m) = (1 . 0/ (4∗ r s ˆ3) ) ∗ ( b1∗b2∗ r∗exp( r / r s ) ) ∗ . . .

(1 − ( R1 dot∗R2 dot )/ ( T1 dot∗T2 dot ) ) ;
eta (n ,m) = acosh ( co sh e ta (n ,m) ) ;

end
end

end

% manually remove d i v e r g e n c e s ( numerical a r t i f a c t s )
for k = 0 : f loor (N)

for l = f loor ( 0 . 7∗ k ) + 5 : N − f loor ( 0 . 7∗ k ) − 5
i f eta (N−k , l ) >= 4

eta (N−k , l ) = 4 ;
end

end
end
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eta ( eta >30) = NaN;

% p l o t b o o s t ang l e
f igure (1 ) % r e a l part , 3D
surf ( R mesh , T mesh , real ( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Re(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (2 ) % r e a l part , 2D
surf ( R mesh , T mesh , real ( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
view (2 ) % 2−d view in the (R,T) p lane
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Re(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (3 ) % imaginary part , 3D
surf ( R mesh , T mesh , imag( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Im(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (4 ) % imaginary part , 2D
surf ( R mesh , T mesh , imag( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
view (2 ) % 2−d view in the (R,T) p lane
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Im(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
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Appendix D

MATLAB Code used to produce
Figures 6.6 - 6.8

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PLOTTING THE BOOST ANGLE IN KRUSKAL COORDINATES − EXTERIOR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear a l l
close a l l
r s = 1 ; % S c h w a r z s c h i l d r a d i u s
N = 1e3 ;
R = linspace (0 , 2 ,N) ;
T = linspace (−2 ,2 ,N) ;
[ R mesh , T mesh ] = meshgrid (R,T) ;
E1 = −2;
E2 = 2 ;

% pre−a l l o c a t e v a l u e s f o r c o s h e t a and e ta
co sh e ta = zeros (N) ;
eta = zeros (N) ;

for n = 1 :N % loop over T
for m = 1 :N % loop over R

% impose boundary c o n d i t i o n s f o r BH e x t e r i o r
i f T(n)ˆ2 − R(m)ˆ2 >= −0.0001 % s e t to 0
eta (n ,m) = NaN + 1 i ∗NaN;

else

% c a l c u l a t e r
w0 = lambertw ( 0 , (R(m)ˆ2 − T(n )ˆ2)/exp ( 1 ) ) ;
r = r s ∗(1 + w0 ) ;
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% c a l c u l a t e T dot
A1 = R(m)ˆ2 − T(n ) ˆ 2 ;
B1 = (E1∗exp( r / r s )∗R(m) ) / ( r ˆ3∗ r s ˆ 2 ) ;
C1 = (E1ˆ2∗exp(2∗ r / r s ) )/ (4∗ r ˆ6∗ r s ˆ4) − . . .

( ( r s ˆ3) ∗ exp( r / r s )∗T(n )ˆ2)/(4∗ r ˆ 3 ) ;
T1 dot = (−B1 + sqrt (B1ˆ2 − 4∗A1∗C1))/ (2∗A1 ) ;

A2 = R(m)ˆ2 − T(n ) ˆ 2 ;
B2 = (E2∗exp( r / r s )∗R(m) ) / ( r ˆ3∗ r s ˆ 2 ) ;
C2 = (E2ˆ2∗exp(2∗ r / r s ) )/ (4∗ r ˆ6∗ r s ˆ4) − . . .

( ( r s ˆ3) ∗ exp( r / r s )∗T(n )ˆ2)/(4∗ r ˆ 3 ) ;
T2 dot = (−B2 + sqrt (B2ˆ2 − 4∗A2∗C2))/ (2∗A2 ) ;

% c a l c u l a t e R dot
R1 dot = (1/T(n ) ) ∗ ( ( E1∗exp( r / r s )/(2∗ r ˆ3∗ r s ˆ2) ) + . . .

R(m)∗T1 dot ) ;
R2 dot = (1/T(n ) ) ∗ ( ( E2∗exp( r / r s )/(2∗ r ˆ3∗ r s ˆ2) ) + . . .

R(m)∗T2 dot ) ;

% c a l c u l a t e b1 and b2
b1 = 4∗ r∗exp(−r / r s )∗T1 dot ;
b2 = 4∗ r∗exp(−r / r s )∗T2 dot ;

% c a l c u l a t e e ta
co sh e ta (n ,m) = (1 . 0/ (4∗ r s ˆ3) ) ∗ ( b1∗b2∗ r∗exp( r / r s ) ) ∗ . . .

(1 − ( R1 dot∗R2 dot )/ ( T1 dot∗T2 dot ) ) ;
eta (n ,m) = acosh ( co sh e ta (n ,m) ) ;

end
end

end

eta ( eta>30)=NaN;

% p l o t b o o s t ang l e
f igure (1 ) % r e a l part , 3D
surf ( R mesh , T mesh , real ( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Re(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (2 ) % r e a l part , 2D
surf ( R mesh , T mesh , real ( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
view (2 ) % 2−d view in the (R,T) p lane
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xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Re(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (3 ) % imaginary part , 3D
surf ( R mesh , T mesh , imag( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Im(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)

f igure (4 ) % imaginary part , 2D
surf ( R mesh , T mesh , imag( eta ) , ’ EdgeColor ’ , ’ i n t e r p ’ )
view (2 ) % 2−d view in the (R,T) p lane
xlabel ( ’$R$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,30)
ylabel ( ’ $T$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
zlabel ( ’ $Im(\ eta K ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 30)
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