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Abstract

This thesis studies several combinatorially defined families of subsets of the Grass-
mannian of k-dimensional subspaces of R™, Gr(k,n). We introduce and study a family
of subsets called “basis shape loci” associated to transversal matroids. Additionally, we
study the Deodhar and positroid decompositions of the Grassmannian.

A basis shape locus takes as input data a zero/nonzero pattern in an n X k matrix,
which is equivalent to a specific presentation of a transversal matroid. The locus is defined
to be the set of points in Gr(k,n) which are the row space of a matrix with the prescribed
zero/nonzero pattern. We show that this locus depends only on the transversal matroid,
not on the specific presentation. When a transversal matroid is a positroid, the closure
of its basis shape locus is exactly the positroid variety labelled by the matroid. We give
a sufficient, and conjecturally necessary, condition for when a transversal matroid is a
positroid.

Components in the Deodhar decomposition are indexed by Go-diagrams, certain fillings
of Ferrers shapes with white stones, black stones, and pluses. Le-diagrams are a common
combinatorial object indexing positroids; all Le-diagrams are Go-diagrams. We give a
system of local flips on fillings of Ferrers shapes which may be used to turn arbitrary
diagrams into Go-diagrams. When a Go-diagram is a Le-diagram, these flips are exactly
the previously studied Le-moves. Using these local flips, we conjecture a combinatorial
condition describing when one Deodhar component is contained in the closure of another
within a Schubert cell. We define a variety containing and conjecturally equal to the closure
of a Deodhar component and prove that this combinatorial criterion implies a containment
of these varieties. We further show that there is no reasonable description of Go-diagrams
in terms of forbidden subdiagrams by providing an injection from the set of valid Go-
diagrams into the set of minimal forbidden subdiagrams. In lieu of such a description, we
give an algorithmic characterization of Go-diagrams.

Finally, we use the above results to prove several corollaries about Wilson loop cells,
which arise in the study of scattering amplitudes in N/ = 4 supersymmetric Yang-Mills
theory. Notably, it was previously known that the matroid represented by a generic point
in a Wilson loop cell is a positroid. We show that the closure of the Wilson loop cell agrees
with the positroid variety labelled by this positroid.
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Chapter 1

Introduction

This thesis studies several combinatorially defined families of subsets of the Grass-
mannian of k-dimensional subspaces of R"”, Gr(k,n). The most familiar families are the
Schubert and Richardson decompositions of Gr(k,n). These decompositions are both ma-
troidal in the sense that cells may be defined by setting certain Pliicker coordinates on the
Grassmannian to zero, demanding that other Pliicker coordinates do not vanish, and not
specifying whether or not the remaining Pliicker coordinates vanish. Other common ma-
troidally defined decompositions of the Grassmannian include the positroid stratification,
the Deodhar decomposition, and the GGSM decomposition (after after Gelfand, Goresky,
MacPherson, and Serganova). These decompositions are all refinements of each other, with
the Schubert decomposition being the coarsest, the Richardson being finer than the Schu-
bert, the positroid finer than the Richardson, the Deodhar finer than the positroid, and
the GGSM finer than the Deodhar. Geometrically, the cells in all of these decompositions
aside from the GGSM decomposition are known to have nice properties. GGSM strata are
famously poorly behaved, giving rise to “Murphy’s law” type results [57].

Our focus will be on the finer, but still reasonable end of this hierarchy of decomposi-
tions, giving results about Deodhar components and positroids. Additionally, we define a
new family of subsets of the Grassmannian associated to transversal matroids, which we
call basis shape loci.

The study of totally positive matrices dates back to the 1930’s, and was developed into
the theory of total positivity in reductive groups and partial flag manifolds by Lusztig in the
1990’s [43, 44]. In the case of Gr(k,n), the totally positive part is the subset Grso(k,n)
where all Piicker coordinates have the same sign. Postnikov studied Grso(k,n) from a
combinatorial perspective in [53]. There, he showed that the intersection of a matroid’s



representation space with Grso(k,n) is either empty or parameterized by RZ, for some m,
giving a combinatorial realization of a parameterization studied by Marsh and Rietsch in
[47]. This decomposition gives Grso(k,n) the structure of a regular CW complex. The
positive Grassmannian, the matroids and the cells appearing in this decomposition, and
extensions of this decomposition to the entirety of Gr(k,n) have all received significant
attention in recent years. Though we will not attempt to give an exhaustive survey of the
field, we highlight a few notable results.

In geometry, Knutson, Lam, and Speyer showed that Postnikov’s stratification of
Grso(k,n) agrees with the stratification of Grso(k,n) by projections of Richardson va-
rieties from the full flag manifold [36, 37]. They showed that projections of Richardson
varieties enjoy many of the nice geometric properties which hold for Richardson varieties:
they are normal, Cohen—Macaulay, and have rational singularities. They further show
that projected Richardson varieties are the only compatibly Frobenius split subvarieties of
a (partial) flag variety. In [35], Knutson also noticed that certain varieties appearing during
a shifting process in Vakil’s geometric Littlewood-Richardson rule [56] were a special class
of projected Richardson varieties. Topologically, Galashin, Karp, and Lam showed in [27]
that Gr>o(k,n) is homeomorphic to a ball.

In combinatorics, positroids, the class of matroids appearing in Postnikov’s stratifica-
tion, have received a significant amount of attention. Postnikov gave a plethora of combi-
natorical objects indexing positiods in [53], including decorated permutations, Grassmann
necklaces, and planar bicolored graphs. Ardila, Rincén, and Williams used a connection
between positroids and non-crossing partitions to give enumerative results about positroids
in [7]. They further describe positroids as the class of matroids whose matroid polytope is
defined by inequalities involving only cyclic interval of elements from the matroid’s ground
set. Deep connections between total positivity phenomena and cluster algebras have also
been the subject of intense study [24].

In physics, a connection between the positive Grassmannian and scattering amplitudes
in N' = 4 supersymmetric Yang-Mills (SYM) theory was described in [9]. A certain pro-
jection of Grso(k,n) called the amplituhedron was defined in [11]; it was conjectured that
volumes of the amplituhedron computed scattering amplitudes and that positroid cells re-
lated to the BCFW recurrence relation (after Britto, Cachazo, Feng, and Witten) projected
to a triangulation of the amplituhedron. In [32] and [33] this triangulation was related to
a classic triangulation of cyclic polytopes due to Rambau [54].

Deodhar components were originally introduced in [21] to help compute Kazhdan and
Lusztig’s R-polynomials, which may be used to recursively compute Kazhdan-Lusztig poly-
nomials. Associated to any pair of permutations u and v with v < v in Bruhat order is



a Richardson cell R, , in the full flag manifold. The number of points in R, , in the flag
manifold over the finite field F, is a polynomial in ¢. This polynomial, R, ,(g), is the
R-polynomial associated to u and v. Deodhar introduced a decomposition refining the
Richardson decomposition in which each “component” is a product of affine spaces and
tori. This allowed him to decompose R, ,(q) as a sum of terms of the form ¢‘(q — 1)™.
While each summand becomes simple, this simplification comes at the cost of making com-
ponents in the decomposition relatively complicated to define, and of sacrificing many nice
geometric properties enjoyed by Richardson cells. Notably, the Deodhar decomposition is
not a stratification; the closure of a Deodhar component is not in general a union of other
Deodhar components.

The projection of the Deodhar decomposition from the flag manifold to the Grassman-
nian was studied in depth by Kodama and Williams in [39]. Their motivation was to study
KP-solitons, systems of solitary waves satisfying the KP-hierarchy of differential equations.
From any point in the Grassmannian, one may produce a solution to the KP-hierarchy.
Asymptotically with time, a soliton solution to the KP-equations assumes a fixed shape.
Kodama and Williams showed that this fixed shape depends only on which Deodhar com-
ponent the point used to produce the solution lies in. In proving this, they developed a
diagrammatic indexing set, Go-diagrams, for Deodhar components in the Grassmannian.

One does not expect the projection of the Deodhar decomposition to the Grassman-
nian to be any less wildly behaved than the Deodhar decomposition of the flag manifold.
However, a reasonable question to ask is: When is one Deodhar component contained in
the closure of another? We define a more combinatorially tractable variety which is con-
jecturally identical to the closure of a Deodhar component in a Schubert cell. We show
that one of these varieties is contained in the closure of another when their Go-diagrams
are related by a certain diagrammatic procedure. We conjecture that the same result holds
for Deodhar components, and prove this fact for positroid varieties.

This diagrammatic procedure should be thought of as an extension of the “Le-game”,
studied by Lam and Williams in [41]. Their goal was to describe in terms of forbidden
subdiagrams a combinatorial indexing set for cells stratifying the totally positive part
of other cominiscule Grassmannians. They define a local procedure which recognizes a
violation to a diagram indexing a positive cell, then locally removes this violation. They
show that this procedure converges to a diagram indexing a positive cell, and are able to
use it to completely describe sets of forbidden subdiagrams in types B and D (the type
A case was already known). Our procedure behaves similarly, recognizing violations to
a diagram indexing a Deodhar component, and locally removing these violations. Unlike
Lam and Williams’s work, this procedure does not yield a description of Go-diagrams in
terms of forbidden subdiagrams. In fact, we are able to show that no reasonable description



of this form can exist.

We define and study a further set of subvarieties of the Grassmannian, which we call
basis shape loci. A basis shape locus takes as input a zero/nonzero pattern in a k x n
matrix. The locus is defined to be the set of planes which are row spaces of matrices with
the prescribed zero/nonzero pattern. Associated to a zero/nonzero pattern in a matrix
is a transversal matroid, which is the matroid represented by a generic evaluation of the
nonzero parameters. Transversal matroids are one of the older classes of matroids to
receive significant study, for instance [15, 19]. We show that the closure of a basis shape
locus depends only on the transversal matroid, not the specific zero/nonzero pattern. This
theorem is proved by recognizing that if the zero/nonzero pattern has more nonzero entries
than the minimum number across all patterns giving the same transversal matroid, then
one of the nonzero entries may be set to zero without altering the closure of the basis shape
locus. This fact provides a geometric realization of a well known combinatorial fact about
transversal matroids [19].

We further show that when a transversal matroid is a positroid, the closure of its basis
shape locus is exactly the associated positroid variety. As special cases, we see that all
Schubert and Richardson varieties are closures of basis shape loci.

This theorem relating basis shape loci and positroid varieties leads us to ask when
a transversal matroid is a positroid. We give a sufficient and conjecturally necessary
condition. in terms of avoidance of a certain sub-arrangement of the nonzero entries of the
matrix defining a transversal matroid, describing when a transversal matroid is a positroid.
This condition is a direct generalization of the observation that it is not possible to fill in
the stars in the matrices

* 0 % 0 * 0 % %
0 = 0 = or 0 %« 0 =*

with nonzero numbers such that all 2 x 2 minors are nonnegative. This condition generalizes
Ardila, Rincon, and Williams’s result relating positroids and noncrossing partitions. We
prove that this condition is necessary for a transversal matroid to be a positroid in many
special cases, and offer computational evidence for this fact as well.

Finally, we apply our results about basis shape loci and Deodhar components to study
subsets of Gr(k,n) defined by Wilson loop diagrams, which arise in a program to compute
scattering amplitudes in N' = 4 SYM theory. We prove that the cell associated to each
Wilson loop diagram is 3k-dimensional. Each Wilson loop diagram has an associated
positroid, and we show that the closure of the Wilson loop cell is exactly the corresponding
positroid variety. In joint work with Agarawala, we show that a certain vector bundle over
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a Wilson loop cell is a union of Deodhar components. We describe the boundary structure
of Deodhar components appearing in this union.

Chapter 2 collects necessary background and proves a few preliminary technical re-
sults which will be used later. Combinatorial background includes the notion of distin-
guished subexpressions of permutations in the symmetric group; Go-diagrams, which are
a diagrammatic mnemonic for these expressions; and matroidal background emphasizing
positroids and transversal matroids. Geometric background includes the positroid and De-
odhar decompositions of the Grassmannian, and an explanation of how to obtain explicit
parameterizations of the cells in these decompositions using Go-diagrams. Chapter 3 in-
troduces and studies basis shape loci. Chapter 4 studies the Deodhar decomposition and
the Go-diagrams indexing cells in this decomposition. Chapter 5 applies results from the
previous chapters to study Wilson loop cells.

Most of the work in this thesis previously appears in [45] and [46] by the author, and [6]
by Agarwala and the author. Material in Chapter 3 and Section 5.2 is from [46]. Material
in Chapter 4 aside from Section 4.4 is from [45]. Material from Section 4.4 and from
Chapter 5 aside from Section 5.2 is from [6].



Chapter 2

Background

2.1 Permutations and Pipe Dreams

Let s; denote the adjacent transposition (¢,7 + 1) in the symmetric group &,,. Itali-
cized lowercase letters, v, will denote permutations and bold faced letters, v, will denote
specific expressions for permutations in the s;’s. A subexpression of v is a permutation
obtained by replacing some of the factors in v by ¢, the identity permutation in &,,. The
terms “expression” and “word” will be used interchangeably, as will “subexpression” and
“subword.”

Given an expression v = vz Uy, let vy = vivy---v; denote the product of the
initial ¢ factors of v. So, vy = ¢ and v, = v.

The length of a permutation, ¢(v), is the minimum number of letters in an expression
of v. A word is reduced if {(viy1)) = L(vg)) + 1 for every . All reduced words for a
permutation contain the same number of adjacent transpositions. The Bruhat order on
permutations is the order given by setting u < v if and only if some reduced word for u is
a subword of some reduced word for v.

A subexpression u of v is distinguished if whenever ¢(ugyviy1) < {(ugy), one also has
Uir1 = Vg1, (1.6 wjpq # €). Write u < v if u is a distinguished subexpression of v. A
subexpression u of v is positive if £(ugy1)) > (u()) for all 7.

Example 2.1.1. Let v = 515951535251. Then,

ceecee, s1es1eee, and s1e€c€8,



are three subexpressions for the identity permutation in v. The first is positive and dis-
tinguished, the second is distinguished but not positive, and the third is neither positive
nor distinguished.

Lemma 2.1.2 (Lemma 3.5 in [47]). Let u < v be permutations and v be a reduced expres-
sion for v. Then, there is a unique positive distinguished subexpression for u in v.

The Young subgroup &, x &, C &,, acts on a permutation (v(1),v(2),...,v(n))
by letting S,,_; act on (v(1),v(2),...,v(n —k)) and S act on (v(n — k + 1),v(n — k +
2),...,v(n)). Any coset in the quotient S,,/(&,_; x &) has a unique representative of
the form (i1, 42, ..., 90—k, J1,J2,- - -, Jk) Where i1 < iy < -+ < i, and j; < jo < -+ < Jy.
These representatives are called Grassmannian permutations. Let ([Z}) be the collection
of k element subsets of [n] = {1,2,...,n}. Grassmannian permutations are in bijection
with subsets in ([Z}) sending (1,92, - - -, bn—k, J1,J2, - - - s J&) 10 {J1, J2s - - -, Jr }- Often, we will
suppress curly braces and commas when writing sets to avoid unwieldy notation, writing
Jije - - - Jx to mean {ji, jo, ..., Jx }-

The Bruhat order on &,, induces an order on the quotient &,,/(S,,_; x &) and thus
a partial order on ([Z]). Concretely, if I = {iy,i,...,ix} and J = {j1,72,..., 7k} with
i <idg < -+ <ipand j; < Jo <--- < Jg, then I < Jif and only if i, < j,, for all m. This
partial order is called the Gale order on sets.

A Ferrers shape is a collection of boxes obtained by taking a lattice path from the
Northeast to Southwest corner of a (n — k) X k rectangle, then taking all boxes Northwest
of this lattice path. The steps of the lattice path are labelled 1 to n starting at the
Northeast corner. A box b has coordinates (i, 7) if the vertical step of the boundary in the
same row as b is labelled ¢ and the horizontal step of the boundary in the same column
as b is labelled j. For an illustration, see Example 2.1.3. Ferrers shapes contained in
an (n — k) X k box are in bijection with subsets ([Z]) sending the Ferrers shape A to the
set I of labels of the vertical steps in its boundary path. Composing bijections, to the
Ferrers shape A we also associate a Grassmannian permutation vy. Pictorially, the Gale
order on ([Z]) translates to containment of Ferrers shapes. If I < .J, then the Ferrers shape
associated to J is contained in the Ferrers shape associated to I.

Given a box b in a Ferrers diagram D, b is the set of boxes in D weakly to the right
and weakly below b. Additionally, set v°“* = D \ b™. We introduce a partial order on the
boxes in a diagram, saying ¢ < b if and only if ¢ € b,

A pipe dream is a filling of a Ferrers shape with crossing tiles and elbow pieces,

-+ | and \\'




Think of this filling as a collection of pipes flowing from the Southeast boundary to the
Northwest boundary. From a pipe dream, we obtain a permutation by labelling the edges
along the North and West boundaries of the Ferrers shape such that for each pipe in the
diagram, both ends of the pipe have the same label, then writing down the labels that
appear along the Northwest boundary in order starting from the Northeast corner.

Say that two squares b and ¢ in a pipe dream are a crossing/uncrossing pair if two
pipes cross in b, flow to the Northwest, then next uncross in c¢. A pipe dream is reduced
if it has no crossing/uncrossing pairs. Note that a crossing tile is a crossing if the label
of the pipe entering from the bottom is larger than the label of the pipe entering from
the right, and is an uncrossing otherwise. A certain class of pipe dreams was originally
defined by Bergeron and Billey in [12], where they were called RC-graphs for “reduced
word, compatible sequence.” Diagrams of this type were later renamed pipe dreams by
Knutson; we choose this terminology since the pipe dreams we consider will not in general
be reduced. Another potential point of confusion: pipe dreams as introduced by Bergeron
and Billey use an elbow piece which is a reflection of ours, and flow from Northeast to
Southwest. We take our convention from [39].

Example 2.1.3. The pipe dream in Figure 2.1 gives the permutation (2,1,3,4,5,7,6).
The squares (4,5) and (1,7) form a crossing/uncrossing pair.

4 3 1 2
5—|—\\\\—|—1
2
TN
64|~ |4
7 6 5

Figure 2.1: Example of a Pipe Dream.

A o/+-diagram is a filling of a Ferrers shape with white stones and pluses,

O and —|—

Pipe dreams are in bijection with o/+-diagrams, replacing the crossing tiles with white
stones and the elbow pieces with pluses. This bijection is unfortunate, but is the standard
convention in the literature.



A e/ o /+-diagram is a filling of a Ferrers shape with black stones, white stones, and
pluses,

o O and —|—

Y Y

We map e/ o /+-diagrams to pipe dreams by sending both the black and white stones to
crossing tiles, and sending the pluses to elbow tiles. So, e/o /+-diagrams are o/+-diagrams
where the stones have been decorated to have two colors. Often, but not always, we will
require that stones be colored black if and only if they are mapped to uncrossing tiles in
the pipe dream. We state whether or not we make this assumption at the start of each
section where e/ o /+-diagrams appear. For the remainder of this section, this assumption
is not imposed.

Assign a transposition to each box in a Ferrers shape as follows. Assign the top left
box of a Ferrers shape contained in a k x (n — k) box the simple transposition s,_. If the
box to the left of b is assigned the transposition s;, assign s;_; to b, and if the box above b
is assigned s; assign s;11 to b . Observe that for any box b, the permutation corresponding
to the o/+ diagram where b is filled with a white stone and all other boxes are filled with
pluses is exactly the transposition labelling b. This fact is illustrated in Figure 2.2. We
use s, to denote the simple transposition labelling the box b.

5 3 2 1
RN
6~ 51 N8
7S 4

7 6 5

Figure 2.2: Simple transposition associated to a box in a Ferrers shape.

A reading order on a Ferrers shape A containing m boxes is a filling of the boxes
with the integers from 1 to m which is increasing upward and to the left. Reading the
transpositions decorating the boxes of the Ferrers diagram in any reading order yields a
reduced expression v for v,. Reading only the transpositions decorating boxes containing
stones in either a o/+ or a /o /+-diagram in the same reading order gives a subexpression
u of v for the permutation u given by the pipe dream associated to the diagram.



Theorem 2.1.4 (Proposition 4.5 in [41]). Let D be a o/+ or a e/ o /+-diagram yielding
the subword, word pair u,v in some reading order.

(i) The permutations v, coming from the Ferrers shape, and w, coming from the pipe
dream depend only on D, not the choice of reading order.

(ii) Whether u is a distinguished subexpression of v depends only on D, not the choice
of reading order.

(11i)) Whether u is a positive subexpression of v depends only D, not on the choice of
reading order.

This theorem is proved by noting that if the expressions u and u’ are obtained by
altering the reading order on the same diagram, then they are related by commutations of
the Coxeter generators, and thus u = v’

Let b be a box in the o/+ or e/ o /+-diagram D. Define uj), to be the permutation
obtained by multiplying the transpositions labelling all boxes containing stones in b in
D in some valid reading order. As a corollary of Theorem 2.1.4, uﬁn does not depend on
the choice of reading order. If the diagram is clear from context, we will simply write wuyin
instead of ufm. Let

D {sb it b contains a stone in D,
u =
b

¢ if b contains a plus in D.
We will simply write uj instead of u? if the diagram is clear from context.

Definition 2.1.5. Let D be a o/ o /+-diagram. Then, D is a Go-diagram if and only if for
every box b in the diagram, b contains a black stone if and only if ¢(uginupsy) < €(upinup).

Diagrammatically, uynuyp is the permutation coming from the diagram where the filling
of every box in b°“* U b has been changed to a plus. The permutation wuyinuss;, corresponds
to the diagram where the filling of every box in b°“* is changed to a plus and the filling of
b is changed to a stone.

Let u, v be the subword, word pair associated to the diagram D in some reading order.
Theorem 2.1.4 implies that if D is a Go-diagram, then u is a distinguished subexpression
of v, and that this property is independent of the choice of reading order. If a box b has
the property that

C(upinupsy) < C(uginuy),
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but b is not filled with a black stone, we say that b violates the distinguished property. For
example, in the pipe dream in Figure 2.1 the box (3, 6) violates the distinguished property
since

(s1eee)(e)(s1) < (s18€¢)(e).

Diagrammatically, one can see that this box violates the distinguished property since the
pipes 4 and 5 are appear in this box with 4 entering from the bottom. So, if there were a
crossing tile placed in (3,6) in the pipe dream, it would be an uncrossing.

Definition 2.1.6. Let D be a e/ o /+-diagram. Then, D is a I-diagram if any of the
following equivalent criteria hold:

(i) D is a Go-diagram and contains no black stones.

(ii) Let u,v be the subword, word pair associated to D. Then, u is a positive distin-
guished subexpression of v

(iii) D contains no black stones, and there is no box b in D containing a white stone such
that there is a plus to the left of b in its row and above b in its column.

The equivalence between (i) and (ii) is immediate. The equivalence between (ii) and
(iii) is Theorem 5.1 in [41]. The condition in (iii) is called the I-property because the
forbidden configuration in point (iii) forms a backwards L shape. Figure 4.3 illustrates a
special case of this forbidden configuration.

Example 2.1.7. Consider the diagrams

O+ |41 1 0|0
+|+]0]2 + |+
o 4

> 4 3

_|_
—+ 12
=

The diagram on the left corresponds to the subexpression sseeeess of s95354515253 and the
diagram on the right corresponds to the subexpression eccesys;. The diagram on the left
is not a Jd-diagram, which can be seen by noting that its subexpression is not distinguished
or by noting that the box (2,3) contains a white stone, but has a plus both above it and
to its left.

Proposition 2.1.8. The locations of only the white stones or of only the pluses are enough
to uniquely determine a Go-diagram.

11



Proof. Given a Ferrers shape filled with white stones, we complete the filling in increasing
order in the partial order on boxes. If ¢ is some box in the diagram and all boxes in ¢\ ¢
have been filled, we may compute the permutation wu.nu., which does not depend on the
filling of ¢. Then, fill ¢ with a plus if {(ugnucs.) > ((uznu.) and fill ¢ with a black stone
otherwise.

Given a Ferrers shape filled with pluses, construct a pipe dream by placing elbow tiles
in the squares containing pluses and crossing tiles in all other squares. Then, for each
square not containing a plus in the Ferrers shape, fill it with a white stone if the square is
a crossing in the pipe dream and a black stone if it is an uncrossing. O]

The following proposition follows directly from the definitions.

Proposition 2.1.9. Let D be the Go-diagram associated to the distinguished subexpression
u < v. Then,

l(u) = F#(of o’s in D) — #(of ®’s in D)
=l(v) — #(of +’s in D) — 2 - #(of ®’s in D).

2.2 Geometric Background

Let Mj, be the space of & x n real matrices and
MisF ={A € My, : tk(A) = k}.

Let
Gr(k,n) ={V Cc R": dim(V) = k}

be the Grassmannian of k-dimensional subspaces of R". Choosing a basis of R", any point
in Gr(k,n) can be represented as the row span of a matrix in M%*. If A € MX* and
I e ([Z]), let A7(A) be the determinant of the square matrix obtained by restricting A to the

column set /. Two matrices A and B in M, ,ﬁknk represent the same point in Gr(k,n) if and

only if there is some X € GL(k) such that X - A = B. In this case, A;(B) = det(X)A[(A)

for all S € ([Z]). So, there is a map to the projective space P<Z)_1,

pGi)-1
(Do b (V) ot Apegyn-1)a(V)-

Gr(k,n)

_>
Vv —>
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This map is an embedding of the Grassmannian into projective space called the Plicker
embedding. For a point V' € Gr(k,n), the collection

(Arg (V) i oe- A(n—/’f)m(n—l)”(v))

are called the Pliicker coordinates of V. When there is no confusion, we will suppress the
reference to V, simply using A; to denote the I*" Pliicker coordinate of V. For I,.J € ([Z]),
i € I and j € J, define sgn(I,i;J,j) by ordering the indices of I and J in increasing
order, placing j in ¢’s old position in I and 7 in j’s old position in J, then taking —1 times
the product of the signs of the two permutations need to rearrange to new sets so that
their elements are in increasing order. The image of the Pliicker embedding is a projective
variety defined by the Plicker relations,

ANy = sen(l, i J, ) Anig Ao (2.1)

jed

For example,

A123A245 = A223A145 - A234A125 + A235A124

is a Pliicker relation. Since Agsgz vanishes uniformly when viewed as a minor of a matrix

and does not even exist when viewed as a coordinate on ]P’(Z)_l, this relation simplifies to

A123A245 = A235A124 - A234A125-

We will often only be concerned with determining whether certain Pliicker coordinates
vanish uniformly on a subset of Gr(k,n), and will often be able to ignore signs in Pliicker
relations. For an example of this vanishing/non-vanishing arithmetic, if Agzy and Ajgy
vanish on some subset of the Grassmannian and Ajs3 is nonvanishing on this subset, the
Pliicker relation above implies Asys also vanishes on the subset of the Grassmannian in
question.

The positive Grassmannian also called the totally nonnegative Grassmannian, Grso(k,n),
is the subset of Gr(k,n) where all nonzero Pliicker coordinates have the same sign. For
example,

1 0 -1 =2
span<0 1 9 )EGT’>0(2,4),

and

e}

1 -1 =2
span(O L 0 2 )gé Grso(2,4).
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2.2.1 Decompositions of the Grassmannian

This section briefly introduces a hierarchy of decompositions of the Grassmannian as-
sociated to pairs of permutations. This thesis will be primarily concerned with the finer
decompositions in this hierarchy, the positroid and Deodhar decompositions, which are
given more detailed individual treatment in Sections 2.2.2 and 2.2.3.

Let v € G,, be the Grassmannian permutation associated to Ferrers shape A. Associated
to pairs of permutations u,v with various constraints imposed on u, there are several
decompositions of the Grassmannian Gr(k,n). The stricter the constraint imposed on
u, the coarser the decomposition of the Grassmannian. Table 2.2 presents the common
decompositions of Gr(k,n) and the associated constraints on u, arranged from coarsest to
finest.

’ Decomposition ‘ Notation ‘ Constraints on u ‘
Schubert S, u=c
Richardson R u is Grassmannian, u < v
Positroid Puw u <
Deodhar Duv u<v

Table 2.1: Common decompositions of Gr(k,n).

The Deodhar decomposition differs from the other decompositions in this list in that
it doesn’t just care that v < v, but how u is presented as a subword of v.

All of the components in these decompositions have the feature that they can be de-
scribed as subsets of the Grassmannian by setting certain Pliicker coordinates to zero, de-
manding certain other Pliicker coordinates be non-zero, and leaving the remaining Pliicker
coordinates unspecified. The coarser the decomposition, the more Pliicker coordinates
are left unspecified. From a combinatorial standpoint, all of the decompositions can be
described as introducing decorations to the Ferrers shape .

The Schubert stratification remembers only A. This should be viewed coming from
the fact that the o/+-diagram corresponding to the positive distinguished subexpression
of identity permutation in v is A with every square with a plus. Let I, € ([z]) be the
set associated to v. The Schubert cell S, is defined by A;, # 0 and Ag = 0 for all
S # I,. In other words, S, consists of points in Gr(k,n) which are the row space of
a matrix whose reduced row echelon form has pivot columns I,. Using our bijections
between Grassmannian permutations, k-element subsets of [n], and Ferrers shapes inside
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a k x (n— k) box, we will also use Sy or Sy to denote Schubert cells. The set of generically
nonzero Pliicker coordinates on &, is an up-set in the Gale order on ([Z}).

The Richardson stratification introduces another Ferrers shape p contained inside .
The pair, written as A/u is called a skew shape. This should be viewed coming from the
fact that the o/+-diagram corresponding to the positive distinguished subexpression of u
in v can be obtained by first drawing the shape p associated u inside A, then filling all
squares in the skew shape \/u with pluses and filling all squares in p with white stones.
The Richardson cell R, is defined by A; ,Ar, # 0 and Ag = 0 for all S f I, and all
S z I. The set of generically nonzero Plicker coordinates on R, , is an interval in the

Gale order on ([Z}). We will also use Ry,; and R/, to denote Richardson strata.

The positroid and Deodhar decompositions will receive more detailed treatment in
Sections 2.2.2 and 2.2.3. From the description of the cells in these decompositions, it is
immediate that they refine each other.

Proposition 2.2.1. Let u,v € G,,, u < v, and let v be Grassmannian.

(1) If u is Grassmannian, R, C S,.

(11) If v’ is the unique Grassmannian representative in the same equivalence class as u
in S,/(6r X S,—k), then Py, C Ry .

(111) If u < v, then Dyy C Pyy.

2.2.2 The Positroid Decomposition

Positroid strata are in bijection with Jd-diagrams. Positroids were originally defined to
stratify positive Grassmannian. There have been several extensions of this stratification to
the entire Grassmannian. When we say “positroid strata,” we mean the stratification of
the Grassmannian by projections of Richardson varieties in the full flag manifold, studied
in [36].

The flag manifold, Fl(n), is the collection of flags {0} =V, Cc V3 C --- C V,, = R",
where dim(V;) = i. There is a natural projection from Fl(n) to Gr(k,n), sending

VwCcWViCc---CV,

15



to Vi. The flag manifold embeds into projective space via

Fl(n) <= Gr(0,n) x Gr(l n) X -+ X Gr(n,n)

o PO« () . ox p)-1
— ( ® ®]R()>

where the embedding on the first line is the product of the projections from Fl(n) to
Gr(k,n), the embedding on the second line is the coordinatewise Pliicker embedding and
the embedding on the third line is the Segre embedding. For any point in the flag manifold,
the coordinate (Ap,, A, -+ ,Az,) in the product of Pliicker embeddings vanishes unless
Iy Cc I C --- C I,. These flags of sets are in bijection with permutations, identifying the
permutation (o(1),0(2),...,0(n)) with

0 c{o(l)} c{o(1),0(2)} C---C{o(1),0(2),...,0(n)}.

Projecting out all but these coordinates, Fi(n) — P"~1. We denote these coordinates A,,
for 0 € G,,, and call them Pliicker coordinates for the flag manifold.

To a pair of permutations u < v, the associated Richardson cell is the subset of the flag
manifold defined by
Au7 Av 7£ 07
A, =0 for all w ¢ [u,v].

Definition 2.2.2. Let v < v. The positroid cell P,, is the projection from FI(n) to
Gr(k,n) of the Richardson cell associated to u < v in the flag manifold.

Multiple Richardson cells in the flag manifold project to the same positroid cell in
the Grassmannian. [36] describes exactly when two Richardson cells project to the same
positroid cell. The following theorem follows from Proposition 2.3 and Theorem 5.1 in [36].

Theorem 2.2.3. Put an equivalence relation on Bruhat intervals, letting [u,v] ~ [u/, 0] if
and only if Pyy = Puw .. Each equivalence class contains a unique interval [u,v] such that
v 15 a Grassmannian permutation.

Positroid cells have many other descriptions. Another common description, also given
in Theorem 5.1 of [36], is that positroid cells are intersections of cyclically shifted Schubert
cells in the Grassmannian.

Positroid cells were originally introduced to study the positive Grassmannian. Positroid
cells intersect the positive Grassmannian in their full dimension, and these intersections
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give Grso(k,n) the structure of a CW-complex. A parameterization of P, , N Gr>o(k,n) is
described in Section 2.2.4. This CW-complex was shown to be homeomorphic to a ball in
[27]. If P is a positroid cell, P>y will denote its totally nonnegative part, P N Grso(k,n).

Theorem 2.2.4 (Theorem 3.5 in [53]). Let u,v € S, u < v, and v be Grassmannian.
Then,

~ pdim(Py v
Puﬂ, N Grzo(k,n> = R>0( ’ )

These cells give Grso(k,n) the structure of a CW-complez.

2.2.3 The Deodhar Decomposition

Deodhar components in the Grassmannian are another family of algebraic subsets ob-
tained by setting some Pliicker coordinates equal to zero and demanding other Pliicker
coordinates do not vanish. They are indexed by Go-diagrams, Definition 2.1.5. Our de-
scription of Deodhar components appears as Theorem 7.8 in [55]. Deodhar components
were originally defined in [21].

Definition 2.2.5. Let b be a box in the Go-diagram D associated to the distinguished
subword pair u < v. Define

Iy = wyinup(vyin) 0{n,n —1,...,n —k +1}. (2.2)

Diagrammatically, I, may be computed by:

Changing the filling of all boxes in v°** to white stones,

changing the filling of b to a plus,

computing the pipe dream associated to this diagram, and

setting I, to be the labels of the pipes appearing along the left boundary of this pipe
dream.

Another interpretation of the sets I, telling us how to recover the sets [, given the
Deodhar component, is given in Theorem 2.2.25, originally Theorem 1.17 in [6].

Example 2.2.6. A Go-diagram D is pictured on the left of Figure 2.3. In the Ferrers
shape on the right, each box b is labelled with the set [, from D.
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456 | 245 | 234

146 | 145 | 134

+ @]+
O|+|®
+o]+

126 | 125 | 124

Figure 2.3: Sets I, labelling boxes of a Go-diagram.

Definition 2.2.7 (Theorem 7.8 in [55]). Let D be a Go-diagram of shape A. Then, the
Deodhar component D associated to D is the subset in Gr(k,n) defined by:

e A;, =0 for all boxes b € D containing white stones.

Ay, # 0 for all boxes b € D containing pluses.

AI)\#O‘
e Ag=0forall S¥#I,.

Note that there is no constraint imposed on coordinates A, where b contains a black
stone. These coordinates are generically nonvanishing on the Deodhar component.

The following Theorem may be proved by combining Theorem 2.1.4 with the fact that
reduced words for Grassmannian permutations do not admit braid moves.

Theorem 2.2.8 (Proposition 4.16 in [39]). Let Ry, be a Richardson cell in the Gram-
mannian. The decomposition

Ru,v = |_| Du,v

u=<v
does not depend on the choice of reduced word v.

Remark 2.2.9. The situation in the Grassmannian differs from the situation in a general
flag manifold, where different choices of v affect where in a Richardson cell a Deodhar
component embeds.

Example 2.2.10. The Deodhar component associated to the Go-diagram in Figure 2.3 is
the subset of Gr(3,6) where

Aqg4, Aqgs = 0, and
Aiaz, Aiog, Aiog, Avas, Aoza, Ause 7 0.
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In Chapter 4, where we study Go-diagrams and the Deodhar decomposition, we will
use upper case letters to refer to Go-diagrams and calligraphic letters to refer to Deodhar
components. When we want to make explicit reference to the distinguished subword pair
associated to a Go-diagram, we will use the notation Dy .

Proposition 2.2.11. Suppose that boxes b and c in a Go-diagram D share an edge. Then,
I, and 1. differ by a single element.

Proof. Let 11 < iy < --- < i be the labels of the vertical steps of the boundary of D and
J1 < jo2 < -+ < jn_k be the labels of the horizontal steps of the boundary of D and suppose
b = (ig, Jm)- Let p be the label of the pipe entering b from the bottom and ¢ be the label
of the pipe entering b from the left in the pipe dream associated to D. If ¢ = (i, jmi1),
then I. = Iy \ pU jims1. If ¢ = (ip—1,Jm), then I. = I, \ ip—1 Ug. O

2.2.4 Explicit Parameterizations

Deodhar components are homeomorphic to products of tori and affine spaces. This
fact is shown in Deodhar’s original paper introducing Deodhar components [21]. He gave
a method for computing Kazhdan-Lusztig R-polynomials by counting points in Deodhar
components over finite fields, and this homeomorphism reduced the point counting portion
of this computation to an easy task. An explicit parameterization of Deodhar components
was given in [47], and made combinatorial in terms of networks associated to Go-diagrams
in [55]. Theorem 2.2.25 gives a way to recover the sets [, from Definition 2.2.5 from these
networks. Finally, in the case where a Go-diagram is a J-diagram labelling a positroid P,
it was shown in [53] that the positive part of the parameterization is exactly Pxg.

Theorem 2.2.12 (Theorem 1.1 in [21]). Let D be the Deodhar component labelled by the
Go-diagram D. Then, D is homeomorphic to

R#(o’s in D) > (R\{O}>#(+’s in D).

Remark 2.2.13. In [21], this theorem is proved over an algebraically closed field. Using
the explicit parameterizations of Deodhar components from [47], one see that this theorem
holds over R as well.

Definition 2.2.14 (Definition 3.2 in [55]). The Go-network, N(D), associated to a Go-
diagram D is built by:

e Placing a boundary vertex along each edge of D’s southeast border.
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e Placing an internal vertex for each plus or black stone in the diagram. We call these
vertices +-vertices and e-vertices.

e From each internal vertex, drawing an edge right to the nearest +-vertex or boundary
vertex.

e From each internal vertex, drawing an edge down to the nearest +-vertex or boundary
vertex.

e Directing all edges left or down.

The vertical steps of D’s boundary become sources in the Go-network and the horizontal
steps become sinks.

Example 2.2.15. Figure 2.4 gives an example of a Go-diagram and its associated Go-
network. The e-vertices have been drawn at a larger size to distinguish them.

1
+|@ |+ ,
® + O
+|O|+]3 ’
6 5 4

Figure 2.4: Go-network associated to a Go-diagram.

Definition 2.2.16. A weighted Go-network is a Go-network where the edges directed left
toward +-vertices are weighted by elements of R* and the edges directed left toward e-
vertices are weighted by elements of R. To a weighted Go-network, we associate the set of

coordinates
{AJ = Z sgn(P) HHw(e) :J C [n]} : (2.3)

P:I—J pEP e€p

where sum is across all collections P of vertex disjoint paths from the set of sources I of the
Go-network to J. Such a collection of paths is called a flow. The product is the product
of the weights of all the edges appearing in all paths in P. The sign, sgn(P), is the sign
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of P viewed as a partial permutation. That is, sgn(P) = (—1)¢, where ¢ is the number of
edge crossings among the paths in P.

Example 2.2.17. Figure 2.5 gives a weighting of the Go-network from Example 2.2.15.
The only collection of paths from sources {1,2,3} to {1,2,3} has no edges, so A3 = 1.

Figure 2.5: A weighted Go-network.

From {1,2,3} to {2,3,6}, we need a path from 1 to 6. There are three such paths: the
one along the top and left of the network has weight 2 and the one through the middle of
the network has weight 0, and the one along the bottom row of the network has weight 2.
So, Agzs = 4. There is no collection of vertex disjoint paths to {1,2,5}, so Ajp5 = 0. To
{3,4,5}, there is one collection of vertex disjoint paths: a path from 1 to 4 of weight 1 and
a path from 2 to 5 of weight —1. These paths have one edge crossing, introducing a factor
of —1. So, Asys = 1. Continuing in this fashion, one may compute:

Az = 1, Agzy = 1,
Apy = 1, Agzs = 1,
Aps = 0, Agzs = 4,
Apg = 2, Agys = 1,
Ay = 0, Agys = 2,
Aps = —1, Agsg = —2,
Ag = 0, Aggys = 1,
Ays = —1, Azgg = 0,
Ay = 0, Agsg = —2,
Apg = 2, Apg = —2.

Theorem 2.2.18 (Theorem 3.16 in [55]). The set of coordinates (2.3) of a weighted Go-
network of shape N(D) is the set of Pliicker coordinates of some point in the Deodhar
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component D. The map from weighted Go-networks to these coordinates is a bijection
between weighted Go-networks of shape N (D) and points in the Deodhar component D.

This theorem is a combinatorial realization of a theorem by Marsh and Reitsch, which
provides a matrix parameterizing D. We call this matrix the Marsh-Reitsch matriz of D.
Theorem 5.6 in [55] describes how to recover the Marsh-Reitsch matrix from the network
N(D).

Theorem 2.2.19 (Proposition 5.2 in [47]). Let D be a Go-diagram with ¢ many black
stones and m many pluses, and let D be the Deodhar component labelled by D. Then,
there is a matrix Mp(x,y) in variables (x1,Ta, ..., T, Y1,Y2, - -, Ym) Such that evaluating
x € RY, y € (R*)™ provides a parameterization of D.

When D is a J-diagram, no collection of nonintersecting paths in N (D) can cross. So,
the sign term in (2.3) will always be positive. Thus, weighting all edges in N (D) with pos-
itive edge weights will yield a point in the positive Grassmannian. This parameterization
makes Theorem 2.2.12 explicit.

Theorem 2.2.20 (Theorem 5.13 in [39] and Theorem 6.5 in [53]). Let D be a Go-diagram
and let D be the Deodhar component labelled by D. Then, DN Grso(k,n) # O if and only
if D is a I-diagram. In this case, the map from weighted Go-networks of shape N (D) with

all positive edge weights to the Grassmannian is a bijection from Riigl(p) to DN Grso(k,n).

Remark 2.2.21. In Chapter 3, calligraphic letters are reserved to denote set systems and
matroids. Thus, we will notate the Deodhar component D by MR(B) in this chapter to
avoid overloading calligraphic letters. In this notation, MR stands for “Marsh-Rietsch”
and B is a matroid. In that chapter, since we are using matroids rather than Go-diagrams
as our indexing set of these cells, the matrix Mp(x,y) will be denoted Mp(x,y).

The following corollary follows from Theorem 2.2.18.

Corollary 2.2.22. Let D be a Go-diagram indexing the Deodhar component D. The
Pliicker coordinate Ag vanishes uniformly on D if and only if there is no flow to S in
N(D).

Proof. If there is not a flow to S, the sum (2.3) is empty, so Ag vanishes uniformly on
D. 1f there is a flow to S, choosing all of the edge weights to be algebraically independent
yields a point in D where Ag # 0. ]

22



We will make reference to the following special case of this corollary.

Corollary 2.2.23. Let D be a Go-diagram and suppose b € D contains a white stone.
Then, there is not a flow to I in N(D).

For a point V in the Deodhar component D and a set S € ([Z]), the corresponding

Pliicker coordinate, Ag(V'), of V' will not in general depend on the entire network. For
instance, if 4; € S, then 4; will not be involved in any flow determining Ag(V). So, the
value of Ag(V) will not depend on the top row of the network. Similarly, if j,_x & S5,
the value of Ag(V) will not depend on the leftmost column of the network. The following
corollary generalizes this observation.

Corollary 2.2.24. Let D be a Go-diagram inside the Ferrers shape with vertical steps
I ={iy,... i} and horizontal steps J = {j1,. .., Jn_k}, with iy < -+ <1y and j; < -+ <
In_k. Let V' lie in the Deodhar component indexed by D, and let its associated weighted
Go-network be N(D)y. For S € ([Z]) suppose the first £ elements of I are in S and last
n —k —m elements of J are not in S. That is,
{i1,49,...,90} C S, and
{jn—k7 cee 7jm+1} ns = @

Then, the Pliicker coordinate Ag(V') is determined by the restriction of N(D) to the rows
041,042, - -+, 0k and columns jy, ..., Jm of N(D)y.

The network perspective gives an alternate algorithm for reading off the sets I, defining
equations for the Deodhar component from Definition 2.2.5. Suppose b = (i, j,) is in
the row with vertical step i, and column with horizontal step j,,. The proof relies on
interpreting S = I, \ j,, Ui, as the maximal element of ([Z]) in the Gale order that satisfies

i1,12,...,1p €9,
jn—kajn—k—b s 7j’m g—f Sa
and such that Ag does not vanish uniformly on D.

Theorem 2.2.25 (Theorem 1.17 in [6]). Let b be a box in a Go-diagram D. Let D’ be the
Go-diagram obtained from D by:

e changing the filling of b to a plus,

e changing the filling of all bozes in b°“ to white stones, and
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e changing the filling of all boxes in b’s row and b’s column aside from b to white stones.

Then, I, € ([Z}) 1s the mazimal set in the Gale order such that there is a collection of vertex
disjoint paths flowing from the source nodes to I, in N(D'), the Go-network associated to
D'.

Proof. Let D be a Go-diagram whose Ferrers shape has vertical steps iy < --- < i and
horizontal steps j; < -+ < jn_k. Let b = (ig, Jm) be a box in the Go-diagram D, and let
D’ be the diagram described in the theorem statement. In the pipe dream associated to
D', any box in b°“ or in b’s row or column features a pipe iy with ¢/ < £ or a pipe j,, with
m’ > m. Pipes iy with ¢/ < ¢ and j,,, with m’ > m cross any other pipe at most once in
this pipe dream. So, none of these squares violate the distinguished property. For any box
(igr, rmr) With ¢/ > € and m’ < m, (i, jmr)™ is identical in D and D’. So, none of these
boxes violate the distinguished property and thus D’ is a Go-diagram.

Let M, € ([Z]) be the maximal set in Gale order such that there is a collection of
vertex disjoint paths flowing from the source nodes to M, in the network N(D’). Let
M{ = My \ jm Ui, Then, M is the maximal set in Gale order such that Ay, does not
vanish uniformly on D, subject to the constraints

il,ig,...,ig € MZ;, and

) ) . 2.4
In—ks IJn—k—=1s-++5yJm §é MI; ( )

We show that [, = M} \ iy U jp,.

Let E be the diagram obtained by changing the filling of b to a white stone in D’.
Using the same argument verifying that D’ was a Go-diagram, we see that F is also a
Go-diagram. Let £ be the Deodhar component associated to E. The Go-network of £ has
no nodes in the rows iy, s, ...,%, or the columns j,_x, jn—k—1,-- -, Jm-. S0, Theorem 2.2.18
implies that Ag vanishes on & if {i1,42,...,%} € S or SN {Jn—t,Jn—k-1,---+Jm} # 0. Let
VY C Gr(k,n) be the variety defined by

Ag =0 for all S such that {i1,42,...,5} €S or SN {Jn—ksJn-k-1,s---»Jm} # 0.

Corollary 2.2.24 implies that £ = DN V. Let v/,v" be the permutations associated to
the diagram E. Proposition 2.2.1 says that Ay m)u(n—1)..wm-k) 7 0on £ and Ag = 0on &
for all S £ {u/(n),u/(n —1),...,u'(n—k)}. So,

{u'(n),u'(n—1),....,4'(n—k)} = M.
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From Definition 2.2.5 and the diagrammatic description following, M] = s, IF. Turning
our attention back to the diagram D’ the transposition s, in box b exchanges i, and j,,.
So, Iy = M} \ iy U j,,, = My, as desired. O

The following proposition is an immediate consequence of Corollary 2.2.24, together
with the fact that the Deodhar decomposition refines the Richardson decomposition, Propo-
sition 2.2.1. This proposition will be used to verify the vanishing of certain Pliicker coor-
dinates in Section 4.2.

Proposition 2.2.26. Suppose the vertical steps of the boundary of the Ferrers shape \ are
i < iy < -+ < iy and the horizontal steps are j; < jo < +++ < jn_k. Let b = (i, jm) be a
box in the Go-diagram D of shape A indexing the Deodhar component D. Let

Jy = wpin (Vyin) F0{n,m —1,...,n —k + 1}, (2.5)

If S € ([Z]) is such that 1,49, ...,0—1 € S, Jneks Jn—k—1s---,Jms1 € S, and S £ Jp, then
Ag vanishes uniformly on D.

Diagrammatically, the set J, may be computed similarly to I, only b retains its original
filling in the computation, rather than being changed to a plus.

2.3 Matroidal Background

Definition 2.3.1. A matroid is a collection of sets B C ([Z]) such that for each S, T € B
and each ¢ € S\ T there is some j € 7'\ S such that S\ iU j and 7"\ j U4 are both in B.

This definition is a combinatorial abstraction the Pliicker exchange relations (2.1). For

any V € Gr(k,n) the set
{I € <[Z]) ALV £ 0}

is a matroid, called the matroid represented by V.

We quickly review some terminology from matroid theory. For a more detailed intro-
duction to matroids, see [17] or [34]. For a matroid B, the sets in B are called bases of the
matroid. The set [n] is called the ground set of the matroid. A set I C [n] is independent
if it is contained in some element of B. Otherwise, I is called dependent. The rank of I,
rk(7), is the size of the largest independent subset of /. An element x € [n] is a loop if
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rk(xz) = 0 and is a coloop if x € B for all B € B. A set [ is a circuit if it is dependent
and all of its proper subsets are independent. A set [ is a cocircuit if it is a minimal set
intersecting every basis. The set [ is a flat if for all z € [n]\ I, tk(/Uz) =rk(/) + 1. A
flat is called a cyclic flat if it is a union of circuits.

Given I C [n], the restriction of B to I, denoted By, is the collection of subsets C' C I
of maximal size such that C' C B for some B € B. The deletion of I, denoted B\ I, is
the collection of subsets C' C [n] \ I of maximal size such that C' C B for some B € B.
The contraction of I, denoted B/I, is the collection of subsets C' C [n] \ I such that
CUD € B, where D is any maximal rank subset of I. The result of a restriction, deletion,
or contraction of a matroid is another matroid, which is called a minor of B. Note that
the ground set [n] is implicitly ordered 1 < 2 < --- < n and that the ground sets of B,
B\ I, and B/I naturally inherit orderings from this ordering on [n]. This feature is not
always present when studying general matroids, but is a necessary feature when studying
positivity phenomena.

The dual of a matroid, B*, is {[n] \ B : B € B} C (n[ﬁ]k) The dual of a matroid is
a matroid, and B** = B. Deletion and contraction are dual operations in the sense that

(B\ I)* = B*/I.

The direct sum of matroids B and B’ on disjoint ground sets, denoted B & B, is the set
of BUB' where B € B and B’ € B’. A matroid is connected if it cannot be written as the
direct sum of two nontrivial matroids. If B is the direct sum of connected matroids, each
constituent in this sum is called a connected component of B.

For S C [n], the indicator vector of S is the vector in R" which has a 1 in the s*
coordinate if s € S and a 0 in the s coordinate if s ¢ S. The matroid polytope of B is the
convex hull of the indicator vectors of the sets in B in R,

Theorem 2.3.2 (Proposition 2.6 in [23]). If B is a rank k connected matroid on the ground
set [n], the matroid polytope of B is the subset of the simplex

{(l’l,l’g,...,l’n) E]R[g% : sz :k:}
=1

defined by the inequalities

> a <Tk(F),

el
where F' is some flat such that B|p and B/F are both connected. Each such inequality
defines a facet of the matroid polytope.
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In light of this theorem, flats F' of B such that B|p and B/F are both connected are
called flacets. All flacets containing more than one element are cyclic flats. To see this,
note that if |F'| > 1 and B|p is connected, then for every f € F' there must be some basis
By of B|r not containing f. Then, f U By yields a circuit containing f. Then,

F=|]Jrus.

fer

The matroid strata, Vg C Gr(k,n), is the set of points in Gr(k,n) representing B. In
the literature, Vj is also referred to as a thin Schubert cell or GGMS strata, after Gelfand,
Goresky, MacPherson, and Serganova. All of these names are misleading, as the Vj are in
general not cells and do not stratify the Grassmannian.

2.3.1 Matroids from Grassmannian Decompositions

The Schubert, Richardson, positroid, and Deodhar decompositions of the Grassmannian
each give rise to a family of matroids obtained by looking at the matroid represented
by a generic point in each cell in the decomposition. For example, the Schubert cell
S13 € Gr(2,4) is defined by Ajp = 0,A13 # 0. At a generic point in Si3, all other Pliicker
coordinates will be nonzero. So, the matroid associated to this cell is

{13,14, 23, 24, 34}.

For each of these decompositions, if B is the matroid associated to a component, Vg is
a dense subset of the component. The families of matroids associated to the common
decompositions of the Grassmannian are given in the Table 2.2.

’ Decomposition \ Family of Matroids ‘

Schubert Schubert matroids’
Richardson Lattice path matroids

Positroid Positroids

Deodhar Deodroid

Table 2.2: Families of matroids from decompositions of Gr(k,n).

!Schubert matroids are also called shifted matroids, nested matroids, and freedom matroids.
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These classes of matroids can be described purely combinatorially in a fashion exactly
identical to description of the components of these decompositions in Section 2.2.1. So,
Schubert matroids are up-sets in the poset on ([Z]). Lattice path matroids are intervals in
this poset. Schubert and lattice path matroids have both received a fair bit of attention
in the structural combinatorics literature. The second half of the survey [16] is devoted to
lattice path matroids.

Positroids are projections of Bruhat intervals from &, to &,,/(&,,_x X &). Positroids
will receive a more detailed description, and several other equivalent definitions in Section
2.3.2. To our knowledge, no one has yet considered the family of matroids represented
by generic points in Deodhar components. We take this opportunity to give them a silly
name.

Definition 2.3.3. A Deodroid is a matroid represented by a generic point in a Deodhar
component D for some Go-diagram D.

We speculate some about the class of Deodroids in Section 2.4.

We saw in Section 2.2.1 that when u,v € &, were both Grassmannian with u < v,
that they could be used to define either a Richardson cell R, , or a positroid cell P, ,. In
this case, R, and P,, are defined by setting the same set of Pliicker coordinates to zero,
then P,, imposes non-vanishing constraints on a larger set of Pliicker coordinates than
R..». However, at generic points in R, or P,,, the same set of coordinates will be non-
vanishing. Hence, the lattice path matroid associated to R, and the positroid associated
to Py will be the same matroid. The following proposition records this observation.

Proposition 2.3.4. Let v be a Grassmannian permutation.

(i) The lattice path matroid associated to the Richardson cell R, is a Schubert matroid
if and only if u = €.

(it) The positroid associated to the positroid cell P, is a lattice path matroid if and only
if u is Grassmannian.

(i1i) The Deodroid associated to the Deodhar component Dyy is a positroid if and only if
u is the positive distinguished subexpression for u in v.

Given a e/ o /+-diagram representing u < v, there are easy graphical tests for when

the diagram indexes a Schubert matroid, Richardson matroid or positroid. The diagram
represents a positroid if and only there are no black stones. A diagram with no black
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stones represents a lattice path matroid if and only every box with a plus above it or to
its left also contains a plus. The name “lattice path matroid” comes from the fact that all
pluses in the diagram are contained in between boundary of the Ferrers shape A and the
lattice path obtained by drawing the Ferrers shape associated to u inside of A\. A diagram
represents a Schubert matroid if and only if every square is filled with a plus.

2.3.2 Positroids

This section provides background on positroids, the class of matroids. As is common in
the literature, we will use the word “positroid” to refer to both a matroid and a component
in the positroid decomposition of the Grassmannian, relying on context to clarify which is
meant.

Definition 2.3.5. A positroid is a matroid which is representable by some point in the
positive Grassmannian.

Given a J-diagram D, there are several ways to compute the associated positroid. Using
the characterization of positroids as projections of Bruhat intervals to &,,/(S,,_x X &), we
may compute the permutations u, v associated to D. Then, the positroid is the projection
the interval [u,v] from &, to &,/(6,_r X &;). Alternatively, the positroid associated
D is the matroid represented by a generic point in the associated positroid cell. The
network parameterization from Section 2.2.4 captures a dense subset of the positroid cell.
Generically, a Pliicker coordinate Ag is nonzero on this parameterized subset if and only if

there is a flow from I, to S in N(D). Hence, the positroid associated to D is the collection
ofall S € ([Z]) such that there is a flow to S in N (D).

Example 2.3.6. Consider the following J-diagram.

o+
+|+

The associated permutations are v = (1,3, 2, 4) from the pipe dream and v = (3,4, 1, 2)
from the Ferrers shape. The Bruhat interval [u,v] is given in Figure 2.6. The map from
G4 to ([;1]) sends any permutation to its last two entries. So, the matroid associated to this
J-diagram is

{12,13,14,23,24}.
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The reader can verify that this is exactly the collection of sets there is a flow to in the
associated JI-network.

3412

N

3214 2413 3142 1432

o> > >

2314 3124 1423 1342

\\ //

1324

Figure 2.6: The Bruhat interval [1324,3412].

Given an n x k matrix M, cyclically shifting all the columns of M by 1 and multiplying
the final column of the resulting matrix by (—1)%~! permutes the Pliicker coordinates.
Thus, the class of positroids is closed under cyclic rotation of the ground set.

Deleting any subset of M’s columns evidently does not change the sign of the maximal
minors that do not use these columns. So, the class of positroids is closed under restric-
tion. Projecting the Bruhat interval [u,v] to (n[ﬁ]k) by taking the first n — k entries of a

permutation rather than projecting to ([Z}) yields the dual to the positroid obtained from
[u,v]. Since the class of positroids is closed under restriction and duality, it is also closed
under contraction.

Ardila, Rincén, and Williams characterize positroids in terms of their flacets and con-
nected components in [7]. A cyclic interval in [n] is an ordinary interval, or a set of the
form a,a+1,...,n,1,2,...,0.

Theorem 2.3.7 (Proposition 5.6 in [7]). A connected matroid is a positroid if and only if

every flacet is a cyclic interval.

Theorem 2.3.8 (Theorem 7.6 in [7]). A matroid B is positroid if and only if each connected
component of B is a positroid and the connected components of B form a noncrossing
partition of [n].

When B is a positroid, it also has a Deodhar component associated to it. This Deodhar
component contains the matroid stratum V.

Theorem 2.3.9 (Corollary 7.9 in [55]). Let B be a positroid and D be the associated
Deodhar component. Then, Vg C D.

30



2.3.3 Transversal Matroids

Let & = {S1, 52, ..., Sk} be a collection of subsets of [n]. The indexing of the elements
of § does not matter, and S can possibly contain repeated sets. Let I's be the bipartite
graph where one part has nodes labelled Si,Ss, ..., Sk, the other part has nodes labelled
1,2,...,n, and there is an edge between S; and j if and only if 7 € S;. For an illustration,
see Example 2.3.10. A matching is a set of edges such that every vertex is incident to at
most one edge in the matching. A set of vertices is saturated by the matching if every
vertex in the set is incident to an edge in the matching. Let B(S) C ([Z]) consist of subsets
B such that there is a matching saturating B in I's. The collection B(S) is a matroid.
Matroids obtained in this way are called transversal matroids, and the set S is called a
presentation of the transversal matroid B(S). If B is a transversal matroid with rank &,
then B = B(S) for some § with |S| = k. We consider only these presentations, where
|S] = rk(B(S)).

In general, a transversal matroid has multiple presentations. Presentations are partially
ordered by & < &' if there is some ordering of the sets Sy,..., S, and S7,..., S} in the
set systems S and &’ such that S; C S! for each i. A transversal matroid has a unique

maximal presentation, and usually has several minimal presentations. For more detailed
background on transversal matroids and their presentations than we provide here, see [19].

To avoid overly cluttered notation, we often suppress set braces when dealing with set
systems. For instance, we will often write S\ S; to mean S\ {S;}.

Example 2.3.10. Let S be the set system consisting of

Sl == {1a374}7
52 = {1a2}a
S, = {2,3).

The bipartite graph I's is drawn in Figure 2.7. In I's, there is a matching saturating every
element of ([g}). So, B(S) = ([g}). Let

S = (S\ S1)U{3,4}.

So, I'ss is isomorphic to the graph obtained by deleting the edge from S to 1. In I's/, there
is also a matching saturating every element of ([g]). So, B(S') = B(S), and &' < S.

The following theorem appears several times in the literature, for instance following
from Theorems 3.2 and 3.7 in [19], or as Lemma 2 in [15].
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M
1 2 3 4
Figure 2.7: Example of the graph I's.

Theorem 2.3.11. A presentation S of the transversal matroid B(S) is minimal if and
only if each set in S is a distinct cocircuit of B(S).

Theorem 2.3.12 (Theorem 2 in [15]). Let S = {Si,..., Sk} and &' = {57,...,5,} be
minimal presentations of the transversal matroid B(S). Then, B(S) has a unique mazximal
presentation M = {Mj,..., My}. We may take the sets in the set systems S,S" to be
ordered such that S; U S C M; for all i. In this case, |S;| = |S:| for all 1.

If the graph I's is disconnected, then the matroid B(S) is the direct sum of the transver-
sal matroids coming from the connected components of I's. If S is a minimal presentation
of B(S), then B(S) is a connected matroid if and only if I's is connected.

Given T C S, the set
F(T)={i€nl:i¢S V S¢&T} (2.6)

is a flat of the matroid B(S).

Lemma 2.3.13 (Corollary 2.8 in [16]). Let F be a cyclic flat of the transversal matroid
B(S). Then, F = F(T) for some T C S such that |T| = rk(F). In particular, if B is
connected, all flacets of B containing more than one element are of the form F(T) with

|T] = rk(F(T)).

Given a set I C [n], the restriction B(S)|; is a transversal matroid and has the pre-
sentation S|y = {SN1I1:S € S}. Even if S is a minimal presentation of B(S), S| is not
necessarily a minimal presentation of B(S)|;. However, if I is a cyclic flat of B(S), then
S|; will be a minimal presentation of B(S)|;, after possibly removing copies of the empty
set from S;.

The class of transversal matroids is not closed under contractions. However, for any
flat of the form F(T), if rk(F (7)) = |T|, then the contraction B(S)/F(T) is a transversal
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matroid on the ground set [n]\ F'(7") with presentation S\ 7. If S is a minimal presentation
of B(S), then S\ T is a minimal presentation of B(S)/F (7). In particular, this fact holds
if F(T) is a cyclic flat.

2.4 Speculation: Deodroids

Let D be a Go-diagram and B be the associated Deodroid. So, every B such that Ap
is not uniformly vanishing on the Deodhar component D is a basis of B.

Example 2.4.1. Let D be the following Go-diagram.

@+ On

+1O13?
5 4

The Deodhar component Deodhar component labelled by D, D, is defined by

Ajg, A1y, Agz =0
A137 A157 A34 ?A O

The Pliicker relation
A14A03 = Aoy Aq3 — AgyAqy

reduces to AgyA13 = 0. So, Ayy = 0 on D as well. Similarly, one may check that Ags
also vanishes on D, and that no other Pliicker coordinates vanish uniformly on D. So, the
Deodroid associated to D is

B = {13,15,34,35,45}.

The bases of a Deodroid have another perhaps more attractive description: From Corol-
lary 2.2.22, the bases of B are sets B such that there is a vertex disjoint flow in N (D) from
the sources to B.

A common question to ask about matroids is whether or not they are closed under
restriction and contraction. If a class is closed under minors, one may put a partial order
on the class saying B < C if B = (C/J)|; for some disjoint sets I, J C [n]. The set of all
matroids is evidently closed under minors. For a minor closed class, it is common to look
for minimal elements in the compliment of the class, called a set of excluded minors for
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the class. We record a special case of computing minors of Deodroids below, as well as
some other simple facts, which are essentially matroidal versions of facts appealed to in
the proof of Theorem 2.2.25. We conclude this section by conjecturing that the class of
Deodroids is closed under minors, and conjecture a set of excluded minors for the class,
(2.7). For positroids, several combinatorial and diagrammatic algorithms have been given
to compute minors, for instance in [50]. If Deodroids are closed under minors, it would be
useful to extend these algorithms to the class of Deodroids.

Another potentially interesting question one might ask about Deodroids is whether the
class is closed under the action of any group on the ground set {1,...,n}. For instance, the
class of positroids is closed under the action of the cyclic group on {1,...,n} by rotation,
but not under the group of all permutations.

Lemma 2.4.2. Let D be Go-diagram whose Ferrers shape has vertical steps I = {iy, ... iy}
and horizontal steps {ji1,..., ok} with iy < -+- < ix and j1 < -+ < jo_p and let B be
the associated Deodroid. Let E be the diagram obtained by changing the filling of all boxes
in column j,_p in D to white stones and let B’ be the Deodroid associated to E. Then,
B\ jn_x = B'. Similarly, let F' be the diagram obtained by changing the filling of all bozes
in row iy to a white stone and B" be the Deodroid associated to F. Then, B/i; = B".

Proof. First consider the deletion B\ j,_r. Let E is the diagram obtained by changing
the filling of all boxes in column j,_; in D to a white stone and let B’ be the Deodroid
associated to E. As shown in the proof of Theorem 2.2.25, E is a valid Go-diagram. In
the Go-network associated to F, there are no edges directed into the sink node j,_x. So,
Jnk ¢ S for all S € B(E). For any set S € ([n]\i"*’“), Corollary 2.2.24 says that Ag
depends only on the columns jq, ..., j,_r_1 of the diagram. Since the restrictions of D and
E to the columns ji,...,j,_r_1 are identical, Ag is generically nonvanishing on D if and
only if Ag is generically non-vanishing on €. So, B’ ={S € B : j,_, ¢ S}, as desired. The
proof for the contraction B/i; is similar and is left to the reader. ]

Corollary 2.4.3. Let D be a Go-diagram inside the Ferrers shape with vertical steps
I ={iy,...,ix} and horizontal steps {j1, ..., jn—k}, with iy < -+ <ix and j; < -+ < jn_k
and let B be the associated Deodroid. Let E be the diagram obtained by changing the filling
of all boxes in rows iq,1a,...,1 and columns jn_k, Jn—k—1,---,Jm to white stones. Then,

B\jn—kvjn—k—la s >jm/i17i27 s 77:€ = Bl:

where B’ is the Deodroid associated to E.
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Lemma 2.4.4. Let D be a Go-diagram indexing the distinguished subword pair u < v and
let B be the Deodroid associated to D. Let

I=v{n,n—1,...,n—k}, and
J=u{n,n—1,...,n—k}.

Then, I,J € B and for all B B, I < B < J.

Proof. Let D be the Deodhar component associated to D. The Deodhar decomposition
refines the Richardson decomposition, so D C R, ,. The Richardson cell R, , is defined
by

ADAJ%(L
Ap =0forall B¢|[I,J],

where [I, J] is the interval between I to J in Gale order. The inequalities above imply that
I, J € B and the equalities imply that B C [I, J]. O]

Remark 2.4.5. These facts are matroidal translations of ideas appearing in the proof of
Theorem 2.2.25.

Conjecture 2.4.6. The class of Deodroids is closed under restriction and contraction.
Further, the matroids

{12,14,23, 34}, and

2.7
{12, 14,23, 24, 34} (27)

form a complete set of excluded minors for the class of Deodroids.

For intuition about why the first half of this conjecture should be true, note that if
the matroid B is represented by the point in V' € Gr(k,n), and vy, va,...,v, € R" is the
ordered basis used to compute the Pliicker coordinates of V| then B\ n is the matroid
represented by the projection of V' onto its first n — 1 coordinates and B/n is represented
by the intersection of V' with the hyperplane defined by (x,, = 0) in R™. In the deletion,
V Nspan(vy, v, ..., v, 1) is viewed as a plane in R"™! 2 span(vy, va,...,v,_1) and in the
contraction, V' N (z, = 0) is viewed as a plane in the subspace (z,, = 0). Deletions and
contractions of other elements are obtained similarly. For a much more detailed geometric
introduction to matroids, see [34].

Let V be in the Deodhar component D and represent the Deodroid B. Let V' be
obtained from V' via projections and intersections with subspaces as described above. So,
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V' represents some minor of B in the appropriate Grassmannian. Since the Grassmannian
is the union of its Deodhar components, if V' lies in some Deodhar component D’. However,
V' is not necessarily guaranteed to represent B’. The first part of the conjecture amounts
to saying that if V' was suitably generic, then V' represents the matroid I3’. That is, generic
points in D get mapped to generic points in D’ via the vector space maps realizing deletion
and contraction.

For the second half of the conjecture, one can check that the two matroids in (2.7) are
not Deodroids. Since every one element matroid is a Deodroid, these two matroids must
then be excluded minors for the class, if the class is minor closed. Oh proved in [50] that
the complete set of excluded minors for the class of positroids are the two matroids in (2.7)
together with the matroid

{12,13, 14,23, 34}. (2.8)

This matroid is different from the second matroid in (2.7) because we are considering
matroids on an ordered ground set. This matroid is a Deodroid, represented by the Go-

diagram
o +
+|O

?

which leads us to the second half of the conjecture.

We caution that the class of Deodroids is not closed under order preserving duality. The
dual of Deodroid (2.8) is the second matroid on our conjectured list of excluded minors
(2.7). So, any proof of Conjecture 2.4.6 will have to treat the cases of contraction and
restriction separately.

36



Chapter 3

Basis Shape Loci and the Positive
Grassmannian

Throughout this chapter, S = {51, ..., Sk} will be a family of subsets of [n]. The family
S is unordered and may contain repeated sets. We say that S; is the support set of a vector
v, supp(v;) = S;, if the j coordinate of v; is nonzero if and only if j € S; for all j € [n].

Definition 3.0.1. Given § = {5}, 5,..., Sk}, a family of subsets of [n], the basis shape
locus of § is the subset

L(S) = {span(vl,vg, cvie) s v € R rk(vy, L vy) = K, supp(vi) = S5 for all 2}
of Gr(k,n).

For 1 <¢ <k, 1<j <n,let x;; be algebraically independent, invertible variables. Let
Ms(x) be the k x n matrix whose 4, j entry is z;; if j € S; and is zero otherwise. So, any
point in L(S) may be obtained by evaluating the x;; at nonzero real numbers in Mg(x),
then taking the row span of the resulting matrix.

Also associated to S is a transversal matroid B(S). Background on transversal matroids
is provided in Section 2.3.3. Theorem 3.1.9 shows that the closure L(S) depends only on
the matroid B(S).

A naive upper bound on the dimension of L(S) is

nmd(S) = —k + » ]S, (3.1)
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obtained by scaling each row of Ms(x) so that one of the entries is 1, then evaluating the

other parameters freely. We call the parameter nmd(S) the naive mazimal dimension of
L(S). Theorem 3.1.2 shows that

dim(L(S)) = nmd(S)

if and only if S is a minimal presentation for the transversal matroid B(S).

Example 3.0.2. Let S be the set system from Example 2.3.10 consisting of

Sl - {17374}7
SZ = {172}7
S, = {2,3}).

Then,
i 0 m3 T4
MS(X) == To1 X292 0 0
0 32 w33 0

Here, nmd(S) = 4. However, we may eliminate a degree of freedom via

1 % i;izz 0 0 T3 + "’3135129512;;33 T4
0 1 0 MS(X> = To1 X929 0 0 . (32)
00 1 0 3 T33 0

We may not eliminate any more degrees of freedom from here, so the actual dimension
of L(S) is 3. Looking at the supports of this new matrix’s row vectors gives a new set
system S,

Si = {3,4},
Sé - {172}’
S 2,3},

In this case, the naive maximal dimension agrees with the actual dimension. As was seen
in Example 2.3.10, &’ is a minimal presentation the transversal matroid B(S).

Theorem 3.3.1 shows that if the transversal matroid B(S) is a positroid, then L(S) is
exactly the positroid variety labelled by this matroid.

Theorem 3.4.3 gives a sufficient condition for testing when the matroid B(S) is a
positroid. We conjecture that this condition is also necessary. Section 3.4 proves this
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conjecture in several special cases, including the case when L(S) is a Richardson variety,
and the case where all sets in S have the same size.

Section 3.5 compares the subsets L(S) we study to several similarly defined families
of subsets of Gr(k,n) including generalized Richardson varieties introduced by Billey and
Coskun in [13], interval positroids introduced by Knutson in [35], and diagram varieties
introduce by Liu in [42].

The motivation for this work partially comes from two different programs related to
computing scattering amplitudes in /' = 4 SYM theory. The first computes the on-
shell amplitudes as volumes of an object called the amplituhedron, a certain projection
of Grso(k,n). In [33], Karp, Williams, and Zhang give a program for triangulating the
amplituhedron. Their program identifies certain cells, called BCFW cells, finds a basis
with a prescribed support shape for any plane in these cells in Gr>q(k,n), then uses these
basis shapes and sign variation techniques to argue that the images of the BCFW cells are
disjoint in the amplituhedron. The second program computes the total amplitude using
a Wilson loop. This program identifies matrices of the form Mg(x) for a particular class
of set systems S, all of which are minimal presentations of positroids, then associates an
integral to this family of matrices. Sections 3.6 and 5.2 discuss applications to these two
programs, and draw connections between the basis shapes appearing in both of them.

3.1 Basis Shape Loci and Transversal Matroids

Let S be a set system and L(S) be its basis shape locus.
Proposition 3.1.1. A generic point in L(S) represents the matroid B(S).

Proof. Collections of vectors vy, vy, ..., vy € R with supp(v;) = S; are in bijection with
edge weightings of the bipartite graph I's, with the edge between S; and j weighted by the
§ entry of v;. Given a set I € ([Z]), the I'" Pliicker coordinate of a point in L(S) may be
computed from the corresponding weighting of I's by

Ar= Z sgn(M) H wt(e),

M:S -1 eeM

where the sum is across matchings from S to [ in I's, sgn(M) is the sign of M viewed as
a permutation, and the product is across edges in the matching. Generically, the Pliicker
coordinate Ay is nonzero if and only if there is a matching in I's saturating I. Thus, the
matroid represented by a generic point in L(S) is B(S). ]
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Theorem 3.1.2. The following are equivalent:
(1) dim(L(S)) = nmd(S).
(i) S is a minimum presentation of B(S).

(11i) For all T C S,

Ur

TeT

> max (|T1) + |71 - 1. (3-3)

Remark 3.1.3. The equivalence of (ii) and (iii) in Theorem 3.1.2 are proved in Theorem 3
in [15]. There, condition (iii) is phrased as the equivalent condition that there is a matching
of size k — 1 from S\ T to [n]\ T in I's for all " € S. This equivalence is proved by noting
that for any T C S\ T,

Us\T

SeT

U s\7

SeTuT

> max (|S])—|T|+|TUuT|-1
SeTuT

> |T].

These inequalities are exactly the inequalities from Hall’s Matching Theorem.

Remark 3.1.4. The inequalities in point (iii) of Theorem 3.1.2 are similar to the dragon
marriage condition. Using the marriage analogy for Hall’s Theorem, the dragon marriage
condition is the necessary and sufficient condition for a matching of brides and grooms to
exist even if a dragon eats one of the brides. This analogy is credited to Postnikov. The
inequality in this case is a polyamorous bride condition, where it is possible for every bride
to get married even if one of the brides marries all of her potential suitors.

Taking the equivalence of (ii) and (iii) above, we establish a technical lemma which will
be used to show the equivalence of (i) with the other two conditions.

Lemma 3.1.5. Let S = {S1,...,Sk} be a minimal presentation of B(S). If |S| > 1 for
some S € S, there is some S; € S and some s € S; such that

S’:{Sl,...,Si\s,...,Sk}

is a minimal presentation of B(S').
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Proof. 1f there is a unique S of maximal size in S, we may remove any element of S while
preserving all the inequalities (3.3). Otherwise, suppose toward contradiction that for every
S € S of maximal size and every s € S that there is some Tgs C S such that S ¢ Tg s and

U TU(S\s)| <|Tssl +15I.

TETSVS

For each pair S, s, we choose Tg s to be a maximal subset of S with these properties.
The subsystems 7g s are partially ordered by inclusion, and we may choose S, s such that
Tss is minimal in this poset. That is, Tgs 2 Ts .« for any other S’ € § of maximal size
and any s’. Necessarily, Ts s contains some set of size |S].

Since T, U S satisfies (3.3),

T€eTs,s

and

(S\s)c |J T (3.5)

T€Ts,s

The same holds for Tg; for any ¢ # s in S. If there is some S’ € Tg, N Tg; such that
|S’| = |S|, then

U T = |7T9,5U7T9,t

TET&SUTS,t

18— 1.

Since

sc U 1

TGTSVSUTSJ

the set Tgs U Ts U S violates the inequality (3.3), contradicting the assumption that S
was a minimal presentation. Thus,

(8" € TsuNTss: |S'| =S|} = 0.

Let S" € Ts,s be of maximal size and s’ € S’. Since Ty ¢ and Tg p likewise cannot
share sets of maximal size for s’ # ¢, we may assume that S ¢ Tg . By our assumption
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that Tgs was chosen to be minimal in the poset on set systems ordered by containment,

7?5”,8/ ¢ 7T9,s'
Applying (3.4) and (3.5) to Tg s,

U T7us|=1Tevl+19

T€7:S'/,s/

Then, since S’ € (Tsr. o US") N Tss,

U 7| =1Ts.UTsu|+ 15— 1.

TGTS,SUTS/73/

By the maximality of Tg,

s € U T.

T€eTs,sUTgr o
So,
U Tus|=1Ts.UTssl+19 -1,
TGTS,SUTS/7S/
violating the inequality (3.3). O

Example 3.1.6. This example illustrates that while one may always remove some element
from a set in a minimal presentation of a transversal matroid to achieve a minimal pre-
sentation of a different transversal matroid, not every set of maximal size in a set system
contains an element which may be removed to produce a minimal presentation. Consider
the set system {12,23,34}, which is a minimal presentation of its transversal matroid.
Removing 2 from the first set produces the set system {1,23,34}, which satisfies the in-
equalities (3.3) and is thus a minimal presentation of its transversal matroid. Likewise,
we may remove 3 from the third set and obtain a set system satisfying the inequalities
(3.3). Any other choice of element to remove produces a set system which is not a minimal
presentation. For instance, {12, 3,34} is not a minimal presentation since the second set
is a subset of the third.

Proof of Theorem 3.1.2. The equivalence of (ii) and (iii) are shown in Theorem 3 in [15].
We begin by showing that point (i) implies point (iii).
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Let Ms(x) be the matrix from above, whose entries are algebraically independent invert-
ible variables x;; or zeros. Let v; be the i" row of Mg(x). Suppose one of the inequalities
(3.3) is violated. So, there is some set 7" C {1,...,k} such that

Uss

JET

< max(|S;]) + 7] - L.

Take T to be such that no proper subset of 7" has this property. Let S; be a set of
maximum size in 7 = {S; : j € T'} and let

aleSilﬂ U Sj

JET\i1

The minimality of T" guarantees that I'7 is connected, and thus such an a; must exist. Let
ip € T'\ i; be such that a; € S;,. Then,

Lija
supp (VZ-1 — #VZ-Q) = (S, US;,) \ a1

i2a1
Again from the minimality of 7', these is some
az € (83, U Si,) N (Ujerir i 95)-

Say, i3 € T'\ i1, 13 such that as € S;;. Then, there is some ¢, d € R(x) such that

:L’.
supp <Vi1 — vy, — (v — dviz)) = (S, US;, USi,) \ a1, as.

i2a1

Continuing to eliminate variables in this way, we may replace v;, with some vector v;,
supported on
St=JSi\{ar..... a1}
jeT

without altering L(S). Note that here we take the closure since the entries of vj are not
nonzero variables. Rather, they are equations in the z;; which might vanish at particular
evaluations of the z;; as in (3.2). Let

S =8\SUSs..
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Then,
|51 =

Uss

JET

—|T|+1<|5].

Since L(S) = L(S"),
dim(L(S)) = dim(L(S")) < nmd(S’) < nmd(S),

and thus point (i) implies point (iii).

We next establish that point (ii) implies point (i) by inducting on the dimension of
L(S). If dim(L(S)) = 0, then exactly one Pliicker coordinate A; will be nonzero on L(S).
Say I = {i1,...,ix}. Then, S = {{i1},...,{ix}} is the unique minimal presentation of
B(S), and nmd(S) = 0 as well.

Suppose that dim(L(S)) > 0 and that S is a minimal presentation of B(S). Lemma
3.1.5 says there is some S; € S and s € S; such that &’ = {Sy,...,S;\ s,...,S} is a
minimal presentation of B(S').

We claim that dim(L(S)) > dim(L(S’)). On a matroidal level, note that B(S) D B(S').
So, there is some Pliicker coordinate A; which vanishes on L(S’), but is generically nonzero
on L(S). Pick a generic V' € L(S’) represented by Mg/ (y) for some y;; € R*. Perturbing y,
there is a dim(L(S"))-dimensional neighborhood around V. Both V' and this neighborhood
are in L(S) since they are obtained as a limit as the i, s entry of Mg(x) goes to zero. In
L(S), we may perturb the i, s entry of Ms(y). Points obtained in this way are readily
seen to be distinct from V’s neighborhood in L(S’), since Ay # 0 at these points. So,

dim(L(S)) > dim(L(S")), as desired.
Finally, inducting on dim(L(S)),

nmd(S) > dim(L(S)) > dim(L(S’)) = nmd(S’) = nmd(S) — 1.
Thus, nmd(S) = dim(L(S)), completing the proof. ]

The geometric content of this theorem is perhaps somewhat surprising. The locus L(S)
is the image of {Ms(y) : v;; € R*} under quotient by left action of GL(k). Fixing one of
the y;; to a generic parameter, we do not expect the dimension of the image of this family
of matrices in the quotient to drop. However, setting some y;; to zero, we should generally
expect the dimension in the quotient to drop by one. Contrary to this expectation, the
equivalence of (i) and (iii) together with the elimination argument used to prove that (i)
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implies (iii) show that if the set of matrices
{Ms(y) = yi; € R, rk(Ms(y)) = k}

and the quotient L(S) differ by more than a torus worth of symmetry, we may always set
one of the y;; to zero without altering L(S). This fact immediately implies the following
combinatorial corollary.

Corollary 3.1.7. Suppose that S is not a minimal presentation of B(S), then there is
some S; € S and s € S; such that

B({Si,...,Si\'s,...,Sk}) = B(S).

Remark 3.1.8. This fact has been noted several times in the literature, for instance as
Theorem 3.7 in [19]. While the geometric observation we may always set one of the y;; to
zero without altering L(S) immediately implies this corollary, Corollary 3.1.7 does not a
priori imply this geometric analog.

Theorem 3.1.9. Let S and S’ be set systems. Then,

B(S) =B(S") if and only if L(S) = L(S").

Proof. If L(S) = L(S8’), Proposition 3.1.1 implies that B(S) = B(S’). Conversely, let S
and S’ be set systems such that B(S) = B(S’). It suffices to show that L(S) = L(S’)
in the case where &’ is the unique maximal presentation of B(S) guaranteed by Theorem
2.3.12. The variable elimination argument used to show show point (i) implies point (iii)

in Theorem 3.1.2 shows that we can set variables in Mg (x) to zero without altering the
closure L(S’) until we arrive at the matrix Mg(x). Hence, L(S) = L(S'). O

3.2 Dimension Computations

This section is dedicated to proving the following theorem, which will be used later to

show that L(S) = Vp(s) in the case where B(S) is a positroid.

Theorem 3.2.1. Let S be a set system such that B(S) is a positroid. Then,

dim(L(S)) = dim(Viys))-
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Evidently, dim(L(S)) < dim(Vas)). In [25], Ford introduces a notion of expected
codimension of a matroid variety, and proves that positroid varieties achieve their expected
codimension. We will prove that for a transversal matroid, Ford’s expected codimension
agrees with codim(L(S)). Since the notion of expected codimension of a matroid variety
is only used to prove Theorem 3.2.1, our exposition of this concept will be terse. For full
details, see [25].

Definition 3.2.2. Let B be a rank k£ matroid on the ground set [n] and let Z be some
collection of subsets of [n]. For I € Z, let

() = || = k().

and

bo(1) = S (k = tk(D))piz (1, J), (3.6)

JET

where p7 is the Mobius function on the poset obtained by ordering the elements of Z by
containment. Then, the expected codimension of B with respect to T is

ecz(B) = e()bz(I).

IeT
The expected codimension of B is
ec(B) = ecp(pu) (B),

where P([n]) is the power set of [n].

Ford asks which Z C P([n]) have the property that ecz(B) = ec(B). He observes that
if 7 C T has the property that bz(/) = 0 for all I € 7', then

ecI(B) = eCZ\I/ (B) .

Identifying particular classes of sets with this property and repeatedly applying this ob-
servation yields the following theorem.

Theorem 3.2.3 (Theorem 3.6 in [25]). Let B be a connected matroid and suppose T is a
collection of subsets of [n] containing every set I such that B|; and B/I are connected (i.e.
the set of flacets of B) and such that whenever I € I, all J such that B|; is a connected
component of B|; are in I as well. Then, ecz(B) = ec(B).
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Lemma 3.2.4 (Proposition 3.7 in [25]). Let By, By be matroids. Then,
ec(By & By) = ec(By) + ec(Ba).

Theorem 3.2.5 (Theorem 4.7 in [25]). If B is a positroid, ec(B) = codim(Vj).
Theorem 3.2.6. Let S be a presentation of the transversal matroid B(S). Then,

codim(L(S)) = ec(B(S)).

Proof. Since dim(L(S)) and ec(B(S)) both behave the same way under direct sums of
matroids, we may suppose B(S) is connected. Since dim(L(S)) is invariant under the
presentation of the matroid, we may suppose S is a minimal presentation of B(S).

Let Z be the collection of all individual elements of [n] together with all flats of the
form F(T), from (2.6), such that tk(F (7)) = |T|. From Lemma 2.3.13, Z contains all
flacets of B(S). If tk(F (7)) = |T|, the connected components of F'(7) are either coloops
or sets of the form F(T") for some 7' C T with rtk(F(7")) = |T’|. So, the collection Z
satisfies the hypotheses of Theorem 3.2.3.

We claim that for any F(T) € Z,

1 if | T =k —1,

) (3.7)
0 otherwise.

bz(F(T)) = {

Evidently,

= (k = tk(F(5)))pz(F(S), F(S))
= 0.

Since S is a minimal presentation, Hall’'s Matching Theorem and point (iii) of Theorem
3.1.2 imply there is matching in T's saturating [n]\ S; for all S; € S. So, F(S\ S;) € Z for
all S; € S. Then, bz(F(S\ S;)) =1 for all S; € S.

Let F(T) € Z such that |T| < k — 1 and suppose (3.7) holds for all F(7’) with
|7'| > |T|. Applying Mobius inversion to (3.6),

F=rk(F(T) = Y0 ba(F(T))

B(T)2F(T)
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Since T C S\ S, for each S; € S\T, and F(S\S;) € Z for each S;, our inductive hypothesis
reduces the sum on the right hand side to

kE—|T|+bz(F(T)).
Since F(T) € Z, vk(F(T)) = |T| and so
br(F(T)) = 0.

Thus, (3.7) holds for all F(T) € Z inductively. Since B(S) is connected, for all j € [n],
rk(j) = 1 and thus ¢(j) = 0. Then,

ec(B(S)) = ecz(B(S))
= 3PS\ SDbr(F(S\S) + Y e(h)bz ()

S;e8 J€[n]
=S (FS\ S~ (k—1)+ Y e(j)bz(j)
S;€8 Jj€ln]
=) (n—18]) — k(k - 1).
S;eS

From Theorem 3.1.2,
dim(L(S)) = Y |Si — k.

S;ES
The dimension of Gr(k,n) is k(n — k). So,

codim(L(S)) = k(n — k) — (Z |1S;| — k)

= ec(B(S)). O

Proof of Theorem 3.2.1. Let S be a set system such that B(S) is a positroid. Combining
Theorems 3.2.5 and 3.2.6,

dim(Vps)) = k(n — k) — ec(B(S)) = dim(L(S)). O
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3.3 Basis Shape Loci and Positroids

Theorem 3.3.1. Let S be a set system. If B(S) is a positroid, then L(S) = Vps), the
positroid variety labelled by B(S).

Proof. Suppose that B(S) is a positroid. Since Vg N L(S) is dense in L(S) by Proposition
3.1.1, L(S) € Vas).

Using Theorem 3.1.9, we may suppose that S is a minimal presentation of B(S). Let
V € L(S) be the row space of a matrix Ms(y) obtained by evaluating the x;; at alge-
braically independent real numbers y;; in Mg(x). Since V is generic, it represents the
matroid B(S), and thus V' is in the Marsh-Reitsch cell MR(B(S)). Let Mp(s) (V) be the
Marsh-Reitsch matrix representing V', guaranteed by Theorem 2.2.19. Then, there is some
G € GI(k) such that
G - Mps) (V) = Ms(y).

The Marsh-Rietsch matrix has exactly dim(V3) many free parameters. From Theorem
3.2.1, dim(L(S)) = dim(Vz(s)) as well. So, Mp(s)(V') must have been obtained by eval-
uating the entries of the Marsh-Rietsch matrix at algebraically independent parameters.
Then, the change of basis matrix G provides a basis of shape S for a generic point in
MR(B(S)). So, L(S) N MR(B(S)) is dense in MR(B(S)) and thus

Vss) = MR(B(S)) C L(S). H

Remark 3.3.2. In the case where B(S) is not a positroid, little is known about L(S). It
would be interesting to see how L(S) compares to the GGMS variety Vp(s) in this case.

3.4 When is a Transversal Matroid a Positroid?

This section addresses the question of characterizing when a transversal matroid is
a positroid. We call matroids which are transversal matroids and positroids transversal
positroids.

Example 3.4.1. Let S be the set system

Sy ={1,3,4},
Sy = {2,4}.
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Any point in L(S) is the row span of a unique matrix of the form

1 0 w3 vua

01 0 wyau )’
where y;; € R*. Consider L(S) N Grso(k,n). For any point in this intersection, since
A4 > 0, we must have yoq > 0. Since Agy > 0, y13 > 0 as well. However, this restriction

forces Agz < 0. Thus, L(S)NGr>o(k,n) = 0. If B(S) is a positroid L(S) = Vj(s). However,
when B is a positroid, dim(Vz N Gr>o(k,n)) = dim(V3), a contradiction.

The fundamental obstruction illustrated in this example is that the set S; crosses Ss,
in the sense of Definition 3.4.2 below.

For any a € [n], let <, denote that a™ cyclic shift of the usual total order on [n]. So,
a<,a+1<,- <, n<,1<,"<,a—1. (3.8)

Definition 3.4.2. In a set system S, the set S; crosses S; if there are a,b, ¢, d € [n] such
that:

(i) a <. b<q4c<qd,
(i) a,c € S;, a,c¢ S,
(iii) b,d € S;, b ¢ Si.

The set system S is noncrossing if there is no pair 5;, 5; € § with S; crossing S;.

Note that this definition is not symmetric. It is possible for the set S; to cross 5
without S; crossing S;.

Theorem 3.4.3. Suppose that S is a minimal presentation of B(S) and that no set crosses
another in S. Then, B(S) is a positroid.

Proof. Suppose that B(S) is not a positroid. From Theorem 2.3.8, B(S) could fail to be a
positroid either by having some connected component which is not a positroid, or having
its connected components form a crossing partition. Since S is a minimal presentation, the
connected components of B(S) correspond to the connected components of I's. Evidently,
the existence of crossing connected components necessitates the existence of crossing sets
in S. So, we may suppose B(S) is connected.
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Theorem 2.3.7 says that there is some flacet F' of B(S) which is not a cyclic interval.
Since flacets are cyclic flats, Lemma 2.3.13 implies F' = F(T7) for some 7 C S with
rk(7) = |T|. Since F is a cyclic flat, T|p is a minimal presentation of B(S)|r. Then,
B(S)|F is connected if and only if I'7, is connected. So, there must be some S; € T with
a,c € S;, where a and ¢ are not contained in a cyclic interval of F.

Since rk(F') = |T|, the contraction B(S)/F is a transversal matroid with presentation
S\ T, and this presentation is minimal. Then, there must be some S; € S\T with b, d € S;
where b and d are in different cyclic intervals of [n] \ F.

From the definition of F(T), a,c ¢ S;. Since S is a minimal presentation, point (iii)
of Theorem 3.1.2 implies S; € S;. So, we may take at least one of b or d to not be in ;.
Then, S; crosses S; in S. O

Remark 3.4.4. The special case of Theorem 3.4.3 where S is the set system associated
to a Wilson loop diagram (see Definition 5.1.1) appears as Theorem 3.38 in [2]. The proof
above is a direct generalization of their argument.

We conjecture that the noncrossing condition is also necessary for a transversal matroid
to be a positroid.

Conjecture 3.4.5. Let B be a transversal matroid which is also a positroid. Then, there
is a noncrossing minimal presentation S of B.

Remark 3.4.6. In the case of transversal positroids, Conjecture 3.4.5 is a strengthening of
Theorem 2.3.8, saying that the connected components of a positroid must form a noncross-
ing partition. Since S is a minimal presentation in this conjecture, connected components
of B(S) correspond to connected components of I's. Evidently, a crossing of connected
components in I's implies that S is crossing.

We will show that Conjecture 3.4.5 holds in the case where V3 is a Richardson variety,
and the case where all sets in a minimal presentation of the matroid B have the same
size. A strengthening of this conjecture, providing an algorithmic method of producing a
noncrossing minimal presentation is given in Conjecture 3.4.22. This strengthened conjec-
ture holds in the special cases mentioned above and has received extensive computational
verification.

Proposition 3.4.7. Let I,J € ([Z]) with I < J and let B(I,J) be the lattice path matroid
defined by this pair of sets. Then, B(I,J) is a transversal matroid with a noncrossing
minimal presentation.
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Proof. Let I = {iy,iq,...,1} and J = {J1,72,...,Jk} with i3 < iy < -+ < ip and j; <
Jo < -0 < Jgg. For 1 <0 <K, let

SgI{miigSmSjg}.

It is well known, for instance Section 4 of [16], that B(I,J) is a transversal matroid and
that S = {S1,52,..., Sk} is a minimal presentation of B(I,J). Since every set in this
presentation is an interval, no two sets cross each other. O

The following corollary follows immediately from Theorem 3.3.1 and the fact that all
lattice path matroids are transversal matroids.

Corollary 3.4.8. All Schubert and Richardson varieties in Gr(k,n) are closures of basis
shape loc.

Proposition 3.4.9. Let B be a transversal matroid such that all sets in a minimal pre-
sentation of B have the same size. If B is a positroid, then it has a minimal presentation
which s noncrossing.

We require some technical machinery to prove this proposition. This machinery is
presented in a way that is functional even when not all sets in S have the same size,
allowing us to give a strengthened version of Conjecture 3.4.5. Theorems 3.4.14 and 3.4.15
provide a procedure of pivoting between different minimal presentations of the matroid
B(S). Each pivot replaces a single set in the set system S with a different set while
preserving the matroid B(S). Lemma 3.4.20 shows that if the set system S is crossing and
B(S) is a positroid, that we are able to perform a pivot that removes this crossing. Finally,
we show that in the case where all sets in S have the same size that we are able to use
these pivots to simultaneously remove all crossings in the set system.

Definition 3.4.10. Call a subsystem 7 C S ezxact if

Ur

TeT

= [T+ max (IT)) 1 (39)

That is, the inequality (3.3) from point (iii) of Theorem 3.1.2 holds with equality for 7.

Lemma 3.4.11. Let S be a minimal presentation of B(S), and let T be an exact subsystem
of S. Then, tk(F(S\T))=|S\T]|.
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Proof. Let F'= F(S\ T), the flat from (2.6). For any &’ C S\ T,

U snF U si-|Us

Ses’ SeS'uT SeT
> (|S' UT|+ max (|S]) — 1> — (|T| + max(|S]) — 1)
SeS'uT SeT
> |8

Here, the positive part of the inequality on the second line comes from (3.3), and the
negative part comes from the assumption 7 was exact. Then, Hall’s Matching Theorem
implies there is a matching in I's from S\ 7 to F saturating S\ 7. So, tk(F') = |S\7|. O

Lemma 3.4.12. Let S be a minimal presentation of B(S). Let T and T' be exact subsys-
tems of S with S € T,T" such that

S| = T)).
S = max (IT])

Then, T UT" is an exact subsystem.

Proof. Note that

U rni<iyJrn+|\yUrl-1 Yyr
TeTUT! TeT TeT! TeTNT’
=[TI+|T)+2S|-2—| |J T
TeTnT’
<|T)+ [T +28| -2— (T NT|+]S|-1)

=|[TUT'|+|S| -1

Here, the equality on the second line comes from the assumption that 7 and 7" are exact,
and the inequality on the third line comes from (3.3). Then, (3.3) implies that 7 U T is
exact. ]

Definition 3.4.13. We say that the set systems S and &’ are related by a pivot if they
both satisfy the inequalities (3.3) and

S'=8\SU{S\aUb},
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and there is some exact 7 C § containing S such that |S| = maxrer (|T),
aceSNT, and beT\S

for some T € T.

Theorem 3.4.14. Let S and S’ be set systems satisfying the conditions of Theorem 3.1.2.

If § and S’ are related by a pivot, then L(S) = L(S') and thus B(S) = B(S’).

Proof. Let Ms(x) be the matrix of indeterminates associated to S and let v; be the i
row vector of Mg(x).

If S and S’ are related by a pivot replacing S by S\ aUb, an argument identical to the
proof of Theorem 3.1.2 showing (iii) implies (i) shows there is some linear combination

v, =v;+ Z iV,
JeET\i
such that supp(v;) = S; \ a Ub and

span ({vy,...,vi}\ v; Uv)) = L(S),

and thus L(S) = L(S’). Then, Proposition 3.1.1 implies that B(S) = B(S’). O

Theorem 3.4.15. Let S be an exact system and let S € S be a set of maximal size. Then,
{s’ € (ED  B(S\SUS) = 5(3)} = B'(S\ 9),

the dual of the transversal matroid defined by S\ S. Using the exact system S, S may be
pivoted to any element in this set.

Proof. Let S" € (I[g]l) and suppose that S ¢ B*(S\ S). So, [n]\ S’ is not a basis of
B(S\ S). Using Remark 3.1.3, $ \ S U S’ violates the conditions of Theorem 3.1.2. Since
S\ SUS is not a minimal presentation of its transversal matroid, Theorem 2.3.12 implies
that B(S\ SUYS’) # B(S).

Now, let §" € B*(S\ S). Let T € (‘[g]‘) be some set obtained from S by a series of
pivots using the exact system S. Among all such sets, suppose T maximizes |T'N S’|. By
Theorem 3.4.14, B(S) = B(S \ SUT), so the previous paragraph implies T' € B*(S \ S).
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Suppose there is some b € T\ S’. Then, the matroid basis exchange axioms imply there is
some a € S\ T such that

(MI\ (T"\bUa)) € B(S\S).
Then, the bipartite graph I's\g has an alternating path
b=ay— Say —a1 —Say —+* — Sa,, — Umy1 = a,
with ag, apy1 € Sy, for 0 <i <m. Let T},,s1 =T \ bUa, and for m >4 > 0 let
Ty = Top1 \ ag1 U ay.

The set T} is obtained from 74, via a pivot using the set S,,, and Ty = T". Then, T\ bUa
is reachable from S by a series of pivots, contradicting the assumption that T" was chosen
to maximize |T'NS’|. Thus, S’ is reachable from S by a series of pivots. O

Remark 3.4.16. Ardila and Ruiz give a method of pivoting between different presentations
of a transversal matroid in [8]. The pivoting procedure of Definition 3.4.13 differs from
Ardila and Ruiz’s in that it only passes between minimal presentations of the transversal
matroid, while theirs might use non-minimal presentations. In Lemma 4.4, they prove that
any two presentations of a transversal matroid are related by a series of their pivots. We
conjecture that a similar fact holds for the pivots described in Definition 3.4.13.

Conjecture 3.4.17. Let S and 8’ be minimal presentations of the same transversal ma-
troid. Then, S is reachable from S via a sequence of the pivots described in Definition
3.4.13.

The following series of lemmas show that if B(S) is a positroid and S is a crossing
minimal presentation, then there is an exact subsystem of S, which may be used to perform
a pivot removing this crossing.

Lemma 3.4.18. Suppose that S is a minimal presentation of B(S) and that S; crosses S;
in S with a,c € S; and b,d € S; witnessing this crossing. If there is a matching of size

k—2inTs from S\ {S;,S;} to [n]\ (S;U{a,c}), then
dim(L(S)) > dim(L(S) N Grso(k,n)).

Hence, B(S) is not a positroid.
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Proof. Suppose there is a matching in I's from S\ {S;, S;} to I, for some I € ([”]k‘ijéa’c).

Let Ms(y) be some matrix obtained by evaluating the indeterminate entries of Mg(x) at
nonzero real values y;;. We may suppose j = 1 and that the columns of M are cyclically
rotated so that b is the first column. Let m = |[b,d]| N I|. For R C S and C' C [n]| with
|R| = |C|, let Mg denote the determinant of the square submatrix of M with rows R
and columns C'. Since there is a matching from S\ {5;,S;} to I,

Mgs\s, ,10as Ms\s,,10e # 0

at a generic evaluation of the z;;. Then,

Sgn(MS,IUab) = Sgn(ylb>sgn(MS\Sl,IUa)7
and
sgn(Ms ruaa) = (1) sgn(yia)sgn(Ms\s, .10a)-
So, if Ms(y) represents a point in Grso(k, n),

m+1

sgn(yw) = (=1)"" "sgn(y1a).

Further,
SgH(Ms,Iqu) = Sgn<ylb>sgn(MS\Sl,IUc>7

and
sgn(Ms ruea) = (—1)"sgn(yia)sgn(Ms\s,,rue)-

So, if Ms(y) represents a point in Grso(k,n),

sgn(y1a) = (—1)"sgn(yic).

Thus, L(S) cannot intersect the positive Grassmannian in its full dimension. If B(S) is a
positroid, Theorems 3.3.1 and 2.2.20 imply

dim(L(S) N Grso(k,n)) = dim(Vg N Grso(k,n)) = dim(Vg).

So, B(S) cannot be a positroid. O

Remark 3.4.19. Beware that the asymmetry in the definition of crossing is crucial in this
lemma. If a,b,c,d witness a crossing of S; and S; with a,c,d € §;, the computations of
signs of determinants in the proof of Lemma 3.4.18 do not necessarily hold if one exchanges
the roles of S; and S;. In fact, it is possible that there will be a matching of size k — 2 in
Is from S\ {5;,S;} to [n]\ (S;U{a,c}). Consider for example the set system S consisting
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of

Sl = {17375}7
82 - {27374}7
S, = {2,4,5).

This set system may be pivoted to {145,245,345}, which is noncrossing. Hence B(S)
is a positroid. In &, Sy crosses S7 with 4,1,2,3 witnessing this crossing. Lemma 3.4.18
implies there is not a matching from Ss to [5] \ (S; U {2,4}) in I's. There is however a
matching from S; to [5] \ (S2 U {1,3}) in T's.

Lemma 3.4.20. Suppose that S is a minimal presentation of the transversal positroid
B(S). Suppose that S; crosses S; in S. Then, there is an exact subsystem T of S such
that S; is pivotable. Moreover, we make take T to contain both S; and S;.

Proof. Suppose that S; crosses S;, and let a,c € S; and b,d € S; be elements witnessing
this crossing. Suppose towards a contradiction that there is no exact subsystem T of &
such that S; is pivotable. Then, for all T C S\ S},

U 7> 71+l

TeTUS;

So, for all x € [n] \ 5,
U7\ (sjue)

TeT

> |T]. (3.10)

Since B(S) is a positroid, Lemma 3.4.18 says there cannot be a matching in I's from
S\{S5;, 5;} to [n]\(S;Uac). So, Hall’'s Matching Theorem guarantees some 7 C S\ {S;, S;}
such that

U T\ (SjUac)| <|T].
TeT
From (3.10), we must have
U T\ (8 Uae) = 171 -1,
TeT
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and
a,ce | JT. (3.11)

If Sz \ Sj C UTGT T, then

U 7| <7148+ 1.

TETUSZ'US]'

Since S is a minimal presentation, this inequality must hold with equality, and 7 U.S; U S
is an exact subsystem where S; is pivotable.

Otherwise, there is some e € S; \ S; which is not in ;.7 Suppose without loss of
generality that e is on the same side of the chord from b to d that ¢ is on. So, a,b,e,d
witnesses the fact that S; crosses S; as well. Again using Lemma 3.4.18 and Hall’s Theorem,

there is some 7 such that

U T\ (S;uae)| < |T.

TeT!

As before, using (3.10), |Urer T\ S;| = |T'| + 1 and using (3.11) a,e € Uper T

Note that
‘(U T\Sj> N (U T\Sj> > 1,
TeT TET;
since a is in this intersection. Then,
U 7\s|<ImuT|+1
TeTUT

Now,

a,c,e e U T.

TeTuT’

Continuing inductively in this fashion, we may take 7 to be some set such that

Ur\s;

TeT

<|T|+1
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and S;\ Sj; C Uper T Then, T US; US; is an exact subsystem where S; is pivotable. [

We call a presentation S = {S51,S,...,Sk} of B Gale minimal if it is a minimal
presentation of B and there is no other minimal presentation &’ = {S},S%,...,S.} of B
where |S]| = |S;| and S} < S; in Gale order for all 1 < i < k. Suppose that the sets in S
are indexed such that |S;| < |S;41| for 1 <i < k—1. A Gale minimal presentation of B(S)
may be produced algorithmically by, for each 1 < < k:

e Identifying the maximal (with respect to containment) exact subsystem 7 containing
S; as a set of maximal size.

e Replacing S; with the Gale minimal basis of B*(T \ S;)|upe,7-

Proof of Proposition 3.4.9. Let S be a minimal presentation of the transversal positroid

B(S) and suppose that all sets in S have the same size. We may further suppose that B(S)

is connected, since B(S) will have a noncrossing presentation if and only if the connected

components of B(S) form a noncrossing partition and each connected component has a
noncrossing presentation.

Suppose S is a Gale minimal presentation of B(S). We claim S is noncrossing. Suppose
the sets S and S’ cross each other. Then, Lemma 3.4.20 guarantees the existence of some
exact subsystem 7 = {T1,75,...,Tj7} containing S and S’. Since S was a Gale minimal
presentation of B(S), T is a Gale minimal presentation of B(T). Let

{t17t27 s 7t|5'|+‘7"—1} = U T7
TeT

where ¢, <ty < -+ < {t|g471-1- Then, after possibly reindexing the sets in 7, the unique
Gale minimal presentation of 7T is

Tl = {t17t27-~-7t|5|—17t‘5‘},

T2 = {tl,th-'7t|S|—17t‘S‘+1},

T3 = {t17t27---at|5|—17t‘5‘+2},
Tip = At ta, o si—n bspari—1)-

Observe that this presentation is noncrossing, violating that assumption that S and S’
crossed. O
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Unfortunately, Gale minimal presentations of transversal positroids may in general
feature crossings. However, we may consider presentations which are minimal in a-Gale
order for some a; the cyclic shift of Gale order obtained by using <, in place of the usual
order on [n] So, if [ = {il,ig, e ,’Lk} and J = {jl,jg, . 7,]k} with 27 <, 19 <q -+ <o Uk
and j1 <q Jo <4 - <q Jr, then I <, J if and only if 7, <, j, for each 1 < ¢ < k.

The following example illustrates a matroid B(S) whose Gale minimal presentation is
crossing, but which has a noncrossing presentation which is minimal in a-Gale order, for
some a. Conjecture 3.4.22 posits that this phenomena holds in general; that at least one
of the a-Gale minimal presentations of a transversal positroid will always be noncrossing.

Example 3.4.21. Let S be the set system consisting of

Sl = {17273a4}7
S, = {1,2,3,5},
Sg - {4,5,6}

The matroid B(S) is a positroid and this presentation is Gale minimal. However, 6,1,4,5
witnesses a crossing of S3 and S;. A minimal presentation in 4-Gale order is

S = {4,5,1,2}
S, = {4,5,1,3}
St = {4,5,6}.

This presentation is noncrossing.

Conjecture 3.4.22. Let B be a transversal positroid. There is a minimal presentation S
of B which is noncrossing and which is minimal in a-Gale order for some a.

This conjecture holds in the cases described in Propositions 3.4.7 and 3.4.9 and has
been verified exhaustively for matroids of rank up to 4 on up to 10 elements. Additionally,
it has received extensive computational verification on randomized examples of matroids
of rank up to 8 on up to 14 elements.

The method of computation is to select a set system at random. If the set system
satisfies the inequalities (3.3), we initialize a random integer matrix whose pattern of
zero/non-zero entries is prescribed by the set system and use the matroid package in
SAGE to compute the matroid represented by this matrix. If this matroid is a positroid,
we compute presentations which are minimal in some cyclic shift of the Gale order until
we either find a presentation which is noncrossing or have checked all cyclic shifts of the
Gale order. SAGE code for these computations is available upon request. If one were
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inclined to further optimize the computation of a transversal matroid and to make the
computation exact rather than probabilistic, the computation could be performed in the
Boolean algebra, where nonzero matrix entries are set to TRUE, zero entries to FALSE,
multiplication is replaced by AND, and addition is replaced by OR.

We remark that the odds that a random set system is a minimal presentation of a
positroid are quite low. For a collection of 5 subsets of [10], the odds that a random set
system is a minimal presentation of a positroid are roughly 0.5%, which allows a standard
laptop to check one meaningful example about every 10 seconds. For rank > 6, the odds of
finding a minimal presentation of a positroid are vanishingly small, and this computation
was performed as a large array of jobs on parallel system.

3.5 Comparison with Other Structures

We note that not all positroids are of the form B(S) for some S.

Example 3.5.1. Consider the matrix

1100 -1 -1

0011 1 1 '
All maximal minors of this matrix are nonnegative, so the matroid B it represents is a
positroid. However, this matroid is not a transversal matroid. Suppose B = B({S1, S2}).
Suppose that 1 € S;. Then, 2 ¢ Sy, since 12 ¢ B. So, 2 € Sy, and 1 ¢ S,. Then,

3,4,5,6 € Sy, since 13,14,15,16 € B. Then, since 34,56 ¢ B, 3,4,5,6 ¢ S;. Then,
35 ¢ B({S1, S2}), contradicting the fact that B = B({S, S2}).

The interval rank function is the map sending a k x n matrix M to the upper triangular
n X n matrix r(M) where

r(M);; = rank(the submatrix of M using columns {7,i+1,...,7}).

Note that the intervals appearing here are ordinary intervals, not cyclic intervals. An
open interval positroid variety is the set of points in Gr(k,n) with a fixed interval rank
matrix. The matroid represented by a generic point in an interval positroid variety is an
interval positroid. Interval positroid varieties were introduced by Knutson in [35] to study
the degenerations appearing in Vakil’s “geometric Littlewood-Richardson rule,” [56]. In-
terval positroid varieties are positroid varieties. All Schubert varieties, opposite Schubert
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varieties, and Richardson varieties are interval positroid varieties. The matroid from Ex-
ample 3.5.1 is an example of an interval positroid which is not a transversal matroid. The
following example provides a transversal positroid which is not an interval positroid.

Example 3.5.2. Let S = {1245,23,56}. The set system S is noncrossing, so Theorem
3.3.1 implies B(S) is a positroid. The interval rank matrix of a generic point in L(S) is

(3.12)

DO OO
SO OO
O OO~ NN
SO N NN
SO = N W WWw
NN W W W

The interval positroid variety associated to (3.12) is the smallest interval positroid variety
containing L(S). So, if B(S) is an interval positroid, it must be the one defined by (3.12).
Computing from (3.12) a bounded affine permutation as described in [35], then associating
a positroid to this bounded affine permutation as described in [36], the interval positroid
associated to (3.12) is

{125,126, 135, 136, 145, 146, 156, 235, 236, 245, 246, 256, 345, 346, 356}

Notably, 145 is a basis of this interval positroid, but 145 ¢ B(S).

Even though MR(B)N L(S) is dense in both MR(B) and L(S), neither set is in general
contained in the other.

Example 3.5.3. Let S = {134,234}. Then,

10 -1 -1
span(o 11 1 >€L(8).

This point is in Gr>0(2,4), but represents a matroid aside from B(S). So, this point is not
in MR(B(S)).
Example 3.5.4. The Marsh-Rietsch cell associated to the positroid B = ([;1}) is

{span( 1 0 —a3 —(asas +a300) ) D oay,as,as, 04 € R*}.

01 aq a1Qa9

The set S = {134,234} satisfies B(S) = B. The subset of MR(B) where ay = —as is not
contained in L(S).

62



A rank variety is L(S) where each S € S is an (ordinary) interval. Rank varieties were
introduced by Billey and Coskun in [13] as a generalization of Richardson varieties.

Diagram varieties were introduced by Liu in [42], and studied by Pawloski in [52]. They
define a diagram to be a subset D of [k] x [n —k]. If A € My, let [A| I;] be the k x n+k
matrix obtained by appending a k x k identity matrix to the right of A. The diagram
variety defined by D is the closure of

{span[A | I] : A € M}, ,—i with A;; =0 when (4, j) € D}.

Evidently, all diagram varieties are closures of basis shape loci, but there are basis shape
loci whose closures are not diagram varieties.

3.6 Speculation: Dominoes

An amplituhedron is a projection of Grso(k,n) to Gr(k, k+m) for some m by a totally
positive matrix. When m = 4, the volumes of amplituhedra conjecturally compute scat-
tering amplitudes in A/ = 4 supersymmetric Yang-Mills theory (SYM). Toward verifying
this conjecture, Arkani-Hamed and Trnka conjecture in [11] that a certain collection of
positroid cells called BCFW cells project to a triangulation of the m = 4 amplituhedron,
in the sense that their images are dense in the amplituhedron and overlap in a set of mea-
sure zero. BCFW cells, after Britto, Cachazo, Feng, and Witten, arise from the BCFW
recurrence relation, which is known to compute certain amplitudes in A" =4 SYM [18].

Karp, Williams, and Zhang provide a program for proving that the BCFW cells triangu-
late the amplituhedron in [33], and for finding collections of positroid cells that triangulate
other amplituhedra for other even m. Roughly, their strategy is to first find a basis of a
special shape, called a domino basis, for any plane in the positroid cell under consideration,
then to apply sign variation techniques to these basis shapes to verify disjointness of the
cells. Conjecture A.7 in [33] says that any BCEW cell admits a domino basis. Their sign
variation techniques are similar to those used in [10] to give a description of amplituhedra
in terms of binary codes. When k = 1, the conjectured triangulation of [33] is among the
triangulations of cyclic polytopes described in Theorem 4.2 in [54].

Part of the impetus for this project was to serve this program of Karp, Williams, and
Zhang. Currently, there is a sense of the kind of basis shapes which should be amenable
to their sign variation arguments and in many cases of the cells which should appear in a
triangulation of the amplituhedra, but one missing component is a formal way of connecting
these two ideas. The hope is that rather than first identifying a family of positroid cells
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and then trying to find special basis shapes for points in these cells, one might be able to
first identify the sorts of basis shapes & which are amenable to sign variation arguments
and then work with positroid cells L(S) N Grso(k,n). Since the intersection of L(S) and
the associated positroid cell is dense in both of them, working with L(S) is no different
from working with the positroid cell from the perspective of producing a triangulation.

Briefly, we introduce the basis shapes appearing in Karp, Williams, and Zhang’s pro-
gram which our work is presently able to handle; this is just a subset of the basis shapes
Karp, Williams, and Zhang consider. Say that a vector v is an i-domino if

supp(v) = {i,i + 1},

where by convention n + 1 = 1.1 For I C [n], say v is an I-domino if v is a sum of
i-dominos with disjoint supports for all i« € I. For Z = {Iy,..., I}, say V € Gr(k,n)
admits an Z-domino basis if V' is the span of I-dominos for I € Z. Given such an Z, let

7' =AI,..., 1.}, (3.13)
where
Evidently, the set of planes admitting Z-domino bases is exactly L(Z’).

In [33], i-dominos are further required to have their adjacent entries have the same
sign. We note that this requirement is actually a consequence of positivity and the shape
constraint imposed on the vectors.

Proposition 3.6.1. Suppose that V € Grso(k,n) N L(S) for some set system S satisfying
the hypotheses of Theorem 3.1.2. Let vg,,...,vs, be a basis of shape S for V and let
(U1,...,0,) = Vg, If v, vi1 # 0, then

~ Jsen(v) ifi#n,
sgn(vis1) = {(—l)k—lsgn(w) if i =n.

Proof. From point (iii) of Theorem 3.1.2, there is some

J:{jl,...,jk71}g[n]\sl

1[33] treats n-dominos slightly differently, defining v to be an n-domino if supp(v) = n. We choose our
convention since it will more natural for drawing a connection with Wilson loop cells in Chapter 5.
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such that there is a matching from Sy, ..., S to J in I's. Let A = (ay,,), where ay, is the
jth coordinate of Vs,,,- Then,
Ajui = V; det (A),

and

AL J v det(A) if i £ n,
ot (_1)k_1’0i+1 det(A) if 7 =n.

Since V' € Grso(k,n), these two Pliicker coordinates have the same sign if they are both
noNZero. 0

These are only the simplest basis shapes appearing in Karp, Williams, and Zhang’s
work. There are still several gaps to be filled before this present work can be useful for
describing all basis shapes appearing in their work. Notably, our results only apply in the
case when the entries of the matrix Ms(x) are all independent. To capture the basis shapes
appearing in [33], one would need to extend our results to describe cases where some of the
entries of Mg(x) are prescribed to be equal to each other, or when they satisfy some other
simple constraints. Another useful feature would be a way of translating between the set
system S and any of the many combinatorial objects indexing positroids described in [53].

Another motivation for this present work comes from another program for computing
amplitudes in N' = 4 SYM via Wilson loop diagrams (also called MHV diagrams). This
program is introduced from a physical perspective in [20] and surveyed in a way more
accessible to mathematicians in [4]. The geometric spaces arising in this program are basis
shape loci L(S) for a particular class of S defined by Wilson loop diagrams. One goal
was to illustrate a connection between these shapes S and the domino bases from [33].
Using the perspective of basis shape loci, we obtain several corollaries about cells defined
by Wilson loop diagrams in Section 5.2, and draw connections between Wilson loop cells
and domino bases. Notably, Theorem 5.2.5 will show that the set of points in Grso(k,n)
admitting Z-domino bases where |I| = 2 for all I € Z is exactly the union of all Wilson
loop cells.
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Chapter 4

Deodhar Decompositions and
Go-diagrams

This chapter proves several results about the Deodhar decomposition of the Grassman-
nian. The first three sections present results originally appearing in [45] by the author.
The three main questions addressed in that paper are:

(1) Provide a set of local moves which may be used to transform any, not necessarily
reduced, diagram into a Go-diagram.

(2) Describe the boundary structure of Deodhar components in the Grassmannian.

(3) Given an arbitrary filling of a Ferrers shape with black stones, white stones, and
pluses, provide a test for whether this diagram is a Go-diagram.

Section 4.1 answers question (1), describing a set of corrective flips which may be used
to transform any diagram into a Go-diagram. This should be thought of as a natural
extension of Lam and Williams’s J-moves (introduced below) from [41] to non-reduced
diagrams. However, unlike in the case of I-moves on reduced diagrams, it is possible to
obtain more than one Go-diagram for a fixed starting diagram via corrective flips.

Section 4.2 addresses question (2). In general, one does not expect questions of this
nature to have a reasonable answer. The Deodhar decomposition is known to not even
be a stratification of the flag manifold, [22]. However, we offer some evidence that there
might be a reasonable answer restricted to the special case of Deodhar components within
a Schubert cell. We introduce a new variety Vp inside a Schubert cell associated to a
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e/ o /+-diagram D. When D is a Go-diagram, Vp contains and is conjecturally equal to
DNS,. Theorem 4.2.9 shows that Vr C Vp when D’ and D are related by a certain
diagrammatic procedure. We conjecture that the same diagrammatic procedure provides
a complete charactization of when D’ C D with codimension one inside a Schubert cell,
and prove this fact in the special case where D and D’ are I-diagrams.

Section 4.3 addresses question (3). Ideally, one would like a description of Go-diagrams
in terms of forbidden subdiagrams, analogous to the description of J-diagrams. We show
that a reasonable description of this form cannot exist by providing an injection from the
set of valid Go-diagrams to the set of “minimal forbidden subdiagrams” for the class of
Go-diagrams in Theorem 4.3.1. So, the task of providing a list of forbidden subdiagrams
for the class of Go-diagrams is at least as hard as providing a list of all valid Go-diagrams.
In lieu of such a description, Theorem 4.3.8 provides an inductive characterization of Go-
diagrams.

The final section of this chapter presents joint work with Agarwala, originally appearing
in [6]. There, we describe a projection

w: Gr(k,n+1) = Gr(k,n)U Gr(k —1,n),

and study the fibers of this map over Deodhar components in Gr(k,n). We decompose
the fiber over a Deodhar component into Deodhar components and describe the boundary
structure of components appearing in the fiber. We further describe the fibers of the
restriction of this projection to the positive Grassmannian.

4.1 Corrective Flips

The notation for e/ o /+-diagrams was introduced in Section 2.1. Throughout this
section, stones in @/ o /+-diagrams will be colored black if and only if they are uncrossings.
The work presented in this section originally appears in Section 3 of [45] by the author.

In [41], Lam and Williams address the problem of giving a series of local moves on
o/+-diagrams which may be used to transform any reduced diagram into the J-diagram
corresponding to the same pair of permutations. Such moves are called I-moves. They
solve this problem in all cominuscule types. Their motivation was to provide a diagram-
matic index set for the Deodhar components intersecting the totally nonnegative part of
cominuscule Grassmannians akin to the Jd-diagram description in type A. As in the type
A case, this task is equivalent to providing a diagrammatic description of positive distin-
guished subexpressions in the quotient of a Weyl group by a cominuscule maximal parabolic
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subgroup. In type A, the only case we consider in this thesis, J-moves are moves of the
form given in Figure 4.1.

+ [+ O +

white stones o white stones

+ 0 +

Figure 4.1: Le-move.

The following theorem collects Lemma 4.13, Proposition 4.14, and Theorem 5.3 from
[41].

Theorem 4.1.1. Let D be a reduced o/+-diagram.

(1) If D" is obtained from D wvia a sequence of I-moves, the permutations associated to
D and D' are identical.

(i1) D is a I-diagram if and only if no I-moves may be applied to it.

(111) Any sequence of I-moves applied to D terminates in the unique I-diagram associated
to the same pair of permutations.

The goal of this section is to provide an analogous set of moves to transform any
e/ o /4+-diagram into a Go-diagram. The following example shows that JI-moves are not
sufficient to transform any reduced diagram into a Go-diagram, so additional moves really
are needed.

Example 4.1.2. Consider the following diagram.

+/ o]+
® + O
+/0Jo

This diagram is not a Go-diagram since the square in the top left corner violates the dis-
tinguished property. Further, there are no d-moves which may be applied to this diagram.
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Definition 4.1.3. Let D be a o/ o /4-diagram. Given a plus which violates the distin-
guished property, a corrective flip:

(i) switches the plus with either the white stone with which it violates the distinguished
property or that stone’s uncrossing partner if it exists, then

(ii) relabels the stones in the diagram so that a stone is black if and only if it is an
uncrossing.

In the diagram from Example 4.1.2, we may perform a corrective flip, swapping the plus
in the top left corner with the white stone in the bottom right corner. This corrective flip
is the only corrective flip available in the diagram. After performing this flip, the diagram
is a Go-diagram.

Remark 4.1.4. In [41], one of the defining features of J-moves is that only two squares
change filling during the J-move, one from a white stone to a plus and the other from a
plus to a white stone. In the case of a e/ o /+-diagram, the coloring of stones white or
black should be thought of purely as a mnemonic for which stones correspond to crossings
and uncrossings in the pipe dream. When performing a corrective flip, in the pipe dream
only two tiles change: one from an elbow piece to a crossing and the other from a crossing
to an elbow. The possible change in coloring of other stones in the diagram is a necessary
side effect of this two square swap.

Proposition 4.1.5. Let D be a o/ o /+-diagram.

(1) D is a Go-diagram if and only if there are no available corrective flips.
(i1) Corrective flips preserve the pair of permutations associated to a diagram.

(111) Corrective flips preserve number of black stones, white stones, and pluses in a dia-
gram.

(iv) Suppose pipes i and j cross at the crossing tile involved in a corrective flip. Then,
the only stones which change color when preforming a corrective flip are along pipes
1 and j on the segments between the plus and crossing tile involved in the flip.

(v) D can be transformed into a Go-diagram via corrective flips.

Proof. Points (i), (ii), and (iv) are obvious, looking at the pipe dream associated to a
diagram. Point (iii) is a consequence of Proposition 2.1.9 and the fact that a corrective
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flip preserves the number of pluses in a diagram. For point (v), observe that if we only
preform corrective flips switching pluses and white stones, the pluses only move downward.
We may preform such flips until no more corrective flips are available, at which point point
(i) implies the end result is a Go-diagram. O

Lemma 4.1.6. Let D be a o/ o /+-diagram and let D' be obtained from D by performing
a corrective flip. Then, ubDn > uﬁé forallbe D.

Proof. Let c and d be the boxes participating in the corrective flip and suppose that ¢ < d.
If c ¢ b™ or d € b™, then ul}, = ul,. Otherwise, if ¢ € b™ and d ¢ b™, then v, > ul,. O

In fact, a converse to Lemma 4.1.6 holds as well.

Proposition 4.1.7. Let D and D' be o/ o /+-diagrams with the same associated pair of
permutations and suppose that D' is obtained from D by emchangmg a single elbow piece
and crossing tile in the associated pipe dreams. If me > me for all b € D, then D" was
obtained from D by performing a corrective flip.

Proof. If D and D’ give the same pair of permutations and differ by exchanging a single
elbow piece and crossing tile in their pipe dreams, the elbow piece and crossing tile ex-
changed must involve the same pair of pipes. Suppose the exchanged crossing tile is in box
c and the elbow piece is in box d. If ¢ contained a white stone in D, we must have ¢ < d,
otherwise ubm < me for any box b such that d < b and b £ ¢. If there were some box e
with ¢ < e < d which was an uncrossing pair with ¢ in D, then me < ubm for any box b
with e < b < d. So, in this case D’ is obtained from D via a corrective flip. If ¢ contained
a black stone in D, we must have d < ¢, otherwise ubm < ubm for any box b such that c=<b
and b A d. In this case, if ¢ had a crossing pair e with d < e < ¢, then ubm < ubm for any
box b with d < b < e. ]

Theorem 4.1.8. Every sequence of corrective flips terminates in a Go-diagram.

Proof. To a diagram D, associate the tuple

:@ugn E@Gn.

beD beD

We endow B, ©,, with the product partial order obtained from the Bruhat orders on
each copy of &,. Let D’ be obtained from D by performing a corrective flip. Lemma
4.1.6 implies 7(D') < 7(D). Since this poset is finite, any sequence of corrective flips must
terminate. Then, point (ii) in Proposition 4.1.5 implies any sequence of corrective flips
terminates in a Go-diagram. O
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Unlike point (iii) in Theorem 4.1.1, there might be more than one Go-diagram obtain-
able from a e/ o /+-diagram via corrective flips.

Example 4.1.9. Consider the o/ o /+-diagram

o+
+[+[+
+[+[0

) (4.1)

which is not a Go-diagram. Using corrective flips, it may be transformed into either

+H+[+ o +[+
+ @+ o [+[O]+
+[+[0 +++]

(4.2)

One could remove this aspect of free will from the definition of corrective flip, for
instance by defining corrective flips to only switch pluses and white stones. However, we
find Definition 4.1.3 is the correct choice of definition given Proposition 4.1.7 and the role
corrective flips play in the boundary structure of Deodhar components, described in Section
4.2.

Remark 4.1.10. The set of corrective flips as described is not a minimal set of moves
with the properties described in Proposition 4.1.5 and Theorem 4.1.8. If one wanted a
smaller set of moves with these properties, they could consider only corrective flips such
that the elbow and crossing pieces being switched in the pipe dream have no other elbow
pieces between them involving the same pair of pipes. However, even this set of moves
isn’t minimal: restricted to reduced diagrams, it is a strictly larger set of moves than the
set of I-moves. It could be interesting to describe a set of corrective flips which is minimal
and whose specialization to reduced diagrams is exactly the set of I-moves.

4.2 Boundaries

The notation for e/ o /4+-diagrams was introduced in Section 2.1. Throughout this
section, stones in @/ o /-+-diagrams will be colored black if and only if they are uncrossings.
The work presented in this section originally appears in Section 4 of [45] by the author.
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This section introduces a new variety Vp inside of a Schubert cell associated to a /o /4-
diagram D. This variety contains the closure of the Deodhar component D inside the
Schubert cell S,. We describe a combinatorial condition implying a containment Vpr C Vp.
We conjecture that this same combinatorial condition implies D’ is a codimension one
boundary of D and prove this conjecture in the case where D’ and D are positroid varieties.

Definition 4.2.1. Let D be a e/ o /4+-diagram whose Ferrers shape A has vertical steps
11 < 19 < --- < it and horizontal steps j; < jo < -+ < j,_k. Define Iubm to be the set
associated to the permutation uyin. So, I, ,, is obtained diagrammatically by changing the
filling of all boxes in b°“* to white stones, computing the pipe dream associated to this
diagram, then reading the labels of the pipes along the left boundary of the Ferrers shape.
Define Vp to be the subset of Gr(k,n) where:

(i) Ar=0if I # I,
(ii) Ar, #0, and
(iii) for all boxes (ig, jm) € D, Ay = 0 if i1,... 01 € I, jnk,Jn-tk-1,---,Jms1 ¢ I and
I<1, ..,
(ig.dm)in

Remark 4.2.2. When a box b contains a white stone, [, > I, . So, this definition

captures the fact that A;, = 0 when D is a Go-diagram and b contains a white stone.

Corollary 4.2.3. Let D be a Go-diagram of shape X. Then, D NSy C Vp.

Proof. Theorem 2.2.25 implies that every Pliicker coordinate perscribed to vanish in point
(iii) of Definition 4.2.1 also vanishes uniformly on D. ]

We offer two conjectures relating Vp to D. Conjecture 4.2.5 is a strengthening of
Conjecture 4.2.4.

Conjecture 4.2.4. The ideal generated by the Plicker coordinates in (i) and (iii) of Def-
inition 4.2.1 is exactly the ideal of Plicker coordinates vanishing uniformly on D.

Conjecture 4.2.5. Let D be a Go-diagram inside the Ferrers shape A and D be the asso-
ciated Deodhar component. Then, DN S, = Vp.

Remark 4.2.6. There is some reason to be skeptical of Conjecture 4.2.5. The variety D is
some matroid variety, which one does not expect to be defined by the vanishing of Pliicker
coordinates in general (see Counterexample 2.6 in [25]). However, given that closures of
Deodhar components are considerably more restricted than general matroid varieties, we
are optimistic about Conjecture 4.2.5.
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Remark 4.2.7. Conjecture 4.2.5 gives an alternate, perhaps more tractable characteriza-
tion of Deodroids (see Section 2.4). It says that a Deodroid is completely characterized
by the smallest lattice path matroids containing each minor from Corollary 2.4.3 as a sub-
matroid. Equivalently, a Deodhar component is determined by which Richardson cells the
projection of DN (z;, = --- = z;, = 0) onto span(z;,,..., T, T, ...,2;,) lie in for each
{,m.

Example 4.2.8. This example illustrates that in general there are Pliicker coordinates in
the ideal of Vp that are not listed in points (i) or (ii) of Definition 4.2.1. Let D be the

following Go-diagram.
+|+]O)1

+[+]2
O
5

43

o
+
6

Consider the set 236. In the Go-network N(D), there is not a flow to 236 since there is
not a path from 1 to 3. So, As3s vanishes uniformly on D.

We show that even though 236 is not among the sets listed in Definition 4.2.1, that Assg
is nontheless forced to vanish on Vp. Evidently, 236 > 124, so point (i) of Definition 4.2.1
does not force Agsg to vanish on Vp. Since 1 ¢ 236 and 6 € 236, the only constraint from
(iii) which is relevant is that associated to the box (1,6). Note that 236 < Ly, gyin = 450,
so this constraint does not force Ay3s to vanish on Vp. Consider the Pliicker relation

A236A124 = A123A246 + A234A126-

Since 123 < 124, Ayo3 vanishes on Vp. Since 234 > 134 = [u( Aos3, vanishes on Vp.

Then, since Ajs4 # 0 on Vp, Agzg must vanish on Vp.

1,3)in’?

Theorem 4.2.9. Let D and D' be o/ o /+ diagrams. Suppose that D is obtained from D’
by one of the following procedures.

(i) Replacing the two stones in a crossing/uncrossing pair with pluses.
(11) Replacing a white stone without an uncrossing pair with a plus.

(111) Performing corrective flips.
Then, Vpr C Vp.
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Proof. To show that Vp C Vp, it suffices to show that I »» < I,p for all boxes b. We

pin pin
show the stronger fact the ubD; > uj), for any box.

For case (i), let ¢ and d form a crossing/uncrossing pair in D’ where ¢ contains a white
stone and d contains a black stone and let D be the diagram obtained by replacing these

two stones with pluses. Then, ugb > ugn if c < band b £ d. For all other boxes ul?; = ugn.
For case (ii), let ¢ contain a white stone without an uncrossing pair in D’ and let D
be the diagram obtained by changing ¢ to a plus. Then, ubD; > u,? if ¢ < b. Otherwise,

D' _ , D

Case (iii) is Lemma 4.1.6. O

We conjecture that the combinatorial procedure from Theorem 4.2.9 applied induc-
tively implies a containment of closures of Deodhar components. Theorem 4.2.16 proves
this conjecture for positroid varieties. Theorem 4.4.5 proves another special case of this
conjecture.

Conjecture 4.2.10. Let D and D' be Go-diagrams of the same Ferrers shape and D and
D' be the associated Deodhar components. Then, D' C D with dim(D) = dim(D’) + 1 if
and only if D is obtained from D’ by:

(1) Choosing a crossing/uncrossing pair in D',

(i1) replacing the two stones in this pair with pluses, and relabelling the other stones in
the diagram such that a stone is colored black if and only if it is an uncrossing, then

(111) performing corrective flips.
or by:

(i) Choosing a white stone without an uncrossing pair in D" such that replacing this
stone with a plus decreases the length of the diagram’s permutation by exactly one,

(i1) replacing this white stone with a plus, and relabelling the other stones in the diagram
such that a stone is colored black if and only if it is an uncrossing, then

(iii) performing corrective flips.
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Remark 4.2.11. The fact that these conditions would imply D’ is a codimension one
boundary of D would follow from Theorem 4.2.9 applied inductively together with Con-
jecture 4.2.5. If this is the case, the image to have in mind is that Vp = D when D is a
Go-diagram. When, D" is not a Go-diagram, Vp» is some possibly reducible variety. As
we undo corrective flips, we shed irreducible components, eventually arriving at another
Deodhar closure Vp = D'.

Remark 4.2.12. As an additional reality check for the sufficiency of this combinatorial
procedure to imply a boundary structure of Deodhar closures, we have proved that if
D obtained from D’ by one of the procedures described, then every Pliicker coordinate
which is prescribed to be nonvanishing on D’ is not prescribed to vanish on Vp. This is
a necessary, but not a priori sufficient condition for having D’ C D. We can provide this
proof upon request.

Remark 4.2.13. The necessity of this combinatorial condition for there to be a contain-
ment of closures of Deodhar components inside a Schubert cell is purely speculative, and
there is reason to be skeptical of this half of the conjecture. In particular, Proposition
2.5 in [22] shows that the closure of a Deodhar component is not in general a union of
Deodhar components by providing two Deodhar components D and D’ in the same Schu-
bert cell in the type B full flag manifold such that D N D’ is a nonempty proper subset
of D'. Proposition 2.7 in [22] disproves a conjecture for determining whether D ND’ # §.
While Conjecture 4.2.10 addresses a question distinct from these two issues, the general
wild behavior of the Deodhar decomposition could be reason for skepticism.

Example 4.2.14. This example illustrates the first set of moves described in Theorem
4.2.10. Consider the following Go-diagram.

D/

I
=[+[+]®
| +|+®
~1O|O|+

(4.3)

The white stone at (2,4) and the black stone at (1,5) form a crossing/uncrossing pair.
Replacing the stones in these squares with pluses yields the diagram (4.1) from the previous
section. We saw that this diagram could be transformed into either of the Go-diagrams
(4.2) via corrective flips. So, Vpr is a boundary of the varieties labelled by the Go-diagrams
(4.2).
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Example 4.2.15. This example illustrates the second set of moves described in Theorem
4.2.10. Consider the following Go-diagram.

+[o]o
+ o+
4

6 5

D =

_|_
—+12
3

Replacing the white stone at (1,5) with a plus decreases the length of the permutation
by exactly one, so this replacement is valid. After, performing this replacement we obtain
the diagram

+[+[o]+
+ o+ ]+

)

which is not a Go-diagram. Performing corrective flips, which in this case are simply
J-moves, we arrive at the diagram

O
+

D=

_|_
_l_

+
+]

O
+

So, Vpr is a boundary of Vp. The diagrams D and D’ are also J-diagrams and thus
index positroid cells P and P’. Theorem 4.2.16 will imply that P’ is a codimension one
boundary of P.

Theorem 4.2.16. Let D and D' be I-diagrams in the same Ferrers shape indexing positroid
cells Py, and Py . Then, Py, is a codimension one boundary of P, if and only D s
obtained from D' by:

(i) Choosing a white stone in D' such that replacing this stone with a plus decreases the
length of the diagram’s permutation by exactly one,

(i1) replacing this white stone with a plus, then

(111) performing I-moves.
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Proof. Let D and D' be J-diagrams with the same Ferrers shape indexing positroid cells
Puo and P, ,. Combining Theorem 5.10, Theorem 5.9, and Theorem 3.16 from [36],
Puw C P, if and only if there is a containment of Bruhat intervals [u/,v] C [u,v]. In
this case, the codimension of P, in P, is £(u) — £(u'). Let u be the expression obtained
by omitting the identity terms in the positive distinguished expression for u in v. Then,
Pu . is a codimension one boundary of P,, if and only if {(u) — ¢(u') = 1 and there is
a subexpression u’ of u obtained by omitting one transposition of u. This subexpression
u’ is diagrammatically realized by replacing the white stone corresponding to the omitted
transposition in the J-diagram associated to u with a plus. Theorem 4.1.1 implies that the
resulting diagram can be transformed into the J-diagram D’ indexing the positroid cell

P v using J-moves. O

Example 4.2.17. The poset in Figure 4.2 consists of Go-diagrams labelling Deodhar
components with the positroid cell Piosase 56123 C Gr(3,6) ordered by containment of
closures of Deodhar components.

+[+[+

++[+

[+ [+
o]+ [®[+[+] [F[+[+] [F[+][+
+[+[o] [+[o[+] [+[e[+] [e[+]F
+[+[+] [H[++ [F[+o] [+ol+

|

+[+]®
++[o
o[o[+
+o]+
+[o]+
+[o]®
Ol++
ol+[+

+|@®®
O|O|+

s/
\

Figure 4.2: Boundary poset of Deodhar components within the positroid cell Pi23456.456123-



4.3 Classification of GGo-diagrams

The notation for e/ o /4-diagrams was introduced in Section 2.1. In this section, unlike
the previous two sections, we do not assume that stones in o/ o /4-diagrams are colored
black if and only if they are uncrossings. The work presented in this section originally
appears in Section 5 of [45].

The goal of this section is to give a means of verifying whether an arbitrary filling
of a Ferrers shape with black stones, white stones, and pluses is a Go-diagram. For -
diagrams, there is a compact description of the class of -diagrams as diagrams avoiding
certain subdiagrams. Theorem 4.3.1 shows that no reasonable description of Go-diagrams
in terms of forbidden subdiagrams can exist. In lieu of such a description, Theorem 4.3.8
gives an inductive characterization of the class of Go-diagrams.

We say that a rectangular diagram is a minimal forbidden subdiagram if the only square
in the diagram which violates the distinguished property is in the top left corner, and the
pair of pipes which should uncross in this square initially cross in the bottom right corner.
Restricted to o/+-diagrams, minimal forbidden subdiagrams are of the form given in Figure
4.3.

O_|_O O _|_
O O

white stones

O
+|o] - [o]o]

Figure 4.3: Minimal fobidden subdiagrams for the class of Le-diagrams.

It is an easy exercise to show that a o/+-diagram which violates the J-condition must
contain one of these minimal forbidden subdiagrams. The following theorem shows that the
set of minimal violations for e /o /+-diagrams is much more poorly behaved, by providing an
injection from the set of valid Go-diagrams into the set of minimal forbidden subdiagrams
for the class of Go-diagrams. Since every minimal forbidden subdiagram must appear on
any list of forbidden subdiagrams for the class of Go-diagrams, this shows that Go-diagrams
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do not admit a reasonable description in terms of forbidden subdiagrams. This theorem
provides a negative answer to Problem 4.9 in [39)].

Theorem 4.3.1. There is an injection from the set of valid Go-diagrams into the set of
minimal forbidden subdiagrams for the class of Go-diagrams.

Proof. Let D be a Go-diagram whose Ferrers shape A which fits inside a k x (n — k)
rectangle. Let D' be the diagram inside a k x (n — k) rectangle obtained by placing D in
the top left corner, then padding out the bottom right corner with pluses. Note that D’ is
a Go-diagram.

Consider the 2 x 2 diagram

® +
+|O

(4.4)

Build the reflection of the shape A over the line y = x using these 2 x 2 blocks. Call this
figure A. Now, build a rectangular diagram D” which contains D’ in the top left corner, A
in the bottom right corner, and pluses padding out the rest of the squares. The dimensions
of D” do not matter as long as there is enough room so that no square in D’ is adjacent
to a square in A. Observe that D" is a valid Go-diagram.

Finally, build a one box wide border around D” which has:

e pluses in the top left, top right, and bottom left corners,
e a white stone in the bottom right corner,
e white stones along the bottom and right sides, and

e white or black stones along the top and left sides, as is necessary to avoid a violation
of the distinguished property.

In this diagram, the top left square should be an uncrossing with the bottom right
square and hence violates the distinguished property. As no other square in the diagram
violates the distinguished property, this diagram is a minimal forbidden subdiagram.

Given a diagram of this form, one can recover the diagram D it came from. To do
so, first delete a one square wide strip of boxes from the boundary of the diagram. Then,
examine the bottom right portion of this diagram to find a Ferrers shape built out of
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copies of the 2 x 2 subdiagram (4.4). The boxes of this same Ferrers shape in the top
left corner are the diagram D. Since this map is reversible, it is an injection from the
set of valid Go-diagrams into the set of minimal forbidden subdiagrams for the class of
Go-diagrams. O]

Example 4.3.2. Figure 4.4 shows a Go-diagram and its image under the injection de-
scribed in Theorem 4.3.1. The outline of the original Go-diagram and the reflection of its
Ferrers shape drawn in 2 x 2 blocks (4.4) are highlighted in bold for clarity.

Figure 4.4: A Go-diagram and its image under the injection described in Theorem 4.3.1.

All minimal violations obtained via the injection described in Theorem 4.3.1 have the
feature that, in the associated pipe dream, the pipes involved in the violation of the dis-
tinguished property take only one turn each. However, this is not necessary in general;
it is possible for the pipes involved in the violation of the distinguished property to take
arbitrarily many turns. For instance, one can arrange copies of the 2 x 2 block (4.4) in a
serpentine pattern, as shown in Figure 4.5. In this figure, we’ve highlighted to subdiagrams
(4.4) to make the pattern clearer. All boxes not drawn are filled with white stones. One
may check that this example is indeed a minimal violation.

In lieu of a good description of Go-diagrams in terms of forbidden subdiagrams, we
offer an algorithmic characterization of when a filling of a Ferrers shape with black stones,
white stones, and pluses is a Go-diagram. Algorithm 4.3.4 provides a method of producing
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Figure 4.5: A minimal forbidden subdiagram for the class of Go-diagrams featuring a
serpentine pattern.

a partner square to any square in the diagram. A e/o /+-diagram will be a Go-diagram if
and only the set of squares with partners is exactly the set of squares filled with black stones.
In general, the partner of a black stone will be different than the white stone it serves as
an uncrossing pair to. This notion of partner has two advantages over crossing/uncrossing
pairs:

e Replacing all black stones and their partners with pluses simultaneously yields a
reduced o/+-diagram for the same pair of permutations.
e For a black stone in box b, replacing all black stones in b and their partners with
pluses simultaneously does not alter the location of b’s partner.
The following example shows that these properties are not enjoyed by crossing/uncrossing
pairs.

Example 4.3.3. Consider the following Go-diagram, where the boxes containing one cross-
ing /uncrossing pair have been shaded blue (dark gray in grayscale) and those containing
the other have been shaded yellow (light gray).
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o9
+ OO
O+ (4.5)

If we undo the blue crossing uncrossing pair, the diagram transforms into the following.
Note that the location of the white stone which was part of the yellow pair has moved.

o+ [+
+[o]o
Ol+|+

If we undo the yellow crossing/uncrossing pair, the diagram becomes the following,.
Note that in this case, the location of the other black stone has moved.

+[ol+
+ 8+
O+

In either case, after undoing the last crossing/uncrossing pair and performing JI-moves
if necessary, we arrive at the following JI-diagram.

+| O]+
+| 4|+
O+ |+ (4.6)

Simultaneously replacing the stones the blue and yellow squares in (4.5) with pluses
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yields

+[+[+
+O+
O+ |+

Y

which is not a reduced diagram for the same permutation as (4.6).

The problem of black stones moving around when undoing crossing/uncrossing pairs
can be solved by undoing these crossing uncrossing pairs as black stones increase in the
partial order < on boxes. So, in Example 4.3.3 we would first undo the blue cross-
ing/uncrossing pair, then undo the yellow one. The problem of the white stones involved
in crossing/uncrossing pairs moving around is however unavoidable.

The following algorithm provides an inductive procedure to compute the partner of a
box in a e/ o /+-diagram. This algorithm will be applied to all the boxes in a diagram
in increasing order in the < partial order on boxes to construct a partner for every black
stone in a Go-diagram.

Algorithm 4.3.4. Let b = (i, jp) be a box in a e/ o /4-diagram.

1. If there is no black stone or plus to the right of b in row 4, or no black stone or plus
below b in column j,, then b has no partner.

2. Trace right from b row 4, until you hit a black stone or a plus in a box ¢ = (i, j.)
and down from b down in column j, until you hit a black stone or plus in a box

d = (ta, Js)-
3. If any of the following situations occur, b has no partner:

3.1. The Ferrers shape does not have a box e = (ig4, j.).
3.2. There is a plus or a black stone in a square (i, j.) with i, < i < i4.

3.3. There is a plus or a black stone in a square (iq, 7) with j. < j < jp.

4. If e = (i4,J.) contains a white stone, e is b’s partner. Otherwise, if e contains a
plus or a black stone, construct a path P, starting at b traveling to the right via the
following procedure:

4.1. If P, hits a plus while traveling right, switch from traveling right to down;
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4.2. If P, hits a plus while traveling down, switch from traveling down to right;

4.3. If P, hits a black stone while traveling right jump to that black stone’s partner
it exists and continue traveling down, if that black stone has no partner then b
has no partner;

4.4. If P, hits a black stone while traveling down jump to that black stone’s partner
and continue traveling right, if that black stone has no partner then b has no
partner;

4.5. If P, hits a white stone that was partnered with some other black stone in b™
while traveling right, switch from traveling right to down;

4.6. If P, hits a white stone that was partnered with some other black stone in b™
while traveling down, switch from traveling down to right.

5. Construct a path @), starting at b and traveling down following the same rules.

6. If P, and @, meet and the first square they meet in (the largest square they meet in
the < partial order) contains a white stone, that square is b’s partner.

7. Otherwise, b has no partner.

Example 4.3.5. Consider the following diagram, which is a Go-diagram.

® O O

=~ W NN =

<[O]o]F [+
o[ OO F |+

® O o
® O O+
+1O |00
9 8 6

None of the boxes in row 4 and in columns 5 and 8 will have partners, since none of
these boxes have a plus or a black stone both below them and to their right. The boxes
(2,7),(3,6), and (3,7) do not have partners for similar reasons.

It is straight forward to see that the black stone in box (2,6) is partnered with the
white stone in box (3,5); that the black stone in box (3,9) is partnered with the white
stone in box (4, 6); and that the black stone in box (2,9) is partnered with the white stone
in box (3,7).
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The box in (1,7) has pluses to its right and below it. However, from these pluses, if we
try to trace down from (1,5) and right from (2,7) to where they meet in (2,5), we notice
there is a black stone along the line from (2,7) to (2,5). So, point 3.3 in Algorithm 4.3.4
implies that (1,7) does not have a partner.

The box (1,6) has boxes with pluses or black stones below it and to its right. Tracing
right from (2,6) and down from (1,5), there are no pluses or black stones before we arrive
at the box (2,5). So, we proceed to point 4 of the algorithm. Since there is a plus in (2, 5),
we must construct paths P s and Qo 5).

O

O |4
)

[+[oo]®
o O]O]0|0
~[ O[O F[F

+ [ =3
O
6

Since these paths do not meet, (2,6) does not have a partner.

Finally, the box (1,9) has boxes with pluses or black stones below it and to its right.
Drawing out the paths P 9) and @19y as described, we obtain the following. Note that
the path Q1) takes a turn in box (4,6) because that box was partnered with the black
stone in (3,9).

o0+
&\Q +12
@ ONS=- 3
+lo]o|&+O |4
9 8 7 6 5

Since these two paths meet in a white stone at (4,5), box (1,9) is partnered to box (4, 5).

Proposition 4.3.6. Suppose b = (i, jp) is a box in a e/ o /+-diagram D which has a
partner.

(i) b’s partner is in b™.
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(i1) If the paths Py, and Qy in Algorithm 4.3.4 are constructed, all bozes encountered along
these paths are in b™".

(113) b’s partner is a white stone.
(iv) No other box shares a partner with b.

(v) Let ¢ = (ip, je), d = (ig,Ju), and e = (iq, j.) be as in Algorithm 4.3.4. If there is a
plus or a black stone in e, one of ¢ or d must contain a black stone.

(vi) Let a € D be incomparable to b in the partial order < on bozes. Suppose a has a
partner p. Then p is not along the paths P, or Qy from b constructed in Algorithm

4.3.4.

Proof. Points (i), (i), and (iii) are immediately apparent from Algorithm 4.3.4. To prove
point (iv), suppose that the boxes b and ' share a partner p. Since the construction of
the paths from b and b’ to p are entirely deterministic, either the paths from b to p goes
through & or the paths from o' to p goes through b. Either case creates a contradiction
with point 6 of Algorithm 4.3.4.

For (v), suppose the box e contains a black stone. Then, we must construct the paths
P, and @ in Algorithm 4.3.4. If both ¢ and d contain pluses, then these paths first meet
at the box e. So, e is the partner of b, which contradicts point (iii) in this proposition. We
remark that the case of point (v) where e contains a plus is an artifact of the distinguished
property for subwords. The case where e contains a black stone is an artifact of the fact
the crossings and uncrossings must alternate.

For (vi), suppose the path P, goes through p. As remarked in the proof of (iii), the
construction of these paths is reversible. So, P, agrees with P, or ), eventually and thus
goes through a eventually, either before or after b. But, everything along paths from b
is in 0™ and everything along paths from a is in ™ by point (ii). This contradicts the
incomparability of a and b. O

Observe that in Example 4.3.5 the partners (2,9) and (3,7) do not constitute a cross-
ing/uncrossing pair in the pipe dream associated to the diagram. However, if we change
the boxes (3,9) and (4,6) to pluses, the black stone in (2,9) and the white stone in (3,7)
will be a crossing/noncrossing pair. In fact, for any black stone in a box b in this diagram,
if we flip all of the black stones and their partners in ™ \ b to pluses, b and its partner
form a crossing/uncrossing pair in the new diagram. This observation generalizes.
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Consider a o/ o /+-diagram D such that a square has a partner if and only if it is filled
with a black stone. We’ll see shortly that such diagrams are exactly Go-diagrams. Let b be
a box in a diagram D. Let f(D,b) be the diagram obtained by replacing all black stones
in boxes ¢ < b and all white stones in the partners of these boxes with pluses. Consider
the following pair of properties:

fbp) _ D
(P1) wyp ™ = i,

(P2) b has a partner p if and only if the boxes b and p form a crossing/uncrossing pair in

f(D,b).

Lemma 4.3.7. Let D be a o/ o /+-diagram such that a square has a partner if and only if
it is filled with a black stone. Let b be a box in D such that properties (P1) and (P2) hold
for all ¢ < b. Then, properties (P1) and (P2) hold for b.

Proof. Let b be a box in D and suppose that properties (P1) and (P2) hold for all boxes
in b™ aside from b. Let ¢ be the box directly to the right of b if such a box exists. We
may flip all of the black stones in ¢ and their partners to pluses to obtain a diagram D’
without changing the permutation u.». At this point, we have flipped all black stones and
their partners in b aside from those in b’s column. We proceed to flip the black stones in
this column and their partners starting from the bottom of the column.

Let d be the lowest box containing a black stone in the same column as b. From point
(vi) in Proposition 4.3.6, the only squares along the paths P, and @, from d to its partner
which were flipped in passing to D’ are black stones in d™ and partners of these stones.
In the pipe dream of f(D,d), follow the pipes coming out of the box d down and to the
right. The pipe going to the right turns downward at the first plus it encounters; such a
plus could have come from either a plus or a black in the original diagram D. Likewise,
the pipe going down from d turns right at the first plus it encountered. Points 3.2 and 3.3
in Algorithm 4.3.4 and point (vi) in Proposition 4.3.6 guarantee that, after these initial
turns these pipes continue without turning until they meet at some square e. If e contained
a white stone in D, it still contains a white stone in f(D,d). In this case, d and e were
partnered in D and they form a crossing/uncrossing pair in f(D,d).

If the square e contained a plus or black stone in D, it will contain a plus in f(D,d).
So, the pipes originating at d will continue to travel down and right according to the rules:

1. If they hit a plus that was a plus in D while traveling right, switch from traveling
right to traveling down.
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2. If they hit a plus that was a plus in D while traveling down, switch from traveling
down to traveling right.

3. If they hit a plus that was a black stone in D, our inductive assumption tells us
this plus was a crossing uncrossing pair with its partner. So, if they hit a plus that
was a black stone in D while traveling right, continue to its partner, then switch to
traveling downward.

4. If they hit a plus that was a black stone in D while traveling down, continue to its
partner, then switch to traveling to the right.

5. If they hit a plus that was a white stone in D while traveling right, switch from
traveling right to traveling down. Point (vi) of Proposition 4.3.6 guarantees such a
white stone in D had to be the partner of some square in d™.

6. If they hit a plus that was a white stone in D while traveling right, switch from
traveling right to traveling down.

This list of rules agrees with points 4.1-4.6 in Algorithm 4.3.4. So, the pipes originating
at d next share a square at the same point that the paths P; and ()4 from Algorithm 4.3.4
meet. This square contains a white stone and is d’s partner. So, d and its partner from
D form a crossing/uncrossing pair in f(D,d). Then, flipping d and its partner both to be
pluses leaves the permutation unchanged.

Continuing in this way, we may flip all of the black stones in the same column as b
and their partners to pluses without altering the permutation. So, ul{i(nD’b) =0v = u{ffn. In
the case where b contains a black stone, the same agrument as above shows that b and its

partner from D form a crossing/uncrossing pair in f(D, b). O

Theorem 4.3.8. A o/ o /+-diagram D is a Go-diagram if and only if all boxes containing
black stones have partners and all boxes with partners are filled with black stones. Changing
all black stones and their partners to pluses simultaneously yields a reduced diagram for
the pair of permutations determined by D.

Proof. Let D be a Go-diagram and let b be a box containing a black stone such that no
box in b™ \ b contains a black stone. Since there are no black stones in b \ b, property
(P1) holds for b. Consider the diagram obtained by restricting D to the subdiagram o™
and replacing the black stone in b with a plus. This diagram contains no black stones, and
it is not a J-diagram. So, it contains some subdiagram violating the JI-condition, of the
form given in Figure 4.3. Necessarily, b is the top left corner of this subdiagram. Then, the
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bottom right corner of this subdiagram is 0’s partner in D. Evidently, these two squares
also form a crossing/uncrossing pair. So, property (P2) holds for b. Then, applying Lemma
4.3.7 inductively, properties (P1) and (P2) hold for all squares in D. Notably, since (P1)
and (P2) hold for the top left square, the diagram obtained by replacing all black stones
and their partners with pluses is a reduced diagram for the same pair of permutations.

Let b be any square in D. We want to show that b contains a black stone if and only
if it has a partner in D. From the distinguished property, b contains a black stone if and
only if

C(upsy) < € (uph) - (4.7)

Then, (P1) says that (4.7) holds if and only if
12 (ubfﬁlD’b)sO </ (ugi(nD’b)) .

This inequality holds if and only if b forms a crossing/uncrossing pair with some box p in
f(D,b). Property (P2) says that b forms a crossing/uncrossing pair with p if and only if p
is b’s partner in D. Thus, in a Go-diagram, the set of squares filled with black stones and
the set of squares with partners are identical.

Now, suppose D is a diagram such that a square contains a black stone if and only if it
has a partner. Let b be a box in D such that no boxes in 5™\ b contain black stones. Then,
from point (v) in Proposition 4.3.6, b’s partner is defined by a diagram of the following
form.

b |O] - |O|+
O O
O O
+|o] - |0]o

Y

where the interior of the diagram could be filled with anything. So, b and its partner form
a crossing/uncrossing pair. Then, applying Lemma 4.3.7 inductively, properties (P1) and
(P2) hold for all squares in D.

Now, let b be any box in D. To verify that D is a Go-diagram we must check that b
contains a black stone if and only if (4.7) holds for b. Since (P1) holds for every box in D,
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b satisfies (4.7) if and only if

l (uf(D’b)sb> </ (uf(D’b)> .

pin pin

This condition holds if and only if b forms a crossing/uncrossing pair with some box p
in f(D,b). Then, Property (P2) says that b forms a crossing/uncrossing pair with p in
f(D,b) if and only if p is b’s partner in D. From our assumption, b has a partner in D if
and only b contains a black stone. O]

Theorem 4.3.8 may be used to give partial lists of forbidden subdiagrams for the class of
Go-diagrams. Though Theorem 4.3.1 demonstrates that there is no finite characterization
of Go-diagrams in terms of forbidden subdiagrams, such tests can still be valuable as a
quick reality check for whether a diagram is or is not a Go-diagram.

Corollary 4.3.9. Any Go-diagram avoids subdiagrams given in Figure 4.6. In this figure,
the boxes with slashes in them indicate that the box could be filled with the items on either
side of the slash.

white stones

.+ O

Figure 4.6: Some forbidden subdiagrams for the class of Go-diagrams.

Proof. From Theorem 4.3.8 and Point 4 in Algorithm 4.3.4, it is obvious a Go diagram
must avoid subdiagrams of the form
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240 O %
O O
O O
o

[0 o|o

) (4.8)

where it is not specified what the interior of the diagram is filled with. We show the
existence of such a subdiagram D implies the existence of a diagram of the form given in
Figure 4.6. Suppose there is a plus or a black stone in the interior of this diagram. Choose
a plus or black stone in a box b in the interior of D such that there are no interior pluses
or black stones to the right of b. Now, let ¢ be the highest box in the same column as b
containing a black stone or plus. Then, the square whose bottom left corner is ¢ and whose
top right corner is the top right corner of D is a subdiagram of the form given in Figure
4.6. 0

4.4 Fibers of the “Delete a Column” Map

This section describes a projection 7 from Gr(k,n+1) to Gr(k,n)U Gr(k —1,n), and
describes the fibers of this map over a Deodhar component in Gr(k,n). The work in this
section is joint work with Agarwala, and originally appears in [6].

Choose an ordered basis, by, ..., b, of R"™! so that points in Gr(k,n + 1) may be
represented by (n + 1) x k matrices. Let 7’ : R*™ — R™ be the map which projects out
the (n + 1)** coordinate. This map yields a map of Grassmannians,

w: Gr(k,n+1) — Gr(k,n)UGr(k—1,n)

span(vy,...,vg) > span(n’'(vy),..., 7 (vg)). (4.9)

If V' is in the Schubert cell Sy C Gr(k,n+ 1), where n+1 & I, then 7(V') € Gr(k,n).
Otherwise, if n 41 € I, then 7(V) € Gr(k — 1,n). This section will describe the fibers of
7 over various subsets of Gr(k,n).
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The fiber over all of Gr(k,n) is

{VeGrikn+1):b,, ¢V}= U Sh.

ne(™H)  ntagry

At the other extreme, the fiber over a single point V' = span(vy,...,vg) € Gr(k,n) is

{Sp&ﬂ(Vl Dgr,. -, Vi ®gk) : (gla s 7gk) € Rk}?

which can be thought of as the set of matrices obtained by appending a column to a
matrix representing V. We sometimes call this extra column vector being appended a
gauge vector.

Proposition 4.4.1. The fiber n=(Gr(k,n)) is a k-dimensional vector bundle over Gr(k,n).

The next several results describe the fibers of 7 over a Deodhar component in Gr(k, n).

Theorem 4.4.2. Let D be the Deodhar component in Gr(k,n) labelled by the Go-diagram
D. Then, m=Y(D) is the union of all Deodhar components D' labelled by Go-diagrams D’
obtained by adding a column of k boxes on the left of D.

Proof. Let V € m=1(D). Then, V lies in some Deodhar component in Gr(k,n+1). Theorem
2.2.18 says there is some unique weighted Go-network N(D’)y representing V. Corollary
2.2.24 implies that the projection w(V') is obtained by deleting all the vertices in the
leftmost column of N(D’)y and all edges incident to these vertices. Since 7(V') € D, this
network obtained by deleting the left column of vertices must be N (D).

Conversely, let V' € D', where D' Deodhar component associated to some Go-diagram
D’ obtained by adding a column of boxes to the left of D. Then, Theorem 2.2.18 says that
V' has a unique realization as a weighted Go-network N(D')y. Corollary 2.2.24 says that
the entries in the first n rows of a matrix representing V' depend only on the part of the
part of the Go-network N(D')y agreeing with D. So, n(V') € D. ]

Proposition 4.4.3. Let D be a Deodhar component in Gr(k,n). The fiber n=*(D) contains
a unique top dimensional Deodhar component.

Proof. Let D be the Deodhar component in Gr(k,n) labelled by the Go-diagram D. Con-
sider some Deodhar component D' C 7 !(D) labelled by the Go-diagram D’. Theorem
4.4.2 says that D’ is obtained by adding a column of k£ boxes to the left of D. So,

dim (D') < dim (D) + k.
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Theorem 2.2.12 implies that equality occurs if and only if the new column contains no
white stones. There is a unique filling of the new column which does not use any white
stones, which is produced by the following procedure:

e Fill the bottom box in the new column with a plus.

e Let b be a box in the new column and suppose all boxes in the new column below b
have been assigned a filling.

e Check whether filling the box b with a plus causes a violation of the distinguished
property.

e If it does, fill b with a black stone. Otherwise, fill b with a plus. n
In Remark 7.11 in [55], Talaska and Williams give the following algorithm for con-

structing a weighted Go-network from a point in a Grassmannian. Given V' € Gr(k,n),
one may use this algorithm to determine which Deodhar component any point V' in the

fiber 771(V) lies in.
e Let b be a box in the new column, and suppose that all boxes below b have been
filled with a white stone, black stone, or plus.
o If {(uyinsy) < l(uyin), fill b with a black stone.
e Otherwise, if {(uyinsp) > £(uyin), compute Ay, (V).

o If A, (V) =0, fill V with a white stone. Otherwise, fill b with a plus.

We next describe the boundary structure of the Deodhar components in the fiber
71 (D) over the Deodhar component D C Gr(k,n). This theorem is a special case of
Conjecture 4.2.10. We will need the following technical lemma.

Lemma 4.4.4. Let D be a Go-diagram. Suppose the box b = (i,7) contains a white stone
or a plus and consider a box ¢ = (k, j) with k > i. That is, ¢ is below b in the same column.

(i) If the box ¢ contains a plus and D' is the diagram obtained by replacing the plus in c
with a white stone, then the box b does not violate the distinguished property in D’.

(ii) If the box ¢ contains a black stone and D’ is the diagram obtained by replacing the
black stone in c with a plus, then the box b does not violate the distinguished property
in D'
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Proof. We prove point (i) in the case where b contains a white stone. The proofs for
all other cases are similar, and are left to the reader. Suppose that in the pipe dream
associated to D, the pipes x and y cross in the square b with x < y. So, the pipe z is
running horizontally at the square b and y is running vertically. If the pipe y does not run
through the square ¢, replacing the plus in ¢ with a white stone does not change the pipes
crossing at b and hence b does not violate the distinguished property in D’. Suppose then
that the pipes y and z appear in the square ¢ in the pipe dream. Since c is below b in its
column, the pipe y must enter ¢ from the right and exit from the top. So, y < z. Then, in
the pipe dream associated to D', x and z cross in the square b. Since x < z, the square b
does not violate the distinguished property. O

Theorem 4.4.5. Let D' and D" be Go-diagrams indexing Deodhar components D' and D"
in the fiber m=1(D). Then, D" is a codimension one boundary of D' if and only if D" is
obtained by changing the filling of a single box b in the leftmost column of D" from a plus
to a white stone, then reading up from b in the leftmost column, and changing black stones
to pluses as is necessary to avoid a violation of the distinguished property.

Proof. Suppose that D" is obtained from D’ in the manner described. Lemma 4.4.4 guar-
antees that D" is in fact a Go-diagram. The equations defining the Deodhar components
D’ and D" are identical aside from the equations demanding A;, vanish or not, where ¢ is
a box in the leftmost column of the diagram. So, to verify D” is on the boundary of D,
it suffices to verify that A; vanishes on D", whenever ¢ is a box in the leftmost column
of the diagram containing a white stone in D’. Theorem 2.2.25 implies that the set I, is
identical in D" and D’ for every box c in the leftmost column of the diagram. Since the
set of boxes containing white stones in the leftmost column of D’ is a subset of the set of
boxes containing white stones in D", D" is on the boundary of D’. Counting the number
of pluses and black stones in D" and D", dim (D") = dim (D’) — 1.

Now, suppose that D’ and D" are Deodhar components in the fiber 7! (D) labelled by
the Go-diagrams D’ and D", and that D” is a codimension one boundary of D’. Since the
sets I, labelling boxes in the leftmost columns of D" and D" are identical, the set of boxes
containing white stones in the leftmost column of D’ must be a subset of the set of boxes
containing white stones in D”. Since D” has codimension one, exactly one square in the
leftmost column of D’ must change to a white stone in D”. In a Go-diagram a square is
filled with a black stone if and only if it violates the distinguished property, so black stones
in D’ cannot change to white stones in D”. So, one plus in a box b must change to a white
stone. Lemma 4.4.4 says that changing this plus to a white stone will not cause any of the
white stones or pluses in the diagram to violate the distinguished property. However, it is
possible that a black stone will no longer reduce the length of the associated subword after
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changing b to a white stone. Since D” is a codimension one boundary, any black stone
which no longer violates the distinguished property must be changed to a plus. O]

Example 4.4.6. Let D be the Deodhar component labelled by the following Go-diagram.

@ +
+|O
O]+

Figure 4.7 gives the boundary poset of Go-diagrams labelling Deodhar components in the
fiber 7= (D).

to[+
O|+|®
+[o]+

\
/

Ol+[+
—|O|t+|®
+[o]+
+[®[0
—|O|+|®
+[o]+

olol+
O|+|@®
F[o]+
O|+|0O
Ool+|®
F[o]+

/
\

0|00
Ol+|e
+[o]+

Figure 4.7: Boundary poset of Deodhar components in 771(D).

We may consider the restriction of the map 7 to a map of totally non-negative Grass-
mannians,
T>0 : Grzo(k,n + 1) — G?“zo(k, n) U G?"Z()(k — 1, n)

95



Deleting a column does not alter the positivity of any minors which do not involve the
deleted column, so this map is well defined. However, in this restriction, there is no longer a
bundle structure, since the fibers of 7> over different points are no longer equidimensional.

Example 4.4.7. Consider the point

1 0 -1
stpan(o 10 >€Gr20(2,3).

The fiber of 7 over V is

—1 o 10 -1 g1 . 2
T (V)-{span(o 10 92).(g1,g2)€R}.

A point in this fiber is positive if and only if g; < 0 and g» = 0. So, Wgé(V) is only
1-dimensional. On the other hand, the point

110
Wzspan(o 0 1>€Gr>0(2,3)

has a two dimensional fiber,

_ 110
WZ(%(W) = {span( 00 1 z; ) 01 ERS(b g2 €R>O}.

Let P C Gr(k,n) be a positroid cell and let P>y = P N Gr>o(k,n) the positive part
of this cell. Each positroid cell is a semialgebraic subset of Grsq(k,n), defined by setting
certain Pliicker coordinates to zero, demanding certain Pliicker coordinates do not vanish,
and demanding all other Pliicker coordinates are uniformly non-negative. The fiber 7—!(D)
is the semialgebraic subset of Gr(k, n+1) defined by the exact same equations that define D,
only now these equations are viewed as equations in the Pliicker coordinates on Gr(k,n+1).
No constraints are imposed on the Pliicker coordinates A; when n+ 1 € I. For 72} (Psg),
we must additionally impose A; > 0 when n+1 € I. The structure of 72 (Ps) is described
in the following theorem. -

Theorem 4.4.8. Let P>og C Grso(k,n) be the positive part of the positroid cell indexed by
the I-diagram D. Then,

(i) 75y (P=0) is a union of positroid cells.
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(ii) w5 (Pso) contains a unique top dimensional positroid cell PLy.

(iii) dim(PL,) = dim(Pxo) + k if and only if D contains no pluses with white stones below
them in their column.

(iv) The boundary poset of all the positroid cells in w=y(P=o) is a Boolean lattice.

Proof. Point (i) follows from Theorems 4.4.5 and 2.2.20, which say that the intersection of
a Deodhar component with Grso(k,n) is either empty or the positive part of a positroid
cell.

Let P>o C Gr>o(k,n) be the positive part of the positroid cell given by the J-diagram
D. Let D be the Deodhar component labelled by D, so P>o = D N Gr>o(k,n). Then,

Wgé (7320) = 7T_1 (D) N GT’ZQ(k‘, n —+ 1)

Let D' C 7! (D) be a Deodhar component and let D’ be the Go-diagram labelling D’. So,
D’ is obtained by adding a column of boxes to D. Theorem 2.2.20 says that D’ intersects
Grso(k,n + 1) if and only if D’ is a J-diagram. Let b be a box in the new column added
to create D’. If there is any box containing a white stone to the right of b in its row with
a plus above it, then filling b with a plus will cause a violation of the I-property. So, such
boxes must be filled with white stones, and all other boxes in the new column may be
safely filled with white stones or pluses. The unique top dimensional cell is then obtained
by filling all boxes which may be filled with pluses in the new column with pluses, proving
points (ii) and (iii).

Now, let D" and D" be two J-diagrams labelling positroids P%, and P, in the fiber
720 (P=0). We claim that P2, is a codimension 1 boundary of P, if and only if P is
obtained by changing one of the pluses in the leftmost column of 73’>0 into a white stone.
The cell PZ, is on the boundary of P., if and only if all Pliicker coordinates vanishing on
PL, also vanish on PZ,. From Theorem 2.2.25, we see that the set I, labelling a box b in

the new column does not depend on the filling of the boxes in the new column. So, P, is

on the boundary of PL, if and only if all boxes containing white stones in the new column
in D' also contain white stones in D”. The dimension of a positroid cell is the number of
pluses in its d-diagram, proving the claim. Then, the boundary poset of the cells in the
fiber 3, (Pso) is exactly the Boolean lattice of subsets of boxes containing pluses in the

new column of the J-diagram labelling the top dimensional cell of 7'(‘;8 (P>o). [
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Chapter 5

Application: Parameterization Space
of Wilson Loops

Section 5.1 introduces Wilson loop diagrams and their parameterization spaces. Section
5.2 discusses corollaries of the results of Chapter 5 to studying these geometric spaces.
Section 5.3 discuses fibers of the map 7 from Section 4.4 over Wilson loop cells.

The results in Section 5.3, is joint work with Agarwala, originally appearing in [6]. The
exposition in Sections 5.1 and 5.3 borrows heavily from this paper. The results in Section
5.2 originally appear in [46].

5.1 Wilson Loop Diagrams

Definition 5.1.1. A Wilson loop diagram, W, is defined by a set of unordered pairs
TcC ([72‘]). We denote it W = (Z,n).

Each p € 7 is called a propagator. Graphically, we represent a Wilson loop diagram by
a convex polygon, whose vertices are labeled by the elements of [n], respecting the cyclic
ordering. Rather than label all the vertices of the boundary polygon, we draw a dot on
the vertex labelled 1, and adopt the convention that the rest of the vertices are labelled
counterclockwise in increasing order. For each p = {i,, j,} € Z, draw an internal wavy line
between the edges of the polygon defined by the vertices {i,,7, + 1} and {j,, j, + 1}. For
example, the Wilson loop diagram

W = ({24, 46},6)
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would be represented by the arrangement of squiggly lines in a polygon in Figure 5.1.

Figure 5.1: The Wilson loop diagram ({24, 46},6).

Definition 5.1.2. Let W = (Z,n) be a Wilson loop diagram. The support of propagator
is the collection of vertices comprising the endpoints of the edges the propagator is drawn
between. For p = (i,,j,) € Z, the support of p is written

V(p) = {ip,ip + 1, Jp, Jp + 1}
For P C Z, the support is V(P) = U,ep V(p)-
Definition 5.1.3. The propagator set of a set of a vertex v is
Prop(v) ={peZ:veV(p}
For V' C [n], Prop(V) = U,y Prop(v).

Given a Wilson loop diagram W = (Z,n), consider the set system

w=J{Vi)}

peEP

We quickly recall some notation from Chapter 3. My (x) is the matrix of invertible inde-
terminates, where

Ty, ifveV(p)
M X . — p7 )
wl )p’ {O otherwise.

L(W) is the basis shape locus associated to the set system W, which in this case we
call the Wilson loop cell associated to W. So, any point in L(W) is the row space of some
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matrix obtained by evaluating the entries of My (x) at nonzero real entries. We define
Lzo(W) = L(W) N Grzg(k,n).

Note that the Wilson loop cell L(W) is exactly the set of planes admitting Z-domino bases
where |I| = 2 for all I € Z, described in Section 3.6. In Section 3.6, the set system W was
denoted 7.

5.2 Applications of Results on Basis Shape Loci

This section uses the notation of Chapter 3. So, if S is a set system, B(S) is the
transversal matroid it defines and L(S) is the associated basis shape locus.

Definition 5.2.1. A Wilson loop diagram W = (Z,n) is admissible if the following hold:

(i) for all P C Z, |P| + 3 < |V(P)|, and

i) if p = (2p,7,), ¢ = (ig,J,) € T are two propagators, then i, < i, < j, < j, in the
prJp qrJq P q q p
cyclic ordering of [n].

The results from Chapter 3 imply several corollaries for Wilson loop cells. Let W be an
admissible Wilson loop diagram and W be the associated set system. Theorem 3.38 in [2]
says that B(W) is a positroid. One would like to be able to apply tools from the positroid
literature to study Wilson loop diagrams. However, the object of interest is really the cell
L(W), not the matroid B(W). In the literature, it was understood and used, but not clear
that working with the positroid cell associated to B(W) was, up to a set of measure zero,
equivalent to working with the Wilson loop cell L(W). This equivalence is a corollary of
Theorems 3.3.1 and 3.4.3.

Theorem 5.2.2. Let W be an admissible Wilson loop diagram, and VV be the associated
set system. Then,

(i) dim(L(W)) = 3k.
(i) The matroid B(W) is a positroid.
(iii) LOWV) = Vo).

100



Proof. Point (i) follows from point (i) of Theorem 3.1.2. Point (ii) follows from the fact
7' is noncrossing and Theorem 3.4.3. The fact that the matroid represented by a generic
point in L(WV) is a positroid originally appears as Theorem 3.38 in [2]. Point (iii) follows
from Theorem 3.3.1. [

Wilson loop diagrams come equipped with a notion of exact subdiagrams, analogous
to Definition 3.4.11.

Definition 5.2.3. Let (Z,n) be a Wilson loop diagram satisfying point (i) of Definition
5.2.1, and let W be the associated set system. A subset J C Z is an exact subdiagram
if its associated set system is an exact subsystem of W in the sense of Definition 3.4.10.

That is,
Uve
jeTJ

=|J|+ 3.

Let (Z,n) and (Z',n) be Wilson loop diagrams satisfying point (i) of Definition 5.2.1
and let W and W' be their associated set systems. Say that Z ~ Z' if B(W) = B(W').
Since all sets in VW have the same size, any set involved in an exact subsystem of VW may
be pivoted in the sense of Definition 3.4.13. Further, any exact subsystem supported on
M C [n] must be defined by |M| — 3 propagators from Z. Using these observations, one
is able to show that any exact two exact subdiagrams supported on the set M may be
pivoted to one another. Moreover, it is always possible to arrange |M| — 3 propagators
supported on M vertices to obey points (i) and (ii) of Definition 5.2.1 (in fact, the number
of ways to do so is a Catalan number). We record these observations.

Theorem 5.2.4 (Theorem 1.18 in [2]). Let (Z,n) and (Z',n) be Wilson loop diagrams
satisfying point (i) of Definition 5.2.1. If T and I' differ by only an exact subdiagram

supported on some M C [n], then T ~T'. IfT is exact, then T ~TI" for some T satisfying
both points (i) and (ii) of Definition 5.2.1.

Theorem 5.2.5. Let (Z,n) be a Wilson loop diagram satisfying point (i) of Definition
5.2.1 and W be the associated set system. Then, B(W) is a positroid if and only if T ~ T
for some Wilson loop diagram (I',n) satisfying both points (i) and (ii) of Definition 5.2.1.

Proof. Let (Z,n) be a Wilson loop diagram satisfying point (i) but not necessarily point
(ii) of Definition 5.2.1 and let W its associated set systems. If Z ~ Z’ for some Z’ satisfying
both points (i) and (ii) of Definition 5.2.1, then Theorem 3.38 in [2] or Theorem 3.4.3 above
imply that B(W) is a positroid. If B(W) is a positroid, but there is some pair of crossing
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propagators in Z, Lemma 3.4.20 says we can find some exact subdiagram involving these
crossing propagators. Then, Theorem 5.2.4 says this exact subdiagram may be replaced
with any noncrossing exact subdiagram supported on the same set of vertices. Repeatedly
applying this argument, Z ~ Z’ for some Z' which is noncrossing. ]

This theorem has a compelling rephrasing, using the language of Section 3.6.

Corollary 5.2.6. The set of points in Grso(k,n) admitting J -domino bases where |J| = 2
for all J € J 1s exactly

U Lzo(W)a
w

where the union is across all set systems associated to admissible Wilson loop diagrams.

5.3 Fibers over Wilson Loop Cells

Let
w: Gr(k,n+1) = Gr(k,n)U Gr(k —1,n)

be the projection map from Section 4.4. Let 7~ '(Myy(x)) be the matrix obtained by
appending the column vector (Z1(n+1), Ta(nt1)s - - - » Th(nt1))” t0 Myy(x), where the z;; are
invertible variables, which are algebraically independent from the entries of My (x) and
from each other.

Lemma 5.3.1. If W is the set system associated to an admissible Wilson loop diagram,
any point in 7 (Lso(W)) is the row span of a matriz obtained by evaluating the entries
of ™ H(Mw(x)) at nonzero real numbers.

The following is an immediate consequence of point (i) of Theorem 5.2.2 combined with
Proposition 4.4.1

Corollary 5.3.2. Let W be an admissible Wilson loop diagram, and VV be the associated
set system. Then 7 '(Lso(W)) is a 4k-dimensional subspace of Gr(k,n).

While L(W) always intersects the positive Grassmannian in its full dimension, this is
not necessarily true 71 (L(W)), illustrated in the following example. This phenomenon is
similar to the phenomenon observed in Example 4.4.7.
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Example 5.3.3. Consider the Wilson loop diagram

3 4

The J-diagram indexing the positroid B(W) is

+O[+[+
O+ [+[+].

For details on how to compute this JI-diagram, see [4]. Using Proposition 4.4.3, 7' (L(W))
contains a unique top dimensional Deodhar component which is indexed by the Go-diagram

o[+ [O[+[+
+H O]+ 4+,

Since this diagram has a black stone, the Deodhar component it indexes does not
intersect Grso(k,n + 1).

Alternatively, one may consider a matrix

0 wyoo Y23 ¥You Yo5 O | yor

representing a point in 7! (Lso(W)). Since A3, Azg > 0, we must have

Wl(MW(y)):<yH yiz 0 0 wyis Yyis

Y17 )  Upg € R*

sgn(yi1) = (—1)sgn(yus)-

Then, either A7 or Ag; must be negative. So, dim(7~*(Lso(W))) < 8.

As a third way of seeing that 7= (Lso(W)) is not a positroid, one may note that the
set system {12567,23457} is a minimal presentation for the transversal matroid indexing
this basis shape locus. Moreover, this presentation is Gale-minimal. We saw in the proof
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of Proposition 3.4.9 that if all the sets in a minimal presentation of a transversal positroid
have the same size, then the Gale-minimal presentation of this positroid is noncrossing.
However, 1,3,6,7 witness a crossing of the two sets in this presentation. So, the matroid
indexing 7 !(L>o(W)) is not a positroid, and thus 7—!(Lsq(W)) does not intersect the
positive Grassmannian in its full dimension.

It would be desirable to have a way of telling when
dim(ﬂil(Lzo(W)) N GT’Z()(k', n)) = 4k‘,

or equivalently to have a way of telling when the top dimensional Deodhar component
of 7~ 1(L(W)) is a positroid. Using Proposition 4.4.3, this is equivalent to telling when
the I-diagram indexing B(W) has no plus with a white stone below it in its column.
The following conjecture has been proved for all Wilson loop diagrams with up to four
propagators, and checked extensively on larger examples.

Conjecture 5.3.4. Let W = (Z,n) be a Wilson loop diagram with no propagator (i,n)
and let D be the d-diagram labelling B(W). Then,

dim (7~ (Lso(W)) N Grso(k,n)) = 4k
if and only if there is no pair of propagators (i1, j1), (ia, j2) with iy < iy and j; > jo in the

usual order on [n]. Moreover, if there is such a pair of propagators, then there is a plus in
the row of D with vertical step labelled i1 which has a white stone below it in its column.
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Chapter 6

Further Speculation

This chapter takes the opportunity to highlight several open problems stemming from
the material in this thesis. Some of these problems were already described in greater detail
in Sections 2.4 and 3.6.

6.1 Basis Shape Loci

From a geometric perspective, the most interesting question left open is to describe how
a basis shape variety L(S) compares with the matroid variety %. Theorem 3.3.1 shows
that L(S) = V() in the case where B(S) is a positroid. Corollary 3.4.8 showed that all
Schubert and Richardson varieties are closures of basis shape loci. Perhaps the strongest
general result we have comparing basis shape varieties to matroid varieties is Theorem
3.2.6 stating that codim(L(S)) = ec(B(S)). However, outside of the case of positroid
varieties, it is not known whether codim (V) = ec(B(S)). It seems likely that ec(B(S)) is
a lower bound on codim(V3). However, this fact does not seem to be stated explicitly in

the literature. If this were the case, then Theorem 3.2.6 would at least imply that L(S) is
a top dimensional component of V.

From a combinatorial perspective, the largest question left open is to provide a charac-
terization of when a transversal matroid is a positroid. Conjecture 3.4.5 offered a character-
ization in terms of a crossing condition on minimal presentations of a transversal matroid.
Conjecture 3.4.22 gave a strengthened version of this conjecture. If true, these conjectures
would strengthen Theorem 7.6 in [7] relating positroids and noncrossing partitions in the
case of transversal positroids. Section 3.4 proved Conjecture 3.4.5 in several special cases,
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and developed machinery which is potentially helpful for proving this conjecture in the
general case.

Conjecture 3.4.17 stated that any two minimal presentations of a transversal matroid
are connected by a series of pivots of the type described in Definition 3.4.13. Remark 3.4.16
mentioned Ardila and Ruiz gave their own series of pivots and proved that any two (not
necessarily minimal) presentations of a transversal matroid are related by pivots of this
type. We conjecture a stronger fact, which would subsume both of these facts. Namely,
we conjecture that there is a polytope associated to a transversal matroid where each
face of the polytope is associated to a presentation of the matroid. The unique maximal
presentation corresponds to the interior face and the minimal presentations corresponds to
vertices. For any pivot replacing S by S\ aUb, note that S\ SU(SUb) is a (non-minimal)
presentation of the same transversal matroid. We conjecture that presentations of this
type are exactly the one-skeleton of the conjectured polytope. Further, pivots of the type
described by Ardila and Ruiz describe when one face is a codimension one boundary of
another.

In addition to these problems, Section 3.6 described a program due to Karp, Williams,
and Zhang in [33] to use “domino bases” and sign variation techniques to study trian-
gulations of amplituhedra. This program provided some motivation for the introduction
of basis shape loci. Briefly, their strategy is to identify a family of positroid cells, find a
basis of a particular shape for points in these cells, then apply sign variation techniques
to prove the projections of these cells to the amplituhedron are disjoint. Our hope is to
circumnavigate the first two steps of this process, by identifying basis shapes amenable to
sign variation techniques, then taking positroid cells admitting bases of the chosen shapes.
The technology of we developed is only currently able to handle the simplest basis shapes
appearing in Karp, Williams, and Zhang’s work. A brief description of some adaptations
that need to be added on to our present machinery appears in Section 3.6. Corollary 5.2.6
provides evidence of the potential fruitfulness of the approach of defining a family of cells
in terms of admittance of a particular basis shape, by proving that the previously studied
family of Wilson loop cells may be defined in this way.

6.2 The Deodhar Decomposition

Section 2.4 proposed a combinatorial avenue of study, exploring the class of matroids
represented by the a generic point in a Deodhar component. Conjecture 2.4.6 posits that
this class is minor closed, and conjectures a specific set of excluded minors.
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Section 4.2 offered several conjectures about Deodhar components and their boundary
structure. Conjecture 4.2.4 stated that when D is a Go-diagram, the ideal defining Vp is
exactly the ideal of Pliicker coordinates which vanish uniformly on the Deodhar component
D. Conjecture 4.2.4 asserted that closures of Deodhar components in the Grassmannian are
set theoretically defined by the vanishing of Pliicker coordinates. Conjecture 4.2.10 offered
a description of when one Deodhar component is on the boundary of another within a
Schubert cell.

From any point in the Grassmannian, one may generate a solution to the KP-hierarchy
of differential equations. In [39], Kodama and Williams prove that the shape a particular
soliton system assumes asymptotic with time depends only on the Deodhar component
the point used to generate the solution lies in. Algorithm 10.4 in [39] describes how to
compute a graph of the shape a soliton system assumes from a Go-diagram. This procedure
is similar to computing a plabic graph from a J-diagram. Studying the interaction of this
algorithm with the diagrammatic of boundaries of Deodhar components from Conjecture
4.2.10 (Theorem 4.2.16 in the case of positroids), one could obtain results describing certain
phase changes in systems of solitons as one moves between different Deodhar components.
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Index

e/ o /+-diagram, 9
o/+-diagram, 8

basis shape locus, 37
naive maximal dimension, 38
Bruhat order, 6

crossing/uncrossing pair, 8

Deodhar component, 18
Deodroid, 28, 33
diagram variety, 63
distinguished property, 11
domino, 64

basis, 64

expected codimension, 46
expression, see word

Ferrers shape, 7
flag manifold, 15

Gale order, 7
gauge vector, 92
GGMS strata, 27
Go-diagram, 10
minimal forbidden subdiagram, 78
Go-network, 19
weighted, 20
Grassmannian, 12
positive, 13

indicator vector, 26

interval rank function, 61

lattice path matroid, 28
Le-diagram (JI-diagram), 11
Le-move (I-move), 68

Marsh-Reitsch matrix, 22
Marsh-Rietsch cell, 22
matroid, 25
bases, 25
circuit, 26
cocircuit, 26
coloop, 26
connected, 26
contraction, 26
cyclic flat, 26
deletion, 26
dependent set, 25
direct sum, 26
dual, 26
flacet, 27
flat, 26
ground set, 25
independent set, 25
loop, 25
minor, 26
polytope, 26
rank, 25
representable, 25
restriction, 26
transversal, see transversal matroid
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partner, 81
permutation
Grassmannian, 7
length, 6
pipe dream, 7
reduced, 8
Plicker
coordinate, 13
embedding, 13
relations, 13
positroid
cell, 16
interval, 61
matroid, 28, 29
propagator, 98
support, 99
propagator set, 99

rank variety, 63
reading order, 9
Richardson stratification, 15

Schubert matroid, 28
Schubert stratification, 14
set system, 31
crossing, 50
exact subsystem, 52
Gale minimal, 59
pivot, 53

transversal matroid, 31
presentation, 31
minimal, 31

partial order, 31

Wilson loop cell, 99
Wilson loop diagram, 98

admissible, 100
word
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reduced, 6

subexpression, 6
distinguished, 6
positive, 6
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