
Popular Content Distribution in Public Transportation
Using Artificial Intelligence Techniques

by

KAIS EL-MURTADI SULEIMAN

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

© Kais El-murtadi Suleiman 2019



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision
of the Examining Committee is by majority vote.

External Examiner Abdulmotaleb El Saddik
Professor

Supervisor Otman Basir
Professor

Internal Member Pin-Han Ho
Professor

Internal Member Mohamed Oussama Damen
Professor

Internal-external Member Hamid Tizhoosh
Professor

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

Outdoor wireless networks suffer nowadays from an increasing data traffic
demand which comes at the time where almost no vacant frequency spectrum has
been left. A vast majority of this demand comes from popular content generated by
video streaming and social media sites. In the future, other sources will generate
even more demand with emerging applications such as virtual reality, connected cars
and environmental sensing. While a significant progress has been made to address
this network saturation in indoor environments, current outdoor solutions, based on
fixed network deployments, are expensive to build and maintain. They tend to be
immobile and therefore are inflexible in coping with the dynamics of outdoor data
demand. On the other hand, Vehicular Ad-hoc NETworks (VANETs) are in nature
more scalable, dynamic, flexible, and therefore more promising in terms of
addressing such demand. This is especially feasible if we take advantage of public
transportation vehicles and stops. These vehicles and stops are often owned and
operated by the same administrative entity which overcomes the routing selfishness
issue. Moreover, the mobility patterns of these vehicles are highly predictable given
their regular schedules; their locations are publicly-sharable and their location
distribution is uniform throughout space and time. Given these factors, a system
that utilizes public transportation vehicles and stops to build a reliable, scalable and
dynamic VANET for wireless network offloading in outdoor environments is
proposed. This is done by exploiting the predictability demonstrated by such
vehicles using an Artificial-Intelligence (AI) based system for wireless network
offloading via popular content distribution. The AI techniques used are the Upper
Popularity Bound (UPB) collaborative and group-based recommender based on
multi-armed bandits for content recommendation and bayesian optimization based
on batch-based Random Forest (RF) regression for content routing. They are used
after analyzing the mobility data of public transportation vehicles and stops. This
analysis includes both preprocessing and processing the data in order to select the
optimal set of stops and clustering vehicles and stops based on cumulative contact
duration thresholds. The final system has shown the promising networking potential
of public transportation. It incorporates a recommender that has shown a versatile
performance under different consumer interest and network capacity scenarios. It
has also demonstrated a superior performance using a bayesian optimization
technique that offloads as high as 95% of the wireless network load in an
interference and collision free manner.

iv



Acknowledgments

All praises to God, I thank Him for all the blessings He gave and all the blessings He
delayed but not denied. Without His blessings, I would not have reached this stage
of knowledge.

Next, I would like to thank Prof. Otman Basir for his profound supervision
during the course of my studies. My mere thanks would not suffice the long hours of
discussions, continuous guidance and invaluable feedback.

I would like also to thank all the members of my dissertation committee for their
valuable remarks and insightful recommendations.

Moreover, I acknowledge with a great appreciation the continuous funding
provided by the Libyan Ministry of Higher Education and the support I received
from Prof. Basir.

And last, but not the least, I would like to express my sincere gratitude to my
dear family. My parents: Abdelrazeg and Mabruka; my siblings: Waiel, Mohannad
and Heba; my wife: Salma and my son: Abdelrazeg. I dedicate this work to you and
pray to God to bless you all.

Kais El-murtadi Suleiman

Waterloo, Canada

August, 2019

v



Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Abstract iv

Acknowledgments v

List of Figures x

List of Tables xii

List of Algorithms xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background
and Literature Review 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Content Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Artificial Intelligence-based
Consumer Interactions . . . . . . . . . . . . . . . . . . . . . . 6
Greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ε-greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Decaying ε-greedy Search . . . . . . . . . . . . . . . . . . . . . 7
Upper Confidence Bound Search . . . . . . . . . . . . . . . . . 7

vi



2.2.2 Content Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 7
Consumer-Consumer Interest Similarities . . . . . . . . . . . . 7
Content-Content Feature Similarities . . . . . . . . . . . . . . 8

2.2.3 Consumer Grouping . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Content Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Routing Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Multi-tier Routing . . . . . . . . . . . . . . . . . . . . . . . . 9
Delay-tolerant Routing . . . . . . . . . . . . . . . . . . . . . . 9
Direct Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Cluster-based Routing . . . . . . . . . . . . . . . . . . . . . . 10
Cross-layer Optimized Routing . . . . . . . . . . . . . . . . . 10
Terminated Routing . . . . . . . . . . . . . . . . . . . . . . . 11
Expedited Routing . . . . . . . . . . . . . . . . . . . . . . . . 11
Splitted Routing . . . . . . . . . . . . . . . . . . . . . . . . . 12
Redundant Routing . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Routing Adaptation . . . . . . . . . . . . . . . . . . . . . . . 13
Domain Knowledge-based . . . . . . . . . . . . . . . . . . . . 13
Artificial Intelligence-based . . . . . . . . . . . . . . . . . . . . 13

2.4 Mobility Analysis Studies . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Content Recommendation Studies . . . . . . . . . . . . . . . . . . . . 15
2.6 Content Routing Studies . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Multicast Services . . . . . . . . . . . . . . . . . . . . . . . . . 17
V2V-based Routing . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Broadcast Services . . . . . . . . . . . . . . . . . . . . . . . . 18
V2I-based Routing . . . . . . . . . . . . . . . . . . . . . . . . 18
V2V-based Routing . . . . . . . . . . . . . . . . . . . . . . . . 18
V2X-based Routing . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Proposed Content Distribution System 23
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Case Study Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Mobility Analysis 36
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Data Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Data Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Stop Nodes Selection Optimization . . . . . . . . . . . . . . . 47
4.3.2 Connectivities Computation . . . . . . . . . . . . . . . . . . . 52
4.3.3 Networking Potential Evaluation . . . . . . . . . . . . . . . . 52
4.3.4 Nodes Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Content Recommender Design 66
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Consumer Interest Profiles Synthesis . . . . . . . . . . . . . . . . . . 68
5.3 Recommender Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Category 1 Recommender . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Category 2 Recommenders . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Category 3 Recommenders . . . . . . . . . . . . . . . . . . . . 74
5.3.4 Category 4 Recommenders . . . . . . . . . . . . . . . . . . . . 76

5.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Varying Group Interest Distributions
(Experiments 1 to 4) . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.2 Varying Unknown-interest Ratios
(Experiments 5 to 8) . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.3 Varying Network Capacities
(Experiments 9 to 12) . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Content Routing Design 111
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Functions Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 divideData Function . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 allocateData Function . . . . . . . . . . . . . . . . . . . . . . 114
6.2.3 computeFeatures Function . . . . . . . . . . . . . . . . . . . . 114
6.2.4 controlRange Function . . . . . . . . . . . . . . . . . . . . . . 117

viii



6.2.5 targetSegments Function . . . . . . . . . . . . . . . . . . . . . 118
6.2.6 transmitData Function . . . . . . . . . . . . . . . . . . . . . . 119
6.2.7 followPolicy Function . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Maximum Number
of Data Segments Estimation . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Data Segments Division and Allocation . . . . . . . . . . . . . . . . . 126
6.5 Exchange Policy Search Space Visualization . . . . . . . . . . . . . . 127
6.6 Exchange Policy Bayesian Optimization . . . . . . . . . . . . . . . . 129

6.6.1 Initial Regression Data Generation . . . . . . . . . . . . . . . 130
6.6.2 Regression Using Gaussian Processes . . . . . . . . . . . . . . 130
6.6.3 Regression Using Random Forest . . . . . . . . . . . . . . . . 131
6.6.4 Regression Using Bayesian Neural Network . . . . . . . . . . . 133
6.6.5 Regression Techniques Comparison . . . . . . . . . . . . . . . 134
6.6.6 Regression Using Batch-based Random Forest . . . . . . . . . 135

6.7 Routing Policy Results . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusions and Future Directions 144
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.1 Mobility Analysis Improvements . . . . . . . . . . . . . . . . . 146
7.2.2 Content Recommender Design Improvements . . . . . . . . . . 147
7.2.3 Content Routing Design Improvements . . . . . . . . . . . . . 147
7.2.4 Other Improvements . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 149

Appendix A: Mobility Analysis Algorithms 154

Appendix B: Content Recommender Design Algorithms 173

Appendix C: Content Routing Design Algorithms 190

ix



List of Figures

Figure 2.1 Multi-tier routing . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.2 Delay-tolerant routing . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.3 Direct routing . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.4 Cluster-based routing . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.5 Cross-layer optimized routing . . . . . . . . . . . . . . . . . . 11
Figure 2.6 Terminated routing . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.7 Expedited routing . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.8 Splitted routing . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.9 Redundant routing . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.1 Proposed content distribution system . . . . . . . . . . . . . 26
Figure 3.2 Content distribution procedure (Online operations) . . . . . . 33

Figure 4.1 Velocities before and after removing noisy trips . . . . . . . 40
Figure 4.2 Percentage of velocity NaN -values before and after replacing

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.3 Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.4 Synthetic vs. realistic trip trajectory . . . . . . . . . . . . . . 45
Figure 4.5 All stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 4.6 Refined stops . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.7 Refined stop popularities . . . . . . . . . . . . . . . . . . . . 51
Figure 4.8 Optimal stops . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 4.9 Connectivities at 5:00 PM . . . . . . . . . . . . . . . . . . . 53
Figure 4.10 Number of clusters vs. time under different linkage methods . 55
Figure 4.11 Cluster size distribution vs. time

under different linkage methods . . . . . . . . . . . . . . . . 55
Figure 4.12 Number of clusters vs. time

under different broadcasting ranges . . . . . . . . . . . . . . 56
Figure 4.13 Cluster size distribution vs. time under different broadcasting

ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 4.14 Daily continuous contact duration distribution of vehicles . . 57
Figure 4.15 Continuous contact durations . . . . . . . . . . . . . . . . . . 59
Figure 4.16 Representative nodes clustering scenario . . . . . . . . . . . . 62
Figure 4.17 Nodes clustering . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 4.18 Clustering under different cdmin thresholds . . . . . . . . . . 64

x



Figure 5.1 True consumer interests with σg
i = 2 . . . . . . . . . . . . . . 69

Figure 5.2 True consumer interests with σg
i = 10 . . . . . . . . . . . . . 70

Figure 5.3 Different available consumer interest scenarios . . . . . . . . 71
Figure 5.4 Experiment 1: effect on interests ratio . . . . . . . . . . . . . 82
Figure 5.5 Experiment 1: effect on popular distributed services ratio . . 83
Figure 5.6 Experiment 2: effect on interests ratio . . . . . . . . . . . . . 84
Figure 5.7 Experiment 2: effect on popular distributed services ratio . . 85
Figure 5.8 Experiment 3: effect on interests ratio . . . . . . . . . . . . . 86
Figure 5.9 Experiment 3: effect on popular distributed services ratio . . 87
Figure 5.10 Experiment 4: effect on interests ratio . . . . . . . . . . . . . 88
Figure 5.11 Experiment 4: effect on popular distributed services ratio . . 89
Figure 5.12 Experiment 5: effect on interests ratio . . . . . . . . . . . . . 92
Figure 5.13 Experiment 5: effect on popular distributed services ratio . . 93
Figure 5.14 Experiment 6: effect on interests ratio . . . . . . . . . . . . . 94
Figure 5.15 Experiment 6: effect on popular distributed services ratio . . 95
Figure 5.16 Experiment 7: effect on interests ratio . . . . . . . . . . . . . 96
Figure 5.17 Experiment 7: effect on popular distributed services ratio . . 97
Figure 5.18 Experiment 8: effect on interests ratio . . . . . . . . . . . . . 98
Figure 5.19 Experiment 8: effect on popular distributed services ratio . . 99
Figure 5.20 Experiment 9: effect on interests ratio . . . . . . . . . . . . 102
Figure 5.21 Experiment 9: effect on popular distributed services ratio . . 103
Figure 5.22 Experiment 10: effect on interests ratio . . . . . . . . . . . . 104
Figure 5.23 Experiment 10: effect on popular distributed services ratio . 105
Figure 5.24 Experiment 11: effect on interests ratio . . . . . . . . . . . . 106
Figure 5.25 Experiment 11: effect on popular distributed services ratio . 107
Figure 5.26 Experiment 12: effect on interests ratio . . . . . . . . . . . . 108
Figure 5.27 Experiment 12: effect on popular distributed services ratio . 109

Figure 6.1 Flowchart of the function (followPolicy) . . . . . . . . . . . 124
Figure 6.2 Number of data segments initially distributed effect . . . . . 126
Figure 6.3 Initial data segment allocations . . . . . . . . . . . . . . . . . 127
Figure 6.4 Exchange policy search space visualizations . . . . . . . . . . 128
Figure 6.5 Flowchart of bayesian optimization . . . . . . . . . . . . . . . 129
Figure 6.6 Policy weights variation . . . . . . . . . . . . . . . . . . . . . 136
Figure 6.7 Bayesian optimization under GP, RF and BNN regressions . 137
Figure 6.8 Policy weights variation under batch-based RF regression . . 138
Figure 6.9 Bayesian optimization under batch-based RF regression . . . 139
Figure 6.10 Data exchanges under optimal policy at 5:00 PM . . . . . . . 139
Figure 6.11 Data segments exchanged vs. time . . . . . . . . . . . . . . . 140
Figure 6.12 Data segments by the end of exchanges . . . . . . . . . . . . 141
Figure 6.13 Data category size vs. data rate under optimal policy . . . . 143

xi



List of Tables

Table 2.1 Multicast Services - V2V-based protocols . . . . . . . . . . . 18
Table 2.2 Broadcast Services - V2I, V2V and V2X-based protocols . . . 21

Table 5.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . 79

xii



List of Algorithms

3.1 Content distribution procedure (Offline operations) . . . . . . . . . . 30
3.2 Content distribution procedure (Online operations) . . . . . . . . . . 32
A.1 Collecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2 Re-sorting same-block and same-arrival-time row data with switching

directions when occurring at the beginning of a trip . . . . . . . . . . 155
A.3 Re-sorting same-block and same-arrival-time row data with switching

directions when occurring at the end of a trip . . . . . . . . . . . . . 156
A.4 Computing velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.5 Replacing velocity NaN -values . . . . . . . . . . . . . . . . . . . . . 158
A.6 Replacing high velocity values . . . . . . . . . . . . . . . . . . . . . . 160
A.7 Modifying data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.8 Synthesizing trip data while matching the map . . . . . . . . . . . . . 162
A.9 Synthesizing block data . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.10 Filling gaps between same-block trips . . . . . . . . . . . . . . . . . . 164
A.11 Correcting same-block trip single-step overlaps . . . . . . . . . . . . . 165
A.12 Converting stop-coordinates data . . . . . . . . . . . . . . . . . . . . 166
A.13 Refining stop selections . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.14 Optimizing stop selections . . . . . . . . . . . . . . . . . . . . . . . . 167
A.15 Adding optimal stops data to synthetic block data . . . . . . . . . . . 168
A.16 Computing connectivities . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.17 Computing continuous contact durations . . . . . . . . . . . . . . . . 170
A.18 Extracting the cth biggest cluster (extractCluster) . . . . . . . . . . 171
A.19 Extracting next biggest clusters . . . . . . . . . . . . . . . . . . . . . 172
B.1 Generating consumer true interests . . . . . . . . . . . . . . . . . . . 173
B.2 Confirming that at least one service is truly liked per consumer . . . 174
B.3 Determining consumer available interests . . . . . . . . . . . . . . . . 174
B.4 Confirming that at least one service is known to be liked

per consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.5 Non-interactive non-collaborative non-group-based recommender . . . 175
B.6 Greedy non-collaborative non-group-based recommender . . . . . . . 176
B.7 ε-greedy non-collaborative non-group-based recommender . . . . . . . 177
B.8 Decaying ε-greedy non-collaborative non-group-based recommender . 178
B.9 Upper-Popularity-Bound non-collaborative non-group-based

recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiii



B.10 Generating Non-Group-Based interest Recommendations using
consumers collaboration (generateNGBRecommendations) . . . . . . 180

B.11 Greedy collaborative non-group-based recommender . . . . . . . . . . 181
B.12 ε-greedy collaborative non-group-based recommender . . . . . . . . . 182
B.13 Decaying ε-greedy collaborative non-group-based recommender . . . . 183
B.14 Upper-Popularity-Bound collaborative non-group-based recommender 184
B.15 Generating Group-Based interest Recommendations using consumers

collaboration (generateGBRecommendations) . . . . . . . . . . . . . 185
B.16 Greedy collaborative group-based recommender . . . . . . . . . . . . 186
B.17 ε-greedy collaborative group-based recommender . . . . . . . . . . . . 187
B.18 Decaying ε-greedy collaborative group-based recommender . . . . . . 188
B.19 Upper-Popularity-Bound collaborative group-based recommender . . 189
C.1 Extracting biggest cluster connectivities . . . . . . . . . . . . . . . . 190
C.2 Dividing data segments between nodes (divideData) . . . . . . . . . 190
C.3 Allocating data segments (allocateData) . . . . . . . . . . . . . . . . 191
C.4 Computing node features (computeFeatures) . . . . . . . . . . . . . 192
C.5 Controlling the broadcasting range of the transmitting node

(controlRange) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
C.6 Targeting data segments for transmission (targetSegments) . . . . . 194
C.7 Transmitting data (transmitData) . . . . . . . . . . . . . . . . . . . 195
C.8 Following the segments exchange policy (followPolicy) . . . . . . . . 196
C.9 Estimating the maximum number of distributable data segments given

a minimum exchange ratio threshold . . . . . . . . . . . . . . . . . . 197
C.10 Dividing and allocating the nmax

as data segments . . . . . . . . . . . . 198
C.11 Generating initial regression data . . . . . . . . . . . . . . . . . . . . 198
C.12 Bayesian optimization using Gaussian Processes regression . . . . . . 199
C.13 Bayesian optimization using Random Forest regression . . . . . . . . 200
C.14 Bayesian optimization using Bayesian Neural Network regression . . . 201
C.15 Bayesian optimization using batch-based Random Forest regression . 204

xiv



List of Acronyms

∆cd Length of the contact duration within one time step

ε Probability of randomness

σg
i Standard deviation of the consumer group interests distributions

µω Policy weights mean within the data batch used by the
batch-based random forest regression model used throughout
bayesian optimization

ω Vector of policy weights given to the node features

ωmax Maximum policy weight bound used by the batch-based random
forest regression model throughout bayesian optimization

ωmin Minimum policy weight bound used by the batch-based random
forest regression model throughout bayesian optimization

σω Policy weights standard deviation within the data batch used by
the batch-based random forest regression model used throughout
bayesian optimization

A Matrix of data segment exchange actions

CD Set of contact duration matrices

cd Counters vector used to measure continuous contact durations

cdmin Schedule vector of minimum cumulative contact duration thresholds
used in the successive biggest node clusterings

CObl Blocks coordinates matrix

cosi Vector of coordinates of refined stop (i)

COsci Coordinates matrix of all members of stops cluster (i)

C Connectivities matrix

Cb Connectivities matrix of the biggest node clusters

xv



cp Vector of instantaneous connectivities summation within period (p)

DATAbnn Data matrix of policy weights and their corresponding number of
data exchanges as evaluated throughout bayesian optimization
using bayesian neural network regression

DATAbrf Data matrix of policy weights and their corresponding number of
data exchanges as evaluated throughout bayesian optimization
using batch-based random forest regression

DATAgp Data matrix of policy weights and their corresponding number of
data exchanges as evaluated throughout bayesian optimization
using gaussian processes regression

DATAreg Initial regression data matrix for bayesian optimization

DATArf Data matrix of policy weights and their corresponding number of
data exchanges as evaluated throughout bayesian optimization
using random forest regression

DATArnd Data matrix of random policy weights and their corresponding
number of data exchanges as evaluated by the regression model
used throughout bayesian optimization

datarnd Vector of policy weights and their corresponding number of data
exchanges of the current best random point as evaluated by the
regression model used throughout bayesian optimization

d Vector of distances

dtx
ne Vector of distances between the transmitting node (idtx) and its

neighbors

dsci Vector of distances between the coordinates mean of stops cluster(i)
and its cluster members

Fc Collected features matrix

fci Collected feature column vector (i)

Fm Modified features matrix

fmi Modified feature column vector (i)

Fm
bl Modified features matrix for the same block

Fs Stops features matrix

fsi Stops feature column vector (i)

Ft Trips features matrix

xvi



fti Trips feature column vector (i)

Fbl Same block features matrix

fbli Same block feature column vector (i)

Fbl
st Same block features matrix with same arrival times

Fcs Converted stops features matrix

fcsi Coverted Stops feature column vector (i)

Fn Nodes features matrix

fni Nodes feature column vector (i)

Fsh Shapes features matrix

fshi Shapes feature column vector (i)

Fst Stop times features matrix

fsti Stop times feature column vector (i)

idn
s Vector of node segment indices

idtx
s Vector of indices of segments available at the transmitting node

idINTtrue Vector of the normally-distributed true consumer positive-interest
indices

idbl Vector of vehicle block IDs

idne
cms Vector of common missing segment indices of neighboring nodes

idds Vector of the distributed service indices

idtx
ene Vector of transmitting node neighbor indices being eliminated to

control the transmitting node broadcasting range

idmps Vector of the most popular service indices

idne
ms Vector of missing segment indices of a neighboring node

IDnc Set of final member index matrices for all node clusters

idnc Vector of node cluster indices

IDb
nc Matrix of member IDs of the biggest node clusters

IDnxt
nc Set of next iteration member index matrices for all node clusters

IDprvs
nc Set of previous iteration member index matrices for all node clusters

xvii



idn
nene Vector of indices of neighboring nodes around direct node neighbors

idn
ne Vector of node neighbor indices

idtx
ne Vector of neighboring node indices of the transmitting node

idos Vector of optimal stop IDs

idhve
rows Vector of all Collected features matrix row indices with high

velocities

idrs Vector of refined stop IDs

idsci Vector of all member indices of stops cluster (i)

idsc Vector of stop cluster IDs

idtr Vector of all trip IDs

idbl
tr Vector of trip IDs within the same block

idts Vector of segment indices being targeted for transmission

idord
tx Vector of node indices in order of transmission

INTavail Available consumer interests matrix

INTrcmnd Consumer interests matrix after making recommendations

INTtrue True consumer interests matrix

J Jaccard similarities matrix

LATS Latitudes matrix

LATSbl Synthetic block latitudes matrix

LATStr Synthetic trip latitudes matrix

LONS Longitudes matrix

LONSbl Synthetic block longitudes matrix

LONStr Synthetic trip longitudes matrix

Mdlbtr Batch-based tree regression model used in bayesian optimization

Mdlgp Gaussian processes regression model used in bayesian optimization

Mdllat Model of synthetic latitudes generated using linear regression

Mdllin Linear regression model used in bayesian optimization

xviii



Mdllon Model of synthetic longitudes generated using linear regression

Mdlnn Neural network regression model used in bayesian optimization

mdlresult Vector of (latitude,longitude) pair generated

Mdltr Tree regression model used in bayesian optimization

nas Vector of the different number of all node data segments

nns Vector of the number of segments for each node

popsegs Vector of data segment popularities

popavail
services Vector of service popularities according to available consumer

interests

poprcmnd
services Vector of service popularities after making recommendations

popstops Vector of refined stop popularities

rowextra Extra row generated

SA Matrix of segment allocations

sizesnc Vector of node cluster sizes

STATn Node statuses matrix

statni Node status column vector (i)

TRlats
gap Trajectory of latitudes for the gap between same-block trips

TRlons
gap Trajectory of longitudes for the gap between same-block trips

TRsh Shape trajectory matrix

TRtr Trip trajectory matrix

tend Period ending time indices vector

tstart Period starting time indices vector

ut Vector of node utilities given their feature values and the current
policy weights

uavail Vector of service upper popularity bounds according to available
consumer interests

urcmnd Vector of service upper popularity bounds according to consumer
interests after making recommendations

xix



argfind A function that finds the indices of matrix rows/columns such that
they satisfy a certain condition

cluster A function that clusters data using hierarchical clustering given
certain conditions

distance A function that gives the distance between two position pairs of
(longitude,latitude) coordinates

fitgp A function that fits a gaussian processes regression model to a set
of data

fitlinear A function that fits a linear regression model to a set of data

fitnn A function that builds a neural network model with a certain
number of layers and neurons in each layer

fittree A function that fits a tree regression model to a set of data

length A function that gives the longest dimension of a matrix

normrnd A function that generates a predetermined number of
normally-distributed random numbers according to a given mean
and standard deviation

predict A function that predicts the output and its standard deviation given
a regression model and input data

randi A function that generates a random integer number within a certain
interval

repmat A function that repeats matrix elements according to a given set of
dimensions

sort A function that sorts matrix rows in accordance to a specific column
or set of columns and that is either in an ascending or a descending
order

train A function that trains a neural network model with a certain set of
data

unique A function that gives the unique rows of a matrix and their indices

c Biggest node clusters index

capnet Network capacity in terms of the number of services that can be
supported

cdmin Minimum cumulative contact duration threshold

d Distance

xx



ermin Minimum ratio between the number of exchanged data segments
and the number of data segments distributed initially

idtx Index of the transmitting node

idfc First group consumer index

idlc Last group consumer index

idfs First group service index

idls Last group service index

idcs Index of the chosen data segment for transmission

nc Number of consumers

ng Number of consumer geographical groups

ni Number of iterations

nn Number of all nodes

nb
n Number of nodes in the biggest nodes cluster

np Number of time periods

ns Number of services

nT Total number of time steps

nmax
as Maximum number of all distributable data segments given ermin

nhmax Maximum number of loop-free hops that a signal can traverse
between two nodes within the same cluster given a cumulative
contact duration threshold

nos Number of optimal stop nodes

nrnd Number of random samples generated throughout bayesian
optimization

nTday
Total number of time steps in a day

nTgap Number of time steps constituting the time gap between same-block
trips

nTperiod
Number of time steps within a period

nTrcmnd
Number of recommendation time intervals

rbr Maximum broadcasting range of a node

xxi



rearth Earth’s radius

ratioui Ratio of unknown consumer interests

sal Index of the last data segment allocation

tend Ending time of the period under consideration

tstart Starting time of the period under consideration

tblend Block end time

tblstart Block start time

Ttravel Travel time

Twait Waiting time

vemax Maximum vehicle velocity

AI Artificial Intelligence

BNN Bayesian Neural Network

DSRC Dedicated Short-Range Communications

FANET Flying Ad-hoc NETwork

GP Gaussain Processes

GTFS General Transit Feed Specification

LTE Long Term Evolution

MDP Markov Decision Process

RAN Radio Access Network

RF Random Forest

RSU Road Side Unit

UCB Upper Confidence Bound

UPB Upper Popularity Bound

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

V2X Vehicle to Everything

VANET Vehicular Ad-hoc NETwork

xxii



Chapter 1

Introduction

1.1 Motivation
Wireless networks provide services to consumers in a convenient and ubiquitous way.
They distribute private content (e. g. emails) and public content (e. g. emergency
announcements and social media posts). In fact, it has been found that 98% of Chinese
internet consumers use wireless networks according to a recent report made by the
China Internet Network Information Center [1]. This accounts for almost 800 million
users up from 100 million users in 2008 which shows the convenience and ubiquity of
these networks.

However, wireless networks suffer from traffic overload and a saturating
frequency spectrum. For example, the US needs more than 350 MHz of additional
frequency spectrum as of 2015 to meet the data demand of wireless networks
in 2019 according to Bazelon et. al. [2]. This demand is expected to grow even
further which means that more spectrum will be needed. In fact, wireless networks
have generated about 10 exabytes/month of data traffic in 2017 and are expected to
generate as high as 77 exabytes/month in 2022 according to the 2019 Visual
Networking Index by Cisco [3]. This network overload is mainly driven by the traffic
demand generated by applications generating mostly popular content including
social media and video streaming sites. According to the 2019 Mobile Internet
Phenomena report by Sandvine [4], Facebook properties (i.e. Facebook, Instagram,
WhatsApp and Messenger) account for 20% of worldwide wireless network traffic
while Youtube accounts alone for 35% of this traffic. In fact, it has been reported in
the 2019 Visual Networking Index by Cisco [3] that 59% of wireless networks traffic
is for videos as of 2017 and that this number will reach 79% of wireless networks
traffic in 2022. This popular content demand is expected to grow even further in the
near future with data-intensive applications such as virtual reality, connected cars
and environmental sensing. For example, the wireless network data traffic generated
by augmented reality and virtual reality will grow from 22.1 petabytes/month
in 2017 to 254.4 petabytes/month in 2022 according to the 2019 Visual Networking
Index by Cisco [3].

1



While this wireless network demand can be addressed indoors using technologies
such as fixed Wi-Fi hotspots or small cells, it is still challenging when it comes to
outdoor environments. This is mainly due to the fact that outdoor traffic demand
comes from sources such as vehicles or consumers mobilizing all the time. A vast
majority of those consumers mobilize in public transportation vehicles and stops
while remaining outdoor consumers might be busy walking or driving. Therefore,
a promising approach is to build a reliable VANET that matches this demand using
public transportation vehicles and stops. Compared to regular vehicles, public
transportation vehicles have by nature the following distinctive attributes:

• they have highly predictable mobility patterns given their fixed schedules,

• their real time locations can be shared in public without privacy concerns,

• their location distribution is uniform throughout city space and time while
converging to consumer locations throughout the day, and

• they do not suffer from the selfish routing issue given that they are often
administered by the same governmental entity which can enforce routing
cooperation.

With these advantages in mind, a popular content distribution system is proposed to
offload wireless network traffic by utilizing public transportation vehicles and stops.
Having a reliable VANET implemented using public transportation vehicles and stops
can form the backbone for other vehicle categories to communicate through including
regular vehicles. This can lead eventually to a wide scale deployment of VANETs and
break the network effect barrier that has prevented them so far from being deployed
in a large scale.

The proposed system design is based on using AI-based techniques due to the
high predictability nature of public transportation vehicles and stops. These
techniques include the UPB collaborative and group-based recommender based on
multi-armed bandits for content recommendation and bayesian optimization based
on batch-based RF regression for content routing. These techniques are
implemented after extensively preprocessing and processing the realistic mobility
data of public transportation vehicles and stops. Such system design approach
enables the deployment of VANETs in a gradual, reliable and scalable manner while
utilizing the existing Vehicle-to-everything (V2X) technologies such as the
Dedicated Short Range Communications (DSRC) technology.

On one hand, consumers will gain access to popular content after the proposed
system makes the proper recommendations and routing while paying a fee in exchange
for this service, receiving paid-for advertisements and/or receiving discounts from
wireless network operators. Wireless network operators, on the other hand, can have
their network expenses partially funded through targeted advertisements sent with
the popular content. Moreover, they will see their operating costs decline due to the
significant network offloading made by the proposed system. In fact, this system has
allowed for a reliable, scalable and gradual VANET deployment while offloading as
high as 95% of the outdoor wireless network load.

2



The market for applications which can utilize the proposed system is expanding
quickly with great benefits to the economy. This is mainly due to the fact that the
proposed system is in fact a 5G-enabling technology which allows for cheap, gradual
and scalable network deployment. According to the IHS Markit modeling presented
in [5], 5G will enable $US12.3 trillion of global economic activity by 2035 and will
support 22 million jobs.

Compared to the proposed system, most other competing network technologies
do not offer significant offloading to outdoor wireless networks. For example, the
high cost of deploying and maintaining fixed outdoor Wi-Fi hotspots and small cells
restrict their scalability and therefore their offloading potential. As for the mobile
hotspots, they are built inside vehicles but still have their backhaul connected
directly to the wireless network. While these mobile hotspots might lead to some
minor offloading due to traffic aggregation but this is, by no means, significant. In
general, these competing technologies fail to exploit the much cheaper VANET
deployment cost using public transportation vehicles. They even fail to exploit the
predictability demonstrated by these vehicles using a data-based approach. They
are often distributed and based on domain knowledge assumptions which might not
fit all scenarios.

1.2 Research Objectives
The main objectives of this thesis are as follows:

• Survey previous content distribution attempts to understand their shortcomings
and define areas of improvement,

• Design the proposed popular content distribution system,

• Analyze the networking potential of public transportation vehicles and stops
using a novel data preprocessing and processing approach. The data used
represents the realistic transportation service offered by the Grand River
Transit authority throughout the Region of Waterloo, ON, Canada,

• Develop recommendation and routing schemes which take advantage of public
transportation vehicles and stops,

• Conduct experiments to study the performance of the proposed content
recommender to demonstrate its versatility under different consumer interest
and network capacity scenarios, and

• Test the proposed content routing mechanism to show the significant
improvement offered in terms of offloading outdoor wireless networks.

3



1.3 Thesis Organization
Chapter 1 presents the motivations of this work as well as the research objectives
and thesis organization. Chapter 2 provides background material, introduces
popular content distribution systems and the different techniques used in building
these systems. It presents a survey of previous mobility analysis studies in relation
to VANETs. It also presents a comprehensive survey of previous content
distribution systems, starting with recommendation systems and then content
routing protocols providing multicast and broadcast services. In Chapter 3, the
problem formulation of content distribution as well as the overall structure of the
proposed system are introduced. Chapter 3 also discusses the details and
assumptions of the case study adopted which represents the Grand River Transit
bus service offered throughout the Region of Waterloo, Ontario, Canada. Chapter 4
presents the proposed system operations concerning the mobility data analysis of
public transportation vehicles and stops. Chapter 5 introduces the experimental
study conducted to design the content recommender. Chapter 6 presents the
proposed system operations concerning content routing. Chapter 7 concludes the
thesis and outlines future research directions.

4



Chapter 2

Background
and Literature Review

2.1 Overview
Popular content includes any popular and publishable material generated by any
application or site ranging from social media sites such as Facebook and Twitter to
non-real-time video streaming sites such as Youtube and Netflix. It does also include
data generated outdoor by vehicles related to applications such as infotainment and
environmental sensing. Offloading such content from outdoor wireless networks would
have a significant impact on the overall network performance. This can be done
via content distribution using public transportation vehicles and stops given their
predictable mobility patterns, their publicly-shared real-time locations, their uniform
location distribution throughout city space and time and the possibility of enforcing
cooperation between them given the single administration authority they usually
have.

Operations made by these content distribution systems can be classified into:
content recommendation and content routing. Content recommendation operations
are responsible for choosing the proper content based on consumer service interests
whereas content routing operations are responsible for routing services content to
consumers.

The recommender making the recommendation operations starts with some
knowledge about consumer interests and then gradually and based on its
interactions with the consumers, interests are updated towards the true consumer
interests. These interactions can take several forms depending on the
exploration-exploitation trade-off made by the recommender. They can also make
assumptions about consumer interests in order to filter service recommendations.
This can be based on consumer-consumer interest-profile similarities or based on
content-content feature similarities. Moreover, they can divide consumers into
groups based on their locations such that more personalized interest
recommendations are made.

5



After making the recommendations, popular content is routed to consumers.
This can take several forms using different routing actions. An intelligent routing
mechanism should adapt between these routing actions so that content is routed
quickly and reliably. This adaptation can either be based on domain knowledge
about VANET routing or be AI-based such that adaptations are more intelligent
and flexible in terms of addressing different routing scenarios.

In the next sections, more details about these two main content distribution
classes of operations are introduced, namely: content recommendation and content
routing. Previous content recommendation and routing studies are also discussed by
briefly describing them and highlighting their key distinctive benefits and
drawbacks. However and since the proposed content distribution system is driven by
data analysis as it will be seen in Chapter 4, previous mobility data analysis studies
of VANETs are reviewed before surveying previous content recommendation and
routing studies.

2.2 Content Recommendation
Content recommendation has three main elements to it; the first is concerned with
AI-based consumer interactions, the second is with the way filtering is made in terms
of determining unknown service interests based on either consumer-consumer interest
similarities or content-content feature similarities and the third is concerned with
the possibility of identifying location-based consumer groups which can allow for
more personalized recommendations. In what follows, each one of these elements is
introduced.

2.2.1 Artificial Intelligence-based
Consumer Interactions

The problem of recommending the truly most popular services to consumers in the
smallest number of interactions is similar to the well-known AI-problem of
multi-armed bandits. This problem has the following commonly used search
techniques: Greedy search, ε-greedy search, Decaying ε-greedy search and Upper
Confidence Bound (UCB) search. These search techniques are introduced as follows.

Greedy Search

In Greedy search, the most popular services based on current consumer interest
profiles are recommended at each time step. This greedy approach of interaction
does not account for the fact that service popularities based on current consumer
interest profiles might be misleading and lacking sufficient knowledge about the true
consumer interest profiles. This search approach is in essence exploiting current
knowledge about consumer interest profiles while not exploring the unknown
interest search space.

6



ε-greedy Search

In ε-greedy search, the disadvantage of greedy search is overcome by exploring
unknown service popularities with a constant probability of ε. This can be done by
recommending less popular services randomly with an equal probability while acting
greedily with the remaining probability of (1 − ε) at each time step. This approach
of interaction does guarantee that unknown service popularities will eventually be
explored but it does also ignore the fact that the search space of unknown service
popularities shrinks over time; having a fixed exploration probability of ε and
a fixed exploitation probability of (1− ε) does lead to this.

Decaying ε-greedy Search

In Decaying ε-greedy search, the shortcomings of ε-greedy search is overcome by
exploring unknown service popularity search space with a decaying ε as time steps
progress. This approach of interaction does account for the fact that unknown
interests shrink over time. However, the optimal schedule used for ε-decays is an
open research question with many possibilities. A commonly used schedule is to
have ε = 1

t
where t is the interaction time index; this schedule allows for

a decaying ε that reaches eventually 0 as t approaches ∞.

Upper Confidence Bound Search

In UCB search, the UCBs of service popularities are computed and then the service
with the highest UCB is chosen greedily at each time step. These bounds are set in
a way that guarantees the service with the highest popularity to be chosen
eventually. If the UCB are set to include the number of all remaining unknown
consumer interests, then this approach of interaction guarantees that the most
popular service is eventually chosen. The main idea here is to be “optimistic in the
face of uncertainty”.

2.2.2 Content Filtering

Assumptions are made when filtering service recommendations to consumers at each
time step. There are two ways to make these assumptions; it is by either assuming
that consumers with similar interest profiles like the same unknown-interest services or
assuming that services with similar content features are liked by the same consumers.

Consumer-Consumer Interest Similarities

There are several ways to measure consumer-consumer interest similarities. One way
is to measure Jaccard similarities given that consumer interests are using a binary
representation with the value 1 denoting a liked service and 0, otherwise. Unknown
services, however, can be given the value NaN in order to ensure that computations of
Jaccard similarities are not distorted. The unknown interests of the current consumer
are decided collaboratively based on the known interests of a consumer that has the

7



highest Jaccard similarity to the current consumer. Therefore, this kind of filtering
is commonly known as “Collaborative filtering”.

Content-Content Feature Similarities

After deciding which features to use when representing a certain content, distances
between content representations are measured using conventional clustering
techniques. Contents within the same cluster are therefore similar and should be
liked by a consumer if s/he likes one of them and vice versa, otherwise. This shows
clearly that deciding which features to use would have a significant impact on
deciding which contents are similar and which are not. Therefore, using
content-content similarities is controversial and might not be suitable in many
scenarios.

2.2.3 Consumer Grouping

Identifying consumer location-groups can make popular content recommendations
more personalized for consumers. This is due to the fact that consumer interest
profiles may differ depending on which location the consumer is at. Exploiting such
location-based differences between consumer group interests can make
recommendations more personalized. In fact, it is guaranteed that it will not make
things worse. Such location-based interest differences can be imagined in scenarios
where consumers are distributed between different work environments (e.g. students
in a university campus vs. employees in a downtown business area).

2.3 Content Routing
After making recommendations to consumers, content has to be routed quickly and
reliably. As mentioned before, there are several routing actions which can be taken
using a certain routing policy or strategy. The decision on how to adapt between
these routing actions can be made either using a hand-crafted algorithm based on
our domain knowledge about VANET routing or it can be made automatically using
an AI-based agent that is capable of exploring and exploiting. In what follows, the
different VANET routing actions are introduced followed by the two main routing
adaptation mechanisms, namely: domain knowledge-based mechanism and AI-based
mechanism.

2.3.1 Routing Actions

Routing actions are the different actions which can be taken to route content data
after being recommended. These routing actions are explained in what follows.

8



Figure 2.1: Multi-tier routing

Multi-tier Routing

Multi-tier routing takes place between different network tiers with different radio
access technologies (see Figure 2.1). Ready infrastructure, such as cellular networks,
can be utilized for this purpose especially in sparse to no Vehicle-to-Vehicle (V2V)
communication conditions. Recent technologies, such as Long-Term-Evolution
(LTE), can provide very low latency communication between vehicles enabling even
hard-delay safety services. Other special tiers include satellites and Flying Ad-hoc
NETworks (FANETs).

Delay-tolerant Routing

Delay-tolerant routing overcomes big voids by storing, carrying and forwarding data
packets if no other vehicle or infrastructure is encountered directly (see Figure 2.2).
This routing action overcomes network disconnections frequently encountered in
sparse VANET deployments. This can also be done by storing, carrying and
forwarding data packets to mules, stationary vehicles or stationary infrastructure
until destination is reached. In fact, it has been found in [6] that even
a disconnection time as short as 30 seconds can dramatically affect routing protocols
based only on routing through direct paths. Therefore, enabling delay-tolerant
routing might be a necessity rather than being an option.

Direct Routing

Direct routing might be the most intuitive V2V routing action. It can be done by
acting greedily and routing data packets through the shortest path (see Figure 2.3).
This path, under high vehicle deployment densities, can be found and utilized directly
to route packets. However, this is not usually the case which makes this routing action
unreliable alone in the other much more frequent VANET deployment scenarios.

9



Figure 2.2: Delay-tolerant routing

Figure 2.3: Direct routing

Cluster-based Routing

Cluster-based routing is made to enhance stability in high density VANET
deployments. This is done by clustering vehicles around cluster heads with special
mobility characteristics and/or special interface capabilities. This routing action
utilizes bandwidth more efficiently by enabling cluster members to communicate
directly within the same cluster and via cluster heads between different clusters. On
the other hand, cluster heads are allowed to communicate directly between
themselves as shown in Figure 2.4.

Cross-layer Optimized Routing

Cross-layer optimized routing is an advanced routing action that takes into
consideration information coming from other network layers. This information is

Figure 2.4: Cluster-based routing

10



Figure 2.5: Cross-layer optimized routing

exchanged in order to forward data packets to the best route as seen by the different
layers. For example in Figure 2.5, the source vehicle is making a decision between
routing traffic through the upper path or the lower. The upper path is shorter but
goes through a busier area where a high contention level is expected. This is
illustrated in the figure by the green colored network layer and the red colored MAC
and physical layers. On the other hand, the lower path is longer but experiences
a much less contention level as indicated by the red colored network layer and the
green colored MAC and physical layers. As shown, the final decision made using
cross-layer optimized routing is to route traffic through the lower path.

Terminated Routing

Terminated routing is done by stopping the forwarding of packets after their Time-
To-Live (TTL) period expires (see Figure 2.6) or after a certain number of hops is
passed. This action can prevent packets form reaching destinations of no relevance
or propagating through an excessive number of hops. Destinations of no relevance
include, for instance, vehicles outside an accident area whereas propagation through
an excessive number of hops can result from routing loops.

Expedited Routing

Expedited routing is done by anticipating vehicle demanded packets and routing them
beforehand while current network conditions still permit such routing. For example,
packets can be routed expeditiously to a vehicle heading to a tunnel before it reaches

11



Figure 2.6: Terminated routing

Figure 2.7: Expedited routing

the tunnel and suffer from the bad coverage inside. Another example is when chunks
of popular content are distributed expeditiously between vehicles in the same area in
order to allow incoming vehicles to find and collect this content (see Figure 2.7).

Splitted Routing

Splitted routing is done by forwarding data packets through different paths. For
example, traffic is splitted into x and (1 − x) data portions between the two paths
shown in Figure 2.8. This action might be necessary considering that high-velocity
vehicles might never have the chance to route all packets through a single path. In
fact, it has been found in [7] that there are 40 seconds of effective communication
time between vehicles crossing at 20 km/h, 15 seconds between vehicles crossing
at 40 km/h and only 11 seconds between vehicles crossing at 60 km/h. These short
communication windows can result in goodputs as low as 80 KB at 60 km/h. A source
high-velocity vehicle might overcome this by dividing its packets between different
passing vehicles heading towards the same destination vehicle using splitted routing.

Infrastructure antennas might also not have enough time to transmit packets to
a destination vehicle under its coverage. Given a vehicle with a velocity of 80 km/h
and an infrastructure antenna with 500 meters coverage area radius, a 1 minute period
of transmission might be the only available duration for this antenna to communicate
with this vehicle. Therefore, the infrastructure might also split packets between
vehicles surrounding or heading towards the destination vehicle (see Figure 2.7).

12



Figure 2.8: Splitted routing

Figure 2.9: Redundant routing

Redundant Routing

Redundant routing is done by sending redundant copies of the same data packet using
the same path or through different paths in an effort to maximize packet chances of
reaching destination. This routing action might be necessary under harsh channel
conditions. For example in Figure 2.9, the source vehicle is routing redundant copies
of message (x) through two different paths to enhance reliability.

2.3.2 Routing Adaptation

Domain Knowledge-based

There have been many attempts to craft routing protocols for content routing in
VANETs based on domain knowledge. Such protocols are often based on predefined
hyper parameters which control when and where to switch between the different
routing actions. Their main drawback is their inability to fit all scenarios due to their
inflexibility.

Artificial Intelligence-based

Fewer routing protocols based on this adaptation mechanism have been encountered
so far. Most protocols encountered follow the domain knowledge-based adaptation.
However, using AI-based routing adaptation agents can itself follow different
approaches. A common approach is to use reinforcement learning after building an
explicit environment model of states and actions. This can be based on our
knowledge or based on the agent’s experience after interacting with the

13



environment. After building such a model, there are different mathematical
techniques to solve the resulting Markov Decision Process (MDP). One of the most
widely used techniques is dynamic programming. The main drawback of this
approach of learning over the state-action space is its limited scalability. This is
especially true in situations where we have a continuous state-action space which is
the case in many interesting applications of reinforcement learning.

Bayesian optimization, on the other hand, can overcome the scalability issue of
reinforcement learning by dealing with the environment as a “black-box” without the
need to build a model. There is also no need to find the derivative of the policy using
bayesian optimization which acts directly over the policy search space. This is done
by following the bayesian approach assuming some prior and updating it based on
environment interactions towards a posterior. This can be done by first interacting
with the environment using random policy weights for a certain number of iterations.
After that, a regression model over the resulting data is employed in order to pick
up the next policy weights according to a certain acquisition function. Such weights
can be chosen by sampling the resulting regression model multiple times and then
choosing the weights according to the acquisition function. The resulting weights
are used to interact with the environment again and the resulting reward is used to
update the regression model in the next iteration. This method continues until the
total reward converges to the optimal set of policy weights and reward.

However, there are many variables in bayesian optimization. One of them is the
acquisition function to use. One of the most well-known acquisition functions is the
UCB acquisition function which is based on choosing greedily the maximum UCB
given the current data. These UCBs can be computed by summing the means and
standard deviations of the resulting policy rewards.

Another bayesian optimization variable is the number of data points used when
making regressions. One possibility is to choose all the data which can slow-down
the bayesian optimization. Another more efficient approach is to choose batches of
regression data where the search space is most “interesting”.

Choosing the regression model to use in bayesian optimization iterations is itself
another important decision to make. The most common regression model used is
Gaussian Processes (GP) but other regression models can also be used including:
Random Forest (RF) and Bayesian Neural Network (BNN). The best regression model
to use is application-specific and there is no “one size fits all” model.

2.4 Mobility Analysis Studies
The mobility data analysis study discussed in Chapter 4, represents the first
detailed study of its kind. It highlights the distinctive and promising networking
potential of public transportation vehicles and stops. It also presents a detailed data
analysis study using a realistic case study dataset and a novel data preprocessing
and processing approach. In what follows, a survey of previous mobility analysis
studies is introduced to highlight the novelty of the data analysis study conducted
in Chapter 4.

14



Starting with the work of S. Uppoor et. al. in [8], [9] and [10]. This work
presents a data analysis study of urban mobility data representing regular vehicles
throughout the city of Cologne, Germany. The synthetic dataset used has been
prepared for studies involving ad-hoc network protocols evaluation. Authors claim
that their dataset captures both microscopic and macroscopic mobility aspects of
vehicular movement. They show that other datasets lack such scale and realism
which results in overestimating VANET protocols.

Using the same synthetic dataset, S. Uppoor et. al. in [11] present probability laws
characterizing vehicle mobility between Radio Access Network (RAN) cells. Several
networking aspects are evaluated including cell inter-arrival times, cell-residence times
and vehicular contact times.

H. Zhu et. al. in both [12] and [13] present a large scale data analysis study using
taxi mobility data throughout the city of Shanghai, China. Their study reveals that
inter-contact times between vehicles follow an exponential-like tail distribution.

In [14], K. Zhao et. al. use three large scale taxi datasets from the cities of Rome,
San Francisco and Beijing. They propose a quad-tree technique to divide these city
areas into regions based on the number of taxi visits. These regions are then associated
with one of four functions: residential, work, entertainment or other. Efficient delay-
tolerant networking solutions can be developed based on these functional regions.

None of the aforementioned studies offers a mobility data analysis of public
transportation vehicles and stops for networking purposes like the one presented in
Chapter 4. In [8], [9] and [10], the main focus is on generating a large scale
synthetic dataset with a high degree of realism for regular vehicles. The comparison
of VANET protocol performances under this dataset and other less-realistic datasets
is only used to demonstrate the importance of such realism in avoiding
overoptimistic protocol evaluations.

The focus in [11] is only on characterizing regular vehicle movements within and
between RAN cells. The focus of both works presented in [12] and [13] is only on
revealing the distribution of inter-contact times between taxi vehicles in urban
environments. And finally, the focus in [14] is only about identifying functional
regions in order to be utilized by delay-tolerant networking solutions for regular
vehicles.

2.5 Content Recommendation Studies
MH. Park et. al. in [15] propose a restaurant recommendation system for a group of
mobile consumers. This system makes recommendations to consumers after
integrating their preferences using the Analytic Hierarchy Process (AHP). The
preference profile of an individual consumer is modeled using bayesian networks
given the uncertainty usually associated with it.

A multimedia recommendation system for a group of consumers in vehicular
networks is proposed by Y. Zhiwen et. al. in [16]. The system creates a common
consumer profile based on minimizing the total distance between the different
consumer profiles within the group. The goal is to use this common profile in order

15



to recommend multimedia content that is of interest to most consumers.
Y. Ge et. al. propose in [17] a recommendation system for mobile consumers

driving taxis. This system recommends pick up points and/or parking spots
throughout the city for these taxi drivers. It does also recommend a set of energy
efficient routes for their trips. These recommendations are based on clustering of
historic data of taxi drivers with high returns. The objective here is to maximize
the revenue per energy use of these taxis.

T. Ruotsalo et. al. in [18] propose a context-aware recommender for on-site
tourists. The system is based on retrieving content to tourists using a clustering
technique based on their interest profiles and physical locations. Another travel
recommendation system for tourists is proposed by M. Kenteris et. al in [19]. This
system utilizes an on-site wireless sensor network that collects tourist ratings from
points of attraction. These ratings are then given a different weight compared to
web ratings made by off-site tourists. The notion here is to use all of these ratings
to make travel recommendations to new tourists using collaborative filtering.
A third travel recommendation system is proposed by WS. Yang et. al. in [20]. The
system allows tourists to get travel recommendations from nearby tourists using
peer-to-peer communication. This should be favorable given the saving of roaming
costs incurred compared to the cost of using wireless communication. Relying on
peer-to-peer communication should result in travel recommendations which are not
distorted by ratings coming from off-site tourists who might have different interests.

T. Li et. al. in [21] propose a recommender system that utilizes vehicles for
marketing purposes. Vehicles are chosen based on their mobility patterns within
regions of high benefits to marketers. They are also chosen based on the city area
they cover throughout their movement which can constitute a future benefit for
marketers. In shopping environments, WS. Yang et. al. propose in [22]
a location-aware recommender system for consumers. The system matches the
consumer interests to the on-site vendor offers and promotions. The consumer
interests and preferences are complemented with their position and history in order
to make location-aware recommendations. Several attributes of shopping
environments are also considered in the recommendations.

All of the above studies propose recommendation systems for popular content
ranging from restaurant, multimedia and taxi recommendations to travel and
marketing recommendations. Many of them rely on distance-based clustering
techniques to make recommendations. Compared to my proposed content
recommender, the choice of features used throughout these studies is usually
controversial. All of these studies lack the intelligent search mechanisms needed to
interact with the consumers efficiently and no study has proposed a recommender
that exploits the consumer groups in order to make more personalized
recommendations.

16



2.6 Content Routing Studies
There are two protocol categories serving content routing; they provide either
multicast services which route content to a specific group of consumers or broadcast
services which route content to all neighboring consumers. In the next subsections,
previous studies related to each category are presented.

2.6.1 Multicast Services

This subsection presents routing protocols supporting multicast services. They are
compared in light of the routing actions implemented. To the best of my knowledge,
no Vehicle-to-Infrastructure (V2I) or V2X based routing protocols supporting
multicast services have been proposed. Therefore, only V2V based protocols are
presented in what follows.

V2V-based Routing

Protocols proposed by L. Briesemeister et. al. in [23] and M. Guo et. al. in [24]
support delay-tolerant routing and terminated routing. The Role-based protocol
supporting multicast service is proposed by L. Briesemeister et. al. in [23]. Using
this protocol, a broken vehicle multicast warning messages to neighboring vehicles in
a highway scenario including approaching opposite-direction and same-direction
vehicles. Message multicasting is terminated after passing a maximum number of
hops and vehicles incapable of braking are not within the multicast group. In [24],
the V3 video streaming architecture is proposed by M. Guo et. al. Vehicles
multicast traffic inquiries to other vehicles in a targeted destination area. This
triggers onboard cameras to video stream destination area traffic conditions. Until
suitable nodes are available, multicast requests can wait for a predetermined waiting
time at intermediate nodes before reaching destination area.

The Inter Vehicles Geocast (IVG) protocol is proposed by A. Bachir et. al. in [25].
This protocol divides highway vehicles into vehicles within and outside “risk areas”.
Risk areas include same-direction vehicles behind the broken vehicle and opposite-
direction vehicles in front of the broken vehicle. Risk area vehicles rebroadcast broken
vehicle alarm messages after a deferring time that is inversely proportional to their
distance from the broken vehicle.

L. Briesemeister et. al. in [26] and M. Kihl et. al. in [27] propose protocols
supporting cross-layer optimized routing and terminated routing.
L. Briesemeister et. al. propose in [26] a Warning dissemination protocol for
highway vehicles within the Zone of Relevance (ZOR). This includes approaching
vehicles from both directions in the case of undivided roads and only same direction
back vehicles in the case of divided roads. Vehicles capable of braking are only
warned. Within ZOR, warning messages are resent after a waiting time that is
inversely proportional to the distance separating a vehicle from source vehicle while
being terminated after a maximum number of hops is reached. In [27], the RObust
VEhicular Routing (ROVER) protocol is proposed by M. Kihl et. al. This protocol

17



Protocol(s)
[23, 24] [25] [26, 27] [28]

Multi-tier Routing
Delay-tolerant Routing !

Direct Routing ! ! ! !

Cluster-based Routing
Cross-layer Optimized Routing ! !

Terminated Routing ! ! !

Expedited Routing
Splitted Routing
Redundant Routing

Table 2.1: Multicast Services - V2V-based protocols

builds on demand multicasting trees within ZOR. These trees enable vehicles to
meet QoS requirements of different applications which are capable of defining which
neighboring vehicles should be within ZOR.

T. Kosch et. al. discuss in [28] information dissemination in VANETs. They
propose a geo-casting technique based on Multicasting messages to areas where the
“Rate of Interest” is higher than a threshold. The Rate of Interest represents the
percentage of vehicles interested in a certain message at a certain area.

Table 2.1 summarizes the above V2V based protocols supporting multicast services
in terms of the routing actions adopted.

2.6.2 Broadcast Services

This subsection presents routing protocols supporting broadcast services. They are
compared in light of the routing actions implemented. V2I, V2V and V2X based
routing protocols providing these services are all covered in what follows.

V2I-based Routing

G. Korkmaz et. al. in [29] and [30] propose protocols supporting multi-tier routing
and cross-layer optimized routing. The cross-layer Controlled Vehicular Internet
Access (CVIA) protocol is proposed in [29]. This protocol switches neighboring
segments between active and inactive phases in order to avoid collisions resulting
from neighboring segments transmitting simultaneously. In [30], the same authors
enhance CVIA by taking QoS requirements into consideration (CVIA-QoS). They
propose scheduling and admission control techniques to prioritize packets and meet
these QoS requirements.

V2V-based Routing

The Distributed Vehicular broad-CAST (DV-CAST) protocol is proposed by
O. K. Tonguz et. al. in [31]. Each vehicle has a “Region Of Interest” that includes

18



a maximum number of one-hop neighboring vehicles. These neighboring vehicles are
classified into same direction front vehicles, same direction back vehicles and
opposite direction vehicles. Based on the classification, vehicles decide whether to
broadcast in the connected state or to store, carry and forward in the disconnected
state. The broadcasting technique adopts suppression using the well-known
weighted p-persistence, slotted 1-persistence or slotted p-persistence technique. In
all cases, packets are discarded after packet timer expires.

Protocols proposed in [32] to [34] support cross-layer optimized routing and
terminated routing. A Cross-layer optimized routing protocol supporting broadcast
service is proposed by S. Eichler et. al. in [32]. It relies on the application layer
informing the MAC layer which packets should be given a higher priority. The
application layer prioritizes packets based on their age, time of the day, type,
neighboring vehicle directions, velocity, distance and number of connected vehicles.
The MAC layer sets different priorities by adjusting contention windows, channel
access timers and persistence factors. L. Briesemeister et. al. propose in [33]
a routing scheme in which neighboring vehicles rebroadcast after a waiting time that
gets shorter as the distance from source vehicle gets longer. A maximum number of
hops is set. In [34], the Fair Data Dissemination (FairDD) protocol is proposed by
R. S. Schwartz et. al. Vehicles broadcast Hello messages conveying mobility and
data context information. Mobility context spans: direction, velocity, destination
and mobility history. Whereas, data context spans: message age, message
geographic region and message priority. Considering the resulting utilities, data
messages are prioritized using Nash bargaining game before waiting for a random
period and then broadcasting. Low priority data messages can be suppressed to
avoid network congestions.

In [35], M. T. Sun et. al. propose the Vector-based TRAck DEtection (V-TRADE)
protocol and the History-enhanced V-TRADE (HV-TRADE) protocol. With these
protocols, vehicles classify their neighbors according to their movement direction and
location. Then, border vehicles rebroadcast messages while accounting for message ID
and remaining TTL. This may result in erroneous neighbor vehicle classifications
especially in unconventional roads like roads with big curves. Therefore, authors
enhance V-TRADE protocol by comparing history rectangles of different nodes (HV-
TRADE). Both protocols utilize bandwidth more efficiently compared to flooding
while offering a small sacrifice in terms of reachability.

The Location Based Broadcasting (LBB) protocol is proposed by X. Qing et. al.
in [36]. Vehicles send redundant message copies within the useful message lifetime.
Specific redundant messages are chosen by flipping an unfair coin while considering
that large number of repetitive packets can lead to excessive collisions and low number
of repetitive packets can lead to transmission failures.

Protocols proposed in [37] to [40] support cross-layer optimized routing. In [37],
A. Nasri et. al. propose a cross-layer optimized routing protocol supporting
broadcast service in which vehicles defer packet rebroadcasting according to their
distance from the source node. In [38], the MultiHop Vehicular Broadcast (MHVB)
protocol is proposed by T. Osafune et. al. Initially, vehicles broadcast after some
waiting time that is inversely proportional to the distance from source vehicle.

19



Then, a “Backfire Algorithm” is proposed to suppress unnecessary packets and
retransmit through farther nodes. A traffic congestion detection algorithm based on
vehicles sensing is also proposed. Broadcast waiting times are adjusted based on
this algorithm findings. In [39], M. N. Mariyasagayam et. al. propose the Enhanced
MHVB protocol which adopts sectoral backfire. In sectoral backfire, an angle is
added to control the backfire area. In addition, dynamic scheduling is adopted so
that earlier retransmissions take place at vehicles located more than 200 meters
away from source vehicle. In [40], the Cross Layer Broadcast Protocol (CLBP) is
proposed by B. Yuanguo et. al. Vehicles with a larger distance, better channel
conditions and a smaller relative velocity difference are chosen as relays. A novel
composite relaying metric is used for this purpose incorporating vehicle relative
velocity, distance from source vehicle, communication channel signal to noise ratio
and packet error rate.

The BROADCOMM protocol is proposed by M. Durresi et. al. in [41]. It divides
highway vehicles into virtual cells. Each virtual cell has a cell reflector based on
its: proximity to the cell center, velocity and direction of movement. Cell members
communicate with neighboring cell members via these cell reflectors. Cell reflectors
prioritize cell member messages and update cell members with their mutual locations.
The update interval is based on how much mobility is exhibited by the vehicles.

V2X-based Routing

Protocols proposed in both [42] and [43] support cross-layer optimized routing. The
Urban Multi-hop Broadcasting (UMB) protocol is proposed by G. Korkmaz et. al.
in [42]. This protocol has two phases: directional and intersection broadcast. In the
directional broadcast phase, the farthest node is selected without a prior knowledge
of locations or IDs. In the intersection broadcast phase, repeaters rebroadcast into
road segments. This way, UMB addresses broadcast storms and hidden terminal
problems. In [43], the Game based Routing algorithm for Congestion Control of
Multimedia transmission (GRCCM) is proposed by D. Di et. al. It classifies vehicles
into gateway vehicles or high quality nodes and non-gateway vehicles or low quality
nodes. It disallows vehicles from excessively choosing gateway vehicles and causing
congestions. Vehicles minimize their cost, represented by the product of load and
latency, by finding out the Nash high and low quality nodes selection probabilities.

In [44], W. Saad et. al. propose a Coalition formation game between Road Side
Units (RSUs). This enables RSUs to coordinate sending diversified data classes to
passing vehicles. Each RSU seeks maximum utility by increasing revenue acquired
from passing vehicles and decreasing coordination cost. This leads to changing
coalitions in response to environmental changes until Nash-stable partitions are
reached.

Protocols proposed in both [45] and [46] support cross-layer optimized routing,
expedited routing and splitted routing. In [45], B. Shrestha et. al. propose
a solution for RSUs to maximize their utility by prioritizing vehicle packets using
a simplistic heuristic technique. Vehicles exchange missing packets afterwards in
a fair bargaining game. Exchanging missing packets starts with the vehicle that has

20



Protocol(s)
[29], [31] [32]- [35] [36] [37]- [41] [42], [44] [45], [47]
[30] [34] [40] [43] [46]

V2I ! ! ! ! !

V2V ! ! ! ! ! ! ! ! ! !

Multi-tier ! ! ! ! !

Routing
Delay-tolerant !

Routing
Direct ! ! ! ! ! ! ! ! ! !

Routing
Cluster-based !

Routing
Cross-layer ! ! ! ! ! ! ! !

Optimized
Routing
Terminated ! ! ! !

Routing
Expedited ! ! !

Routing
Splitted ! ! !

Routing
Redundant !

Routing

Table 2.2: Broadcast Services - V2I, V2V and V2X-based protocols

the best communication channel and continues until all vehicle-pairs have the same
packets or the communication channel becomes bad. In [46], a mechanism for RSU
Popular Content Distribution (PCD) is proposed by T. Wang et. al. Initially, RSUs
spread all packets between vehicles. Then, vehicles exploit cognitive radio for V2V
communication. Each vehicle decides periodically what to receive and to which
other vehicle packets are forwarded until reaching “best response”. This results in all
vehicles forming a Nash directed graph. To guarantee this graph convergence and
avoid cycles, recent vehicles chosen are stored.

T. Wang et. al. propose in [47] a coalition formation game for the RSU popular
content distribution problem. RSUs send different data packets to passing vehicles
which in turn exchange remaining packets after forming coalitions. Authors claim
that Nash-stable coalitions are reached using their approach.

Table 2.2 summarizes the routing protocols supporting broadcast services and
their routing actions.

21



2.7 Summary
This chapter has presented background material about content recommendation and
routing. It does so by discussing recommendation search approaches used to
interact with the consumers based on multi-armed bandits. Assumptions made to
filter content recommendations have also been introduced in addition to the rule of
consumers grouping in making recommendations more personalized. The different
routing actions have been explained in addition to the two main adaptation
mechanisms based on domain knowledge and AI. Previous mobility analysis studies,
content recommendation and routing studies have all been surveyed by the end of
the chapter.

It has been found that the focus of previous mobility analysis studies has not
been on evaluating the networking potential of public transportation vehicles and
stops. It has also been found that previous popular content recommenders are not
collaborative-based and lack the intelligent search mechanisms and/or the location-
based clustering needed to interact efficiently with the consumers. In addition, it has
been found that most routing protocols are designed based on domain knowledge.
This applies for protocols supporting multicast and broadcast services. Criteria used
to make switching between the different routing actions in these protocols are usually
based on the vehicle direction, velocity and acceleration. Compared to AI-based
protocols, domain knowledge based protocols are inflexible and might be suitable for
only a specific set of scenarios. This is due to the fact that certain heuristics are
used which are quite specific for their corresponding scenarios. Overall, the routing
protocols surveyed support a limited number of routing actions which adds to their
inability to support different networking scenarios.

22



Chapter 3

Proposed Content Distribution
System

The purpose of this chapter is to explain and formulate the problem of popular
content distribution. This is followed by giving an overview of the proposed content
distribution system. This overview introduces the overall system structure followed
by explaining briefly the main operations involved and the relationships between
them. Further details about each operation are left for Chapters 4 to 6. After this
overview, details about the case study used throughout experimentation are given in
addition to the major assumptions made.

3.1 Problem Formulation
Assuming that the popular content of ns services is distributed periodically to nc

consumers using a public transportation system where the total number of periods
is np. These nc consumers are distributed throughout the day across the vehicle and
stop nodes constituting the public transportation system. They enter and leave the
system randomly while changing their locations frequently. Their service interests
are expressed using the matrix INTavail of available interests with the size (nc × ns)
where INTavail[i, j] is the interest of consumer i in service j such that:

INTavail[i, j] =



1 if consumer i is

interested in service j

0 if consumer i is not

interested in service j

NaN if the interest of

consumer i in service j

is curently unknown

Each vehicle node in the public transportation system makes a block of successive
trips using certain routes throughout the day before leaving the system. Several stops

23



are made throughout these trips while waiting for a certain duration of time before
departing each stop node.

The first objective to achieve here is to build a content distribution system that
serves all nc consumers by utilizing a total budget of nos optimal stop nodes only
and all system vehicles. These stops should be chosen optimally such that we end
up with a content distribution system that has a capital cost corresponding to the
budget of nos stops. The IDs of these optimal stops, as defined by the vector idos,
should also be determined.

The second objective to achieve is to cluster all system nodes given their maximum
broadcasting range of rbr and the member IDs of all resulting clusters, as defined by
the matrices IDnc{1 : np} at the different np periods, should also be determined. This
clustering is essential to allow for gradual system deployment.

At each period p, popular content is distributed in the following three phases:

• Initial V2I content distribution to provide the first version of the popular content
segments,

• Direct V2V segment exchanges to replicate the first version of the popular
content segments across all system nodes, and

• Final V2I content distribution to provide any missing segments to the system
nodes.

Therefore, the third objective to achieve here is to estimate the maximum number of
segments nmax

as that can be distributed to the system nodes at the beginning of each
content distribution period p using V2I communication.

The fourth objective to achieve is to find the matrix A which includes a table of
exchange actions which should be taken by the system nodes during the direct V2V
segment exchanges where the columns of this matrix A are defined as follows:

• A[∗, 1] which represents the time indices at which the exchange actions are
executed such that no collision occurs with neighboring transmitting nodes,

• A[∗, 2] which represents the indices of the transmitting nodes taking the
exchange actions,

• A[∗, 3] which represents the broadcasting ranges of the transmitting nodes such
that no interference occurs with neighboring transmitting nodes,

• A[∗, 4] which represents the indices of the chosen segments for transmission,
and

• A[∗, 4+1 : 4+nb
n] which indicates the neighboring nodes which are receiving the

chosen data segments from the transmitting nodes given that nb
n is the number of

nodes comprising the biggest nodes cluster under consideration. This indication
is made by setting the value of A[i, 4 + j] = 1 if the neighboring node j is the
one receiving the chosen data segment and A[i, 4 + j] = 0, otherwise.

24



The objective here is to maximize the offloading of outdoor wireless networks by
maximizing the number of segment exchange actions as defined by length(A) where
the function (length) gives the length of matrix A. These actions should allow the
V2V segment exchanges to be collision-free as well as interference-free.

At each period p, the services are drawn from the predetermined set of ns

services. These services should be prioritized based on recommendations driven
from the available interests matrix INTavail. Therefore, the fifth objective to
achieve here is to make these recommendations such that they allow the system to
have a better estimate of the most popular services which should be distributed to
the consumers by achieving the following:

• exploring the consumer interests in the minimum number of interactions, and

• exploiting this knowledge about consumer interests to distribute the maximum
number of truly-popular services.

3.2 System Overview
A novel content distribution system is proposed with the two main classes of
operations, namely: content recommendation and routing. These operations are
proceeded with a set of mobility analysis related operations. Figure 3.1 shows an
overview of the proposed system.

As it can be seen, there are four databases in the proposed content distribution
system which are: the consumer interests database, the services content database, the
mobility features database and the offline results database. In its core, the proposed
system has the content distribution procedure which interacts with the databases
periodically throughout the day where the number of periods is given by np. This
procedure receives data from both the services content database and the mobility
features database. It does also go through the offline operations in order to update the
offline results database which is subsequently used throughout the online operations.
As for the consumer interests database, the proposed procedure receives data as well
as updates this database while operating.

The consumer interests database stores the matrix INTavail. This matrix is
called the available interests matrix because as the time goes and as more content is
distributed, the feedback of consumers will be received either explicitly or implicitly
and the number of consumer interests which become available will change. Notice
also that multiple different versions of this matrix are stored for the different np

periods to take into account the fact that consumer behavior, in terms of what
services are liked or not, might change over the day periods.

The services content represents the content of the different ns services. The choice
of contents and the way they are discarded or sorted at the consumer equipments are
all beyond the scope of this work here and therefore are left for future research.

The mobility features database stores the different aspects of vehicle node
mobilities and others related to stop nodes. These features are assumed to be

25



Figure 3.1: Proposed content distribution system

26



expressed according to the popular General Transit Feed Specification (GTFS)
using the following matrices:

• the “Trips” features matrix Ft which represents aspects related to trips such
as the IDs of the routes being followed throughout the trips, the IDs of the
transportation services offered, the trip IDs, the directions taken by the vehicles
throughout the trips, the IDs of the trip blocks made by the vehicles and the
IDs of the map shapes followed by the trip routes where each shape is expressed
using several points,

• the “Stop Times” features matrix Fst which represents aspects related to the
times at which stops are made throughout the trips. These aspects include the
trip IDs, the times at which the vehicle nodes arrive at the stops, the times
at which the vehicle nodes depart the stops, the stop IDs and the sequence
numbers given to the successive stops made throughout the trips,

• the “Stops” features matrix Fs which represents aspects related to the stop
nodes such as the stop IDs, the stop codes, the stop names, the latitudes of the
stop locations and the longitudes of the stop locations, and

• the “Shapes” features matrix Fsh which represents aspects related to the map
shapes being followed by the trip routes. These aspects include the shape IDs,
the latitudes given to the shape points, the longitudes given to the shape points
and the shape point sequence numbers.

The core of the proposed content distribution system is its procedure which is divided
between the offline operations shown in Algorithm 3.1 and the online operation shown
in Algorithm 3.2.

The offline operations part includes all operations which can be made offline as
long as the system has not started running yet. These operations are valid as long
as the nodes commit to their mobility features data. The first offline operation made
is collecting the mobility feature matrices Ft, Fst and Fs into one matrix called
the “Collected” features matrix Fc. This matrix can be further adjusted to include
only those trips offering a certain transportation service type (e.g. workday services
only). This matrix is then sorted to make sure that trips of the same block are
sorted properly according to their arrival and departure times. Following this, the
matrix Fc is cleaned by first computing vehicle velocities at different trip stop times.
Some of these velocities will have NaN values due to the fact that stop arrival and
departure times are often measured in minutes only which leads, from the perspective
of mobility traces, to having vehicle nodes depart certain stops and arrive at others
at the same minute. While this might be acceptable from the perspective of stop
schedules, it is considered a data error that should be cleaned from the perspective of
mobility traces. Therefore, the matrix Fc is cleaned from these NaN velocity values
by first correcting stop times, recomputing velocities afterwards and then removing
any resulting velocities which are higher than a maximum velocity threshold vemax.

To prepare the matrix Fc for further processing, it needs to be modified by merging
the arrival and departure time features into the same time feature. The resulting

27



“Modified” features matrix Fm is then synthesized to generate trip trajectories with
high time granularity. During this synthesis, trip trajectories are matched to their
corresponding maps given the map shapes matrix Fsh while being merged into their
corresponding block trajectories with no gaps in between.

Given the synthesized Fm matrix, the offline operations shown in Algorithm 3.1
proceed with optimizing the stop node selections. These stops are first refined by
clustering them given the broadcasting range rbr and then choosing only the medoids
of the resulting clusters. Given the budget of nos optimal stop nodes, these medoids
are further optimized by choosing only those stop node medoids which are the most
popular or alternatively have the highest number of times in which vehicle nodes pass
by them throughout the day given the maximum broadcasting range rbr.

Before being able to cluster the nodes, the connectivities matrix C of
size (nT × nn × nn) is computed where nT is the total number of time steps in which
the proposed system is running and nn is the total number of system nodes
including both vehicle and stop nodes. These connectivities are defined
as C[t, i, j] = 1 whenever node i and node j are within the broadcasting range rbr of
each other at time step t and C[t, i, j] = 0, otherwise. Notice
that C[t, i, j] = C[t, j, i] due to the symmetry in distance measurements.

Given the connectivities matrix C, system nodes are clustered within the same
period p into ng groups meeting cumulative contact duration thresholds as specified
by the vector cdmin. These thresholds represent the minimum total cumulative
contact durations of the different groups such that cdmin[g] represents the minimum
cumulative contact duration at which any group g node is in contact with at least
another node within the same group g throughout period p. Notice that group g is
chosen to be the biggest nodes cluster that satisfies cdmin[g] in order to maximize
the offloading potential of the proposed content distribution system by reaching as
many nodes and therefore as many consumers as possible.

Another important aspect specified throughout clustering is the maximum number
of loop-free hops nhmax in which a content segment traverses between any two nodes
within the same cluster.

Given cdmin and nhmax , clustering is made while storing the resulting
member IDs of the different node clusters at the different periods in the
matrices IDnc{1 : np}. Notice that the thresholds given by the vector cdmin are
chosen in a way that guarantees that all system nodes are eventually chosen to be
part of a node cluster. In addition, nhmax controls the maximum delay that content
segments experience while being distributed within the clusters.

In summary, the outputs of the aforementioned offline operations concerning
mobility analysis (to be used as inputs for the upcoming operations) are:

• the matrix of synthesized latitude trajectories of all nodes LATS,

• the matrix of synthesized longitude trajectories of all nodes LONS,

• the vector of optimal stop node IDs idos, and

• the matrices of cluster member IDs at the different periods IDnc{1 : np}.

28



Algorithm 3.1 continues with the offline operations in relation to content routing.
Given IDnc, these operations start by estimating the maximum number of
segments nmax

as that can be distributed to the nodes of each cluster at the beginning
of the content distribution period. This distribution is made using V2I
communication throughout online operations. The number nmax

as is determined given
a predetermined ratio ermin between the number of content segments exchanged via
V2V communication and the number of segments distributed initially using V2I
communication. The V2V communication takes part after the initial V2I direct
content distribution at the beginning of the content distribution period throughout
online operations.

Given nmax
as , Algorithm 3.1 proceeds with dividing and allocating the nmax

as

segments between the nodes of each cluster. The fraction of segments given to each
node is proportional to its cumulative connectivities summation given the
connectivities matrix C. The intuition here is to give more segments to nodes with
a higher chance of meeting other nodes as indicated by their connectivities
summation. The allocation can however take any form since all segments are
treated equally.

With segments allocated to the nodes in each cluster, Algorithm 3.1 finds the
weights vector ω of the optimal V2V segment exchanges policy using bayesian
optimization. This vector ω comprises the weights given to the node features
measuring the V2V communication potential of system nodes. These features are
chosen based on my domain knowledge of the field of vehicular networking and their
weighted summation gives nodes utilities which are used to prioritize the V2V
segment exchanges of the different nodes.

The bayesian optimization can be made using different regression techniques such
as: GP, RF, BNN and batch-based RF. The final outcome of this optimization process
is the matrix A which includes a table of exchange actions to be taken by the cluster
nodes according to the optimal policy found. These actions allow for the optimal
V2V segment exchanges to take place after being stored at the different cluster nodes
as indicated by Algorithm 3.1.

Notice that these actions allow the V2V segment exchanges to be collision-free as
well as interference-free. This is done by dividing the time between the nodes and
controlling their broadcasting ranges as specified by the resulting matrix A using any
power control scheme. Moreover, transmitted content segments are chosen based on
their scarcity among the cluster nodes neighboring the transmitting node. This shows
clearly that my routing mechanism is adapting between the different routing actions.
It uses multi-tier routing using V2I communication at the initial and final content
distributions at each period p. This is done while utilizing expedited and splitted
routings by dividing the popular content between the system nodes. It does also
use delay-tolerant and direct routings throughout the V2V segment exchanges. This
is done while utilizing cluster-based routing by clustering system nodes, cross-layer
optimized routing by making the exchanges interference-free as well as collision-free
and terminated routing by terminating the exchange of segments by the time they
are not missing anymore at the system nodes.

29



Algorithm 3.1 Content distribution procedure (Offline operations)

1. Collect mobility features data;

2. Sort mobility features data;

3. Clean mobility features data;

4. Synthesize mobility features data;

5. Optimize stop node selections;

6. Compute node connectivities;

7. Cluster nodes;

8. Estimate the maximum number of data segments;

9. Divid and allocate data segments to the nodes;

10. Optimize segment V2V exchange tables;

11. Store the optimal segment V2V exchange tables at the nodes;

In summary, the offline operations concerning content routing design achieve the
following:

• estimating the maximum number of data segments nmax
as to distribute initially

between the nodes using V2I communication, and

• finding the optimal policy (defined by the vector ω) that maximizes the number
of segments exchanged using V2V communication between the nodes.

Further details about the offline operations related to node mobility analysis as shown
in Lines 1 to 7 of Algorithm 3.1 are given in Chapter 4 whereas details related to
content routing design as shown in Lines 8 to 10 are given in Chapter 6.

After finishing all the offline operations specified in Algorithm 3.1, all results are
stored in the offline results database shown in Figure 3.1. These results are used
throughout the online operations.

Algorithm 3.2 shows online operations made while the proposed system is running
throughout periods 1 to np for node clusters 1 to ng. Figure 3.2, on the other hand,
shows the sequence diagram of these operations for cluster g at period p.

For period p and group g, Algorithm 3.2 starts by inquiring the offline results
database about the IDs of group g nodes. These IDs have already been determined
using the offline nodes clustering operation. Knowing these IDs, the IDs of consumers
located at any of the corresponding nodes during most of period p are detected. This
detection can be made by directly asking the consumers for their IDs whenever they
join the content distribution system.

30



Given the consumer IDs, interests can be acquired from the consumer interests
database. These interests are defined, as mentioned previously, by the
matrix INTavail at any period p. Notice that some assumptions have to be made
at p = 1 about these interests in order to proceed with the online operations. The
nature of these assumptions is beyond the scope of the thesis work presented here
and is left for future research.

With the most recent INTavail, services can be prioritized for group g consumers
at period p. These services are drawn from a predetermined set of services with
a total number of ns services. The prioritization is made based on recommendations
driven from the available interests matrix INTavail. The recommendations allow the
system to have a better estimate of the most popular services which should be routed
to the consumers of group g. A UPB collaborative and group-based recommender
is designed for this purpose and experimented under different consumer interest and
network scenarios as will be shown in Chapter 5.

Algorithm 3.2 proceeds by inquiring the offline results database about the
maximum number of data segments nmax

as to be distributed between group g nodes
at period p using V2I communication. Given the services content data, these
segments are then matched to the prioritized service content segments while making
a fixed data rate assumption. This assumption can be made based on the average
V2V data rate experienced by cluster g nodes throughout period p. Notice that the
number of service content segments as well as their data sizes and priorities control
the number of services which the proposed content distribution system would be
able to support. Detailed investigation about this matching are beyond the scope of
the thesis work presented here and are left for future research.

After matching the services content to the segments, the offline results database is
inquired about the segment allocations of the different nodes. Given these allocations,
matched segments are routed to their nodes using V2I communication.

With content segments divided and allocated to the system nodes and given the
optimal V2V exchange tables stored at these nodes, segment exchanges start
according to the optimal V2V segments exchange policy found previously
throughout the offline operations.

After the V2V segment exchanges finish, the remaining segments are sent
directly using V2I communication before the end of the content distribution
period p. The final outcome is having all the system nodes with the number nmax

as of
data segments available at each node. Consumers will give their feedback about the
content segments being recommended and routed using the proposed system
throughout period p. This feedback can be either explicit or implicit. Either way,
the matrix INTavail of consumer interests within group g at period p is updated
according to this feedback in order to have better recommendations in the next
content distribution period. Therefore, these recommendations:

• explore the consumer interests in the minimum number of interactions, and

• exploit this knowledge about consumer interests to distribute the maximum
number of truly-popular services.

31



Algorithm 3.2 Content distribution procedure (Online operations)

1. for p = 1 : np do

2. for g = 1 : ng do

3. Get cluster g node IDs at period p;

4. Get consumer IDs at cluster g nodes during most of period p;

5. Get the interests of cluster g consumers at period p;

6. Recommend services to cluster g consumers at period p;

7. Get the maximum number of data segments ...

8. for cluster g nodes at period p;

9. Get services content data at period p;

10. Match recommended services content ...

11. to cluster g segments at period p;

12. Get cluster g node segment allocations at period p;

13. Distribute the matched and allocated data segments ...

14. to cluster g nodes at period p using V2I communication;

15. Wait for the V2V segment exchange tables stored ...

16. at cluster g nodes to be executed during period p;

17. Distribute missing segments to cluster g nodes ...

18. at period p using V2I communication;

19. Update the interests of cluster g consumers at period p ...

20. according to their services feedback;

21. end for

22. end for

32



F
ig
ur
e
3.
2:

C
on

te
nt

di
st
ri
bu

ti
on

pr
oc
ed
ur
e
(O

nl
in
e
op

er
at
io
ns
)

33



3.3 Case Study Assumptions
The mobility data of the public transportation service offered throughout the Region
of Waterloo, Ontario, Canada is used as the case study. This region has an estimated
area of 1, 046 km2 [48] and a transportation service called the Grand River Transit
service. This service uses a fleet of buses as the mode of transportation. The period in
which this case study service takes place is between February 10th, 2017 and April 25th,
2017. Throughout the design of the proposed system, details about the different
operations are given followed by experiments on this case study.

At the beginning, the “Collected” features matrix Fc is generated using the
following case study matrices:

• Ft representing vehicle trips with a total file size of ~ 500 KB and 6, 969 trips,

• Fst representing vehicle stop times with a total file size of ~ 9.5 MB and
252, 622 stop times, and

• Fs representing vehicle stops with a total file size of ~ 160 KB and 2, 522 stops.

The datasets of all of these matrices are available at the “Region of Waterloo” website
at [49]. Notice, however, that the main focus in the adopted case study is on workdays
and therefore these matrices are filtered for these days only.

In the offline operations, the maximum velocity vemax is assumed to
be 115 km/h when detecting data errors. During data synthesis, the map shapes
matrix Fsh, downloaded also from [49], is used with a total file size of ~ 2.5 MB and
75, 322 shape points. Trip trajectories are generated every 10 seconds and therefore
the total number of time steps throughout the day nTday

is given
by 24hours × 60mins × 60 secs/10. However and according to the case study, the
transportation service runs after midnight until 3:00 AM of the next day which
means that the total number of time steps nT is given
by 27hours× 60mins× 60 secs/10.

When deciding on the number of optimal stop nodes nos, the total system nodes
budget nn is assumed to be 500 nodes including both vehicles and stops. According
to the data, the total number of vehicles is 253 buses and
therefore nos = 500 − 253 = 247 stop nodes. This is less than 10% of the total
number of stop nodes provided by the Grand River Transit service which are needed
to be part of the proposed content distribution system.

The broadcasting range rbr used throughout all of the offline operations is
assumed to be 300 meters. Notice that this assumption is quite conservative given
that commonly used V2V communication technologies (e.g. DSRC) support
broadcasting ranges as far as 1000 meters nowadays.

When clustering the nodes, the focus of the adopted case study has been on the
period between 4:00 PM and 6:00 PM which represents the peak in terms of the
total number of active trips. The clustering has been made under the assumption
that cdmin = 20 minutes for the first biggest cluster whereas nhmax has been set to
20 hops.

34



To decide on the maximum number of distributable data segments nmax
as , the

total number of data segments has been varied according to the
vector nas = [50 100 ... 2000] which comprises the different numbers of data
segments experimented. Meanwhile, the ratio ermin has been set such that at
least 90% of the content data is being either distributed initially using V2I
communication or distributed afterwards using V2V communication by the end of
the content distribution period. Notice that the remaining 10% is left for the final
V2I communication used to send any remaining missing content segments.

When optimizing the weights vector ω parametrizing the V2V segment exchange
policy, the weight given to each feature ω[i] is assumed to belong to the
set {−10,−9, ..., 0, ..., 9, 10}∀i. This restriction is made in an attempt to make the
implemented bayesian optimization technique faster.

Throughout bayesian optimization, some initial batch data is generated in which
the total number of points has been set to 100 points. On the other hand, the total
number of bayesian optimization iterations ni has been set to 900 iterations and the
total number of random samples nrnd generated in each one of these iterations has
been set to 1000 samples.

In the online operations, each period p is assumed to last for 2 hours. Therefore,
a total of 11 periods are used given the following starting and ending time indices:

tstart = [tstart1 tstart2 ... tstartnp
]1×np = [5 7 ... 25]hrs× 60mins× 60 secs/10

tend = [tend1 tend2 ... tendnp
]1×np = [7 9 ... 27]hrs× 60mins× 60 secs/10

where:

• tstart is the vector of starting time indices for these periods, and

• tend is the vector of ending time indices for these periods.

35



Chapter 4

Mobility Analysis

4.1 Overview
In this chapter, the offline operations which are related to analyzing the mobility
data of public transportation nodes are discussed. These operations have already
been indicated in Lines 1 to 7 of Algorithm 3.1 discussed previously in Chapter 3.
Some of them are for preprocessing the mobility data and others for processing it.
The preprocessing operations include: data collection, data sorting, data cleaning and
data synthesis. The processing operations include: stop nodes selection optimization,
connectivities computation and nodes clustering. An evaluation of the networking
potential of nodes is made before going into the details of the clustering technique
implemented. This is done by instant-clustering the more challenging and dynamic
nodes (i.e. vehicle nodes) under different minimum degrees of connectivity and again
under different broadcasting ranges. After that, continuous contact durations are
computed for all the system nodes under consideration. Throughout the chapter,
the purpose and mathematical formulations of all operations are explained in details
while leaving their algorithms to Appendix A at the end of the thesis. Moreover,
the case study of the Grand River Transit bus service offered throughout the Region
of Waterloo, Ontario, Canada is used with the assumptions explained previously in
Chapter 3.

4.2 Data Preprocessing

4.2.1 Data Collection

At the beginning, the feature matrices Ft,Fst and Fs are defined according to the
popular GTFS specification as follows where the function (length) outputs the number
of rows of a given matrix:

• Ft is the “Trips” features matrix set to [f t1 f t2 ... f t7]
length(Ft)×7 such as:

– f t1 is the feature vector representing the IDs of the different routes followed
by the vehicles throughout their trips,

36



– f t2 is the feature vector representing the IDs of transportation services where
0 indicates workdays, 1 indicates Saturdays and 2 indicates Sundays,

– f t3 is the feature vector representing the IDs given to vehicle trips,

– f t4 is the feature vector representing the headsigns given to vehicle trips,

– f t5 is the feature vector representing the IDs given to trip directions where
0 indicates one trip direction and 1 indicates the opposing direction,

– f t6 is the feature vector representing the IDs given to each block of successive
trips conducted by the same vehicle. Therefore, each block ID corresponds
to one or more trip IDs, and

– f t7 is the feature vector representing the IDs given to the map shapes
followed by the trip routes. Notice that shapes are expressed using a set
of points.

• Fst is the “Stop Times” features matrix set to [f st1 f st2 ... f st5 ]length(F
st)×5 such as:

– f st1 is the feature vector representing the IDs given to vehicle trips,

– f st2 is the feature vector representing the arrival times of vehicles at the
different stops throughout their trips,

– f st3 is the feature vector representing the departure times of vehicles from
the different stops throughout their trips,

– f st4 is the feature vector representing the IDs given to vehicle stops, and

– f st5 is the feature vector representing the sequence numbers given to stops
indicating the order in which they are visited by the vehicles throughout
their trips.

• and Fs is the “Stops” features matrix set to [f s1 f s2 ... f s6 ]length(F
s)×6 such as:

– f s1 is the feature vector representing the IDs given to stops,

– f s2 is the feature vector representing the codes given to stops which are
typically the same as the stop IDs,

– f s3 is the feature vector representing the names given to stops,

– f s4 is the feature vector representing stop descriptions,

– f s5 is the feature vector representing the latitudes of stop locations, and

– f s6 is the feature vector representing the longitudes of stop locations.

From these matrices, the “Collected” features matrix Fc is generated where
Fc = [f c1 f c2 ... f c12]

length(Fc)×12 such as:

• f c1 is the feature vector representing the IDs given to trip blocks,

• f c2 is the feature vector representing the IDs given to trip routes,

• f c3 is the feature vector representing the IDs given to trip directions,

37



• f c4 is the feature vector representing trip IDs,

• f c5 is the feature vector representing the vehicle arrival times at different stops,

• f c6 is the feature vector representing the vehicle departure times from different
stops,

• f c7 is the feature vector representing stop IDs,

• f c8 is the feature vector representing the sequence numbers given to vehicle stops
throughout trips,

• f c9 is the feature vector representing the latitudes given to shape points,

• f c10 is the feature vector representing the longitudes given to shape points,

• f c11 is the feature vector representing shape IDs, and

• f c12 is the feature vector representing service IDs.

In the adopted case study, workdays are only considered since they have more trips
scheduled and therefore potentially serve more popular content consumers compared
to Saturday and Sunday services. In order to filter these workdays only from the
matrix Fc, the following operation is made:

Fc ← Fc[argfind
i

(f c12[i] = 0), ∗]

where the function (argfind) finds any row index i that results in f c12[i] = 0 which
indicates a workday service. After this filtering, the feature column f c12 is eliminated
by setting it to /O since there is no need for it anymore (i.e. f c12 = /O).

Notice that the matrices Ft, Fst and Fs are all downloaded as datasets from the
“Region of Waterloo” website found at [49] where their lengths are:

length(Ft) = 6969, length(Fst) = 252622 and length(Fs) = 2522

Therefore, the length of matrix Fc has been found to be:

length(Fc) = length(Fst) = 252622

Refer to Algorithm A.1 in Appendix A for further details about this data collection
operation.

4.2.2 Data Sorting

Sorting the data presented by matrix Fc is critical for the upcoming analysis
operations as well as for quick validations. Therefore, the rows of matrix Fc are
sorted first according to the order of its block IDs followed by the order of arrival
times for all the trips within each of these block IDs. This can be done as follows:

Fc ← sort(Fc, [1, 5])

38



where the function (sort) is used to sort the rows of its first matrix argument
according to the order of columns indicated in its second argument where positive
column numbers indicate an ascending order whereas negative numbers indicate
a descending order.

This initial sorting results though in some rows of different same-block trips with
the same arrival time to be sorted in an order that leads to a sudden and unreasonable
change in trip directions. Therefore, these rows are resorted depending on whether
this change of directions is at the beginning or the end of the trip.

These abrupt changes of directions occur whenever the block direction f c3 [i] for
any row index i : i ∈ {2, 3, ..., length(Fc)} does not equal the immediate previous row
block direction f c3 [i− 1] and the immediate next row block direction f c3 [i+ 1]. If this
happens, then the features matrix Fbl of the same block is extracted first as follows:

Fbl = Fc[argfind
j

(f c1 [j] = f c1 [i]), ∗]

where the function (argfind) is used to find the indices of trip rows belonging to
the same block ID f c1 [i] such as i is the current Fc row index. After that, the features
matrix Fbl

st of the same block and the same arrival time is extracted as follows:

Fbl
st = Fbl[argfind

j
(f bl5 [j] = f c5 [i]), ∗]

where the function (argfind) is used to find the indices of same-block trip rows
which have the same arrival time such as i is the current Fc row index. Notice that f bli
is the feature column vector i of Fbl.

The resulting same-block and same-arrival-time features matrix Fbl
st is then sorted

either in an ascending order or in a descending order with respect to the trip direction.
This is depending on whether the abrupt change of directions is taking place at the
beginning or at the end of the trip under consideration and depending on the current
block direction f c3 [i]. The function (sort) is used for this purpose with its second
argument indicating that the trip direction column is used to sort the data and the
order of this sorting.

After resorting the data, the unique rows of the resulting Fc are found using the
function (unique) as follows:

Fc ← unique(Fc)

Refer to Algorithms A.2 and A.3 in Appendix A for further details about this
data sorting operation.

4.2.3 Data Cleaning

In order to clean the data, vehicle velocities are computed first to be used in
detecting errors afterwards. Velocity computations are made whenever we are at the
same block ID such that f c1 [i] = f c1 [i − 1] for any row with index
i : i ∈ {2, 3, ..., length(Fc)}. The distance d is computed first between the (latitude,
longitude) coordinates of the current trip row [f c9 [i] f c10[i]] and the previous trip

39



Figure 4.1: Velocities before and after removing noisy trips

row [f c9 [i − 1] f c10[i − 1]] using the function (distance). Then, the current travel
time Ttravel is computed by subtracting the previous trip row departure time f c6 [i− 1]
from the current trip row arrival time f c5 [i]. Based on these d and Ttravel values, the
current trip row velocity f c12[i] is computed using the formula f c12[i] = d/Ttravel.

Whenever Ttravel = 0, this means that f c12[i] is NaN which indicates an error. In
addition, some velocities might be found to be excessively high, based on this
computation, which also indicates an error. Therefore, data cleaning starts by
visually recognizing those trips with extreme velocities and removing them by
manually setting the trip rows with their trip IDs to /O. Notice that in the context
of the analysis conducted here, the velocity of 115 km/h is set as the maximum
velocity threshold vemax. Figure 4.1 shows the trip velocities before and after
removing these noisy and high velocity trips.

After that, Fc rows with NaN -velocity values are replaced by first identifying the
vector of all block IDs idbl using the formula:

idbl = unique(f c1)

where the function (unique) is used to find the unique column elements. Then,
each features matrix of the same block Fbl is checked if ∃k : f bl12[k] is NaN in order
to replace its NaN -velocity values. This is done by looping around trip rows within
indices 2 and (length(Fbl) − 1) of the same block ID and replacing those NaN -
velocity values whenever (f bl12[j] is NaN) and (f bl12[j + 1] is not NaN) where j is the
current trip row index of Fbl. Each loop iteration is started with the computation of
the current waiting time Twait by subtracting the current row arrival time f bl5 [j] from
the current row departure time f bl6 [j]. After that, the current row velocity NaN -value
is overcome by resetting the current row arrival time f bl5 [j] to be in the middle of the
period between the previous row departure time f bl6 [j − 1] and the next row arrival
time f bl5 [j + 1]. This is done using the formula:

40



f bl5 [j] = f bl6 [j − 1] + (f bl5 [j + 1]− f bl6 [j − 1])/2

This leads to the recomputation of the current departure time f bl6 [j] given Twait as
follows:

f bl6 [j] = min(f bl5 [j] + Twait, f
bl
5 [j + 1])

Such that the current departure time f bl6 [j] does not exceed the next row arrival
time f bl5 [j + 1]. Then, and in order to recompute the current row velocity value f bl12[j]
and replace its NaN -value, the distance d is computed first between the current row
coordinates [f bl9 [j] f bl10[j]] and the previous row coordinates [f bl9 [j − 1] f bl10[j − 1]] using
the formula:

d = distance([f bl9 [j] f bl10[j]], [f
bl
9 [j − 1] f bl10[j − 1]])

After that, Ttravel is computed given the new value of f bl5 [j] and using the formula:

Ttravel = f bl5 [j]− f bl6 [j − 1]

Based on these d and Ttravel values, f bl12[j] is computed as follows: f bl12[j] = d/Ttravel.
However, changing f bl6 [j] means that f bl12[j+1] should be recomputed by first computing
the distance d between the current row coordinates [f bl9 [j] f bl10[j]] and the next row
coordinates [f bl9 [j + 1] f bl10[j + 1]] and also the travel time Ttravel between the current
row departure time and the next row arrival time using the formula:

Ttravel = f bl5 [j + 1]− f bl6 [j]

Based on these d and Ttravel values, f bl12[j + 1] is computed as follows:
f bl12[j + 1] = d/Ttravel if Ttravel 6= 0. If this Ttravel = 0, then going through the loop, as
long as ∃k : f bl12[k] is NaN , will eventually eliminate all velocity NaN -values except
for f bl12[length(f bl12)] at the very last row of Fbl. This can be overcome by
setting f bl12[length(f bl12)] to equal f bl12[length(f bl12) − 1] at the trip row before and then
continue adjusting f bl5 [length(f bl5 )] and f bl6 [length(f bl6 )] accordingly.

Figure 4.2 shows the percentages of velocity NaN -values before and after
replacing the velocity errors. Notice the high percentage of velocity NaN -values
before replacing the errors which results from having same successive arrival times
at different locations. These times are measured only in hours and minutes which
leads them to look mistakenly the same.

In order to replace Fc rows with velocities > vemax, the indices vector of these
rows idhve

rows is first identified as follows:

idhve
rows = argfind

j
(f c12[j] > vemax)

where the function (argfind) is used to identify any trip row index j that satisfies
the condition f c12[j] > vemax. Then and for each index i between 1 and length(idhve

rows),
f c12[j] is set to vemax where j = idhve

rows[i]. Based on this new value of f12c [j], both f c5 [j]
and f c6 [j] are updated accordingly where f c6 [j] can not exceed f c5 [j+ 1]. After that and
given the new value of f c6 [j], f c12[j + 1] is updated accordingly. Figure 4.3 shows the
velocity distribution after replacing these rows with high velocities.

41



Figure 4.2: Percentage of velocity NaN -values before and after replacing errors

Refer to Algorithms A.4 to A.6 in Appendix A for further details about this data
cleaning operation.

Figure 4.3: Velocity distribution

4.2.4 Data Synthesis

The mobility data is synthesized in order to create trip trajectories with regular
and small-enough time intervals. However and before doing so, the matrix Fc is
modified in order to create one feature column for all trip times instead of two separate
feature columns for the arrival and departure times. This modification facilitates the

42



upcoming data synthesis using linear regression between the successive trip times
represented by the newly created feature column. Notice that linear regression is
used here to assume fixed vehicle velocities between successive trip stops.

Given Fc, the “Modified” features matrix Fm is set first as follows:

Fm = [f c1 f c11 f c4 f c5 f c6 f c9 f c10]

After that, trip rows with indices 1 to length(Fm) are added the extra row rowextra

that has the same data as Fm[i, ∗] except for setting fm4 [i] to equal fm5 [i] where i
is the current row index. This addition is done whenever the current row arrival
and departure times are not equal (i.e. fm4 [i] 6= fm5 [i]) and is made by vertically
concatenating rowextra to Fm as follows:

Fm[i+ 1 : length(Fm) + 1, ∗] = (rowextra,F
m[i+ 1 : length(Fm), ∗])

The Fm feature columns fmi for i : i ∈ {1, 2, ..., 7} are therefore defined as follows
given that Fm = [fm1 fm2 ... fm7 ]length(F

m)×7:

• fm1 is the feature vector representing the IDs given to blocks,

• fm2 is the feature vector representing the IDs given to map shapes,

• fm3 is the feature vector representing the IDs given to trips,

• fm4 is the feature vector representing the vehicle arrival times at stops,

• fm5 is the feature vector representing the vehicle departure times from stops,

• fm6 is the feature vector representing the latitudes of stop locations, and

• fm7 is the feature vector representing the longitudes of stop locations.

The departure time feature column fm5 is eliminated by setting it to /O since it is
already now part of fm4 . The final Fm features matrix is therefore defined as follows:

Fm = [fm1 fm2 ... fm6 ]length(F
m)×6

where all feature column vectors are the same except for: fm5 = fm6 and fm6 = fm7 .
Therefore, we now have:

• fm5 as the feature vector representing the latitudes of stop locations, and

• fm6 as the feature vector representing the longitudes of stop locations.

Notice that length(Fm) = 125949 at the end of the computations.
After modifying the data and generating Fm, trips are synthesized while making

sure that the resulting trip trajectories are matching the city map. This data
synthesis produces the trip latitudes trajectory matrix LATStr and the trip
longitudes trajectory matrix LONStr using the “Shapes” features matrix Fsh which
is set to [f sh1 f sh2 ... f sh4 ]length(F

sh)×4 such as:

43



• f sh1 is the feature vector representing the IDs given to map shapes,

• f sh2 is the feature vector representing the latitudes of shape points,

• f sh3 is the feature vector representing the longitudes of shape points, and

• f sh4 is the feature vector representing the sequence numbers of the shape points.

Notice that LATStr[i, t] is the synthetic latitude of trip i at time step t and
LONStr[i, t] is the synthetic longitude of trip i at time step t.

This computation starts by first identifying the vector of all trip IDs idtr using
the formula:

idtr = unique(fm3 )

Then this computation goes through all trip IDs starting with the trip of index 1
to the trip of index length(idtr). The trajectory matrix TRtr of the current trip i is
extracted first with the rows of indices: argfind

j
(fm3 [j] = idtr[i]). The linear regression

model of the trip latitudesMdllat is then fitted using the current trip trajectory arrival
times TRtr[∗, 4] as the input data and the current trip trajectory latitudes TRtr[∗, 5]
as the output data. The linear regression model of the trip longitudes Mdllon is also
fitted using the current trip trajectory arrival times TRtr[∗, 4] as the input data and
the current trip trajectory longitudes TRtr[∗, 6] as the output data.

Using the models Mdllat and Mdllon, the current trip trajectory matrices LATStr

and LONStr are generated. This is done for every t between 0 and nT such that it
satisfies the condition:

min(TRtr[∗, 4]) ≤ t/nTday
≤ max(TRtr[∗, 4])

which indicates that this t is within the active period of the current trip. At
each time step t, the resulting coordinate vector mdlresult is generated using the
models Mdllat and Mdllon as follows:

mdlresult = [Mdllat(t/nTday
) Mdllon(t/nTday

)]

However, mdlresult has not yet matched the map shape of the current trip
trajectory. In order to do this matching, the shape trajectory rows TRsh are first
extracted using Fsh which have the indices: argfind

j
(f sh1 [j] = TRtr[1, 2]) (i.e. have

the same shape ID as that of the current trip trajectory). Then, the vector of all
distances d between the current interpolated coordinate given by mdlresult and all
the coordinates [TRsh[j, 2] TRsh[j, 3]]∀j : j ∈ {1, 2, ..., length(TRsh)} is computed.
This vector d is used to match the city map by finding the shape coordinate that is
closest to the current interpolated trip coordinate mdlresult using the formulas:

LATStr[i, t] = TRsh[argmin
j

(d[j]), 2]

LONStr[i, t] = TRsh[argmin
j

(d[j]), 3]

44



Figure 4.4: Synthetic vs. realistic trip trajectory

where:

• i is the current trip index,

• t is the current time step,

• TRsh[j, 2] is the shape latitude at point j, and

• TRsh[j, 3] is the shape longitude at point j.

These new trip trajectory matrices LATStr and LATStr are now synthesized to have
the required granularity while being matched to the city map. Figure 4.4 shows
the matching between the synthetic and the realistic trajectories of a trip chosen at
random by showing the overlap between them.

In the case study adopted, the matrix Fsh is downloaded as a dataset from the
Grand River Transit website found at [49] with length(Fsh) = 75322. nT is set
to 27hours× 60mins× 60 secs/10 because some trips take place at the ∼ 27th hour
of the day (i.e. ∼ 3:00 AM of the next day). The division by 10 is made given that
10 seconds is the shortest time interval used in the analysis.

Given LATStr and LONStr of all the trips, the latitude trajectories
matrix LATSbl as well as the longitude trajectories matrix LONSbl for all blocks
are generated where each block is composed of one or more trips. These matrices
are synthesized by first identifying the vector of all block IDs idbl using the formula:
idbl = unique(fm1 ) and the vector of all trip IDs idtr using the formula:
idtr = unique(fm3 ). After that, the computation goes over block IDs starting with
the ID of index 1 and ending with the ID of index length(idbl). For each block, the
vector of all trip IDs within the current block ID idbl

tr is identified using the formula:

idbl
tr = unique(Fm[argfind

j
(fm1 [j] = idbl[i]), 3])

45



where trip rows of the same block ID within the current block i have the set
of indices: argfind

j
(fm1 [j] = idbl[i]). The first trip index of the current block trips

idbltr|first as well as the last one idbltr|last are found as follows:

idbltr|first = argfind
j

(idtr[j] = idbl
tr[1])

idbltr|last = argfind
j

(idtr[j] = idbl
tr[length(idbl

tr)])

Given that each block is composed of one trip or more, both LATSbl and LONSbl

can now be computed by summing over their corresponding trip vectors starting with
the first trip of index idbltr|first and ending with the last trip of index idbltr|last as follows:

LATSbl[i, ∗] =
idbltr|last∑

j=idbltr|first
LATStr[j, ∗]

LONSbl[i, ∗] =
idbltr|last∑

j=idbltr|first
LONStr[j, ∗]

where:

• LATSbl[i, ∗] is the latitudes vector of block i for 1 ≤ t ≤ nT , and

• LONSbl[i, ∗] is the longitudes vector of block i for 1 ≤ t ≤ nT .

Both LATSbl and LONSbl still have gaps between their successive trips with zero
values due to stop waiting periods. These inter-trip gaps are overcome for each
block ID in idbl. At first, the modified features matrix Fm

bl of the current block with
ID idbl[i] is extracted using the formula:

Fm
bl = Fm[argfind

j
(fm1 [j] = idbl[i]), ∗]

After that, the block start time tblstart and the block end time tblend are identified as
follows:

tblstart = Fm
bl [1, 4]

tblend = Fm
bl [length(Fm

bl ), 4]

Then, this block is scanned for any gaps between its successive trips for the
whole nT time steps. This is done whenever the normalized time index t/nTday

lies
between tblstart and tblend. The occurrence of a gap is indicated by
having LATSbl[i, t] = 0 where i is the index of the current block and t is the current
time index. If a gap exists, then the number of time steps constituting this
gap nTgap is counted.

46



Given nTgap , the latitudes trajectory matrix of the gap TRlats
gap as well as the

longitudes trajectory matrix of the gap TRlons
gap are formed. This is done using the

corresponding trajectory points immediately before and immediately after the inter-
trip gap under consideration.

Using TRlats
gap and TRlons

gap , linear regression models are fitted to interpolate and
find trajectory points within the gap. These models are the gap linear latitudes
model Mdllat when using TRlats

gap and the gap linear longitudes model Mdllon when
using TRlons

gap . Gap trajectories between t and (t + nTgap) are then found using the
models Mdllat and Mdllon as follows:

LATSbl[i, t : t+ nTgap ] = Mdllat((t : t+ nTgap)/nTday
)

LONSbl[i, t : t+ nTgap ] = Mdllon((t : t+ nTgap)/nTday
)

After filling the gaps, some overlaps still need to be corrected. These overlaps
are of length 1 and they result from the trip trajectory summations made. They are
mainly attributed to the fact that many successive trips of the same block end and
start at the same time (i.e. have no waiting periods). Whenever this occurs, it has
the effect of doubling block trajectory values as a result of adding the corresponding
same trip trajectory values.

In order to overcome these overlaps, the block latitude and longitude trajectories
are mainly divided by 2 whenever their values exceed the most extreme trip latitude
and longitude trajectory values. This is done by first extracting Fm

bl , tblstart and tblend
like how it has been done before. Then, the current block trajectories LATSbl

and LONSbl are scanned to detect the values which exceed the most
extreme LATStr and LONStr values (i.e. max(LATStr) and min(LONStr)) while
being surrounded by normal block trajectory values. This scanning takes place
within the active block period (i.e. tblstart ≤ t/nTday

≤ tblend). Notice that whenever an
extreme LATSbl or LONSbl value is detected, a division by 2 is made as follows:

LATSbl[i, t]← LATSbl[i, t]/2

LONSbl[i, t]← LONSbl[i, t]/2

where i is the current block index and t is the current time index.
Refer to Algorithms A.7 to A.11 in Appendix A for further details about this data
synthesis operation.

4.3 Data Processing

4.3.1 Stop Nodes Selection Optimization

In order to optimize the stop node selections, these selections need to be refined
first using clustering. This is done using the function (cluster) which needs stop
coordinates to be in the cartesian coordinates system. This is done by creating the
“Converted Stops” features matrix Fcs set to [f cs1 f cs2 ... f cs6 ]length(F

cs)×6 such as:

47



Figure 4.5: All stops

• f cs1 is the feature vector representing the IDs given to stops,

• f cs2 is the feature vector representing the latitudes of stop locations
where f cs2 = f s5 ,

• f cs3 is the feature vector representing the longitudes of stop locations
where f cs3 = f s6 ,

• f cs4 is the feature vector representing the converted x-coordinates of stop
locations,

• f cs5 is the feature vector representing the converted y-coordinates of stop
locations, and

• f cs6 is the feature vector representing the converted z-coordinates of stop
locations.

These features are created using the following formulas:

f cs4 = rearth · cos(f cs2 ) · cos(f cs3 )

f cs5 = rearth · cos(f cs2 ) · sin(f cs3 )

f cs6 = rearth · sin(f cs2 )

where rearth is the earth’s radius of 6, 371 km. Notice that the matrix Fcs has
the same length as the matrix Fs (i.e. length(Fcs) = length(Fs) = 2522) in the case
study adopted. Figure 4.5 shows a scatter plot of all of the 2522 stops.

48



However, these 2522 stops are far beyond the budget of nn = 500 nodes assumed
in the adopted case study where nn is the total number of system nodes. This large
set of stops needs to be refined and optimized such that it ends up with only the
optimal set of nos stops. Therefore, nos should satisfy the following:

nos = nn − length(idbl)

where length(idbl) gives the total number of blocks or alternatively vehicles
which are all assumed to be part of the system given the assumption that content
consumers would spend more time in the vehicles compared to stops. Knowing that
253 vehicles are already part of system according to the case study adopted, we
have nos = 500 − 253 = 247 optimal stops which should also be part of the system.
Given nos, stops are refined first using clustering and then they are optimized such
that only nos stops are included in the system.

Stops are refined by clustering them using hierarchical clustering. This is done
using the function (cluster) with the matrix Fcs[∗, 4 : 6] of stop cartesian coordinates
as the input. The complete linkage method is assumed and the cutoff distance is set
to equal the broadcasting range rbr of 300 meters. The resulting vector idsc represents
the vector of cluster IDs for all stops. Computations go through each unique stop
cluster in order to identify its medoid. In each stop cluster, the vector of stop IDs idsci

belonging to the current cluster sci is first extracted using the formula:

idsci = Fcs[argfind
j

(idsc[j] = i), 1]

where the function (argfind) is used to find any index j of a stop that belongs to
the current stop cluster i. The coordinates matrix of these stops COsci is extracted
afterwards as follows:

COsci = Fcs[argfind
j

(idsc[j] = i), 2 : 3]

Then, the distance dsci [j] is computed between the coordinate of each cluster
member COsci [j, ∗] and the cluster coordinates mean found using the
formula:

∑
k

COsci [k, ∗]/length(COsci) using the function (distance). The cluster

member with the smallest dsci [j] (i.e. cluster medoid) is chosen to be the refined
stop representing the current cluster while ignoring the remaining cluster members.
The ID of this refined stop is stored as idrs[i] where idrs is the vector of all refined
stop IDs. At the end, the number of refined stops has been found to be 869 stops
(i.e. length(idrs) = 869).

The main motive behind the aforementioned clustering approach is to refine the
stops such that those which are within rbr of each other are represented using a single
refined stop. This should lead most of these refined stops to act as hubs for inter-
vehicle communications while avoiding merely having stops in direct contact with
each other. Figure 4.6 shows a scatter plot of the resulting 869 refined stops.

After refining the stops, 869 stops are still left which is still larger than the
previously-stated optimal stops target of nos = 247 stops. To optimize these refined

49



Figure 4.6: Refined stops

stop selections, the vector popstops of refined stop popularities is first defined
with length(popstops) = length(idrs). This vector counts the number of times
vehicles pass nearby the refined stops as a measure of their popularities.

In order to determine the values of popstops, the number of times vehicles pass
nearby each refined stop is counted. This is done by iterating through t = 1 : nT for
each block/vehicle and for each t, the coordinates matrix of all active blocks CObl is
extracted if ∃k : LATSbl[k, t] 6= 0. The distances from all of these blocks or vehicles to
the current refined stop coordinates cosi are measured using the function (distance)
after computing cosi using the formula:

cosi = Fs[argfind
j

(f s1 [j] = idrs[i]), 5 : 6]

where the function (argfind) is used to find the index j of matrix Fs corresponding
to the refined stop i. Current refined stop popularity popstops[i] is increased by one
whenever a vehicle passes nearby refined stop i (i.e. be located ≤ rbr from the refined
stop where rbr = 300 meters).

After computing all refined stop popularities, these popularities are sorted in
a descending order using the function (sort). Based on this order, the first nos stops
are chosen as the set of optimal stops with IDs defined by the vector idos.
Figure 4.7 shows the refined stop popularities whereas Figure 4.8 shows a scatter
plot of the resulting 247 optimal stops.

Before being able to proceed with any further processing, the set of optimal stop
coordinates are added to the block latitudes matrix LATSbl and the block longitudes
matrix LONSbl in order to generate the overall latitudes matrix LATS and the
overall longitudes matrix LONS for all the nodes, respectively. These two matrices
of LATS and LONS are needed for the upcoming processing.

Adding the optimal stop coordinates is done such that the first length(idbl) rows

50



Figure 4.7: Refined stop popularities

Figure 4.8: Optimal stops

51



of LATS and LONS matrices are first assigned the data of LATSbl and LONSbl

matrices, respectively. This is followed by assigning the next rows with the latitude
and longitude data of each optimal stop given that stops are immobile and have fixed
coordinates. This is done by using the function (repmat) to generate a row containing
the repeated latitude Fs[argfind

j
(f s1 [j] = idos[i]), 5] and another row containing the

repeated longitude Fs[argfind
j

(f s1 [j] = idos[i]), 6] of each optimal stop i with the

ID idos[i] for nT number of times. Then, these rows are assigned to the next nos rows
of matrices LATS and LONS.

Refer to Algorithms A.12 to A.15 in Appendix A for further details about this
optimization operation of stop nodes selection.

4.3.2 Connectivities Computation

In order to proceed with data processing, connectivities between system nodes need
to be detected whenever they occur. This is done by setting first the connectivities
matrix C to the zero matrix of size (nT × nn × nn) as follows:

C = 0nT×nn×nn

After that, pair-wise distances between all nn nodes are computed over t = 1 : nT

whenever these nodes are active using the function (distance) where a node i at
time index t is active if LATS[i, t] 6= 0. A connectivity between nodes i and j
at time index t occurs such that C[t, i, j] = 1 whenever the distance d between
these two nodes is less than or equal to the broadcasting range rbr (i.e. d ≤ rbr).
Notice that C[t, i, j] = C[t, j, i] due to the connectivities matrix C symmetry and
that rbr = 300 meters as assumed in the adopted case study.

The final outcome is the connectivities matrix C such as C[t, i, j] = 1 if nodes i
and j are within rbr of each other at time t and C[t, i, j] = 0, otherwise. Figure 4.9
shows a snapshot of the resulting node connectivities at 5:00 PM. This snapshot zooms
into the downtown area of Kitchener, Ontario, Canada which is served by the Grand
River Transit service addressed in the case study adopted. Notice that green circles
represent vehicles, blue circles represent stops and red lines indicate connectivities
whenever they occur between the system nodes.

Refer to Algorithm A.16 in Appendix A for further details about this connectivities
computation operation.

4.3.3 Networking Potential Evaluation

Before clustering system nodes in the next subsection, the networking potential of
these nodes needs to be evaluated. This is achieved by conducting the following steps
which are included for the sake of completeness only and are not part of the proposed
content distribution procedure:

• Instant-clustering the vehicles under different minimum degrees of connectivity,

52



Figure 4.9: Connectivities at 5:00 PM

• Instant-clustering the vehicles under different broadcasting ranges, and

• Computing continuous contact durations.

Instant-clustering in the first two steps has been discussed in my previous work
presented in [50]. It differs from the clustering discussed in the next subsection in
that it seeks to discover node clusters at certain instants only which are the
24 hours of the day. It does not identify nodes which should be grouped together for
a continuous period of time such that content is routed efficiently to them. It is only
used to give some insights into the promise of nodes clustering throughout the day
with a focus on the more challenging and dynamic vehicle nodes. Such insights allow
for better evaluation of the V2V networking potential between system vehicle nodes.

The method of instant-clustering used is hierarchical clustering. This clustering
technique is chosen for the first step because it allows for variations in the minimum
degree of connectivity by adjusting the linkage method between the two extreme
methods of single linkage and complete linkage. Notice that the single linkage
method corresponds to less communication reliability where each vehicle has at least
one connection with another same-cluster vehicle member. On the other hand, the
complete linkage method corresponds to more communication reliability where each
vehicle is completely linked to all the other same-cluster vehicle members which
might be needed under harsh channel conditions.

Hierarchical clustering is chosen for the second step because it allows for variations
in the broadcasting range by adjusting the cutoff distance between the two extreme
values of 300 meters and 1000 meters as set by the DSRC standard.

Throughout the aforementioned instant-clustering steps, the following two
indicators are used:

• number of clusters; which corresponds to the number of cluster head nodes

53



such that having less of these nodes increases the chances of having congestions.
However, it does also mean less reliance on other network tiers if these cluster
head nodes were to act as gateways,

• and cluster size distributions; which shows cluster size distributions using
boxplots such that having cluster sizes with larger means or more vehicle
nodes increases the chances of congestions at cluster head nodes. Moreover,
having cluster sizes with larger inter-quartile ranges means less fairness since
some node clusters will have more vehicle nodes and therefore a higher chance
of experiencing congestions and a longer time for messages to reach all cluster
vehicle nodes.

In the third step mentioned above, continuous contact durations are computed under
the more challenging and dynamic scenario of vehicle nodes only and then under
the scenario of the case study adopted using all the nn = 500 nodes including the
253 vehicles and the 247 stops. Such contact durations have a direct impact on the
networking potential of the proposed system as longer continuous contact durations
correspond to a higher chance of successful V2V communication. Notice that the only
indicator used in this third step is the contact durations distribution.

Instant-clustering of Vehicles Under
Different Minimum Degrees of Connectivity

Assuming the broadcasting range of 1000 meters, the minimum degree of connectivity
is varied between same-cluster vehicles using hierarchical clustering by varying the
linkage method from single to complete.

As it can be seen in Figure 4.10, the resulting number of vehicle clusters is much
lower than the number of vehicles. Moreover, many vehicle nodes are part of a cluster
that has more than one node as indicated by the boxplots shown in Figures 4.11a
and 4.11b. In particular, the single linkage method has led to: fewer clusters, bigger
cluster sizes and larger cluster size inter-quartile ranges. This means fewer cluster
heads, less reliance on other network tiers, more cluster head congestions, more time
for messages to reach all cluster nodes and less fairness. This is in addition to less
channel redundancy and therefore reliability. On the other hand, the complete linkage
method has led to: more clusters, smaller cluster sizes and smaller cluster size inter-
quartile ranges. This means more cluster heads, more reliance on other network tiers,
fewer cluster head congestions, less time for messages to reach all cluster nodes and
more fairness. This is in addition to more channel redundancy/reliability.

Instant-clustering of Vehicles Under
Different Broadcasting Ranges

Assuming the average linkage method, the broadcasting range is varied using
hierarchical clustering by adjusting the cutoff distance from 300 to 1000 meters.
The number of clusters throughout the day under the two broadcasting ranges is

54



Figure 4.10: Number of clusters vs. time under different linkage methods

(a) Single linkage (b) Complete linkage

Figure 4.11: Cluster size distribution vs. time
under different linkage methods

55



Figure 4.12: Number of clusters vs. time
under different broadcasting ranges

shown in Figure 4.12 whereas the cluster size distributions under both ranges are
shown in Figures 4.13a and 4.13b.

On one hand, the 300 meter broadcasting range has led to: more clusters, smaller
cluster sizes and smaller cluster size inter-quartile ranges. This means more cluster
heads, more reliance on other network tiers, fewer cluster head congestions, more
fairness and a lower V2V communication probability.

On the other hand, the 1000 meter broadcasting range has led to: fewer clusters,
larger cluster sizes and larger cluster size inter-quartile ranges. This means fewer
cluster heads, less reliance on other network tiers, more cluster head congestions, less
fairness and a higher V2V communication probability.

In general, the resulting number of vehicle clusters is much lower than the number
of vehicles. Moreover, many vehicles are part of a cluster that has more than one
node as indicated by the boxplots shown in Figures 4.13a and 4.13b.

Continuous-contact Duration Computations

At the beginning, continuous contact durations are computed for the more
challenging and dynamic scenario of vehicle nodes only. In this scenario, continuous
contact durations throughout the day are computed and their distributions are
drawn under the two broadcasting ranges of 300 and 1000 meters as shown in
Figures 4.14a and 4.14b, respectively. As it can be seen, the vehicle contact duration
has a mean as high as 1.38 minutes under the 300 meter broadcasting range and an
even higher mean of 3.89 minutes under the 1000 meter broadcasting range.

Given these promising duration results, continuous contact durations are
computed for the case study adopted with a total of nn = 500 nodes including
253 vehicle nodes and 247 stop nodes. These durations are computed under the

56



(a) 300 m-range (b) 1000 m-range

Figure 4.13: Cluster size distribution vs. time under different broadcasting ranges

(a) 300 m-range (b) 1000 m-range

Figure 4.14: Daily continuous contact duration distribution of vehicles

57



different np periods where CD{p} is the matrix of continuous contact durations in
period p. These computations are made given the connectivities matrix C produced
previously. Notice that in the case study adopted, the number of periods np is
11 periods where each period p lasts for 2 hours. The starting time indices of these
periods are defined using the vector tstart whereas the ending time indices are
defined using the vector tend such as:

tstart = [tstart1 tstart2 ... tstartnp
]1×np = [5 7 ... 25]hrs× 60mins× 60 secs/10

tend = [tend1 tend2 ... tendnp
]1×np = [7 9 ... 27]hrs× 60mins× 60 secs/10

The division by 10 is made given that 10 seconds is the shortest time interval assumed
in the case study under consideration.

Continuous contact duration computations proceed through periods 1 to np such
that for each period p, CD{p} is set initially to /O. Then, these computations go
through nodes 1 to nn starting with cd = 01×nn for each node where cd is the vector
of continuous contact duration counters. These counters are increased by the contact
duration step size 4cd (i.e. cd[j] ← cd[j] + 4cd) whenever there is a neighboring
node j such that C[t, i, j] = 1 within the period indices tstart[p] : tend[p] where p is the
current period index. Notice that 4cd is set to 10 seconds in the case study adopted.
Notice also that whenever C[t, i, j] = 0, then the neighboring node j has either never
started being in contact with node i or lost its continuous contact with node i given
that t 6= tstart[p] and the fact that it used to be in contact at the previous time step
(i.e. C[t − 1, i, j] = 1). Given the latter case, the current contact duration cd[j]
is added to the matrix of continuous contact durations CD{p} while resetting it
to 0 afterwards. This way, these computations end up with the set of matrices of
continuous contact durations CD{1 : np} for all periods 1 : np.

Figure 4.15a shows the distribution of continuous contact durations throughout
the whole workday. As it can be seen, the majority of these durations is less than
3 minutes. Figure 4.15b shows the same kind of distribution but for each period of the
day separately. It can be seen that periodical distributions are quite similar with the
vast majority of durations have lengths below 5 minutes. However, periods between
7:00 AM and 9:00 PM tend to have slightly longer durations. This can be seen more
easily in the boxplots of Figure 4.15c. On the other hand, Figure 4.15d shows the
first, the second and the third quartiles of these boxplot distributions. The average
is almost always about 1.5 minutes for all of these periodical distributions.

These promising continuous contact durations show clearly the networking
potential of public transportation vehicles and stops and have encouraged me to
continue investigating contact durations while tolerating discontinuous ones this
time. Exploiting long discontinuous contact durations by cumulating them and
grouping or clustering the corresponding nodes allows for a more efficient content
routing given the delay-tolerant nature of popular content distribution as we shall
see. Therefore, the next subsection addresses nodes clustering under cumulative
contact duration thresholds.

Refer to Algorithm A.17 in Appendix A for further details about this continuous-
contact duration computations operation.

58



(a) Daily distribution (b) Distribution vs. day period

(c) Distribution boxplot vs. day period (d) Distribution quartiles vs. day period

Figure 4.15: Continuous contact durations

59



4.3.4 Nodes Clustering

Given the promising continuous contact duration results found in the previous
subsection, nodes clustering is addressed in this subsection to identify the different
node groups to be targeted for content routing as will be presented in Chapter 6.
A clustering technique is discussed in this regard which relies on the concept of
a minimum cumulative contact duration threshold. This threshold is defined as the
minimum cumulative contact duration which a node should have with at least
another cluster node to be considered within the same cluster.

This clustering technique is part of the offline operations made throughout the
proposed content distribution procedure. It is based on finding the biggest nodes
cluster under a certain cdmin value and then removing its node connectivities from
the connectivities matrix C before proceeding to the next biggest nodes cluster under
another cdmin value within the same period p. This approach can lead to all system
nodes being clustered under different cdmin values. The focus on biggest clusters is
made here given the fact that these node clusters have the highest potential in terms
of the amount of content that can be distributed.

In order to proceed with the explanation of this clustering approach, the
function (extractCluster) is explained first. This function extracts the cth biggest
nodes cluster in terms of its members during period p. It is used to extract the first
biggest cluster with c = 1 as well as extracting the next biggest clusters after
removing the connectivities of the previous biggest node clusters.

Given a particular period p that starts at tstart and ends at tend, the
function (extractCluster) starts by scanning nodes 1 to nn in order to compute the
vector of instantaneous connectivity summations cp each node i has with its
neighbors throughout period p starting at tstart[p] and ending at tend[p]. This is
done using the formula:

cp =
tend[p]∑

t=tstart[p]

C[t, i, ∗]

where C is the connectivities matrix found previously. Given cp, the matrix of
node cluster i member indices IDprvs

nc {i} is found as follows:

IDprvs
nc {i} = argfind

j
(cp[j]×4cd ≥ cdmin)

where the function (argfind) is used to find the index j of any node cluster i
member that satisfies the condition:

cp[j]×4cd ≥ cdmin

Notice that IDprvs
nc {i} accounts only for those first-hop neighbors of node i which

meet the cumulative contact duration threshold cdmin. This means that the
neighbors of those neighbors (i.e. second-hop neighbors of node i), which do also
meet the cdmin condition, are not included in IDprvs

nc which should not be the case.
In order to overcome this and include any node satisfying the cdmin condition while
being at maximum nhmax loop-free hops away from node i, the

60



function (extractCluster) creates first the set of matrices IDnxt
nc such

that IDnxt
nc = IDprvs

nc . These IDnxt
nc -matrices are used to store the next-iteration

member indices of all node clusters compared to the set of matrices IDprvs
nc which is

used to store the previous-iteration member indices of all node clusters. These two
sets are essential for the multi-hop neighbor inclusion iterations of
function (extractCluster) in which the previous-iteration set of node
neighbors IDprvs

nc {i} are scanned to include their neighbors to be part of the
next-iteration set of node neighbors IDnxt

nc {i} as follows:

IDnxt
nc {i} ← IDnxt

nc {i} ∪ IDprvs
nc {IDprvs

nc {i}[j]}

where j is the current neighbor index of node i according to IDprvs
nc {i}. This

continues at the current hop index h until all nodes with index i : i ∈ {1, 2, ..., nn} are
included. By then, the function (extractCluster) moves to the next iteration after
setting IDprvs

nc to equal IDnxt
nc .

By the end of these iterations, function (extractCluster) will have all the
multi-hop neighbors for all nn nodes such that they are less than nhmax loop-free
hops away from their corresponding nodes. These neighbors do also meet the cdmin

condition which means that all of them have spent at least a duration of cdmin with
at least one of node i’s neighbors included in the set IDnxt

nc . Figure 4.16 shows the
sequence diagram throughout period p of a representative nodes clustering scenario
with 5 nodes, nhmax = 4 hops and the duration of (2 × cdmin) as the minimum
cumulative contact duration.

Function (extractCluster) proceeds with identifying the vector of node cluster
indices idnc in addition to the matrix of member indices for each node cluster IDnc

within period p. This is in order to compute the node cluster sizes as given by the
vector sizesnc using the formula:

sizesnc[i] = length(IDnc{i})

where i is the node cluster index. This enables the identification of the member
node indices of the biggest node cluster IDb

nc{c} within period p as follows:

IDb
nc{c} = IDnc{argmax

i
(sizesnc[i])}

where the function (argmax) is used to find the index i that gives the biggest
nodes cluster size.

After the first biggest cluster, extractions proceed with the next biggest clusters.
This is done by going over the vector cdmin of minimum cumulative contact duration
thresholds used for each biggest cluster. The total number of time steps nTperiod

is
computed first within the period under consideration given tstart and tend as follows:

nTperiod
= tend − tstart + 1

then, the connectivities of all node members belonging to the previous biggest
cluster with index c are removed by setting them to the corresponding zero matrix.
This is done for all nTperiod

time steps as follows:

61



F
ig
ur
e
4.
16

:
R
ep
re
se
nt
at
iv
e
no

de
s
cl
us
te
ri
ng

sc
en
ar
io

62



C[t, IDb
nc{c}, ∗] = 0length(IDb

nc{c})×nn

C[t, ∗, IDb
nc{c}] = 0nn×length(IDb

nc{c})

where C is the connectivities matrix, t is the period time index, the
matrix IDb

nc{c} is for the member IDs of the previous cth biggest nodes cluster
and nn is the total number of nodes. This update of the matrix C in done before
proceeding with the extraction of the next biggest cluster of index (c + 1) using the
function (extractCluster). Notice that each extraction produces the
matrix IDb

nc{c} of the current cth biggest nodes cluster being extracted.
After going over all the biggest cluster extractions at period p, the matrix IDnc{p}

of cluster member IDs of the different biggest clusters at period p will be found:

IDnc{p} = IDb
nc

This clustering technique continues for all periods 1 to np according to the
corresponding vector cdmin of cumulative contact duration thresholds for each of
these periods. This vector cdmin should always be specified by the designer in a way
that leaves no nodes unclustered. Notice that all of the matrices IDnc{1 : np} will
be inquired throughout the content distribution procedure before content routing as
will be presented in Chapter 6.

Figure 4.17a shows the resulting number of clusters throughout the day periods
under the fixed cdmin values of 5, 15 and 30 minutes throughout the biggest clusters
extracted throughout the periods where nhmax is always set to 20 hops. It can be seen
that the number of clusters increases as cdmin increases while decreasing the most
during busy periods of the day. On the other hand, Figure 4.17b shows the number
of unclustered nodes under the same set of cdmin and nhmax values. It can be seen
here that this number increases as cdmin increases while decreasing the most during
busy periods of the day.

Figures 4.17c and 4.17d show the cluster size means and maxima throughout the
day periods, respectively. It can be seen in these figures that the cluster size mean
as well as the maximum increases as the value of cdmin decreases with highest size
means and maxima during busy periods of the day.

All of these results are attributed to the fact that increasing cdmin makes it harder
for node clusters to grow and therefore results in decreasing the cluster sizes, their
means and maxima. In addition, the number of clusters increases while the number
of unclustered nodes gets higher. Notice that these cluster trends become even more
evident during busy day periods when more vehicles are in the streets with higher
densities.

Figures 4.18a and 4.18b confirm this interpretation by showing a snapshot of the
node clusters at the most busy hour of the day (i.e. 5:00 PM) under the cdmin values
of: 5 and 30 minutes, respectively where yellow circles represent unclustered system
nodes and other-color circles represent the different node clusters.

Given the aforementioned clustering results, it is clear that having a fixed cdmin

for all the clusters within the same period is not always the right thing to do. This
is due to the fact that large numbers of nodes are left unclustered. It is also less

63



(a) No. of clusters vs. day period (b) No. of unclustered nodes vs. day period

(c) Cluster size mean vs. day period (d) Cluster size maximum vs. day period

Figure 4.17: Nodes clustering

(a) cdmin = 5 minutes (b) cdmin = 30 minutes

Figure 4.18: Clustering under different cdmin thresholds

64



flexible because it forces the designer to choose between either a cdmin value that
results in a high number of clusters, a high number of unclustered nodes and small
cluster sizes or another cdmin value that results in the opposite situation. Therefore,
the vector cdmin should always be specified by the designer in a way that leaves no
nodes unclustered.

Refer to Algorithms A.18 and A.19 in Appendix A for further details about this
nodes clustering operation.

4.4 Summary
In this chapter, offline operations related to mobility analysis have been explained in
details. These operations have been categorized into: preprocessing and processing
operations. The preprocessing operations include: data collection, data sorting,
data cleaning and data synthesis whereas the processing operations include: stop
nodes selection optimization, connectivities computation and nodes clustering.
Other operations related to evaluating the networking potential of public
transportation vehicles and stops have also been discussed for the sake of
completeness but are not part of the proposed content distribution procedure as
indicated throughout the chapter. The outcome of the most recent operation
discussed, which is the clustering of system nodes, is the most essential for the
upcoming content recommendation and routing discussions to be presented in
Chapters 5 and 6, respectively.

65



Chapter 5

Content Recommender Design

5.1 Overview
Designing a recommender that performs well under different consumer interest and
network capacity scenarios is critical for the overall performance of the proposed
content distribution system. It allows for efficient interactions with the consumers
by exploring their interests in as fewer interactions as possible while prioritizing
distributed services content according to the true service popularities among
consumers. Therefore, this chapter shows the different steps followed in order to
design such a recommender. Notice that the recommendation operations have
already been indicated in Lines 3 to 6 and Lines 19 to 20 as part of the online
operations shown in Algorithm 3.2. Also notice that the results of this chapter are
generic and are not restricted to any specific case study. Finally, notice that the
performance of recommender designs discussed in this chapter does not depend on
the absolute consumer locations at the different nn system nodes assuming that
proper clustering of the consumer nodes is already provided. In fact, the IDs of
cluster nodes in which those consumers are located at throughout the different np

periods have already been provided throughout the nodes clustering operation
discussed previously in Chapter 4.

This chapter starts with synthesizing the matrix INTtrue of true consumer
interests and the matrix INTavail of available consumer interests. INTtrue is
considered to be the ground truth when it comes to consumer interests whereas
INTavail is a varying matrix over time depending on the recommender being used.
These two matrices are synthesized given the fact that finding realistic ones which
correspond exactly to the adopted case study is extremely difficult, if not
impossible, considering the privacy regulations associated with such information. In
addition, these two matrices are necessary to evaluate the different recommender
designs. Therefore, these two matrices are synthesized for a total number of nc

consumers clustered into ng groups and a total number of ns services.
Given the matrices INTtrue and INTavail, the design steps followed to come up

with the proposed recommender are discussed. These steps start with the most
basic recommender and gradually enhance it. Therefore, different recommenders are

66



created which can be classified into the following four main categories:

• Non–interactive, non-collaborative and non-group-based category,

• Interactive, non-collaborative and non-group-based category,

• Interactive, collaborative and non-group-based category, and

• Interactive, collaborative and group-based category.

Each interactive category has different AI-based techniques implemented based on
multi-armed bandits. These techniques decide the nature of consumer interactions
and they include: the Greedy search technique, the ε-greedy search technique, the
Decaying ε-greedy search technique and the UPB search technique. For collaborative
categories, recommenders implemented filter services based on collaborating consumer
interest profiles. For group-based categories, location-based groups of consumers are
taken into account.

Throughout the chapter, the purpose and mathematical formulations of all of
these recommenders and their functions are explained in details while leaving their
algorithms to Appendix B at the end of the thesis.

All of these recommenders are compared in terms of their performance against
time which is set to end at nTrcmnd

. This nTrcmnd
represents the number of time

intervals in which these recommenders operate. These intervals represent the day
periods which do not need to be successive and can represent the same period of the
day but at different days.

The performance indicators used to evaluate the recommenders are the ratio of
consumer interests explored and the ratio of truly popular service content distributed.
These two indicators give insights about the exploration and exploitation aspects of
the different recommenders, respectively.

The comparisons between the different recommenders are made under different
consumer interest and network scenarios. In particular, the comparisons are made
under varying unknown interest ratios, varying group interest distributions and
varying network capacities.

The unknown interests ratio is denoted by ratioui and it measures the ratio of
unknown consumer interests in the INTavail matrix at the first time step. The group
interests distribution is parameterized using its standard deviation denoted by σg

i .
The network capacity is denoted by capnet and it measures the maximum number of
services which can be distributed at each time step.

By the end of the chapter, the best recommender is chosen given the extensive
experiments conducted under the different consumer interest and network capacity
scenarios. This recommender is the UPB collaborative and group-based recommender
and is used as part of the online operations made by the proposed content distribution
procedure as explained previously in Chapter 3.

67



5.2 Consumer Interest Profiles Synthesis
The true consumer interests matrix INTtrue is synthesized such as INTtrue[i, j] = 1
if consumer i is truly interested in service j and INTtrue[i, j] = 0, otherwise. All of
the (nc × ns) values of this matrix are initially set to zero. Then, consumer interest
values of all ng groups are generated. For each group, the first things to do are
identifying the first group consumer index idfc , the last group consumer index idlc, the
first group service index idfs and the last group service index idls as follows:

idfc = nc/ng × (g − 1) + 1

idlc = nc/ng × g

idfs = ns/ng × (g − 1) + 1

idls = ns/ng × g

where g is the current consumer group index. Then, the vector idINTtrue is
synthesized such that it represents the indices of true interests with value 1 for each
group consumer. This vector is produced using the rounded values of
function (normrnd) which generates the aforementioned indices given the normal
distribution of mean ‖ (idfs + idls)/2 ‖ and standard deviation σg

i . The length of this
vector is ns/ng and it satisfies the following:

1 ≤ idINTtrue [i] ≤ ns∀i : i ∈ {1, 2, ..., ns/ng}

given that:

idINTtrue [argfind
i

(idINTtrue [i] < 1)] = /O

idINTtrue [argfind
i

(idINTtrue [i] > ns)] = /O

where the function (argfind) is used to find any index i that results
in idINTtrue [i] < 1 or idINTtrue [i] > ns. With idINTtrue , the interests of value 1 in
vector INTtrue[j, ∗] are identified and assigned the value 1 using the formula:

INTtrue[j, idINTtrue ] = 11×length(idINTtrue )

where j is the current group consumer index.
In order to make sure that at least one service is truly liked by each consumer,

all nc consumers are scanned and whenever a consumer i has no liked service
(i.e. ∀j, INTtrue[i, j] = 0), the value 1 is assigned to a true service interest chosen at
random using the function (randi) as follows:

INTtrue[i, randi(bi/(nc

ng
)c × (ns

ng
) + 1, (bi/(nc

ng
)c+ 1)× (ns

ng
))] = 1

68



(a) Interests matrix (b) Group interest distributions

Figure 5.1: True consumer interests with σg
i = 2

where the function (randi) is used to generate a random integer
between (bi/(nc

ng
)c × (ns

ng
) + 1) and ((bi/(nc

ng
)c + 1) × (ns

ng
)) representing the service

chosen at random for consumer i to be truly liked.
Figure 5.1a shows the heat map of the true consumer interests matrix INTtrue

produced given that: nc = 100 consumers, ng = 2 groups, ns = 20 services
and σg

i = ns/10 = 2. Figure 5.1b shows the corresponding consumer interest
distributions for the 2 consumer groups in blue and yellow colors.

On the other hand, Figure 5.2a shows the heat map of the true consumer
interests matrix INTtrue produced given that: nc = 100 consumers, ng = 2 groups,
ns = 20 services and σg

i = ns/2 = 10. Figure 5.2b shows the corresponding
consumer interest distributions for the 2 consumer groups.

Notice that the consumer true interests under σg
i = 2 have narrow distributions

across the 20 services which makes the 2 groups more distinct in terms of the set of
popular services within each group. In contrary, the consumer true interests
under σg

i = 10 have wide distributions across the 20 services which makes the
2 groups almost indistinguishable in terms of the set of popular services within each
group.

Given INTtrue, another matrix is synthesized such that it shows only those true
interests which are currently available. This matrix is called the available consumer
interests matrix INTavail and it is the matrix that would be used by the different
recommenders. Notice that INTavail[i, j] = 1 whenever consumer i is currently known
to be interested in service j and INTavail[i, j] = 0, otherwise.

To generate INTavail, INTavail is first set to equal INTtrue. Then, all nc

consumers and all of their ns services are scanned in order to set INTavail[i, j] to
be NaN whenever the following condition is met:

randn ≤ ratioui

where i is the consumer index, j is the service index, randn is a function generating
a uniformly random number ∈ [0, 1] and ratioui is the ratio of unknown interests such

69



(a) Interests matrix (b) Group interest distributions

Figure 5.2: True consumer interests with σg
i = 10

that ratioui ∈ [0, 1]. The result is having the matrix INTavail with the fraction ratioui
of its values set to NaN ; i.e. their true interest values are currently not available or
alternatively “hidden”.

After generating the matrix INTavail, we need to ensure that currently at least
one service for each consumer is known to be liked. This is necessary given the fact
that consumers would not participate in the service initially if they have absolutely
no liked service at the beginning.

In order to do so, all ns services of each of the nc consumers are scanned to find
the first service j for each consumer i which satisfies the following:

(INTavail[i, j] is NaN) ∧ (INTtrue[i, j] = 1)

whenever the following applies:

∀k : INTavail[i, k] is not NaN, INTavail[i, k] = 0

This means that the true interest in service j by consumer i is currently unknown
while being actually positive (i.e. INTtrue[i, j] = 1). This also means that consumer i
has no interest in any service k as of now. When these two conditions are met, the
true interest of consumer i in service j is revealed as follows:

INTavail[i, j] = INTtrue[i, j]

This is followed by moving to the next consumer. This way, one service of interest
for each consumer is at least generated as of the first time step.

Figures 5.3a and 5.3b show the produced available consumer interests
matrices INTavail under ratioui = 0.1 and ratioui = 0.9, respectively. In both
figures, the standard deviation of the consumer interests distribution is given
by σg

i = 2. Figures 5.3c and 5.3d also show the available consumer interests
matrices INTavail under ratioui = 0.1 and ratioui = 0.9, respectively. However, the

70



(a) σg
i = 2 and ratioui = 0.1 (b) σg

i = 2 and ratioui = 0.9

(c) σg
i = 10 and ratioui = 0.1 (d) σg

i = 10 and ratioui = 0.9

Figure 5.3: Different available consumer interest scenarios

standard deviation of the consumer interests distribution is given by σg
i = 10 for

both figures this time.
Refer to Algorithms B.1 to B.4 in Appendix B for further details about this

operation of consumer interest profiles synthesis.

5.3 Recommender Designs
In order to design the proposed content recommender, a gradual approach is followed
starting with the most basic recommender and then enhancing it gradually. This
approach proceeds with the following four recommender categories with the first being
the most basic:

• Non–interactive, non-collaborative and non-group-based category,

• Interactive, non-collaborative and non-group-based category,

71



• Interactive, collaborative and non-group-based category, and

• Interactive, collaborative and group-based category.

The mathematical formulations of each recommender within each one these categories
are discussed in this section. Further details about the recommenders discussed and
their functions can be found in Algorithms B.5 to B.19 in Appendix B at the end
of the thesis. In the next section, these recommenders are experimented under the
different consumer and network scenarios in order to choose one for the proposed
system.

5.3.1 Category 1 Recommender

In this category, one recommender is discussed representing the non-interactive,
non-collaborative and non-group-based recommender. It is non-interactive because
there are no interactions between it and the consumers in terms of receiving their
feedback on the set of distributed services. It is non-collaborative since there are no
collaborations between the consumers based on their interest-profile similarities
when making service recommendations. It is also non-group-based since all
consumers receive the same set of distributed services with no differentiations
between them based on the geographical locations of their groups.

From t = 1 until the end of the experiment time nTrcmnd
, the

popularity popavail
services[s] is computed for each service s of the ns services by

summing over all the available consumer interests in that service as follows:

popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s]

where i is the consumer index. Based on the resulting vector popavail
services, service

popularities are sorted in a descending order using the function (sort) to get the
vector of the most popular service indices idmps as follows:

[∼, idmps] = sort(popavail
services,−1)

Then, the first capnet services are chosen from idmps to be distributed as follows:

idds = idmps[1 : capnet]

where idds is the vector of distributed service indices.

5.3.2 Category 2 Recommenders

In what follows, the set of category 2 interactive recommenders are introduced. These
recommenders differ in their way of interacting with the consumers while being all
non-collaborative and non-group-based.

Starting with the Greedy recommender; which is identical to the previous
category 1 recommender except for the consumer interactions taking place. These
interactions represent simply the fact that all nc consumers reveal their true
interests in feedback to the services being distributed in each time step t as follows:

72



INTavail[i, idds] = INTtrue[i, idds]

where i is the consumer index and idds is the vector of distributed service indices.
In the ε-greedy recommender, the service popularities vector popavail

services is
computed and sorted in order to produce the vector of the most popular service
indices idmps. However, the distributed services are not all chosen greedily this time.
Alternatively, only the first bcapnet × (1 − ε)c most popular service indices are
chosen greedily as follows:

idds = idmps[1 : bcapnet × (1− ε)c]

where capnet is the network capacity and ε = ratioui is the probability of random
exploration. The remaining (capnet − bcapnet × (1− ε)c) service indices are chosen at
random within the vector idmps between the values (bcapnet × (1 − ε)c + 1) and ns

using the function (randi). The vector of these remaining service indices is then
concatenated to the vector idds as follows:

idds ← [idds...
idmps(randi((bcapnet × (1− ε)c+ 1, ns), 1, capnet − bcapnet × (1− ε)c))]

This final set of services represented by idds is ultimately distributed after which
all nc consumers send their feedback by revealing their true interests towards these
services as follows:

INTavail[i, idds] = INTtrue[i, idds]

where i is the consumer index.
Proceeding with the Decaying ε-greedy recommender which is identical to the ε-

greedy recommender except for the fact that the probability of random exploration ε
is decaying over time. The value of ε is decided at each time step t as follows:

ε = 1− length(argfind
(i,s)

(INTavail[i, s] is not NaN))/(nc × ns)

where INTavail[i, s] is the available interest of consumer i in service s and the
function (argfind) is used to find all pair of indices (i, s) in which the interest of
consumer i given service s is currently known. The length of indices produced by
the function (argfind) is then normalized by the number of all ns service interests
of all nc consumers. This normalized ratio represents the fraction of interests known
as of the current time step t. The intuition here is to have ε that decays as more
true consumer interests are revealed. This means that less exploration would take
place as the recommender receives more feedback from the consumers about their
true interests and time progresses.

Finally, the UPB recommender starts by computing the vector of service
popularities popavail

services for all ns services by summing over all the available
consumer interests for each service s like before. Based on popavail

services , UPBs are
computed for all ns services as follows:

uavail[s] = popavail
services[s] + length(argfind

i
(INTavail[i, s] is NaN))

73



where uavail is the vector of UPBs for all ns services given the available
consumer interests and the function (argfind) is used to find any consumer index i
such that INTavail[i, s] is not known given the service index s. The length of the
vector resulting from this (argfind) function represents the maximum number of
consumers which can like service s in addition to the consumers already known to
like service s. Therefore, adding this length to the popularity popavail

services[s] of
a certain service s results in the maximum popularity that service s can currently
have which is uavail[s]. Based on uavail, the UPB recommender proceeds by first
sorting the services in a descending order in terms of their UPBs using the
function (sort) as follows:

[∼, idmps] = sort(uavail,−1)

The resulting vector of most popular service indices idmps is then used to choose
the distributed service indices idds using the following formula:

idds = idmps[1 : capnet]

which means choosing the first capnet services, estimated to be the most popular,
for distribution followed by the consumer interactions.

5.3.3 Category 3 Recommenders

Before introducing category 3 recommenders, which are all interactive, collaborative
but non-group-based, the function (generateNGBRecommendations) is introduced.
This function is used to incorporate consumer collaborations within the
aforementioned recommenders by generating the non-group-based interest
recommendations based on the similarities between the interest-profiles of the
different consumers. This function does not, however, take into account the different
geographical locations of the different consumer groups which means that interest
similarities are measured between all consumers as if they are within the same
geographical location or group.

This function, has nc, ns and INTavail as inputs and INTrcmnd as the output
where INTrcmnd is the matrix of consumer interests after making the
recommendations. Notice that INTrcmnd[i, s] is the value of INTrcmnd for
consumer i given service s such as INTrcmnd[i, s] = 1 if service s is either known to
be liked by consumer i or recommended to consumer i and INTrcmnd[i, s] = 0,
otherwise.

This function starts with setting the Jaccard similarities matrix J to the zero
matrix as follows:

J = 0nc×nc

where nc is the total number of consumers and J[i, j] is the Jaccard similarity
between consumers i and j such as J[i, j] = 1 if consumers i and j have identical
service interest profiles and J[i, j] = 0 if they have completely different service interest
profiles.

After that, the Jaccard similarity J[i, j] is measured between all pairs of
consumers i and j as follows:

74



J[i, j] = length(argfind
s

(INTavail[i, s] = INTavail[j, s]))/ns

where i 6= j and the function (argfind) is used to identify any service index s
such as INTavail[i, s] = INTavail[j, s]. The length of the resulting service indices
vector measures the number of services in which consumers i and j have currently
similar interests. When this length is normalized by the total number of services ns,
we get J[i, j] ∈ [0, 1].

Given J and starting with INTrcmnd = INTavail, INTrcmnd is recomputed for
all nc consumers whenever the interest of consumer i in service s is not known
(i.e. INTrcmnd[i, s] or alternatively INTavail[i, s] is NaN). This is done as follows:

INTrcmnd[i, s]← INTrcmnd[argmax
j

(J[i, j]), s]

where the function (argmax) is used here to identify the consumer j with the
maximum Jaccard similarity compared to consumer i. The idea here is to
recommend the same interest in service s of consumer j to consumer i based on the
fact that consumer j has the most similar interest profile compared to consumer i.
Notice that J[i, j] has already been enforced to equal 0 whenever i = j in order to
avoid distorting the above INTrcmnd computation with meaningless same-consumer
recommendations given that J[i, j] = 1 whenever i = j.

In what follows, category 3 recommenders are introduced. Notice that all of these
recommenders are interactive and collaborative while being non-group-based.

Starting with the Greedy recommender which is very similar to the Greedy
recommender of category 2 except for the fact that recommendation collaborations
are incorporated by using the matrix INTrcmnd instead of INTavail after being
evaluated as follows:

INTrcmnd = generateNGBRecommendations(nc, ns, INTavail)

This is followed by using INTrcmnd to compute the vector of service
popularities poprcmnd

services based on INTrcmnd for all ns services as follows:

poprcmnd
services[s] =

∑
i:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s]

where s is the service index. Given poprcmnd
services, the vector of most popular service

indices idmps is computed as follows:

[∼, idmps] = sort(poprcmnd
services,−1)

after which the first capnet most popular service indices are chosen greedily to be
distributed as follows:

idds = idmps[1 : capnet]

Consumer interactions, in response to the services presented by idds, are done
similar to before.

75



Both ε-greedy and Decaying ε-greedy recommenders are very similar again to
their previous counterparts (category 2 ε-greedy and Decaying ε-greedy
recommenders). The only difference is the fact that INTrcmnd is used instead
of INTavail when computing service popularities poprcmnd

services where INTrcmnd is
evaluated as shown before in the Greedy recommender. poprcmnd

services is, in turn, used
to compute idmps. The ε computation, the idds computation and the consumer
interactions are all identical to how they have been done before in category 2
ε-greedy and Decaying ε-greedy recommenders.

Finally, the UPB recommender is also similar to its non-collaborative counterpart
(category 2 UPB recommender). One difference is the fact that INTrcmnd is used
instead of INTavail when computing service popularities poprcmnd

services where INTrcmnd

is evaluated as shown before in the Greedy recommender. After evaluating poprcmnd
services,

INTrcmnd is also used in computing urcmnd using the formula:

urcmnd[s] = poprcmnd
services[s] + length(argfind

i
(INTrcmnd[i, s] is NaN))

where s is the service index and urcmnd is the vector of service UPBs based on
using INTrcmnd. The function (argfind) is used to find the vector of any consumer
index i such that INTrcmnd[i, s] is not known. The length of this vector represents
the maximum number of consumers with unknown interests and recommendations
who might like the service s. Adding this length to poprcmnd

services[s] gives the UPB
estimate urcmnd[s] for service s.

Given urcmnd, the vector of distributed service indices idds is computed as the
indices of the first capnet most popular services with the highest urcmnd values as
follows:

[∼, idmps] = sort(urcmnd,−1)

idds = idmps[1 : capnet]

where idmps is the vector of the most popular service indices. The consumer
interactions are done similar to before.

5.3.4 Category 4 Recommenders

Before proceeding with category 4 recommenders, which are all interactive,
collaborative and group-based, the function (generateGBRecommendations) is
introduced. Similar to the function (generateNGBRecommendations), this
function is also used to incorporate consumer collaborations within the
aforementioned recommenders based on the similarities between their interest
profiles. However, it does take into account the different geographical locations of
the different consumer groups. Therefore, this function goes through the same exact
steps of the function (generateNGBRecommendations) except for the fact that the
matrix J of consumer similarities is measured between only those consumers of the
same group within the same geographical location. These consumers have the
index idfc for the first group consumer and the index idlc for the last group consumer

76



which means that these two extra inputs are needed for the
function (generateGBRecommendations).

In addition, the INTrcmnd computation in the
function (generateGBRecommendations) is for the consumer of
index j : j ∈ {idfc : idlc} in order to make sure that this consumer is chosen to be
within the same geographical group such that s/he has the most similar interest
profile compared to consumer i.

Starting with the Greedy recommender which is very similar to the Greedy
recommender of category 3. The main difference is its ability to make interest
recommendations based on the geographical group of consumers. In each group 1
to ng, the recommender starts by identifying both idfc and idlc of the current group g
as follows:

idfc = nc/ng × (g − 1) + 1

idlc = nc/ng × g

These two indices are used as additional inputs to the
function (generateGBRecommendations) which in turn outputs the interests
matrix INTrcmnd. Based on INTrcmnd, service popularities given by the
vector poprcmnd

services are computed for all ns services by summing over all the known
consumer INTrcmnd interests given the same service. However, these interests have
to be for consumer indices between idfc and idlc in order to account for only those
consumers within the same group. Therefore, poprcmnd

services is computed as follows:

poprcmnd
services[s] =

∑
i∈{idfc :idlc}:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s]

where s is the service index. Based on poprcmnd
services, the first capnet highest

popularity services are chosen greedily for distribution. Consumers, within the
group, interact with these distributed services by revealing their true interests like
before.

The ε-greedy recommender is again similar to its non-group-based counterpart
(category 3 ε-greedy recommender). The main difference is its ability to recognize
consumer groups 1 to ng. In each group, both idfc and idlc are computed and used as
inputs to the function (generateGBRecommendations) which in turn
outputs INTrcmnd. After that, INTrcmnd is used to compute poprcmnd

services which
considers all consumers within the same group. With poprcmnd

services, the vector of the
most popular service indices idmps is computed using the function (sort). However,
only the first bcapnet × (1 − ε)c most popular services are chosen greedily for
distribution where ε = ratioui. The remaining (capnet − bcapnet × (1 − ε)c) services
are chosen randomly for exploration purposes. Consumer interact with the
distributed services by revealing their true interests as usual.

The Decaying ε-greedy recommender is also similar to its non-group-based
counterpart (category 3 Decaying ε-greedy recommender) except for its ability to
consider consumer groups. It goes over consumer groups 1 to ng. In each group, it

77



starts by computing both idfc and idlc for the current group g. Based on these two
indices, INTrcmnd is computed and used afterwards to compute the
vector poprcmnd

services while considering those consumers within the same group only.
The vector of most popular service indices idmps is computed using poprcmnd

services for
the group. After that, and based on how many interests are currently available, the
value of ε is computed using the available interests of consumers within the group
only using the formula:

ε = 1− length( argfind
(i∈{idfc :idlc},s)

(INTavail[i, s] is not NaN))/(nc/ng × ns)

where the function (argfind) is used to find the indices of all known interests
of INTavail such that the consumer indices of these interests are for group consumers
only. The length of the resulting vector is then normalized by the number of group
consumers nc/ng multiplied by the number of services ns. This gives the fraction of
known group interests which is in no need of further exploration.

The first bcapnet×(1−ε)c services are then chosen greedily whereas the remaining
services are chosen randomly to allow for exploration. Notice that the value ε decays
over time given the fact that consumers reveal their true interests each time they
interact with the distributed services.

Finally, the UPB recommender is similar to its non-group-based counterpart
(category 3 UPB recommender). The main difference is again its ability to treat
consumers differently depending on the geographical group they belong to. This
applies for groups 1 to ng where each group starts by identifying the consumer
indices idfc and idlc of the current group g. Based on these indices, INTrcmnd is
computed using the function (generateGBRecommendations). Given INTrcmnd,
the service popularities poprcmnd

services are computed as well as their UPBs urcmnd while
considering only those consumers within the current group g. Based on urcmnd, the
first capnet most popular services with the highest UPBs are chosen for distribution
to the group consumers. Those consumers interact with the distributed services by
revealing their true interests as usual.

5.4 Experiment Design
In order to decide which recommender to choose for the proposed content
distribution system, a set of 12 experiments are conducted for all the recommenders
discussed previously under different consumer interest and network capacity
scenarios. Consumer interest scenarios differ in their group interest standard
deviation σg

i values and the ratio of unknown consumer interests ratioui values.
Network capacity scenarios differ in their capnet values. Table 5.1 summarizes these
12 experiments such that each experiment lasts for a total of nTrcmnd

= 100 time
intervals. Notice that these time intervals represent day periods which can be
spread between different workdays but for the same period of the day.

For experiments 1 to 4, the standard deviation σg
i of the group interest

distributions is varied while experimenting all combinations of ratioui and capnet

78



Experiment No. σg
i ratioui capnet

1

varied

low low
2 low high
3 high low
4 high high
5 low

varied

low
6 low high
7 high low
8 high high
9 low low

varied10 low high
11 high low
12 high high

Table 5.1: Experiment Design

values. For experiments 5 to 8, the ratio of unknown consumer interests ratioui is
varied while experimenting all combinations of σg

i and capnet values. For
experiments 9 to 12, the network capacity capnet is varied while experimenting all
combinations of σg

i and ratioui values. Each of σg
i , ratioui and capnet is varied

between its low and high value. These values are 2 & 10 for σg
i , 0.1 & 0.9 for ratioui

and 2 & 10 for capnet.
For all of these experiments, notice that the number of consumers nc is set to

100 consumers, the number of services ns to 20 services and the number of groups ng

to 2 groups. Also notice that Figures 5.1a to 5.3d illustrate the true as well as
the available consumer interest matrices under the different σg

i and ratioui values of
concern in the experiments.

5.5 Experiment Results
The performance of the experimented recommenders is measured using the following
two indicators:

• the interests ratio; which measures the ratio of revealed consumer interests.
This indicator shows the degree of exploration made by the recommender under
consideration, and

• the popular distributed services ratio; which measures the ratio between the
number of distributed popular services and the number of all distributed
services. This indicator shows the degree of exploitation made by the
recommender under consideration.

These indicators are all used while highlighting the categories of the recommenders
being experimented in the results. The experiment setup for each result is also
highlighted using the tuple (σg

i , ratioui, capnet). Notice that category 1 has only one
recommender which represents the most basic recommender design.

79



5.5.1 Varying Group Interest Distributions
(Experiments 1 to 4)

In experiments 1 to 4, the standard deviation of the group interest distributions σg
i is

varied between 2 and 10 in each experiment. The unknown interests ratio ratioui and
the network capacity capnet are both fixed in each experiment according to Table 5.1.

Starting with experiment 1 in which Figure 5.4 shows the interests ratio under
the different recommenders to be high given the fact that the ratio of unknown
interests ratioui has already the low value of 0.1. Figure 5.5 of experiment 1 shows
the popular distributed services ratio to be low under the recommenders of
categories 1 to 3 given the low network capacity capnet of 2. This is due to the fact
that with such a low network capacity and consumer groups with different interest
distributions, it is impossible to distribute the popular services at each group
without being group-based as it is the case with category 4 recommenders. On the
other hand, the performance of category 4 recommenders is much better with the
UPB recommender being the best compared to its counterparts under both σg

i = 2
and σg

i = 10.
Notice that, in experiment 1, the performance of categories 2 and 3 recommenders

under σg
i = 10 is worse than their performance under σg

i = 2. This is given the fact
that with wider interest distributions and limited network capacity, it becomes even
harder to catch and distribute the truly popular services at each group.

Similar to Figure 5.4 of experiment 1, the interests ratio are already high given
that ratioui = 0.1 in Figure 5.6 of experiment 2. However and contrary to
experiment 1, the network capacity capnet has the much larger value of 10. This
makes the performance of categories 2 and 3 recommenders under σg

i = 10 better
than their performance under σg

i = 2 as shown in Figure 5.7. Having a high network
capacity in addition to the wider interests distribution allows the recommenders to
catch and distribute some of the common popular services between the groups even
without being group-based. This translates into a slightly higher popular
distributed services ratio.

Notice that in the group-based recommenders of category 4, the performance is
even better in experiment 2 compared to its counterpart in experiment 1 given the
high network capacity. Even the performance gap between the UPB recommender
and the other recommenders is negligible under category 4 of this experiment.

Contrary to both experiments 1 and 2, Figure 5.8 of experiment 3 shows the
gradual increase in the interests ratio for recommenders of categories 2 to 4. This is
given the much higher unknown interest ratio ratioui of 0.9. Notice that the
recommendations made throughout category 3 recommenders have allowed for faster
exploration of consumer interests and therefore faster exploitation as shown in
Figure 5.9 of experiment 3. This holds true for interest distributions of both σg

i = 2
and σg

i = 10.
In the categories 2 to 4 of experiment 3, the UPB recommender is the fastest in

terms of exploring the consumer interests. However, the category 4 UPB recommender
does not explore as fast or as much under the narrow interests distribution of σg

i = 2.
This is given the fact that this recommender has managed to decide early on which

80



services are the most popular within each consumer group with high confidence and
therefore has stopped exploring. This is demonstrated by the high popular distributed
services ratio of this recommender as shown by Figure 5.9 of experiment 3.

Notice that the greedy recommender in categories 2 to 4 of experiment 3 is not
able to explore due to its greediness which has led it into getting stuck in distributing
the wrong set of services as demonstrated by the extremely low popular distributed
service ratios shown in Figure 5.9 of experiment 3.

In addition, Figure 5.9 shows that the ε-greedy recommender of categories 2 to 4
does also perform poorly in terms of the popular distributed services ratio. This is
mainly due to its high ε value which is set to the high ratioui value of 0.9. Having a
high ε has led the recommender to excessive exploration without the proper
exploitation that would otherwise distribute the right set of popular services.

In all recommenders of categories 2 to 4 in experiment 3, the UPB recommender
is exploiting the most as demonstrated by the high ratios of popular distributed
services. However, all recommenders of categories 2 to 3 perform worse compared to
category 4 recommenders due to their inability to identify consumer groups and
distribute the right set of popular services for each group separately as explained
previously. Moreover, all recommenders of categories 2 to 3 perform worse
under σg

i = 10 compared to how they perform under σg
i = 2. This is, again as

explained previously, due to the fact that catching and distributing popular services
under wider interest distributions and low network capacities is much more
challenging.

Figure 5.10 of experiment 4 shows the big increase in terms of the interests ratio by
all the recommenders of categories 2 to 4 given the high unknown interests ratio ratioui
of 0.9. It does also show the much faster rate of increase in terms of this ratio given
the high network capacity capnet of 10.

Similar to before, Figure 5.11 shows that UPB recommenders are all superior
compared to the other recommenders in categories 2 to 4. It does also show that UPB
recommenders of category 4 perform better due to their ability to group consumers.

When σg
i = 10, Figure 5.11 shows that category 2 and 3 recommenders of

experiment 4 perform a bit better compared to how they perform under σg
i = 2.

This is due to the same reason discussed before which is the high network
capacity capnet of 10 that allows some common popular services to be chosen
under σg

i = 10. However, having σg
i = 10 leads the category 4 recommenders to

struggle a bit more compared to their situation under σg
i = 2. This is due to the

fact that it becomes harder to decide which services are truly popular under σg
i = 10

and therefore more interactions with the consumers are needed despite the high
network capacity capnet of 10.

81



F
ig
ur
e
5.
4:

E
xp

er
im

en
t
1:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

82



F
ig
ur
e
5.
5:

E
xp

er
im

en
t
1:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

83



F
ig
ur
e
5.
6:

E
xp

er
im

en
t
2:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

84



F
ig
ur
e
5.
7:

E
xp

er
im

en
t
2:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

85



F
ig
ur
e
5.
8:

E
xp

er
im

en
t
3:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

86



F
ig
ur
e
5.
9:

E
xp

er
im

en
t
3:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

87



F
ig
ur
e
5.
10

:
E
xp

er
im

en
t
4:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

88



F
ig
ur
e
5.
11

:
E
xp

er
im

en
t
4:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

89



5.5.2 Varying Unknown-interest Ratios
(Experiments 5 to 8)

In experiments 5 to 8, the unknown interests ratio ratioui is varied between 0.1 and 0.9
in each experiment. The standard deviation of the group interest distributions σg

i and
the network capacity capnet are both fixed in each experiment according to Table 5.1.

Starting with experiment 5, Figure 5.12 shows the direct effect of higher ratioui
which is having lower interests ratio. Notice that the UPB recommender in
categories 2 and 3 explores consumer interests the fastest. However, and as
explained before, it does slow down in category 4 due to its ability to stop exploring
and identify early the set of truly popular services as indicated by the high popular
distributed services ratio shown in Figure 5.13.

As shown in Figure 5.13, increasing ratioui results in lower ratios of popular
distributed services. This is due to the fact that knowing the truly popular services
becomes more challenging. In fact, the low network capacity capnet of 2 makes this
even worse and means that more consumer interactions are needed.

As before, the UPB recommender in categories 2 to 4 performs the best under
all ratioui values and group-based recommenders perform generally better. However,
and under ratioui = 0.9, the greedy recommender gets stuck in the wrong set of
services due to its lack of exploration and the ε-greedy explores excessively given
that ε = ratioui = 0.9.

Compared to Figure 5.12 of experiment 5, the interest ratios are higher and
converge faster in Figure 5.14 of experiment 6 given the higher network
capacity capnet of 10. When ratioui = 0.9, recommenders need more time to
converge and the greedy recommender does not explore enough due to its greediness.

Looking at the popular distributed service ratios shown in Figure 5.15 of
experiment 6, we can see that all recommenders under all categories are performing
similarly under both ratioui = 0.1 and ratioui = 0.9. This is due to the higher
network capacity capnet of 10. However, the ε-greedy recommender has a worse
performance under ratioui = 0.9 given the excessively high value of ε which is set to
equal ratioui.

Similar to Figure 5.12 of experiment 5, the interest ratios, shown in Figure 5.16
of experiment 7, are generally lower and slower to converge under ratioui = 0.9.
However, the situation here is worse than in experiment 5 due to the wider interest
distributions. Wider distributions in addition to the high unknown interests
ratio ratioui of 0.9 and the low network capacity capnet of 2, make exploration more
time consuming and requires more consumer interactions. Notice however that the
UPB recommender in categories 2 to 4 still comes on top of all the other
recommenders in terms of how fast it explores consumer interests. The greedy
recommender on the other hand gets stuck as usual due to its greediness and lack of
exploration which becomes even more evident under high ratioui and low capnet.

Figure 5.17 of experiment 7 shows the popular distributed services ratio to be
lower under category 2 and 3 recommenders compared to the group-based category 4
recommenders independent from the value of ratioui. This is given the wider interest
distributions and the low network capacity capnet of 2. However, the performance gets

90



worse under ratioui = 0.9 compared to the case under ratioui = 0.1 due to the greater
effort needed to explore consumer interests. Also notice that, as we have already
seen, the greedy as well as the ε-greedy recommenders under ratioui = 0.9 perform
poorly in general given the lack of exploration and excessive exploration, respectively.
Relatively speaking, the UPB recommender performs the best compared to the other
recommenders under categories 2 to 4.

The interest ratios shown in Figure 5.18 of experiment 8 are so similar to those
shown in Figure 5.14 of experiment 6. There is only a slight increase in terms of
the number of time intervals needed for the interests ratio to converge in the case of
experiment 8 recommenders. This is mainly due to the wider interest distributions
of σg

i = 10 and the higher unknown interests ratio ratioui of 10 which make it harder
to identify the true set of popular services.

Looking at the popular distributed services ratio shown in Figure 5.19 of
experiment 8, we can see that the performance has actually reached a higher ratio
compared to that shown in Figure 5.15 of experiment 6 under ratioui = 0.9. This is
mainly due to the fact that under wider distributions of σg

i = 10, it becomes possible
to have a set of common popular services which are identified and distributed by the
non-group based recommenders under categories 2 and 3. However, it takes more
time to make such a convergence due to the higher unknown interests ratio ratioui
of 0.9 in addition to the wider interest distribution of σg

i = 10. Notice that, as we
have seen before, the greedy as well as the ε-greedy recommenders still have a worse
performance due to their greediness and excessive exploration, respectively.

91



F
ig
ur
e
5.
12

:
E
xp

er
im

en
t
5:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

92



F
ig
ur
e
5.
13

:
E
xp

er
im

en
t
5:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

93



F
ig
ur
e
5.
14

:
E
xp

er
im

en
t
6:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

94



F
ig
ur
e
5.
15

:
E
xp

er
im

en
t
6:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

95



F
ig
ur
e
5.
16

:
E
xp

er
im

en
t
7:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

96



F
ig
ur
e
5.
17

:
E
xp

er
im

en
t
7:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

97



F
ig
ur
e
5.
18

:
E
xp

er
im

en
t
8:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

98



F
ig
ur
e
5.
19

:
E
xp

er
im

en
t
8:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

99



5.5.3 Varying Network Capacities
(Experiments 9 to 12)

In experiments 9 to 12, the network capacity capnet is varied between 2 and 10 in
each experiment. The standard deviation of the group interest distributions σg

i and
the ratio of unknown interests ratioui are both fixed in each experiment according to
Table 5.1.

The interest ratios presented in Figure 5.20 of experiment 9 are already high given
that ratioui = 0.1 in addition to the narrow interest distributions of σg

i = 2. The
network capacity does not make that difference in terms of interest ratios under such
circumstances.

On the other hand, the popular distributed services ratios presented in
Figure 5.21 of experiment 9 show that varying the network capacity capnet from 2
to 10 has resulted in a better performance. This is due to the fact that fewer
interactions are needed under the higher network capacity of capnet = 10. However,
the UPB recommender under categories 2 to 4 performs generally better than the
other recommenders with the group-based version of it being the one with the best
performance.

Figure 5.22 of experiment 10 shows the interest ratios to converge to higher
values in a faster rate under the higher network capacity capnet of 10. This is quite
natural given the faster rate of consumer interactions under the higher network
capacity capnet of 10. The recommendations made throughout category 3
recommenders have led to faster convergence and therefore exploitation as shown in
Figure 5.9 of experiment 3. Overall, the UPB recommender is the fastest
recommender to explore while managing to identify the set of popular services early
and stopping the exploration under category 4 as discussed previously.

Notice that the greedy recommender does not explore that much in general due
to its greediness. This becomes more evident as the network capacity capnet gets
smaller. This greediness results in a pretty poor performance in terms of the popular
distributed services ratio under capnet = 2 as shown in Figure 5.23 of experiment 3.
However, this ratio is not as bad under the higher network capacity capnet of 10 which
leads to more exploration before getting stuck into the suboptimal and less-popular
set of services.

Looking at the popular distributed service ratios shown in Figure 5.23 of
experiment 10, we can see that the performance of all the recommenders gets better
as the network capacity capnet gets higher. Overall, the UPB recommender performs
better than the other recommenders with the group-based version of it being the
best. The ε-greedy recommender performs poorly especially under the small
network capacity capnet of 2 given the high ratio of unknown interests ratioui of 0.9.
However, this performance gets a little bit better under the higher network
capacity capnet of 10.

Similar to the interest ratios in Figure 5.20 of experiment 9, the interest ratios in
Figure 5.24 of experiment 11 are quite high due to the already low ratio of unknown
interests ratioui of 0.1. Having the wide interest distributions of σg

i = 10 does not
prevent the interest ratios from quickly converging. In addition, the change in the

100



network capacity does not make that difference in terms of interest ratios.
In terms of the popular distributed service ratios shown in Figure 5.25 of

experiment 11, there is a clear improvement as the network capacity capnet
increases. Notice the high network capacity capnet of 10 has allowed for the
discovery of the set of common popular services under the wide interest distribution
of σg

i = 10. As usual, the UPB recommender is the best performing recommender
except under categories 2 and 3. This is mainly due to the wide interest distribution
of σg

i = 10 and the low network capacity capnet of 2.
Due to the high unknown interests ratio ratioui of 0.9, the interest ratios shown

in Figure 5.26 of experiment 12 demonstrate the time needed for recommenders to
converge. Notice that the recommendations made throughout category 3
recommenders have led to faster convergence and therefore faster exploitation as
shown in Figure 5.27 of experiment 12. The UPB recommender converges and
explores the fastest whereas the greedy recommender stops exploration early
especially under the low network capacity capnet of 2. This early stopping of
exploration results in low popular distributed service ratios as shown in Figure 5.27
of experiment 12 for both network capacities of capnet = 2 and capnet = 10.

The popular distributed service ratios shown in Figure 5.27 of experiment 12
demonstrate the superiority of the UPB recommender under all categories while
having the group-based version of it being the best. On the other hand, the ε-greedy
recommender explores consumer interests excessively given that ε = ratioui = 0.9
which results in low popular distributed service ratios especially under the low
network capacity of capnet = 2. Overall, having the higher network capacity
of capnet = 10 improves the performance compared to that under the lower network
capacity of capnet = 2.

101



F
ig
ur
e
5.
20

:
E
xp

er
im

en
t
9:

eff
ec
t
on

in
te
re
st
s
ra
ti
o

102



F
ig
ur
e
5.
21

:
E
xp

er
im

en
t
9:

eff
ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

103



F
ig
ur
e
5.
22

:
E
xp

er
im

en
t
10

:
eff

ec
t
on

in
te
re
st
s
ra
ti
o

104



F
ig
ur
e
5.
23

:
E
xp

er
im

en
t
10

:
eff

ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

105



F
ig
ur
e
5.
24

:
E
xp

er
im

en
t
11

:
eff

ec
t
on

in
te
re
st
s
ra
ti
o

106



F
ig
ur
e
5.
25

:
E
xp

er
im

en
t
11

:
eff

ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

107



F
ig
ur
e
5.
26

:
E
xp

er
im

en
t
12

:
eff

ec
t
on

in
te
re
st
s
ra
ti
o

108



F
ig
ur
e
5.
27

:
E
xp

er
im

en
t
12

:
eff

ec
t
on

po
pu

la
r
di
st
ri
bu

te
d
se
rv
ic
es

ra
ti
o

109



5.6 Discussion
From experiments 1 to 12, it can be seen that the UPB collaborative and group-
based recommender under category 4 makes the best trade off between exploration
and exploitation. It has managed to explore consumer interests with the fastest rate
compared to the other recommenders under varying consumer and network scenarios
as indicated by the resulting consumer interest ratios. In particular, these scenarios
include different group interest distributions, unknown interest ratios and network
capacities. In fact, this exploration stops as soon as exploitation reaches its optimal
performance. Moreover, this recommender exploits its knowledge about consumer
interests optimally as indicated by the popular distributed service ratios.

The superior performance of the category 4 UPB recommender is attributed
mainly to its ability to bound service popularities given the available consumer
interests and exploit the services with the highest resulting bounds greedily. This
“optimism in the face of uncertainty” allows for the best tradeoff between
exploration and exploitation. Notice that as the time progresses and as the
recommender interacts more with the consumers and acquire more knowledge about
their true interests, the amount of uncertainty and therefore exploration decreases
while exploitation increases.

Another reason for the superior performance of the category 4 UPB
recommender is its ability to exploit interest similarities between consumers when
making recommendations allowing for faster exploration and therefore exploitation.

Finally, being a group-based recommender allows distributed services to be
customized for each group according to the interests of its consumers. This ability
leads to more efficient consumer interactions and faster exploration. It also leads to
a more personalized consumer experience and better exploitation.

Given all of the above, the UPB collaborative and group-based recommender is
chosen to be part of the proposed content distribution system with the main rule of
recommending content throughout online operations.

5.7 Summary
In this chapter, the different steps followed throughout designing the recommender
are explained. These steps start with synthesizing consumer profiles to allow for
recommender experimentation. After that, different recommenders are explained
starting with the most basic one and enhancing it gradually. All of these
recommenders are experimented in order to choose the best recommender under
different consumer interest and network capacity scenarios. The UPB collaborative
and group-based recommender has been found to be the best in terms of trading off
exploration and exploitation. It does so while benefiting from the similarities
between consumer interest profiles and considering the different location groups
which consumers belong to. In conclusion, this recommender has been chosen to be
part of the proposed content distribution system given its superior performance
under varying consumer interest and network capacity scenarios.

110



Chapter 6

Content Routing Design

6.1 Overview
The purpose of this chapter is to discuss the offline operations of the proposed content
distribution procedure which are related to content routing. These operations show
the steps followed to design the way content is routed to the different system nodes
starting with the first phase of direct V2I content routing, followed by the V2V content
segment exchanges and ending with the last phase of V2I content routing.

These operations have already been indicated in Lines 8 to 10 as part of the
offline operations shown in Algorithm 3.1 as discussed previously in Chapter 3. They
include: estimating the maximum number of content data segments, dividing and
allocating the content data segments to the system nodes and optimizing the V2V
segment exchange tables at the nodes using bayesian optimization.

Throughout the exchange tables optimization, the optimization search space is
visualized in addition to explaining the regression technique used throughout
bayesian optimization. This technique has been chosen after comparing it to
bayesian optimizations using other regression techniques. This comparison is in
terms of the number of segments exchanged and optimization execution times. The
regression techniques compared are: GP, RF, BNN and batch-based RF. The
performance of the resulting optimal policy is compared against that of the worst
policy found so far as well as against the performance of a policy chosen naively.

However and before explaining the offline operations mentioned or proceeding
with the rest of the chapter, the details of some functions used throughout these
operations are explained first. Notice that throughout the chapter, the purpose and
mathematical formulations of all functions and operations are explained in details
while leaving their algorithms to Appendix C at the end of the thesis. Moreover, the
case study of the Grand River Transit bus service offered throughout the Region of
Waterloo, Ontario, Canada is used with the assumptions discussed before in
Chapter 3.

111



6.2 Functions Used
Throughout the upcoming offline operation discussions, the following functions are
used:

• divideData Function; which is used to decide how many content data segments
should be given to each system node,

• allocateData Function; which is used to choose which segments are allocated
to which system node,

• computeFeatures Function; which is used to compute the node features at
each time step. These domain-specific features are used to measure the V2V
communication potential of nodes such that nodes with the highest potential
are given the highest priority to start the V2V segment exchanges,

• controlRange Function; which is used to control the broadcasting range of
a transmitting node at a certain time step,

• targetSegments Function; which is used to target a specific set of content data
segments for transmission at a certain time step before making the choice on
which segment to transmit,

• transmitData Function; which is used to transmit the content data segment
chosen out of the set of targeted segments at a certain time step, and

• followPolicy Function; which is used to make nodes follow a certain policy.
This policy is parameterized using a vector of feature weights and is used to
compute the transmission priorities of nodes at each time step.

Explaining these functions is instrumental for understanding the offline operations
explained afterwards in this chapter. However and before explaining these functions,
the cth biggest cluster connectivities matrix Cb{c} is extracted at each period p that
starts at tstart and ends at tend. This extraction is made for all the biggest clusters in
each period p of the np periods. These Cb{c} matrices are needed as inputs for the
upcoming functions as well as the offline operations addressed in this chapter.

To do these extractions, the total number of time steps nTperiod
is computed first

within the period under consideration given tstart and tend as follows:

nTperiod
= tend − tstart + 1

Then, Cb{c} is computed at each time index t as follows:

Cb{c}[t, ∗, ∗] = C[t+ tstart − 1, IDb
nc{c}, IDb

nc{c}]

where t ranges from 1 to nTperiod
, Cb{c}[t, i, j] is the connectivity between node i

and node j from the cth biggest nodes cluster at time index t. Notice that the time
index of the connectivities matrix C is shifted by (tstart−1) since matrix Cb has time
indices between 1 and nTperiod

only corresponding to the time indices of period p that

112



starts at tstart and ends at tend. Also notice that the node indices matrix of the cth
biggest nodes cluster IDb

nc{c} has already been computed in Chapter 4 as part of the
cluster node indices matrix IDnc{p} at period p.

Refer to Algorithm C.1 in Appendix C for further details about this connectivities
matrix extraction operation. Further details about the upcoming functions can also
be found in Appendix C in Algorithms C.2 to C.8 at the end of the thesis.

6.2.1 divideData Function

This function is used to divide content data segments between the nodes of the cth
biggest cluster extracted using the function (extractCluster) shown previously in
Chapter 4. This division is done in proportion to the total connectivities summation
each node has with the other nodes in the cluster. The number of all content data
segments divided between the nodes is denoted by nas[k] where k is the index used
to choose a specific value of vector nas.

The function (divideData) starts by computing the number of nodes in the biggest
cluster under consideration nb

n as follows:

nb
n = length(IDb

nc{c})

where IDb
nc{c} is the node indices matrix of the cth biggest nodes cluster computed

previously in Chapter 4.
After computing nb

n and given tstart and tend, nTperiod
is computed and the function

goes over all nb
n nodes in order to compute the number of content data segments nns[i]

for each node i as follows:

nns[i] =
nTperiod∑

t=1

nb
n∑

j=1

Cb{c}[t, i, j]

where Cb{c} is the connectivities matrix of the cth biggest nodes cluster extracted
previously. Given the resulting values of the vector nns, nns is recomputed using the
formula:

nns ← bnas[k]× nns/(
nb
n∑

i=1

nns[i])c

The idea here is to divide the kth total number of content data segments nas[k]
across the nb

n nodes in proportion to their corresponding connectivities summation
with the other nodes in the cluster normalized by the total connectivities summation
of all nb

n nodes. Notice that one segment is the least unit of content that can be given.
Also notice that the vector of the different numbers of content data segments nas has
been set to [50 100 ... 2000] according to the case study adopted in Chapter 3. This
vector is used when estimating the maximum number of distributable data segments
as will be presented in Section 6.3.

113



6.2.2 allocateData Function

This function is used to allocate specific content data segments to each node according
to the segment proportions computed by the function (divideData).

At the beginning, the function (allocateData) sets the matrix of segment

allocations SA of size nb
n×

nb
n∑

i=1

nns[i] to the zero matrix where SA[i, j] = 1 if

segment j is allocated to node i and SA[i, j] = 0, otherwise. After that, it goes over
all the nb

n nodes in order to allocate content data segments to each node. For the
first node i, we have:

SA[i, 1 : nns[i]] = 11×length(nns[i])

which means that all the first nns[i] content data segments are allocated to
node i where 11×length(nns[i]) is a vector of size (1× length(nns[i])) with all values set
to 1. It does also mean that, as of the first node, the last segment allocated has the
index sal = nns[i]. Therefore, the following applies for the remaining nodes:

SA[i, sal + 1 : sal + nns[i]] = 11×length(nns[i])

sal ← sal + nns[i]

which means allocating each node i with the next nns[i] content data segments
and shifting the index of the last segment allocated sal each time by nns[i] until all
data segments are allocated.

6.2.3 computeFeatures Function

This function is used to compute the vector of features for each node within the cth
biggest nodes cluster at time step t. These features are chosen based on my domain
knowledge of the field of vehicular networking and their weighted summation gives the
node utilities needed to prioritize the V2V segment exchanges of the different nodes
at each time step t as will be presented in the upcoming function (followPolicy).

The inputs to the function (computeFeatures) include:

• the cth biggest cluster connectivities matrix Cb{c},

• the segment allocations matrix SA computed using the function (allocateData),
and

• the vector nns representing the number of data segments at each node which
are divided using the function (divideData).

The features for all the nb
n nodes within the cth biggest nodes cluster are given by the

matrix Fn defined as Fn = [fn1 fn2 fn3 fn4 ]n
b
n×4 where:

• fn1 is the feature vector representing each node’s normalized number of direct
neighbors,

114



• fn2 is the feature vector representing each node’s average fraction of segments
missing at the neighboring nodes which are available at the node,

• fn3 is the feature vector representing each node’s normalized number of segments
missing across all neighboring nodes which are available at the node, and

• fn4 is the feature vector representing each node’s difference between 1 and the
normalized number of indirect neighboring nodes located around the node and
its direct neighbors.

Initially, this matrix Fn is set to the zero matrix 0nb
n×4 at each time step t it is

computed. After that, the function (computeFeatures) goes over all the nb
n nodes

to compute the feature values for each node i. The first feature fn1 [i] of node i is
computed as follows:

fn1 [i] =
nb
n∑

j=1

Cb{c}[t, i, j]/nb
n

which counts the number of times a node j within the cluster has a connectivity
with node i at time step t indicating that it is a direct neighbor. This count is
then normalized by the total number of nodes within the cluster nb

n. If there are no
neighbors to node i (i.e. fn1 [i] = 0), then fn2:4[i] are assumed to equal 0. Otherwise, the
function proceeds with computing the remaining node features fn2:4[i]. However, the
function needs to compute first the vector of segment indices idn

s available at node i
as follows:

idn
s = argfind

j
(SA[i, j] = 1)

where the function (argfind) is used to find the vector containing any index j of
a segment that is available at node i such as SA[i, j] = 1. The vector of neighboring
node indices idn

ne of node i also needs to be computed as follows:

idn
ne = argfind

j
(Cb{c}[t, i, j] = 1)

where the function (argfind) is used here to find the vector containing any index j
of a node that has a connectivity with node i at time step t within the cth biggest
cluster such as Cb{c}[t, i, j] = 1. Given idn

ne, the function (computeFeatures) goes
over all the neighboring node indices in idn

ne in order to find the vector of missing
segment indices idne

ms at each neighboring node idn
ne[j] as follows:

idne
ms = argfind

k
(SA[idn

ne[j], k] = 0)

where the function (argfind) is used to find any index k of a missing segment
at neighboring node idn

ne[j] such that SA[idn
ne[j], k] = 0. If there are no missing

segments (i.e. idne
ms = /O) at neighboring node idn

ne[j], then this node is assumed to
have no impact on fn2 [i]. Otherwise, the function (computeFeatures) computes fn2 [i]
as follows:

115



fn2 [i]← (fn2 [i]× (j − 1) + length(idn
s ∩ idne

ms)/length(idne
ms))/j

where j is the index of the current neighboring node. Notice that the number of
missing segments at the neighboring node is determined using the function (length) as
follows: length(idne

ms) and the number of those missing segments which are available
at node i is also determined using the function (length) as follows: length(idn

s ∩idne
ms).

The function (computeFeatures) proceeds afterwards with computing the
vector idne

cms representing the common missing segment indices of neighboring nodes
which are also available at node i. For the first neighboring node, this is computed
as follows:

idne
cms = idn

s ∩ idne
ms

For the remaining nodes, it is computed as follows:

idne
cms ← idne

cms ∩ (idn
s ∩ idne

ms)

Given idne
cms, the third feature fn3 [i] for node i is computed as follows:

fn3 [i] = length(idne
cms)/(

nb
n∑

j=1

nns[j])

Where the normalization is made here by dividing over the total number of node

segments
nb
n∑

j=1

nns[j].

The function (computeFeatures) does also find the vector of indirect neighboring
node indices idn

nene around node i. This vector is initially set to the empty vector /O
before proceeding with its computation. This computation is made using the following
two formulas:

idn
nene ← idn

nene ∪ argfind
k

(Cb{c}[t, idn
ne[j], k] = 1)

idn
nene ← idn

nene − (idn
ne ∪ {i})

where the function (argfind) is used to find any index k of an indirect neighboring
node that is a neighbor to the neighbor idn

ne[j] of node i at time step t within the cth
biggest nodes cluster such that Cb{c}[t, idn

ne[j], k] = 1. This, however, includes node i
and might also include its direct neighbors with the indices vector idn

ne. Therefore,
the second formula above ensures that this does not happen by recomputing idn

nene

as shown. Given idn
nene, the fourth feature fn4 [i] for node i is computed as follows:

fn4 [i] = 1− length(idn
nene)/n

b
n

where the normalization is made here by dividing over nb
n.

116



6.2.4 controlRange Function

This function controls the broadcasting range of a transmitting node idtx at time
step t. This is done by outputting the refined indices vector idtx

ne of neighboring nodes
around idtx and their distances vector dtx

ne from it. These refined neighboring nodes
are chosen to receive from idtx in a way that does not interfere with the broadcasting
range of any nearby transmitting node. A power control scheme can be implemented
to enforce such set of neighbors.

The inputs to the function (controlRange) include:

• the unrefined indices vector idtx
ne of neighboring nodes around the transmitting

node idtx before controlling its broadcasting range,

• the matrix of member indices of the cth biggest cluster node IDb
nc{c} extracted

previously in Chapter 4, and

• the matrix of node statuses STATn defined as
STATn = [statn1 statn2 statn3 ]n

b
n×3 where:

– statn1 is the vector representing the transmission status of each node such
as:

∗ statn1 [i] =

{
1 if node i is transmitting

0 otherwise

– statn2 is the vector representing the coverage status of each node such as:

∗ statn2 [i] =


1 if node i is under coverage

of another transmitting node

0 otherwise

– and statn3 is the vector representing the reception status of each node such
as:

∗ statn3 [i] =

{
1 if node i is receiving

0 otherwise

The function (controlRange) starts by going over the transmitting node neighbors,
with the indices specified by the vector idtx

ne, and computing their distances
from idtx using the function (distance). These distances are computed given the
latitudes matrix LATS, the longitudes matrix LONS and the matrix IDb

nc{c}
which all have already been computed in Chapter 4. Notice that the time index t in
the matrices LATS and LONS has to be shifted by (tstart − 1) first because it
counts the time steps only within period p under consideration.

After that, the function (controlRange) proceeds by eliminating any neighboring
node idtx

ne[j] around idtx that is either transmitting (i.e. statn1 [idtx
ne[j]] = 1) or receiving

(i.e. statn3 [idtx
ne[j]] = 1) from the set of nodes receiving from idtx where j is the

neighboring node index. In addition, any neighboring node k that is located more
than dtx

ne[j] away from idtx (i.e. dtx
ne[k] ≥ dtx

ne[j]) is also eliminated. The intuition here

117



is that node idtx should reduce its broadcasting range so that it does not interfere
with any transmitting/receiving node or any other node located beyond that. This
elimination is made by creating the indices vector idtx

ene of all eliminated neighboring
nodes around idtx as follows:

idtx
ene ← idtx

ene ∪ argfind
k

(dtx
ne[k] ≥ dtx

ne[j])

where the function (argfind) is used to find any index k of a neighboring node
that has dtx

ne[k] ≥ dtx
ne[j] where j is the index of the currently transmitting/receiving

neighboring node. Notice that idtx
ene is initially set to the empty vector /O.

Following the idtx
ene vector computation, the function (controlRange) eliminates

all neighboring nodes represented by this vector from the indices vector idtx
ne and the

distances vector dtx
ne as follows:

idtx
ne[id

tx
ene] = /O

dtx
ne[id

tx
ene] = /O

This way the broadcasting range of idtx is controlled given the fact that
transmission is restricted to only those neighboring nodes of the final indices
vector idtx

ne such that the broadcasting range of idtx is set to max(dtx
ne) as will be

presented in the upcoming function (transmitData).

6.2.5 targetSegments Function

This function finds the indices vector idts of targeted segments which are available
at the transmitting node idtx and are candidates for transmission. The chosen
segment, on the other hand, is picked up from these segments using the upcoming
function (transmitData).

The inputs to the function (targetSegments) include:

• the segment allocations matrix SA computed using the function (allocateData),
and

• the refined indices vector idtx
ne of neighboring nodes around the transmitting

node idtx which is computed using the function (controlRange).

The function (targetSegments) starts by computing the indices vector idtx
s of

segments available at the transmitting node idtx as follows:

idtx
s = argfind

j
(SA[idtx, j] = 1)

where the function (argfind) is used to find any index j of an available segment
at idtx such as SA[idtx, j] = 1. After that, the function (targetSegments) goes over
all neighbors of idtx and whenever a neighbor idtx

ne[j] is not covered
(i.e. statn2 [idtx

ne[j]] = 0), this neighbor is inquired for the indices vector idne
ms of its

missing segments as follows:

118



idne
ms = argfind

k
(SA[idtx

ne[j], k] = 0)

where the function (argfind) is used here to find any index k of a missing
segment at neighbor idtx

ne[j] such as SA[idtx
ne[j], k] = 0. Notice that node idtx

ne[j] can
neither be transmitting nor receiving given the range-control or refinement made by
the function (controlRange) before using the vector idtx

ne here (i.e. statn1 [idtx
ne[j]] = 0

and statn3 [idtx
ne[j]] = 0). Also notice that whenever node idtx

ne[j] is covered
(i.e. statn2 [idtx

ne[j]] = 1), the missing segments of this node will have no impact
on idts since this node is not going to receive from idtx anyway without having
interference.

Given idne
ms, the indices vector idts of targeted segments can be computed as

follows:

idts ← idts ∪ (idtx
s ∩ idne

ms)

where the vector idts is set initially to the empty vector /O.
Notice that after going over all the neighboring nodes of idtx, the vector idts

will include the indices of all targeted segments which are missing in at least one
neighboring node while being available at the transmitting node idtx.

6.2.6 transmitData Function

This function is used to transmit the chosen data segment idcs by the transmitting
node idtx at time step t. This transmission action is added to the matrix of actions A
whenever it occurs. It does also update the statuses matrix STATn whenever it
happens to reflect the nodes which are currently transmitting, receiving and those
which are just being covered by the transmitting nodes. Notice that the decision to
choose node idtx to make the transmission is made by the function (followPolicy)
as will be presented. Also notice that, the matrix A is set initially to the empty
matrix /O in the same function.

The inputs to the function (transmitData) include:

• the node statuses matrix STATn before transmitting the data. Notice
that STATn is set initially to the zero matrix 0nb

n×3 as will be shown in the
function (followPolicy),

• the refined indices vector idtx
ne of neighboring nodes around the transmitting

node idtx and their distances vector dtx
ne from idtx. These two vectors have

already been evaluated using the function (controlRange),

• the matrix SA of segment allocations as evaluated by the
function (allocateData), and

• the indices vector idts of targeted segments as computed using the
function (targetSegments).

119



At the beginning, the function (transmitData) sets statn1 [idtx] to 1 to indicate
that idtx is currently transmitting. After that, the popularities vector popsegs of all
data segments at the neighboring nodes, as indicated by idtx

ne, is computed as
follows:

popsegs =
∑

i∈{idtx
ne:stat

n
2 [id

tx
ne]=0}

SA[i, ∗]

Notice that only those neighboring nodes which are not covered
(i.e. statn2 [idtx

ne] = 0) are included in the vector summation above. This is given the
fact that covered nodes are not going to receive the data anyway due to interference
and therefore are not part of the segment popularities computation.

Given popsegs, the segment with the lowest popularity is chosen from the set of
targeted segments for transmission as follows:

idcs = idts[argmin
i∈idts

(popsegs[i])]

where idcs is the index of this chosen segment and the indices vector idts is for
the targeted segments. The function (argmin) is used here to find the index i of that
segment with the lowest popularity such that i ∈ idts. Notice that the intuition here
is that the segment with the lowest popularity should be chosen because it is the one
which is mostly missing among neighbors and therefore is the most probably needed.

The function (transmitData) proceeds by going over all the neighboring nodes, as
indicated by idtx

ne, in order to detect those nodes which are not covered while missing
the chosen data segment idcs. These nodes are detected whenever a node idtx

ne[j]
meets the following condition:

(statn2 [idtx
ne[j]] = 0) ∧ (SA[idtx

ne[j], idcs] = 0)

These nodes receive the segment idcs from the transmitting node idtx and therefore
their statuses are updated to indicate that they are receiving and therefore are covered
as follows:

statn2 [idtx
ne[j]] = 1

statn3 [idtx
ne[j]] = 1

Their segment allocations are also updated as follows:

SA[idtx
ne[j], idcs] = 1

This transmission action is added to the actions matrix A in two steps as follows:

A← (A, [(t+ tstart − 1) idtx max(dtx
ne) idcs 01×nb

n ])

A[length(A), 4 + idtx
ne[j]] = 1

where the columns of matrix A are defined as follows:

120



• A[∗, 1] represents the time indices at which actions take place where the time
step t is shifted by (tstart − 1) to add the starting time of the period p under
consideration,

• A[∗, 2] represents the indices of the transmitting nodes taking the actions,

• A[∗, 3] represents the broadcasting ranges of the transmitting nodes such that
no interference occurs with neighboring transmitting nodes. This is done by
choosing the broadcasting range of idtx to equal max(dtx

ne),

• A[∗, 4] represents the indices of the chosen segments for transmission, and

• A[∗, 4 + 1 : 4 + nb
n] indicates the neighboring nodes which are receiving the

chosen content data segments from the transmitting nodes. This is made by
setting the value of A[i, 4 + j] = 1 if the neighboring node j is the one receiving
the chosen data segment when the action i takes place and A[i, 4 + j] = 0,
otherwise.

As it can be seen, the update of matrix A is made in two steps so that the first
step adds all the information pertaining to the action taking place except for which
nodes are receiving the data. In the second step, the node receiving the chosen data
segment is indicated using ones and zeros as explained.

After going over all the neighboring nodes, as indicated by idtx
ne, the

function (transmitData) updates the statuses of all of these nodes to reflect the
fact that they are currently covered by the broadcasting range of idtx as follows:

statn2 [idtx
ne] = 1length(idtx

ne)×1

6.2.7 followPolicy Function

Figure 6.1 shows the overall flowchart of the function (followPolicy). This function
produces the final matrix A of actions which should be taken by the nb

n nodes within
the cth biggest nodes cluster throughout the period p starting at tstart and ending
at tend. These actions are decided such that these nodes follow a given policy which
is specified by the weights vector ω given to the different node features. Based on
these weights and features, node utilities are computed and used to decide the order
of transmission given to the nodes such that they do not interfere with each other.
Notice that this order is made to prioritize node transmissions such as every higher
priority node transmits only if it has segments to transmit, otherwise the lower priority
node proceeds with its transmission. Inputs to the function (followPolicy) include:

• the member indices matrix IDb
nc{c} of the cth biggest nodes cluster, as computed

in Chapter 4, and their connectivities matrix Cb{c},

• the segment allocations matrix SA as evaluated by the function (allocateData),

• the vector nns representing the number of content data segments at each node
which are divided using the function (divideData),

121



• the latitudes matrix LATS as computed in Chapter 4, and

• the longitudes matrix LONS as computed in Chapter 4.

The function (followPolicy) starts by initializing the actions matrix A to the
empty matrix /O and computing nTperiod

given tstart and tend. After that, it goes over
all time steps while initializing the node statuses STATn to the zero matrix 0nb

n×3

at the beginning of each time step. However, the current coverage status of any
node within the current cluster that is within the broadcasting range of a
currently-transmitting node at a nearby cluster should not be zeroed due to this
initialization of matrix STATn; in fact, it should be activated such that no useless
transmissions are ought to target this covered node. The features matrix Fn is also
computed at each time step t using the function (computeFeatures). Given Fn and
the given policy weights vector ω, the vector ut of node utilities is computed as
follows:

ut = Fn × ω

where ω[i] is the weight given to feature i and ω[i] ∈ {−10,−9, ..., 0, ..., 9, 10}∀i in
the case study adopted. Based on ut, the vector idord

tx of node indices, sorted in the
order of transmission, is computed as follows:

[∼, idord
tx ] = sort(ut,−1)

where the function (sort) is used to sort the nodes in a descending order in terms
of their utility values. Notice that the vector idord

tx specifies the order of transmission
or alternatively the priority of transmission given to the nodes whenever they have
data to transmit, otherwise the next priority node proceeds with the transmission.

Given idord
tx , the function (followPolicy) goes over the nodes while taking the

order of transmission specified by idord
tx into account as follows:

idtx = idord
tx [i]

where the index i allows the function to go over the nodes specified by the
vector idord

tx according to their transmission order and setting idtx accordingly.
Therefore, idord

tx [1] produces the index of the node given the first priority to start
transmission.

Given node idtx, the function checks the status statn2 [idtx] to know if this node is
currently covered by the broadcasting range of another node. If node idtx is covered
(i.e. statn2 [idtx] = 1), then it can not transmit and no action can be taken. However, if
it is not covered, then the vector idtx

ne is computed to know if there are any neighboring
nodes using the following formula:

idtx
ne = argfind

j
(Cb{c}[t, idtx, j] = 1)

where the function (argfind) is used to find any index j of a neighboring node that
has a connectivity with node idtx at time t such asCb{c}[t, idtx, j] = 1. If all neighbors
are covered (i.e. ∀j ∈ idtx

ne, stat
n
2 [j] = 1) or there are no neighbors (i.e. idtx

ne = /O),

122



then there is no point of having node idtx transmitting data and no action would be
taken. However, if there is at least one uncovered neighbor, then the broadcasting
range of idtx is controlled so that it does not cause any interference with neighboring
transmitting nodes using the function (controlRange). This results in the refined
vector of neighboring nodes indices idtx

ne and their distances vector dtx
ne. However, this

can also result in a shrinkage in the broadcasting range of idtx that would left no
neighbors (i.e. idtx

ne = /O). If this is the case, then node idtx would have no neighbors
left and no action would be taken. If this is not the case, then the indices vector idts of
targeted segments is computed using the function (targetSegments). This vector idts

can be empty due to the mismatch between what is already available at idtx and what
is missing at the neighboring nodes or due to the segment sufficiency at neighboring
nodes. If this is the case, then node idtx would not need to transmit and no action
would be taken. If this is not the case, then node idtx would transmit the chosen
segment idcs using the function (transmitData). The outputs of this (transmitData)
function are the updated matrix A, with the new action taken by node idtx, and the
updated matrix STATn showing the current node statuses which reflect the set of
nodes transmitting, receiving and just covered. With these new updated matrices,
the “for-loop” going over the nodes in the function (followPolicy) proceeds to the
next node until all nb

n nodes are checked after which the “for-loop” going over the
time indices moves to the next time index. These iterations result eventually in the
final matrix A of actions which should be taken by the nodes in order to follow the
policy specified by the feature weights vector ω.

6.3 Maximum Number
of Data Segments Estimation

Before dividing and allocating content data segments or beginning the search for the
optimal V2V segment exchange policy, the maximum number of all data
segments nmax

as is estimated. This number represents the maximum number of
segments which can be distributed among the system nodes at the beginning of the
content distribution cycle using V2I communication such that a minimum exchange
ratio threshold ermin is met. This threshold is defined as the minimum ratio
between the number of exchanged data segments using V2V communication and the
number of data segments distributed initially using V2I communication. Meeting
this threshold is essential in order to avoid distributing an excessively high number
of data segments at the beginning of the content distribution cycle using V2I
communication which can not be replicated sufficiently using V2V segment
exchanges between the nodes. Not imposing this threshold would leave a high
percentage of the data segments for the final distribution using V2I communication
which should be avoided such that the network is not overloaded.

Therefore, and before estimating nmax
as , ermin is specified given the total number of

nodes nb
n. This is done by first making the assumption that one version of each data

segment is initially distributed among the nodes. This single version would then be
replicated using segment exchanges between the nodes such that each node would end

123



F
ig
ur
e
6.
1:

F
lo
w
ch
ar
t
of

th
e
fu
nc
ti
on

(f
ol
lo
w
P
ol
ic
y
)

124



up having one copy of each segment with no duplicates at the end of these exchanges.
Given this setup, the value of ermin can now be specified such that it satisfies the
following formula:

ermin = d0.9× nb
n − 1e

The intuition behind this formula is to assume that at least 90% of the data
segments should be either distributed initially using V2I communication or exchanged
between the nodes by the end of the segment exchanges using V2V communication.
This leaves at maximum 10% of the segments for the final content distribution using
V2I communication. These two distribution stages result eventually in (1 + ermin)
number of segment versions distributed among the nodes by the end of V2V segment
exchanges out of the nb

n versions which should be distributed by the end of the whole
distribution period. Given this equation and the fact that nb

n = 21 nodes for the first
biggest nodes cluster in the case study adopted, then ermin = 18.

Given the value of ermin, nmax
as can now be estimated by going over the vector nas

of the different numbers of all data segments. This vector nas is assumed in the case
study adopted to be as follows:

nas = [50 100 ... 2000]

This scanning is done while computing the resulting ratio between the number of
exchanged data segments and the number of data segments distributed initially.
Therefore, each scan starts by computing the number of data segments for each
node as specified by the vector nns using the function (divideData). Given nns, the
matrix of segment allocations SA is computed using the function (allocateData).
Knowing nns and SA, the actions matrix A can be computed using the
function (followPolicy) assuming that the “naive” policy with the weights
vector ω = (10, 0, 0, 0) is followed. This policy is called “naive” because it is simply
giving the highest transmission priority to the node with the highest normalized
number of direct neighbors.

By the end of each scan, the number of data segment exchanges is determined
as equal to length(A). After that, the ratio between this number and the number
of data segments initially distributed is determined. This process repeats under the
different numbers of all segments as specified by nas. With this and given the case
study under consideration, the chart shown in Figure 6.2 is drawn for the first biggest
nodes cluster in order to determine nmax

as to equal 150 segments given ermin = 18 as
illustrated by the red dashed line. Notice that in Figure 6.2, the ratio between the
number of exchanged data segments and the number of data segments distributed
initially can not exceed (nb

n−1) which means (21−1) = 20 for the first biggest nodes
cluster under consideration. This is given the one version of data segments initially
distributed.

Refer to Algorithm C.9 in Appendix C for further details about this operation of
estimating the maximum number of data segments.

125



Figure 6.2: Number of data segments initially distributed effect

6.4 Data Segments Division and Allocation
Given nmax

as , which is found to be 150 segments for the first biggest nodes cluster in
the case study adopted, the nmax

as data segments are divided and allocated to the nb
n

nodes. This process starts by using the function (argfind) to find the index k that
picks the nmax

as out of the vector nas. This index k is then used as input to the
function (divideData) and the resulting nns vector of node segment numbers is used
afterwards as input to the function (allocateData) to compute the matrix SA of
segment allocations. These allocations represent the segments distributed initially
among the system nodes using V2I communication.

Notice that these aforementioned steps are already part of the upcoming bayesian
optimization operations as will be shown. This is due to the fact that SA values
are altered in the iterations of these operations and therefore need to be reset at the
beginning of each iteration.

Figure 6.3 shows the resulting segment allocations where the value 1 in the heat
map indicates a segment being allocated and the value 0 indicates, otherwise. These
allocations are made across the nb

n nodes of the first biggest cluster of the adopted
case study which is 21 nodes. Notice that the number of data segments allocated is
about 140 segments which is less than nmax

as of 150 segments. This is due to the use
of the function (divideData) which ensures that the smallest unit of data allocated
is one segment.

Refer to Algorithm C.10 in Appendix C for further details about this operation
of dividing and allocating the data segments.

126



Figure 6.3: Initial data segment allocations

6.5 Exchange Policy Search Space Visualization
Before optimizing the V2V segment exchange policy, the search space for the policy
weights is first visualized. This is done by producing a visualization data matrix that
generates ni = 100 random points for each search space slice of the 6 slices used
such that in each point: nmax

as segments are allocated between the nodes, a policy
weights vector is generated randomly while adhering to the corresponding slice weight
restrictions and a matrix A of actions is computed using the function (followPolicy).
The resulting number of data segment exchanges length(A) as well as the randomly-
chosen policy weights vector ω are then used for the slice visualizations as shown in
Figure 6.4. The weight restrictions used for the 6 slices are as follows:

1. Slice 1; where weights vary randomly except for setting ω[1] & ω[2] to 0,

2. Slice 2; where weights vary randomly except for setting ω[1] & ω[3] to 0,

3. Slice 3; where weights vary randomly except for setting ω[1] & ω[4] to 0,

4. Slice 4; where weights vary randomly except for setting ω[2] & ω[3] to 0,

5. Slice 5; where weights vary randomly except for setting ω[2] & ω[4] to 0, and

6. Slice 6; where weights vary randomly except for setting ω[3] & ω[4] to 0.

As it can be seen, Figure 6.4 shows that the optimal weight values are not trivial to
find given the many local minima and maxima encountered.

127



(a) Slice 1 (b) Slice 2

(c) Slice 3 (d) Slice 4

(e) Slice 5 (f) Slice 6

Figure 6.4: Exchange policy search space visualizations

128



6.6 Exchange Policy Bayesian Optimization
Figure 6.5 shows the flowchart of bayesian optimization. In each iteration i, a model
is fit to a set of regression data followed by using it to produce random samples.
Assuming a UCB acquisition function, the “best” random policy that has the highest
UCB estimate is chosen to experiment with by first dividing and allocating the nmax

as

data segments and then using the function (followPolicy) discussed previously. The
result of following this “best” policy is added to the regression data to have better
estimates in the next iterations until the bayesian optimization algorithm converges
to the actual optimal policy.

As it can be seen from Figure 6.5, an initial set of regression data has to be
generated before searching for the optimal exchange policy using bayesian
optimization. Therefore, this section starts by doing so after which bayesian
optimizations under different regression techniques are compared. These techniques
are: GP, RF, BNN and batch-based RF. The outcome of this comparison is
a bayesian optimization technique that is based on batch-based RF regression which
utilizes a batch of the data only instead of the whole data as will be presented.

Figure 6.5: Flowchart of bayesian optimization

129



6.6.1 Initial Regression Data Generation

Before starting bayesian optimization under any regression technique, the initial
regression data matrix DATAreg should be generated. This matrix is used to build
the regression models used in the bayesian optimization iterations when drawing
random samples.

This data generation process starts by setting DATAreg to the zero
matrix 0ni×(4+1). The number of iterations ni used to generate the initial regression
data points is set to 100. In each iteration, the index k that gives nmax

as is computed
followed by the vector nns of node segments and the matrix SA of segment
allocations. After that, the policy weights vector ω is drawn at random using the
function (randi). The resulting actions matrix A is computed and a new data point
is added to the matrix DATAreg where the columns of
indices 1 : (length(DATA′reg) − 1) represent the four ω[1 : 4] policy feature weights
and the column of index length(DATA′reg) represents the corresponding number of
segment exchanges computed as length(A).

Algorithm C.11 in Appendix C gives further details about this operation of
generating the initial regression data. Appendix C does also include
Algorithms C.12 to C.15 giving further details about the upcoming bayesian
optimizations under different regression techniques.

6.6.2 Regression Using Gaussian Processes

The first regression technique used for bayesian optimization is GP. This optimization
process starts by creating the GP data matrix DATAgp and setting it to the zero
matrix 0(length(DATAreg)+ni)×(4+1) where ni is the number of iterations used in the
bayesian optimization and it is set to 900. The first length(DATAreg) rows of this
matrix are assigned the values of the initial regression data matrix DATAreg as
follows:

DATAgp[1 : length(DATAreg), ∗] = DATAreg

The process proceeds afterwards with the bayesian optimization iterations. In
each iteration, the GP regression model Mdlgp is fit first with the weights
columns DATAgp[∗, 1 : 4] used as the input data and the column of the
corresponding number of segment exchanges DATAgp[∗, 4 + 1] as the output data.
This is done using the GP regression fitting function (fitgp) as follows:

Mdlgp = fitgp(DATAgp[∗, 1 : 4],DATAgp[∗, 4 + 1])

The optimization process continues by inquiring the generated regression
model Mdlgp randomly for a total number of nrnd times while searching for the
optimal policy weights vector. The value of nrnd is set to 1000 given the cheap cost
of inquiring the model Mdlgp compared to the actual evaluation cost. In order to
store the results of these random inquires, the data matrix DATArnd is created and
set initially to the zero matrix 0nrnd×(4+1) before proceeding into the random inquiry
iterations. In each one of these iterations, the optimization process starts by

130



generating a random policy weights vector using the function (randi). This random
weights vector is, in turn, stored into DATArnd[j, 1 : 4] before inquiring the
model Mdlgp using the function (predict) as follows:

[ ˆDATArnd, σ] = predict(Mdlgp,DATArnd[j, 1 : 4])

where:

• j is the current random point iteration index,

• ˆDATArnd is the estimated number of segment exchanges given the random
weights vector DATArnd[j, 1 : 4], and

• σ is the standard deviation of the estimated number of segment
exchanges ˆDATArnd.

Given both ˆDATArnd and σ, the estimated UCB for the number of segment exchanges
can be derived and stored in DATArnd[j, 4 + 1] as follows:

DATArnd[j, 4 + 1] =‖ ˆDATArnd + σ ‖

After generating all the nrnd random inquiries, the optimization process finds the
vector datarnd of the current-best policy weights and their corresponding UCB of
segment exchanges using the function (argmax) as follows:

datarnd = DATArnd[argmax
j

(DATArnd[j, 4 + 1]), ∗]

where the function (argmax) is used to find the index j that gives the random
point with the highest UCB of segment exchanges. Given datarnd, the process
proceeds with evaluating the index k yielding nmax

as , the vector nns and the
matrix SA. The matrix of actions A is evaluated afterwards given the current-best
weights vector ω defined as follows:

ω′ = datarnd[1, 1 : 4]

and a new point is added to the matrix DATAgp as follows:

DATAgp[length(DATAreg) + i, ∗] = [ω′ length(A)]

where i is the current bayesian optimization iteration index. These bayesian
optimization iterations continue until convergence to the optimal policy.

6.6.3 Regression Using Random Forest

Bayesian optimization using RF regression is mostly similar to the previous
bayesian optimization using GP regression. However, there are some differences.
The first difference is obviously using RF regression instead of GP regression. This
is done by first building the forest assumed to be based on the 10 tree regression
models Mdltr{1 : 10}. These models are generated using the function (fittree) as
follows:

131



Mdltr{j} = fittree(DATArf [∗, 1 : 4],DATArf [∗, 4 + 1],′MinLeafSize′, j)

where j is the current tree index and, similar to before, each tree regression
model has the inputs data represented by the weights columns DATArf [∗, 1 : 4] and
the output data represented by the column of the corresponding number of segment
exchanges DATArf [∗, 4 + 1] where DATArf is the RF data matrix. Notice that the
regression trees differ in their minimum leaf sizes which are set to the index j of
each tree. This is made in order to have a random forest that would generalize well.

Given the tree models Mdltr{1 : 10}, the optimization process continues with
its nrnd random points where nrnd is set to 1000 as before. In each random point, all
of the 10 trees are inquired using the function (predict) as follows:

ˆDATArnd[k] = predict(Mdltr{k},DATArnd[j, 1 : 4])

where:

• k is the current tree index,

• j is the current random point iteration index, and

• DATArnd[j, 1 : 4] is the random weights vector drawn using the function (randi)
like before.

Given the tree estimations ˆDATArnd[1 : 10], their mean µ as well as their standard
deviation σ can be derived as follows:

µ = (
∑
k

ˆDATArnd[k])/10

σ = ( 1
10
×
∑
k

( ˆDATArnd[k])2 − µ2)1/2

Given µ and σ, the estimated UCB for the number of segment exchanges given
the random weights vector is computed and stored in DATArnd[j, 4 + 1] as follows:

DATArnd[j, 4 + 1] =‖ µ+ σ ‖

After generating all the nrnd random inquiries, the optimization process continues
like before using GP regression until a new point is added to the matrix DATArf as
follows:

DATArf [length(DATAreg) + i, ∗] = [ω′ length(A)]

where i is the current bayesian optimization iteration index. These bayesian
optimization iterations continue until convergence to the optimal policy. Notice
that ni is set to 900 iterations like before.

132



6.6.4 Regression Using Bayesian Neural Network

Bayesian optimization using BNN regression is again very similar to bayesian
optimization using GP regression except for the main difference of using BNN
regression instead of GP regression. Doing such a regression requires two steps to be
taken. The first step is when the neural network model Mdlnn is built using the
function (fitnn) as follows:

Mdlnn = fitnn([10, 10, 10])

where the number of hidden layers is assumed to be 3 and each layer is assumed
to have 10 neurons. The activation functions for the different layers are specified such
that the three hidden layers use the “Hyperbolic Tangent Sigmoid” transfer function
whereas the output layer uses the “Linear” transfer function. The “Linear” transfer
function is used at the output layer in order to act as a linear summation that will
be replaced with a linear regression model in the second step.

After building the model Mdlnn, it is trained using the function (train) as follows:

Mdlnn = train(Mdlnn,DATAbnn[∗, 1 : 4],DATAbnn[∗, 4 + 1])

where DATAbnn is the BNN data matrix such that DATAbnn[∗, 1 : 4],
representing the weight columns, is used as the input data, and DATAbnn[∗, 4 + 1],
representing the column of the corresponding number of segment exchanges, is used
as the output data.

In the second step, the first thing made is removing the output layer of the neural
network model Mdlnn such that the 3rd hidden layer becomes disconnected from the
output layer (i.e. 4th layer) and the model output becomes directly available at the 3rd

hidden layer. This is followed by predicting the outputs of this updated model Mdlnn
given the same input dataDATAbnn[∗, 1 : 4] using the function (predict). The output
of this updated model is then used as an input to the linear regression mode Mdllin
being fit using the function (fitlinear) and the output data DATAbnn[∗, 4 + 1] as
follows:

Mdllin = fitlinear(predict(Mdlnn,DATAbnn[∗, 1 : 4]),DATAbnn[∗, 4 + 1])

Given the trained models Mdlnn and Mdllin, the optimization process proceeds
with the nrnd random inquiries such as each estimation ˆDATArnd is computed as
follows:

ˆDATArnd = predict(Mdllin, predict(Mdlnn,DATArnd[j, 1 : 4]))

where:

• nrnd is set to 1000 points like before,

• j is the current random point iteration index,

• DATArnd[j, 1 : 4] is the random weights vector drawn using the function (randi)
like before, and

133



• the function (predict) is used to predict the estimation ˆDATArnd.

Given ˆDATArnd, the estimated UCB for the number of segment exchanges given the
random weights vector is computed and stored in DATArnd[j, 4 + 1] as follows:

DATArnd[j, 4 + 1] =‖ ˆDATArnd + Mdllin.rmse ‖

where the method (rmse) gives the root mean square of the estimation when
applied to Mdllin. This is almost equivalent to the standard deviation used during
previous bayesian optimizations.

After generating all the nrnd random inquiries, the optimization process continues
like before using GP regression until a new point is added to the matrix DATAbnn

as follows:

DATAbnn[length(DATAreg) + i, ∗] = [ω′ length(A)]

where i is the current bayesian optimization iteration index. These bayesian
optimization iterations continue until convergence to the optimal policy. Notice
that ni is set here to 900 iterations like before.

6.6.5 Regression Techniques Comparison

Figures 6.6a to 6.6c show the policy weights as they vary throughout bayesian
optimization iterations under the different regression techniques. They have the
smallest variation and converge faster under RF regression. They have the most
extreme variation and converge much slower under BNN regression. Their variation
under GP regression is in between that of RF regression and BNN regression. In all
cases, the first 100 iterations represent the weights of the initial regression data
generated randomly as discussed before in Subsection 6.6.1. After that, bayesian
optimization takes effect for the next 900 iterations.

Overall, the number of segment exchanges increases as the bayesian optimization
iterations progress as shown in Figure 6.7a. However, this number tends to fluctuate
more under BNN regression. Notice again the random variation in this number for
the first 100 iterations representing the initial regression data.

The execution time of the last 900 bayesian optimization iterations under the
different regression techniques is shown in Figure 6.7b. The machine used to make
these time measurements is a MacBook Pro with a 2.5 GHz Intel Core i5 processor
and an 8 GB-1333 MHz DDR3 memory. These measurements represent the average
execution time of 10 regression iterations in each bayesian optimization iteration.
They are further cleaned from any outliers using an outlier removing window of size 10
and smoothed afterwards using a moving average window of size 10. Mean execution
time measurements are used to replace the outliers and smooth the measurements
within the window.

In general, the execution time increases as the number of observations increases
which corresponds directly to the number of iterations after the first 100 bayesian
optimization iterations. This is given the fact that exactly one observation is added
to the regression data used in each iteration. This execution time cost varies

134



significantly depending on which regression technique is being used. In fact, it grows
exponentially under GP regression, reaching as high as 3 seconds, while growing
linearly under both RF and BNN regression techniques. Using RF regression has
resulted in the shortest execution times with the slowest rate of increase as the
number of observations increases.

With the above observations in mind, the next subsection proceeds with bayesian
optimization using the RF regression technique given the short execution time it has
and the fact that it reaches the optimal number of segment exchanges as well as policy
weights with fewer fluctuations compared to the other regression techniques. However,
the most recent batch of regression data will only be used during each bayesian
optimization iteration instead of using the full data size. In addition, the randomly-
generated weights will be restricted at each iteration such that only “interesting”
weight values are chosen. The motivation for this approach is to make the execution
time shorter by processing less data while not missing the optimal weight values. This
is driven by the fact that policy weights tend to converge to their optimal value as
iterations progress. Such a value can be found in the weight search space represented
by the most recent batch of regression data. This fact can be seen by observing the
policy weight variations shown in Figures 6.6a to 6.6c as the number of iterations
increases and comparing that to the resulting number of segment exchanges as shown
in Figure 6.7a for the different regression techniques.

6.6.6 Regression Using Batch-based Random Forest

Given the previous comparison, this subsection proceeds with bayesian optimization
using batch-based RF regression. This optimization process is very similar to the
bayesian optimization using RF regression except for the amount of data being used
in each optimization iteration. In this optimization process, it is assumed that only
the most recent 100 points of the batch-based RF data matrix DATAbrf are used
for the RF regression made in each bayesian optimization iteration. The
function (fittree) is used to build the regression models Mdlbtr{1 : 10} for the 10
batch-based trees used to construct the random forest. In each one of these models,
the matrix DATAbrf [i : i + 99, 1 : 4], representing the weight columns of the most
recent 100 points, is used as an input data to each model and the
matrix DATAbrf [i : i + 99, 4 + 1], representing the column of the corresponding
number of segment exchanges, is used as the output data where i is the current
bayesian optimization iteration index.

Another difference between this optimization process and the previous bayesian
optimization using RF regression is the fact that the random weights vector ω is
drawn at random using the function (randi) such that each ω[k] : k ∈ {1, 2, ..., 4}
falls between the minimum weight bound ωmin and the maximum weight bound ωmax.
These bounds are derived as follows:

ωmin =‖ max(µω − σω,−10) ‖

ωmax =‖ min(µω + σω, 10) ‖

135



(a) Under GP regression

(b) Under RF regression

(c) Under BNN regression

Figure 6.6: Policy weights variation

136



(a) Optimization performances (b) Optimization execution times

Figure 6.7: Bayesian optimization under GP, RF and BNN regressions

where:

• µω is the policy weights mean within the most recent 100-point data batch and
it is computed as follows:

µω = (
i+99∑
m=i

DATAbrf [m, k])/100

• and σω is the policy weights standard deviation within the most recent 100-point
data batch and it is computed given µω as follows:

σω = ((
i+99∑
m=i

(DATAbrf [m, k]− µω)2)/100)1/2

Notice thatm is the batch point index, i is the current bayesian optimization iteration
index and k is the weight index. Also notice that ωmin can not be less than −10
and ωmax can not be more than 10 according to the adopted case study.

As explained previously, choosing ω[k] : k ∈ {1, 2, ..., 4} between these ωmin

and ωmax values bound the interesting search region in which the optimal ω can be
found. This is given the improvement demonstrated by bayesian optimizations as
iterations progress.

After generating all the nrnd = 1000 random inquiries, the optimization process
continues in the same exact way like before using RF regression until a new point is
added to the matrix DATAbrf as follows:

DATAbrf [length(DATAreg) + i, ∗] = [ω′ length(A)]

where i is the current bayesian optimization iteration index. These bayesian
optimization iterations continue until convergence to the optimal policy. Notice
that ni is set here to 900 iterations like before.

137



Figure 6.8: Policy weights variation under batch-based RF regression

Figure 6.8 shows the policy weight variation as iterations progress. Compared to
Figure 6.6b, it can be seen that the variation is much smaller and the policy weights
eventually converge to the fixed optimal values. This convergence is also
demonstrated by the number of segment exchanges shown in Figure 6.9a. Compared
to the conventional RF regression using the full data size, the batch-based RF
regression has managed to converge faster with fewer fluctuations.

In terms of the execution time, the batch-based RF regression has a time cost that
does not increase with the number of observations as shown in Figure 6.9b. This is
mainly attributed to the fact that the size of the regression data is actually fixed and
does not grow as iterations progress. This is contrary to the case of the RF regression
technique discussed previously which uses the full size of the continuously-growing
data.

6.7 Routing Policy Results
Using bayesian optimization with batch-based RF regression, the optimal policy
weight values are determined. Figure 6.10 shows snapshots of the resulting segment
exchanges made between the nodes of the biggest cluster under consideration at the
peak hour of the day (i.e. 5:00 PM). While Figure 6.10a provides a snapshot of the
whole Region of Waterloo, Figure 6.10b provides a snapshot that zooms into the
downtown area of Kitchener, ON which is also part of the Region. The red circles
show the interference-free broadcasting ranges of the corresponding transmitting
nodes. These nodes are represented by the red dots whereas the receiving nodes are
represented by the green dots. The red lines between the red and green dots
highlight the fact that nodes are exchanging data segments. However, the black dots
represent inactive nodes which are neither transmitting nor receiving.

138



(a) Optimization performance (b) Optimization execution time

Figure 6.9: Bayesian optimization under batch-based RF regression

(a) Regular snapshot (b) Zoomed-in snapshot

Figure 6.10: Data exchanges under optimal policy at 5:00 PM

139



(a) Instantaneous exchanges (b) Cumulative exchanges

Figure 6.11: Data segments exchanged vs. time

Figure 6.11a shows the instantaneous number of data segments exchanged between
the nodes of the biggest cluster under consideration. On the other hand, Figure 6.11b
shows the cumulative number of data segments exchanged. Both figures do so under:

• the worst policy found so far during the bayesian optimization iterations,

• the naive policy which naively prioritizes the nodes with the highest number of
direct neighbors, and

• the optimal policy found using bayesian optimization with batch-based RF
regression.

The period under consideration is between 4:00 PM and 6:00 PM which is the most
busy period of the day given the adopted case study.

Figure 6.12 shows the segment allocations at the end of data exchanges within the
period under consideration (i.e. at 6:00 PM) for the worst, naive and optimal policies.
This is for the biggest cluster under consideration which has nb

n = 21 nodes. Notice
that the number of data segments initially distributed is about 140 segments given
that nmax

as = 150 segments as determined before. Also notice that the initial segment
allocations has also been determined and shown before in Figure 6.3.

Figure 6.12 does also show the corresponding percentages of categories which
segments belong to under the different policies. As discussed before, these segments
can be categorized as “Initially-distributed” at the beginning of the content
distribution period using V2I communication, “Exchanged” using V2V
communication or “Finally-distributed” at the end of the distribution period using
V2I communication.

140



(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Data segments by the end of exchanges

141



6.8 Discussion
The optimal policy has demonstrated a superior performance compared to the other
policies. As shown by the instantaneous segment exchanges, the optimal policy might
refrain from exchanging data at certain times while achieving a higher cumulative
number of segment exchanges in the long run compared to the other policies. In fact,
it has managed to exchange more than 90% of the segments and left non for the final
V2I distribution taking place at the end of the content distribution period. On the
other hand, the naive policy has managed to exchange about 80% of the segments
while leaving almost 10% for the final V2I distribution. Even worse, the worst policy
has managed to exchange about 70% of the segments while leaving approximately 20%
for the final V2I distribution. Notice that less than 10% of the segments have initially
been distributed between the nodes.

In general, it can be noticed that all policies have managed to exchange high
percentages of segments to some extent. This is mainly attributed to the approach
followed throughout bayesian optimization. This approach has only allowed four
policy feature weights to be adjusted while following the same “black-box” or
simulation procedure when deciding on how broadcasting ranges should be set or
which segments should be chosen for transmission. If the bayesian optimization
iterations had more parameters to tune, then the difference between the different
policies would be more significant.

Figure 6.13 shows the potential of the optimal policy found using bayesian
optimization with batch-based RF regression in terms of the total data sizes which
can be distributed under different data rates. These sizes are given for the amount
of data initially distributed using V2I communication, the amount of data after the
V2V segment exchanges and the amount of data after the final V2I distribution.
They are computed by multiplying the number of segments found using the optimal
policy by the corresponding data rate value. This is done for the segments under
the different categories by the end of the content distribution period. Notice that
the data rates are chosen intentionally between 3 and 27 Mbps which are the
minimum and maximum data rates of the conventional DSRC V2V communication
technology. Also notice the overlap between the amount of data after the V2V
segment exchanges and the amount of data after the final V2I distribution. This is
attributed to the fact that the optimal policy has left no segments for the final V2I
distribution as discussed previously.

Figure 6.13 shows that the optimal policy has managed to distribute more than
50 GB of data starting with approximately 2.5 GB of data distributed initially using
V2I communication. This is assuming the average DSRC data rate of 15 Mbps. Even
under the minimum DSRC data rate of 3 Mbps, this policy can still distribute as high
as 10 GB starting with only 500 MB of data distributed initially. This gain is quite
significant and shows that the network load can be reduced by as much as 95% using
the proposed content distribution system. Notice that this offloading percentage is
the guaranteed minimum and does not depend on the data rate assumption as long
as it is maintained.

142



Figure 6.13: Data category size vs. data rate under optimal policy

6.9 Summary
In this chapter, offline operations related to content routing have been discussed as
part of the proposed content distribution system. This routing includes the initial
V2I segment distributions, the V2V segment exchanges and the final V2I segment
distributions. The functions used throughout these operations have been explained
first including: divideData, allocateData, computeFeatures, controlRange,
targetSegments, transmitData and followPolicy functions. The offline operations
are discussed afterwards including: maximum number of data segments estimation,
data segments division and allocation, V2V segment exchange policy optimization
and the production of the corresponding action tables. Bayesian optimization based
on batch-based RF regression has been used to search for the optimal V2V exchange
policy after visualizing the search space and comparing the optimization under
different regression techniques including: GP, RF, BNN and batch-based RF. This
comparison has been made in terms of the total number of segments exchanged as
well as the optimization execution time. This chapter has ended with a comparison
of the different policies found against the optimal policy and showed the significant
network offloading potential of the proposed content distribution system.

143



Chapter 7

Conclusions and Future Directions

7.1 Conclusions
The majority of content over outdoor wireless networks is public. This ranges from
videos at sites such as Youtube or Netflix, pictures at sites such as Instagram to
other types of data at social media sites such as Facebook or Twitter. Such popular
content consumes large amounts of data, if not the majority of it, which current
outdoor wireless networks struggle to support. In fact, this data demand is expected
to grow even further with services generated by outdoor things like vehicles including
infotainment and sensing services.

Public transportation systems including vehicles and stops have the networking
potential to address this huge demand for popular content data in outdoor
environments. They can provide a reliable and scalable networking solution for
popular content distribution given the distinctive attributes they have including:

• the highly predictable mobility patterns of vehicles,

• the publicly available locations of vehicles and stops,

• the same administrative entity which enforces content routing cooperation, and

• the uniform location distribution of vehicles and stops across the city space
as well as throughout the day. This distribution meets the mobility demand
of riders who constitute the main consumers of popular content in outdoor
environments. Notice that the number of these consumers is multiples of that
of the consumers riding regular vehicles who are not driving.

All of these attributes allow for efficient content routing policies to be designed in
a gradual, reliable and scalable manner.

After having a reliable ad-hoc network formed by public transportation vehicles
and stops, regular vehicles would be incentivized to be part of a reliable and secure
ad-hoc network. These vehicles would otherwise struggle with the data-selfishness
among themselves. This selfishness is what prohibited VANETs from growing despite
the many field trials conducted to show their promising performance.

144



With public transportation vehicles and stops having ad-hoc network capabilities,
regular vehicles would be free from the network effect resulting from them waiting
for each other to start owning such capabilities. The resulting huge ad-hoc network
of public transportation vehicles/stops and regular vehicles would pave the way for
services improving the safety and quality of transportation as a whole.

All of the above are motivations for the popular content distribution system
proposed in this study. A system that uses different AI-based techniques to exploit
the previously mentioned characteristics of public transportation systems such as
a reliable and scalable popular content distribution system is provided. This system
would offload significantly the wireless networks in outdoor environments in addition
to boosting the adoption of ad-hoc network capabilities among regular vehicles.

This work starts by providing a background and a survey of previous literature
related to content distribution. After that, an overview of the proposed content
distribution system is provided. This includes the content distribution procedure
as well as the databases connected to it. This procedure has the two main sets of
operations, namely: offline operations and online operations. Offline operations are
explained in details such that each operation is either related to analyzing the mobility
of public transportation vehicles and stops or related to routing the popular content
among the public transportation vehicles and stops. The experimental approach
followed when designing the recommender as part of the online operations is also
explained. Notice that, the Grand River Transit bus service offered throughout the
Region of Waterloo, Ontario, Canada is adopted as the case study.

For the offline operations related to the mobility analysis, both mobility data
preprocessing and processing operations are discussed. The preprocessing operations
include: collecting, sorting, cleaning and synthesizing the data. The processing
operations include: optimizing stop selections, computing system inter-vehicle/stop
connectivities and system vehicle/stop clustering. The clustering operation is
presented after evaluating the networking potential of public transportation vehicles
and stops.

For the offline operations related to content routing design, the functions used
throughout these operations are explained first. These operations include: estimating
the maximum number of distributable data segments, dividing and allocating the
data segments among the system vehicles and stops and optimizing the V2V segment
exchange tables. These data segments as a whole form the popular content(s) being
distributed. Bayesian optimization has been chosen as the method of optimizing the
exchange tables of these segments over a parameterized routing policy space. The
ultimate objective is to distribute as many data segments as possible using V2V
segment exchanges while doing so in an interference-free and collision-free manner.
Notice that the content distribution is done in three phases: initial V2I distribution,
V2V exchanges and final V2I distribution.

Different regression techniques have been implemented and compared throughout
bayesian optimizations including: GP, RF, BNN and batch-based RF. The batch-
based RF regression has been found to be the fastest while reaching the optimal
number of data segment exchanges. Therefore, it has been chosen to be part of the
proposed content distribution system.

145



The recommender used in the online operations has been chosen after
experimenting extensively different designs. This experimentation has been
conducted under different consumer and network scenarios including: varying
consumer group interest distributions, varying unknown consumer interest ratios
and varying ad-hoc network capacities. The designs differ in whether they interact
with the consumers or not and the nature of this interaction (i.e. Greedy, ε-greedy,
Decaying ε-greedy or UPB based). They also differ in whether they measure
consumer-consumer interest-profile similarities in order to make the consumer
interactions more efficient or not. In addition, they differ in whether they exploit
the existing geographical groups of consumers in order to make more personalized
recommendations or not. The final recommender design chosen for the proposed
content distribution system is the UPB collaborative and group-based recommender
due to its superior performance under the varying scenarios mentioned as proven
experimentally.

At the end, the proposed content distribution system has a superior performance
in terms of offloading the outdoor wireless network. In fact, it has managed to
offload as high as 95% of the wireless network load. Notice that this is still quite
conservative given the fact that the 300-meter broadcasting range has been assumed
for the transmitting vehicles and stops. In addition, the content distributed by the
proposed system would in fact reach more than one consumer due to the large number
of riders usually using the public transportation vehicles and stops simultaneously.
This means offloading the outdoor wireless network even further and in proportion
to the number consumers receiving the same popular content.

With the proposed system, a reliable and scalable ad-hoc network can be formed
in a manner that contains gradually the biggest cluster of vehicles and stops until all
public transportation system vehicles and stops are included. This network would
exploit the public transportation infrastructure in order to significantly offload the
wireless network in outdoor environments while reliably providing the backbone for
other vehicle categories (e.g. regular vehicles) to join the ad-hoc network system,
contribute to its services and benefit from them.

7.2 Future Directions
Future research directions can be divided into the following:

7.2.1 Mobility Analysis Improvements

The analysis proposed is now based on synthesizing vehicle mobility traces without
accounting for stops, decelerations or accelerations at traffic intersections, traffic
lights or traffic jams. These events affect the locations of vehicles throughout the
day and therefore the routing decisions made to distribute data segments. More
realistic mobility models incorporating these events are to be included. In fact, the
current mobility generation assumes constant vehicle velocities between successive
stops which is not completely realistic. More realistic mobility simulations

146



incorporating acceleration, stopping and deceleration throughout mobility traces are
going to be implemented.

Furthermore, the proposed system is currently based on many assumptions which
are set by the system designer and therefore an automated way for computing them
is to be developed. Examples of these assumptions include: the total number of day
periods and their durations, the total number of system nodes, the minimum contact
duration thresholds and the maximum number of hops within a cluster.

Finally, clusters are chosen to be the biggest under the minimum contact duration
thresholds which is greedy and might not be the best decision to make. This is
attributed to the fact that connectivities between nodes within these biggest clusters
might be restricted by connectivities occurring simultaneously at nearby previous
biggest clusters.

7.2.2 Content Recommender Design Improvements

In order to make better recommendations, more consumer features are going to be
included like their age, gender, future trip times and locations. Moreover, some prior
beliefs are to be incorporated when doing the UPB estimations. This can be done
by assuming that the popularity level indicated by the known consumer interests still
holds among the unknown remaining consumer interests given the same service.

7.2.3 Content Routing Design Improvements

More sophisticated directional antennas are going to be considered which would
extend the broadcasting range and enhance the data rate significantly.

The popular content is going to be distributed using V2I communication at the
beginning of the content distribution cycle while exploiting the vacant frequency
bands of the spectrum. These bands are going to be inquired from realistic spectrum
databases such as those of TV white space.

Routing gaps are going to be identified between the system nodes and incentives
are to be designed for nodes to participate in filling these gaps. For example, existing
hotspots at nearby cafes and stores can be incentivized to fill the routing gaps by
paying for them and/or distributing advertisements on their behalf. However, notice
that public transportation vehicles usually wait at stops for predetermined durations
of time while it is not necessarily the case with hotspots. Such waits constitute
a significant chance for content distribution that should be exploited.

The way the content is chosen within the same service is also going to be made
while taking into account the recency and data size of the different content segments.

Further features measuring the V2I communication potential of nodes are going
to be incorporated. They can be different at different nodes at different times of the
day and at different parts of the city. Their interactions are also going to be included
which would lead to more samples needed and therefore the longer execution time
resulting from that during the bayesian optimization is going to be considered. Notice
that the difference in performance between policies within this higher dimensionality

147



feature space is expected to be more significant compared to what has been observed
during the current study.

Shorter periods are also going to be considered in order to come up with better
exchange policies. Moreover, broadcasting ranges would be more flexible in addition
to the way segments are chosen. In other words, the current proposed system does
not need to choose greedily the maximum interference-free broadcasting range or the
least popular segment among the neighbors to be transmitted.

The policy weights are going to be chosen more flexibly from a set of continuous
numbers and need not be chosen from a restricted set of discrete numbers. Notice
that this would also lead to a longer execution time.

Dynamic programming is going to be used to come up with better policies by
dividing a day period into smaller intervals. The optimization objective is going to
be more explicit by maximizing the number of bits exchanged instead of just the
number of segments. This is motivated by the fact that not all segments carry the
same amount of bits and therefore maximizing them might not be the best bayesian
optimization objective. In order to measure the number of bits exchanged, realistic
channel models and measurements are going to be used.

Finally, the current optimization approach is going to be enhanced with the
ability to react in real time to vehicle schedule irregularities. The focus would be on
making the optimization even faster despite the fact that more features are going to
be incorporated.

7.2.4 Other Improvements

Other improvements are diverse. Starting with the ability to sort content at the
consumer handset in a way that meets their specific interests. In addition, a technique
to discard distributed content at the system vehicles and stops as well as the consumer
handsets is going to be developed in order to prevent buffer overflows.

The integration between the proposed popular content distribution system and
another private real time content distribution system is going to be investigated.
Such a private content distribution system is going to be designed while exploiting
the predictable mobility patterns of public transportation vehicles.

Transport protocols which are compatible with the proposed content distribution
system are going to be developed in a way that also exploits the predictable mobility
patterns of public transportation vehicles.

Finally, the matching between the maximum number of distributable data
segments and their services content is going to be investigated. This matching is
going to be fair and takes into account the number of content segments for each
service as well as their sizes and priorities as specified by the content recommender.

148



Bibliography

[1] “Statistical Report on Internet Development in China”, China Internet Network
Information Center, January 2018.

[2] Coleman Bazelon and Giulia McHenry, “Substantial Licensed Spectrum Deficit
(2015-2019): Updating the FCC’s Mobile Data Demand Projections”, The
Brattle Group, June 23rd, 2015.

[3] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2017–2022”, White paper, Cisco public, February 2019.

[4] “The Mobile Internet Phenomena Report”, Sandvine, February 2019

[5] IHS Economics & IHS Technology (2017), “The 5G Economy: How 5G
Technology Will Contribute to the Global Economy”, p.4, January 2017.

[6] Wisitpongphan, N.; Fan Bai; Mudalige, P.; Tonguz, O.K., "On the Routing
Problem in Disconnected Vehicular Ad-hoc Networks," in INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE, pp. 2291 -
2295, 6-12 May 2007.

[7] Rubinstein, M.G.; Ben Abdesslem, F.; Dias de Amorim, M.; Cavalcanti,
S.R.; Dos Santos Alves, R.; Costa, L.H.M.K.; Duarte, O.C.M.B.; Campista,
M.E.M., "Measuring the capacity of in-car to in-car vehicular networks," in
Communications Magazine, IEEE, vol.47, no.11, pp.128-136, November 2009.

[8] Sandesh Uppoor and Marco Fiore. 2012. Insights on metropolitan-scale
vehicular mobility from a networking perspective. In Proceedings of the
4th ACM international workshop on Hot topics in planet-scale measurement
(HotPlanet ’12). ACM, New York, NY, USA, 39-44.

[9] S. Uppoor and M. Fiore, "Large-scale urban vehicular mobility for networking
research," 2011 IEEE Vehicular Networking Conference (VNC), Amsterdam,
2011, pp. 62-69.

[10] S. Uppoor, O. Trullols-Cruces, M. Fiore and J. M. Barcelo-Ordinas, "Generation
and Analysis of a Large-Scale Urban Vehicular Mobility Dataset," in IEEE
Transactions on Mobile Computing, vol. 13, no. 5, pp. 1061-1075, May 2014.

149



[11] S. Uppoor and M. Fiore, "Characterizing Pervasive Vehicular Access to the
Cellular RAN Infrastructure: An Urban Case Study," in IEEE Transactions
on Vehicular Technology, vol. 64, no. 6, pp. 2603-2614, June 2015.

[12] H. Zhu, M. Li, L. Fu, G. Xue, Y. Zhu and L. M. Ni, "Impact of Traffic
Influxes: Revealing Exponential Intercontact Time in Urban VANETs," in IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 8, pp. 1258-1266,
Aug. 2011.

[13] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li and L. M. Ni, "Recognizing Exponential
Inter-Contact Time in VANETs," 2010 Proceedings IEEE INFOCOM, San Diego,
CA, 2010.

[14] K. Zhao, M. P. Chinnasamy and S. Tarkoma, "Automatic City Region Analysis
for Urban Routing," 2015 IEEE International Conference on Data Mining
Workshop (ICDMW), Atlantic City, NJ, 2015, pp. 1136-1142.

[15] Park MH., Park HS., Cho SB. (2008) Restaurant Recommendation for Group
of People in Mobile Environments Using Probabilistic Multi-criteria Decision
Making. In: Lee S., Choo H., Ha S., Shin I.C. (eds) Computer-Human
Interaction. APCHI 2008. Lecture Notes in Computer Science, vol 5068. Springer,
Berlin, Heidelberg.

[16] Yu Zhiwen, Zhou Xingshe and Zhang Daqing, "An adaptive in-vehicle
multimedia recommender for group users," 2005 IEEE 61st Vehicular Technology
Conference, Stockholm, 2005, pp. 2800-2804 Vol. 5.

[17] Yong Ge, Hui Xiong, Alexander Tuzhilin, Keli Xiao, Marco Gruteser, and
Michael Pazzani. 2010. An energy-efficient mobile recommender system. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’10). ACM, New York, NY, USA, 899-908.

[18] Tuukka Ruotsalo, Krister Haav, Antony Stoyanov, Sylvain Roche, Elena
Fani, Romina Deliai, Eetu Mäkelä, Tomi Kauppinen, Eero Hyvönen,
SMARTMUSEUM: A mobile recommender system for the Web of Data, Journal
of Web Semantics, Volume 20, 2013, Pages 50-67, ISSN 1570-8268.

[19] M. Kenteris, D. Gavalas and A. Mpitziopoulos, "A mobile tourism recommender
system," The IEEE symposium on Computers and Communications, Riccione,
2010, pp. 840-845.

[20] Wan-Shiou Yang, San-Yih Hwang, iTravel: A recommender system in mobile
peer-to-peer environment, Journal of Systems and Software, Volume 86, Issue 1,
2013, Pages 12-20, ISSN 0164-1212.

[21] T. Li, M. Zhao, A. Liu and C. Huang, "On Selecting Vehicles as Recommenders
for Vehicular Social Networks," in IEEE Access, vol. 5, pp. 5539-5555, 2017.

150



[22] Wan-Shiou Yang, Hung-Chi Cheng, Jia-Ben Dia, A location-aware recommender
system for mobile shopping environments, Expert Systems with Applications,
Volume 34, Issue 1, 2008, Pages 437-445, ISSN 0957-4174.

[23] Linda Briesemeister and Günter Hommel. 2000. Role-based multicast in highly
mobile but sparsely connected ad hoc networks. In Proceedings of the 1st
ACM international symposium on Mobile ad hoc networking & computing
( MobiHoc ’00 ). IEEE Press, Piscataway, NJ, USA, 45-50.

[24] Meng Guo; Ammar, M.H.; Zegura, E.W., "V3: a vehicle-to-vehicle live
video streaming architecture," Pervasive Computing and Communications, 2005.
PerCom 2005. Third IEEE International Conference on, pp.171,180, 8-12 March
2005.

[25] Bachir, A.; Benslimane, A., "A multicast protocol in ad hoc networks inter -
vehicle geocast," Vehicular Technology Conference, 2003. VTC 2003-Spring. The
57th IEEE Semiannual, vol.4, pp.2456,2460, 22-25 April 2003.

[26] Briesemeister, L.; Schafers, L.; Hommel, G., "Disseminating messages among
highly mobile hosts based on inter-vehicle communication," Intelligent Vehicles
Symposium, 2000. IV 2000. Proceedings of the IEEE, pp.522,527, 2000.

[27] Maria Kihl, Mihail Sichitiu, Ted Ekeroth, and Michael Rozenberg. 2007. Reliable
Geographical Multicast Routing in Vehicular Ad-Hoc Networks. In Proceedings
of the 5th international conference on Wired/Wireless Internet Communications
(WWIC ’07), Fernando Boavida, Edmundo Monteiro, Saverio Mascolo, and
Yevgeni Koucheryavy (Eds.). Springer-Verlag, Berlin, Heidelberg, 315-325.

[28] Kosch, T.; Schwingenschlogl, C.; Li Ai, "Information dissemination in multihop
inter-vehicle networks," Intelligent Transportation Systems, 2002. Proceedings.
The IEEE 5th International Conference on, pp.685,690, 2002.

[29] Korkmaz, G.; Ekici, E.; Ozguner, F., "A cross-layer multihop data delivery
protocol with fairness guarantees for vehicular networks," Vehicular Technology,
IEEE Transactions on, vol.55, no.3, pp.865,875, May 2006.

[30] Gökhan Korkmaz, Eylem Ekici, Füsun Özgüner, Supporting real-time traffic
in multihop vehicle-to-infrastructure networks, Transportation Research Part
C: Emerging Technologies, Volume 18, Issue 3, June 2010, Pages 376-392,
ISSN 0968-090X.

[31] Tonguz, O.K.; Wisitpongphan, N.; Fan Bai, "DV-CAST: A distributed vehicular
broadcast protocol for vehicular ad hoc networks," Wireless Communications,
IEEE, vol.17, no.2, pp.47,57, April 2010.

[32] Eichler, S.; Schroth, C.; Kosch, T.; Strassberger, M., "Strategies for Context-
Adaptive Message Dissemination in Vehicular Ad Hoc Networks," Mobile and

151



Ubiquitous Systems - Workshops, 2006. 3rd Annual International Conference
on, pp.1,9, 17-21 July 2006.

[33] Briesemeister, L.; Schafers, L.; Hommel, G., "Disseminating messages among
highly mobile hosts based on inter-vehicle communication," Intelligent Vehicles
Symposium, 2000. IV 2000. Proceedings of the IEEE, pp.522,527, 2000.

[34] Schwartz, R.S.; Ohazulike, A.E.; Scholten, H., "Achieving Data Utility Fairness
in Periodic Dissemination for VANETs," Vehicular Technology Conference (VTC
Spring), 2012 IEEE 75th, pp.1,5, 6-9 May 2012.

[35] Min-Te Sun; Wu-chi Feng; Lai, Ten-Hwang; Yamada, K.; Okada, H.; Fujimura,
K., "GPS-based message broadcasting for inter-vehicle communication," Parallel
Processing, 2000. Proceedings. 2000 International Conference on, pp.279,286,
2000.

[36] Qing Xu; Segupta, R.; Jiang, D.; Chrysler, D., "Design and analysis of highway
safety communication protocol in 5.9 GHz dedicated short range communication
spectrum," Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th
IEEE Semiannual, vol.4, pp.2451,2455, 22-25 April 2003.

[37] Nasri, A.; Fathy, M.; Hajisheykhi, R., "A Cross Layered Scheme for Broadcasting
at Intersections in Vehicular Ad Hoc Networks," Future Networks, 2009
International Conference on, pp.13,17, 7-9 March 2009.

[38] Osafune, T.; Lan Lin; Lenardi, M., "Multi-Hop Vehicular Broadcast (MHVB),"
ITS Telecommunications Proceedings, 2006 6th International Conference on,
pp.757,760, June 2006.

[39] Mariyasagayam, M.N.; Osafune, T.; Lenardi, M., "Enhanced Multi-
Hop Vehicular Broadcast (MHVB) for Active Safety Applications,"
Telecommunications, 2007. ITST ’07. 7th International Conference on ITS,
pp.1,6, 6-8 June 2007.

[40] Yuanguo Bi; Cai, L.X.; Xuemin Shen; Hai Zhao, "Efficient and Reliable
Broadcast in Intervehicle Communication Networks: A Cross-Layer Approach,"
Vehicular Technology, IEEE Transactions on, vol.59, no.5, pp.2404,2417, Jun
2010.

[41] Durresi, M.; Durresi, A.; Barolli, L., "Emergency Broadcast Protocol for Inter-
Vehicle Communications," Parallel and Distributed Systems, 2005. Proceedings.
11th International Conference on, vol.2, pp.402,406, 22-22 July 2005.

[42] Gökhan Korkmaz, Eylem Ekici, Füsun Özgüner, and Ümit Özgüner. 2004.
Urban multi-hop broadcast protocol for inter-vehicle communication systems.
In Proceedings of the 1st ACM international workshop on Vehicular ad hoc
networks (VANET ’04). ACM, New York, NY, USA, 76-85.

152



[43] Di Di; Zhang Dongxia; Limin Sun; Jiangchuan Liu; Li Juanjuan, "A game based
routing algorithm for congestion control of multimedia transmission in VANETs,"
Wireless Communications and Signal Processing (WCSP), 2011 International
Conference on , pp.1,6, 9-11 Nov. 2011.

[44] W. Saad, Zhu Han, A. Hjorungnes, D. Niyato, and E. Hossain. 2011. Coalition
Formation Games for Distributed Cooperation Among Roadside Units in
Vehicular Networks. IEEE J.Sel. A. Commun.29, 1 (January 2011), 48-60.

[45] Shrestha, B.; Niyato, D.; Zhu Han; Hossain, E., "Wireless Access in Vehicular
Environments Using BitTorrent and Bargaining," Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE, pp.1,5, Nov. 30 2008-Dec. 4
2008.

[46] Tianyu Wang; Lingyang Song; Zhu Han, "Coalitional Graph Games for Popular
Content Distribution in Cognitive Radio VANETs," Vehicular Technology, IEEE
Transactions on, vol.62, no.8, pp.4010,4019, Oct. 2013.

[47] Tianyu Wang; Lingyang Song; Zhu Han; Bingli Jiao, "Dynamic Popular Content
Distribution in Vehicular Networks using Coalition Formation Games," Selected
Areas in Communications, IEEE Journal on, vol.31, no.9, pp.538,547, September
2013.

[48] Wikipedia, “Grand River Transit”. Available:
https://en.wikipedia.org/wiki/Grand_River_Transit

[49] Transit - GRT GTFS Static & GTFS-realtime Data Feed. Available:
https://www.grt.ca/en/about-grt/open-data.aspx

[50] K. E. Suleiman and O. Basir, "Analyzing public transportation mobility data
for networking purposes," 2017 IEEE 25th International Conference on Network
Protocols (ICNP), Toronto, ON, 2017, pp. 1-6.

153



Appendix A:
Mobility Analysis Algorithms

Algorithm A.1 Collecting data

1. Inputs: Ft,Fst,Fs

2. Output: Fc

3. for i = 1 : length(Fst) do

4.

Fc[i, ∗] = [Ft[argfind
j

(f t3[j] = f st1 [i]), {6, 1, 5}] ...

Fst[i, 1 : 5] ...
Fs[argfind

j
(f s1 [j] = f st4 [i]), {5, 6}] ...

Ft[argfind
j

(f t3[j] = f st1 [i]), {7, 2}]]

;

5. end for

154



Algorithm A.2 Re-sorting same-block and same-arrival-time row data with
switching directions when occurring at the beginning of a trip

1. Input: Fc

2. Output: Fc

3. for i = 2 : length(Fc)− 1 do

4. if (f c3 [i] 6= f c3 [i− 1]) ∧ (f c3 [i] 6= f c3 [i+ 1]) then

5. %Extracting same-block data:

6. Fbl = Fc[argfind
j

(f c1 [j] = f c1 [i]), ∗];

7. %Extracting same-block and same-arrival-time data:

8. Fbl
st = Fbl[argfind

j
(f bl5 [j] = f c5 [i]), ∗];

9. %Re-sorting data:

10. if f c3 [i] = 0 then

11. Fbl
st ← sort(Fbl

st, 3);

12. else if

13. Fbl
st ← sort(Fbl

st,−3);

14. end if

15. Fbl[argfind
j

(f bl5 [j] = f c5 [i]), ∗] = Fbl
st;

16. Fc[argfind
j

(f c1 [j] = f c1 [i]), ∗] = Fbl;

17. end if

18. end for

155



Algorithm A.3 Re-sorting same-block and same-arrival-time row data with
switching directions when occurring at the end of a trip

1. Input: Fc

2. Output: Fc

3. for i = 2 : length(Fc)− 1 do

4. if (f c3 [i] 6= f c3 [i− 1]) ∧ (f c3 [i] 6= f c3 [i+ 1]) then

5. %Extracting same-block data:

6. Fbl = Fc[argfind
j

(f c1 [j] = f c1 [i]), ∗];

7. %Extracting same-block and same-arrival-time data:

8. Fbl
st = Fbl[argfind

j
(f bl5 [j] = f c5 [i]), ∗];

9. %Re-sorting data:

10. if f c3 [i] = 0 then

11. Fbl
st ← sort(Fbl

st,−3);

12. else if

13. Fbl
st ← sort(Fbl

st, 3);

14. end if

15. Fbl[argfind
j

(f bl5 [j] = f c5 [i]), ∗] = Fbl
st;

16. Fc[argfind
j

(f c1 [j] = f c1 [i]), ∗] = Fbl;

17. end if

18. end for

156



Algorithm A.4 Computing velocities

1. Input: Fc

2. Output: Fc

3. %Adding the velocity feature column:

4. f c12 = 01×length(Fc);

5. Fc ← [Fc f c12];

6. %Computing velocities:

7. for i = 2 : length(Fc) do

8. if f c1 [i] = f c1 [i− 1] then

9. d = ...

10. distance([f c9 [i− 1] f c10[i− 1]], [f c9 [i] f c10[i]]);

11. Ttravel = f c5 [i]− f c6 [i− 1];

12. if Ttravel = 0 then

13. f c12[i] is NaN ;

14. else if

15. f c12[i] = d/Ttravel;

16. end if

17. end if

18. end for

157



Algorithm A.5 Replacing velocity NaN -values

1. Input: Fc

2. Output: Fc

3. idbl = unique(f c1);

4. for i = 1 : length(idbl) do

5. %Extracting same-block data:

6. Fbl = Fc[argfind
j

(f c1 [j] = idbl[i]), ∗];

7. %Replacing velocity NaN -values within the block:

8. while ∃k : f bl12[k] is NaN do

9. for j = 2 : length(Fbl) − 1 do

10. if (f bl12[j] is NaN) ∧ (f bl12[j + 1] is not NaN) then

11. Twait = f bl6 [j]− f bl5 [j];

12. f bl5 [j] = f bl6 [j − 1] + (f bl5 [j + 1]− f bl6 [j − 1])/2;

13. f bl6 [j] = min(f bl5 [j] + Twait, f
bl
5 [j + 1]);

14. d = distance([f bl9 [j] f bl10[j]], [f
bl
9 [j − 1] f bl10[j − 1]]);

15. Ttravel = f bl5 [j]− f bl6 [j − 1];

16. f bl12[j] = d/Ttravel;

17. d = distance([f bl9 [j] f bl10[j]], [f
bl
9 [j + 1] f bl10[j + 1]]);

18. Ttravel = f bl5 [j + 1]− f bl6 [j];

19. if Ttravel = 0 then

20. f bl12[j + 1] is NaN ;

21. else if

22. f bl12[j + 1] = d/Ttravel;

23. end if

24. end if

25. end for

158



26. %Replacing velocity NaN -values

27. %at the end of the block:

28. if f bl12[length(f bl12)] is NaN then

29. f bl12[length(f bl12)] = f bl12[length(f bl12)− 1];

30. d = distance([f bl9 [length(f bl9 )] f bl10[length(f bl10)]], ...

31. [f bl9 [length(f bl9 )− 1] f bl10[length(f bl10)− 1]]);

32. Ttravel = d/f bl12[length(f bl12)];

33. Twait = f bl6 [length(f bl6 )]− f bl5 [length(f bl5 )];

34. f bl5 [length(f bl5 )] = f bl6 [length(f bl6 )− 1] + Ttravel;

35. f bl6 [length(f bl6 )] = f bl5 [length(f bl5 )] + Twait;

36. end if

37. end while

38. Fc[argfind
j

(f c1 [j] = idbl[i]), ∗] = Fbl;

39. end for

159



Algorithm A.6 Replacing high velocity values

1. Inputs: Fc, vemax

2. Output: Fc

3. %Detecting high velocity row indices:

4. idhve
rows = argfind

j
(f c12[j] > vemax);

5. %Replacing high velocity values:

6. for i = 1 : length(idhve
rows) do

7. j = idhve
rows[i];

8. f c12[j] = vemax;

9. d = distance([f c9 [j] f c10[j]], [f
c
9 [j − 1] f c10[j − 1]]);

10. Ttravel = d/f c12[j];

11. Twait = f c6 [j]− f c5 [j];

12. f c5 [j] = f c6 [j − 1] + Ttravel;

13. f c6 [j] = min(f c5 [j] + Twait, f
c
5 [j + 1]);

14. d = distance([f c9 [j] f c10[j]], [f
c
9 [j + 1] f c10[j + 1]]);

15. Ttravel = f c5 [j + 1]− f c6 [j];

16. f c12[j + 1] = d/Ttravel;

17. end for

160



Algorithm A.7 Modifying data

1. Input: Fc

2. Output: Fm

3. Fm = [f c1 f c11 f c4 f c5 f c6 f c9 f c10];

4. for i = 1 : length(Fm) do

5. if fm4 [i] 6= fm5 [i] then

6. rowextra = Fm[i, ∗];

7. rowextra[1, 4] = fm5 [i];

8. Fm[i+ 1 : length(Fm) + 1, ∗] = ...

9. (rowextra,F
m[i+ 1 : length(Fm), ∗]);

10. end if

11. end for

161



Algorithm A.8 Synthesizing trip data while matching the map

1. Inputs: Fm, nT , nTday
,Fsh

2. Outputs: LATStr,LONStr

3. %Extracting the vector of trip IDs:

4. idtr = unique(fm3 );

5. %Synthesizing trip trajectories:

6. for i = 1 : length(idtr) do

7. TRtr = Fm[argfind
j

(fm3 [j] = idtr[i]), ∗];

8. Mdllat = fitlinear(TRtr[∗, 4],TRtr[∗, 5]);

9. Mdllon = fitlinear(TRtr[∗, 4],TRtr[∗, 6]);

10. for t = 1 : nT do

11. if (t/nTday
≥ min(TRtr[∗, 4]) ∧ (t/nTday

≤ max(TRtr[∗, 4]) then

12. mdlresult = [Mdllat(t/nTday
) Mdllon(t/nTday

)];

13. %Matching trajectories to map shapes:

14. TRsh = Fsh[argfind
j

(f sh1 [j] = TRtr[1, 2]), 1 : 3];

15. for j = 1 : length(TRsh) do

16. d[j] = ...

17. distance([mdlresult[1] mdlresult[2]], [TRsh[j, 2] TRsh[j, 3]]);

18. end for

19. LATStr[i, t] = TRsh[argmin
j

(d[j]), 2];

20. LONStr[i, t] = TRsh[argmin
j

(d[j]), 3];

21. end if

22. end for

23. end for

162



Algorithm A.9 Synthesizing block data

1. Inputs: Fm,LATStr,LONStr

2. Outputs: LATSbl,LONSbl

3. %Extracting the vector of block IDs:

4. idbl = unique(fm1 );

5. %Extracting the vector of trip IDs:

6. idtr = unique(fm3 );

7. %Synthesizing block trajectories:

8. for i = 1 : length(idbl) do

9. idbl
tr = unique(Fm[argfind

j
(fm1 [j] = idbl[i]), 3]);

10. idbltr|first = argfind
j

(idtr[j] = idbl
tr[1]);

11. idbltr|last = argfind
j

(idtr[j] = idbl
tr[length(idbl

tr)]);

12. LATSbl[i, ∗] =
idbltr|last∑

j=idbltr|first
LATStr[j, ∗];

13. LONSbl[i, ∗] =
idbltr|last∑

j=idbltr|first
LONStr[j, ∗];

14. end for

163



Algorithm A.10 Filling gaps between same-block trips

1. Inputs: idbl,F
m, nT , nTday

,LATSbl,LONSbl

2. Outputs: LATSbl,LONSbl

3. for i = 1 : length(idbl) do

4. Fm
bl = Fm[argfind

j
(fm1 [j] = idbl[i]), ∗];

5. tblstart = Fm
bl [1, 4]; tblend = Fm

bl [length(Fm
bl ), 4];

6. %Filling the block gaps:

7. for t = 1 : nT do

8. if (tblstart ≤ t/nTday
≤ tblend) ∧ (LATSbl[i, t] = 0) then

9. nTgap = 0;

10. while LATSbl[i, t+ nTgap ] = 0 do

11. nTgap ← nTgap + 1;

12. end while

13. TRlats
gap = ([(t− 1)/nTday

LATSbl[i, t− 1]], ...

14. [(t+ nTgap)/nTday
LATSbl[i, t+ nTgap ]]);

15. Mdllat = fitlinear(TRlats
gap [∗, 1],TRlats

gap [∗, 2]);

16. LATSbl[i, t : t+ nTgap ] = Mdllat((t : t+ nTgap)/nTday
);

17. TRlons
gap = ([(t− 1)/nTday

LONSbl[i, t− 1]], ...

18. [(t+ nTgap)/nTday
LONSbl[i, t+ nTgap ]]);

19. Mdllon = fitlinear(TRlons
gap [∗, 1],TRlons

gap [∗, 2]);

20. LONSbl[i, t : t+ nTgap ] = Mdllon((t : t+ nTgap)/nTday
);

21. end if

22. end for

23. end for

164



Algorithm A.11 Correcting same-block trip single-step overlaps

1. Inputs: idbl,F
m, nT , nTday

,LATSbl,LONSbl, ...

2. LATStr,LONStr

3. Outputs: LATSbl,LONSbl

4. for i = 1 : length(idbl) do

5. Fm
bl=Fm[argfind

j
(fm1 [j] = idbl[i]), ∗];

6. tblstart = Fm
bl [1, 4]; tblend = Fm

bl [length(Fm
bl ), 4];

7. %Correcting overlaps:

8. for t = 1 : nT do

9. if (tblstart ≤ t/nTday
≤ tblend) then

10. if (LATSbl[i, t] > max(LATStr))...

11. ∨(LONSbl[i, t] < min(LONStr)) then

12. if ((LATSbl[i, t− 1] ≤ max(LATStr))...

13. ∧(LATSbl[i, t+ 1] ≤ max(LATStr)))...

14. ∨((LONSbl[i, t− 1] ≥ min(LONStr))...

15. ∧(LONSbl[i, t+ 1] ≥ min(LONStr))) then

16. LATSbl[i, t]← LATSbl[i, t]/2; LONSbl[i, t]← LONSbl[i, t]/2;

17. end if

18. end if

19. end if

20. end for

21. end for

165



Algorithm A.12 Converting stop-coordinates data

1. Inputs: Fs, rearth

2. Output: Fcs

3. [f cs1 f cs2 f cs3 ] = unique(Fs[∗, {1, 5, 6}]);

4. f cs4 = rearth · cos(f cs2 ) · cos(f cs3 );

5. f cs5 = rearth · cos(f cs2 ) · sin(f cs3 );

6. f cs6 = rearth · sin(f cs2 );

7. Fcs = [f cs1 f cs2 ... f cs6 ];

Algorithm A.13 Refining stop selections

1. Inputs: Fcs, rbr

2. Output: idrs

3. %Extracting the stop cluster IDs:

4. idsc = cluster(Fcs[∗, 4 : 6],′ linkage′,′ complete′, ...

5. ′criterion′,′ distance′,′ cutoff ′, rbr);

6. %Refining stops by selecting stop cluster medoids:

7. for i = 1 : length(unique(idsc)) do

8. idsci = Fcs[argfind
j

(idsc[j] = i), 1];

9. COsci = Fcs[argfind
j

(idsc[j] = i), 2 : 3];

10. for j = 1 : length(idsci) do

11. dsci [j] = distance(COsci [j, ∗],
∑
k

COsci [k, ∗]/length(COsci));

12. end for

13. idrs[i] = idsci [argmin
j

(dsci [j])];

14. end for

166



Algorithm A.14 Optimizing stop selections

1. Inputs: idrs, nT ,LATSbl,LONSbl,F
s, rbr, nos

2. Output: idos

3. %Initializing refined stop popularities:

4. popstops[1 : length(idrs)] = 01×length(idrs);

5. %Computing refined stop popularities:

6. for i = 1 : length(idrs) do

7. for t = 1 : nT do

8. if ∃k : LATSbl[k, t] 6= 0 then

9. CObl = [LATSbl[argfind
j

(LATSbl[j, t] 6= 0), t] ...

10. LONSbl[argfind
j

(LONSbl[j, t] 6= 0), t]];

11. cosi = Fs[argfind
j

(f s1 [j] = idrs[i]), 5 : 6];

12. for j = 1 : length(CObl) do

13. if distance(CObl[j, ∗], cosi) ≤ rbr then

14. popstops[i]← popstops[i] + 1;

15. end if

16. end for

17. end if

18. end for

19. end for

20. %Selecting the first nos most popular refined stops as the optimal stops set:

21. [∼, idos] = sort(popstops,−1);

22. idos = idrs[idos];

23. idos ← idos[1 : nos];

167



Algorithm A.15 Adding optimal stops data to synthetic block data

1. Inputs: idbl,LATSbl,LONSbl, idos,F
s, nT

2. Outputs: LATS,LONS

3. LATS[1 : length(idbl), ∗] = LATSbl;

4. LONS[1 : length(idbl), ∗] = LONSbl;

5. for i = 1 : length(idos) do

6. LATS[length(idbl) + i, ∗] = ...

7. repmat(Fs[argfind
j

(f s1 [j] = idos[i]), 5], 1, nT );

8. LONS[length(idbl) + i, ∗] = ...

9. repmat(Fs[argfind
j

(f s1 [j] = idos[i]), 6], 1, nT );

10. end for

168



Algorithm A.16 Computing connectivities

1. Inputs: nT , nn,LATS,LONS, rbr

2. Output: C

3. %Initializing the connectivities matrix:

4. C = 0nT×nn×nn ;

5. %Computing node connectivities:

6. for t = 1 : nT do

7. for i = 1 : nn − 1 do

8. if LATS[i, t] 6= 0 then

9. for j = i+ 1 : nn do

10. if LATS[j, t] 6= 0 then

11. d = distance([LATS[i, t] LONS[i, t]], ...

12. [LATS[j, t] LONS[j, t]]);

13. if d ≤ rbr then

14. C[t, i, j] = 1;

15. C[t, j, i] = C[t, i, j];

16. end if

17. end if

18. end for

19. end if

20. end for

21. end for

169



Algorithm A.17 Computing continuous contact durations

1. Inputs: np, nn, t
start, tend,C,4cd

2. Output: CD

3. for p = 1 : np do

4. %Initializing the continuous contact

5. %durations matrix of period p:

6. CD{p} = /O;

7. %Computing continuous contact durations:

8. for i = 1 : nn do

9. %Initializing contact duration counters:

10. cd = 01×nn ;

11. for t = tstart[p] : tend[p] do

12. for j = 1 : nn do

13. if C[t, i, j] = 1 then

14. cd[j]← cd[j] +4cd;

15. else if

16. if (t 6= tstart[p]) ∧ (C[t− 1, i, j] = 1) then

17. %Adding a duration and resetting its counter:

18. CD{p} ← (CD{p}, cd[j]);

19. cd[j] = 0;

20. end if

21. end if

22. end for

23. end for

24. end for

25. end for

170



Algorithm A.18 Extracting the cth biggest cluster (extractCluster)

1. Inputs: c, nn, t
start, tend,C,4cd, cdmin, nhmax

2. Outputs: IDb
nc{c}

3. %Initializing node clusters:

4. for i = 1 : nn do

5. cp =
tend∑

t=tstart
C[t, i, ∗];

6. IDprvs
nc {i} = argfind

j
(cp[j]×4cd ≥ cdmin);

7. end for

8. %Extending clusters to include multi-hop nodes:

9. IDnxt
nc = IDprvs

nc ;

10. for h = 1 : nhmax/2− 1 do

11. for i = 1 : nn do

12. for j = 1 : length(IDprvs
nc {i}) do

13. IDnxt
nc {i} ← IDnxt

nc {i} ∪ IDprvs
nc {IDprvs

nc {i}[j]};

14. end for

15. end for

16. IDprvs
nc = IDnxt

nc ;

17. end for

18. %Extracting the cth biggest cluster:

19. [IDnc, idnc,∼] = unique(IDnxt
nc );

20. for i = 1 : length(idnc) do

21. sizesnc[i] = length(IDnc{i});

22. end for

23. IDb
nc{c} = IDnc{argmax

i
(sizesnc[i])};

171



Algorithm A.19 Extracting next biggest clusters

1. Inputs: cdmin, t
start, tend,C, IDb

nc, c, nn,4cd, nhmax

2. Outputs: IDb
nc

3. for i = 2 : length(cdmin) do

4. %Removing connectivities

5. %of the previous biggest nodes cluster:

6. nTperiod
= tend − tstart + 1;

7. for t = 1 : nTperiod
do

8. C[t, IDb
nc{c}, ∗] = 0length(IDb

nc{c})×nn ;

9. C[t, ∗, IDb
nc{c}] = 0nn×length(IDb

nc{c});

10. end for

11. %Extracting the next biggest nodes cluster:

12. cdmin = cdmin[i];

13. c = c+ 1;

14. IDb
nc{c} = ...

15. extractCluster(c, nn, t
start, tend,C,4cd, cdmin, nhmax);

16. end for

172



Appendix B:
Content Recommender Design
Algorithms

Algorithm B.1 Generating consumer true interests

1. Inputs: nc, ns, ng, σ
g
i

2. Output: INTtrue

3. INTtrue = 0nc×ns ;

4. for g = 1 : ng do

5. idfc = nc/ng × (g − 1) + 1;

6. idlc = nc/ng × g;

7. idfs = ns/ng × (g − 1) + 1;

8. idls = ns/ng × g;

9. for j = idfc : idlc do

10. idINTtrue = ...

11. bnormrnd(‖ (idfs + idls)/2 ‖, σ
g
i , (1, ns/ng))c;

12. idINTtrue [argfind
i

(idINTtrue [i] < 1)] = /O;

13. idINTtrue [argfind
i

(idINTtrue [i] > ns)] = /O;

14. INTtrue[j, idINTtrue ] = 11×length(idINTtrue );

15. end for

16. end for

173



Algorithm B.2 Confirming that at least one service is truly liked per consumer

1. Inputs: nc, INTtrue, ng, ns

2. Output: INTtrue

3. for i = 1 : nc do

4. if ∀j, INTtrue[i, j] = 0 then

5. INTtrue[i, ...

6. randi(bi/(nc

ng
)c × (ns

ng
) + 1, (bi/(nc

ng
)c+ 1)× (ns

ng
))] = 1;

7. end if

8. end for

Algorithm B.3 Determining consumer available interests

1. Inputs: INTtrue, nc, ns, ratioui

2. Output: INTavail

3. INTavail = INTtrue;

4. for i = 1 : nc do

5. for j = 1 : ns do

6. if randn ≤ ratioui then

7. INTavail[i, j] is NaN ;

8. end if

9. end for

10. end for

174



Algorithm B.4 Confirming that at least one service is known to be liked
per consumer

1. Inputs: nc, ns, INTavail, INTtrue

2. Output: INTavail

3. for i = 1 : nc do

4. for j = 1 : ns do

5. if (∀k : INTavail[i, k] is not NaN, INTavail[i, k] = 0)...

6. ∧(INTavail[i, j] is NaN) ∧ (INTtrue[i, j] = 1) then

7. INTavail[i, j] = INTtrue[i, j];

8. break for

9. end if

10. end for

11. end for

Algorithm B.5 Non-interactive non-collaborative non-group-based recommender

1. Inputs: nTrcmnd
, ns, nc, INTavail, capnet

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for s = 1 : ns do

5. popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s];

6. end for

7. [∼, idmps] = sort(popavail
services,−1);

8. idds = idmps[1 : capnet];

9. end for

175



Algorithm B.6 Greedy non-collaborative non-group-based recommender

1. Inputs: nTrcmnd
, ns, nc, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for s = 1 : ns do

5. popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s];

6. end for

7. [∼, idmps] = sort(popavail
services,−1);

8. idds = idmps[1 : capnet];

9. for i = 1 : nc do

10. INTavail[i, idds] = INTtrue[i, idds];

11. end for

12. end for

176



Algorithm B.7 ε-greedy non-collaborative non-group-based recommender

1. Inputs: nTrcmnd
, ns, nc, INTavail, ratioui, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for s = 1 : ns do

5. popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s];

6. end for

7. [∼, idmps] = sort(popavail
services,−1);

8. ε = ratioui;

9. idds = idmps[1 : bcapnet × (1− ε)c];

10. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

11. 1, capnet − bcapnet × (1− ε)c))];

12. for i = 1 : nc do

13. INTavail[i, idds] = INTtrue[i, idds];

14. end for

15. end for

177



Algorithm B.8 Decaying ε-greedy non-collaborative non-group-based recommender

1. Inputs: nTrcmnd
, ns, nc, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for s = 1 : ns do

5. popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s];

6. end for

7. [∼, idmps] = sort(popavail
services,−1);

8. ε = 1− ...

9. length(argfind
(i,s)

(INTavail[i, s] is not NaN))/(nc × ns);

10. idds = idmps[1 : bcapnet × (1− ε)c];

11. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

12. 1, capnet − bcapnet × (1− ε)c))];

13. for i = 1 : nc do

14. INTavail[i, idds] = INTtrue[i, idds];

15. end for

16. end for

178



Algorithm B.9 Upper-Popularity-Bound non-collaborative non-group-based
recommender

1. Inputs: nTrcmnd
, ns, nc, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for s = 1 : ns do

5. popavail
services[s] =

∑
i:INTavail[i,s] is not NaN

INTavail[i, s];

6. uavail[s] = ...

7. popavail
services[s] + length(argfind

i
(INTavail[i, s] is NaN));

8. end for

9. [∼, idmps] = sort(uavail,−1);

10. idds = idmps[1 : capnet];

11. for i = 1 : nc do

12. INTavail[i, idds] = INTtrue[i, idds];

13. end for

14. end for

179



Algorithm B.10 Generating Non-Group-Based interest Recommendations using
consumers collaboration (generateNGBRecommendations)

1. Inputs: nc, ns, INTavail

2. Output: INTrcmnd

3. J = 0nc×nc ;

4. for i = 1 : nc do

5. for j = 1 : nc do

6. if i = j then

7. continue for

8. else if

9. J[i, j] = ...

10. length(argfind
s

(INTavail[i, s] = INTavail[j, s]))/ns;

11. end if

12. end for

13. end for

14. INTrcmnd = INTavail;

15. for i = 1 : nc do

16. for s = 1 : ns do

17. if INTrcmnd[i, s] is NaN then

18. INTrcmnd[i, s]← INTrcmnd[argmax
j

(J[i, j]), s];

19. end if

20. end for

21. end for

180



Algorithm B.11 Greedy collaborative non-group-based recommender

1. Inputs: nTrcmnd
, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. INTrcmnd = ...

5. generateNGBRecommendations(nc, ns, INTavail);

6. for s = 1 : ns do

7. poprcmnd
services[s] =

∑
i:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

8. end for

9. [∼, idmps] = sort(poprcmnd
services,−1);

10. idds = idmps[1 : capnet];

11. for i = 1 : nc do

12. INTavail[i, idds] = INTtrue[i, idds];

13. end for

14. end for

181



Algorithm B.12 ε-greedy collaborative non-group-based recommender

1. Inputs: nTrcmnd
, nc, ns, INTavail, ratioui, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. INTrcmnd = ...

5. generateNGBRecommendations(nc, ns, INTavail);

6. for s = 1 : ns do

7. poprcmnd
services[s] =

∑
i:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

8. end for

9. [∼, idmps] = sort(poprcmnd
services,−1);

10. ε = ratioui;

11. idds = idmps[1 : bcapnet × (1− ε)c];

12. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

13. 1, capnet − bcapnet × (1− ε)c))];

14. for i = 1 : nc do

15. INTavail[i, idds] = INTtrue[i, idds];

16. end for

17. end for

182



Algorithm B.13 Decaying ε-greedy collaborative non-group-based recommender

1. Inputs: nTrcmnd
, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. INTrcmnd = ...

5. generateNGBRecommendations(nc, ns, INTavail);

6. for s = 1 : ns do

7. poprcmnd
services[s] =

∑
i:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

8. end for

9. [∼, idmps] = sort(poprcmnd
services,−1);

10. ε = 1− ...

11. length(argfind
(i,s)

(INTavail[i, s] is not NaN))/(nc × ns);

12. idds = idmps[1 : bcapnet × (1− ε)c];

13. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

14. 1, capnet − bcapnet × (1− ε)c))];

15. for i = 1 : nc do

16. INTavail[i, idds] = INTtrue[i, idds];

17. end for

18. end for

183



Algorithm B.14 Upper-Popularity-Bound collaborative non-group-based
recommender

1. Inputs: nTrcmnd
, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. INTrcmnd = ...

5. generateNGBRecommendations(nc, ns, INTavail);

6. for s = 1 : ns do

7. poprcmnd
services[s] =

∑
i:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

8. urcmnd[s] = ...

9. poprcmnd
services[s] + length(argfind

i
(INTrcmnd[i, s] is NaN));

10. end for

11. [∼, idmps] = sort(urcmnd,−1);

12. idds = idmps[1 : capnet];

13. for i = 1 : nc do

14. INTavail[i, idds] = INTtrue[i, idds];

15. end for

16. end for

184



Algorithm B.15 Generating Group-Based interest Recommendations using
consumers collaboration (generateGBRecommendations)

1. Inputs: nc, id
f
c , id

l
c, ns, INTavail

2. Output: INTrcmnd

3. J = 0nc×nc ;

4. for i = idfc : idlc do

5. for j = idfc : idlc do

6. if i = j then

7. continue for

8. else if

9. J[i, j] = ...

10. length(argfind
s

(INTavail[i, s] = INTavail[j, s]))/ns;

11. end if

12. end for

13. end for

14. INTrcmnd = INTavail;

15. for i = idfc : idlc do

16. for s = 1 : ns do

17. if INTrcmnd[i, s] is NaN then

18. INTrcmnd[i, s]← INTrcmnd[ argmax
j:j∈{idfc :idlc}

(J[i, j]), s];

19. end if

20. end for

21. end for

185



Algorithm B.16 Greedy collaborative group-based recommender

1. Inputs: nTrcmnd
, ng, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for g = 1 : ng do

5. idfc = nc/ng × (g − 1) + 1;

6. idlc = nc/ng × g;

7. INTrcmnd = ...

8. generateGBRecommendations(nc, id
f
c , id

l
c, ns, INTavail);

9. for s = 1 : ns do

10. poprcmnd
services[s] = ...

11.
∑

i∈{idfc :idlc}:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

12. end for

13. [∼, idmps] = sort(poprcmnd
services,−1);

14. idds = idmps[1 : capnet];

15. for i = idfc : idlc do

16. INTavail[i, idds] = INTtrue[i, idds];

17. end for

18. end for

19. end for

186



Algorithm B.17 ε-greedy collaborative group-based recommender

1. Inputs: nTrcmnd
, ng, nc, ns, INTavail, ratioui, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for g = 1 : ng do

5. idfc = nc/ng × (g − 1) + 1;

6. idlc = nc/ng × g;

7. INTrcmnd = ...

8. generateGBRecommendations(nc, id
f
c , id

l
c, ns, INTavail);

9. for s = 1 : ns do

10. poprcmnd
services[s] = ...

11.
∑

i∈{idfc :idlc}:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

12. end for

13. [∼, idmps] = sort(poprcmnd
services,−1);

14. ε = ratioui;

15. idds = idmps[1 : bcapnet × (1− ε)c];

16. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

17. 1, capnet − bcapnet × (1− ε)c))];

18. for i = idfc : idlc do

19. INTavail[i, idds] = INTtrue[i, idds];

20. end for

21. end for

22. end for

187



Algorithm B.18 Decaying ε-greedy collaborative group-based recommender

1. Inputs: nTrcmnd
, ng, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for g = 1 : ng do

5. idfc = nc/ng × (g − 1) + 1;

6. idlc = nc/ng × g;

7. INTrcmnd = ...

8. generateGBRecommendations(nc, id
f
c , id

l
c, ns, INTavail);

9. for s = 1 : ns do

10. poprcmnd
services[s] = ...

11.
∑

i∈{idfc :idlc}:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

12. end for

13. [∼, idmps] = sort(poprcmnd
services,−1);

14. ε = 1− ...

15. length( argfind
(i∈{idfc :idlc},s)

(INTavail[i, s] is not NaN))/(nc/ng × ns);

16. idds = idmps[1 : bcapnet × (1− ε)c];

17. idds ← [idds idmps(randi((bcapnet × (1− ε)c+ 1, ns), ...

18. 1, capnet − bcapnet × (1− ε)c))];

19. for i = idfc : idlc do

20. INTavail[i, idds] = INTtrue[i, idds];

21. end for

22. end for

23. end for

188



Algorithm B.19 Upper-Popularity-Bound collaborative group-based recommender

1. Inputs: nTrcmnd
, ng, nc, ns, INTavail, capnet, INTtrue

2. Output: idds

3. for t = 1 : nTrcmnd
do

4. for g = 1 : ng do

5. idfc = nc/ng × (g − 1) + 1;

6. idlc = nc/ng × g;

7. INTrcmnd = ...

8. generateGBRecommendations(nc, id
f
c , id

l
c, ns, INTavail);

9. for s = 1 : ns do

10. poprcmnd
services[s] = ...

11.
∑

i∈{idfc :idlc}:INTrcmnd[i,s] is not NaN

INTrcmnd[i, s];

12. urcmnd[s] = ...

13. poprcmnd
services[s] + length(argfind

i∈{idfc :idlc}
(INTrcmnd[i, s] is NaN));

14. end for

15. [∼, idmps] = sort(urcmnd,−1);

16. idds = idmps[1 : capnet];

17. for i = idfc : idlc do

18. INTavail[i, idds] = INTtrue[i, idds];

19. end for

20. end for

21. end for

189



Appendix C:
Content Routing Design Algorithms

Algorithm C.1 Extracting biggest cluster connectivities

1. Inputs: tstart, tend,C, IDb
nc, c

2. Output: Cb{c}

3. nTperiod
= tend − tstart + 1;

4. for t = 1 : nTperiod
do

5. Cb{c}[t, ∗, ∗] = C[t+ tstart − 1, IDb
nc{c}, IDb

nc{c}];

6. end for

Algorithm C.2 Dividing data segments between nodes (divideData)

1. Inputs: IDb
nc, c, t

start, tend,Cb,nas, k

2. Output: nns

3. nb
n = length(IDb

nc{c});

4. nTperiod
= tend − tstart + 1;

5. for i = 1 : nb
n do

6. nns[i] =
nTperiod∑

t=1

nb
n∑

j=1

Cb{c}[t, i, j];

7. end for

8. nns ← bnas[k]× nns/(
nb
n∑

i=1

nns[i])c;

190



Algorithm C.3 Allocating data segments (allocateData)

1. Inputs: nb
n,nns

2. Output: SA

3. SA = 0
nb
n×

nb
n∑

i=1
nns[i]

;

4. for i = 1 : nb
n do

5. if i = 1 then

6. SA[i, 1 : nns[i]] = 11×length(nns[i]);

7. sal = nns[i];

8. else if

9. SA[i, sal + 1 : sal + nns[i]] = 11×length(nns[i]);

10. sal ← sal + nns[i];

11. end if

12. end for

191



Algorithm C.4 Computing node features (computeFeatures)

1. Inputs: nb
n,Cb, c, t,SA,nns

2. Output: Fn

3. Fn = [fn1 fn2 fn3 fn4 ]n
b
n×4 = 0nb

n×4;

4. for i = 1 : nb
n do

5. fn1 [i] =
nb
n∑

j=1

Cb{c}[t, i, j]/nb
n;

6. if fn1 [i] 6= 0 then

7. idn
s = argfind

j
(SA[i, j] = 1);

8. idn
ne = argfind

j
(Cb{c}[t, i, j] = 1);

9. idn
nene = /O;

10. for j = 1 : length(idn
ne) do

11. idne
ms = argfind

k
(SA[idn

ne[j], k] = 0);

12. if idne
ms 6= /O then

13. fn2 [i]← (fn2 [i]× (j − 1) + length(idn
s ∩ idne

ms)/length(idne
ms))/j;

14. end if

15. if j = 1 then

16. idne
cms = idn

s ∩ idne
ms;

17. else if

18. idne
cms ← idne

cms ∩ (idn
s ∩ idne

ms);

19. end if

20. idn
nene ← idn

nene ∪ argfind
k

(Cb{c}[t, idn
ne[j], k] = 1);

21. end for

22. fn3 [i] = length(idne
cms)/(

nb
n∑

j=1

nns[j]);

192



23. idn
nene ← idn

nene − (idn
ne ∪ {i});

24. fn4 [i] = 1− length(idn
nene)/n

b
n;

25. end if

26. end for

Algorithm C.5 Controlling the broadcasting range of the transmitting node
(controlRange)

1. Inputs: idtx
ne,LATS,LONS, IDb

nc, c, id
tx, t, tstart,STATn

2. Outputs: idtx
ne,d

tx
ne

3. for j = 1 : length(idtx
ne) do

4. dtx
ne[j] = distance(...

5. [LATS[IDb
nc{c}[idtx], t+ tstart − 1] ...

6. LONS[IDb
nc{c}[idtx], t+ tstart − 1]], ...

7. [LATS[IDb
nc{c}[idtx

ne[j]], t+ tstart − 1] ...

8. LONS[IDb
nc{c}[idtx

ne[j]], t+ tstart − 1]]);

9. end for

10. idtx
ene = /O;

11. for j = 1 : length(idtx
ne) do

12. if (statn1 [idtx
ne[j]] = 1) ∨ (statn3 [idtx

ne[j]] = 1) then

13. idtx
ene ← idtx

ene ∪ argfind
k

(dtx
ne[k] ≥ dtx

ne[j]);

14. end if

15. end for

16. idtx
ne[id

tx
ene] = /O; dtx

ne[id
tx
ene] = /O;

193



Algorithm C.6 Targeting data segments for transmission (targetSegments)

1. Inputs: SA, idtx, idtx
ne,STATn

2. Output: idts

3. idts = /O;

4. idtx
s = argfind

j
(SA[idtx, j] = 1);

5. for j = 1 : length(idtx
ne) do

6. if statn2 [idtx
ne[j]] = 0 then

7. idne
ms = argfind

k
(SA[idtx

ne[j], k] = 0);

8. idts ← idts ∪ (idtx
s ∩ idne

ms);

9. end if

10. end for

194



Algorithm C.7 Transmitting data (transmitData)

1. Inputs: STATn, idtx, idtx
ne,SA, idts,A, ...

2. t, tstart,dtx
ne, n

b
n

3. Outputs: SA,A,STATn

4. statn1 [idtx] = 1;

5. popsegs =
∑

i∈{idtx
ne:stat

n
2 [id

tx
ne]=0}

SA[i, ∗];

6. idcs = idts[argmin
i∈idts

(popsegs[i])];

7. for j = 1 : length(idtx
ne) do

8. if (statn2 [idtx
ne[j]] = 0) ∧ (SA[idtx

ne[j], idcs] = 0) then

9. statn2 [idtx
ne[j]] = 1;

10. statn3 [idtx
ne[j]] = 1;

11. SA[idtx
ne[j], idcs] = 1;

12. A← (A, [(t+ tstart − 1) idtx max(dtx
ne) idcs 01×nb

n ]);

13. A[length(A), 4 + idtx
ne[j]] = 1;

14. end if

15. end for

16. statn2 [idtx
ne] = 1length(idtx

ne)×1;

195



Algorithm C.8 Following the segments exchange policy (followPolicy)

1. Inputs: tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc

2. Output: SA,A,STATn

3. A = /O; nTperiod
= tend − tstart + 1;

4. for t = 1 : nTperiod
do

5. STATn = 0nb
n×3;

6. Fn = computeFeatures(nb
n,Cb, c, t,SA,nns);

7. ut = Fn × ω;

8. [∼, idord
tx ] = sort(ut,−1);

9. for i = 1 : nb
n do

10. idtx = idord
tx [i];

11. if statn2 [idtx] = 1 then

12. continue for

13. else if

14. idtx
ne = argfind

j
(Cb{c}[t, idtx, j] = 1);

15. if (∀j ∈ idtx
ne, stat

n
2 [j] = 1) ∨ (idtx

ne = /O) then

16. continue for

17. else if

18. [idtx
ne,d

tx
ne] = ...

19. controlRange(idtx
ne,LATS,LONS, IDb

nc, c, id
tx, t, tstart,STATn);

20. if idtx
ne = /O then

21. continue for

22. else if

23. idts = targetSegments(SA, idtx, idtx
ne,STATn);

196



24. if idts = /O then

25. continue for

26. else if

27. [SA,A,STATn] = ...

28. transmitData(STATn, idtx, idtx
ne,SA, idts,A, t, t

start,dtx
ne, n

b
n);

29. end if

30. end if

31. end if

32. end if

33. end for

34. end for

Algorithm C.9 Estimating the maximum number of distributable data segments
given a minimum exchange ratio threshold

1. Inputs: nas, ID
b
nc, c, t

start, tend,Cb, n
b
n, ...

2. LATS,LONS, ermin

3. Output: nmax
as

4. for k = 1 : length(nas) do

5. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

6. SA = allocateData(nb
n,nns);

7. %Specifying the naive policy weights:

8. ω = (10, 0, 0, 0);

9. [SA,A,STATn] = ...

10. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω, ...

11. LATS,LONS, IDb
nc);

12. end for

197



Algorithm C.10 Dividing and allocating the nmax
as data segments

1. Inputs: nas, n
max
as , IDb

nc, c, t
start, tend,Cb, n

b
n

2. Output: nns,SA

3. k = argfind
j

(nas[j] = nmax
as );

4. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

5. SA = allocateData(nb
n,nns);

Algorithm C.11 Generating initial regression data

1. Inputs: ni,nas, n
max
as , IDb

nc, c, t
start, tend, ...

2. Cb, n
b
n,LATS,LONS

3. Output: DATAreg

4. DATAreg = 0ni×(4+1);

5. for i = 1 : ni do

6. k = argfind
j

(nas[j] = nmax
as );

7. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

8. SA = allocateData(nb
n,nns);

9. %Specifying the policy weights randomly:

10. ω = randi((−10, 10), 4, 1);

11. [SA,A,STATn] = ...

12. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc);

13. DATAreg[i, ∗] = [ω′ length(A)];

14. end for

198



Algorithm C.12 Bayesian optimization using Gaussian Processes regression

1. Inputs: DATAreg, ni, nrnd,nas, n
max
as , IDb

nc, ...

2. c, tstart, tend,Cb, n
b
n,LATS,LONS

3. Output: DATAgp

4. DATAgp = 0(length(DATAreg)+ni)×(4+1);

5. DATAgp[1 : length(DATAreg), ∗] = DATAreg;

6. for i = 1 : ni do

7. Mdlgp = fitgp(DATAgp[∗, 1 : 4],DATAgp[∗, 4 + 1]);

8. %Using UCB:

9. DATArnd = 0nrnd×(4+1);

10. for j = 1 : nrnd do

11. %Specifying policy weights randomly:

12. ω = randi((−10, 10), 4, 1);

13. DATArnd[j, 1 : 4] = ω′;

14. [ ˆDATArnd, σ] = predict(Mdlgp,DATArnd[j, 1 : 4]);

15. DATArnd[j, 4 + 1] =‖ ˆDATArnd + σ ‖;

16. end for

17. datarnd = DATArnd[argmax
j

(DATArnd[j, 4 + 1]), ∗];

18. k = argfind
j

(nas[j] = nmax
as );

19. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

20. SA = allocateData(nb
n,nns);

21. %Specifying the current best policy weights:

22. ω = datarnd[1, 1 : 4]′;

199



23. [SA,A,STATn] = ...

24. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc);

25. DATAgp[length(DATAreg) + i, ∗] = [ω′ length(A)];

26. end for

Algorithm C.13 Bayesian optimization using Random Forest regression

1. Inputs: DATAreg, ni, nrnd,nas, n
max
as , IDb

nc, ...

2. c, tstart, tend,Cb, n
b
n,LATS,LONS

3. Output: DATArf

4. DATArf = 0(length(DATAreg)+ni)×(4+1);

5. DATArf [1 : length(DATAreg), ∗] = DATAreg;

6. for i = 1 : ni do

7. for j = 1 : 10 do

8. Mdltr{j} = fittree(DATArf [∗, 1 : 4],DATArf [∗, 4 + 1], ...

9. ′MinLeafSize′, j);

10. end for

11. %Using UCB:

12. DATArnd = 0nrnd×(4+1);

13. for j = 1 : nrnd do

14. %Specifying policy weights randomly:

15. ω = randi((−10, 10), 4, 1);

16. DATArnd[j, 1 : 4] = ω′;

17. for k = 1 : 10 do

18. ˆDATArnd[k] = predict(Mdltr{k},DATArnd[j, 1 : 4]);

19. end for

200



20. µ = (
∑
k

ˆDATArnd[k])/10;

21. σ = ( 1
10
×

∑
k

( ˆDATArnd[k])2 − µ2)1/2;

22. DATArnd[j, 4 + 1] =‖ µ+ σ ‖;

23. end for

24. datarnd = DATArnd[argmax
j

(DATArnd[j, 4 + 1]), ∗];

25. k = argfind
j

(nas[j] = nmax
as );

26. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

27. SA = allocateData(nb
n,nns);

28. %Specifying the current best policy weights:

29. ω = datarnd[1, 1 : 4]′;

30. [SA,A,STATn] = ...

31. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc);

32. DATArf [length(DATAreg) + i, ∗] = [ω′ length(A)];

33. end for

Algorithm C.14 Bayesian optimization using Bayesian Neural Network regression

1. Inputs: DATAreg, ni, nrnd,nas, n
max
as , IDb

nc, ...

2. c, tstart, tend,Cb, n
b
n,LATS,LONS

3. Output: DATAbnn

4. DATAbnn = 0(length(DATAreg)+ni)×(4+1);

5. DATAbnn[1 : length(DATAreg), ∗] = DATAreg;

6. for i = 1 : ni do

7. Mdlnn = fitnn([10, 10, 10]);

201



8. Mdlnn.layers{1}.transferFcn =′ HyperbolicTangentSigmoid′;

9. Mdlnn.layers{2}.transferFcn =′ HyperbolicTangentSigmoid′;

10. Mdlnn.layers{3}.transferFcn =′ HyperbolicTangentSigmoid′;

11. Mdlnn.layers{4}.transferFcn =′ Linear′;

12. Mdlnn = train(Mdlnn,DATAbnn[∗, 1 : 4],DATAbnn[∗, 4 + 1]);

13. Mdlnn.layerConnect(4, 3) = 0;

14. Mdlnn.outputConnect(1, 4) = 0;

15. Mdlnn.outputConnect(1, 3) = 1;

16. Mdllin = fitlinear(predict(Mdlnn,DATAbnn[∗, 1 : 4]),DATAbnn[∗, 4 + 1]);

17. %Using UCB:

18. DATArnd = 0nrnd×(4+1);

19. for j = 1 : nrnd do

20. %Specifying policy weights randomly:

21. ω = randi((−10, 10), 4, 1);

22. DATArnd[j, 1 : 4] = ω′;

23. ˆDATArnd = predict(Mdllin, predict(Mdlnn,DATArnd[j, 1 : 4]));

24. DATArnd[j, 4 + 1] =‖ ˆDATArnd + Mdllin.rmse ‖;

25. end for

26. datarnd = DATArnd[argmax
j

(DATArnd[j, 4 + 1]), ∗];

27. k = argfind
j

(nas[j] = nmax
as );

28. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

29. SA = allocateData(nb
n,nns);

202



30. %Specifying the current best policy weights:

31. ω = datarnd[1, 1 : 4]′;

32. [SA,A,STATn] = ...

33. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc);

34. DATAbnn[length(DATAreg) + i, ∗] = [ω′ length(A)];

35. end for

203



Algorithm C.15 Bayesian optimization using batch-based Random Forest regression

1. Inputs: DATAreg, ni, nrnd,nas, n
max
as , IDb

nc, ...

2. c, tstart, tend,Cb, n
b
n,LATS,LONS

3. Output: DATAbrf

4. DATAbrf = 0(length(DATAreg)+ni)×(4+1);

5. DATAbrf [1 : length(DATAreg), ∗] = DATAreg;

6. for i = 1 : ni do

7. for j = 1 : 10 do

8. Mdlbtr{j} = ...

9. fittree(DATAbrf [i : i+ 99, 1 : 4],DATAbrf [i : i+ 99, 4 + 1], ...

10. ′MinLeafSize′, j);

11. end for

12. %Using UCB:

13. DATArnd = 0nrnd×(4+1);

14. for j = 1 : nrnd do

15. %Specifying policy weights randomly within batch ω constraints:

16. for k = 1 : length(ω) do

17. µω = (
i+99∑
m=i

DATAbrf [m, k])/100;

18. σω = ((
i+99∑
m=i

(DATAbrf [m, k]− µω)2)/100)1/2;

19. ωmin =‖ max(µω − σω,−10) ‖;

20. ωmax =‖ min(µω + σω, 10) ‖;

21. ω[k] = randi((ωmin, ωmax), 1, 1);

22. end for

23. DATArnd[j, 1 : 4] = ω′;

204



24. for k = 1 : 10 do

25. ˆDATArnd[k] = predict(Mdlbtr{k},DATArnd[j, 1 : 4]);

26. end for

27. µ = (
∑
k

ˆDATArnd[k])/10;

28. σ = ( 1
10
×

∑
k

( ˆDATArnd[k])2 − µ2)1/2;

29. DATArnd[j, 4 + 1] =‖ µ+ σ ‖;

30. end for

31. datarnd = DATArnd[argmax
j

(DATArnd[j, 4 + 1]), ∗];

32. k = argfind
j

(nas[j] = nmax
as );

33. nns = divideData(IDb
nc, c, t

start, tend,Cb,nas, k);

34. SA = allocateData(nb
n,nns);

35. %Specifying the current best policy weights:

36. ω = datarnd[1, 1 : 4]′;

37. [SA,A,STATn] = ...

38. followPolicy(tstart, tend, nb
n,Cb, c,SA,nns, ω,LATS,LONS, IDb

nc);

39. DATAbrf [length(DATAreg) + i, ∗] = [ω′ length(A)];

40. end for

205


	Examining Committee Membership
	Author's Declaration
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Organization

	2 Background and Literature Review
	2.1 Overview
	2.2 Content Recommendation
	2.2.1 Artificial Intelligence-based Consumer Interactions
	Greedy Search
	-greedy Search
	Decaying -greedy Search
	Upper Confidence Bound Search

	2.2.2 Content Filtering
	Consumer-Consumer Interest Similarities
	Content-Content Feature Similarities

	2.2.3 Consumer Grouping

	2.3 Content Routing
	2.3.1 Routing Actions
	Multi-tier Routing
	Delay-tolerant Routing
	Direct Routing
	Cluster-based Routing
	Cross-layer Optimized Routing
	Terminated Routing
	Expedited Routing
	Splitted Routing
	Redundant Routing

	2.3.2 Routing Adaptation
	Domain Knowledge-based
	Artificial Intelligence-based


	2.4 Mobility Analysis Studies
	2.5 Content Recommendation Studies
	2.6 Content Routing Studies
	2.6.1 Multicast Services
	V2V-based Routing

	2.6.2 Broadcast Services
	V2I-based Routing
	V2V-based Routing
	V2X-based Routing


	2.7 Summary

	3 Proposed Content Distribution System
	3.1 Problem Formulation
	3.2 System Overview
	3.3 Case Study Assumptions

	4 Mobility Analysis
	4.1 Overview
	4.2 Data Preprocessing
	4.2.1 Data Collection
	4.2.2 Data Sorting
	4.2.3 Data Cleaning
	4.2.4 Data Synthesis

	4.3 Data Processing
	4.3.1 Stop Nodes Selection Optimization
	4.3.2 Connectivities Computation
	4.3.3 Networking Potential Evaluation
	4.3.4 Nodes Clustering

	4.4 Summary

	5 Content Recommender Design
	5.1 Overview
	5.2 Consumer Interest Profiles Synthesis
	5.3 Recommender Designs
	5.3.1 Category 1 Recommender
	5.3.2 Category 2 Recommenders
	5.3.3 Category 3 Recommenders
	5.3.4 Category 4 Recommenders

	5.4 Experiment Design
	5.5 Experiment Results
	5.5.1 Varying Group Interest Distributions (Experiments 1 to 4)
	5.5.2 Varying Unknown-interest Ratios (Experiments 5 to 8)
	5.5.3 Varying Network Capacities (Experiments 9 to 12)

	5.6 Discussion
	5.7 Summary

	6 Content Routing Design
	6.1 Overview
	6.2 Functions Used
	6.2.1 divideData Function
	6.2.2 allocateData Function
	6.2.3 computeFeatures Function
	6.2.4 controlRange Function
	6.2.5 targetSegments Function
	6.2.6 transmitData Function
	6.2.7 followPolicy Function

	6.3 Maximum Number of Data Segments Estimation
	6.4 Data Segments Division and Allocation
	6.5 Exchange Policy Search Space Visualization
	6.6 Exchange Policy Bayesian Optimization 
	6.6.1 Initial Regression Data Generation
	6.6.2 Regression Using Gaussian Processes
	6.6.3 Regression Using Random Forest
	6.6.4 Regression Using Bayesian Neural Network
	6.6.5 Regression Techniques Comparison
	6.6.6 Regression Using Batch-based Random Forest 

	6.7 Routing Policy Results
	6.8 Discussion
	6.9 Summary

	7 Conclusions and Future Directions
	7.1 Conclusions
	7.2 Future Directions
	7.2.1 Mobility Analysis Improvements
	7.2.2 Content Recommender Design Improvements
	7.2.3 Content Routing Design Improvements
	7.2.4 Other Improvements


	Bibliography
	Appendix A: Mobility Analysis Algorithms
	Appendix B: Content Recommender Design Algorithms
	Appendix C: Content Routing Design Algorithms

