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Abstract

The advancement of battery and electronic technologies pushes forward transporta-
tion electrification, accelerating the commercialization and prevalence of plug-in electric
vehicles (PEVs). The development of PEVs is closely related to the smart grid as PEVs
are considered as high power rating electric appliances that require frequent charging. As
PEVs become regular transportation options, charging stations (CSs) are also extensively
deployed in the smart grid to meet the PEV charging demand. During peak traffic hours,
the increasing PEV charging demand could exceed the loading capacities of CS-connected
transformers, causing heavy charging overload in-station. Without proper overload mitiga-
tion, the energy imbalance issues will result in severe feeder degradation and power quality
issue. Therefore, solutions for CS overload mitigation are in urgent demand.

Considering the rechargeable nature of PEV batteries, PEVs can serve as potential
mobile energy storages (MESs) to carry energy from power nodes with excess energy to
overloaded CSs to compensate the overloads. Compared to infrastructure upgrade and in-
stalling stationary energy storages at CSs, the utilization of PEVs not only minimizes the
additional upgrade/installation expenditure, but also maximizes the energy utilization in
the smart grid with high flexibility. However, the PEV utilization for overload mitigation
is confronted with a variety of challenges due to vehicular mobility and the fear of battery
degradation. Because of vehicular mobility, the CS operation dynamics become stochastic
processes, increasing the difficulty of the CS demand estimation. Without accurate demand
estimation, the overload condition cannot be timely predicted and controlled. Moreover,
the stochastic on-road traffic could impair the time-efficiency of the PEV overload mitiga-
tion service. Further, as the overload mitigation service demands frequent charging and
discharging, the fear of battery degradation could impede PEV owners from providing the
service, making the overload mitigation tasks harder to fulfill.

In this thesis, we address the above challenges to effectively utilize PEVs for overload
mitigation in the smart grid. In specific, different approaches are designed according to the
PEV properties at different commercialization stages. First, at the early PEV commer-
cialization stage, power utility company purchases large battery capacity PEVs as utility-
owned MESs (UMESs) whose only responsibility is fulfilling the energy compensation task.
The fleet of UMESSs is rather small due to the company’s limited budget, and therefore
UMESSs priorly serve the CSs with large energy imbalance (e.g., 500-1000kWh). Thus, the
stochastic CS charging demand needs to be accurately estimated and then UMESs can
be scheduled to these CSs for overload mitigation. To achieve this objective, we develop
a two-dimensional Markov Chain model to characterize the stochastic process in-station
so that the CS charging demand can be precisely estimated. Based on the estimated CS
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demand status, a two-tier energy compensation framework is designed to schedule UMESs
to the heavily overloaded CSs in a timely and cost-efficient manner. Second, at the medium
stage of PEV commercialization, vehicle-fleet based companies are motivated by legislation
to purchase a large fleet of PEVs which can be served as potential MESs, referred to as
legislation-motivated MESs (LMESs). To deliver energy to overloaded CSs using LMESs
would introduce a large amount of additional traffics to the transportation network. When
injecting these LMES traffics into an already busy transportation network, unexpected
traffic delay could occur, delaying the overload mitigation service. To avoid the potential
traffic delay incurred by LMES service, we develop an energy-capacitated transportation
network model to measure the road capacity of accommodating additional LMES traffics.
Based on the developed model, a loading-optimized navigation scheme is proposed to cal-
culate the optimal navigation routes for LMES overload mitigation. To stimulate LMESs
following the optimal navigation, we propose a dynamic pricing scheme that adjusts the
service price to align the LMES service routes with the optimal routes to achieve a time-
efficient service result. Third, when PEVs are prevalent in the automobile market and
become regular transportation options for every household, on-road private-owned PEVs
can be efficiently used as energy porters to deliver energy to overloaded CSs, named as
private MESs (PMESs). As the primary objective of PMESs is to reach their planned
destinations, the monetary incentive is demanded to stimulate them actively participating
in the overload mitigation tasks. Therefore, a hierarchical decision-making process be-
tween the utility operator (UO) and PMESs is in demand. Moreover, considering PMESs
have different service preferences (e.g., the fear of battery degradation, the unwillingness
of long service time, etc.), individual PMES decision making process on the task should be
carefully modelled. Thus, we propose to characterize the price-service interaction between
the operator and PMESs as a Stackelberg game. The operator acts as the leader to post
service price to PMESs while PMESs act as followers, responding to the posted price to
maximize their utility functions.

In summary, the analysis and schemes proposed in this thesis can be adopted by the
local power utility company to utilize PEVs for overload mitigation at overloaded power
nodes. The proposed schemes are applicable during different PEV commercialization stage
and present PEVs as a flexible solution to the smart grid overload issue.
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Chapter 1

Introduction

As electricity demands growing rapidly in recent years, conventional power grid demands
numerous energy suppliers to achieve the energy balance in a wide geographic area. There-
fore, renewable energy generations and energy storages are gradually integrated into the
power grid to provide additional energy supply in a sustainable manner [1]. As the electric-
ity generation of renewable energy is closely related to the weather conditions, the power
grid operator needs to monitor and estimate the renewable generation condition to enable
the system energy balance. Therefore, communication and information technologies are
applied in the power grid to help monitor and communicate power data/commands among
the system. Empowered with communication and information technologies, the renewable
energy integrated power grid will become a green, sustainable, and autonomous smart grid
[2].

Meanwhile, the advancement of battery technology and the launch of PEV purchase/lease
incentives push forward the PEV commercialization [3, 4]. To meet the increasing PEV
charging demands, the smart grid operator will deploy a large number of charging stations
(CSs) at different loading levels in the power distribution system. As PEV commercializa-
tion proceeds, some CSs could encounter charging overload when PEV charging demand
exceeds the loading capacity of the feeder transformer at peak hours [5]. Without proper
energy scheduling, the charging overload would result in severe feeder transformer degra-
dation and power quality issues in the smart grid [6]. An intuitive solution is to upgrade
the aged power infrastructure. However, the infrastructure upgrade demands high expen-
diture and can be inflexible when the load distribution varies in the future. Instead, energy
storage devices can be deployed at the overloaded CSs upon requests. While stationary
energy storages are an effective solution for the overload mitigation, they face the same
problem as the infrastructure upgrade: high expenditure and inflexibility. Considering the



rechargeable nature of PEV on-board batteries, PEVs can be utilized to carry energy from
power nodes with excess energy to overloaded CSs [7], presenting as a mobile and flexible
energy storage option.

In this chapter, we first provide an overview of the smart grid and introduce the po-
tential power overload issue incurred by increasing PEV charging. Then, as a possible
solution to the issue, PEVs as MESs are introduced with respect to their characteristics
and challenges. Research motivation and contribution are then discussed, followed by the
thesis outline.

1.1 An Overview of Smart Grid

Smart gird is defined as the green power system that employs communication and infor-
mation technologies to improve the efficiency, reliability, flexibility, and security of the
system [8]. Compared with the conventional power grid, the smart grid integrates a large
number of renewable energy generations and energy storage devices, which introduces high
randomness in the system operation. Therefore, communication technology is employed to
transmit the power data in the smart grid while information technology is used to process
and analyze the operation statuses. Next, we introduce the architecture of the smart grid
to provide the system background knowledge. Then, the power overload issue incurred by
the increasing PEV charging demands will be discussed.

1.1.1 Architecture of the Smart Grid

The architecture of the smart grid is shown in Fig. 1.1, which consists of three sub-
systems: power sub-system, communication sub-system, and information sub-system. The
power sub-system is a traditional power grid integrated with renewable energy generations
and energy storage devices. To fully utilize the local energy resource, the grid operator
deploys bulk-size renewable energy generations at the generation side while also has re-
newable energy deployed at the distribution side as additional power supply. Through
the distributed generations and bi-directional power infrastructure, consumers can become
the electricity providers [9]. For example, during peak hours, consumers can utilize the
electricities that are generated by local renewable generations to reduce electricity cost,
or even provide additional electricity to the grid for monetary rewards. Moreover, energy
storage devices such as PEVs, flywheels, stationary batteries are also integrated at the
distribution side as the energy buffers to enable the local energy balance.
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Figure 1.1: Architecture of the smart grid.

To enable a smooth system operation, essential power components (e.g., generations,
feeders, PEVs etc.) are monitored and the operating data are sent to the smart grid op-
erator with different communication technologies in the communication subsystem. The
variety of power application requires a heterogeneous communication environment to sat-
isfy different operation requirements [10, 11]. For example, for data communication from
power generation side to the distribution side, long-distance communication technologies
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such as power line communication, fiber optic, and cellular network are good options [12—
14]. In particular, as the fifth-generation (5G) cellular network develops, the technology
can be applied at the distribution side to support both stationary and mobile data commu-
nication [15]. Moreover, consider the exponentially increasing transmitted data on-road,
dedicated short-range communication (DSRC) technology such as vehicle ad hoc networks
(VANETS) are adopted in the smart grid for vehicle-to-vehicle and vehicle-to-infrastructure
communication [16].

The transmitted data are then stored and analyzed in the information sub-system
(e.g., data center, supervisory control and data acquisition (SCADA) system). In terms
of operation objectives, computational intelligence is applied in the sub-system to balance
between the energy supply and demand so that the efficiency, stability, and robustness of
the smart grid is achieved.

1.1.2 Power Overload Issue
PEVs in Smart Grid

With transportation electrification proceeding rapidly, PEV will become an essential com-
ponent in the smart grid. According to [17], PEVs are the vehicles that can be charged
from an external electric source by plugs or wall sockets. Currently, manufactured PEV
such as Nissan leafs has a 40kWh battery capacity with 150-mile driving range [18] while
luxury PEV such as Tesla Model S can travel up to 335 miles with an 85kWh battery [19].

PEVs are communication-enabled vehicles with on-board units (OBUs) to connect with
on-road vehicles and infrastructures. Bluetooth is a commonly adopted technology for
intra-vehicle connection while WiFi and VANETSs are good options for communicating with
on-road vehicles and road-side units (RSU). GPS and satellite communication technologies
enable vehicle connection in rural areas. Recently, long-term evolution-vehicle (LTE-V)
built upon LTE standard is expected to achieve a high data rate up to 100Mbps under high
travelling speed, which can be used by PEVs for mobility-aware charging and discharging
navigation [5, 20].

Consider PEVs as high power rating electric appliances, they are integrated into the
smart grid at the distribution side through interfaces such as CSs. In terms of differ-
ent charging requirements, CSs are deployed at different loading levels, as shown in Fig.
1.1. Public and fast CSs are usually deployed at high-voltage, large-capacity feeders while
private/home chargers are usually deployed in the residential area with low voltage. There-
fore, PEV charging has normally two modes: home charging with low power rating, and
public/fast charging for driving range extension, and has medium to high power rating.
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To facilitate the interoperability between CSs and PEVs, charging standard has been
developed globally, by categorizing PEV charging based on their plug types, power rating,
voltage etc., as summarized in Table 1.1. Alternating current (AC) charging takes up to
17 hours to fully charge a PEV [21]. This charging method is usually applied at home
for overnight charging. Direct current (DC) charging has a faster speed with the charging
time between 22 minutes to 1.7 hours [22]. It is mainly applied to public/fast CSs to help
PEVs extend driving range quickly.

Table 1.1: Charging standard

Charging Method Charging Power Requirement Charging Time
AC level 1 120VAC, 12A, 1-phase, 1.4-1.9kW 7-1Thours

AC level 2 208-240VAC, < 80A, 1/3-phase, < 19.2kW | 22min-3hours
SAE CCS (DC) 200-600VDC, 80-400A, < 240kW < 1.2hours
CHAdeMO (DC) 417VDC, 120A, 50kW < 1.7hours
SuperCharger (DC) | 450-600VDC, 200-225A, 90-120kW <1 hour

Power Overload of Charging Stations

The great electricity demand and high power rating of PEVs make their charging process in
the smart grid significantly different from the electricity consumption of other appliances.
The automobile market foresees a high PEV penetration in the future. In 2018, about
2 million PEVs were sold globally, recording a year-over-year growth of 57.3% [23]. As
predicted in the report [4], PEVs are expected to have 30% market share with an average
120kWh battery capacity by 2030. Correspondingly, charging standards are expected to
have more high power-rating options to make the PEV competitive with conventional
vehicles. In March 2019, Tesla announced its third generation superchargers that can
provide charging power up to 250kW [24]. Last year, Porsche also connected its ultra-fast
charging station to the grid with an 800-volt, up to 350kW charging rate [25].

However, the development of the smart grid does not catch up with the commercial-
ization speed of PEVs. As the penetration rate of PEVs increases, the aged power infras-
tructure will face increasing PEV charging demand that would exceed the planned loading



capacity. Therefore, overload issue would incur at the limited-capacity feeder and causing
severe operating issues such as voltage deviation, transformer overheating, etc. Simulation
in [26] shows that when PEVs reach the market share of 30%, their integration to the res-
idential grid can incur significant voltage deviation. Moreover, connecting a large number
of PEVs to the distribution feeder increases the overhead distribution transformer ageing
factor due to excessive operating temperature [27]. In addition, the power fluctuation of
PEV charging is closely related to human behaviour, e.g., the charging power reaches peak
value at night for home charging and during busy traffic hours for public charging [28, 29].
Thus, how does the aged power infrastructure cope with the time-variant power demand
spike is of great challenges.

Ever since the PEV launch, its overload threaten to the smart grid has attracted many
researcher’s attention. CS planning has been a hot research topic that estimates the charg-
ing demands at CS candidate nodes and sets the CS power limit accordingly to mitigate
the potential overload issue. To estimate the CS charging demand, PEV traffic pattern
and CS dynamic have been extensively studied [30-35]. For example, PEV traffic pattern
modelling problem has been investigated using data-based model [30, 31], synthesis model
[32, 33], and simulator-based model [34, 35]. By considering the stochastic properties of
PEV travelling and battery condition, the CS dynamic analysis is studied to estimate the
time-variant PEV charging demand. By applying queue theory and modelling the CS oper-
ation dynamics as a first-come first-serve queueing model such as M /M /c queue [36, 37] or
M/G/c/c queue [38, 39], the PEV charging demand in-station can be estimated. Then, the
siting and sizing of CSs are determined by solving a multi-objective optimization problem
which satisfies the power limit of the system, ensures reasonable utility of charging, and
meets the PEV driver’s charging demand [40-42].

However, CS planning has its ceiling: the power infrastructure limitation. Therefore,
to expand the smart grid service capacity, the energy utilization of the system needs to be
optimized. On the one hand, by proper scheduling, PEVs are either directed to charge at
other available stations as in works [5, 43, 44] or temporally scheduled to be charged at
other off-peak hours as in works [28, 45, 46]. On the other hand, the smart grid service
capacity can be enhanced from the energy supplier perspective. An intuitive method is to
upgrade the aged power infrastructure, which can be a huge and costly project. Another
similar idea that has been mentioned in many works is to install stationary batteries at
the overloaded power nodes [47-49]. However, the installation of stationary battery not
only increases the infrastructure expenditure, but also leads to energy redundancy during
off-peak charging hours. Its lack of flexibility could fail to meet the charging demand
fluctuation incurred by the traffic regime evolution [50]. Therefore, a flexible and cost-
efficient energy supply/storage approach is in urgent demand to help improve the smart



grid charging capacity.

We look back at the smart grid architecture, as shown in Fig. 1.1, where public CSs are
categorized in terms of their loading levels: the resourceful CSs (RCSs) and the limited-
capacity CSs (LCSs). RCSs are normally deployed in the urban area where the primary
feeders have excess loading capacity, and LCSs are deployed at rural areas with limited
power sources for PEV charging demand. To fully utilize the energy resource in the smart
grid, surplus energy at power nodes with excess electricity (e.g., RCSs) can be delivered to
LCSs to compensate the overloads. In this thesis, we exploit the potentials of using PEVs
as MESs to provide the energy delivery service for overload compensation.

1.2 Mobile Energy Storage

With a similar nature to the stationary battery, the rechargeable battery in PEV has the
potential to be the aforementioned medium for overload mitigation. The predicted PEV
prevalence in the automobile market means that no excessive expenditure is required for
installing batteries. Moreover, mobile PEVs present themselves as spatially flexible energy
storages, and thus, can efficiently address the variant charging distribution problem (i.e.,
the role transitions between RCSs and LCSs) incurred by traffic regime evolution [50]. In
this section, we first explore the energy storage potential of PEVs, followed by introducing
the MES characteristics. Finally, the challenges of MESs will be presented.

1.2.1 Energy Storage Potential in PEVs

The large-size rechargeable batteries and electric chargers provide the on-road vehicle with
an efficient and sustainable propulsion resource, electricity. As the PEV battery lifetime
prolongs and bi-directional electric chargers develop, PEVs become more than electric
consumers, but potential energy storages in smart grid.

The rechargeable battery technology development has been a long journey since the late
90s: from the lead-acid battery with 30-40Wh /kg energy density to the nickel metal battery
with 30-80Wh/kg, and until now, the lithium-ion battery with more than 200Wh /kg energy
density [51]. As the most prevalent battery in PEVs, lithium-ion battery has more than
4000 cycles that can support 100,000 mile driving or 8 years of driving equivalently [52].
Accounting for the main proportion of the PEV cost, the price of lithium-ion battery has
dropped from $1,000/kWh in 2010 to $200/kWh in 2019 [53]. The significant price drop
will continue in the next decade until the price reaches $73/kWh by 2030, at which time



PEVs are very cost-competitive with conventional vehicles. Besides, PEV also has a lot of
potential battery options under develop. For instance, the zinc-air battery has a low price
of $100/kWh while the hydrogen cell battery has a high energy density of 40,000Wh/kg,
but the battery efficiency needs to be enhanced [54]. The lithium-air battery has similar
features to hydrogen cell battery: high energy density but low efficiency and stability [55].
Solid lithium battery has been attracted many industrial attention (e.g., Tesla, Toyota,
Nissan etc.) due to its high energy density up to 1,000Wh/L when the lithium-ion has an
energy density between 250-693Wh/L [56, 57].

Another technical focus on the rechargeable battery is its lifetime and cost regarding
charging/discharging cycle. The battery ageing depends on several factors: temperature,
charging level, depth-of-discharging (DoD), rate of charge/discharge, and battery type. In
terms of DoD condition, a moderate DoD prolongs the battery cycle life [58, 59]. For
example, for a 40% DoD, the battery cycle life is between 1,000-3,000 while the battery
cycle reduces to the range between 400 and 900 when DoD is 80% [58]. Recent research
works present a promising future for prolong the lifetime of rechargeable battery when it is
frequently charged and discharged: the works in [60, 61] explore and validate the potential
of extending cycle life with proper vehicle-to-grid (V2G) scheduling while the works in
thermal management can improve the energy efficiency of battery discharge [62].

For PEVs to be served as energy storages, bi-directional chargers are essential for
realizing the reverse power flow. Extensive research works explore the feasibility of bi-
directional charger in both DC/AC and DC/DC modes [63, 64] while the power quality
improvement and thermal management for the charger are also investigated in the works
[65, 66]. Foreseeing the bi-directional charger potential and PEV prevalence in the market,
PEV and interface manufacturers are developing their roadmap and pilot projects for
vehicle-to-grid (V2G) technology. The V2G roadmap proposed by Charging Interface
Initiative e.V. (CharIN e.V.) predicts that around 2025, V2G aggregated charging will
be achieved [67]. Currently, Fermata has released its 25kW bidirectional fast charger,
partnered with Nissan to launch its Nissan Energy project [68]. Cisco also launched a V2G
test project in the UK that can simultaneously connect 200 PEVs with 10kW bi-directional
chargers [69].

With the rechargeable battery and bi-directional charger technologies advancing, PEVs
can undertake the MES roles to store energy at power nodes with excess energy (e.g., RCSs)
and deliver the surplus energy to overloaded CSs (i.e., LCSs).



1.2.2 Characteristic of MESs

The service process of MES consists of three steps: charging at RCSs, on-road travelling,
and discharging surplus energy at LCSs. Compare with low-voltage power transmission
at the distribution side, the energy efficiency of MES energy delivery is decent. The
energy efficiency of MES charging and discharging can be as high as 95% when DC/DC
converters of bi-directional chargers perform optimally. During the MES travelling period,
the energy loss mainly depends on the PEV battery retention performance, which is at
99% efficiency. This calculation is obtained under the service regulation that MESs are
guaranteed not using the stored energy, and the energy consumption of on-road travelling
will be compensated monetarily. Therefore, the MES energy compensation service has an
energy efficiency around 90% [70].

As PEV commercialization proceeds, on-road PEVs also evolve in terms of their battery
capacity, fleet size, ownership, and mobility control. In this thesis, we categorize MESs
into three types: utility-owned MESs (UMESSs), legislation-motivated MESs (LMESs) and
private MESs (PMESs) and introduce their characteristics, respectively.

UMES

In the early stage of PEV commercialization when PEVs are not pervasive, smart grid
operator needs to have its own MESs to deliver energy in the smart grid. Inspired by the
oil tank, the operator uses large battery capacity PEVs as MESs, which are referred to as
UMESSs. Since their primary responsibilities are overload mitigation, they are frequently
charged and discharged on demand. The UMES prototype could refer to the developed
electric truck by Tesla, semi [71], which has the battery capacity range between 800kWh
and 1IMWh. Consider the battery size and cost, the fleet size of UMESs is very limited
and UMESs will be scheduled priorly to serve heavily overloaded LCSs.

LMES

To push forward the PEV commercialization, government has launched incentive legislation
for PEVs worldwide. For example, in Canada, most provinces have PEV lease/purchase
reward up to $8,000 [72, 73]. As such, vehicle fleet-based companies (e.g., lease/rental
companies and public transportation) are motivated to purchase a large number of PEVs
as LMESs. LMESs are normally medium battery capacity PEVs with a medium fleet size
(hundreds of MESs). Refer to currently developed PEVs and global outlook, the battery
capacities of LMESs are expected to be around 100kWh[19] for long-distance travelling.



The stochastic property in LMESs increases compared to UMESs due to their fleet size and
their injection impact on the transportation network. When LMESs are travelling on-road,
they account for a non-negligible portion of on-road traffic, which could incur additional
travelling delays in peak traffic hours. Therefore, LMES scheduling needs to analyze their
travel impacts in the transportation network [74].

PMES

As PEVs gradually dominate the automobile market and they become regular transporta-
tion option for every household, private PEVs can be stimulated by the grid operator to
provide overload compensation service as PMESs for additional economic benefits. As each
PMES wants to achieve its objective (e.g., arrive at destination timely, maximize service
revenue etc.), it behaves independently of the operator. Therefore, the stochastic property
of PMESs is the highest among all MESs and needs to be carefully scheduled considering
their individual objectives. In terms of the driver’s travelling pattern, PMESs can be both
commuting vehicles or long-distance vehicles. Therefore, the battery capacity of PMES is
within the range of 50-100kWh. The objective of PMESs is different from other MESs.
UMESs and LMESs are additional vehicle fleets whose sole responsibility is overload com-
pensation, and they travel on-road as additional traffic. On the other hand, PMESs only
accept MES tasks when their planned routes pass the assigned CSs, and they have spare
battery space [75]. Therefore, PMESs account for part of the regular on-road traffic and
have little impact on the transportation network. The PMES scheduling is then focused
on their service stimulation.

1.2.3 Challenges of MESs

While MESs present as an effective and flexible solution to the overload issue, their schedul-
ing encounters several challenges from both technical and social perspectives. First is the
stochastic property of MES service, where the randomness main comes from the following
aspects:

1. In-station Dynamic: Since the energy delivery process consists of energy storage
and supply, stochastic property arises in the energy charging/discharging time in
RCSs/LCSs, which depends on the CS adopted standard and MES service capacity;

2. Traffic Condition in Transportation Network: The on-road traffic condition

affects the MES travelling time on-road, which introduces stochastic properties to
the MES service.

10



As the energy compensation service requires battery discharge, concerns about battery
degradation arise and need to be carefully considered for MES scheduling. Moreover, some
drivers may find the service time-consuming due to additional charging and discharging
time. Therefore, MES stimulation is essential, especially for PMESs.

In this thesis, we try to address these challenges when scheduling MESs in terms of
their characteristics during different commercialization stages.

1.3 Motivation and Contribution

Considering the high-efficiency, flexibility, and cost-efficiency of MESs, they are seen as es-
sential smart grid components that help mitigate the CS overload issues. To our interests
in this thesis, we will answer the question of how to exploit MES potential for overload
mitigation considering the stochastic CS operation status and social impact of the ser-
vice. As PEV commercialization proceeds, the characteristics of MESs change in terms of
their battery capacity, fleet size, ownership, and mobility control, which also have a non-
negligible impact on scheduling results. Therefore, the posted question will be discussed
and studied under different PEV commercialization stages (i.e., from UMESs to LMESs,
and finally PMESSs).

1.3.1 Two-tier Energy Compensation Framework for UMESs

The rapid PEV commercialization demands an extensive deployment of CSs to meet the
PEV charging demands. While some of CSs are installed at primary feeders with large
transformer loading capacities, other CSs deployed at rural area where the transformers
have limited loading capacities could encounter power overload during peak charging hours.
Without proper power management, LCSs could encounter severe transformer degradation
and power quality issues [6, 76-78]. Therefore, the smart grid demands cost-efficient and
fast-response energy storages to help alleviate the potential overloading pressure while
avoiding additional infrastructure upgrade. Inspired by the oil tank truck, power utility
company can adopt huge battery capacity PEV to store surplus energy at RCSs and deliver
the energy to LCSs as additional energy supply as UMES. In the early PEV commercializa-
tion when PEVs are not prevalent, UMESs are the efficient energy storage options whose
sole responsibility is to deliver energy to LCSs for overload mitigation.

Regarding PEV discharging scheduling, there have been many research works that study
the V2G scheduling for overload mitigation [79], renewable energy integration [80-82] and
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frequency regulation [83, 84]. PEVs can either be scheduled to discharge energy directly
back to connected vehicles as in works [85, 86], or scheduled for overload mitigation when
connected in the parking lots as in works [87-90]. The above works consider discharging
the energy that is originally the PEV propulsion resource, in which case, most PEVs will
be reluctant to do so due to range anxiety issue. On the other hand, UMESs do not
have the range anxiety concerns, as their primary functionalities are energy storages: as
long as the UMES has spare battery space, it can be used to store and deliver surplus
energy. In works [91-94], the concept of MESs has been utilized for demand response
and renewable energy integration service. However, the stochastic properties of charging
demand and traffic condition demand operation dynamic analysis of CSs. Moreover, the
scheduling of UMESSs needs to be designed according to time-variant charging demand and
transportation condition. Therefore, to efficiently schedule UMESs, we need to address
the following challenges:

a) The strong correlation between traffic condition and PEV charging demands requires
modelling of CS operation dynamics considering the stochastic property of PEV
traffic. Moreover, the heterogeneity of PEV state-of-charge (SoC) statuses also affects
the CS operation dynamics and needs to be considered in dynamic analysis;

b) From the smart grid operator’s aspect, how to balance the CS energy while mini-
mizing MES scheduling cost and enabling a time-efficient energy delivery is of great
challenges.

Overall, the UMES scheduling problem aims to answer the question of how to allocate
the UMES energy distribution and transportation route to balance the system power and
minimize the scheduling cost. To this end, we develop an energy compensation framework
to schedule UMESs. Specifically, to characterize the charging process at RCSs and dis-
charging process at LCSs, a two-dimensional Markov chain model is developed to analyze
the CS dynamics. The energy delivering process in transportation network is characterized
as a graph-based problem. To comprehensively analyze the MES and power system data,
a two-tier energy compensation framework is introduced. Based on the framework, the
MES scheduling is formulated as an optimization problem to minimize the scheduling cost
while guaranteeing the power balance among a group of CSs (GCS).

1.3.2 Dynamic Pricing-based Navigation of LMESs

For LCSs which have predictable and long-term charging overload issues, UMESs can
deliver a large amount of energy by prior scheduling. As a further step from the long-term
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scheduling, it is also significant to investigate the GCS power balancing problem considering
the short-term stochastic vehicle mobility. For example, some LCSs deployed at traffic-
intensive area have predictable power shortages up to 2MWh frequently, in which case
UMESSs can be scheduled priorly to prevent power overload [7]. Other LCSs at rural regions
only need 500kWh during 2 p.m.to 5 p.m., in which case, UMESs are not cost-efficient
candidates to fulfill the energy compensation task. As PEV commercialization proceeds
and incentive legislation launches globally, the increasing number of PEVs belonged to
vehicle-fleet based companies become potential LMES candidates. Unlike UMESSs, the large
fleet-size and moderate battery capacities of LMESs make them flexible MESs suitable for
dynamic energy compensation tasks.

The works in [7, 70, 92-95] study the MES scheduling problem to balance the power
supply and demand efficiently, mainly focusing on the energy perspective. However, to use
LMESSs for compensation service means that a large number of additional traffic will inject
in the transportation network. In busy traffic hours, additional traffic delay and energy
compensation service delay could incur, and therefore, the injected LMES impact on the
transportation network should be considered during scheduling. Regarding the PEV navi-
gation in the transportation network, there have been some works study the PEV charging
impact on the transportation network [96, 97| and conclude that without proper naviga-
tion, PEV charging could interfere with the transportation network operation. Therefore,
in the works [98-102], the coupled operation of smart grid and transportation network
have been extensively studied for PEV charging navigation. Compared to the above nav-
igation works, LMES analysis focuses on the injected MES traffic analysis, rather than
overall system analysis, and thus the potential delay incurred by LMES traffic is the main
concern. Moreover, as LMESs do not have the complete information of on-road conditions
and injected traffic, the navigation is provided by the smart grid operator to achieve the
optimal travelling results. To stimulate LMESs following the provided navigation requires
additional motivation (e.g., monetary rewards). Although pricing has been used in several
works by analyzing Wardrop equilibrium, the convergence of Wardrop Equilibrium requires
iterated simulation between the utility operator and LMESs. However, consider the impor-
tance of time-efficiency for LMES energy delivery, a more time-efficient scheduling scheme
is required. To efficiently schedule LMESs at both smart grid and transportation network
level, the following questions should be answered:

Q(1) How to navigate LMESs in the transportation network to avoid potential traffic delay
and congestion incurred by LMESs;

Q(2) As LMESs tend to maximize their service revenue, how to stimulate LMESs ac-
complishing the assigned tasks under the navigated routes while the utility operator
minimizes the scheduling cost.
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To answer the above questions, a dynamic pricing-based scheduling scheme is pro-
posed to adjust the service price to encourage LMESs delivering assigned energy following
the navigated route. An energy-capacitated graph model is introduced to calculated the
available traffic capacity on each route to enable a stable on-road travelling condition. A
loading-optimized scheduling scheme is proposed to calculate the LMES travelling routes
while optimizing the loading pressure at RCSs. Then, a dynamic pricing scheme is proposed
to stimulate LMESs following the navigated route while minimizing the utility scheduling
cost.

1.3.3 Enmnergy Scheduling of On-road PMESs: a Stackelberg Ap-
proach

As the technology advances and PEV commercialization proceeds, PEVs are expected to
have 30% market share with an average 120kWh battery capacity by 2030 [4]. As PEV
becomes prevalent, the large fleet size of private PEVs makes them potential on-road
PMESs with high flexibility [75]. Therefore, PMES can be a good candidate to miti-
gate short-term power overload issue at LCSs. Different from LMESs, scheduling on-road
PMESs does not need to consider the additional traffic impact issues on the transportation
network, as PMESs are originally part of the on-road traffic. The smart grid operator
schedules PMESs to CSs that are along their planned routes as travelling to destined place
is PMES’s primary objective. Therefore, energy compensation tasks become the secondary
objective for on-road PMESs. When PEVs are prevalent in the automobile market, and
there are a large number of PMES candidates on-road, the overload compensation can be
accomplished by on-road resource efficiently.

In literature, the centralized pricing scheme has been applied for PEV charging shift
as in works [98, 103]. Hierarchical pricing decision making process has been studied in
works [104-106] consider the heterogeneity of PEV preferences and objectives. Besides,
game theory can be used to precisely characterize the interaction between the smart grid
operator and PEVs. Specifically, the grid operator first posts the service price to stimulate
PMESs and then, PMESs decide their service capacities according to the posted price.
Therefore, a sequential game model such as Stackelberg game can be applied for on-road
PMES scheduling. Stackelberg game model has been applied in both PEV charging and
discharging schedule as in works [107-110]. However, consider MES service process, the
Stackelberg game needs to consider multiple aspects. For PMESs to accomplish energy
compensation tasks, both charging and discharging at CSs should be stimulated. Rewards
for additional battery degradation and service time are required. Therefore, to efficiently
schedule on-road PMESs, the following questions should be answered:
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Q(1) How to stimulate PMESs which have different objectives and preferences to fulfill
the assigned energy compensation tasks;

Q(2) How to adjust the stimulation price so that the energy balance among a GCS is
achieved in a cost-efficient manner.

To answer these questions, we propose a price-incentive scheme to stimulate PMESs
by maximizing their service revenues. Meanwhile, the scheme guarantees that overload
issues among a GCS are effectively mitigated. Based on the scheme, a Stackelberg game
is formulated to characterize the stimulation process between grid operator and PMESs
where grid operator acts as the leader to post service price while PMESs act as followers,
responding to the posted price.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 presents a comprehen-
sive overview of related works in V2G scheduling, PEV navigation, and pricing strategies.
Chapter 3 introduces a two-tier energy compensation framework that uses UMESs to bal-
ance GCS energy supply and demand. In Chapter 4, a pricing-based navigation scheme
is proposed to schedule LMES energy compensation service along the optimal navigated
routes. Chapter 5 proposes to use the Stackelberg game model to characterize the price-
service interaction between the smart grid operator and on-road PMESs to mitigate the
overload issues among a GCS. Finally, Chapter 6 concludes the thesis and presents future
works.
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Chapter 2

Literature Review

In this chapter, we aim to provide a comprehensive review of strategy design of MES
scheduling, including PEV discharging scheduling, MES navigation scheme, and incentive
strategy design.

2.1 PEV Discharging Strategy for Overload Mitiga-
tion

An essential technology that supports MES is the V2G technology where PEVs send their
battery energy back to the smart grid. Existing works on V2G can be classified into three
types: renewable energy integration, regulation service provision, and peak load mitigation.
The stochastic energy output of renewable energy can be smoothly integrated to the smart
grid using PEVs as energy buffers to flatten the violent generation fluctuation [80-82]. V2G
can also be used in regulation service to fine-tune the frequency and voltage of generation
through balancing between power demand and supply [80]. Due to the randomness in
PEVs and regulation service, the V2G regulation service capacity estimation has been
studied in works [38, 112]. Works in [83, 84] thoroughly study the scheduling schemes to
maximize the PEV profit in the regulation market.

Extending the connected PEV functionality to energy storage, vehicle-to-vehicle (V2V)
discharging and V2G technologies can be used to mitigate the peak power loads. The re-
lated works are summarized in Table 2.1. V2V technology considers directly using the
PEV discharged energy to charge other PEVs with charging demands. Using PEV ag-
gregators (e.g., parking lot, CSs, etc.) as V2V energy exchange interface, the works in
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Table 2.1: Comparison of related works on overload mitigation

Application Scenario Scheduling Objective Solution/Technique
) Peak load shaving + charging cost reduction [85] Fuzzy logical controller
Stationary V2V
QoE + grid reliability enhancement [86] Matching theory
Minimize peak load [87] Cooperative game
Evaluate V2G service potential [88 uadratic programmin
Stationary V2G P 58] Q pros &
Flatten microgrid power profile [89] Optimal power flow
Multi-objective power dispatch [90] Mixed-inter linear programming
Minimize charging cost [79] Convex optimization
. Minimize transmission loss [70] Minimal cost-flow
Mobile V2G
Demand balance [93, 94] Dynamic network simplex
Optimize PEV charging/discharging policy [111] Markov decision process

[85, 86] schedule the PEVs connected in parking lots for V2V service to mitigate the PEV
charging impact on the smart grid. The work in [85] uses a fuzzy logical controller to ad-
just the charging/discharging rates of connected PEVs to mitigate their charging impact
on smart grid and reduce the PEV charging costs. Similarly, the work in [86] schedules
connected PEVs in the parking lot using matching theory to improve their quality of expe-
rience (QoE) while enhancing the smart grid reliability. PEVs can also participate in V2G
service by discharging their energy back to the power grid. The potential benefits of V2G
technology on the smart grid have been investigated in works [87, 88]. The work in [87]
proposes a distributed demand response algorithm to adjust PEV charging/discharging to
minimize the peak load. The work in [88] concludes that with V2G, the PEV charging
capacity of the existing infrastructure can be significantly enhanced. The reliability en-
hancement for V2G application in the microgrid is also assessed and validated in works
[89, 90]. Interregional V2G is considered in the work [89] to balance the power supply and
demand among multiple micro-grids while in work [90], PEVs are considered as stationary
energy storages for power dispatch. However, most of the above works consider V2G in
the stationary PEV mode, in which PEVs are considered as large battery capacity energy
storages. For the smart grid to further improve the system loading capacity based on its
existing infrastructure, PEVs can be used as MESs to maximize energy utilization.

Several works have exploited the potentials of mobile PEVs under the V2G scenario
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[70, 79, 93, 94, 111]. The V2V charging is investigated in the work [79] by encouraging on-
road PEVs discharging their excess energy to relieve the overload issue of PEV charging via
price control and advanced communication architecture. However, the mobile V2V method
has a high risk of power imbalance due to its limited energy capacity. Consequently, the
energy network concept of using PEVs as energy porters to deliver energy from renewable
energy sources to CSs is proposed in the work [70]. The impact of mobile V2G network on
the smart grid stability and reliability has been studied in works [93, 94] using dynamic
network simplex methods. In the work [111], to optimize the MES performance in micro-
grid, a Markov decision process problem is formulated to obtain the optimal policies of MES
charging and discharging. However, most of the reviewed works have not considered the
scenario where only the storage space of PEV battery is used for overload compensation.
This scenario considers two unique features: first is to use PEV battery space rather than
existing energy in PEVs due to range anxiety issue; second is to use MESs delivering energy
among a GCS to maximize the energy source utilization in the system and mitigate the
overload issues at LCSs. Due to the randomness of both charging demands and local traffic
condition, operation dynamics of RCSs and LCSs are require to be modelled and analyzed.
Moreover, an efficient framework is demanded to schedule MESs based on station dynamics
and current transportation condition to minimize the scheduling cost and enable energy
transmission time-efficiency.

2.2 MES Navigation Scheme Design

To promote PEVs in the automobile market, legislation (e.g., PEV lease/purchase incen-
tive) has been launch worldwide [4]. Vehicle fleet-based companies will therefore become
the main proportion of PEV owners with a large fleet of PEVs that have the potential
to be LMESs. To study the MES potentials of PEVs, many works investigate the MES
energy delivery scheduling for power balance [70, 93, 94, 111]. In our work on scheduling
UMESs [7], the CS dynamics are modelled as two-dimensional Markov Chains to predict
the CS energy surplus/demand and a convex optimization problem is formulated to sched-
ule UMESs among a GCS. While the energy scheduling of MESs has been studied, the
impact of MES fleet on the transportation network has yet to be discussed. When LMESs
participate in energy compensation tasks, a large number of additional traffics will then
inject in the transportation network. Without proper traffic navigation, additional traffic
delay and service delay could incur in busy traffic hours.

Consider the primary objective of PEV integration to the smart grid is charging for
travel range extension, PEV charging navigation and its impact on the smart grid and
transportation network have been extensively studied, as summarized in Table 2.2. The
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Table 2.2: Comparison of related works on PEV navigation

Application Scenario Scheduling Objective Solution/Technique
System impact Vehicular mobility-based modelling [96] Monte-Carlo simulation
evaluation Charging facility-based modelling[97] Activity-based simulation

Cost-minimized charge and travel [98] Wardrop principle
Robust energy dispatch [99] Convex optimization
Coupled system . . .
. Elapsed time minimization [100] Non-linear program
operation
Travel + CS waiting +charging time minimization [101] Dynamic programming
Route energy minimization [102] Convex relaxation

charging activity of a large fleet of PEVs can couple the operation of smart grid and trans-
portation network. The reliability of both systems has been investigated in work [96] using
a quasi sequential Monte-Carlo simulation to sample the EV travelling on the transporta-
tion network. It is concluded that the proposed PEV charging/discharging control can
improve the smart grid reliability but has a reverse impact on the transportation network.
In addition to modelling vehicular traffic patterns, another crucial factor in the coupled
system is the “tie points”: CSs [97]. The work in [97] uses an activity-based model to
co-simulate the smart grid and transportation network to understand the multi-role of EV
CSs. To study the coupled system, the work in [98] characterizes the PEV charging pro-
cess as part of the operation of the transportation network by considering PEV charging
as virtual arcs in the transportation graph model. An optimal pricing scheme is used to
schedule PEVs on the coupled system, and by obtaining second Wardrop equilibriums,
the social optimum of smart grid economic dispatch and traffic assignment is achieved.
In the work [99], the traffic assignment and power analysis are formulated together as an
optimal traffic-power flow convex optimization problem to enable a robust energy dispatch
in smart grid considering traffic demand uncertainty. In the work [100], a similar energy
virtual-arc graph is adopted to analyze both user-centric and system-centric PEV charg-
ing navigation for minimizing the total elapsed time of travel and recharge. Consider the
time-dependent congestion conditions on-road and in-CS, the work in [101] proposes to
minimize the travel time when having the context of other PEVs’ intention of charging.
In addition to minimizing elapsed time during operation, some PEVs are concerned about
their energy consumption in-travel and therefore, in the work [102], a minimum energy
route search problem is formulated to help PEVs find their minimum energy-consumed

19



routes considering the random effects of on-road traffic condition.

While extensive research on PEV charging navigation has been conducted, the schedul-
ing of LMESs has its unique feature from the following perspectives. First, LMESs are
additional injected traffic that has the stochastic property related to time-dependent charg-
ing demand. Thus, rather than minimizing the overall travelling time, the potential delay
incurred by the LMES traffic is the primary concern. Second, consider the ownership of
LMESs, it is essential to maximize their revenues, which can also be the motivation for
them to follow the operator’s navigation by price-incentive. Although Wardrop equilibrium
has been proposed in some works to achieve social optimum, the convergence of Wardrop
equilibrium requires iterated interaction between grid operator and LMESs, while a more
time-efficient scheduling scheme is required for overload mitigation. Therefore, we propose
a dynamic pricing-based scheme to navigate LMESs following the scheduled route to mit-
igate their potential impact on the transportation network. The proposed scheme enables
minimal LMES impact on the transportation network while guaranteeing a time-efficient
energy compensation service.

2.3 Incentive Strategy Design for MESs

Table 2.3: Comparison of related works on incentive strategy

Application Scenario

Scheduling Objective

Pricing Scheme

Centralized pricing

Minimize generation + travel cost [98]

Wardrop principle

Unify PEV charging demand distribution [103]

Iterated rule-based model

Hierarchical pricing

UO: max revenue + PEVs: max utilities [104]

Home/roaming pricing

UO: max social welfare + PEVs: max utilities [105]

Menu-based pricing

Peak load flatten [106]

Linear programming

CS: max revenue + PEVs: max charging benefits [107]

CSs: max revenue + PEVs: min overall service costs [108]

UO: max energy utilization + PEVs: min service costs [109]

CS: max revenue + PEVs: max revenue and satisfaction [110]

Stackelberg game

When PEVs dominate the automobile market, PMESs will be the popular MES op-
tions for overload mitigation. As PMESs have different objectives and service preferences,
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a proper incentive should be provided to ensure the service task accomplishment. In lit-
erature, there have been extensive works that use the monetary incentive for PEV charg-
ing/discharging control, as summarized in Table 2.3. For PEV charging that couples the
operation between smart grid and transportation network, a toll is posed to selfish drivers
to align their behaviours with social optimum that minimizes generation cost and traffic
time cost [98]. Specifically, a marginal congestion pricing scheme is proposed according
to Wardrop principle to achieve the user equilibrium. In the work [103], temporal PEV
charging shifting is considered to reduce the overlaps between residential and CS load dur-
ing peak evening hours. The reaction of PEV charging profile in response to the price can
be effectively characterized as an iterated rule-based pricing model.

In most works, PEVs are assumed to have similar objectives, such as minimize charg-
ing costs/maximizing V2G service revenue. However, consider the heterogeneity in PEV
charging/discharging preferences and goals, the PEV decision making process should also
be studied. Therefore, the interaction between smart grid operator, CSs, and PEVs become
a hierarchical decision marking process. In the work [104], to balance the energy supply
and demand within each micro-grid, home-pricing and roam-pricing policies are adopted
by the micro-grid utility operator (UO) to optimize its revenue. Based on the posted price,
PEVs then make their charging/discharging decisions to maximize their utilities. A dis-
crete pricing scheme is proposed in the work [105], where PEVs select their service in the
menu provided by UO to maximize their utilities. The UO-PEV scheduling via pricing can
also be conducted decentralized as in the work [106], where PEVs determine their charg-
ing/discharging processes based on the real-time price and demand-supply curve under a
decentralized cloud computing architecture.

As a mature mathematical model, game theory can precisely characterize the interaction
between the UO and PEVs in a hierarchical architecture. The UO first posts its electricity
price/service price, and then PEVs make their service decisions in response. The interaction
can be characterized as a sequential game model such as the Stackelberg game. Stackelberg
game model has been applied to both PEV charging and V2G scheduling [107-110]. The
CS operator is considered as the game leader in the work [107] to maximize its charging
revenue while PEVs act as followers to maximize their charging energy fairly. Multiple-
leader multi-follower game can be applied when CSs compete with each other to maximize
their own revenue in terms of their waiting time, travel distance and so on, as in the
work [108]. The Stackelberg game can also be used in a multi-layer architecture where
the smart grid operator is the first layer leader that is in control of multiple CSs among a
GCS to maximize the overall energy utilization and revenue as in the work [109]. When
scheduling both PEV charging and discharging, the work in [110] proposes a game model
that maximizes the service revenue and charging satisfaction of PEVs and EV aggregator’s
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profit using the real-time electricity trading price.

While the incentive strategy design has been extensively explored in the above works,
two key factors of PMES scheduling have not been considered collaboratively: hierarchi-
cal pricing and MES service process. While PEV charging and discharging schedule has
been discussed before, the main focus is on PEV in-station scheduling. However, when
schedule PMESs, the service process consists of three stages, including MES charging, dis-
charging, and on-road travelling. Moreover, to stimulate PMES providing service, rewards
for additional battery degradation and service time should be considered. For the smart
grid operator, how to mitigate the LCS overload issues using on-road MES source in a
cost-efficient manner is its main concern. Therefore, our objective in the PMES scheduling
scenario is to design an effectively pricing-incentive strategy to stimulate on-road PMESs
participating in the service by considering the heterogeneity in their objectives and pref-
erences.

2.4 Summary

In this chapter, we have provided a comprehensive review of the existing works about
PEV discharging and MES scheduling in smart grid and transportation network, and the
incentive strategy design for PMESs. From the literature review, we can conclude that
while the PEV discharging scheduling has been extensively studied, challenges of multi-
stage MES scheduling have not been solidly resolved yet. In the following chapters, we
will introduce our proposed schemes to address the challenging issues during different
development stages of MESs and ultimately reach the research objectives of this thesis.
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Chapter 3

Two-Tier Energy Compensation
Framework for UMESs

3.1 Introduction

As PEV gradually dominates the automobile market, CSs will be deployed extensively in
the smart grid to provide charging service. However, the implementation of this project
requires necessary upgrade on the aged power infrastructure. Specifically, some CSs are
expected to be deployed at primary feeders that have excess energy, guaranteed with suffi-
cient loading capacities at MWh level [6]. On the other hand, to complement the charging
demand where these primary feeders cannot reach, some CSs are deployed at feeders whose
transformers have limited loading capacities. Adjacent CSs with different loading capaci-
ties are clustered together as a GCS.

Due to the temporal-spatial variation of PEV charging distribution in smart grid [5],
overload concerns arise for the CSs with limited capacities. Without proper scheduling for
energy balance at these CSs, the overloaded feeders could encounter severe transformer
and power quality degradation [113, 114]. To address this potential issue without spending
excessive expenditure on the infrastructure upgrade, cost-efficient and fast-response energy
storages are in urgent demand. This requirement can be abstracted as how to allocate the
energy resources to a group of service nodes within the area beyond their inherent limits
corresponding to real-time energy demand distribution.

A possible solution is to utilize mobile electric storages as resource porters to carry
energy from RCSs to the overloaded LCSs. Instead of deploying brand new mobile electric
storages, we could use what we already have: the soon to be prevalent PEVs, and rethink
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their energy storage features. The rechargeable batteries in PEVs not only store energy
for vehicular mechanical propulsion, but also can be a potential flexible energy storage
device. Therefore, in this chapter, we utilize the PEV as a flexible energy storage device to
compensate for the lacking energy and mitigate the overload issue at LCSs. These PEVs
that deliver surplus energy from RCSs to LCSs are referred to as MESs. Inspired by the oil
tank trucks, local power utility company adopts large battery capacity PEVs as UMESs
to mitigate the heavy overload issues at LCSs. Since PEV charging demands are strongly
correlated to on-road traffic condition which varies temporally and spatially, the stochastic
properties of PEV traffics need to be considered. From the UO perspective, UMESs should
accomplish energy compensation tasks in a cost-efficient manner. Therefore, the UMES

scheduling aims to minimize the scheduling cost while enabling the energy balance among
a GCS.

To efficiently allocates UMES energy distribution, we introduce a two-tier energy com-
pensation framework. Although PEV discharging scheduling has been extensively studied
in works [70, 79, 85-90, 93, 94, 111], few research works have utilized MESs as utility-
scaled energy storages to address the CS overload issue. The main contribution of the
work are threefold. First, in terms of the stochastic on-road PEV traffic, MES charging,
and discharging processes at RCSs/LCSs are characterized as Markov chain to normalize
the operation dynamics. Second, consider the heterogeneity of input data (e.g., CS loading
status, MES status, on-road traffic, etc.), a two-tier energy compensation framework is
introduced to schedule UMESs among a GCS. Finally, to minimize the scheduling cost
while guaranteeing power balance, a cost-minimized optimization problem is formulated
and solved for MES scheduling.

The remainder of the chapter is organized as follows. The system model is developed
in Section 3.2 to characterize station operations. Energy compensation framework is in-
troduced in Section 3.3. Based on the framework, the optimization problem is formulated
and solved in Section 3.4. Section 3.5 presents the performance evaluation of the proposed
scheme, and Section 3.6 summarizes this chapter.

3.2 System Model

In this section, we analyze the CS dynamics and transportation network. Operation dy-
namics of RCSs/LCSs are characterized as Markov Chains to analyze the CS energy status.
Then, a directed graph is used to abstract the transportation network to plan UMES travel
routes. A summary of useful notations in this chapter is shown in Table 3.1.

As shown in Fig. 3.1, we consider a group of PEV charging stations S that are deployed
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Table 3.1: Notations for Chapter 3

Symbols Description

APEV h The on-road PEV traffic flow at time h, vehicles/hour

As,h The PEV arrival rate at CS s at time h, vehicles/hour

AsM,h The average UMES arrival rate at CS s at time h, vehicles/hour
s The service rate of CS s, vehicles/hour

T The steady-state probability of Markov Chain

Or.,1/2/3 Energy charging price parameters

B Transportation price, $/km/kWh

AFE,,. The average UMES discharging capacity, kW h

Ps.h The percentage of arriving PEVs at CS s at time h, %

a The overall number of PEVs being served in the CS, vehicles
b The number of PEVs being served by UMESSs, vehicles
Ceharge,h The cost of charging UMESs at RCS at time h, $

Ccharge,re,h
Ch

Cirans,h
Dy, 2.,
Eq xn
E:. a:h
G(V, Ed)
Js,h
Lay.

M
Ngem,n
NgL
Py,

h

R/Q

S

Z

Charging price at RCS r, at time h, $/kWh

Overall scheduling cost at time h, $

The energy supplied by UMESs at LCS ¢¢, kW h

The allocated UMES energy be charged at RCS r. at time h, kWh
The energy supplied by local feeder at CS s, kWh

The transportation cost of UMESs at time h, $

The distance between road intersections z, and zy,, km

The energy discharged by the kth UMES at LCS ¢ at time h, kWh
The energy transmitted from RCS r, to LCS ¢¢ at time h, kWh
The directed transportation graph

The MES energy supply rate at CS s at time h, vehicles

The average PEV charging demand, kW h

The transition matrix of Markov Chain

The number of PEVs charged by UMESs at LCS ¢; at time h, vehicles
The number of PEVs charged by local feeder at CS s, vehicles

The power capacity of local feeder connected to CS s, kW

Index of time

The set of RCS/LCS

The set of GCS

The set of road intersections
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Figure 3.1: System overview of the GCS.

at different levels in the power distribution system, while the UO controls the scheduling
activities. In terms of energy capacity, CSs S can be categorized into two classes: R
and Q. The first one is RCSs, whose set is denoted by R = {r1,7r3...7.}. They are
connected to primary feeders with stable and sufficient power supplement from the bulk
generations. On the other hand, LCSs, whose set is denoted by @ = {q1,q2...¢¢} are
connected to limited-capacity feeders in the remote areas. With sufficient power supply,
RCSs potentially have excess energy supply capacity to satisfy PEV charging even in peak
traffic hours. Moreover, their excess charging energy can be reallocated to LCSs with
UMESs to mitigate their potential overload issues.

3.2.1 Station Energy Capacity Characterization

CS can be supplied by two sources: either by generation system through local feeders, or
by additional energy storages such as UMESs. The energy can be supplied through local
feeders, depends on the loading capacities of the distribution transformer, which is denoted
as Cg,. It is further characterized as the number of PEV charging services Ngp, that the
local feeder can provide simultaneously in an hour considering incoming PEVs have the
average charging demand L., . In our work, the average charging demand is set to 15kWh,
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which is 50% battery capacity of the PEV model Nissan Leaf. Considering that the station
connected feeder has a power capacity of Fy1,, the number of PEVs charged by the local
feeder denoted as Ny, satisfies the following equation:

Cy, = / Pyrdt = N - Lay.. (3.1)
h

In terms of the hourly on-road traffic flows, PEV charging demands at station s, denoted
as Ry is time-variant. Regarding the relation between Cg, and R, 1, CSs with different
capacities response differently. Enabled with sufficient power supply, RCS r, can easily
fulfill incoming PEV charging demands C 1, which is denoted as:

Cror, 2 Ri o (3.2)

On the other hand, LCS ¢ may encounter power imbalance at peak traffic hours, which is
denoted as:

Coqr. < Rypn- (3.3)

To address the overload issues in LCSs, the allocated UMES energy FEyiq,n at LCS ¢
should compensate the energy gap between energy supplied through local feeders and
PEV charging demands, denoted as:

Engen + Co = Ry (3.4)

the UMES allocated energy is the summation of all the UMES discharging energy at the
station during hour h. Similar to the local feeder capacity, it is also characterized by the
number of PEV charging service Ny n that can be provided simultaneously in an hour,
as:

Engin = Z Eq xh = Ngaarh - Lav. (3.5)
k

where Fq, 1, denotes the energy discharged by the A&th UMES coming to LCS ¢ during
time h. On the other hand, RCSs need to undertake the UMES charging tasks besides
charging PEVs. The UMES charged energy at RCS 7., denoted as Eh, n, needs to satisty
the following equation:
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C’reL Z EMre,h + Rre,ha (36)

to ensure the RCS feeder capacity can fully supply the in-station PEV charging and UMES
energy reallocation.

3.2.2 Station Dynamic Model

By introducing UMESs as energy porters in the smart grid and considering the temporal-
spatial variant traffic distribution, dynamics of CSs need detail analysis. The station
dynamics are analyzed hourly to estimate their energy status during A-th hour, where h €
[0,1,2...22,23]. The station dynamic is characterized as a continuous-time Markov Chain.
In terms of the station property, the modellings of LCSs and RCSs will be introduced
respectively.

Limited-Capacity Charging Station

In the LCS, charging-demand PEVs and energy supplier UMESs both arrive at the station
randomly. The PEV behaviour can be characterized as a stochastic process based on the
following assumptions.

Assumption 1 PEVs arrive at the CS s following a Poisson process with an average
arrival rate of Agy at time h.

As validated in [115], the arrival distribution of vehicles at CSs follows a Poisson process
since each vehicle arrives at stations independently and memoryless. Hence, in our model,
PEVs are considered to follow the Poisson process. The average arrival rate Asj, depends
on the on-road PEV traffic flow Apgy p, the time h of a day, and the arriving percentage
of PEVs at the CS p,1, among the overall on-road PEV traffics as

Ash = APEVh * Psh- (3.7)

UMESSs are another independent set of vehicles functioning sorely as energy storage devices.
Upon receiving the energy compensation tasks, UMESs randomly arrive at RCSs to store
surplus energy and depart. Depends on the on-road stochastic traffic condition, UMESs
can be considered travel on-road independently and memoryless. Therefore, UMES arrival
distribution at LCSs is considered as a Poisson process.

28



Assumption 2 UMESSs arrive at the charging station s following a Poisson process with
an average arrival rate of Ay at hour h.

The UMES energy supply rate g5, at LCS s is characterized as the number of PEVs
that UMESSs can charge simultaneously in an hour. The rate depends on the UMES arrival
rate Aqgvn, the average UMES energy-storing capacity AE,, , and average PEV charging
demand L,, . It can also be characterized as the summation of incoming UMES energy
Fhige n divided by the average PEV charging demand:

Avih Ay Evigen
o D _ Bygn 3.8
gob Lo Loy (38)

LCS manages the energy coming from UMESs and local feeder together, and then dis-
tributes to each charger following the same charging standard.

Assumption 3 The service rate of station s follows an exponential distribution with an
average service rate of [is.

As each station provides charging services to different types of PEVs with different
SoC conditions, the PEV charging service is also a stochastic process. The service time
can be modelled as a lognormal distribution based on 2009 NHTS data [116]. To make
the service process analytically tractable, we consider that station operators adopt the
developed smart charging mechanism in the work [38] to make the service process an
exponential distribution. The service rate us is related to the adopted charging standard
Pc s and PEV charging demand L,, and denoted as:

o PC,S

I (3.9)

ks
Based on the above modelling, station dynamics in the LCS is characterized as a two-
dimensional continuous-time Markov Chain as shown in Fig. 3.2.

Each state in the Markov Chain has two parameters. a denotes the overall number of
PEVs being served by local feeders and UMESs. b represents the number of PEVs being
charged by the energy supplied by UMESs. Therefore, the number of PEVs being served
by the local feeder is a — b.

First, looking at the Markov Chain by the row, as the state proceeds horizontally, a in-
creases gradually, denoting that the number of PEVs being served in the station increases.
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Charging Station Status

a: the number of PEVs being served in the charging station
b: the number of PEVs being charged by power supplied with MVESs

Figure 3.2: Hourly Markov Chain with two dimensional state space.

When the state reaches to the right end, it means that local feeder and all the incoming
UMESSs energy has been used up, and the next incoming PEVs cannot be served. On the
other hand, as the state moves vertically, b increases, i.e., the incoming reallocated UMES
energy increases. As the incoming UMESs increase, the state proceeds vertically and the
right-end state in each row denotes a fully occupied station with an increasing allocated
UMES energy. Hence, the summation of the very right states on each row denotes the
probability that incoming PEVs will leave without being served at time h, which is con-
sidered as the probability of arriving at a congested station. Complementally, the station
availability denotes the probability that incoming PEVs can be charged immediately upon
arriving at the station without additional waiting. The station availability is considered as
an essential index of the station power balance condition, which directly affects the station
operation performance.

To evaluate the station performance, the steady-state station congestion probability
can be calculated by analysis of the Markov Chain. The transition matrix of the Markov
Chain M is given as in Equation (3.10), where the element at i row and j% column is
denoted as m;;. M satisfies my; > 0 (for i # j) and my; = — 21, my (for i = 7). [ denotes
the total number of elements in the Markov Chain, as calculated in equation (3.11).
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M = (3.10)

_()\s,h + gs,h) /\s,h Js,h 0
Ms _<>\s,h + Hs + gs,h) 0... 0
0 2t 0 0
0 0 _()\s,h -+ gs,h) 0
s 0 0 0
0 0 0 _<NS,L + NsM,h),us
NsM,h+1
I= > (N +i) (3.11)
i=1

Proposition 1 The Markov Chain is positive recurrent.

Proof 1 The Markov Chain is irreducible and has finite states, Hence, all states are re-
current. For a finite-state Markov Chain, all recurrent states are positive recurrent [117].

Proposition 2 The Markov Chain has a unique solution for the steady-state probabilities
.

Proof 2 As a positive recurrent chain, its aperiodic states are ergodic. For an irreducible
ergodic Markov Chain in states i = 0,1,2..., h, steady-state probabilities w exists [117].

In the Markov Chain, 7 is a 1 x [ vector. Let e be an all-one vector of length of .
Through the calculation of balance equations:

{”'M =0 (3.12)

T-e=1,

the steady-state probabilities of Markov can be obtained. Hence, the station congestion
probability can be obtained as:
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Nsn,h

Pcongestion,s,h = Z T (Ngp,44,1) 5 (313)
=0

where m(n, 44,4 denotes the right end state on each row. By contrast, the station availability
that is complemental to the station congestion probability, is denoted as:

Pavailability,s,h = 11— Pcongestion,s;h- (314>

Once the station availability requirement is determined, the allocated UMES energy Fiiqg, n
at LCSs can be calculated using Equations (3.7)-(3.14).

Resourceful Charging Station

On the RCS side, its operation dynamic needs to be analyzed so that its surplus energy for
UMESs can be estimated. Similar to LCSs, PEVs are considered arriving at the station
according to assumption 1 and the station charging service process follows assumption 3.

Supplied with sufficient energy, RCSs are assumed to only be UMES energy supplier
and no UMESs will be discharged in RCSs. Thus, gsn = 0 and Ngypn = 0, making the
station dynamic a M/M/Ng, queue as dash-lined in Fig. 3.2.

In the queue, as the state proceeds horizontally, a increases gradually, denoting that the
number of PEVs being served in the station increases. When the state reaches the right
end, it means that all power sources are utilized. Through the calculation of Equations
(3.10)-(3.14), the steady states of the RCS queue can be obtained. Then, the expected
PEV charging demands Ry in station s at time h can be calculated as:

a=Ngr,

Rs,h = Z T(a,0) * M(a,0) Lav.- (315)
a=0

Then, the surplus energy of RCS r, that can be stored by UMESs is the energy gap
between the station overall energy capacity and PEV charging demands, as:

EMrC,h = NSL : Lav. - Rs,h- (316>
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Figure 3.3: Transportation network topology of the GCS.

3.2.3 Transportation Network Model

The abstracted transportation network model, as shown in Fig. 3.3, consists of road
intersections z,, where {21, 25 ... 2.} € Z and edges Sy, from intersections z, to z,. CSs
aredeployed at intersections. In terms of time variations, traffic velocities fluctuate along
routes. The traffic velocities are defined as hourly-average variables between intersections
(e.g. v(o,1) denotes the velocity of edge Sp;). The distance between two intersection is
denoted as Dg1). Then, the traffic time from intersections 2y to 2 is:

Dio,1)

Vo,1)

to,1) = (3.17)

A directed graph G(V, Ed) is used to model the transportation network in Fig. 3.3.
V' stands for road intersections as vertexes, and Ed represent traffic routes as the graph

edges. The edge weight is the traffic time of the edge. Suppose UMESs are charged at RCS
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r1 and are directed to transport the surplus energy to LCS ¢o, the energy delivery route
can be S(g,1)-5(1,4)-S(4,5). Considering the hourly on-road traffic variation, to enable a time-
efficient UMES energy transmission on-road, the fastest transmission route is required. For
example, when congestion happens on the edge S(,1), resulting in longer transmission time
(larger weight), another transmission route needs to be found. If Routes S(o3)-S(3,4)-5(4,5)
has the minimal transmission time between stations r; and ¢, UMESs will be directed to
travel along these routes.

3.3 Two-Tier Energy Compensation Framework

To efficiently utilize UMESs, we introduce a two-tier energy compensation framework, as
shown in Fig.3.2. The framework has the central controller (i.e., UO) on the upper tier in
charge of controlling GCS and UMESs, and CSs on the lower tier for data monitor and
operation. Considering the time-variant on-road traffic, the framework is conducted hourly
to provide analysis and guidance for the next-hour operation.

3.3.1 Upper Tier Operation

The central controller on the upper tier starts to perform the hourly operation scheme at
time Tgocx by requesting the energy information of each station (e.g., demanded UMES
energy at LCS and available energy for UMESs at RCS). Once the central controller re-
ceives the energy demand information from all stations via either wired communication
(e.g., power line communication or fiber optics) or wireless communication (e.g., cellular
network), the central controller starts to schedule UMESs charging and discharging, which
consists of two stages:

> Stage 1: UMES Transportation Route Planning: In terms of collected on-road
traffic condition, a route scheduling scheme is conducted to decide the fastest routes
between each RCS-LCS pair so that the time-efficiency of UMES energy delivery can
be guaranteed.

> Stage 2: UMES Energy Scheduling: Based on the collected energy information
from RCSs and LCSs, an optimization problem is formulated and solved to arrange
the charging and discharging stations for UMESs. The energy scheduling aims to
minimize the overall scheduling costs while enabling the power balance among a
GCS.
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Figure 3.4: Flow chart of the two-tier energy compensation framework.

The scheduling results are then distributed to both RCSs and LCSs on the lower tier
and UMESs. The whole process repeats after the time duration of At.

3.3.2 Lower Tier Operation
At time h, RCSs and LCSs at the lower tier estimate their energy status and communicate

with the central controller upon request. Next, we introduce their operations based on
their CS properties:

> LCS ¢; - Once LCS ¢ receives the information request from the upper tier, the station
dynamics will be analyzed with the predicted traffic data input at time h+1. Through
the two dimensional Markov Chain analysis, the next-hour energy demand forecast
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will be obtained and sent to the upper tier. Then, upon receiving the scheduling
results from the upper tier, the station ¢ will operate accordingly and reserve the
UMES discharging spots.

> RCS r. - Upon receiving the information request from the central controller, RCS 7,
analyzes the station dynamics and sends its UMES charging capacity to the upper tier
as part of the input data for UMES energy scheduling. After receiving the controller
scheduling results, the station r, will then prepare to charge the surplus energy to
UMESSs.

3.4 Problem Formulation

Based on the introduced framework, the UMES scheduling problem can be formulated
stage by stage. First, the UMES transportation routing in stage one is formulated as a
fastest route search problem to calculate the energy delivery route of each RCS-LCS pair.
Then, the UMES energy scheduling is formulated as a cost-minimized convex optimization
problem and can be solved efficiently.

3.4.1 UMES Transportation Routing

As the framework is operated on an hourly basis, it is essential to enable that the allocated
energy can be delivered to LCSs in time. Looking at the UMES energy delivery process,
both charging and discharging processes at CSs are stochastic processes, while the on-road
energy delivery process depends on the on-road stochastic traffic. Thus, the fastest path
scheduling scheme is proposed to determine the fastest paths between RCS-LCS pair in
terms of hourly-variant traffic conditions.

Based on the Floyd-Warshall algorithm which finds the fastest travel path between
all nodes, we propose the fastest path search scheme as described in Algorithm 1. We
first initialize the graph G(V,Ed) with two sets of edge weights: time as an array of
UMES transmission time and dist as an array of UMES travelling distance. Meanwhile,
the hopping nodes next are initialized as original nodes. Then, the algorithm iteratively
chooses one node as hopping node between the origin and destination to find the shortest
path. Notably, when the hopping node finds a path that has the same weight as the
former recorded shortest path, the algorithm will then choose the path that has shorter
transportation distance to enable the cost-efficiency of route scheduling. Further, to output
the optimal path results, a path reconstruction scheme is presented in the third loop.

36



Algorithm 1: Fastest Path search for UMES Energy Transmission

Let time be a V x V array of minimum distance initialized to oo ;
Let dist be a V x V array of minimum distance initialized to oo ;
Let next be a V x V array of vertex indices initialized to null ;
Initialization;
for each edge (u,v) do
time[u][v] < ty) ;
dist[u] [V] — D(u’V) ;
next[u][v] + v ;
for k from 1 to V do
for ¢ from 1 to V do
for 5 from 1 to V do
if timefi/[j] < time/i/[k]+time/k/[j] then
timeli][j] < timeli][k]+time[k][j] ;
next|i][j] + nextli|[k] ;
Ise if time/i/[j] = time[i/[k]+time[k][j] then
if distfi/[j] < dist/i][k]+dist[k][j] then
timeli][j| <+ timeli][k]+time[K][j] ;
next[i][j] + next[i]k] ;

o

or all edges (u,v) do

if u =17, and v = ¢ then
if nextfi/[j/=null then
L return [| ;

path=[u] ;
while u # v do

u + nextli[j] ;
L path.append(u) ;

—r

return path ;
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3.4.2 UMES Energy Scheduling

The UMES scheduling is operated by local UO on an hourly basis with the hourly-averaged
UMES scheduling result. Based on the received RCS/LCS energy estimation, the UO
schedules UMESs aiming at minimizing the overall scheduling costs C}, while guaranteeing
the power balance among a GCS. The problem is formulated as follow:

min C1h = C(chaurge,h + Ctrans.,h (318)
Te,df

S.t. Davailbility,s;h = PQoS,s, VS € S (3.18. a)
0<Er gh < Evirons Ve € R, Vg € Q (3.18. b)
Z Ere7Qf7h < EMre7haV7‘e €ER (3.18. C)

EQ
Y Eroan = Buigon, Var € Q (3.18. d)

re€R

The scheduling costs Cf, consists of two parts: the costs Cehargen Of charging UMESs at
RCSs and the transportation costs Cirans.n 0f UMESs during energy compensation service.
The charging costs are the summation of UMES charging costs at RCSs, depending on the
charging price Coharge ron(Ere,q;) at RCS 7 and the allocated UMES energy E, , at the
RCS:

C1chaLrge,h - Z Z Ccharge,re,h(Ere,qf) : Ere,qf~ (319)

re€R gr€Q

Since the energy that is used to charge UMESs should be originally used for incoming
charging-demand PEVs, the more energy UMESs charge, the less charging energy is re-
served for charging-demand PEVs. Therefore, the UMES charging price increases as the
allocated UMES energy increases at RCSs. The UMES charging price is formulated as a
quadratic function:

2
CChargevrevh(ETme) = arezl ’ Ere,Qf + Oére»2 ' ETerf + Oére73, (320)

where oy, 1,y 2, 00,3 > 0. The first differential of the function as shown in Equation
(3.21), reflects the price deviation relation with the allocated UMES energy:
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d

ET (Ccharge,re,h<Ere,Qf>) =20y,1* Erp g + O, 2, (3-21)
dErcyqf

where o, 5 denotes the primary price-setting without energy fluctuation and a,, ; represents
the price fluctuation causing by the demanding energy deviation from the primary price
setting.

In addition to the charging costs, UMES transportation process also incurs electricity
and time consumption, which is considered as part of scheduling costs. The transportation
costs are the product of travelling distance D, ,, between RCS 7. - LCS ¢ pair, the trans-
portation price 3 per transmission distance per kWh and the transmitted energy E,
along the route S\ q,, denotes as:

Ctrans.,h = Z Z Ere,qf : 5 . Dreqf- (322)

Te qf

While minimizing scheduling costs, every station needs to maintain its power balance
and maintain its operation performance by fulfilling most of the arriving PEV charging
demands. As shown in constraint (3.18.a), every CS needs to guarantee a pre-defined
station availability pqo.ss to maintain the customer satisfaction.

From energy balance perspective, the UME charging energy F, . that is supplied by
RCS 7, and sent to LCS ¢ should be within the energy capacity Eyy, of the RCS 7, as
in constraint (3.18.b). Moreover, the overall UMES stored energy at RCS 7, should also
be within the station energy capacity, as in constraint (3.18.c). On the UMES energy
supply side, the summation of arriving UMES energy at station ¢; should equal to the LCS
demanding energy Epq, n, as denoted in constraint (3.18.d).

3.4.3 Solution

The formulated UMES energy scheduling problem is convex with a convex set that can be
efficiently solved through Disciplined Convex Programming (DCP) of CVX [118]. Through
the DCP ruleset examination, the convexity of the formulated problem can be validated.
Then, the continuous functions as our formulated ones can be solved through simple convex
programming implementation using atom library (regulated convex or concave functions).

The whole process of the energy compensation framework is described as Algorithm
2. After hourly traffic data input and initialization, the LCS energy demand and RCS
available energy estimation are conducted by analyzing Markov Chain and queue model,
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respectively. On the upper tier, UMES energy transmission routes are planned by the
fastest path search scheme of Algorithm 1 using predicted on-road traffic. Then, DCP is
conducted to minimize scheduling costs provided the transmission routes, energy demands,
and requests, and the UMES energy compensation results can be obtained.

Algorithm 2: UMES Energy Compensation Procedure
Input: Hourly traffic flow;
Hourly transportation time of each route ;
Initialization
Let h=0 ;
Let Fyspn=0, Rsn=0 ;
for h=0 to 23 do
Markov Chain Analysis:
Calculate the demanding energy of LCSs ;
Calculate UMES charging capacity at RCSs ;
Do Algorithm 1: fastest path search scheme for UMES energy transportation ;
Output: Fastest transportation routes between stations ;
DCP for cost-minimized UMES energy scheduling;:
DCP ruleset examination;
DCP simple implementation ;
Output: UMES energy allocation results to all stations ;
Energy allocation and transportation path to all UMESs.

3.5 Performance Evaluation

In this section, the effectiveness of the introduced framework is evaluated based on the real
traffic data on California highway collected by the California department of transportation.
The framework effectiveness is mainly demonstrated from the station operation, GCS over-
load mitigation, and cost-efficiency perspective. Further, the impacts of station availability
and transportation cost on the framework results are discussed.

3.5.1 Simulation Setup

To evaluate the performance of the introduced framework, simulation is conducted based
on the California highway data collected by the California department of transportation

40



ECHO PAKK e i
Iger Stadium @~ - e T & 5 g

Monterey Park 5 GanveyAv

r 5 % e
CHINATOWN

Los Angeles S

South San

Gabriel
e DOWNTOWN oy
i
! ; G9)
60,
o BOWLE HEIGHTS Ir2 ®
0] - East Los
D Angeles |*
O T g fontebello
g Vernon °
CENTRAL & S
ALAMEDA
S i Maywood Muson 4.
Huntington Pico Rivera
Park Bell
Walnut Park &
= > Cudahy
! 2 South Gate &
2 Santa Fe
E1037d st veedy By Springs
Arts Center © v <~ | Downey
{05 ) Lynwood < Rerial 3
E 120th St >
Willowbrook 1 ® e s 02
1 105 Foster Rd Foster Rd
i @ " Tans av Norwalk
East Compton A=
ancho Compton O L FExcelsiorDr g
\guez {605 H
. Paramount Alondra Bivd £

Figure 3.5: CS deployment in South California.

PeSM [119]. As shown in Fig. 3.5, the UMES travelling area covers from downtown Los
Angeles (L.A.) to Norwalk, with four CSs deployed along unidirectional highway I-5S.
RCSs r; and ry are deployed near downtown L.A. and East L.A. respectively. To satisfy
the huge electricity demand in the urban area, large-capacity feeders and bulk generations
are accessible to these two stations. LCSs ¢; and ¢o are located at Downey and Norwalk
respectively. In terms of transportation conditions, we select five major travel routes
connecting stations, with details shown in Table 3.2.

PEV Settings

A 10% PEV market share in the vehicle market is considered. Therefore, we consider that
10% of on-road traffics will be PEVs. For RCSs, 10% of the on-road PEVs enter their
stations for recharging. 5% on-road PEVs are recharged at the LCSs. Hence, the PEV
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Table 3.2: Route information

Departure Destination | Travel Highway | Route # Mileage (km) | Color
L. A. DT East L. A. | I-10E, I-710S 1 10.6 Brown
L. A.DT East L. A. | I-5S 2 8.1 Blue
East L. A. | Downey I-5S 3 8 Green
Downey Norwalk I-5S 4 8 Red
East L. A. | Downey I-710S, Local 5 16 Purple

arrival rate at each station in a day is shown in Fig. 3.6.

Connecting to primary feeders, RCSs have large loading capacities with fast charging
speed. Station r; has a power capacity C,, of 2.4MWh while 5 can provide energy C,, up to
1.8MWh [120]. For the LCSs that are connected to limited-capacity feeders in rural areas,
power supply capacities reduce to hundred-kW level with a lower voltage level [120]. In
this case, we consider that station ¢; can provide a maximum energy Cy,1, at 480kWh and
station ¢y has a feeder capacity Cg,1, of 300kWh. CSs adopt different charging standards
to fit the local conditions. For example, RCSs use the SAE CCS level 3 standard [21] to
charge PEVs at 120kW while LCSs adopt the SAE CCS level 2 at 90kW [21]. The station
availability of RCSs is set to 95% to ensure that RCSs have a great service quality before
conducting the energy compensation tasks. On the other hand, LCSs should be able to
meet the availability probability of 90% with UMES energy discharging. The coefficients
of RCS charging price function oy, 1, oy, 2 are set as in Table 3.3 to map with the current
electricity rate plan of Pacific Gas and Electric (PGE) company in California [121]. The
coefficient of transportation cost J is set to 0.004 [122]. The parameter settings are also
summarized in Table 3.3.

Route Choice

First, the fastest routes are calculated by the proposed fastest path search algorithm for
UMES energy transmission, as shown below. The algorithm inputs data of routes travelling
time are extracted from google map [123] on an hourly basis, as summarized in Table 3.4.

> L.A. - Downey:
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Figure 3.6: PEV hourly arrival rate at each station.

Table 3.3: Simulation parameters

Para Value Para. Value
Ci, 2.4MWh Cr, 1.8MWh
CqiLL 480kWh CooL. 300kWh
Ly, 120kW s 90kW
Pc . 120kW Pc g 90kW
Pro.h 1% Pqs.h 0.5%

0y 1 0.000167 Oy 2 0.0332
Oy 1 0.00025 Oy 2 0

& 0.004
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Table 3.4: Average travel time of routes

Time 0 1 2 3 4 5 6 7 8 9 10| 11| 12| 13| 14| 15| 16 | 17| 18| 19| 20| 21 | 22| 23
Route 1 (min) | 10 | 10| 12| 12| 10| 10| 9 1011111111} 12| 12| 16| 16 | 16 | 16 | 14 | 10| 10| 10| 12| 10
Route 2 (min) | 7 7 7 7 8 7 8 9 10| 10| 10| 9 10| 12| 16 | 22| 24| 22| 18| 10| 8 9 8 8
Route 8 (min) | 7 8 8 8 8 8 8 8 9 8 8 9 10| 12| 14| 20| 22 | 24| 22| 16| 12| 10| 8 7
Route 4 (min) | 5 5 5 5 5 5 7 6 7 7 7 7 7 8 9 10 12|12 12| 10| 10| 7 6 5
Route 5 (min) | 14 | 14| 14| 14| 14| 14| 16 | 18 | 20 | 18 | 18 | 20 | 18 | 22| 25| 30| 35| 40 | 40 | 30 | 18 | 17 | 16 | 14

— 12a.m.-14p.m. and 19p.m.-23p.m.. Route 1 - Route 3;
— 15p.m.-18p.m.: Route 2 - Route 3;

> L.A. - Norwalk:

— 12a.m.-14p.m. and 19p.m.-23p.m.: Route 2 - Route 3 - Route 4;

— 15p.m.-18p.m.: Route 1 - Route 3 - Route 4;

> East L.A. - Downey: Route 3 All day;

> East L.A. - Norwalk: Route 3 - Route 4 All day;

3.5.2 Simulation Results

Solving the optimization problem by Algorithms 1 and 2 on MATLAB platform, we can
obtain the optimal UMES scheduling results. First, the improvement of station availability
is presented to show that UMESs have been effectively assigned among a GCS to maintain
the CS operation performance and enable energy balance. As the objective of the intro-
duced framework is to mitigate the overload issues of GCS with minimal costs, the overload
mitigation performance is then illustrated through the result comparison of demanding en-
ergy from local feeder with and without UMES participation. The cost comparison results
between the introduced framework and randomly-assigned case are presented. Further, the

impact of UMES transportation on the scheduling results have been carefully analyzed.
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Figure 3.7: Station availability comparison.

Station Availability

Comparisons of station availabilities before and after UMES scheduling are shown in Fig.
3.7. As shown in Fig.3.7(a), without UMES scheduling, the availability of station ¢; at
Downey encounters enormous drop during the daytime from 6a.m.to 11p.m.. That is,
depending solely on the local power supplement, the station encounters service congestion
(i.e., PEVs have more than 10% probability to leave the station without being charged)
when more than 20 PEVs come to the station. During the daytime, traffic low near
Downey fluctuates between 23 to 35 PEVs/hour as shown in Fig.3.6, causing the station
consistently occupied and many PEVs will leave without being charged. The situation
changes when UMESs participate in energy compensation tasks. LCSs now estimate their
demanding delivered energy for the LCSs to achieve a 90% station availability, and as seen
in Fig.3.7(a), after UMESs being scheduled to the station, the availability of the station
remains stably around 90%. Therefore, the effectiveness of UMES energy compensation
on station operation performance can be validated.

Similarly, in Fig.3.7(b), the availability of station ¢o at Norwalk has effective improve-
ment during the daytime between 6 a.m. to 11 p.m.. As UMESs are scheduled to station
g2 corresponding to the station required charging demand, the station availability remains
stably around 90%.
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Figure 3.8: Demanding energy of local feeder.

Overload Mitigation

The overload mitigation result through UMES energy scheduling is presented in Fig.3.8.
The results are compared between the cases of LCS operation with and without UMES
scheduling to verify the significance of UMES participation. Without UMES scheduling,
the demanding energy from the local feeder at LCS ¢y, as shown in Fig.3.8(a), starts to
dramatically increase at 5 a.m. due to the increasing PEV charging demand. Without
UMES scheduling and proper infrastructure upgrade, the demanding energy exceeds the
limit of local feeder capacity during the daytime, which can severely overload the feeder.
On the other hand, with the help of UMESs, local feeder only needs to provide energy up
to its capacity limit (480 kWh). Hence, with UMES participation, the potential overload
issue is effectively mitigated at station ¢;.

Similar to LCS ¢, station ¢, also encounters severe power overload during daytime.
As shown in Fig.3.8(b), starting from 5 a.m., demanding energy from local feeder can
peak up to 1200kWh without UMES scheduling. With only 300 kWh feeder capacity, the
peak hour PEV charging demand can easily crash the normal power operation and cause
severe transformer degradation. On the other hand, with UMES participation, local feeder
only needs to provide its feeder capacity value during the daytime to effectively avoid the
potential overload.
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Figure 3.9: UMES scheduling cost performance comparison.
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Figure 3.10: UMES charging task allocation comparison.

UMES Scheduling Costs

A randomly-arranged UMES scenario is presented as the baseline case to compare with
the proposed scheme. The scheduling cost comparison is shown in Fig.3.9(a). It can be
seen that through the proposed cost-minimized scheduling scheme, the scheduling cost can
be effectively minimized from 6 a.m. to 11 p.m.. As part of the scheduling costs, charging
cost has been effectively reduced in most of the time other than time periods of 10-11
a.m. and 9-11 p.m.. This situation occurs as transportation cost outweighs charging cost
when RCSs have sufficient energy to cope with UMES charging tasks. Compared with
station r; that has lower charging price but longer transportation distance, station ry will
be assigned with more charging tasks. The transportation cost is also minimized as shown
in Fig.3.9(c), by flexibly arranging the UMES energy tasks among RCSs.

The hourly-averaged charging task allocation results among a GCS of both cost-minimized
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Figure 3.11: UMES scheduling costs with transportation price co-efficient.

case and randomly-arranged case are shown in Fig. 3.10. Randomly-arranged case assigns
more charging tasks to station r considering its large charging capacity. However, when
transportation cost is included in the cost-minimized case, UMES charging tasks are allo-
cated more to station 75 to minimize UMES transportation distance, which is in accordance
with the practical concerns of minimizing transportation cost. The comparison of the two
cases validates the optimality of the cost-minimized scheme.

Influence of UMES Transportation Cost

As the electric battery technology advances, charging and discharging price of UMESs will
decrease correspondingly, leading to a decrease of UMES transportation price. The fluc-
tuation of UMES transportation price has the potential to affect UMES energy scheduling
decisions. In this subsection, the transportation price co-efficient [ is used as the indicator
of battery technology evolution to illustrate the transportation cost influence on scheduling
results.

It can be seen in Fig.3.11 that as 3 increases, the overall scheduling cost increases. The
increment of 3, leading to the transportation cost increase, accounts for a large proportion
of the whole cost. Although the UMES charging demand is irrelevant to transportation
routes, the transportation price coefficient does affect the UMES charging task allocation,
which leads to a slightly increasing charging cost.
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Figure 3.12: UMES charging task allocation with transportation price co-efficient.

To illustrate the influence of 5 on UMES charging allocation, the UMES task allocation
variation with £ is shown in Fig. 3.12. It can be seen that transportation price increment
results in the decrease of UMES charging tasks in station r; as this RCS is the farther one
to both LCSs. Particularly, UMESs that go to station ¢; tend to be charged at station
ry due to a shorter transportation distance. Although RCS ry is closer to both LCSs,
its higher charging cost and limited charging capacity require station r; to share some
charging responsibility to ensure that enough UMESs will arrive at LCSs on time.

Station Availability v.s. UMES Scheduling Costs

In LCSs, the requirement of station availability has non-negligible impacts on UMES
scheduling costs and charging task allocations among RCSs. Daily UMES scheduling cost
variations with limited capacity station availability are shown in Fig.3.13. With higher
station availability requirement, the overall scheduling cost increases rapidly. To main-
tain a higher station availability, more energy is demanded to be transferred by UMESSs.
Thus, charging tasks increase in RCSs, leading to higher charging cost overall. On the
other hand, maintaining a higher station availability also results in an increment of UMES
transportation cost. The detailed UMES charging allocations with increasing station avail-
ability are illustrated in Fig. 3.14. It can be seen that higher the station availability, more
UMES charging tasks are assigned to station r;. Considering a smaller charging capacity in
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Figure 3.14: UMES charging task allocation with station availability.

station ry between the two RCSs, fulfilling the increasing charging tasks means allocating
more UMES charging to station ry.

3.6 Summary

In this chapter, a two-tier energy compensation framework has been introduced to use
UMESs as energy porters at peak hours effectively. A convex optimization problem has
been formulated aiming to minimize the scheduling. Through the simulation, the effective-
ness of the introduced framework and the optimality of the formulated problem have been
validated. Moreover, the influence of scheduling factors on the framework results have
been illustrated. It is concluded that as battery technology develops, the increasing UMES
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energy transmission efficiency can lead to wider transmission coverage and more flexible
scheduling. Further, strict station availability requirement can result in a drastic increment
of scheduling cost, leading to a trade-off between the station availability and scheduling
costs. Based on the introduced energy compensation framework, the cost-efficient UMES
scheduling scheme can be applied to the local power utility company to address the overload
issues without excessive facility upgrade expenditure.
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Chapter 4

Dynamic Pricing-based Navigation of
LMESs

4.1 Introduction

In the previous chapter, we refer to on-road PEVs that can transmit supplementary energy
among a GCS as MES. By introducing an energy compensation framework, the feasibility
of using huge-capacity UMESs to mitigate overload issues is validated. The huge energy-
storing capacities of UMESs make them great candidates as long-term predictable energy
storages for CSs that frequently encounter energy imbalance. As a further step from the
long-term scheduling, it is also significant to investigate the GCS load balancing problem
considering the short-term stochastic vehicle mobility. For example, some LCSs deployed at
traffic-intensive areas have predictable power shortages up to 2MWh frequently, in which
case UMESs can be scheduled priorly to prevent power overload [124]. Other LCSs at
rural regions only need 200kWh from 2 p.m.to 5 p.m., in which case, UMESs are not
cost-efficient candidates to conduct the load balance task. As PEV commercialization
proceeds and promotion legislation launches globally, PEVs that are belonged to vehicle-
fleet based companies can be potential LMES candidates. Different from UMESs, LMESs
are large-fleet size, medium battery-capacity PEVs that are suitable for dynamic energy
compensation tasks.

The LMES realization is supported by the rapid development of battery technologies
and discharging facilities. The latest development in lithium batteries promises a higher
energy density and safety rechargeable battery in the future [2, 3]. Moreover, extensive
studies on bi-directional chargers enhance the controllability and feasibility of PEV charg-
ing/discharging [125, 126]. Enabled by the technical support, many works investigate the
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MES energy compensation scheduling to balance the power supply and demand effectively
[70, 79, 93, 94, 111]. However, most works only study the scheduling problem from the
energy balance perspective, while the transportation network navigation should also be
considered when LMESs are participating in the service. LMESs are preferred by LCSs
with time-variant energy demand owing to their relatively large fleet size and high flexibili-
ties. To compensate the overload in these LCSs with LMESs means that a large amount of
additional traffic will inject in the transportation network, incurring unexpected traffic con-
gestion and service delay. Therefore, the impact of injected LMESs on the transportation
network should be studied.

The PEV charging navigation and its potential to couple the operation of smart grid
and transportation network have been studied and validated in works [96, 97]. Therefore,
when a large number of PEVs that are directed by the power signals travelling on the
road, their scheduling should be studied together in the coupled system. Regarding PEV
charging, there have been many works exploring the interacted PEV charging scheduling
of smart grid and transportation network [98-102]. However, the scheduling of LMESs
has its unique features. First, LMESs are additional injected traffics that have stochastic
properties related to smart grid energy status. Instead of scheduling PEVs at the system-
level to minimize the overall travelling time, the main concern in LMES scheduling is to
mitigate the potential delay incurred by the additional injected traffic. Second, the profit-
oriented LMESs can be effectively scheduled using proper monetary incentive. Although
Wardrop equilibrium has been used in many works to encourage PEVs converging to social
optimum, the convergence of Wardrop equilibrium needs iterated simulation while more
time-efficient scheduling scheme is required for dynamic energy compensation scheduling.

In this chapter, we propose a pricing-based scheduling scheme that dynamically uses
the monetary incentive to encourage LMESs following the navigated route to accomplish
energy compensation tasks. The scheduling scheme has two objectives: first is to mitigate
the impact of injected LMES traffic on the transportation network, and second is to achieve
the GCS energy balance using LMESs. Thus, the on-road traffic conditions should be
carefully modelled and analyzed in the pricing-based scheduling. The main contributions
of the work are threefold. First, an energy-capacitated directed graph model is developed
to characterize the LMES traffic capacity in the transportation network. Second, consider
LMESSs as energy flow along the road, a loading optimized scheduling scheme is proposed
to navigate the energy flow in a time-efficient manner. The scheme also guarantees the
GCS energy balance and optimization of the loading pressure at RCSs. Finally, a dynamic
pricing scheme is proposed to minimize the LMES scheduling cost and guarantee a well-
tracked LMES navigation profile.

The remainder of the chapter is organized as follows. The energy-capacitated trans-
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Figure 4.1: System overview of a GCS.

portation network model is developed in Section II. Section III presents the proposed
pricing-based scheduling scheme, based on which, a minimum-cost flow problem and a
cost-minimized convex optimization problem are formulated and solved in Section IV. Per-
formance evaluation is provided in Section V, and Section VI summarizes this chapter.

4.2 System Model

In this section, we first briefly introduce the CS dynamics characterization model. Then, an
energy-capacitated unidirectional graph is used to characterize the transportation network
where the available on-road travelling capacity for LMESs is modelled as weighted LMES
energy bandwidth. Based on the model, LMESs can then be navigated optimally to deliver
energy compensation tasks while avoiding incurring unexpected traffic congestion. To
capture the time-variant CS dynamics, the UO analyzes the system model during h time
slots with the equal interval of At throughout a day. The time slot set is denoted by
H = {1,2,...h}, where system analysis and scheme operation are conducted during each
At. A summary of notations that are used in this chapter is shown in Table 4.1.

The deployment of a GCS, as shown in Fig. 4.1 , are mostly in the power distribution
system at different feeder levels corresponding to local charging demands. UO schedules
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Table 4.1: Notations for Chapter 4

Symbol Description

(k, 1) A directed edge from vertexes k to [

foy The weight of LMES travelling along the 7th route from RCS R; to LCS Q)
AFE,,. The average LMES discharging capacity, kW h

g, &) The unidirectional graph

H The time slot set

Q The set of LCSs

R The set of RCSs

= The optimal energy flow link set

a;/b; Parameters of the loading pressure function of station R;

By 1n The energy bandwidth of link Ly at time h, kW h

C’ﬁl The overall demanding energy at LCS Q;, kWh

CjL The energy capacity of station @; provided by local feeder, kKW h

CIIV}{ The LMES charging capacity at station R; at time h, kWh

Cj{‘fl The LMES discharging capacity at station @Q; at time h, kWh

Cin The overall service capacity of LCS Q; at time h, kWh

Cx, The link capacity along the link Ly, vehicles/hour

Elj\fl The assigned LMES charging tasks at station R; at time h, kW h

EJJV}[1 The demanding LMES energy at station @; at time h, kW h

th PEV charging demand at station R; at time h, kWh

€k,1,h LMES energy flow along link Ly ) at time h, kWh

L,,. The average PEV charging demand, kW h

Ly, The link between road intersections Vi and V|

NJ-L The number of PEVs charged by local feeder at station @), vehicles
Nj‘ﬁ The number of PEVs charged by LMESs at station Q; at time h, vehicles
ch The adopted charging standard at station @, kW

PjL The local feeder power rate of station Qj, kW

t%l The free-flow travel time along the link Ly, hour

tf?,l The average travel time along the link Ly, hour

tlf)l}h / tf({ 1n | The lower /upper bound of travelling time along link Ly ; at time h, hour
Ui, The 7th optimal route from RCS R; to LCS @

xﬂ/ﬂ’h The LMES traffic flow of link Ly at time h, vehicles/hour

xfil’h The regular traffic flow of link Ly at time h, vehicles/hour

Ti,1h The overall traffic flow of link Ly at time h, vehicles/hour

mﬁil,h The upper bound of traffic flow along link Ly ; at time h, vehicles/hour
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on-road LMESs delivering energy compensation services with price-incentive. In terms of
the feeder capacities and energy supply, CSs are categorized into two types: RCSs R and
LCSs Q. A set of RCSs, denoted as R = {Ry, Ry ... R;}, are deployed at urban areas with
stable and sufficient power supplement from bulk generations. Another set of CSs, LCSs,
denoted as Q@ = {Q1, Q2 ... Q;}, are normally deployed at power feeders with limited power
supply. Therefore, power overload issue can be a potential hazard at these stations. To
address the overload issues, LMESs are scheduled to store surplus energy at nearby RCSs,
and then transmit the energy to LCSs as additional energy supply.

4.2.1 CS Capacity Characterization

In terms of different CS properties, the CS operation capacity (i.e., can serve how many
PEVs) is characterized in this section, respectively.

Limited-capacity Charging Station

The overall service capacity Cjp, of LCS @5 at time h consists of two parts: the local feeder
capacity CjL and LMES energy supply Ej]}fl at time A, which are denoted as:

C’j,h = qL + EJ%a
CjL - PjL At = ‘NjL + Lay., (4'1)
BY = N L.

The local feeder capacity C’J-L is the product of its connected feeder power rating PjL and
the power supply time interval At. In a more straightforward way, consider that incoming
PEV on average has a charging demand of L, , C’jL can be characterized as the number of
PEV charging services NjL that the feeder can provide simultaneously times the average
charging demand L,, . Another part of energy supply is the LMES delivered energy Ej{‘ﬁ,
which can also be characterized as the number of PEV charging service Nf\ﬁ that LMESs
can provide during At.

Without any infrastructure upgrade, the local feeder capacity C’jL is a constant that
can be easily obtained. On the other hand, the demanding LMES delivered energy E%
is a stochastic variable in nature as it depends on the real-time PEV charging demand at
LCS Q. In this work, we consider that under a pre-determined station availability (e.g.,
PEVs have a probability of 90% to be charged immediately upon arriving at the station),
the LCS overall demanding energy Cj;, can be obtained either by referring to historical
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data or stochastic analysis. The detailed capacity analysis is out of the scope of this work.
Hence, the demanding LMES energy supply can be obtained according to Equation (4.1).

Resourceful Charging Station

The RCS service capacity CF is closely related to its connected feeder power rating PL.
Similar to the LCS case, the PEV charging demand th at RCS R; is time-variant and
can be obtained by historical data or stochastic analysis. Since the RCS’s prior operation
objective is to charge incoming charging-demand PEVs, the available energy to be delivered
by LMESs is calculated as the energy gap between the station overall energy capacity and
PEV charging demands, as:

C{}ﬁ =l - th. (4.2)

As RCSs are guaranteed with sufficient electricity supply, they have excess energy to be
delivered to LCS for overload compensation.

4.2.2 Energy-Capacitated Transportation Network Model

While delivering energy with small-fleet, large battery capacity UMESs has little impact on
the transportation network that has thousands of vehicles on-road, LMES energy compen-
sation is a different case. The relation between LMES energy scheduling and transportation
network is shown in Fig.4.2. In the busy traffic hours, on-road PEV traffic increases in
proportion to the overall on-road traffic, leading to an increasing PEV charging demands
at CSs. For LCSs to satisfy the increasing PEV charging demands that exceed their local
feeder capacities, more surplus energy is required to be delivered. Therefore, more LMESs
will travel from RCSs to LCSs to help LCS achieve energy balance during peak traffic hours.
Consider the large fleet size of LMESs (e.g., hundreds of vehicles), without proper LMES
navigation, the LMES injection in the transportation network could incur travelling delay
or severe traffic congestion when the on-road traffic is already dense. The incurred delay
not only affects the regular traffics, but also reduces the time-efficiency of energy compen-
sation tasks, further resulting in energy imbalance at LCSs. Thus, the LMES travelling in
the transportation network should be carefully studied to mitigate their impacts.

The transportation network is modelled as a unidirectional graph G(V, ), as shown
in Fig.4.3. Mapping the road intersections to graph vertex set V = {V;,V,---} while the
graph edge set £ denotes the road link between intersections. Edge (k,]) € £ denotes a
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Figure 4.2: LMES impact on the transportation network.

directed edge from k to [. Therefore, a traffic link is mapped as an edge where LMESs
travel from intersections k to [, denoted as Ly;. In the remainder of system modelling,
traffic link is used as the basic unit for parameter setting and analysis.

For simplicity, we consider LMESs mainly travelling on the freeway to accelerate their
energy delivery on-road. As shown in Table 4.2 [127], level of service (LoS) is the basic
freeway status evaluation parameter that qualitatively describes the on-road speed, delay,
traffic volume, and so on. LoS level A to level F indicate the traffic conditions from free-
flow to congestion, along with a quantified range of speeds and traffic volumes of each level.
Refer to Table 4.2, we can have a better understanding of the traffic volume and speed
range of the desired LoS level.

The on-road traffic flow zy ), of link Ly at time h consists of regular vehicle flow z{,
and LMES traffic flow z{,. According to the Bureau of Public Roads (BPR) [99], the
travelling time function ¢y p(zk)n) of link Ly, at time h is closely related to traffic flow
Tk 1n, as denoted as:

T
tk,l,h(xk,l,h> = tﬁ,l . [1 + 0.15 - (%)4] (43)

ty, denotes the free-flow time along the link, which can be calculated as the link distance
over the link speed limit. Cy; denotes the traffic capacity of the link, which is usually
empirically observed from freeway. To enable a time-efficient LMES energy delivery, the
link travelling time 3 at time h should be within the range of (t{,,t/;}). The lower
bound tf,,, is the travelling time of regular vehicle traffic (i.e.,tiin(zf),)). The upper
bound is regulated by the UO (e.g., 1.25 - tﬁ’l) in terms of the desired on-road traffic
condition. When the upper bound is decided, the maximum allowed traffic flow xf(] |n can
be calculated using equation (4.3).
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Figure 4.3: Transportation network topology of the GCS.

Consider that on-road LMES flows are mobile energy flows, their on-road energy flow
can be characterized as a product of the average LMES stored energy AFE,,. and the LMES
traffic flow 2y}, along the link Ly at time h:

exih = AFE,, - x%h (4.4)

Correspondingly, the road link capacity for LMES injection can also be characterized as
link energy bandwidth By, which can be calculated as the capacity difference between the
maximal traffic low :ch 1, and the regulate traffic flow 35151,}1 along the link Ly, multiplying
by the average LMES stored energy, denoted as:
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Table 4.2: LoS criteria for 70mph freeway.

LoS | Speed Volume/Capacity | Description

A > 70.0 0.318,/0.304 Free-flow condition with unim-
peded manoeuvrability

B > 170.0 0.509/0.487 Reasonably unimpeded operation
with slightly restricted manoeu-
vrability

C > 68.50 0.747/0.715 Stable operation with more restric-
tion

D > 63.0 0.916/0.876 Approaching unstable operation
with small delay increase

E > 60.0/58.0 | 1.00 Operation with significant inter-
section approach delays

F variable variable Low speeds incurred by intersec-
tion congestion

For each link, its injected LMES flow should not exceed the link energy bandwidth so that
a smooth link travelling can be enabled. Consider the LMES energy flow from the GCS
energy balance perspective, the summation of LMES energy at LCS Q1 should equal to
the LCS demanding energy EJY, denoted as:

ABa. - (Q_wiin =2 =in) = Bt Qi€ Q (4.6)
k !

To develop a precise transportation network model during each time period, the UO regu-
larly receives the regular on-road vehicle flow xfﬁ],h and determines the upper bound travel
time for each link. Then, the link energy bandwidth can be calculated using equations
(4.3)-(4.6). Based on the energy-capacitated transportation network model, the LMES
energy delivery route between each RCS-LCS pair can be selected while mitigating the
LMES traffic impact on the transportation network. For example, if LMESs need to de-
liver 500kWh from RCS R; to LCS @, without the introduced model, all LMESs will
choose the shortest route (i.e., Ly o-Lo3-L3g). However, in peak traffic hours when Lo 3 is
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congested with By 3, = 200kWh, 500kWh energy flow injection in the route exceeds the
bandwidth. If the energy bandwidth regulation is determined under LoS level E; excessive
traffic injection will let the on-road traffic enter LoS level F, which is road congestion. In
this case, instead of injecting all LMESs into one single route, another longer distance but
with more energy bandwidth route (e.g., Lj2-Los-Lsg) will be chosen to accommodate
part of the energy flow (e.g., 300kWh). As such, both time-efficiency of LMES energy
compensation tasks and an uncongested transportation operation can be achieved.

4.3 Pricing-based LMES Scheduling Scheme

Based on the introduced system model, the UO needs to schedule LMESs from two per-
spectives: first, allocate LMESs energy delivering among a GCS to mitigate the overload
issues at LCSs; second, navigate LMESs in the transportation network to avoid incurring
additional traffic delay. Moreover, the ownership of LMESs requires sufficient monetary
incentive for them to follow the scheduling direction offered by the UO. Therefore, in this
section, we propose a pricing-based scheduling scheme that dynamically uses monetary
incentive (i.e., service price) to guide LMESs accomplish assigned energy compensation
tasks along the navigated routes.

The flowchart of the proposed scheme is shown in Fig.4.4. The scheme is performed on
a At time interval based: at time h, the scheduling results for the next time slots h+ 1 will
be calculated. The UO uses the historical traffic data as the input to analyze the station
dynamic analysis in either statistic or stochastic forms to obtain the GCS energy status.
Then, in terms of the LMES energy scheduling objectives, navigation and price-incentive
schemes are conducted step by step:

> Step 1-LMES Navigation: Inputting the on-road traffic flow data and the GCS
energy status, a loading-optimized navigation scheme is conducted to calculate the
recommended traffic route and corresponding LMES flow between each RCS-LCS
pair. Moreover, by allocating the LMES charging station, the proposed scheme also
optimizes the loading pressure at RCSs;

> Step 2-Real-time Pricing: Based on the navigation scheme results, LMES re-
sponse functions and price incentive function, a real-time pricing scheme is proposed
to determine the service price of LMESs to motivate them following the navigation
routes while minimizing the overall scheduling cost.
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Figure 4.4: Structure of pricing-based scheduling scheme.

The two-step results are then distributed to LMESs through wireless communication
technologies (e.g., cellular networks, VANETSs, or WiFi), and LMESs conduct the tasks in
response to the posted price and navigation routes.
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4.4 Problem Formulation

Based on the proposed scheme, the LMES energy scheduling problem can be solved in two
steps. First, to plan the navigation routes for LMESs, a minimum-cost flow problem is
formulated based on the energy-capacitated transportation network. Then, the price incen-
tive function and LMES response function to the price are introduced to characterize the
pricing interaction between LMESs and UO. The dynamic pricing scheduling is then for-
mulated as a convex optimization problem to minimize the scheduling costs while enabling
that most LMESs following the navigation routes. Finally, solutions to both problems are
presented at the end of the section.

4.4.1 Loading-Optimized Navigation Scheme

During each time slot h, the UO receives the demanding energy Ej]}ﬁ from LCSs and avail-
able energy charging capacity Ci{‘ﬁ from RCSs, and allocate LMESs to RCSs for energy
storage. Although RCSs are connected to power feeders with sufficient power supply,
heavy loadings at feeders can still pose great pressures on the feeder transformers, short-
ening their life cycles. Hence, when allocating LMESs to RCSs, the RCS loading pressure
needs to be optimized. First, the loading ratio of RCS R; at time h is denoted as:

EP + EM

Vih = —l’th bh (4.7)
where the loading ratio is calculated as the summation of PEV charging energy th and
MES charging energy Eth over the feeder capacity C' [128]. When the loading ratio ap-
proaches 1, meaning the feeder loading is almost at its full capacity, the feeder pressure
would increase dramatically as now the feeder will be more likely overloaded and over-
heated. On the contrary, when the loading ratio is low, the feeder pressure decreases fast
and becomes almost negligible. Therefore, the loading pressure function I'(7;y,) is defined
as an exponential function:

F(vin) = a; - ehirih (4.8)

where a; is the weight parameter of RCS R; and b; denotes the incline degree of the
exponential function. The navigation scheme aims to minimize RCS loading pressures
while enabling enough LMES energy is delivered to LCSs for overload mitigation, which is
formulated as an optimization problem:
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min Y (%) (4.9)

Yi,h

st. 0< Yi,h < 1,VR1 ER (49 a)
Y EN=) EN (4.9. b)
R;eR QjeQ

The objective is to minimize the summation of RCS loading pressure while constraints
enable the energy balance among a GCS. Constraint (4.9.a) guarantees that the LMES
charging tasks do not overload the RCS feeders. Constraint (4.9.b) enables that all stored
energy in LMESs is delivered to LCSs by the energy storage and supplement equality.
By solving the optimization problem, LMES allocated energy Elj\ﬁ at station R; can be
obtained.

Based on the LMES energy allocation results among a GCS, the operator now can
calculate the LMES navigation route. As the navigation is conducted during each time
slot, the notation A is omitted. Consider LMESs as energy flow travelling within a energy-
capacitated transportation network, the UO aims to find the fastest routes from RCSs to
LCSs. The route search problem can be formulated as a minimum-cost flow problem to
find the fastest routes to send the LMES energy flow between RCS-LCS pairs under the
energy bandwidth limit. The minimum-cost flow problem is formulated as follow:

. . A
nglj’l toverall — Z tk}] €x,1 (41())
(kD)€
s.t. Zek’l — Zek,l =0 Vk',l 7£ {RU Q} (410 a)
key ley
Z €] — Z €xi = Elj\/[ VR; € R (410 b)
ley key
Zek,j - Zem = EM vQ;eQ (4.10. c)
key ley
Y EM=) E (4.10. d)
RieR QjeQ
0< €x,1 < Bk71, V(k’, l) cé€. (4.10. e)

The objective is to minimize the summation of energy delivery time along each link. The
energy delivery time of a link is a product of the link average travel time tﬁl and the energy
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flow ey along the link. Link average travel time tﬁl is the average value of ¢, and t{,.
For the passing nodes on-road (i.e., the intersections that CSs are not deployed at), all
the incoming flow is equal to the output flow, as shown in constraint (4.10.a). Energy
conservation at RCSs and LCSs are shown in constraints (4.10.b) and (4.10.c). Constraint
(4.10.d) enables that all the energy stored from RCSs is delivered to LCSs. The energy
bandwidth constraint to enable uncongested traffic is denoted in constraint (4.10.e). By
solving the minimum-cost flow problem, the UO obtains the optimal traffic flow ey} along
each link and the delivery time cost.

The optimal flow link results e, constitute a vector = as ef) € E € R™*1. Denote
the 7th optimal flow route from R; to Q; as u;;., belongs to a vector U* € R"'. The
relation between the optimal link and optimal route can be characterized by the matrix
M! € R™*" as follows:

[1]

=M u, (4.11)

where each element M(Im,n) € M7 is an indicator function that denotes whether the mth
optimal link is included in the nth optimal route, denoted as:

1 =, €U
My = =t (1.12)
0 Otherwise.

Since the link number m is always larger than the route number n. M’ always has a left
inverse as ((MH)TM1)=Y(MH)T . M! = I,. Hence, the optimal route results U* can be
calculated as:

U =Mz (4.13)

Therefore, the travelling time G along the 7th route from R; to ); can be calculate
using indicator function as:

o= > Ty olew) -t Vg, €U, (4.14)

Ui j,r
(k,h)ee

where the indicator function I(uiw)(ekd-) equals one when the link ey is included in the
route u;;, as:
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1 k1 € Uij,r
I (o) = , Js 4.15
(u.0) (€x) {o Otherwise. 9

The optimal route U* and travelling time ty,,, are then input in the dynamic pricing
scheme for price-incentive.

4.4.2 Dynamic Pricing Scheme

The optimal navigation route calculated by the UO would direct LMESs to a longer trav-
elling distance, and potential range anxiety issue could incur. Therefore, LMESs need
monetary incentive (e.g., economic rewards) to be motivated to follow the navigation. In
this section, we first characterize the price incentive function for LMESs at the UO side
and LMES response function to the price. Then, a dynamic pricing scheme is proposed to
adjust the LMES service rewards through pricing.

Price Incentive Function Characterization

During each time slot h, the UO determines the energy delivery price px(cij,) per energy
unit, along the route u;;, denoted as:

pN(ai,j,T) = OCi,j,rti*,j,T + pfﬁ (4-16)
where «; j - is pricing weight of LMES travelling along the 7th optimal route u; ; , along the
route from RCS R; to LCS @;. pR is the base price for energy delivery. The price reflects
that LMESs need more incentive to follow the navigation when longer travelling time is
required to follow the directed route.

To characterize LMES response to the energy delivery price, a linear function f(pn(cij.-))
is formulated as:

)y = (i) — PN (4.17)

f(pN(O‘i,',T
: PR — pk

f(pn(cuj-)) is the percentage of MESs following the route w;; ., while pk and p{ denote
the lower and upper bound of the incentive price for energy delivery respectively.
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Problem Formulation

Based on the function characterization, a dynamic pricing scheme is formulated as a
weighted-sum optimization problem to achieve two objectives: minimizing the schedul-
ing costs and maximizing the LMESs that follow the optimal navigation route, which is
denoted as:

gmn K1CNavi. (i j7) + K2 Z | f(pn(aigr)) — ffj,7—|2 (4.18)
T s j - €EU*
s6.)  f(pon(0igr))NuAE,, = BV VR € R (4.18. a)
if(pN(Oéi,j,T))NM.AEaV. = EM vVQ;€ Q (4.18. b)
OTS Fon(eujr)) < 1,Vuy;, € U™ (4.18. ¢)

The first part of the objective is the scheduling cost Chayi (0sj,-) that is used to encourage
LMESs following the optimal navigation routes.

Chavi.(Qijr) = Z pr(ij ) Naf(pn(ujr) ) A B,y . (4.19)

Uij,m

The scheduling cost is calculated as the summation of the incentive price pn(aij-) per
kWh along the route u;;, multiplying with the energy delivered along that route. Ny,
denotes the total number of on-road LMESs. The product of Ny, the percentage of
LMES f(pn(cij-)) along the route and the average LMES delivered energy AFE,, is the
energy delivered along the route u;;,. On the other hand, to ensure that most on-road
LMESs follow the optimal routes, the norm form of percentage difference between the real-
life percentage of LMESs f(pn(aj-)) following the optimal route and the expected LMES
percentage ff; - needs to be minimized, which forms the second part of the objective. The
expected percentage is calculated as:

oo = {0 e & U° (4.20)

B ) Mg . *
2 Uijr UG €U

For the routes that are not optimal according to the navigation results, the expected prob-
ability is zero. For the routes that are optimal, the expected percentage is proportional to
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its assigned LMES flow over the overall LMES flow between the RCS-LCS pair. x; and xo
are the coefficients for scheduling costs and navigation route follow percentage respectively.
The k1/k2 ratio denotes the objective tendency towards scheduling cost minimization or
optimal navigation following maximization. For problem (4.18), constraint (4.18.a) en-
sures that the overall energy transmitted by LMESs equal to the energy stored at RCSs.
Constraint (4.18.b) ensures that the overall stored energy is delivered to LCSs. Constraint
(4.18.c) provides the mathematical constraint for the price response function.

4.4.3 Solution

In this section, we provide the solutions and algorithms to the navigation scheduling and
the pricing-based scheduling, respectively.

Loading-Optimized Navigation Scheme

The navigation scheme is performed every At, as shown in Algorithm 3, by first inputting
the historical traffic/energy data for station dynamic analysis, and output the predicted
RCS/LCS energy status at the next time slot. Then, input the CS energy status to problem
(4.9). As problem (4.9) is convex in a convex set, the problem can be efficiently solved
using interior point method in the CVX toolbox with Mosek 8 [118]. The CVX optimization
outputs the allocated LMES energy tasks at RCSs, which is the input to the navigation
scheme.

The LMES navigation in the energy-capacitated network is formulated as a minimum-
cost flow problem where RCSs behave as supply nodes and LCSs as demand nodes. The
other road intersections are mapped as pass nodes. To enable an initial feasible solution,
a dummy node v is introduced to create an auxiliary network, as shown in Algorithm 3.

In this paper, a network simplex algorithm is adopted to solve the minimum-cost flow
problem efficiently in polynomial time. To use the network simplex algorithm, the solution
set is represented in the form of spanning tree F = (F, J, K'). Originally, the edge set £ is
divided into three subsets:

1. F': the edges in the spanning tree;
2. J: the non-tree edges whose flows are restricted to zero;

3. K: the non-tree edges whose flows are restricted to their edge capacities.
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Algorithm 3: Loading-Optimized Navigation Scheme

Input: Historic traffic/energy data ;
Initialization
Let h=0
for h=0 to 23 do
Markov Chain Analysis:
Calculate LCS demanded energy E% and RCS available capacity C’i]’\ﬁ ;
DCP: Loading Pressure Optimization
Output: LMES allocated energy EM at RCSs;
Energy-capacitated network simplex:
Phase I - Initial feasible solution
Create an auxiliary network:
for all nodes do
if node i is demand node then
‘ add virtual arc from v to i: flow(v,7) = —E%;
else
L add virtual arc from 4 to v: flow(i,v) = EIIV{I

Assign arc cost +1 to all virtual arcs and cost 0 to all original arcs ;
Primal-simplex Algorithm
Initialize (F, J, K) with auxiliary network ;
Calculate all node potential @ ();
while nontree arc violates the optimal condition do
Select an entering arc ¢ that violate the optimal condition ;
Add arc ¢ to F, forming cycle W ;
Augment the maximal possible flow § in W and find a leaving arc p that reaches its
bottleneck ;
Update flow, (F, J, K) and w;
if total cost > 0 then
Return no feasible solution;
break ;

else
proceed to Phase 11

Phase II- Solving the original problem
Assign the original arc costs to original arcs ;
for all arcs do
if (k,1) ¢ F' and v € (k,l) then

‘ Delete the arc ;
else

L flow (k1)

)

=0
cost(k,1)=0

S‘;art from the basic solution in Phase-I, solve the problem with the Primal-Simplex
algorithm ;
Output: PMES navigation link and volume.
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Using the spanning tree structure, the optimal solution of the formulated minimum-cost
flow problem is denoted as F*.

Theorem 1 F* is the optimal solution to the minimum-cost flow problem if and only if
satisfies:

Tk_rl:tﬁl; (k?,l) e F
re—n <ty (ki)elJ (4.21)
re—1r >ty (k1) eK

Proof 3 Definer € R", w € R™ as the dual variables for problem (4.10), A € R" ™ as the
adjacency matriz of the introduced network, s € R™ as the slack variables that represent the
flow difference between assigned flow along the link and the link capacity. The introduction
of dummy nodes enables an initial feasible solution. Then, the complementary slackness
conditions are:

([T o ][+ wT]-[? ?])-[i}:o. (4.22)

To satisfy the above conditions for optimality qualify [129], each edge should satisfy the
following conditions:

(t?,l — T+ 71— wk,l)ek,l = 0, (4 23)
W, 1Skl = 0. '

For (k,l) € F, since ex) # 0 and sy, # 0, equation (4.23) is simplified as:

tl?,l — T+ = 07 (ka l) SN (424)

For (k,l) € J, since ex; = 0 and si; # 0, to satisfy equation (4.23), we must have wy,; and

re— 1 < tpy, (k1) € J. (4.25)

For (k,l) € K, since ey # 0, from equation (4.23), we have
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tiy — w4 w = wiy, (k1) € K. (4.26)

Since the dual of equation (4.10) regulates that wy; < 0, we have

re— 1 >ty (k1) € K. (4.27)

To enable that an optimal solution of the original problem is found, dummy node-connected
edges should be excluded from the final solution. Based on the optimal condition, a
primal-simplex algorithm is then conducted, as shown in Algorithm 3. First, the initialized
spanning tree with a dummy node is checked for the optimality violation. If any arc
violates the optimality, it is selected as an entering arc to augment the maximal flow in the
formed fundamental cycle. During the augment, the arc that reaches its minimal /maximal
flow is selected as a leaving arc. The whole process is conducted until no arc violates
the optimal conditions. If the output contains virtual nodes, then there is no feasible
solution. Otherwise, an initial feasible solution is obtained. In phase II, a primal-simplex
algorithm is applied by starting with the initial feasible solution to obtain the optimal
LMES navigation link results. Through the calculation of Equations (4.11)-(4.15), the
optimal PMES navigation route and time can be obtained and input to the dynamic
pricing scheme.

Dynamic Pricing Scheme

With the input of the optimal navigation results, the dynamic pricing problem can calculate
the incentive price by dynamically adjusting the price coefficient in problem (4.18), which
is a quadratic programming problem in the form of:

min 2" Pr+ QTx + s (4.28)
s.t. Az <, (4.28. a)

where P is shown in equation (4.29).

Since 27 Px > 0, P is positive definite, and problem (4.28) is convex. Therefore, problem
(4.18) is convex in nature and can be solved efficiently using the interior point method.
In this paper, SDPT3 in CVX is used to solve the quadratic programming problem in
polynomial time [118]. The calculated incentive price is then distributed to LMESs on-road
through wireless communication to encourage them following the operator’s navigation
routes.
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4.5 Performance Evaluation

In this section, we validate the effectiveness of the proposed pricing-based scheduling
scheme based on the real traffic data on California freeway collected by the California
department of transportation [119]. The impact of objective weights and the resulting
trade-off of the scheme are also discussed.

4.5.1 Simulation Setup

We choose an urban/rural intersected area within Los Angeles (L.A.) region, as shown
in Fig. 4.5, with RCSs deployed at L.A. and East L.A. respectively, LCSs at Hollydale
Park and Norwalk respectively, and another two passing points at West Athems and Santa
Fe Springs. Based on the data collected by the California department of transportation
PeSM [119], information of each link is shown in Table 4.3. The link capacity information
is obtained by observing the traffic flow when LoS=E for 100% traffics [127]. All the links
have regulated speed limits of 112km/h, based on which, the link free-flow time can be
obtained according to equations (4.3). The historical regular traffic flow on each link is
obtained based on [119]. According to [127], vehicles travelling on the 112km/h freeway is
within the time range of (1.05t°,1.15¢%), as shown in Table 4.4.

We consider a 30% PEV penetration rate in the automobile market according to the
prediction in [1]. Among these PEVs,; 30% of them are in the SoC range of 15%-50%, which
needs to be recharged. For these charging-demand PEVs, 10% of them arrive at RCSs for
charging while 20% of PEVs recharge at LCSs due to their range anxieties in the rural
area with fewer LCSs. On the other hand, 20% of on-road PEVs are in the state-of-charge
(SoC) range of 50%-75%, which are considered as LMESs candidates. Based on the above
consideration, PEV arriving rate at RCS R; at time h - p;, and PEV arriving rate at LCS

72



Table 4.3: Link information

Departure Destination Huwy Cap. Mile. Color
(veh./h) (km)
L. A. East L. A. I-10E 5360 11.65 Orange
East L. A. Santa Fe Spring | I-5S 4700 8.22 Light blue
L. A. West Athems I-110S 4850 10.74 Yellow
East L. A. Hollydale Park I-710S 4700 11.57 Green
Santa Fe Spring | Norwalk 1-605S 3400 2.03 Purple
West Athems Hollydale Park I-105E 3680 8.00 Dark blue
Hollydale Park Norwalk I-105E 4000 5.58 Red

Table 4.4: Simulation parameters

Para. Value Para. Value
th 1.05t), the) L1580, )
Pin 0.009 Pih 0.018
L. 30kWh AE,,. 10kWh
Pe 120kW Pe 90kW
Cr, 3MWh Cr, 2.4MWh
c§, 450kWh c§, 360kWh
a 0.34 by 7.81

as 0.18 bo 8.44

K1 1 Ko 50

PQ; b 0.885
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Figure 4.5: Station deployment within Los Angeles area.

Q)i at time h - pj, can be obtained. The average PEV charging energy is 30kWh, which
is estimated based on a popular PEV model of Nissan Leaf. Meanwhile, LMESs with a
similar vehicle model is considered to deliver on-average 10kWh.

For the RCSs that have sufficient power supply, they charge PEVs at a fast speed of
120kW using SAE CCS level 3 standard [21]. We consider that RCS R; at L.A. has a
feeder capacity of 3SMWh and RCS R, at East L.A. has a feeder capacity of 2.4MWh [7].
For the LCSs, their charging power is slower at 90kWh using SAE CCS level 2 standard
[21]. We consider that LCS @) at Hollydale Park has a feeder capacity of 450kWh and
LCS Q5 at Norwalk has the capacity of 360kWh. The LCSs are required to fulfill 87%-90%
incoming PEV charging tasks to guarantee good customer satisfaction, which can be used
to calculate the demanding energy of LMESs.

Although RCS loading pressure is an abstract concept, we want to measure it with
real-life parameters so that it can be comparable with another scheduling objective. In
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this work, we map different levels of loading pressures with price costs, which are extracted
from the Southern California Edison pricing [130]. The mapping function is denoted as
follow:

I'(r,2 = 0.5) = 17 ['(Yry2 = 0.5) = 12 (4.30)
I(Yr, 14 = 1) = 850 (VR4 = 0.95) = 540, '

by calculating equation (4.30), a; and b; are calculated and shown in Table 4.4. For the
dynamic pricing scheme, k; is set to 1 and ks is set is 50.

4.5.2 Simulation Results

We now validate the effectiveness of the proposed scheme from different perspectives. First,
the effects of overload mitigation at LCSs and loading pressure optimization at RCSs are
presented. Then, the time-efficiency of the proposed navigation scheme and pricing scheme
is validated. Finally, we present the impact of objective weights on the scheduling results
and discuss the trade-off between scheduling cost minimization and LMES following profile
maximization.

Overload Mitigation at Q

The power supply distribution at LCSs @1 and @3 are shown in Fig.4.6(a) and (b) respec-
tively, where red histograms denote power supplied by the LMESs and blue histograms
denote power supplied by local power feeders. It can be seen that during the time peri-
ods of 12 a.m.to 5 a.m., the power is fully supplied by local feeders as the PEV charging
demands are within LCS feeder capacities. However, during daytime from 6 a.m.to 11
p.m., as on-road traffic flow increases, the PEV charging demand also increases at CSs.
Correspondingly, to guarantee the pre-determined station availability, the LMES delivered
energy increases. Hence, during these peak hours, without the help of LMESs, LCS local
feeders would be heavily overloaded, while with the LMES delivered energy, LCS feeders
only need to provide power at their capacities (i.e., 450kWh at ¢ and 360kWh at @)»).
Therefore, the overload mitigation impact of LMESs is effective during peak traffic hours.

Loading Optimization at R

By characterizing the loading pressure with South California electricity price, the compar-
ison of loading pressure costs under the random-assigned case and the proposed loading-
optimized scheme is shown in Fig.4.7. As LCSs only demand LMES delivered energy
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Figure 4.6: Power supply distribution at LCSs.

o o

Power Supply Distribution at Q2 (kWh)
o

during peak hours (i.e., 6 a.m.-11 p.m.), RCS loading will be optimized during these peak
hours. It can be seen that the loading-optimized scheme has a lower averaged loading ratio
at all time compared with the randomly assigned case in which as long as the station has
available power, LMESs can be allocated there. With the green line chart denoting the
overall regular loads at RCSs, we can see that even during the RCS peak loading hours

(e.g., 12 p.m.-7 p.m.), the loading-optimized scheme can keep the loading pressure costs
at a lower level.
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Figure 4.7: Loading pressure costs at RCSs.

Time Effectiveness of the Navigation Scheme

The comparison of averaged LMES energy delivery time under the optimal case, the pricing-
based case and the fastest route search case is shown in Table 4.5. It can be seen that
the optimal case has the shortest LMES energy delivery time (i.e., best case) and the
fastest route search has the worst result. This is due to the route navigation difference
on the saturated road. As shown in Fig.4.8, to deliver energy from RCS R; to LCSs, the
shortest path is through L 4) — L(45). During the time period from 6 a.m.to 11 p.m.,
the regular traffic flow on the link L(; 4y is around its link capacity. Unknowing the traffic
capacity-related information and seeing the regular shortest route at its regular operation,
LMES drivers would choose to go along L 4) — L(45) as in the fastest route search case.
Meanwhile, with a big picture of the transportation network, the optimal case considers
the potential link congestion incurred by injected LMES traffic, and thus chooses another
longer but less saturated route (L 2y — L2,3). When LMESs are provided with price-
incentive, some LMESs will follow the directed routes while others will still choose the
empirically fastest route due to limited price-incentive. Hence, LMES travelling time of
the pricing-based case is in-between the optimal case and fastest route search case.
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Table 4.5: Averaged LMES energy delivery time

Time/min| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Optimal 9.51 | 9.98 | 10.01| 9.93 | 10.20| 10.81| 10.84| 11.05| 11.06| 10.93| 10.87| 10.99| 11.04| 10.81| 10.66| 10.44| 10.18| 8.88
Pricing 10.14| 10.63| 10.59| 10.49| 10.77| 11.18| 11.41| 11.58| 11.54| 11.40| 11.37| 11.37| 11.36| 11.35| 11.10| 10.92| 10.61| 9.57
Fastest 10.79| 11.63| 11.58| 11.34| 11.74| 12.10| 12.70| 12.81| 12.79| 12.54| 12.46| 12.29| 12.30| 12.46| 12.04| 11.76| 11.12| 10.00

Los Angeles East Los Santa Fe Springs
(R) Angeles (R2) V3
Vi( ) (/\) O
V2

Fastest Search:
L(1.4)-La5)

| Vs =
) \‘)\/6
Ve Hollydale
West Athems y Norwalk (Q2)
Park (Qx)

Figure 4.8: Route illustration from R; to Q).

Ko/k1 v.s. Travelling Time

As k1 and ko denote the objective weights of cost minimization and profile tracking maxi-
mization respectively, the ratio of ko /k; has a non-negligible impact on the LMES travelling
time, which is discussed as follow.

The comparisons of overall LMES travelling time under the scheduling of different ko /k1
ratios is shown in Fig. 4.9. It can be seen that the optimal navigation has the shortest
travelling time and the fastest route search is the slowest case. The LMES travelling time
of pricing-based navigations is in the range between the optimal scheduling case and fastest
route navigation. It can be seen that as the objective ratio increases, the LMES travelling
time decreases. The increasing ko/k; ratio denotes the objective tendency towards the
LMES profile tracking maximization that aims to mitigate the percentage gap between the
optimal navigation and pricing-based navigation.

To encourage more LMESs following the optimal navigation demands a higher price
for incentive, which also increases the overall navigation cost. Thus, an increasing naviga-
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Figure 4.10: Trade-off between navigation cost and LMES travelling time.

tion cost leads to a decreasing LMES travelling time until all LMESs follow the optimal
navigation, forming a trade-off between navigation cost and LMES travelling time. The
trade-off condition at time A = 13 is shown in Fig.4.10.
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4.6 Summary

In this chapter, we present the work of scheduling LMESs among a GCS to mitigate the LCS
overload issue while considering their potential impact on the transportation network. A
dynamic pricing-based scheduling scheme has been proposed with a two-stage operation.
First, a loading-optimized navigation scheme has been proposed to calculate the LMES
navigation route in the transportation network. Then, a dynamic pricing scheme has been
proposed to encourage LMESs following the optimal navigation result to enable a fast
energy delivery process. The formulated problems have been solved by the network simple
algorithm and convex optimization. Performance evaluation has validated the effectiveness
of the proposed scheme on both power overload mitigation and time-efficiency of energy
delivery. Further, the impact of different scheduling objectives on the navigation results
has been discussed. It is concluded that aligning the pricing-based navigation results with
the optimal navigation result leads to an increasing navigation cost. Thus, in terms of the
local power and traffic conditions, the UO needs to balance between the navigation cost
and transportation time increment incurred by LMESs. The proposed scheduling scheme
can be operated by the local power utility company when scheduling a large number of
MESs for energy compensation tasks and avoiding interference with the transportation
operation.
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Chapter 5

Energy Scheduling of PMESs: a
Stackelberg Game Approach

5.1 Introduction

As the electric battery technology advances and PEV commercialization proceeds, it is
foreseen that PEVs will be prevalent and become a regular transportation option in every
household [1]. In this case, the large fleet size of on-road private PEVs makes them
ideal MES candidates with high flexibility [50]. In the power operation market, LCS
operation considers the day-ahead market and real-time market. Regarding the LCS day-
ahead operation planning, we propose to use UMESs to mitigate the LCS predictable and
foreseeable large amount of energy shortage. For the real-time LCS operation, LMESs
are utilized in Chapter 4 as an assistant fleet for LCS short-term overload issues. LMESs
scheduling and navigation have been proven to be effective for the energy compensation
tasks when PEV commercialization is still in process. When the PEV reaches its desired
market share level and becomes prevalent, on-road PMESs will be the cost-efficient and
ideal MES option for mitigating the LCS short-term overload issue. When schedule on-
road PMESs, the impact of additional traffic on the transportation network does not exist
as PMESs account for a portion of on-road traffic. To utilize on-road PMESs, the UO
considers scheduling PMESs to CSs that are along their planned route as travelling to
destination place is PMES primary objective. Thus, the energy compensation service will
be conducted in a more efficient manner using the on-road resource. In addition, performing
energy compensation tasks requires frequent charge/discharge cycle from PMESs. For
some PMES owners, the service time and battery degradation could impede them from
accepting mutually beneficial tasks. Therefore, incentive-based scheduling is essential for

81



PMES energy compensation tasks.

In literature, there have been extensive studies on price-incentive scheme for PEV
scheduling [98, 103-110]. In the works [98, 103], the utility operator assumes homogeneous
PEV objective and uses pricing to achieve the social optimum. The works in [104-106]
consider the heterogeneity in PEV objectives and preferences, and use hierarchical pricing
scheme. In addition, Stackelberg game has been utilized in many works [107-110] as a
multi-layer architecture to characterize the interaction between utility operators, CSs, and
PEVs. While incentive strategies have been extensively explored in PEV charging and
occasionally PEV discharging, on-road PMES scheduling needs to consider two key factors
collaboratively: MES service process and hierarchical pricing. To accomplish PMES energy
compensation tasks, UO needs to schedule a three-step process: MES charging, discharging,
and on-road travelling. Second, how to stimulate PMESs with different preferences while
considering the battery degradation and service time compensation incurred by the energy
compensation service is a challenging issue.

To effectively stimulate PMESs and address two key challenges collaboratively, our
objective in this work is to design an effectively pricing-incentive strategy to stimulate
on-road PMESs participating in the service by considering the heterogeneity in their ob-
jectives and preferences. The main contribution of this work is twofold. First, an incentive
strategy is proposed to encourage PMESs participating in the service by improving their
utilities that consider the service revenue, battery degradation, and service time costs. The
proposed scheme also enables cost-efficient overload mitigation at the UO side. Second,
corresponding to the proposed scheme, a Stackelberg game is formulated to characterize the
price-service interaction between UO and PMESs, where the UO acts as the game leader
and PMESs act as followers. The existence and uniqueness of the Stackelberg equilibrium
are proved, and we design an efficient algorithm to find the equilibrium.

The remainder of the chapter is organized as follows. The system model of a GCS is
introduced in Section II. The incentive strategy and the corresponding game formulation
are presented in Section III. Performance evaluation of the proposed strategy is presented
in Section IV. Finally, Section V summarizes this chapter.

5.2 System Model

The system model is shown in Fig.5.1, which consists of a GCS, on-road PMESs, UO, and
communication infrastructure. The status of the GCS is analyzed on a regular basis by
partitioning one day into H time slots with equal interval of At. Consider the PMES energy
compensation service is fulfilled within At, the MES scheduling is regularly conducted at
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Figure 5.1: System model.

each time slot h € H. A summary of the notations used in this chapter is shown in Table
5.1.

5.2.1 On-road PMESs

To mitigate the LCS overloads without additional infrastructure upgrade, a set of on-road
PMESs, denoted as KL = {1,...k,... K}, are stimulated by the UO to accomplish energy
compensation tasks. Upon departure, PMESs send information about their planned travel
routes and service capacities to the UO so that the UO can estimate the service capacity
of each RCS-LCS pair.
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Table 5.1: Notations for Chapter 5

Symbol Description

H The set of time slots

K The set of PMESs

L The set of LCSs

R The set of RCSs

ol Jal The weight of service time/battery degradation cost for k-th PMES
ar, The weight of total LCS loading revenue

aq /o The depth-of-discharge weights of PMES

B1/B2/P3/B4 | The weights of discharging power degradation of PMES

a;j/b;/c The weights of loading revenue of LCS Lj

By The battery capacity of k-th PMES, kW h

cr The service time of k-th PMES, hour

cp The battery degradation cost of k-th PMES, $

DjL’h / th Minimal/Maximal demanding energy of LCS L; at time h, kWh
ex The energy service amount of k-th PMES, kW h

el The initial energy status of k-th PMES, kW h

Ein The surplus energy at RCS R; at time h, kWh

N The number of PMESs that deliver energy from R; to LCS L;, vehicles
P The posted service price by UO, $

P, The charging power at RCS R;, kW

P The discharging power at LCS L;, kW
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5.2.2 GCS

GCS itself presents a hierarchical architecture between the UO and the CSs deployed within
the control area. In this work, we consider that UO is in full charge of balancing the GCS
energy status.

RCSs and LCSs

As shown in Fig.5.1, the GCS is composed of RCSs and LCSs that are both geographically
reachable by vehicles. RCSs, a set of CSs denoted by R = {Ry, Ry ... R;}, are normally
deployed at urban areas with sufficient power supplies. The RCS power not only can charge
the incoming PEVs with charging demands, but its excess part can be stored by PMESs
and delivered to LCSs. LCSs, a set of CSs denoted by £ = {Li, L ... L;}, are usually
deployed at rural areas with limited power capacities and thus could encounter overload
issues at peak hours. To monitor the CS energy status, CSs regularly send their real-time
energy status information to the operator. At time h, RCS R; sends its real-time surplus
energy Ly, and LCS L; sends its demanding energy range between the minimal energy th

and maximal energy Dj({h to the operator.

Uuo

The UO regularly receives the energy status of monitored CSs, PMES service capacity, and
planned routes. Upon receiving the information, the UO first estimates the on-road PMES
service capacity between each RCS-LCS pair. For example, if the planned route of a PMES
overlaps with the energy delivery route from RCS R; to LCS L;, the PMES is counted as
an energy compensation server for R; — L; pair. Notably, every on-road PMES will only
be assigned to one RCS-LCS pair. By the end, the UO knows the number of PMESs Nj;
for energy delivery along the route of R;-L; pair and their average service capacity. The
operator then analyzes the energy status information of GCS and posts the service price
to PMESs to stimulate them providing energy compensation service.

5.2.3 Communication Infrastructure

For the introduced system model, data/command communication occurs between the UO
and CSs, the UO and PMESs, CSs and PMESs.
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> UO-CSs: UO, usually the local utility company, are stationary, as are the CSs. To
regularly monitor the CS operation status, wired communication technologies such
as power line communication and fiber optics are their prior options [131, 132]. Due
to the prevalent deployment of cellular networks, they are also a common option for
UO-CSs communication;

> UO-PMESs: Since only on-road PMESs participate in energy compensation tasks,
mobile-support communication technology is demanded to enable a smooth data
transfer. Latest developed cellular networks are good communication candidates
[133]. Moreover, VANETSs can be used to transmit the vehicle information to the
operator through V2V and V2I communication [134].

> CSs-PMESs: Upon connecting to the CSs for energy charging/discharging, CSs
and PMESs will be exchanging the battery information and assigned service capacity.
Moreover, PMES drivers can also monitor the task process by communicating with
CSs via short-distance wireless communication technology such as WiFi [135] and
ZigBee [136].

5.3 Incentive Strategy for On-road PMESs

At time h, UO posts the service price to PMESs to stimulate them actively undertaking
the service tasks. In response to the price, PMESs choose how many battery capacities
they will be used for the service (ranging from zero to all remaining battery capacity). The
sequential operation can be precisely characterized by a sequential game model such as a
Stackelberg game. Therefore, in this work, the interaction between the UO and MESs is
formulated as a dynamic Stackelberg game at h-th time slot. As the MES scheduling is
conducted at each time slot, the notation A is omitted.

5.3.1 Stackelberg Game Process

We define the game in its strategic form: G = {{KU{PSO}}, {p}, {ex xex, {Up}, {Ux }xex},
where {ey}rex denotes the set of PMES strategies, {p} denotes the UO strategy (i.e.,
pricing), {Up} and {Uy }kex represent utility functions of operator and PMESs, respectively.
For a service price p posted by the operator, the PMES layer interaction is characterized
as a non-cooperative game as follows:

> Players: a set of PMESs K.
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> Strategies: for the PMES k£ € IC, chooses an energy service amount ey.

> Payoffs: the k-th PMES receives revenue Uy (ey, p).

To find the Nash equilibrium, we need to find the best response function ef(p) of k-th
MES under the service price p. The set of best response functions {ef(p) }xex are sent to
the UO. The operator then optimizes its service price p* to maximize its utility function

Up (p, {€i(p) hex)-

5.3.2 Game Formulation

As a hierarchical game model, the Stackelberg game formulation is presented first at PMES
level, and then the PMES best response function will be used in the UO pricing decision.

PMES Model

For MES k € K, its utility function is defined as:

Ux(ex,p) = pex + plex — €) — O‘ECI? - 041?01?> (5.1)

The first term in the utility function is the service reward calculated by multiplying the
MES served energy amount with the service price. The second term is the motivation re-
ward that motivates MES providing energy more than the expected average service amount
of e. e is the average energy that on-road PMESs need to provide for LCSs to meet their
minimal demands, which is calculated as e = (ZLjeﬁ DY)/ (X g.er ZLjeﬁ Nij). When MES
provides less energy than e, the motivation reward is negative, meaning that PMESs will
receive less reward than their originally should if the PMES does not meet the expected
serving amount. On the contrary, when a PMES provides more service energy than e,
it will be rewarded more than service reward. The third terms in equation (5.1) is the
weighted service time cost that is the product of the service time weight o of k-th PMES
and its service time CI'. The service time consists of MES charging time at its passing
RCS R; and discharging time at its destined LCS L;, which is calculated as:

€k €k
Cl==+= 5.2

where P, and P; denote average charging/discharging power of R; and L; respectively.
The travelling time is excluded from the service time cost as R; and L; are on the MES
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planned travel route. The weight of service time cost af (af > 0) indicates the MES
driver preference towards service time. A high af indicates that MES driver is unwilling
to spend too much time in-station, and more rewards are needed for them. The forth
term of the function is the weighted battery degradation cost of MES discharging at LCS.
It is calculated as the product of the battery degradation weight af of k-th PMES and
the battery degradation cost C of k-th PMES. The battery degradation cost refers to a
modified model as in work [137]:

2
G | k), (5.3)

Y = (51]%3 + 52Pj2 + B3 + 54)(0413—1% B,

The term of discharging power degradation, [3; Pj3 + BQPJ-Q + B3P, + B4, is a cubic function
with coefficients 1, B2, B3, and B4. It is positively related to discharging power P at the

MES destined LCS L;. The term of depth-of-discharge (DoD) degradation, alg—% —|—Ozzg—1;, is
k
a quadratic function that is positively related to the battery DoD g—‘;, and thus coefficient

a; > 0. Similar to of, a high degradation weight o denotes a high unwillingness to
discharge and to countermeasure this issue, a higher service price is needed. To simplify
the equation, we denote D) = Ble3 + ﬁng + B3P + Ba > 0.

Meanwhile, the MES service energy should be within its feasible range in terms of its
current battery status:

0<ex < By —ef, (5.4)

where By denotes the k-th MES battery capacity and e] denotes the initial state-of-charge
(SoC) of MES k. Meanwhile, MESs will not participate in the service when they cannot
obtain any profit, thus the utility function should be positive, denoted as:

Uk(ek,p) > 0. (55)

Thus, given the posted price p, the MES decision making process is formulated as an
optimization problem by choosing the service amount to maximize its utility function,
which is denoted as:

max  Uyg(ex, p) (5.6)
ex
s.t. (5.4),(5.5), VkeKk.
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UO Model

As the operator of GCS, the UO aims to adjust the posted price to maximize its utility
function, which is denoted as:

Up(p.er) = ar Y (=(a; ) ex—b)° +¢) = Qe+ ) _plex =€), (5.7)

LjEﬁ kJEAj kel kel

The first term is the weighted loading revenue that is the product of loading weight o, and
the summation of LCS loading revenues. Denote a set of PMESs whose destined LCS is ;
as Aj. Then, the LCS received delivered energy is the summation of the energy delivered
by PMESs belong to the set A;: ZkeAj ex.

For LCS L;, the loading revenue increases as more energy delivered to the station and
reaches the peak revenue at the maximal demanding load DjU . Therefore, the loading
revenue of LCS Lj; is characterized as a quadratic function that reaches the peak revenue
at the maximal demanding load of D’. We set a; = 5 x 107*D{’,b; = a;D{’, ¢ = b?. The
second term of the function is the summation of all MES service costs and motivation
costs, as introduced in the last subsection.

For LCS Lj, the MES delivered energy >, A, €k should be within its demanding energy

range (D, D{'], which is denoted as:
DI <Y e, <DV VILjeL (5.8)
kEAj

On the energy supplier side, the energy stored by MESs should not exceed the maximal
surplus energy capacities at RCSs. Denote a set of MESs whose departure station is R; as
;. Then, the RCS energy constraint is denoted as:

> e <E,VR €R. (5.9)
ke

Therefore, the price decision process of UO is formulated as an optimization problem as:

mex Up(ex, p) (5.10)
st (5.8), (5.9).
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5.3.3 Game Analysis
Existences and Uniqueness of Stackelberg Game

Given the posted service price p, we can solve problem (5.6) and obtain the best-response
strategy of MES k, denoted as e} (p). When the game reaches Nash equilibrium, all followers
are choosing their best-response strategies and the strategy set is denoted as {ef(p) }xex =
{e1(p),...,ek(p)}. Given MES best-response strategy profile, the optimal price p* can
be obtained by solving problem (5.10). Therefore, the profile of (p*, {ef(p)}rex) is the
Stackelberg equilibrium for the proposed game, which is calculated as:

(p*, {ex(P) bxex) ==arggla117b(p,{6E(p)}keK) (5.11)

s.t. ex(p) = argmaxUg(e,p), k€ K.

We first analyze the follower-level game by computing MES best-response strategy
using the following lemma.

Lemma 1 PMES k has a unique best-response strategy ei(p) for a given service price p,
denoted as:

0, p<pp
P+ P;
* ) 2p—of 55t —aPasDy/By
e — i L U 5].2
(P) 2aloJ¢kDDk/B§ ) P <P <px ( )
Bk - eﬁa p Z pllqj

where pE is the rejection price, below which the PMES will not provide service. p{ is the
saturated price at which PMES k provides its maximal service capacity. pE and pY are
denoted as:

{ bk =05(] ) + aPauDy/B) (5.3

Py = pt + ono! Di(By — ef)/ B}

Proof 4 For MES k, the strategy set is denoted as {ex|ex € R,0 < e, < By, —el}, which is
the intersection of two halfspace. Thus, the MES strategy set is non-empty and convex. To
find the best-response strategy of k-th MES, we solve the optimization problem (5.6). First,

90



we analyze the property of the objective function Uy(ey,p) by calculating the second-order
derivative of the objective function:

2
M = —2aP0, Dy (5.14)
Oey,
As o oy, Dy > 0, the value of equation (5.14) is always negative. Thus, problem (5.6)
is proven to be a convex optimization problem, and the best response strategy for MES
k is global optimum. By applying Lagrangian function and Karush-Kuhn-Tucker (KKT)
conditions to problem (5.6), we can obtain the best response strategy of MES k. The detailed
calculation s omitted.

Based on MES best-response strategy, we define the feasible range of service price p.
The UO adjusts its price within the range between the minimal and maximal value of
Prange = [PV 0k, ¥ pY]. min{prange} is the overall rejection price, under which all
PMESs will not participate in energy compensation service. On the other hand, when the
price is at max{prange} (i.€., overall saturated price), all PMESs use up their battery space
for the service and no higher price is needed. By calculating pt and pY for MES k using
equation (5.13), and sorting all pL and p¥ in an ascending order, we have the feasible set of
the price. The price set is a M-element vector v, where v1 < v <+ <Yy < Ymt1 - - M-
Further, define 'y, £ [y, Yms1] for m = 1,2,... M — 1, we can divide the price p range
into M — 1 intervals.

To find the optimal price for UO, we decompose problem (5.10) into M —1 sub-problems
where the m-th sub-problem aims to finding the optimal price within the range I',,, similar
to works in [138, 139].

Lemma 2 In the sub-domain of 'y, Ym, problem (5.10) is a convex optimization problem.

Proof 5 As the price is continuous within I'y,, the price set is convex. By substituting the
MES best-response strategy into problem (5.10), the objective function is calculated as:

Up(p,Tm) = ar Y (=(a5( D (wp—2)+ Y. (Bu—eb)) —b)* +¢)

Liyel keA;N1 kEA;Np2

— (Y -2+ S (Be—el) + S pe. (5.15)

kepr kEpa kex
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where yyp — 2 is the simplied function of ef for pt < p < pY, and y, 2 are denoted as:

2
Y« = 3510 Dy /B2
aPasDy/, (5.16)

k= 2a1akDDk/B1%7

For MESs with non-zero best-response value within I'y,, they are divided into two sets: ¢,
and ¢y, where ¢1 = {k|lyp — 2 < By —el} and ¢y = {k|lysp— 2 > By —el}. Aspt and p!
are deterministic and irrelevant to p, ¢1 and ¢o are deterministic and fived. The second
deriwative of the utility function is calculated as:

82Up(p, Fm)
8—])2 = —2aqy, Z @j2 Z yﬁ —4 Z Yk, (5.17)

L; eL keAiNGy kep1

where ar,, a;, Yy > 0. Thus, 0?Up(p,I'w)/0p* < 0, making the utility function concave
and differential. Moreover, by substituting equation (5.13) to constraints (5.8), (5.9), both
constraints are convex (half-space). Therefore, problem (5.10) within the sub-domain Ty,
1S a convexr optimization problem.

Lemma 3 The utility function of UO has a globally optimal price, given the best-response
strategies of MESs.

Proof 6 By decomposing problem (5.10) into M — 1 sub-problems as defined in Lemma 2,
the original problem can be rewritten as:

maxmax Up(p, ') (5.18)
pEl'm

m

st (5.8),(5.9).

By obtaining the optimal result pr, of the convex sub-problem follow Lemma 2, we can find

the globally optimal price p* by searching the mazimum utility value from [pY, ..., Pk, .. D1l

p*=  argmax Up(p,T'm) (5.19)

pe[p‘i(:"wp;;u"':pil_l]

st (5.8),(5.9).
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Thus, the existences and uniqueness of the Stackelberg equilibrium can be proved in
the following proposition.

Proposition 3 For the formulated game, a unique Stackelberg equilibrium exists.

Proof 7 As shown in Lemma 1, each MES has a unique best-response strategy e (p) given
as a posted price p. Then, by substituting ef(p) to problem (5.10), we prove that the
global optimum of PSO strateqy exists as in Lemma 2 and Lemma 3. As PSO achieves its
global optimum and each MES has a unique best-response strateqy, the unique Stackelberg
equilibrium is obtained.

Stackelberg Game Algorithm

During each scheduling time period At, the UO scheduling price can be obtained as in
Algorithm 4 by first calculating the PMES best response function and substituting the set
of functions to problem (5.10) and iteratively solve the problem within I'y,. The optimal
result can be obtained as the maximal solution of the iterated problem.

Algorithm 4: Stackelberg game solution.

for k=1 to K do
| Calculate p; and p{ according to equation (5.13) ;

Sorting pL and pL in an ascending order to form vectors v and T’
for m=1 to M-1 do
L Find pz, by solving problem (5.10) within [Ty, T'ni1];

Find the optimal p* with the maximal utility value according to equation (5.19).

The proposed algorithm does not require iterations to analyze the Stackelberg game.
As the number of MESs increases, the algorithm complexity increases polynomially. Thus,
the proposed algorithm can be applied to schedule a large number of MESs.

5.4 Performance Evaluation

To validate the effectiveness of the proposed scheme, we present the simulation results in
this section. First, the optimality of the proposed scheme is validated. Then, we discuss
the scheduling results under different operating scenarios.
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Table 5.2: Simulation parameters

Para. Value Para. Value
E, 1.6MWh E, 900kWh
DF 100kWh DY 200kWh
D¥ 150kWh DY 300kWh
Pr, /R, 90kW P, 60kW
Ny 6 Nio 8

Ny 7 Nao 4

E(ex) 14kWh o(ex) 5kWh
E(By) 80kWh o(By) 10kWh
af’ 30 ap 10°

Dy 5.08x107% | ay 1

o -0.222 oL 0.5

5.4.1 Simulation Setup

The parameter setting is shown in Table 5.2. RCSs are considered with a large amount of
excess energy, where 7 has 1.6MWh and Rs has 900kWh surplus energy. LCS L; demands
100-200kWh energy to be delivered while L, demands energy between 150-300kWh. RCSs
adopt SAE CCS level 2 charging standard at 90kW and LCSs adopt SAE CCS charging
standard at 60kW [21]. The number of MESs Nj; along each R;-L; pair is also included
in Table 5.2. The MES service capacities are considered as random variables that follow
a normal distribution with a mean value of 14 and a standard deviation of 5 (kWh).
Similarly, the MES battery capacities also follow a normal distribution with an 80kWh
mean and a standard deviation of 10kWh. The battery degradation parameters Dy, aq,
ag, ag are calculated according to data in work [140]. While the MES battery degradation
cost is relatively low (e.g., 4x107%) per cycle, it is still a great concern for MES drivers.
Thus, of is set to 10° and «of is set to 30 to make them comparable with service reward
and motivation reward. The loading cost weight oy, is set to 0.5.
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Figure 5.2: Optimal utility revenue with different MES service capacities.

5.4.2 Simulation Results

Scheme Optimality

We simulate the proposed scheme and compare its performance with the price-minimized
scheme and random scheme, as shown in Fig. 5.2. In the price-minimized scheme, the PSO
alms to minimize its service price. In the random scheme, the PSO randomly adjusts the
service price to meet LCS energy demands. It can be seen that the proposed scheme has the
highest utility revenue compared with both price-minimized and random schemes as the
price-minimized scheme only tries to minimize the price, but ignores the loading revenue
impact on the utility function. Compared to the price-minimized scheme, random scheme
schedules more MESs and can achieve higher revenue as it does not put strict constraints to
achieve minimal loading demands. Moreover, as MES service capacities increase, revenues
of both proposed and random schemes increase. As for now, there are more on-road service
capacities to meet the LCS energy demand, and a lower service price can be provided for
incentive. For the price-minimized scheme, the revenue increment is smaller as its loading
revenue stay almost the same.
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Figure 5.3: Impact of on-road MES number on energy scheduling.

Impact of MES Number

We also discuss the energy scheduling scheme under different operation scenarios. The
impact of on-road MES number on scheduling result is shown in Fig.5.3. It can be seen
that as the on-road MES number increases, the service price decreases since the operator
has more potential energy servers, and less price-incentive is required. Correspondingly,
the UO utility revenue increases. Moreover, with more MESs participating in the service,
more energy can be delivered to LCSs, which increases the loading revenue part of the
utility.

Impact of Loading Weight

Depending on the GCS operation goal, the objective of MES scheduling could lean towards
operation cost minimization or loading revenue maximization. By adjusting the loading
weight ar,, the operation objectives vary and the scheduling result also changes, as shown
in Fig.5.4. It can be seen that as the loading weight increases, the MES scheduling mainly
focuses on loading revenue maximization. To encourage MESs delivering more energy, the
service price increases until «p, reaches 0.6. We can observe from the figure that when
ar, = 0.6, the loading at L; reaches its maximal demanding load DY. Therefore, a higher
loading weight will result in the same loading results as limited by the loading constraints
and the service price will remain the same.
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Figure 5.5: Impact of the battery degradation weight on energy scheduling.

Impact of Battery Degradation Weight

As the battery technology advances, the MES driver’s preference towards energy discharg-
ing also changes. Therefore, we discuss the battery degradation weight impact on schedul-
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ing results, as shown in Fig.5.5. As the weight o’ increases, MES drivers are more reluctant
to discharge energy and the price range prange becomes wider. Therefore, for the same en-
ergy compensation tasks, to stimulate MESs actively fulfilling the tasks, the UO needs
to post a higher service price. As a result, the operation cost increases and the operator
utility revenue decreases accordingly.

5.5 Summary

To fully utilize the on-road energy storage resource, a price-incentive scheme that stimu-
lates on-road PMESs fulfilling energy compensation tasks has been proposed to mitigate
overload issues at LCSs. The sequential decision-making process has been formulated as a
Stackelberg game to characterize the interaction between the UO and PMESs. The exis-
tence and uniqueness of Stackelberg equilibrium have been proven, and an algorithm has
been designed to find the equilibrium. Performance evaluation has validated the effective-
ness of the proposed scheme under different operation scenarios. The proposed scheduling
scheme can be applied by the local power utility company to balance the GCS energy with
on-road energy resource in a cost-efficient manner.

98



Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contributions and impacts of the presented works
and highlight future research directions.

6.1 Main Research Contributions

In this thesis, we aim to explore the potentials of PEVs serving as MESs in the smart grid.
At different PEV commercialization stages, the MES ownerships, battery-capacities, and
fleet sizes vary correspondingly. Therefore, we propose three scheduling schemes for MESs
to mitigate the overload issues in the smart grid under three different scenarios: UMESs
when PEVs are at their early developing stage, LMESs when PEV commercialization is
promoted by the legislation, and PMESs when PEVs have been prevalent in the automobile
market and become a regular transportation option for every household. The proposed
MES scheduling schemes can be applied by the local power utility company to fully utilize
on-road energy storages to mitigate the local overload issues without spending excessive
expenditure on infrastructure upgrade. The main research contributions are summarized
as follows:

1. First, we study the scenario when PEVs are at their early development stage, and
UMESSs are large capacity electric vehicles solely used to mitigate the overload is-
sues among a GCS. To accurately characterize the CS operation dynamics, a two-
dimensional Markov Chain model is developed to estimate the surplus energy of RCSs
and demanding energy of LCSs. Then, a two-tier energy compensation framework is
introduced to effectively use UMESs as energy porters at peak hours. To minimize
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the scheduling cost, a convex optimization problem is formulated and solved through
DCP of CVX. Through simulation, we validate that the introduced framework can
effectively mitigate the GCS overload issues using UMESs in a cost-efficient and
timely manner. We can also conclude from the simulation that as battery technology
develops, the increasing UMES energy transmission efficiency contributes to wider
transmission coverage and more flexible scheduling. Further, strict station availabil-
ity requirement can result in a drastic increment of scheduling cost, leading to a
trade-off between the station availability and scheduling costs.

. Second, as we foresee the legislation promotion and commercialization of PEVs,
LMESs will enter the MES market. Under this scenario, we consider the impact of
additional MES traffic on the transportation networks when schedule the energy com-
pensation tasks. Therefore, the proposed scheduling strategy has two objectives: bal-
ancing energy among a GCS and achieving a stable and uncongested transportation
operation. To measure the LMES travelling capacity on-road, an energy-capacitated
transportation network model is developed. Based on the model, LMES scheduling
is conducted in two steps: first, a loading-optimized navigation scheme is proposed
to calculate the optimal navigation routes for LMESs, followed by a dynamic pricing
scheme to stimulate LMESs following the navigation results. Solving the formulated
problem by the network simplex algorithm and convex optimization, the effectiveness
of the proposed scheme on overload mitigation and time-efficiency of energy delivery
can be validated. Further, the simulation results also present the impact of different
scheduling objectives on the navigation results. It is concluded that aligning the
pricing-based navigation result with the optimal navigation result leads to an in-
creasing navigation cost. Thus, in terms of the local power and traffic conditions, the

UO needs to balance between the navigation cost and transportation time increment
incurred by LMESs.

. Third, when PEVs are prevalent in the automobile marker and therefore, private
PEVs become the most convenient and cost-efficient MES option, a price-incentive
scheme is in demand to stimulate them fulfilling the assigned tasks aside from trav-
elling to their destined places. The sequential decision-making process of the UO
and PMESs is formulated as a Stackelberg game to characterize the price-service
interaction between these two entities. Through the game analysis, the existence
and uniqueness of Stackelberg equilibrium are proven, and an algorithm is designed
to find the equilibrium efficiently. Simulation results validate the optimality of the
proposed scheme while also discuss the results under different operating scenarios.
It can be concluded that PEV prevalence and battery technology advancement can
effectively reduce MES operation costs.
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6.2 Future Work

In this thesis, we exploit the PEVs’ potentials as MESs and their functionality as a solution
to the overload issues in the smart grid. The challenges of MES scheduling are identified
and three scheduling schemes are proposed for MES utilization during different PEV com-
mercialization stages. Although several critical issues have been addressed in our previous,
there are still many open research issues:

1. Facilitate the renewable energy integration: As more renewable energy gener-
ations are integrated into the smart grid, their fluctuating electricity generation may
not match the energy demand in the grid, and therefore lead to either electricity
waste or energy imbalance. To flatten the renewable energy generation profile, MESs
can be used as energy buffers to store surplus energy of renewable generation and
deliver the energy to energy-demanding areas. The electricity generation of renew-
able energy plants can be characterized as a Markov Chain model, in which the MES
charging rate depends on the weather condition and MES chargers.

2. Robust MES scheduling on-road: While the CS dynamic has been modelled and
predicted by stochastic analysis, in real life, there are still unpredictable factors that
could lead to energy imbalance among a GCS, e.g., human factors, unexpected PEV
charging demands, uncertain MES discharging, and so on. Therefore, robust design
of the MES energy scheduling is required by including the unpredicted errors during
the scheduling process so that the scheduling scheme is guaranteed to achieve the
minimal CS operation requirements [107]. Factors such as environmental uncertainty
can be considered during the problem formulation and stochastic programming can
be an effective optimization tool to solve this problem.

3. Cooperative LMES scheduling: In addition to their fleet size and battery ca-
pacity, LMESs have a unique feature compared to UMESs and PMESs: the LMESs
that belong to the same company have the same service objective: to maximize the
company’s overall revenue of energy compensation service. Therefore, to achieve the
overall service revenue maximization, the interaction between these LMESs is not
competitive, but rather cooperative. If LMESs from the same company cooperate
together to bargain with the GCS, a better overall service revenue could be achieved
since a group of LMESs are considered as a larger service capacity MES and have
more leverage. Therefore, a cooperative game can be an effective mathematical model
to characterize the interaction among LMES service.
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