
Fast Switchable Ultrastrong Coupling
Between Superconducting Artificial
Atoms and Electromagnetic Fields

by

Jiahao Shi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics

Waterloo, Ontario, Canada, 2019

c© Jiahao Shi 2019



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis consists of two parts: the main part is a theoretical investigation of the ultra-
strong coupling regime for atom-light coupling in superconducting circuits, and the second
part is concerned with the development of a new high coherence flux qubit design.

The spin-boson model describes the interaction between a quantum two-level system
and a continuum of bosonic modes. When the interaction strength becomes comparable
to the system frequency, the system enters the ultrastrong coupling (USC) regime, where
the rotating wave approximation breaks and the system dynamics need to be described
nonperturbatively. Recently, the ultrastrong coupling has been achieved on a device con-
sisting of a superconducting flux qubit coupled to an electromagnetic continuum, with the
coupling strength being verified in experiments by the standard transmission method [1].
The first project in this thesis aims to measure the dynamics of the spin-boson model in a
direct and controllable way when the coupling strength is in the USC regime. We propose
three experiments to measure the coherence of the two-level system including the relax-
ation and dephasing, and the the renormalized tunneling frequencies in the ultrastrong
coupling regime. The controllable measurements are realized with a fast-switchable ultra-
strong coupling system consisting of a two-loop flux qubit galvanically coupled to an open
transmission line, flux bias and driving lines, and readout circuits. The design and model
of the full device are presented. We demonstrate that the three proposed experiments can
be well implemented based on the simulations of qubit properties and coupling strengths.

The second part of the thesis presents work on the design of a new type of capacitively
shunted flux qubit. This work is motivated by improving qubit coherence time and an-
harmonicity, which is essential for speeding up qubit gates and enhancing the capability
of quantum computing. It was demonstrated that adding shunting pads to flux qubits
can drastically improve the coherence time and the reliability of qubit fabrication, but the
CSFQ was shown with moderate anharmonicities [2]. In this project, we present the a new
design of CSFQ and its circuit model, which contains three Josephson junctions and three
shunting pads. In experiments, the qubit spectroscopy matches well with the circuit model,
which takes into account all the capacitances between the qubit and other circuits. The
qubit is found to have both large anharmonicity A = ω12−ω01 = 2π× 3.69 GHz, and high
coherence with T1 = 40 ± 5 µs. We also present experiments on the multilevel quantum
control and multilevel relaxation measurement. We perform qutrit state tomography to
reconstruct the full density matrix with the tomography fidelity reaching 99.2%. We are
able to extract the time-dependent state populations for the relaxation process of a qutrit,
and extract the exact transition rates between the three levels.
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Chapter 1

Introduction

Light-matter interaction is broadly relevant for our understanding of our physical worlds
and plays an important role in phenomena including plants converting sunlight into energy
through photosynthesis, bulbs emitting light and solar cells absorbing light to generate
electricity. Fundamentally, it is important to understand the quantum processes of light-
matter interaction for basic systems. In this context, the spin boson model, consisting of
a two-level system coupled to a collection of bosonic modes, describes the main features of
the interaction of atoms/molecules with the electromagnetic field. Early research in this
area focused on simplified systems where neutral atoms were treated as qubits and they
were put inside electromagnetic cavities, such that atoms were coupled to only one or a few
light modes. This field of research is called the cavity electrodynamics (QED). By applying
the rotating-wave approximation (RWA), systems are described by the Janynes-Cummings
Hamiltonian [3], which can be exactly solved. In these systems, coupling strengths between
atoms and light can reach the strong coupling regime [4, 5], where interaction strengths
are stronger than the qubit and photon losses, which enables exchanges of energy quanta
between qubits and light. This phenomenon is called vacuum Rabi oscillation [6].

Circuit QED is a new area of research concerned with the study of the interaction of
artificial atoms, such as superconducting qubits. Compared to individual atoms, super-
conducting qubits can be fully controlled, and the coupling strengths in these systems are
much stronger than the coupling between atoms and light. In superconducting circuits,
strong coupling between qubits and coplanar waveguide resonators were observed [7, 8].
These strong coupling systems are widely used for quantum state readout [9]. Efforts
were made to keep increasing the coupling strength, and the so-called ultrastrong coupling
(USC) regime was first reached in [10]. The USC regime is defined as the coupling strength
reaches 10% or more of the bare qubit frequency. With such strong coupling strengths, the
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RWA breaks and incoherent interactions due to the counter rotating terms are observed
[8, 10, 11].

When considering qubits coupled to continuum of bosonic modes, the interaction be-
comes complicated. In these systems, qubit relaxation depends on not only the coupling
to a single light mode, but also the spectral density of the continuum [12]. Strong coupling
of a superconducting qubit to a one-dimentional (1D) open transmission line was first ob-
served almost a decade ago [13]. Recently, the ultrastrong coupling was first realized on a
system consisting of a superconducting flux qubit coupled to a 1D open transmission line
[1].

1.1 Ultrastrong coupling in superconducting circuits

In the ultrastrong coupling regime, understanding the dynamics of the spin-boson model
[12] requires sophisticated theoretical techniques, including the quasi-adiabadic propagator
path integral [14], the matrix product states [15] and the dynamical polaron ansatz [16],
which give predictions on qubit relaxation rates. The transition frequencies of supercon-
ducting qubits are approximately in the range of 1 to 20 GHz, so the qubit relaxation time
is extremely short and only in the order of several nanoseconds or smaller, which makes the
relaxation measurement difficult to realize. Although the USC regime has already been
achieved, but it was only verified by the standard transmission measurement [1], where
the authors fit the transmission spectrum with an approximate model to extract the rel-
evant rates. The motivation of this project is to directly measure the qubit relaxation in
the time domain to find the relaxation rates, when the coupling strength is in the USC
regime. To achieve this, we develop a superconducting system consisting of a flux qubit
with fast switchable coupling to electromagnetic continuum. Apart from the relaxation,
we also aim to measure the qubit dephasing in the USC regime. In spin-boson model,
the qubit frequencies are expected to be renormalized due to large correlations between
qubits and baths. The qubit transition frequencies are predicted to decrease with stronger
coupling strengths. This phenomenon hasn’t been directly observed in experiments when
the coupling strength reaches the USC regime. With our controllable system, we aim to
measure the renormalized qubit frequencies in the USC regime.

Apart from the experiments on the spin-boson model, another motivation comes from
the potential application of the fast switchable USC system in the field of relativistic quan-
tum information. Ref. [17] proposes an experiment to study the dynamics of entanglement
between two qubits. This work predicts the existent of a light core that divide the space
time into two regions, with the entanglement due to correlated fluctuations of vacuum
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in the spacelike region and the entanglement due to exchange of photons in the timelike
region. The position of light core is determined by the traveling speed of photons. The
proposed experiment is based on a system consisting of two qubit coupled to an open trans-
mission line, and it requires full or partial tomography of qubit states without affecting the
qubit-transmission line dynamics to measure the entanglement, which can be realized with
the circuits presented in this thesis by fast switching off the coupling and then performing
measurements on qubits. They show that the entanglement increases with the coupling
strength, so our USC system is perfect for the experiment.

1.2 Design of superconducting qubits

Qubits are building blocks to quantum computers, just like what bits are to classical com-
puters. Therefore, improving the quality of individual qubits is the very first step towards
building a large-scale quantum computer. A key factor that limits qubit performance is its
coherence time: if a qubit is left to interact with the environment, eventually its state gets
mixed with the environment and is said to decohere, and the information stored inside is
lost. Thus, a longer coherence time implies that more computation steps can be performed
on a qubit before decoherence occurs, which is crucial for future applications which requires
running long computations with many steps.

Flux qubits are sensitive to the flux noise and insensitive to the charge noise, because
they are designed with large ratio of the Josephson energy to the charging energy EJ/Ec,
such that the fluctuation of charging energy that is induced by the charge noise can only
have small influence on the qubit Hamiltonian. The coherence of flux qubits had not been
improved greatly over the years and the relaxation time T1 was in the range of 6 to 20 µs
[18, 19], while the T1 of transmons can reach about 100 µs. In 2016, a special design of flux
qubits, called the capacitively shunted flux qubits (CSFQ), was systematically researched
[2], and it was found that the T1 of CSFQ was largely improved and exceeded 40 µs.
In [2], the α junction of the flux qubit is shunted with two large capacitive pads, which
redistributes the electric field from the junction area, where there is a dielectric layer, to
the large shunting pads, so the dielectric loss is reduced and the ratio of EJ/Ec is further
increased. Thus, the CSFQ is even more insensitive to the charge noise, and the coherence
is improved. Besides, using large shunting pads to dominate the junction capacitance
make the qubit more reproducible. However, as a consequence of adding large shunting
pads, the anharmonicity, which is defined as the frequency difference between 1-2 and 0-1
transitions, is reduced from several GHz for a typical flux qubit to only about 0.8 GHz.
Similar moderate anharmonicity has also been observed for transmons, which are a type
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of charge qubits with large capacitive shunting pads, but large anharmonicity is beneficial
for performing more accurate selective qubit control and obtain faster qubit gates.

1.3 Outline of thesis

There are two projects presented in this thesis. Chapter 2 to 4 describes the main project
on fast switchable ultrastrong coupling between superconducting flux qubits and electro-
magnetic continuum.

In Chapter 2, basic superconducting circuit elements are introduced. The circuit models
and quantization processes of Josephson junctions as key components of superconducting
qubits, and two types of flux qubits—the RF-SQUIDs and persistent current qubits are
presented. Next, open transmission lines which are modeled as continuum baths, are
introduced.

Chapter 3 introduces theories and circuit models on the strong coupling between qubits
and electromagnetic continuum. First, the spin-boson model, including the Hamiltonian,
decoherence model and adiabatic renormalization of qubits are introduced. Then, we intro-
duce a system consisting of a superconducting flux qubit coupled to an open transmission
line, whose coupling strength can reach the USC regime. We apply the decoherence model
of the spin-boson model to this circuit, and then estimate the qubit decoherence rates.

In Chapter 4, the main results of this work are presented. First, we propose three
experiments on measuring the qubit relaxation, dephasing and adiabatic renormalization
in controllable ways. The detailed experiment steps and pulse sequences are given. Then,
we present the circuit design and model of our device. We demonstrate the proposed
experiments can be implemented on the device based on the simulations of qubit frequencies
and coupling strengths. At last, we present the design and model of qubit control and
readout circuits.

In Chapter 5, the second project on capacitively shunted flux qubit is presented. We first
introduce the circuit design and model of the flux qubit with three shunting pads. Then,
the fabrication steps of the device is introduced. Afterwards, we present the experiment
results on qubit spectroscopy and qubit coherence. Finally, we discuss the experiments
and analysis on multilevel systems, including qutrit tomography and multilevel relaxation.
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Chapter 2

Introduction to superconducting
circuits

In this chapter, several basic elements of the superconducting circuits are introduced. In
Section 2.1, we discuss the Josephson junction, which is a key component of supercon-
ducting qubits. In Section 2.2, we present two types of superconducting flux qubits—the
radio-frequency superconducting quantum interference device (RF-SQUID) and the per-
sistent current qubit (PCQ). The quantization process and their quantum properties are
presented. In Section 2.3, we analyze the open transmission line semi-classically and then
treat it quantum mechanically.

2.1 Josephson junction

In superconductors, electrons form Cooper pairs and travel without any dissipation of en-
ergy, so superconductors do not have resistance. In 1962, Brian David Josephson predicted
that Cooper pairs could tunnel through a junction, which consisting of two superconductors
coupled by a weak link, in a dissipationless way [20]. The weak link can be an insulat-
ing layer, a piece of normal metal or the same superconductor with smaller sizes. This
phenomenon was first proved by Philip Warren Anderson and J. M. Rowell [21]. Such
junctions were therefore named after Brian David Josephson, namely Josephson junctions.

Figure 2.1 shows the structure of a type of Josephson junction and its circuit model.
Cooper pairs in the superconductor can be described by a macroscopic wave function
ψ = |ψ|eiϕ according to the BCS theory [22], with ϕ the superconducting phase and
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Figure 2.1: a) Diagram of the structure of a Josephson junction, consisting of two super-
conductors and an insulator in between. I is the current flowing through the junction. b)
Circuit model of a Josephson junction. The junction is represented by the cross and the
capacitance of the junction is represented by the shunting capacitor. γ is the phase across
the junction.

|ψ| is related to the population of electrons that form cooper pairs. In the Josephson
junction, the phase difference between two superconductors contributes to the junction
phase γ = ϕ1 − ϕ2. Part of the electrons in the superconductor form cooper pairs and
tunnel through the junction, form the tunneling current IJ . Another part of the electrons
accumulate at the capacitor due to the voltage drop across the junction, and the number
of the accumulated electrons varies with the voltage, which forms the current in the branch
of capacitor Icap. The tunneling current IJ is related to the junction phase by the first
Josephson relation

IJ = Ic sin γ. (2.1)

Ic is the critical current, which is defined as the maximum current allowed flowing through
the junction without breaking the superconductivity. The voltage across the junction is
explained by the second Josephson relation as

V =
Φ0

2π

dγ

dt
, (2.2)

where Φ0 = h
2e

is the flux quantum. The capacitor current is related to the voltage by

Icap = CV̇ = ϕ0Cγ̈. (2.3)

It is found that the Josephson junction can be treated like a non-linear inductor with the
Josephson inductance

LJ =
V

İ
=

Φ0

2πIc cos γ
, (2.4)

where Eq 2.1 and 2.2 are used.
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Next, we are going to show the quantization process of a Josephson junction. The
electric energy of the junction is stored in the capacitor as

T =
1

2
Cϕ2

0γ̇
2, (2.5)

where C is the shunting capacitance and ϕ0 = Φ0

2π
is the reduced flux quantum. The

potential energy is written as
U = −ϕ0Ic cos γ, (2.6)

so the Lagrangian of the system is

L = T − U =
1

2
Cϕ2

0γ̇
2 + ϕ0Ic cos γ. (2.7)

The Euler Lagrange equation d
dt
∂L
∂γ̇

= ∂L
∂γ

is confirmed to hold, which justifies the La-
grangian. The conjugate momentum of γ is

p =
∂L
∂γ̇

= Cϕ2
0γ̇. (2.8)

Then, following the Legendre transformation H = γ̇p− L, the Hamiltonian is found as

H =
p2

2Cϕ2
0

− ϕ0Ic cos γ. (2.9)

To describe the system quantum mechanically, we need to replace the classical conjugate
variables p and γ with quantum operators p̂ and γ̂. The commutation relation between
these two operators is

[γ̂, p̂] = i~. (2.10)

The Hamiltonian becomes

Ĥ =
Ec
h2
p̂2 − EJ cos γ̂, (2.11)

where Ec = (2e)2

2c
and EJ = ϕ0Ic are known as the charging energy and Josephson energy.

We can find that the Hamiltonian of the Josephson junction is in a similar form to that of
a quantum harmonic oscillator, which is

Ĥ =
p̂2

2m
+

1

2
kx̂2. (2.12)

However, the potential energy of the Josephson junction is in a cosine form instead of a
parabola, because it is contributed by the non-linear Josephson inductance. As a result,
unlike the quantum harmonic oscillator, the energy levels of the Josephson junction are
anharmonic, which means the differences between adjacent energy levels are not the same.
This makes the Josephson junction a key element in superconducting quantum devices.
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2.2 Superconducting flux qubit

Superconducting qubits are based on Josephson junctions. Typical superconducting qubits
includes phase qubits [23], charge qubits [24], flux qubits [25] and transmons [26]. They
have distinct circuit structures and origins, and they work in different regimes, which are
distinguished by the ratio EJ/EC . The ratio is a factor affecting the qubit decoherence
since it determines the qubit sensitivity to the fluctuations of charges or fluxes. In this
thesis, we focus on the flux qubit since it is used in the main project discussed in Chapter
4. The flux qubit is featured with a loop, thus the magnetic flux in the loop is critical for
the qubit. In this section, we will discuss about two types of flux qubits, the RF-SQUID
and the persistent current qubit, in detail.

Figure 2.2: a) The circuit model of a RF-SQUID. L is the self inductance of the loop, I is
the circulating current, C is the junction capacitance and f = Φ/Φ0 is the external flux in
unit of Φ0; b) Diagram of the potential energy versus the junction phase of a RF-SQUID.

2.2.1 RF-SQUID

The flux qubit has a simple structure, consisting of a superconducting loop interrupted by
one or more Josephson junctions. One initial flux qubit is called the RF-SQUID, which
only contains one junction, but have a large-size superconducting loop. The circuit model
of a RF-SQUID is shown in Fig 2.2a. The phase relation in the circuit is

γ +
LI

ϕ0

= −2πf, (2.13)
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where L = Lg + Lk, with Lg the self-inductance of the loop and Lk the kinetic inductance
resulted by the energy of motion of cooper pairs, and the I is the circulating current given
by

I = Ic sin γ + ϕ0Cγ̈ (2.14)

The electric and potential energies of the circuit are

T =
1

2
ϕ2

0Cγ̇
2

U = −ϕ0Ic cos γ +
ϕ2

0

2L
(γ + 2πf)2 .

(2.15)

Following the same quantization procedure for the Josephson junction, the Hamiltonian of
the RF-SQUID is found as

H =
p2

2ϕ2
0C
− ϕ0Ic cos γ +

ϕ2
0

2L
(γ + 2πf)2 , (2.16)

where p is the conjugate momentum of the junction phase γ. The potential energy is
composed of a cosine like Josephson term and a parabola like inductive term, so the shape
of the potential diagram depends on the screening factor β = LIc/ϕ0. When β is large,
the Josephson term contributes substantially, and there are many local minimums in the
potential. When the imposed flux in the SQUID equals to a half plus an integer f = 1

2
+n,

there exist two potential minimums, which form a double well potential, as shown in Fig
2.2b. Due to the tunneling between the wells, the eigenstates of the Hamiltonian are
superpositions of the degenerate states in two wells. The energy levels of the eigenstates
are anharmonic, so the transitions between various energy levels can be controlled by the
frequency selection. Through a two-level approximation, the RF-SQUID is considered as
a qubit constituted by the two lowest eigenstates.

Since the screening factor β = LIc/ϕ0 need be large to have deep potential minima, the
superconducting loop should have a very large size, such that the self inductance L is big
enough. However, the large-size loop makes the qubit very sensitive to flux fluctuations and
make qubit coherence worse. The persistent current qubit, which is going to be introduced
in the next subsection, was proposed to solve this problem [25].

2.2.2 Persistent current qubit

A persistent current qubit contains at least three Josephson junctions. Fig 2.3 shows the
circuit model of a qubit with three junctions, where junction 1 and 3 are of the same

9



Figure 2.3: The circuit model of a persistent current qubit containing three Josephson
junctions in a loop. γi is the junction phase and f represents the external flux in the loop.

Figure 2.4: Contour plots of the potential energy of a persistent current qubit versus two
phases γ1 and γ3 when the external flux a) f = 0.48, b) f = 0.5 and c) f = 0.52. The
potential energy is in unit of EJ .

size and junction 2 have a smaller size. The size ratio of junction 2 to junction 1 is α.
Comparing to the rf-SQUID, the qubit loop of the persistent current qubit is much smaller,
since the large Josephson inductances of junction 2 and 3 contribute to the loop inductance.
Neglecting the loop self inductance, the phase relation is

γ1 + γ2 − γ3 = −2πf. (2.17)

γ1 and γ3 are chosen as the degrees of freedom. Following a similar quantization process
as the RF-SQUID, the Hamiltonian of the qubit is found to be

H =
~2

2
Ecp

TC−1p+ U, (2.18)
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Figure 2.5: The lowest four energy levels of a persistent current qubit with EJ/Ec = 13.4
versus the external flux.

where p represents the conjugate momenta of the junction phases

p =

(
p1
p3

)
, (2.19)

and C is a matrix of ratios of junction sizes

C =

(
1 + α α
α 1 + α

)
. (2.20)

The potential energy of the circuit is the sum of the magnetic energies of all junctions

U = −EJ (cos γ1 + α cos (2πf + γ1 − γ3) + cos γ3) . (2.21)

Fig 2.4 shows the plot of the potential energy over two phases γ1 and γ3. There are
two potential wells near the center of each plot. The states in two wells have different
macroscopic properties corresponding to the currents in the qubit loop flowing in the
clockwise and counterclockwise directions, so these two states are call the persistent current
states. The current is persistent as the circuit is superconducting. These states are also
called the flux states because the persistent currents flowing in opposite directions generate
fluxes with opposite signs. When the external flux f approaches 0.5, the double well
potential becomes symmetric and the barrier between two wells decreases, which allows
the quantum tunneling, so the eigenstates of the qubit are superposition states of the two
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flux states. When f is away from the symmetry point, the barrier increases and finally one
of the potential well vanishes, so the qubit eigenstate is one of two flux states.

The qubit Hamiltonian in the basis of the flux states is

H = −~∆

2
σx −

~ε
2
σz, (2.22)

where σx and σz are Pauli operators, and ~∆ is the minimum qubit gap. ~ε is the energy
difference between two potential wells, which is related to the persistent current Ip and the
external flux by

~ε = 2IpΦ0

(
f − 1

2

)
. (2.23)

Figure 2.5 plots the lowest several energy levels of a persistent current qubit. The energy
structure shows very large anharmonicity, which makes it possible to approximate the flux
qubit as a two-level system consisting of the lowest two energy eigenstates. The point,
where the transition energy between the two energy levels reaches the minimum, is defined
as the symmetry point. For a single-loop persistent current qubit, the symmetry point is
at f = 0.5. The Hamiltonian in the energy eigenbasis is

H = −1

2
~Ωσz, (2.24)

where Ω is the qubit frequency given by

Ω =
√
ε2 + ∆2. (2.25)

The energy eigenstates are

|0〉 = cos
θ

2
|l〉+ sin

θ

2
|r〉 (2.26)

|1〉 = cos
θ

2
|l〉 − sin

θ

2
|r〉, (2.27)

where |l〉 and |r〉 are the flux states in the left and right potential well.

2.3 Open transmission lines

A transmission line is waveguide for electromagnetic waves with high frequencies, such as
microwaves. Typical types of transmission lines includes coaxial cables, planar lines, etc.
Since many superconducting circuits are constructed on a wafer and hence they are two
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dimensional circuits, the coplanar waveguide (CPW), as a type of planar lines, is widely
used in superconducting devices. The structure of a CPW is shown in Fig 2.6. Microwaves
move forward along the center line and return through the ground planes. Since the CPW
has comparable lengths to the wavelengths of microwaves, it is modeled as distributed
element, where the capacitance between the center line and ground planes, as well as the
self inductance of center line are uniformly distributed. Figure 2.7 shows the distributed
element model of the CPW, which is a chain of LC oscillators. Each element takes the
length of ∆x, so the inductance and capacitance per element is l0∆x and c0∆x, with l0
and c0 the inductance and capacitance per unit length. Applying the Kirchhoff’s laws to
the nodes of an element, we obtain the voltage-current relations

V (x+ dx, t) = V (x, t)− dI(x, t)

dt
l0dx, (2.28)

I(x+ dx, t) = I(x, t)− dV (x, t)

dt
c0dx, (2.29)

Taking the limit ∆x→ 0, we arrive at the telegraph equations of the transmission line

∂V (x, t)

∂x
= −l0

∂I(x, t)

∂t
(2.30)

∂I(x, t)

∂x
= −c0

∂V (x, t)

∂t
(2.31)

The voltages in the transmission line contains the right-moving and left-moving components
such that

V (x, t) = V →(x, t) + V ←(x, t), (2.32)

I(x, t) =
1

Z
V →(x, t)− V ←(x, t), (2.33)

where Z =
√
l0/c0 is the characteristic impedance. Applying them to the telegraph equa-

tions, we have

v
∂V →(x, t)

∂x
= −∂V

→(x, t)

∂t
, (2.34)

v
∂V ←(x, t)

∂x
=
∂V ←(x, t)

∂t
, (2.35)

with v = 1√
l0c0

the phase velocity of the wave.
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Figure 2.6: The diagram of the cross section of a coplanar waveguide. The CPW is on top
of a dielectric substrate and it consists of a center conductor and two ground planes at two
sides.

Figure 2.7: The distributed model of an open transmission, which is modeled as a infinite
long chain of LC oscillators. l0 and c0 are the inductance and capacitance per unit length.
∆x is the length of each element. I is the current in the open transmission line, and V +

and V− represent the right-moving and left-moving voltage respectively.

2.3.1 Quantization

In this section, we are going to show the quantization process of an infinite long trans-
mission line, which is also called the open transmission line. The system energy contains
the charging energies stored in the capacitors and the magnetic energies stored in the
inductances. The Lagrangian of an open transmission line is written as

L(x, t) =

∫ ∞
0

dx

(
c0

2
V 2(x, t) +

l0
2
I2(x, t)

)
. (2.36)

To express the Lagrangian in terms of the conjugate variables, the flux node variable is
introduced and it is defined as the flux generated at position x

Φ(x, t) =

∫ t

−∞
V (x, t′)dt′. (2.37)
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The voltage is written as the derivative of the flux node variable

V (x, t) =
∂Φ(x, t)

∂t
. (2.38)

Substituting this equation into Eq 2.30, we have the expression of the current

I(x, t) = − 1

l0

∂Φ(x, t)

∂x
. (2.39)

Then the Lagrangian in terms of the flux node variable is found as

L(x, t) =

∫ ∞
0

dx

(
c0

2
(∂tΦ(x, t))2 − 1

2l0
(∂xΦ(x, t))2

)
. (2.40)

The canonical conjugate momentum of Φ(x, t) is the charge density

q(x, t) =
∂L
∂Φ̇

= c0Φ̇(x, t). (2.41)

Following the Legendre transformation, the Hamiltonian is found as

H =

∫ ∞
0

dx

(
1

2c0

q2(x, t) +
1

2l0
(∂xΦ(x, t))2

)
. (2.42)

The Lagragian is justified by the Euler-Lagrange equation d
dt
∂L
∂Φ̇

= ∂L
∂Φ

, which gives

c0Φ̈(x, t)− 1

l0

∂2Φ(x, t)

∂t2
= 0, (2.43)

we can find that the general solution of the flux node variable is in the form of plane waves.
Assuming the transmission line has a finite length L and imposing the periodic boundary
condition on it, the flux field equals to the sum of k plane waves with different modes,

Φ(x, t) =
1

N

∑
k

(
cke

i(kx−ωkt) + c∗ke
−i(kx−ωkt)

)
. (2.44)

The wavevector k = 2πm/L gives the wavelength λk = L/m and m is any integer. N is
a normalization parameter, which will be determined later. ck and c∗k are amplitudes, and
ωk = kv = k/

√
c0l0 is the angular frequency of mode k. For the open transmission line,

there are infinite number of modes. Substituting Eq 2.44 into Eq 2.42, the Hamiltonian
becomes

H =
L

N2
c0

∑
k

2ω2
k|ck|2. (2.45)
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Taking the normalization parameter N =
√
Lc0,

H = 2
∑
k

ω2
k|ck|2. (2.46)

Defining the amplitude of mode k as Ak(t) = Ak(0)e−iωkt and Ak(0) =
√

2ωkck, the Hamil-
tonian in terms of these variables is

H =
1

2

∑
k

(Ak(t)A
∗
k(t) + A∗k(t)Ak(t)) . (2.47)

The flux field turns into

Φ(x, t) =
1√

2Lc0

∑
k

1

ωk

(
Ak(0)ei(kx−ωkt) + A∗k(0)e−i(kx−ωkt)

)
. (2.48)

Using Eq 2.41, the expression of the charge density is

q(x, t) = i

√
c0

2L

∑
k

(
Ak(0)ei(kx−ωkt) − A∗k(0)e−i(kx−ωkt

)
. (2.49)

In experiments, the voltage can be easily controlled and measured, so it is interesting
to write down its expression. Using Eq 2.38, we have

V (x, t) = i
1√

2Lc0

∑
k

(
Ak(0)ei(kx−ωkt) − A∗k(0)e−i(kx−ωkt

)
(2.50)

Analogical to the position and momentum variables of a quantum harmonic oscillator,
the flux and charge variables, Φ(x, t) and q(x, t), are promoted to quantum operators, and
they follow the commutation relation[

Φ̂(x, t), q̂(x′, t)
]

= i~δ(x− x′). (2.51)

Then, we can see that the amplitude of each mode k follows[
Âk, Â

†
k′

]
= ~ωkδkk′ , (2.52)

and it is related to the bosonic creation and annihilation operators as

Âk =
√
~ωkâk. (2.53)
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We obtain the quantized Hamiltonian

Ĥ =
∑
k

~ωk(â†kâk +
1

2
), (2.54)

so each mode k corresponds to a zero energy term 1
2
~ωk along with a harmonic oscillator,

where
â†k|nk〉 =

√
nk + 1|nk + 1〉

âk|nk〉 =
√
nk|nk − 1〉.

(2.55)

|nk〉 represents the photon number state with nk photons stored in mode k. The voltage
and flux operators expressed in terms of the creation and annihilation operators are

V̂ (x, t) =
i√

2Lc0

∑
k

√
~ωk

[
âke

i(kx−ωkt) − â†ke
−i(kx−ωkt)

]
, (2.56)

Φ̂(x, t) =
1√
L

∑
k

√
~

2c0ωk

(
âke

i(kx−ωkt) + â†ke
−i(kx−ωkt)

)
. (2.57)
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Chapter 3

Strong coupling in superconducting
circuits

In this chapter, we discuss how two-level systems interact with quantized electromag-
netic fields, focusing on superconducting circuits. We first introduce a general model for
light-matter interaction called the spin-boson model in Section 3.1. We then discuss the
classification of the coupling regimes in Section 3.1.1, the rotating wave approximation
in Section 3.1.2, decoherence in Section 3.1.3 and the adiabatic renormalization of the
tunneling frequency in Section 3.1.4. In Section 3.2, we follow the quantization process
introduced in the Appendix of [15] to quantize a flux qubit that is coupled to an open
transmission line, and analyze the qubit decoherence.

3.1 Spin-boson model

The spin-boson model [12] is important in many branches of physics and chemistry. It has
been extensively used in the field of the light-matter interaction. Generally, it describes
the interaction between spins and bosonic baths, where spins denote two-level systems
such as qubits, and the bosonic bath refers to an environment with bosonic particles, such
as photons. In spin-boson model, the bath is described as a combination of harmonic
oscillators, generating discrete or continuous modes depending on the number of harmonic
oscillators. In superconducting circuits, the spin-boson model is widely applied to model
the dynamics of superconducting qubits coupled to transmission line resonators, open
transmission lines or other baths.
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The typical spin-boson Hamiltonian of a qubit coupled to a bath of harmonic oscillators
is written as

ĤSB = Ĥ0 + Ĥint =
~∆

2
σ̂z +

∑
k

ωkâ
†
kâk + (sin θσ̂x + cos θσ̂z)

∑
k

gk(â
†
k + âk), (3.1)

where Ĥ0 is the sum of the first two terms on the RHS, which are the Hamiltonian of the
qubit and the bath, and Ĥint is the third term representing the interaction Hamiltonian.
∆ is the qubit frequency, σ̂x and σ̂z are Pauli operators, ωk, âk and â†k are mode frequency,
annihilation and creation operators for the harmonic oscillator in mode k. The interaction
is via σx and σz coupling, which corresponds to qubit relaxation and dephasing respectively.
θ is determined by the qubit bias, and it controls the components of two types of coupling
in the way that when the qubit is at the symmetry point, sin θ = 1, so σz couling vanishes
and there is only σx coupling. As the qubit moves away from the symmetry point, σx
coupling decreases, while σz coupling increases. gk is a describing the interaction strength
between the qubit and mode k.

The interaction between the qubit and the bath is characterized by the spectral density
function

J(ω) =
2π

~2

∑
k

g2
kδ(ω − ωk), (3.2)

which relates the mode coupling strength to the mode frequency. Ohmic environment is
commonly encountered in experiments. In this case, the spectral density is given by

J(ω) =
2π

~2

∑
k

g2
kδ(ω − ωk) = πωαSB. (3.3)

αSB is a dimensionless constant that determines coupling strength and the quantum phase
of the spin-boson model [12, 27]. For αSB < 1/2, the system is in the Markovian regime,
where the dynamics is coherent. When α is larger than 1

2
, the quantum phase changes

and the system dynamics becomes incoherent. For 1/2 < αSB < 1, the model is in the
overdamped regime, and when αSB > 1, the tunneling between two states of the two-level
system is completely suppressed and the model enters into the localized regime.

3.1.1 Coupling strength

The coupling between a two-level system and the bath reaches the strong coupling regime
when the interaction strength is stronger than qubit and photon loss. In this regime,
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the rotating wave approximation (RWA) is frequently applied to describe the dynamics of
a qubit coupled to a single mode harmonic oscillator. This approximation is discussed in
detail in Section 3.1.2. As the coupling strength increase, diferent coupling regimes is char-
acterized by the ratio Γ/∆, where Γ and ∆ are the relaxation rate and tunneling frequency
of the two-level system. In the strong coupling regime, the qubit decay rate is much smaller
than the qubit transition frequency Γ/∆ � 1. When the relaxation rates increases and
becomes comparable to the tunneling frequency or Γ/∆ & 0.1, it reaches the ultrastrong
coupling (USC) regime. The rotating wave approximation breaks, but the Born-Markovian
approximation still holds, and is used to analyze the qubit dynamics, which will be dis-
cussed in Section 3.1.3. When Γ approaches or exceeds the tunneling frequency Γ/∆ ∼ 1,
the perturbative treatments breaks and it enters into the non-perturbative USC regime,
where Born-Markov approximation breaks. Three methods, quasi-adiabadic propagator
path integral[14], the matrix product states [15] and dynamical polaron ansatz [16], are
proposed to analyze the dynamics in both USC and non-perturbaive USC regime without
any perturbation approximation. The last one has been verified by the experiment results
in [1].

3.1.2 Rotating wave approximation

We consider a model where a qubit is at the symmetry point and is coupled to a single
harmonic oscillator. The interaction Hamiltonian in qubit energy basis may be written as

Ĥint = gσ̂x(â
†
k + âk) = g(σ̂+ + σ̂−)(â†k + âk), (3.4)

where σ̂x = σ̂+ + σ̂−, and σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are ladder operators of the qubit.
To analyze the qubit dynamics, we write the interaction Hamiltonian in the interaction
picture

Hint(t) = U(t)HintU(t)†, (3.5)

where U(t) is a unitary transform operator and it is given as

U(t) = eiH0t

= ei(
~∆
2
σz+~ωa†a)t,

(3.6)

Substituting it to the interaction Hamiltonian, we have

Hint(t) = g(σ+e
i∆t + σ−e

−i∆t)(a†eiωt + ae−iωt)

= g(ei(ω+∆)tσ+a
† + e−i(ω−∆)tσ+a+ ei(ω−∆)tσ−a

† + e−i(ω+∆)tσ+a).
(3.7)
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When the detuning between the qubit and the mode frequency is very small |∆− ω| → 0,
the terms ei(ω+∆)tσ+a

† and e−i(ω+∆)tσ+a will oscillate at very fast rates compared to the
other two terms due to |ω − ∆| � ω + ∆. Then, for any interaction that is slower than
|ω − ∆|, the two fast oscillating terms can be eliminated since they will be averaged out
in a short time. However, as the interaction strength increases and becomes comparable
to the qubit frequency or the mode frequency, the two fast oscillating terms will not be
averaged out quickly, so RWA is applicable in the strong coupling regime, but it breaks in
the ultrastrong coupling regime.

Applying the RWA to a single-qubit and single-mode system, the system Hamiltonian
becomes the famous Jaynes-Cummings Hamiltonian [3],

HJC =
~∆

2
σz + ~ωa†kak + g(σ+a+ σ−a

†), (3.8)

which describes a coherence interaction with the qubit and photon excitations conserved.
Two simple interaction processes are that the qubit relaxes from the excited state to the
ground state by emitting a photon into the resonator, and the qubit absorbs a photon from
the resonator to be excited from the ground state to the excited state.

3.1.3 Decoherence

The decoherence of a system arises from the interaction with the environment. There
are two types of decoherence, namely the energy relaxation and the pure dephasing. The
energy relaxation is a process where the system releases energy into the environment and
decays into its equilibrium state. The pure dephasing does not involve any energy exchange,
while it is a process where the phases of a quantum superposition state are affected by
the environmental noise, causing the loss of the quantum information. In this section, we
present the derivation of the Born-Markov master equation [27], from which the expression
of the relaxation rate and the pure dephasing rate is calculated.

We start with a model with the Hamiltonian as

H = Hsys +Hb +Hint, (3.9)

which is composed of the system Hamiltonian Hsys = ~
∑

i ωi|i〉〈i|, the bath Hamiltonian
Hb and the interaction Hamiltonian Hint. We write the density matrix of the model ρ0 in
the interaction picture

ρ(t) = U(t)ρ0U
†(t), (3.10)
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where U(t) = ei(Hsys+Hb)t is a unitary transformation and bring the system into the rotating
frame. The time-evolution of the density matrix in the interaction picture is calculated
with the Liouville von Neumann equation,

ρ̇ = − i
~

[Hint, ρ(t)] . (3.11)

Hint is the interaction Hamiltonian in the interaction picture and is given by

Hint = U(t)HS
intU

†(t)

= A(t)f(t),
(3.12)

with HS
int denoting its expression in the Schrödinger picture, A(t) the system operator, and

X(t) the bath operator. We formally integrate Eq 3.11 and obtain

ρ(t) = ρ(0)− i
∫ t

0

dτ [Hint(τ), ρ(τ)] . (3.13)

Then, it is inserted back into Eq 3.11 yielding

ρ̇(t) = −i[Hint, ρ(0)]− 1

~2

∫ t

0

dτ [Hint(t), [Hint(τ), ρ(τ)]] . (3.14)

Assuming that at t = 0, there is no correlation between the system and the bath, so
ρ(0) = ρsys(0) ⊗ ρb(0). Then we trace over the bath degrees of freedom of the above
equation and obtain the derivative of the density matrix that is only in the system degrees
of freedom

ρ̇sys(t) = − 1

~2

∫ t

0

dτTrb{[Hint(t), [Hint(τ), ρ(τ)]]} (3.15)

We apply the Born approximation, which assumes the interaction is weak so that the bath
eigenstates are not altered significantly and they are assumed to remain at their initial
states through the whole interaction process. The density matrix is thus can be written
as the tensor product of the system and the bath density matrix ρ(t) = ρsys(t)⊗ ρb(0) for
any time t. Plugging it into Eq 3.15, we have

ρ̇sys(t) = − 1

~2

∫ t

0

dτTrb{[Hint(t), [Hint(τ), ρsys(τ)⊗ ρb(0)]]} (3.16)

We take another approximation, the Markov approximation, which assumes the excitations
of the bath caused by the system decay fast, wherein the time-correlations of the bath states
are lost fast, so the time-evolution of the density matrix depends only on its current state
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and we can replace ρsys(τ)→ ρsys(t). Expanding the commutators and apply the rotating
wave approximation, we arrive at the Born-Markov master equation

ρ̇(t) =
1

2~2

∑
jk

|Ajk|2S(ωjk) [2|k〉〈j|ρ(t)|j〉〈k| − ρ(t)|j〉〈j| − |j〉〈j|ρ(t)] , (3.17)

where ωjk = ωj − ωk, Ajk = 〈j|A|k〉 is the matrix element of the system operator, and
S(ωjk) is the spectral density of the environment, which is defined as the Fourier transform
of the time correlation of the environmental operator

S(ωjk) =

∫ ∞
−∞

dτeiωτ 〈f(τ)f(0)〉. (3.18)

Energy relaxation

We consider the case of the spin-boson model, then |j〉 or |k〉 in Eq 3.17 represents the
state 0 or 1. We consider the relaxation process, which corresponds to the σx coupling
term in the spin-boson Hamiltonian, so the two states are set that j 6= k and the master
equation becomes

ρ̇sys(t) =
Γ1→0

2
(2σ−ρsys(t)σ+ − σ+σ−ρsys(t)− ρsys(t)σ+σ−) +

Γ0→1

2
(2σ+ρsys(t)σ− − σ−σ+ρsys(t)− ρsys(t)σ−σ+) ,

(3.19)

where Γ1→0 and Γ0→1 are the decay rate and the excitation rate of the system respectively
and have the form

Γ1→0 =
1

~2
|A10|2S(ω10), (3.20)

Γ0→1 =
1

~2
|A10|2S(ω01). (3.21)

The sum of them is the relaxation rate Γ1 = Γ1→0 + Γ0→1. In the spin-boson model, the
interaction Hamiltonian in the interaction picture is

Hint = U(t)Hint,SU
†(t)

= sin θ
(
σ+e

i∆t + σ−e
−i∆t)∑

k

gk

(
a†ke

iωkt + ake
−iωkt

)
= A(t)f(t),

(3.22)
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so the relaxation rate is calculated to be [1]

Γ1 =
1

~2
sin2 θ

∫ ∞
−∞

dτe−i∆τ 〈|f(τ), f(0)|+〉, (3.23)

where 〈|f(τ), f(0)|+〉 denotes the symmetrized bath correlation function and is given by

〈|f(τ), f(0)|+〉 = Trb{[(f(τ)f(0) + f(0)f(τ))ρb(0)]}

=
∑
k

g2
k

[
(1 + nk)e

iωkτ + nke
−iωkτ

]
, (3.24)

with nk the average number of photons of mode k, and

nk =
1

e~ωk/kBT − 1
. (3.25)

For simplicity, we assume the temperature is at zero, so nk = 0. Plugging it into the
expression of the relaxation rate Γ1, we have

Γ1 =
1

~2
sin2 θ

∑
k

g2
k

∫ ∞
−∞

dτei(ωk−∆)τ . (3.26)

The equation contains the Fourier transform of the delta function

δ(ω) =
1

2π

∫ ∞
−∞

dτeiωt, (3.27)

so the relaxation rate

Γ1 =
2π

~2
sin2 θ

∑
k

g2
kδ(∆− ωk). (3.28)

Comparing this expression with the spectral density function Eq 3.2, we find the relation
between Γ1 and αSB

Γ1 = sin2 θJ(∆) = sin2 θπαSB∆. (3.29)

This equation is obtained with the Born-Markov approximation and the rotating-wave
approximation, which are valid when α → 0. However, it turns out that the estimated
results of Γ/∆ using Eq 3.29 is very close to the measured values up to α < 0.5 in [1], so
this equation is valid ultil α < 0.5 or Γ1/∆ ∼ 1.5. It is also found that when α > 0.5, this
equation provides a lower bound for estimation of Γ1/∆ compared to the exact solution
solved with the polaron method [16]. The error of the estimation increases with the coupling
strength.
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Pure dephasing

We consider a qubit affected by some noise, which results in the fluctuations of qubit
frequency, so in the rotating frame at z axis with the qubit frequency, the Hamiltonian
may be written as

H =
~ε(t)

2
σz, (3.30)

where ε(t) is a random small value with an average at 0. If we prepare a superposition
state a0|0〉 + a1|1〉, the phases of the state will change due to the noise and the state will
become a0e

−iφ(t)/2|0〉 + a1e
iφ(t)/2|1〉, where φ(t) =

∫ t
0
dt′ε(t′). If experiments are repeated,

the resulted states becomes uncertain since they depend on the random phases φ(t). Thus,
the information of the phases are lost and the decoherence happens to the system. Since
the average of φ(t) is zero, the system does not lose any energy, and this type of decoherence
is named as pure dephasing.

Due to the conservation of energy, transitions between qubit eigenstates are forbidden,
so Eq 3.17 represents the dephasing process when j = k, and we have

˙ρ(t) = ΓϕD[σz]ρ(t), (3.31)

where the superoperator D[σ]ρ(t) = σρ(t)σ†− 1
2
σ†σρ(t)− 1

2
ρ(t)σ†σ, and the dephasing rate

is

Γϕ =
1

2~2

(
|A11 − A00|2

)
S(0). (3.32)

3.1.4 Adiabatic renormalization

As introduced in Section 2.2.2, the flux-basis Hamiltonian of a flux qubit at the symmetry
point is

H = −~∆

2
σx

=
~∆

2
(|l〉〈r|+ |r〉〈l|),

(3.33)

where |l〉 and |r〉 are the flux states in the left and right wells. ∆ is the qubit frequency and
it is also the tunneling frequency between the symmetric potential wells when the qubit is
not interacted with the environment. In the spin-boson model, the qubit is coupled to k
harmonic oscillators and the spin-boson Hamiltonian in qubit flux basis is

H = −~∆

2
σx +

∑
k

~ωka†kak + σz
∑
k

gk(a
†
k + ak). (3.34)
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If considering the effect of the environment, the system states should be expressed as the
dressed states due to the correlation with the environment |Q〉

∏
k |nQ,k〉, which is composed

of the qubit state |Q〉 = |l〉 or |r〉 and the harmonic oscillator states for all modes. Each
harmonic oscillator has two ground states |0l,k〉 and |0r,k〉, which corresponds to two qubit
states and they are not orthogonal to each other. The transition frequency between the
two dressed ground states is

∆′ = 〈r|l〉
∏
k

〈0r,k|0l,k〉

= ∆
∏
k

〈0r,k|0l,k〉,
(3.35)

so the transition frequency is renormalized if there is correlation between the qubit and
the environment. The resulted transition frequency is renormalized by the Franck-Condon
factor [12, 28],

∆′ = ∆exp

(
−1

2

∑
k

g2
k

ω2
k

)
. (3.36)

Taking the continuum limit, the renormalized transition frequency becomes

∆′ = ∆exp

(
−1

2

∫ ∞
0

dω
J(ω)

ω2

)
. (3.37)

J(ω) is the spectral density function as in Eq 3.2. The integral is divergent at the low
frequency limit when J(ω) ∼ ωs with s ≤ 1. To reduce the effect of low-frequency modes,
the integral is modified as

∆r = ∆exp

(
−1

2
P
∫ ∞

0

dω
J(ω)

ω2 −∆2
r

)
, (3.38)

with P the Cauchy principal value of the integral. Since the coupling of qubit to the modes
with frequencies that are much higher than the qubit frequency is small, an exponential
cutoff is commonly taken for an Ohmic bath with the spectral density function [1]

J(ω) = ωe−ω/ωc . (3.39)

The renormalized transition frequency

∆r = ∆0(
∆0

ωc
)αSB/(1−αSB), (3.40)

is observed in the experiment.
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Figure 3.1: The lumped elements circuit model of a persistent current qubit galvanically
connected to an open transmission line. The PCQ contains four junctions. Junction 1
and 3 have the same size, the area ratios of junction 2 and β to junction 1 are α and β
respectively. The qubit shares the β junction with the transmission line. Φi is the flux
node variable at the ith node.

3.2 Circuit QED with flux qubits

In this section, we use a circuit quantization method, which was first introduced in [15],
to a circuit QED system and present how spin-boson model is applied to analyze the
system dynamics. The characteristic of quantization method is its versatility, since it can
be implemented on any system consisting of a superconducting artificial atom embedded
inside a transmission line. This is realized by analyzing the atom and the transmission
line separately. Here, we focus on a special case where a persistent current qubit with four
Josephson junctions is galvanically connected to an open transmission line. The lumped
elements circuit model is shown in Fig 3.1. The transmission line is modeled as an infinite
chain of LC oscillators. The system Hamiltonian consists of the qubit Hamiltonian and
the transmission line part

H =
N∑
i

q2
i

2∆xc0

+
∑
i 6=0

(Φi+1 − Φi)
2

2∆xl0
+

1

l0∆x
(Φ1 − Φb)

2 +
1

l0∆x
(Φa − Φ0)2 +Hqb, (3.41)

where qi is the charge on the ith LC oscillator, Φi is the flux node variable as introduced in
Section 2.3, (Φi+1−Φi) is the flux on the ith LC oscillator and Hqb is the qubit Hamiltonian.
We convert Φa and Φb to new variables

Φ± = Φb ± Φa, (3.42)
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since Φ± are qubit variables. By doing the conversion

(Φ1 − Φb)
2 + (Φa − Φ0)2 =

1

2

[
(Φ1 − Φb + Φa − Φ0)2 + (Φ1 − Φb − Φa + Φ0)2

]
, (3.43)

the Hamiltonian becomes

H =∆x
N∑
i

[
(qi/∆x)2

2c0

+
1

2l0

(
Φi+1 − Φi

∆x

)2
]

+
1

2l0∆x
[(Φ1 + Φ0)− Φ+]2

+
1

l0∆x
(Φ1 − Φ0)Φ− +

1

2l0∆x
Φ2
− +Hqb.

(3.44)

Taking the limit ∆x → 0, we have Φ1 + Φ0 = Φa + Φb, so the third term is eliminated.
Then we write the Hamiltonian in the integral form

H =

∫ ∞
−∞

[
q(x)2

2c0

+
∂xΦ(x)2

2l0
+ δ(x)

1

l0
∂xΦ(x)Φ−

]
dx+

1

2l0∆x
Φ2
− +Hqb, (3.45)

where qx = qi/∆x is the charge density and δ(x) is the Dirac delta. We can see that
the first two terms in the integral has the same form as Eq 2.42, so they represent the
Hamiltonian of an open transmission line. The third term is the product of the current in
the transmission line and the flux Φ− = ϕ0γβ that is generated by the β junction shared
between the qubit and the transmission line. ϕ0 = ~

2e
is the reduced flux quantum. The

current in the transmission line is expressed as the current at x = 0, where the qubit is
placed. Therefore the third term represents the interaction between the qubit and the
transmission line and the interaction Hamiltonian is written as

Hint = δ(x)
1

l0
∂xΦ(x)ϕ0γβ. (3.46)

The fourth term in the Eq 3.45 is considered as a shift of the qubit potential, which causes a
qubit renormalization. To estimate its magnitude, we simplify the expression by replacing
the inductance term with l0∆x = Z0/ω and replacing the flux operator Φ− = ϕ0γβ = ~

2e
γβ.

The renormalization term is of the order

Hrenorm ∼ ~ω
~

16Z0e2
γ2
β. (3.47)

Typical impedance Z0 is in the range of 30 to 100 Ω, and the phase γβ can be centered
around π/2, so the magnitude of the term is

Hrenorm ∼ ~ω(2.5− 3.2)(π/2)2. (3.48)
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The potential of the flux qubit is in the order of U ∼ EJ cos γ, with EJ/~ ∼ 250−800 GHz.
Assuming the frequency of transmission line is resonant with the qubit frequency, we have
ω ∼ 2π(1 − 10) GHz. Therefore, the renormalization term is negligible compared to the
qubit potential, so it is deleted from the Hamiltonian. Overall, the system Hamiltonian is
written as

H = HTL +Hqb +Hint

=

∫ ∞
−∞

[
q(x)2

2c0

+
∂xΦ(x)2

2l0

]
dx+Hqb + δ(x)

1

l0
∂xΦ(x)ϕ0γβ.

(3.49)

3.2.1 Relaxation rate

Next, we are going to estimate the coupling strength between the qubit and the trans-
mission line. The interaction Hamiltonian contains a flux field variable Φ(x), which is the
flux field in the transmission line. In Section 2.3, we have derived the expression of the
quantized flux field under the condition that the transmission line has finite length L and
the periodic boundary conditions are imposed. By substituting the solution Eq 2.57 into
Eq 3.46, the interaction Hamiltonian becomes

Hint =
1

l0
ϕ0γβ

∑
k

√
~

2c0ωkL
k
(
iake

i(kx−ωkt) − ia†ke
−i(kx−ωkt)

)
. (3.50)

Recall the spin-boson Hamiltonian describing the relaxation process (see Section 3.1),

ĤSB = Ĥ0 + Ĥint =
~∆

2
σ̂z +

∑
k

ωkâ
†
kâk + sin θσ̂x

∑
k

gk(â
†
k + âk). (3.51)

In the case of a flux qubit coupled to open transmission line, the qubit bias term is expressed
as

sin θ =
∆s

∆
, (3.52)

with ∆ the qubit transition frequency and ∆s the transition frequency at the symmetry
point. Comparing Eq 3.50 to the interaction Hamiltonian in Eq 3.51, the coupling strength
to mode k is found to be

gk =
1

l0
ϕ0|γβ10|

1√
L

√
~ωk

2c0c2
, (3.53)

where the dispersion relation k = ωk/c is applied, c = 1√
l0c0

is the speed of light in the

transmission line, γβ10 = 〈1|γβ|0〉 is the matrix element of the phase operator γβ.
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The spectral density is

J(ω) = 2π
∑
k

(|gk|/~)2δ(ω − ωk) = 2π
∑
k

ωk
2l20L~c0c2

ϕ2
0|γβ10|2δ(ω − ωk). (3.54)

Since the transmission line is an open transmission line, we convert the discrete modes to
the continuous modes and use the density of states L

2π

J(ω) = 2

∫ ∞
−∞

dωk
ωk

2~0l20c
3
ϕ2

0|γβ10|2δ(ω − ωk) =
ω

~Z0

ϕ2
0|γβ10|2, (3.55)

where Z0 =
√

l0
c0

is the characteristic impedance of the transmission line. With Eq 3.29,

we find
Γ1

∆
=

∆2
s

∆2

1

2π

RQ

Z0

|γβ10|2, (3.56)

with RQ = h
(2e)2 ≈ 6.5 kΩ the quantum resistance. This equation has the same validity as

Eq 3.29, so it is correct up to αSB < 0.5, and becomes a lower bound for α > 0.5. With
Z0 in the range of 30 to 100 Ω and the phase |γβ10| ∼ 1, we can easily achieve Γ1

∆
∼ 10,

which is in the non-perturbative USC regime. Considering this equation is a lower bond,
the actual achievable coupling strength is even stronger.

3.2.2 Dephasing rate

Since the qubit sits at x = 0, it separates the transmission line into two semi-infinite parts.
Recall Eq 2.32 and Eq 2.33, we find the voltage-current relation of the transmission line
at the position of the qubit to be

V (0, t) = V →(0, t) + V ←(0, t), (3.57)

I(0, t) =
1

Z
(V →(0, t)− V ←(0, t)). (3.58)

Rearranging the equations, we have

V →(0, t) = V ←(0, t) + ZI(0, t). (3.59)

We assume the system is in an equilibrium state and the qubit does not emit any signal
to the transmission line. If there is no left moving signal into the qubit V ← = 0, we have
V → = ZI(0, t), thus the right semi-infinite transmission line can be treated as an resistor
with resistance Z, and so is the left part of the transmission line.
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Figure 3.2: Circuit model of a qubit galvanically connected to an open transmission line.
The two semi-infinite transmission lines are modeled as two resistors, with resistance eu-
qaling to the characteristic impedance Z0. Vnl and Vnr represents the voltage noises in the
two transmission lines, and Ibn is the current noise. The qubit contains four junctions.
Junction 1 and 3 have the same size, the area ratios of junction 2 and β to junction 1 are
α and β respectively. The qubit shares the β junction with the transmission line. Φi is the
flux node variable at the ith node.

The simplified circuit model is shown in Fig 3.2. The quantum fluctuations of the bias
current along with thermal fluctuations lead to the decoherence of the qubit. Ibn is used
to denotes the noise of the current. It results in the fluctuations of the voltages across the
two resistors by

Ibn =
Vnl + Vnr

2Z0

. (3.60)

We write the interaction Hamiltonian Eq 3.46 in a simplified form and considering the
qubit bias

Hint = Ibϕ0γβ cos θ, (3.61)

with Ib ∼ δ 1
l0
∂xΦ(x) denoting the current in the transmission line, γβ the phase across the

shared β junction, and the qubit bias term cos θ =

√
∆2−∆2

s

∆
. We assign f = Ib the bath

operator, and A = cos θϕ0γβ the qubit operator. In Section 3.1.3, we have derived the
expression of the pure dephasing of the spin-boson model, which is applicable here. The
dephasing rate is given by Eq 3.32,

Γϕ =
1

2~2

(
|A11 − A00|2

)
Sf (0), (3.62)
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where the matrix elements of the qubit operator is

|A11 − A00| = cos θϕ0|〈0|γβ|0〉 − 〈1|γβ|1〉| = ϕ0|γβ00 − γβ11|. (3.63)

From Eq 3.18, we find the spectral density of the bath at zero frequency to be

Sf (0) =

∫ ∞
−∞

dτ〈f(τ)f(0)〉. (3.64)

It is related to the current and voltage noises by

Sf (0) = SIb(0) =
ϕ2

0

4Z2
0

[SVnl(0) + SV nr(0)], (3.65)

where Eq 3.60 is applied. The fluctuation-dissipation theorem [29] relates the voltage
fluctuations and the impedance as

SVn(ω) = ~ωRe[Zt(ω)]

[
coth

~ω
2kBT

+ 1

]
. (3.66)

With ω → 0, coth ~ω
2kBT

≈ 2kBT
~ω , we have

SV (0) = 2Re[Z(0)]kBT. (3.67)

Plugging it into Eq 3.65, we arrive at

Sf (0) =
ϕ2

0

Z0

kBT, (3.68)

and finally we obtain the pure dephasing rate

Γϕ =
∆2 −∆2

s

∆2

1

2
|γβ00 − γβ11|2

RQ

Z0

kBT

h
, (3.69)

where RQ = h
(2e)2 is the quantum resistance and ϕ0 = ~

2e
.
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Chapter 4

Fast switchable ultrastrong coupling
between superconducting artificial
atoms and electromagnetic fields

In this chapter, we propose three experiments to explore the spin boson model in the ultra-
strong coupling (USC) regime. A system consisting of a novel design of a superconducting
flux qubit with tunble coupling to an open transmission line, qubit control circuits, and
qubit state readout circuits is presented. The circuit model and the quantization process
of the system, as well as the simulations on system properties such as qubit frequencies,
estimated coupling strengths between the qubit and other circuit elements, are discussed.
The system is proved to be equipped with fast switchable coupling, with the coupling
strength reaching the USC regime, and it is shown to be a promising candidate to perform
the these experiments.

4.1 Experiment proposal

The goal of the three experiments is to study the interesting dynamics of a two-level system
coupled to a an electromagnetic continuum under the USC regime. The experimental
device consists of a flux qubit, which is considered as a two-level system, and it is coupled
to an open transmission line providing an eletromagnetic continuum. The flux qubit has
two loops, a main loop and a coupler loop, with fε = Φε/Φ0 and fβ = Φβ/Φ0 the normalized
magnetic fluxes threading in them respectively. The qubit flux bias and coupling strength
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to the open transmission line can be controlled by tuning the two fluxes independently.
The coupling strength can be adjusted from weak coupling to ultrastrong coupling. The
two fluxes are controlled by two flux bias lines, which are also used to drive the qubit.
Qubit states are measured in the flux basis with a coplanar waveguide resonator, which
is grounded via a DC-SQUID at one end and is capacitively coupled to a feed line on
the other end. The persistent currents in the qubit main loop corresponding to the two
flux states, are different. This difference can be detected by the DC-SQUID and further
reflected in the variation of resonant frequencies of the resonator. By sending a pulse
with a frequency close to the resonant frequency through the feed line and measuring the
transmission, qubit states can be distinguished. The first two experiments aim to measure
the qubit coherence including qubit relaxation and dephasing in the USC regime, and the
third experiment is designed to study the renormalization of the qubit frequency. Detailed
experiment procedures and pulse sequences are discussed in this section.

4.1.1 Relaxation measurement

Qubit relaxation is characterized by measuring the relaxation time T1, which is the time
it takes for qubit to relax from the first excited state to the ground state. When a qubit is
ultrastrongly coupled to an electromagnetic continuum, the relaxation rate becomes very
large and the ratio of it to the qubit energy gap reaches 0.1 or more, as introduced in
Section 3.1.1. In this regime, theories only give estimations on the relaxation rates, so
it is interesting to perform the relaxation measurement in a controllable manner, which
can be done with superconducting circuits. Besides, such large relaxation rates make T1

extremely small and T1 is in the range of nanoseconds as the qubit gap is about several
GHz. However, the time required for the measurement of qubit states normally takes
hundreds of nanoseconds or more, so it is a challenge to preform relaxation measurement
in ultrastrong coupling regime.

In this section, we present an experiment design for the relaxation measurement in
the ultrastrong coupling regime. Figure 4.1 shows the stages and the corresponding pulse
sequences for two fluxes fε and fβ, as well as the readout signal.

• Stage 1: The flux biases are set such that the qubit is at the symmetry point (char-
acterized by a symmetric double well potential). The ground state is prepared by
waiting for a time longer than the qubit relaxation time. This point should also be a
weak coupling point, where the relaxation rate is small. A π pulse is applied through
fε to excite the qubit to the excited state. Preparation of the excited state with high
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fidelity relies on the relaxation rate being small, which minimizes relaxation during
the pulse.

• Stage 2: The bias fluxes fβ and fε are changed to a new setting where the qubit
remains at the symmetry point, and the coupling strength is increased to a value
that can be controlled from the strong to the USC regime. The qubit Hamiltonian
changes when tuning fluxes, so this process should be done faster than the evolving
time of the qubit Hamiltonian to prevent the qubit state from evolving. Moreover,
it should be faster than the relaxation rate.

• Stage 3: The qubit is kept at the same point for a delay time td, during which the
qubit relaxes towards its ground state in the USC regime.

• Stage 4: The coupling is switched off very fast by moving the qubit to the initial
weak coupling point in stage 1. The relaxation rate is suddenly reduced drastically,
so the qubit state should be frozen.

• Stage 5: The qubit is adiabatically moved to an off-symmetry point for state readout
by tuning fε only. During this step, the qubit energy eigenstates become flux like
states. This process should be done slower than the evolving rate of qubit Hamilto-
nian, which is the qubit frequency, and it should be done faster than the relaxation
rate to keep the information of qubit energy eigenstates.

• Stage 6: Readout pulses are sent to the feed line that is coupled to the readout
resonator, and the qubit state is measured in the flux basis.

Stages 1-6 are repeated for variable duration of the delay time until the relaxation at the
USC regime is confirmed to finish during the delay time, to obtain the relaxation curve
and the relaxation time for each value of the coupling strength.

4.1.2 Dephasing measurement

Qubit dephasing in the USC regime is measured using a Ramsey experiment. Stages of the
experiment and pulse sequences are shown in Fig 4.2. Compared to the stages of relaxation
measurement, the processes of tuning coupling strengths and state measurements, as well
as the requirements on the coupling strengths in these two stages are similar. Actions in
each stage are as follows.
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Figure 4.1: Pulse sequences of the flux pulses fβ and fε, and the readout signal for the
relaxation measurement.

Figure 4.2: Pulse sequences of the flux pulses fβ and fε, and the readout signal for the
dephasing measurement.

• Stage 1: The qubit is prepared in the ground state in the energy basis by waiting
long enough at a symmetry point. The coupling to the transmission line is weak
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Figure 4.3: a) Pulse sequences of the flux pulses fβ and fε, and the readout signal for the
experiment on the tunneling of flux states. b) The diagram of the double well potential
when the qubit is away from the symmetry point and the qubit is in a flux state; c) The
double well potential becomes symmetric when the qubit is at the symmetry point and the
tunneling between two wells is enabled.

at this point, so the qubit is kept from relaxation. Then, a π/2 pulse is applied to
the qubit main loop through fε to create a superposition state of the ground and
the first excited state in the energy basis. To maintain the superposition state, both
relaxation and dephasing rate at this point should be much larger than the length of
the π/2 pulse.

• Stage 2: The fε and fβ are changed to increased the coupling strength into to the
USC regime, while the qubit remains at the symmetry point. This process should be
done very fast and non-adiabatically.
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• Stage 3: The qubit is kept at the same point to allow it to interact with the environ-
ment in the USC regime for a delay time td. Dephasing is expected to occur in this
process due to the interaction with the environment.

• Stage 4: The qubit is fast moved back to the weak coupling point in stage 1, so that
the electromagnetic field in the waveguide is no longer a source of dephasing.

• Stage 5: The second π/2 pulse is applied to the qubit main loop through fε.

• Stage 6: The qubit is adiabatically moved to an off-symmetry point by changing fε
only.

• Stage 7: Readout pulses are sent to the feed line, and the qubit state is measured in
the flux basis.

Then, stage 1 to 7 are repeated for variable duration of the delay time until the dephasing
at the USC regime is confirmed to finish during the delay time, to obtain the dephasing
curve and the dephasing time for each value of the coupling strength.

4.1.3 Tunneling of flux states in the USC regime

The qubit frequency ∆, which is equivalent to the tunneling frequency between two flux
states in the two potential wells, is renormalized due to strong correlations between qubit
and environment. The renormalization causes the qubit frequency to decrease with increas-
ing coupling strength, as introduced in Section 3.1.4. In this experiment, we are going to
measure the tunneling frequency of flux states in the USC regime. The pulse sequences
are shown in Fig 4.3a. The following is the detailed experimental protocol.

• Stage 1: The qubit is biased away from the symmetry point, where the bias between
two wells is large. After waiting long enough time, the qubit settles to an energy
eigenstate which is almost a flux state, which is localized in one potential well, as
shown in Fig 4.3b. At this off-symmetry point, the qubit is decoupled from the
transmission line.

• Stage 2: The qubit is fast and non-adiabatically brought to a point, which is a
symmetry point and at which the coupling strength is in the USC regime. This has
to be done faster than the evolving rate of the qubit Hamiltonian, and the qubit
relaxation rate.
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• Stage 3: The qubit is kept at the USC point for a delay time td. The potential
diagram at this point is shown in Fig 4.3c. The tunneling between two flux states is
enabled.

• Stage 4: The qubit is fast and non-adiabatically moved back to the off-symmetry
point in stage 1 to quickly stop the tunneling.

• Stage 5: The qubit state is measured in flux basis by sending readout pulses to the
readout feed line.

Stage 1 to 5 are repeated for variable duration of the delay time, to obtain the curve of
the population of the flux state and extract the tunneling frequency for each value of the
coupling strength.

4.2 Device design and modeling

This section introduces a superconducting device formed of an atom and a switchable
coupler, which can be used to implement the experiments discussed in the previous section.

4.2.1 The first version of qubit design

In this section, we discuss the design used in [1], where the non-perturbative ultrastroung
coupling is first demonstrated in superconducting circuits. The circuit model is shown
in Fig 4.4. The qubit main loop contains four Josephson junctions and it is galvanically
connected to an open transmission line. As shown in Eq 3.46 of Chapter 3, this type of
coupling is via ϕ0γ4Irms, where ϕ0γ4 represents the flux generated by the shared arm of the
qubit, and Irms represents quantum fluctuations of current in the transmission line. The
quantity ϕ0γ4 can be approximated as MIp, where M is the mutual inductance between the
qubit and the transmission line, and Ip is the persistent current of the qubit. The mutual
inductance is dominated by the Josephson inductance of the shared junction, which is of
the following form if the current flowing through the junction is much smaller than its
critical current,

LJ =
Φ0

2πIc
. (4.1)

It can reach as big as 1 nH, so it is much larger than the geometric mutual inductance or
the kinetic inductance of the shared piece of wire. Through the qualitative analysis, we
can see the large Josephson inductance makes the ultrastrong coupling possible [30].
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Figure 4.4: The circuit model of the first version of qubit design. The two-loops qubit
has 4 junctions in the main loop (ε loop) and two junctions in the second loop (β loop).
fε and fβ are fluxes in the corresponding loop. γi is the phase across junction i. The
qubit is connected to the transmission line by sharing junction 4. Ib is the current in the
transmission line.

To allow tunable coupling, Junction 4 is replaced with a SQUID. By tuning the flux in
the SQUID, the effective size of junction 4 varies from |r4 − r5| to r4 + r5, where r4 and
r5 represent the sizes of junction 4 and 5, so the Josephson inductance is in the range of

Φ0

2π(Ic4+Ic5)
to Φ0

2π|Ic4−Ic5| . The smallest coupling is obtained when LJ = Φ0

2π(Ic4+Ic5)
, but this

cannot effectively decouple the qubit. During the process of optimizing the qubit design, we
find that the junctions with extremely large critical currents are required to decouple the
qubit from the transmission line, which is required for the experiments proposed in Section
4.1. In one design, the critical current has to reach 11 µA, but the shadow evaporation
technique, as a typical fabrication method for Josephson junctions, fails to make junctions
with such large critical currents. The largest coupling can be achieved when the Josephson
inductance reaches its maximum value. At this point, since the critical currents are nearly
cancelled, the qubit gap decreases drastically, which makes it difficult to optimize the
qubit design. Therefore, we found a new design, which is going to be introduced in the
next subsection.

4.2.2 Two-qubit coupler model

In this section, we discuss a tunable coupler for two qubits, which is going to be adapted
to the coupler between qubit and transmission line. It is an effective method to use a third
element to achieve tunable coupling between two qubits [31, 32, 33]. Figure 4.5a shows
an example where two flux qubits are coupled via a rf-SQUID. The interaction can be
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Figure 4.5: a) Circuit model of two qubits coupled by a rf-SQUID, with I1 the current in
qubit 1, Ig the current in the coupler, and Φ2 the flux in qubit 2. M1 (M2) is the mutual
inductance between the coupler and the qubit 1 (qubit 2). b) Circuit model of a qubit
coupled to an open transmission line via an rf-SQUID, with Ib the current in the open
transmission line. c) Circuit model of a two-loop qubit galvanically connected to an open
transmission line. fβ and fε are fluxes in the two loops.

expressed as MI1I2, in which M is the effective mutual inductance between two qubits,
and I1 and I2 are persistent currents in the corresponding qubit. The two-qubit interaction
is mediated by the screening current of the coupler. The coupling arises in the following
way. Qubit 1 induces a flux I1M1 in the coupler, where M1 is the mutual inductance
bewteen them. The rf-SQUID is considered as a non-linear inductance Lsq = ∂Ig

∂Φext
, where

Ig is the ground state current, and Φext is the external flux in the SQUID. The induced
flux creates a sceening current I = I1M1/Lsq in the coupler, which further induces a flux
Φ2 = I1M1M2

Lsq
in qubit 2. Therefore, the effective mutual inductance M = M1M2

Lsq
. The rf-

SQUID is treated as a passive element, such that it does not generate entanglement with
qubits. Hence the energy gap of the rf-SQUID should be much larger than the qubit gaps
to keep it in the ground state.

To implement this model in our tunable coupling system, the second qubit is replaced
with an open transmission line, as illustrated in Fig 4.5b. Then, qubit 1 and the trans-
mission line are galvaniacally connected to the coupler and sharing junction 4 and 5 re-
spectively to enlarge the mutual inductance, as shown in Fig 4.5c. The coupler becomes
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a persistent current flux qubit with three Josephson juncitons, and it is named as the β
qubit. To show the tunability of the system, the qubit gap and the ground state current
of the β qubit are simulated. Th goal of the simulation is to find an optimized qubit with
a large qubit gap and a large maximum of ∂Ig

∂Φext
by tuning the sizes of the three junctions

and the critical current density that is shared by all junctions. For simplicity and as a
convention for a persistent current flux qubit, the sizes of junction 4 and 5 are set to be the
same. In the final design, the qubit gap is about 23 GHz, much larger than the gap of main
qubit that is in the range of 1 to 12 GHz. The ground state current versus the external
flux is shown in Fig 4.6, and we can see that the strongest coupling can be achieved at
fβ = 0.5 where ∂Ig

∂fβ
reaches its maximum, and the coupling can be switched off at around

fβ = 0.4 or 0.6, where ∂Ig
∂fβ

= 0.
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Figure 4.6: The ground state current Ig versus the external flux in the β qubit.

4.2.3 Qubit design and simulation

We need to complement the qualitative arguments from the previous section by complete
calculations. In this section, the qubit with two loops is treated as a whole and the
quantization of the tunable qubit and the simulations on qubit properties are discussed.
The flux quantization relation in the two loops are

γ1 + γ2 + γ3 + γ4 + 2πfε = 0, (4.2)

γ4 + γ5 + γ6 − 2πfβ = 0. (4.3)
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γi is the phase across junction i, and fε = Φε/Φ0 and fβ = Φβ/Φ0 represents the flux
in qubit loops. The kinetic energy of the circuits is composed of energies stored in each
junction capacitors. It can be written as

T =
ϕ2

0

2
γ̇TCγ̇, (4.4)

in which

γ̇ =


γ̇1

γ̇2

γ̇4

γ̇5

 , (4.5)

and the capacitance matrix C is

C =


C1 + C3 C3 C3 0
C3 C2 + C3 C3 0
C3 C3 C3 + C4 + C6 C6

0 0 C6 C5 + C6

 . (4.6)

The Ci is the capacitance of junction i. The potential energy of the circuit is stored in
each Josephson junctions.

U =− ϕ0[Ic1 cos γ1 + Ic2 cos γ2 + Ic3 cos(γ1 + γ2 + γ4 + 2πfε)

+ Ic4 cos γ4 + Ic5 cos γ5 + Ic6 cos(γ4 + γ5 − 2πfβ)].
(4.7)

The Ici in the above equation is the critical current of junction i. The Lagrangian of the
system L = T − U is found to satisfy the Euler-Lagrangian equation

d

dt
(
∂L
∂γ̇i

) =
∂L
∂γi

. (4.8)

The conjugate momentum pi is

pi = ∇γ̇iT = ϕ2
0Cγ̇i. (4.9)

Then, the Hamiltonian can be obtained from the Legendre transformation H =
∑
i

piγ̇i−L,

H =
1

2ϕ2
0

pTC−1p+ U, (4.10)
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with

p =


p1

p2

p4

p5

 . (4.11)

To diagonalize the Hamiltonian, it is represented in the charge basis |n〉. The momentum
vector p and the Josephson terms hence have these simple forms,

p =


p1

p2

p4

p5

 = ~


n1

n2

n4

n5

 , (4.12)

cos γ|n〉 =
eiγ + e−iγ

2
|n〉 =

|n+ 1〉+ |n− 1〉
2

. (4.13)

To restrict the Josephson term in a closed Hilbert subspace, each degree of freedom ni has
a restriction on its number of charges, which should be in the range of −ni,max to ni,max.
The Hamiltonian is then written in a matrix form by assigning

ni =


−ni,max

−ni,max + 1
. . .

ni,max − 1
ni,max

 . (4.14)

The Hamiltonian is diagonalized to obtain the qubit transition frequency E01, anharmonic-
ity E12/E01, and qubit eigenstates |0〉 and |1〉. The qubit relaxation rate to the open
transmission line Γ1 is estimated with Eq 3.56

Γ1

E01

=
∆2

E2
01

1

2π

RQ

Z0

|γβ10|2, (4.15)

with ∆ the transition frequency at the symmetry point, and γβ10 = 〈1|γβ|0〉. We assume
there is low frequency noise caused by current fluctuations in the transmission line (see
Section 3.2), and estimate the pure dephasing rate Γϕ with Eq 4.16

Γϕ =
E2

01 −∆2

E2
01

1

2
|γβ00 − γβ11|2

RQ

Z0

kBT

h
. (4.16)
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In the charge basis, the phase operator is written as [1]

〈n|γβ|m〉 =
1

2π

∫ π

−π
γβe

−i(m−n)γβdγβ =

{
0 if m = n,

−i (−1)(m−n)

m−n if m 6= n.
(4.17)

In simulations, the maximal charge numbers are set as n1,max = 5, n2,max = 5, n4,max =
7 and n5,max = 7. Under this setting, the qubit gap is confirmed to be convergent. The
parameter space for optimizing the qubit design consists of the sizes of 6 junctions and
a shared critical current density Jc. Such large parameter space makes the optimization
process complicated and time-consuming. To simplify the process, we first optimize the β
qubit to ensure its qubit gap and the maximum of ∂Ig

∂Φext
is large, as discussed in Section

4.2.2, so that we can have restrictions on the sizes of junction 4, 5 and 6 as well as the
critical current density. The sizes of junction 1 and 3 are set to be the same, as required
for a persistent current flux qubit. The requirements for the qubit optimization are listed
as follows:

• Qubit gaps should be in the range of 1 to 12 GHz, as limited by the bandwidth of
our measurement setup.

• We need to find a point for preparing the initial state in the experiments of relaxation
measurement. The point should be a symmetry point, and the relaxation time at the
point should be much longer than the time needed for state preparations, which can
be controlled within 10 ns. Thus, the relaxation time target is set in a safe range,
more than 100 ns.

• We need to find a point for preparing the initial state in the experiments of dephasing
measurement. The point should be a symmetry point, and both relaxation and
dephasing time should be larger than the time needed to prepare a superposition
state, which is in the scale of 10 ns. Therefore, both rates are required to be larger
than 100 ns.

• We need to find a point, which is far away from the symmetry point and at which
the double well potential is biased as shown in Fig 4.3b, so that the energy eigenstate
at this point is almost a flux state, and the qubit can be prepared at a flux state
at this point. This is required for the experiment on flux tunneling. Besides, this
point can also be used for flux readout in all three experiment, so the relaxation time
should be comparable or more than the state readout time, which is around 1 us.
Moreover, the persistent current should be large enough to generate strong coupling
to the readout SQUID.
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• We need to find a list of points, which are symmetry points and at which the qubit
is ultrastrongly coupled to the transmission line. This is required for all three exper-
iments.

With these goals, the system properties are explored in the parameter space consisting of
four junction sizes and the critical current density. In the final qubit design, Jc = 4µA/µm2,
the size of junction 1 and 3 is 0.047 µm2, and the area ratio of other junctions to junction
1 are r2 = 0.7, r4 = r5 = 3.0 and r6 = 1.32.
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Figure 4.7: Diagram of positions of the symmetry points in the plane of fβ and fε.

The qubit symmetry point is defined as the flux bias point where qubit transition
frequency reaches minimum. A single loop flux qubit is at the symmetry point when the
external flux f = Φext/Φ0 equals to 0.5 + n, where n is any non-negative integer. For
a two-loop qubit, the symmetry point is no longer the point where the flux in the main
loop fε equals to half of the flux quantum, since the flux in the second loop fβ shifts the
symmetry point. In our case, for each fβ, we can find a fε that corresponds to a symmetry
point. In simulations, the fε is swept from 0.4 to 0.6 for a list of fβ to find the points where
the qubit gap is minimal, which are considered as the symmetry points. Figure 4.7 shows
the positions of the set of symmetry points. Qubit properties and interaction strengths
are calculated at this set of symmetry points, as shown in Fig 4.8, the qubit gap E01 is
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Figure 4.8: Diagram of qubit gap, anharmonicity, αSB, relaxation rates Γ1 over fβ.

from 3.74 to 8.22 GHz and the anharmonicity E12/E01 is from 3.2 to 6.2. The coupling
strength αSB is in the range of 3.6 ∗ 10−6 to 0.52, so the coupling strength can reach the
USC regime, and even reaches the nonperturbative USC regime (see Section 3.1.1). The
relaxation rate increases from 0.1 MHz to 6.12 GHz, and the dephasing rates vanishes at
the symmetry points.

Next, we explain how the three experiments proposed in Section 4.1 can be implemented
based on the simulation results. Figure 4.9 shows the positions of the qubit in the flux
plane for several experiment stages. The blue points represents the set of symmetry points.
When fβ ranges from 0.365 to 0.39, the relaxation rates are smaller than 10 MHz, so these
points are considered as the weak coupling region. The point labeled by the green cross
corresponds to the point with minimum relaxation rate Γ1 = 0.1 MHz, so this point is
considered as the decoupling point and is used for preperation of intitial states in the
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Figure 4.9: Illustration of experiment steps in the plane of fβ and fε.

relaxation and dephasing experiments. The coupling strengths keep increasing with fβ,
and it enters into the USC regime when fβ = 0.44, where αSB = 0.04 and Γ1/E01 = 0.126.
The yellow crosses show the positions of αSB = 0.1, 0.3 and 0.5. The red cross represents
the point for state readout, which is reached by increasing the fε by 15 mΦ0 from the
point of green cross, so that the qubit is away from the symmetry point. At this point,
E01 = 11.9 GHz, E12/E01 = 2.0, the persistent current Ip = 100 nA. The dephasing time
Γϕ = 25 µs and the relaxation time T1 = 2.5 µs, as induced by the one-dimensional field,
both of which are larger than the readout time Treadout ≈ 1 µs.

In the experiment of relaxation measurement (see Section 4.1), the experiment steps
are indicated by the light blue arrows in Fig 4.9.

• In stage 1, the qubit is prepared in the ground state at the green cross, which is a
symmetry point, and the relaxation time at the point is about 2.5 µs, much longer
than the relaxation time target 100ns. Then, it is excited to the first excited state
by a π pulse.

• In stage 2, The qubit is fast and non-adiabatically moved to another symmetry point,
where the coupling strength is in the USC regime. For example, it can be moved to
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one of the yellow crosses.

• In stage 3, the qubit is kept at the same point to allow state evolution for a delay
time.

• In stage 4, the qubit is fast and non-adiabatically moved back to the green cross to
decouple the qubit and frozen the state.

• In stage 5, the qubit is adiabatically moved to the readout point labeled by the red
cross. Qubit energy states evolve into flux states.

• In stage 6, at the red cross, qubit states are measured in the flux basis.

Then, all the stages are repeated while increasing the delay time. In the experiment of
dephasing measurement, the experiment steps are very similar to the relaxation measure-
ment and there are only two differences. The first is the qubit is applied with a π/2 pulse
instead of a π pulse in stage 1. The second difference is there is one more step between
stage 4 and 5. After the qubit is moved back to the green cross in stage 4, it needs to be
applied with another π/2 pulse. Afterwards, it is moved to the red cross for state readout.

The steps of the experiment of the tunneling of flux states is shown by the black arrows.

• In stage 1, the qubit is prepared in a flux state at the red cross, which is far away
from the symmetry point.

• Similar to the stage 2 in the relaxation measurement, the qubit is non-adiabatically
moved to a symmetry point in the USC regime.

• In stage 3, the qubit is kept at the same position to allow the tunneling of flux states
in USC regime for a delay time.

• In stage 4, the qubit is moved back to the red cross non-adiabatically.

• In stage 5, qubit states are measured at the red cross.

In the proposed experiments, we need to make sure that qubit states do not change
significantly while we switch on or off the coupling, so the switching should be done faster
than the qubit transition frequency and relaxation rates. The precise conditions have to
be validated by further theory and experimental work.
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Figure 4.10: The overlap between the state at the weak coupling point and the states at
all points.

In all three experiments, the initial qubit states are prepared at the decoupling point,
then it is moved to the USC points which allows the evolution of the qubit state. After-
wards, it is moved back for state readout. It is important that the states at the USC points
should be in the subspace spanned by the ground and excited states at the decoupling point
and do not involve any higher states. The overlaps between the state at the green cross
and the states at all the blue points in Fig 4.9 are shown in Fig 4.10. The states overlap
Og and Oe are

Og = |〈g|gwc〉|2 + |〈e|gwc〉|2, (4.18)

Oe = |〈g|ewc〉|2 + |〈e|ewc〉|2, (4.19)

where gwc and ewc are the ground and the excited state at the weak coupling point, and g
and e are states at points with various coupling strengths. The overlaps at several coupling
strengths are listed out in table 4.2, which indicates the states overlap is still good when
coupling strength is in the USC regime.

αSB 0.04 0.1 0.3 0.5

Og 0.96 0.92 0.78 0.60
Oe 0.94 0.85 0.65 0.49

Table 4.1: State overlaps between the decoupling point and several points with different
coupling strengths.
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Γ1/E01 0.13 0.30 0.52 1.0

Og 0.96 0.92 0.87 0.77
Oe 0.94 0.86 0.78 0.64

Table 4.2: State overlaps between the decoupling point and several points with different
coupling strengths.

4.2.4 Flux biasing and driving

Figure 4.11: a) The full device design drawn in CAD. b) Zoom into the area around the
qubit. c) Enlarged picture of the qubit design.

The design of the tunable qubit requires independent control of fluxes in two loops, so
in total two flux lines are added to the device. The full device design is drawn in AutoCAD
and it is shown in Fig 4.11. The flux line is made with a transmission line, which is divided
into two branches at the end and then connect to the ground plane that is located at the
two sides of the transmission line. The bottom flux line is inductively coupled to the ε loop.
The center line of it points to the center of the β loop, such that the mutual inductance
between them is close to 0. A similar configuration is used for the other flux line. Both DC
signal and fast pulses are sent into the lines to control fluxes, but for different purposes.
The DC signal is to induce a flux in the corresponding qubit loop for static bias, while the
fast pulses are for qubit driving or fast tuning of flux.

51



The mutual inductance between qubit loops and the corresponding flux line should be in
an optimized range. It should be kept small to prevent it from inducing large decoherence
of the qubit, but it can not be too small, otherwise the required currents for flux biasing
would be too large. As mentioned in Section 4.2.3, the qubit is designed to be biased
around 0.45 Φ0 for both fε and fβ. The mutual inductance between the ε loop and the
bottom flux line is about 1 pH, so the required DC is 0.9 mA. The mutual inductance
for the β loop is slightly smaller due to the smaller loop size, and the DC is required to
reach 1.3 mA. To fast move the qubit from the weak coupling point to the USC points, the
required current amplitude to generate fast pulses is in the range of hundreds of µA. These
currents are small enough, so that they do not generate too much heat that increases the
environmental noise leading to qubit decoherence.

Besides biasing, the bottom flux line is also used for inductive driving. The driving
Hamiltonian is

Hd(t) =
∂H

∂Φε

Φd0 cos(ωdt+ ϕd), (4.20)

∂H

∂fε
=2πϕ0Ic3 sin(γ12 + γ23 − γ15 − γ54 + 2πfβ + 2πfε), (4.21)

where Φd0 is the amplitude of driving flux and ωd is the driving frequency. The Rabi
frequency for driving the qubit from the ground state to the first excited state is

ωR,01 = Φd0

∣∣∣∣〈g|∂H∂fε |e〉
∣∣∣∣ . (4.22)

When Φd0 = 0.003Φ0, the Rabi strength is calculated to be 900 MHz, so the length of a
π pulse is around 1.1 ns, which is much smaller than the relaxation time of qubit at the
state preparation point.

Since the flux lines are inductively coupled to the qubit, we are going to estimate the
rate of qubit relaxation due to them. The qubit relaxation rate can be written as [34]

Γ1 = 2 sin2 θ

(
MIp
φ0

)2
RQ

Z0

fqb, (4.23)

where tan θ = ∆/ε, and M is the mutual inductance, and Ip is the persistent current of
qubit, and RQ is the quantum resistance. Setting Ip = 110 nA, M = 1 pH and fqb = 12
GHz, the relaxation rate reaches the maximum 87 KHz at the symmetry point. The pure
dephasing rate is given by [34]

Γφ = 2 cos2 θ

(
MIp
φ0

)2
RQ

Z0

kBT

h
. (4.24)
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The fridge temperature is normally around 30 mK, but in general terms higher noise
temperatures are observed in some experiments. Assuming the noise temperature T reaches
100 mK, the largest dephasing time is reached at away from the symmetry point and it
is about 65 us. Both relaxation and dephasing time is relatively large, so the decoherence
rates due to flux lines do not dominate the rates induced by the open transmission line.

4.2.5 Flux readout

Figure 4.12: a) Circuit model of the readout resonator; b) Circuit model of a DC-SQUID;
c) Circuit model of the readout resonator with the SQUID replaced with an ideal inductor.

As mentioned in the Section 4.1, qubit states are measured in the flux basis for all the
three experiments. In this section, we are going to discuss the details of the flux readout
circuit. The readout circuit is composed of a resonator, which consists of a transmission
line that is capacitively coupled to a feed line on one end and is shorted to the ground via
a DC-SQUID on the other end, as shown in Fig 4.11.
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The DC-SQUID can be considered as an non-linear inductance. Next, we present how
to determine the effecive inductance of the squid. The circuit model of a DC-SQUID is
shown in Fig 4.12a. If taking the self geometric inductance into account, the phase relation
can be written as

γ2 − γ1 = −2πfsq, (4.25)

where γ1 and γ2 are phases across junctions, fsq = Φsq/Φ0 represents the external flux.
The current relations are

Ib = Ic1 sin γ1 + Ic2 sin γ2, (4.26)

where Ic1,2 are the critical currents of two junctions, so the bias current is the sum of the
currents in two branches. For given Ib and fsq, there are multiple combinations of γ1 and γ2

that satisfy Eq. 4.25 and Eq. 4.26, but some solutions may not keep the SQUID in a stable
state. We then look for solutions which minimize the potential energy of the SQUID,

U =ϕ0(Ic1 + Ic2)(− cos
γ1 + γ2

2
cos

γ1 − γ2

2
)− ib

γ1 + γ2

2
+ β(

γ1 − γ2

2
− πfsq)2

− α sin
γ1 + γ2

2
sin

γ1 − γ2

2
− ηib

γ1 − γ2

2
),

(4.27)

where

β =
2ϕ0

(Lg1 + Lg2 − 2Ma −M2
q /Lq)(Ic1Ic2)

α =
Ic1 − Ic2
Ic1 + Ic2

η =
Lg2 − Lg1

(Lg1 + Lg2 − 2Ma −M2
q /Lq)

ib =
Ib

Ic1 + Ic2
.

(4.28)

The Lg1,2 are self inductances of the two branches of the SQUID. The DC-SQUID can be
treated as an inductor and Ib is the current passing through it. Its effective inductance
equals to the derivative of the induced flux with respect to Ib, which can be estimated as

Lsq = ϕ0
γ1(Ib + δIb)− γ1(Ib)

δIb
. (4.29)

γ1(Ib + δIb) and γ1(Ib) are solutions of minimizing the SQUID potential energy with bias
current Ib + δIb and Ib.

Next, we present how to determine the modes of the resonator, which will be quantized
later. By assuming the DC-SQUID as an ideal inductor with inductance Lsq, the circuit
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model of the readout resonator is simplified as shown in Fig 4.12b. The relation between
the reflection coefficient and the forward and backward voltages at position z = 0 is

V −

V +
= Γ =

iωLsq − Z0

iωLsq + Z0

, (4.30)

where ω is the frequency of the microwave. Since the resonator is ended with a capacitor
on the other end, the current at z = −l is 0 at resonance,

I(z = −l) =
1

Z0

(V +
z=−l − V

−
z=−l) = 0. (4.31)

The forward and backward voltages at position z are V +
z = V +e−ikz and V −z = V −e−ik(−z),

where k is the wavenumber. By substituting them into Eq 4.31 and use Eq 4.30, we have

V +

Z0

(eikl − Γe−ikl) = 0. (4.32)

The wavenumber equals to the ratio of angular frequency ω to the phase velocity c, k = ω
c
,

then the above equation becomes

V +

Z0

(eiωl/c − Γe−iωl/c) = 0, (4.33)

where c = 1√
C̃L̃

and C̃ and L̃ are capacitance and inductance per unit length of the

transmission line. Substitute Γ with Eq 4.30 and then simplifying it, the above equation
can be written as

eiωl/c − iωLsq − Z0

iωLsq + Z0

e−iωl/c = 0. (4.34)

The resonant frequency can be obtained by solving Eq 4.34.

The resonant frequency depends on the effective inductance of the DC-SQUID, which
can be tuned by the external flux. Since the external flux consists of a bias flux and an
induced flux from qubit, which depends on the qubit states, the two qubit persistent current
states can be distinguished by the resonant frequencies. Fig 4.13 shows the dependence of
the resonant frequency on the external flux for one design. Resonance frequency is chosen
to be 4 GHz at fsq = 0.421. The largest induced flux is

finduced = |Ie − Ig|M, (4.35)

where |Ig,e| ≈ 110 nA are the persistent currents when qubit is in the ground and the
excited state at the readout point and they have opposite signs. M is the mutual inductance

55



0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

5 . 0

 

 
fres

 (G
Hz

)

Φ/Φ0

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

δfre
s (M

Hz
)

Φ/Φ0

Figure 4.13: The two graphs show the simulated resonant frequencies (left) and the vari-
ation of the resonant frequency (right) caused by the change of qubit states versus the
external flux in the SQUID.

3 . 9 6 3 . 9 8 4 . 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
3 . 9 6 3 . 9 8 4 . 0 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

MA
G[

S1
2]

F r e q u e n c y  ( G H z )

b )

Figure 4.14: a) Circuit model in Sonnet. b) Lorentz fit of simulated S21 from Sonnet.

between qubit main loop and the DC-SQUID. The variations of resonant frequencies over
a full range of external flux are evaluated based on Fig 4.13, which is shown in Fig 4.13.
When choosing resonant frequency as 4 GHz, the variantion is 0.47 MHz.

Besides the resonant frequency, quality factor Q is another important parameter of a
resonator, which describes how underdamped an oscillating system is. It is defined as the
ratio of the resonant frequency to the half-power bandwidth i.e. the frequency range at
which the vibration power is larger than half of the maximum power. The response time
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of a resonator indicates the time it takes to pump photons into the resonator, and it is
related to the quality factor,

Tresponse =
Q

ωres

. (4.36)

During measurements of qubit states, it is required that the response time is smaller than
the relaxation time of the qubit, otherwise the qubit has already relaxed to the ground
state before the readout signal being pumped into the resonator. At the readout point,
the relaxation time is restricted to be larger than 100 ns, so the quality factor needs to be
smaller than 2513 with ωres = 2π ∗ 4 GHz. The readout resonator is capacitively coupled
to a feed line by having part of the transmission line parallel and close to the feedline.
The transmission of microwaves in the feed line is simulated in the Sonnet suites of high-
frequency electromagnetic (EM) Software. Figure 4.14a shows the circuit model in Sonnet,
where the DC-SQUID is replaced with an ideal inductor. Port 1 and 2 are placed at
two ends of the feed line, and S12 is simulated over a range of frequencies. Figure 4.14b
shows the diagram of S12 over frequencies close to 4 GHz. The curve is fitted with Lorentz
function and Q is found to be 2055. The half power bandwidth is 2 MHz, so the variation
of resonant frequency is comparable to the bandwidth, which is critical for distinguishing
the signals corresponding to the different qubit states.

Since the readout resonator is coupled to the qubit, we need to estimate the coupling
strength between them to ensure that the readout circuit is not a significant decoherence
source of the qubit. The interaction is expressed as MeffIbIqb, where Meff denotes the
effective mutual inductance between the SQUID and the qubit main loop, Ib is the current
going through the SQUID and Iqb is the current in the qubit. The Meff equals to the
derivative of the induced flux from SQUID to qubit with respect to Ib, which is estimated
as

Meff =
Φsq−qb(Ib + δIb)− Φsq−qb(Ib)

δIb

∣∣∣
Ib=0

. (4.37)

Φsq−qb is the sum of the induced fluxes from the two branches of the SQUID,

Φsq−qb(Ib) = M1Ic1 sin γ1(Ib) +M2Ic2 sin γ2(Ib), (4.38)

where M1 and M2 are mutual inductances between the qubit main loop and the two
SQUID branches respectively, and γ1,2(Ib) is the phase of junction 1 or 2, which is found
by minimizing the SQUID potential energy. Φsq−qb is distributed into two parts because
M1 and M2 are very different in our design. The induced fluxes over a range of Ib is shown
in Fig 4.15, and Meff is calculated to be 0.686 pH.
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Figure 4.15: Induced fluxes from the DC-SQUID to the qubit versus the bias current.

Next, the process of the quantization of the readout resonator is introduced in order to
find the expression of Ib. V

+ and V − are dynamical variables and can be written as

V + = V +eiωt, (4.39)

V +∗ = V +∗eiωt. (4.40)

The energy of the system contains the magnetic and electric energy of the transmission
line, and the magnetic energy of the effective inductor. The electric energy of transmission
line is

Ee =
1

2
C̃

∫ 0

−l
Ṽ (z)2dz. (4.41)

Ṽ (z) is the real part of the voltage V (z) = V +
z + V −z in the transmission line,

Ṽ (z) =
1

2
(V (z) + V ∗(z))

=
1

2
[V +(e−ikz + Γeikz) + V +∗(eikz + Γ∗e−ikz)].

(4.42)

The magnetic energy of the transmission line is

Em =
1

2
L̃

∫ 0

−l
Ĩ(z)2dz. (4.43)
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Ĩ is the real part of the current,

Ĩ(z) =
1

2
(I(z) + I∗(z))

=
1

2Z0

[V +(e−ikz − Γeikz) + V +∗(eikz − Γ∗e−ikz)].
(4.44)

The energy in the effective inductor is

EL =
1

2
LĨ(0)2. (4.45)

Then, the total energy of the system is

Etot =
(
V + V +∗)( 0 1

2
( l
cZ0

+ L
Z2

0+L2ω2 )
1
2
( l
cZ0

+ L
Z2

0+L2ω2 ) 0

)(
V +

V +∗

)
. (4.46)

In order to build the correspondence between classical variables and quantum operators,
we try to find two variables q = κV + + κ∗V +∗ and p = iωκV + − iωκ∗V +∗, such that

Etot =
(
q p

)(1
2
ω2 0
0 1

2

)(
q
p

)
. (4.47)

Comparing Eq 4.46 and Eq 4.47, we have

Etot =
(
q p

) l
cZ0

+ L

Z2
0+L2ω2

4κκ∗
0

0
l

cZ0
+ L

Z2
0+L2ω2

4κκ∗ω2

(q
p

)
. (4.48)

From Eq 4.47 and Eq 4.48, the magnitude of κ can be found. It is shown that p and q can
obey the Hamilton’s equation,

dp

dt
= −ω2κV + − ω2κ∗V +∗

= −ω2q

= −dH
dq

,

(4.49)

dq

dt
= −iωκV + − iωκ∗V +∗

= −ω2p

= −dH
dp

,

(4.50)
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where Eq 4.39 and Eq 4.40 are used. Then, the system energy can be described by the
harmonic oscillator Hamiltonian H = ~ω(a†a + 1/2) by writing p and q in terms of the
ladder operators

p̂ = i

√
~ω
2

(a† − a), (4.51)

q̂ = i

√
~

2ω
(a† + a). (4.52)

At last, the current Ib going into the effective inductor is

Ib =
i(a† − a)

√
c~ωZ0√

cLZ0 + l(L2ω2 + Z2
0)
, (4.53)

by assigning the phase of κ such that κ† = κ/Γ. The Hamiltonian of the system in the
persistent current basis can be given as

H = Hqb +Hresonator +Hint

= −1

2
εσz −

1

2
∆σx + ~ω(a†a+

1

2
) + igσz(a

† − a),
(4.54)

with the coupling strength g = ∆√
∆2+ε2

g′. Since the interaction is via MeffIqbIb, we find

g′ =
Meff|〈0|Iqb|1〉|Ib

i(a†−a)
, where |0〉 and |1〉 are qubit ground and exited state in the eigenenergy

basis. The Purcell lifetime of the qubit is related to the coupling strength by

Tpurcell =
Q

2πfres

(
δ

g
)2, (4.55)

where δ is the qubit-resonator detuning. To prevent the readout resonator from becoming
a main decoherence source, the Purcell lifetime should be larger than the qubit relaxation
time to the open transmission line, which is kept larger than 100 ns. Assuming the qubit
is at the symmetry point ε = 0 and 〈0|Iqb|1〉 reaches the maximum value 110 nA, which
is the persistent current when qubit is far away from the symmetry point, we find the
minimum Purcell lifetime to be around 40 µs with the detuning δ = 0.1 GHz. Therefore,
the coupling between qubit and readout resonator is in a safe regime.

4.3 Summary

In this chapter, we present a novel design of the flux qubit with fast-switchable coupling to
an open transmission line. The maximum coupling strength can reach the nonperturbative
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ultrastrong coupling regime. We present the full device design consisting of the tunable
qubit, the open transmission line, qubit flux bias lines, qubit drive lines and the readout
copalanar waveguide resonator. It is demonstrated that this device can be used to perform
three proposed experiments. The objective of the experiments is to study the interesting
dynamics of the spin-boson model in the ultrastrong coupling regime. The three experi-
ments are to measure qubit relaxation, dephasing and renormalized tunneling frequencies
in the USC regime. Detailed experiment steps and pulse sequences are presented.
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Chapter 5

Capacitively shunted flux qubit

The objective of the project covered in this chapter is to further explore the parameter
space of flux qubits and address combined high coherence and large anharmonicity. In our
design, we use three capacitive pads to shunt all the three junctions of a flux qubit, so
the electric fields on all junctions are redistributed to capacitive pads. Compared to the
single-shunt CSFQ, our design uniformly shunts all junctions, so it has smaller dielectric
loss in junctions and further reduced charging energies. The flux qubit is capacitively
coupled to a λ/2 coplanar waveguide (CPW) resonator for dispersive readout [9], and the
qubit control is done with a capacitively coupled drive line. A global magnetic field is
applied to the whole device to provide flux bias to the qubit. The circuits are modeled
with a full capacitance matrix model that is introduced in section 5.1. The fabrication
of the superconducting circuits is a three-layer process and is introduced in section 5.2.
The device is mounted in the dilution refrigerator and operated at the temperature of
around 27 mk. The experiment results and data analysis are discussed in section 5.3.
The qubit spectroscopy shows an excellent match to the predictions of the capacitive
matrix model. The experiment shows that the sample has large anharmonicity at the
qubit symmetry point reaching 2π × 3.69 GHz and the relaxation time reaches T1 = 47
µs. As for dephasing, the spin-echo dephasing time is T2E = 9.4 µs, and we performed
dynamical decoupling method with the Carr-Purcell-Meiboom-Gill (CPMG) method. The
coherence time obtained by applying 100 CPMG pulses reaches 26.5 µs. Benefiting from
the large anharmonicity, we are able to perform precise quantum control in the qutrit
space consisting of the lowest three levels. The experiments of qutrit state tomography
and multilevel coherence are presented. Al last, a summary of the project is given in section
5.4.

This project was mainly conducted by Dr. Muhammet Ali Yurtalan and was supervised
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by Prof. Adrian Lupascu. My contribution to the project includes the fabrication of the
superconducting device, working on measurement experiments and data analysis with Ali.
I specifically worked on the experiments of qutrit tomography and multilevel coherence.

5.1 Circuit design and model

The circuit design and model of the CSFQ device are shown in Fig 5.1. Due to the large-
size shunting pads of the qubit, the capacitances between these pads and adjacent circuits
are much larger than the junction capacitances. Thus, beside the electric energies stored
in the junction capacitances, the circuit model should also takes the energy stored in the
capacitances between qubit shunting pads, CPW center line, control line and the ground
plane into consideration, which is different from the model for typical flux qubit introduced
in section 2.2, where only junction capacitances are considered. Therefore the circuit model
is called the full capacitance matrix model. In the model, the resonator and drive line is
consider to contribute to the gate voltages and gate capacitances to the qubit. The gate
charges are also used to simulate charge fluctuations in the environment.

Next, the quantization of the full capacitance matrix model is presented, which follows
the same quantization procedures introduced in section 2.2. The phase relation in the
qubit loop is given as

γ32 = γ21 + γ13 + 2πf (5.1)

We first consider only the individual CSFQ, and the electric energy of the qubit is written
as

T =
ϕ2

0

2
γ̇TCγ̇ + ϕ0γ̇

TDQg, (5.2)

where ϕ0 = ~
2e

is the reduced flux quantum and

γ̇ =

γ̇21

γ̇31

γ̇10

 , Qg =

Cg1Vg1Cg2Vg2
Cg3Vg3

 , (5.3)

representing the vector of the time-evolution of phases, and gate charges respectively. The
gate voltage is assumed to be time-independent, so the gate charges are constants and Eq
5.2 has neglected the offset energies related to Q2

g. The capacitance matrix is given as

C =

C12 + C23 + C2g + C02 −C23 C2g + C02

−C23 C13 + C23 + C3g + C03 C3g + C03

C2g + C02 C3g + C03 C1g + C2g + C3g + C01 + C02 + C03

 ,

(5.4)
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Figure 5.1: Diagram of circuit design and model. a) Device diagram, where the dark area
is aluminum and the bright area is the silicon. The Al circuits layer are on top of the
silicon substrate. The flux qubit contains three junctions represented by three crosses,
which are capacitively shunted by three pads labeled as pad 1, 2 and 3. The qubit is
capacitively coupled to a coplanar waveguide resonator and a drive line. The center line
of the CPW and the drive pad are labeled as b and d respectively. b) The circuit model of
the device. Node 0, 1, 2 and 3 represents the ground plane and the three shunting pads.
Cij is the capacitance between node i and j. The junction phases are equivalent to the
phases between corresponding nodes and they are represented by γij. Vgi and Cig represent
the gate voltage and gate capacitance with respect to node i.

and the D matrix is given as

D =

 0 −1 0
0 0 −1
−1 −1 −1

 . (5.5)

The potential energy of the qubit is contributed by the Josephson energy of the junctions
and is given as

U = −ϕ0 [IC12 cos γ12 + IC13 cos γ13 + IC23 cos(γ21 + γ13 + 2πf ] , (5.6)

where ICij is the critical current of the junction located between node i and j. Similar
to a typical persistent current qubit introduced in section 2.2, the CSFQ contains two
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reference junctions and an α junction and the relation between the critical currents is
IC12 = IC13 = IC23/α.

The Lagrangian of the system is given as L = T − U . Then, we are going to check
whether the Euler-Lagrange equation d

dt
∂L
∂γ̇

= ∂L
∂γ

holds. Applying the Euler-Lagrange
equation on γ21, we have

ϕ2
0[C12γ̈21+C23(γ̈21 − γ̈31) + C2g(γ̈21 − γ̈10) + C02(γ̈21 + γ̈10)]

= ϕ0 [−IC12 sin γ21 − IC23 sin(γ21 + γ13 + 2πf)] .
(5.7)

The left hand side of the equation d
dt

∂L
∂γ̇21

equals to ϕ0 times all currents leaving node 2

through capacitors, and the right hand side ∂L
∂γ21

equals to ϕ0 times all currents flowing
into node 2 via Josephson junctions, so the equation is correct. Similar methods also hold
for γ13, which refers to the currents flowing into and out of node 3. As for γ10, both sides
of the equation equal to 0, which means that the number of charges on the ground plane
is a constant. Overall, the Euler-Lagrange equation holds for all three degrees of freedom.
The conjugate momentum vector p = (p21, p31, p10) of γ is found to be

p = ∇γ̇T = ϕ2
0Cγ̇ + ϕ0DQg. (5.8)

We find the term d
dt
∂L
∂γ̇

in the Euler-Lagrange equation is related to the currents entering

and leaving the corresponding nodes, and d
dt
∂L
∂γ̇

= ṗ, so p/ϕ0 represents the charges on the
corresponding nodes.

Following the Legendre transformation H = pγ̇ − T , we find the Hamiltonian

H =
1

2

(
p

ϕ0

−DQg

)T
C−1

(
p

ϕ0

−DQg

)
+ U(γ). (5.9)

Compared to the Hamiltonian of a typical persistent current qubit Eq 2.18, p refers to
the charges on qubit islands or ground planes instead of the charges stored in junction
capacitance, and there is an additional term of offset charges due to gate charges in the
full capacitance matrix model.

When considering the CPW resonator and the drive line, these two elements can be con-
sidered as contributions to the gate capacitances and gate voltages. The final Hamiltonian
becomes

H =
1

2

(
p

ϕ0

−DQg −DQb −DQd

)T
C ′−1

(
p

ϕ0

−DQg −DQb −DQd

)
+ U(γ). (5.10)
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The Hamiltonian contains two additional offset charges, which are

Qb =

Cb1Vb1Cb2Vb2
Cb3Vb3

 , Qd =

Cd1Vd1

Cd2Vd2

Cd3Vd3

 , (5.11)

where Vbi or Vdi is the voltage between node i and the resonator or the drive line. The
capacitance matrix becomes C ′ = C + Cb + Cd, where

Cb =

C2b 0 C2b

0 C3b C3b

C2b C3b C1b + C2b + C3b

 , Cd =

C2d 0 C2d

0 C3d C3d

C2d C3d C1d + C2d + C3d

 , (5.12)

with Cib the capacitance between node i of the qubit and the resonator center line and Cid
the capacitance between node i and the drive line.

5.2 Device fabrication

This section describes the fabrication process of the device, consisting of superconducting
Al circuits on the Si substrate. The fabrication is a three-layer process, composed of the
maker layer, the resonator layer and the qubit layer. The marker layer provides markers for
alignment between the circuit layer and the qubit layer, which are essential for lithography.
The resonator layer contains the circuits with large features such as CPW resonators, open
transmission lines, ground planes, qubit control lines, etc. Both the marker layer and
the circuit layer is processed with photolithography with resolution around 1 µm. The
qubit layer is fabricated with the electron-beam lithography, whose resolution is at tens of
nanometer, so fine features like Josephson junctions and qubit wires are included in this
layer.

Before fabricating the CSFQ device, I worked on developing a fabrication recipe for the
marker and resonator layer using a new photolithography system, Maskless aligner (MLA)
150 from Heidelberg Instruments. The MLA 150 is an optical direct-writing lithography
system with no need of masks and fast writing speed. Its highest resolution is 1 µm, so
it is appropriate for fabrication of coarse features, such as markers and resonator circuits.
In our original recipe, a mask aligner was used for photolithograph, which requires that
the patterns of circuits have to be first fabricated on a mask, and then be transferred to
the photon resist that is coated on the sample surface. Compared to the mask aligner,
the MLA 150 can directly write patterns onto resist without any mask, so it saves time
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and money for fabricating masks, and it has excellent adaptability to new designs or small
changes on the patterns. The tests on MLA 150 contained dose and defoc tests for two
resists that were used for the two layers. Dose is related to the intensity of light and defoc
represents the position of the focus of light with respect to the surface of the resist. The
tests showed that the MLA 150 had excellent compatibility to our superconducting devices
and the new recipe was used to fabricate the CSFQ device.

Next, the main steps in the fabrication process for each layer is introduced. For the
marker layer, the fabrication starts with a chemical cleaning of the substrate, which is a
4” Si wafer, by sonication in acetone, isopropyl alcohol (IPA) and de-ionized (DI) water.
Then, the substrate is coated with a layer of positive resist Shipley s1811, followed by
the photolithography with MLA 150 and developing in MF 319. The exposed Si after the
developing is etched to form Si etched markers with depth of 2 µm. Afterwards, the resist
is removed by sonication in a hot bath of remover PG and then cleaned in acetone and
IPA baths. This finishes the process of the marker layer.

As for the resonator layer, the sample is first coated with a layer of negative resist ma-N
1410 followed by doing photolithography with MLA 150 and developing in ma-D 533/S.
Then, 100 nm Al is deposited on the sample with high-vacuum electron-beam evaporation.
After evaporation, the part of Al layer on the resist is lifted-off in a hot bath of Remover
PG followed by acetone and IPA cleaning. Up to this step, the fabrication of the main
features of circuits including ground planes, resonators, qubit drive lines and large-shunting
pads of the CSFQ are finished.

At last, the fabrication moves on to the qubit layer containing the qubit Al wires
and Josephson junctions between the shunting pads. The sample is first coated with two
layers of electron-beam resist polymethylglutarimide (PMGI) and polymethylmethacry-
late (PMMA), followed by doing 100 kV electron-beam lithography and developing in
MIBK:IPA (1:3). The sample is then processed with oxygen descum to remove any resist
residue on the substrate. Afterwards, an argon milling process at two angles 20◦ and −20◦

is carried out to remove the Al oxide layer from the areas where the shunting pads are
designed to contact with qubit wires. The purpose of doing argon milling at two angles is
to create a taper profile at the edge of shunting pads to provide better contact to qubit Al
wires. Next, the sample is deposited with a 45nm Al layer at the angle of 20◦ followed by
an in-situ oxidation process to create the junction barrier, then a second layer of Al with
65 nm is deposited at 20◦ to form junctions. After deposition, the sample is lifted-off in a
hot bath of Remover PG and then cleaned with acetone and IPA baths. Up to this step,
the fabrication of superconducting circuits are completed. The sample is then diced into
3 mm × 7 mm small devices, which are wirebonded to microwave packages and mounted
inside the dilution fridge for low temperature measurements. Fig 5.2 shows the images of
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Figure 5.2: Images of the fabricated CSFQ device. a) Photograph of a 3 mm × 7mm
device. The bright area is Al and the dark area is Si. A λ/2 CPW resonator located in the
center of the device and it is coupled to two CSFQs with different designs. Each CSFQ
is coupled to a drive line. The qubit in the dashed rectangle is the one measured in the
experiment. b) The microscope image of the CSFQ labeled in a. It has three shunting
pads and the qubit loop is in the center area and is circled by the dashed rectangle. c) The
scanning electron microscope image of the qubit loop. The three junctions are located in
between the shunting pads.

the device and qubits measured in the experiment.

5.3 Experiment results

In this section, we present the experiment procedures and measurement results of the qubit
spectroscopy and the qubit coherence. We further investigates the qutrit constituted by
the lowest three level. The qutrit state tomography and multilevel relaxation analysis are
presented.
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5.3.1 Qubit spectroscopy

The preliminary step of the experiment is conducting qubit spectroscopy measurements,
which is to find the lowest several energy levels of the qubit and their dependencies on the
flux bias. The λ/2 resonator is used to weakly drive the qubit and measure the qubit state
by sending pulses to the resonator and measure the homodyne voltages of the transmitted
signals. The homodyne voltage is the average of the voltages that are measured during the
length of each pulse, which is 10 µs. The pulse frequencies are swept over a large range to
identify the transition frequencies between the lowest three energy levels.
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Figure 5.3: Qubit spectroscopy. a) Diagram of the homodyne voltages represented by
squares versus the frequencies of driving pulses when qubit is at the symmetry point
f = 0.5. The solid line is Lorentz fitting to locate the peaks; Frequencies of b) 0-1
transitions and c) 1-2 transitions versus the external flux in the qubit. The flux is in the
unit of a flux quantum Φ0. The measured transition frequencies are represented by the
blue and red points, while the solid line shows the fitting by the full capacitance matrix
model.

Fig 5.3 a shows the measured homodyne voltages over a range of pulse frequencies. We
find that the first peak from the left is caused by the 0-1 transition with the transition
frequency ω01 = 2π × 1.708 GHz. The second peak corresponds to a two-photon process
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with frequency at ω2p
02 = 2π × 3.533 GHz, in which the qubit is first excited by a photon

with frequency ω2p
02 and then it is excited again by a photon with the same frequency. The

two-photon process moves the qubit from state 0 to state 2. The third peak refers to 1-2
transitions at frequency ω12 = 2π×5.4 GHz. Thus, the qubit anharmonicity A = ω12−ω01

at the symmetry point reaches 2π × 3.628 GHz.

We also measure the qubit spectroscopy while tuning the flux bias to see the dependen-
cies of qubit transitions on the external flux. The results for the 0-1 and 1-2 transitions are
shown in Fig 5.3 b and c. We use the full capacitance matrix model introduced in section
5.1 to fit the spectroscopy data. The capacitance matrix in the model is extracted from
circuit simulations, and the fitting parameters includes only the junction critical current
density Jc and the size of the α junction α. The model fits the spectroscopy well with the
fitting parameters Jc = 4µA/µm2 and α = 0.61, which are very close to the nominal values
from fabrication.

5.3.2 Qubit coherence

In this section, qubit coherence at the symmetry point is presented. In the relaxation
measurement, the qubit is first prepared at state 0 and then excited to state 1 by applying
a π01 pulse through the drive line. Then, the qubit relaxation starts. After a delay time,
the readout pulse with a frequency near the qubit transition frequency is sent into the
resonator, and the homodyne voltage is measured. This process is then repeated with
increasing delay times. Fig 5.4 a shows the measured homodyne voltage versus delay time
in a relaxation measurement. The values of homodyne voltages reflect the qubit states,
i.e, the voltages at t = 0 and at the end of the delay time correspond to the qubit at state
1, and state 0 respectively. The relaxation time T1 is obtained from exponential fitting of
the homodyne voltages. Fluctuations of T1 is observed during the experiment, as reported
in other experiments [35] [36] [37]. The T1 is in the range 40 ± 5 µs with the highest
T1 = 47.1± 2. µs, which is comparable to the highest T1 ever measured for the CSFQ [2].

We also measured the total dephasing time T2, which is defined as 1
T2

= 1
2T1

+ 1
Tϕ

, where

T1 is the relaxation time and Tϕ is the pure dephasing time introduced in section 3.1.3.
The coherence time measured from Ramsey and Spin-echo [38] experiments are T2R = 4.7
µs and T2E = 9.4 µs. We perform dynamical decoupling with the CPMG pulse protocol
[39], where the pulse sequence consists of two π/2 pulses spaced with time τ and N equally
spaces π pulses in between, so the total free precision time of the state is increased. With
N = 1, the CPMG has the same pulse sequence as the spin-echo process. While varying
the number of π pulses, we are able to analyze the correlation of the noise and extract the
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Figure 5.4: Qubit coherence at the symmetry point. a) Diagram of homodyne voltage
versus delay time in the relaxation measurement. The solid line is an exponential fitting.
b) Diagram of the coherence time versus the number of CPMG pulses N . c) Diagram of
homodyne voltage versus delay time in the CPMG measurement for N = 1 and N = 100.
The solid line is exponential fitting.

noise spectrum. Fig 5.4 b shows the CPMG coherence time versus the number of pulses,
with TCPMG = 26.5 µs for N = 100 which is extracted from Fig 5.4 c.
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5.3.3 Qutrit tomography

The large anharmonicity of our qubit enables precise quantum control inside the multilevel
energy structure. We consider the qutrit constituted by the lowest three states, and perform
the qutrit state tomography to reconstruct its full density matrix and evaluate the the
tomography fidelities for a set of states.

The qubit density matrix can be written as a linear combination of the identity matrix
and the special unitary group of degree 2, denoted SU(2), which are the Pauli matrices.
Similarly, the density matrix of a qutrit can be written in the form of

ρ =
1

3

8∑
j=0

rjλj, (5.13)

where λj is the SU(3) generator and is given by [40]

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(5.14)

The density matrix can be reconstructed by measuring the expectation values of the gen-
erators 〈λj〉 = rj, or performing measurements on another complete set of basis states.
Following the experiment procedures in [41], we first prepare the qutrit at a given state,
then apply one of nine unitary rotations Uk that construct a complete basis, followed by
state readout. These steps are repeated until nine independent measurements correspond-
ing to the nine unitary rotations are done. The unitary rotations are composed of a single
or multiple rotations around the x or y axes of the Bloch sphere of 0-1 space or 1-2 space.
They are in the form of Rb

a(θ), where a = x or y, b = 01 or 12 and θ is the rotation angle,
and the nine rotations are listed in table 5.1. The observable in our experiment is the
operator of the homodyne voltage given as

Vh = Vh0|0〉〈0|+ Vh1|1〉〈1|+ Vh2|2〉〈2|, (5.15)
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State Prep. Rotations Tomog. Pulses Rotations

P0 I u0 R01
x (π)

P1 R01
x (π) u1 R01

x (π/2)
P2 R12

x (π)R01
x (π) u2 R01

y (π/2)
P3 R01

x (π/2) u3 I
P4 R01

y (π/2) u4 R01
x (π)R12

x (π/2)
P5 R12

x (π/2)R01
x (π) u5 R01

x (π)R12
y (π/2)

P6 R12
y (π/2)R01

x (π) u6 R01
x (π)R12

x (π/2)R01
x (π)

P7 R12
x (π)R01

x (π/2) u7 R01
x (π)R12

y (π/2)R01
x (π)

P8 R12
x (π)R01

y (π/2) u8 R01
x (π)R12

x (π)R01
x (π)

Table 5.1: Sets of rotation pulses for state preparation and qutrit tomography.

where Vhi represents the homodyne voltage corresponding to state i. In the new basis, the
observable becomes UkVhU

†
k , and the measured average voltage is given as

Vk = Tr
[
ρUkVhU

†
k

]
. (5.16)

Substituting the expression of the density matrix Eq 5.13, we have

Vk =
1

3
Tr

[
8∑
j=0

rjλjUkVhU
†
k

]

=
8∑
j=0

1

3
Tr
[
λjUkVhU

†
k

]
rj.

(5.17)

Since λj, Uk and Vh are known and Vk is the measured average voltage, we are able to find
rj, with which the density matrix can be reconstructed using Eq 5.13.

We performed qutrit tomography to a set of given states P0 to P8, which are prepared by
applying the corresponding rotation pulses as shown in table 5.1. Fig 5.5 shows the density
matrixes reconstrcted by the qutrit tomography for two initial states. The fidelity between
the density matrix of the expected state and the reconstructed one for both processes is
99.2%. The high fidelity shows we able to perform precise quantum control in the qutrit
space.
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Figure 5.5: Diagram of matrix elements of the reconstructed density matrix from qutrit
tomography. a) and b) shows the real and imaginary part of the matrix elements for the
initial state prepared with R01

x (π/2) pulse. c) and d) shows the real and imaginary part of
the matrix elements for the initial state prepared with R12

y (π/2)R01
x (π) pulses.

5.3.4 Multilevel relaxation analysis

In this section, we first introduce the experiment steps of the multilevel relaxation mea-
surement and present how state populations are extracted. Then, the multilevel relaxation
model is presented, which shows an excellent fitting to the measurement results. The fitting
conditions are discussed.

We consider a qutrit consisting the lowest three levels of the qubit. When we read the
qutrit state, the measured homodyne voltage is given as

Vavg = Tr [ρVh] , (5.18)

where Vh is the operator of the homodyne voltage. Plugging the expression of Vh Eq 5.15,
we have

Vavg = Tr [ρ(Vh0|0〉〈0|+ Vh1|1〉〈1|+ Vh2|2〉〈2|)]
= Vh0p0 + Vh1p1 + Vh2p2,

(5.19)
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with p0, p1 and p2 the populations at state 0, 1 and 2. In the experiment of characterizing
the multilevel coherence at the flux symmetry point, the qutrit is first prepared at its steady
state by waiting long enough time, then it is excited by applying π01

x and π12
x pulses. We

did not use π02
x pulse to excite the qutrit is because the 0-2 transition is forbidden at the

flux symmetry point. The qutrit state is measured after a certain delay time t. Then, a
π01
x pulse is applied to swap the populations of state 0 and 1, followed by the second state

readout. These steps are repeated with increasing delay times. The two readout results
are given as

Vavg(t) = Vh0p0(t) + Vh1p1(t) + Vh2p2(t) (5.20)

V ′avg(t) = Vh0p1(t) + Vh1p0(t) + Vh2p2(t). (5.21)

We assume there is no populations at any state higher than state 3, so the sum of the
populations at the first three states equals to 1

p0 + p1 + p2 = 1. (5.22)

In these three equations, Vavg and V ′avg are measured voltages, and Vh0, Vh1 and Vh2 are
characterized homodyne voltages for the three states, so we able to extract the time-
dependent state populations. Fig 5.6 shows the evolution of state populations during
the relaxation process. The solid lines are fittings using the three-level relaxation model
proposed in [42].

0 5 0 1 0 0 1 5 0
0 . 0

0 . 5

1 . 0
 

 
 P 0
 P 1
 P 2
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T i m e  ( µs )
Figure 5.6: Populations of three states versus the delay time of the relaxation experiment
with the qubit at the flux symmetry point.
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The derivation of the model starts from the rate equations

dn?0
dt

= −n?0(R01 +R02) + n?1R10 + n?2R20,

dn?1
dt

= n?0R01 − n?1(R10 +R12) + n?2R21,

dn?2
dt

= n?0R02 + n?1R12 − n?2(R20 +R21),

(5.23)

where n?i represents the population of level i and Rij is the transition rate from level i to
level j. By normalizing the population with respect to the total population,

n1 =
n?1
nt

; n2 =
n?2
nt
, (5.24)

we arrive at
1 = n0 + n1 + n2

dn1

dt
= R01 − n1(R10 +R12 +R01) + n2(R21 −R01),

dn2

dt
= R02 − n1(R12 −R02)− n2(R20 +R21 +R02).

(5.25)

The final solutions of the time dependent populations are given by

n0(t) = 1− n1(t)− n2(t)

n1(t) = C0 exp(−ξ0t) + C1 exp(−ξ1t) +
Q1

B
,

n2(t) = C0
R1 − ξ0

R?
21

exp(−ξ0t) + C1
R1 − ξ1

R?
21

exp(−ξ1t) +
Q2

B
.

(5.26)

The definitions of parameters can be found in table I of [42]. Eventually, the time dependent
populations n1(t) and n2(t) are written in expressions only composed of transition rates
Rij and initial populations at level 1 and 2, n1(t = 0) and n2(t = 0).

Next, we introduce how to find the initial populations of n1 and n2. In the multilevel
relaxation experiment at the flux symmetry point, the qutrit is first prepared at its steady
state, so the populations at three states are the steady state populations n0 = pss0, n1 = pss1
and n2 = pss2. Then, the qutrit is excited by two pulses π01

x and π12
x , so the populations

at state 0, 1 and 2 becomes n0 = pss1, n1 = pss2 and n2 = pss0. Afterwards, the qutrit
starts relaxing, so the populations at state 1 and 2 when t = 0 are n1(t = 0) = pss2 and
n2(t = 0) = pss0. Due to thermal excitations, the qutrit steady state is not its ground
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state, so pss0 < 1. For simplicity, we assume pss2 = 0, which is also reasonable due to the
large gap between state 0 and 2. To characterize the steady state populations we perform
two rabi experiments. In the first one, the qutrit is prepared at the steady state, then the
populations at state 1 and 2 are swapped by a π01

x pulse, as shown in Fig 5.7 b. Afterwards,
0-1 rabi experiment is performed, where the amplitude of rabi oscillation A0 is proportional
to pss0. In the second one, π01

x and π12
x pulses are applied to the qutrit steady state. The

state populations are shown in Fig 5.7 c. Then, 0-1 rabi experiment is performed, from
which we obtain the amplitude of the rabi oscillation A1, which is proportional to pss1.
Therefore, we obtain the relation A0

A1
= pss0

pss1
. With the assumption pss0+pss1 = 1, we are able

find the steady state populations of the qutrit. In experiments, we find pss0 = 0.95± 0.02.
Assuming the qutrit reaches the thermal equilibrium when it is at the steady state, so
the ratio pss0 to pss1 equals to the Boltzman factor pss0/pss1 = exp(−~ω01/KBT ), yielding
the effective temperature T in the range 27 − 32 mK, which shows a good match to the
cryostat temperature 27 mK. In other experiments on superconducting qubits [43, 44], large
differences between the effective temperature and the cryostat temperature are observed
for qubits with long coherence times.

Figure 5.7: Diagram of populations at state 0, 1 and 2 for characterization of steady state
populations. a) The qutrit is at the steady state, b) A π01

x pulse is applied to the qutrit
steady state to swap the populations at state 0 and 1, and c) π01

x and π12
x pulses are applied

to the qutrit steady state to swap the populations at state 0 and 1 followed by swap between
state 1 and 2. The steady state populations are represented by red disks with different
sizes.

Plugging the steady state populations to Eq 5.26, the time dependent populations are
only determined by the transition rates Rij, and the population equations are used to fit
the populations extracted from qutrit relaxation measurement. In the experiment of qubit
coherence introduced in section 5.3.2, we find the relaxation rate of the qubit given as
Γ1 = 1

T1
. It is related to the up and downward transition rates by Γ1 = R10 + R01. The
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Rate at 0.5 Φ0 at 0.501 Φ0

R01 1.4 kHz 1.2kHz
R10 29.5 kHz 63.4kHz
R12 8.8 kHz 0.4kHz
R21 124.3 kHz 78.1kHz
R02 0.1 kHz 0.01kHz
R20 27.8 kHz 61.1kHz

Table 5.2: Qutrit transition rates obtained from measurements of multilevel coherence.

transition rates are also related to the steady state populations as R10/R01 = pss0/pss1.
With these two equations, R10 and R01 can be found. In the fit, we assume the effective
temperatures for 0-2 and 1-2 transitions are the same to that of the 0-1 transition, so we
have restrictions on the ratios of R21/R12 and R20/R02. Therefore, there are only two fitting
parameters R21 and R20 in the fitting. The multilevel relaxation model fits the relaxation
data well as shown in Fig 5.6. The transition rates are listed in table 5.2. We also performed
multilevel coherence measurements at an off-symmetry point where Φext = 0.501Φ0, the
transition rates are found comparable to those at the symmetry point as shown in table
5.2. Although flux noise can not cause 2-0 transitions at the symmetry point due to the
selection rule, the extracted transition rate R20 is not 0. We think the transition may be
caused by charge noise or coupling to the resonator.

5.4 Summary

We have presented a new design of capacitive shunted flux qubit and the full capacitance
matrix circuit model. We test a new photolithography system MLA 150, and utilize it in the
fabrication of the CSFQ device. The qubit lowest three energy levels are characterized with
qubit spectroscopy measurement, and the energy levels at different flux biases is the great
agreement to the capcitance matrix model. We observe large qubit anharmonicity A =
ω12−ω01 = 2π×3.69 GHz and large relaxation time reaching as high as 47 µs. We perform
qutrit tomography to reconstruct the full density matrix, and the tomography fidelity
reaches 99.2%. We measure the multilevel relaxation, and use the multilevel relaxation
model to extract the transition rates.
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Chapter 6

Conclusion

In this thesis, we have presented results on two topics, which are the design of a new
experiment on the fast switchable ultrastrong coupling between superconducting artifical
atoms and electromagnetic fields, and the development of the capacitively shunted flux
qubit.

The project of ultrastrong coupling is concerned with the study the spin-boson model
when the coupling strength between the two-level system and the bosonic bath reaches
the ultrastrong coupling regime. We propose three experiments to directly measure the
coherence of the two-level system including the relaxation and dephasing, and the the
renormalized tunnling frequencies in the ultrastrong coupling regime and in a controllable
manner. We present a novel design of a fast-switchable coupling system based on su-
percondcting circuits, which consists of a two-loop flux qubit galvanically coupled to an
open transmission line, qubit bias lines, qubit drive lines and state readout circuits. By
controlling the two fluxes in the two qubit loops, we can fast switch off the coupling and
quickly tune the coupling strength into the ultrastrong coupling regime, which results in
the capability of measuring the system dynamics in the ultrastrong coupling regime with
a controllable manner. Detailed experiment steps and pulse sequences of two bias fluxes
and readout signals are presented for each experiment.

The core of the USC experiment is the design and circuit model of the flux qubit,
which is composed of a main loop and a coupler loop. The qubit design is inspired by
two-qubit couplers. Compared to the tunable qubit in [1], this qubit can be effectively
decoupled from the open transmission line. Simulations of qubit properties such as qubit
transition frequencies, anharmonicities and persistent currents are presented. We estimate
the coupling strengths that are characterized by αSB, the qubit relaxation rates, as well
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as the pure dephasing rates that are caused by low frequency current noises in the open
transmission line. The overlaps between the states at the ultrastrong coupling points and
the subspace spanned by the ground and the excited states at the decoupling point are
simulated. The results shows that there are still large overlaps for points in the ultra-
strong coupling regime. We demonstrate that the three proposed experiments can be well
implemented based on the simulation results.

Qubit bias, driving and readout circuits are important parts of the device. The qubit is
biased and drived with two inductively coupled flux lines. We send DC signals to provide
static flux bias, and fast pulses to drive the qubit and tune the flux bias. The high-frequency
pulses enables fast-tuning of flux bias, resulting in the fast-switchable coupling. Qubit
states are measured in the flux basis with a coplanar waveguide (CPW) resonator with
one end grounded by a DC-SQUID and the other end capacitively coupled to a feedline.
The circuit model is presented, and the resonance frequencies is simulated. Finally, we
simulate the coupling strengths between the qubit and flux lines or the readout resonator
and we find that compared to the open transmission line, these two circuits are not main
decoherence sources of the qubit.

In the second part of the thesis, we propose a new design of CSFQ, which contains
three Josephson junctions and three shunting pads. Shuning all three Josephson junctions
redistributes the electric field from the area of lossy junction barrier to large shunting pads
uniformly, which effectively reduce the participation of the lossy materials and leads to
better qubit coherence. Besides, since the capacitive pads, which dominate the junction
capacitances, have much larger sizes than junction areas, the reproducibility of CSFQ
device in fabrication has been greatly improved. In experiments, the qubit energy levels at
different flux biases matches well with the full capacitance matrix model, which takes into
account all the capacitances between the qubit and other circuits. The qubit is found to
have both large anharmonicity A = 2π × 3.69 GHz, and high coherence with T1 = 40± 5
µs. Compared to the qubits in [2], which has the best coherence time ever reported for
CSFQ, our qubit has comparable relaxation times, but much larger anharmonicity at the
symmetry point.

Taking the advantage of large anharmonicity, we conduct experiments on multilevel
quantum control and multilevel relaxation measurement. We perform qutrit state tomog-
raphy to reconstruct the full density matrix with the tomography fidelity reaching 99.2%.
We are able to extract the time-dependent state populations for the relaxation process of
a qutrit, and extract the exact transition rates between the three levels with the multlevel
relaxation model [42]. The multilevel relaxation time shows similar results to the qubit.
The ability to perform full quantum control and having good multilevel coherence make
our CSFQ applicable to quantum computations based on qutrits.
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6.1 Outlook

We have presented a full device design for implementing the first experiments on directly
measuring the dynamics of the spin-boson model in the ultrastrong coupling regime. The
next step is proceeding to fabricate the device and perform the qubit measurement exper-
iments. The near term goal of these experiments is the observation of the USC regime in
the time domain. In the longer term, we hope that this platform can provide the basis
for measurement of two-qubit entanglement and other potential applications in the field of
relativistic quantum information.

We developed, implemented, and characterized a new type of qubit design — a ca-
pacitively shunted flux qubit with three capacitor pads. Unlike transmons, the CSFQ still
keeps large anharmonicity while improving the coherence, which makes it a good candidate
to build fast quantum gates. A good starting point for implementing CSFQ in gate-based
quantum computing is to biuld fast and high-fidelity two qubit gates. Another interesting
research direction is investigating the potential of utilizing CSFQ in quantum computations
involving multilevel structures.
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