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Abstract

Since the famous debates of Einstein & Bohr, physicists have argued about the nature
of the quantum state. Is it best thought of as describing the-way-things-are out there in
the world, or merely as a description of our knowledge of such things? In more recent
years, this has been termed the ψ-epistemic/ψ-ontic debate, and that distinction has been
given a mathematical definition within the ontological models formalism. This formalism
is a framework for describing a large class of interpretations of quantum mechanics. Here
we show that consideration of sequential measurements, and the fact that the quantum
state changes during measurements, has been a neglected topic in this area as it places
nontrivial restrictions on the structure of ψ-epistemic ontological models.

We do this by finding a general restriction on the structure of ψ-epistemic models,
although not one that is strong enough to rule them out categorically. We then apply
this restriction to all of the known examples of ψ-epistemic ontological models and show
that they can’t represent sequential measurements. We also present a new version of the
ontological models formalism, based on hidden Markov models, which we develop briefly
and describe how it may be useful for either proving a no-go theorem (i.e. ‘ψ-epistemic
models can’t exist’) or for learning more about the structure of ψ-epistemic models and
how to construct them.
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Chapter 1

Introduction

Phaedrus: What is the other principle, Socrates?
Socrates: The second principle is that of division into species according to the
natural formation, where the joint is, not breaking any part as a bad carver might.

– Plato, Phaedrus ; trans. Benjamin Jowett

Plato gave us many things; among them, some passages ripe for overquoting out of context.
The paraphrase “cut nature at the joints” has become a favorite of both scientists and
philosophers over the millennia since it was written, and not for bad reason. We physicists
especially like to think of ourselves as artist-meets-craftsperson, like a (good) carver. We
like to think that nature has joints where it ought to be divided, and we like to think that
we can find and divide those joints.

While philosophers have always argued about interpretations of scientific theories and
whether or not they’ve cut any joints at all, many physicists were generally pretty happy
with their progress until quantum physics came along at the turn of the 20th century.
Suddenly, the joints moved out of focus, shifted, and, to some, disappeared completely.
Back in the good old days of classical physics, billiard balls with mass but no spacial extent
were strange, but considered idealizations at worst; the electric field may travel through
no medium but space, but we got used to that. Perhaps one exception is the action-at-
a-distance of Newtonian gravity, which Newton himself didn’t like [44], but which was
eventually resolved by general relativity.

But quantum physics! A particle that’s ‘here and there but also neither,’ or a cat that’s
both dead and alive—clear nonsense. One of the first popular interpretations, and one that
still throws its weight around today, simply said that ‘our human, mesoscopic, classical
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language can’t describe the goings-on of microscopic, quantum entities, and that’s that.’
This was Heisenberg’s interpretation [90], one of a number of interpretations grouped under
the heading of the Copenhagen Interpretation(s). While many folks agree with most of his
assessment—that statements like ‘here and there but also neither’ are indeed nonsense1—it
would be awfully disappointing if ‘and that’s that’ really is the full extent of what we can
say about microscopic physics.

So, fuelled by a mixture of faith, hope, and optimism, physicists and philosophers have
been toiling away for the last hundred years to make some sense of that nonsense, birthing
the field that is the subject of this thesis, quantum foundations. We continue to look for the
natural joints, whether or not they actually exist. Many proposals have been put forward,
and thoroughly developed by their proponents: Bohr’s complementarity [14], de Broglie
and Bohm’s respective pilot wave theories [13, 85], Everett’s universal wavefunction [29],
the many-worlds interpretation [23, 24], various modal interpretations [25, 59, 86], collapse
models [10, 67], QBism [36], relational quantum mechanics [71], the ψ-complete interpre-
tation [12], pragmatist interpretations [48], non-interpretations [37], and more. This is
not to mention aspirational interpretations that are based on toy theories and desiderata
that have not yet been satisfied [5, 6, 26, 27, 47, 50, 53, 72, 81]. Indeed, anyone who asks
100 physicists for their personal preferred interpretation of quantum theory had better be
prepared to hear at least 101 answers [77]. A review of this interpretation zoo is far beyond
the scope of this thesis, and to my knowledge has not been carried out. In its absence, the
Stanford Encyclopedia of Philosophy and Wikipedia provide useful starting points for the
interested reader.

As if the chaos and diversity of this zoo weren’t evidence enough that our joint-cutting
is going badly, we can also look outside quantum theory to its archnemesis and chief rival,
general relativity. A common catch-phrase of physicists is that ‘quantum mechanics and
general relativity are incompatible.’ What they generally mean by this is that if one takes
the chunk of math that is general relativity, picks up the lump of math that is quantum
mechanics, and then attempts to smush them together, then untamable infinities, ghost
particles, and other nonsensical entities emerge. This is generally seen as a pragmatic issue,
where we would like to model as much of the universe as we can via math and physics, and
we expect that a unified theory of quantum gravity will model more of the universe than
either quantum theory or general relativity does on its own.

However, the issue goes much deeper: quantum theory and general relativity seem to
be metaphysically incompatible. In other words, they divide nature at different joints. For

1To emphasize, I think that the constant use of phrases like “here and there at the same time” in both
the popular press and formal scientific writing does nobody any favors and communicates very little except
a demonstration that our language really is ill-equipped to describe whatever these goings-on really are.
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example, the word time means wildly different things in each of these theories. As such,
they are not just incompatible in the mathematical sense but perhaps also incommensu-
rable in the sense of Kuhn, Feyerabend, and others [33, 54]. This assertion is, of course,
dependent on one’s interpretations of both general relativity and quantum theory; gen-
eral relativity has essentially a single mainstream realist interpretation, and none of the
popular realist interpretations for quantum theory are compatible with it. The only ex-
isting interpretations that are metaphysically compatible are the instrumentalist readings
of each, which essentially amount to Heisenberg’s ‘and that’s that.’ To emphasize, this
metaphysical incompatibility is not solely motivated by the desire for a unified theory of
quantum gravity; whether or not one believes such a thing exists or is achievable, it would
at the very least be desirable for our theories to give us a coherent picture of the universe,
even if they are mathematically incompatible.

That said, we can turn this line of reasoning around. Just as we pursue the natural
joints of the world despite any guarantee of their existence, we can do the same with a
unified theory of physics. In this pursuit, the perspective of the previous paragraph has
another reading: it should be no surprise that math-smushing was a failed exercise, when
the real-world referents of that math were incompatible to begin with. Thus quantum
foundations can serve as a resource in our search for a unified theory, if we approach it
intentionally as such. Hardy suggests something along these lines [44], but moves too
quickly (for me) to his own interpretation and a mathematization of these ideas without
exploring sufficiently the role that existing interpretations and frameworks may play in
this project. In particular, I think that any sort of pragmatic, quantum-gravity-oriented
foundational program will have to be pluralist in its outlook. By this I mean that, rather
than arguing about which interpretation is ‘true’ (after all, as Hardy and others point out,
we can be fairly certain that none of them are), we can instead ask “What does each of
these interpretations teach us about quantum theory and the world?” This recognizes that,
even if none of the interpretations are ‘true,’ probably each one has something informative
to say about quantum theory or its relationship to the world.

Returning to the interpretation zoo, one way in which we can make practical use (and
some modicum of sense) of this zoo is to search for commonalities that allow us to categorize
the interpretations in a variety of ways. One such way of categorizing them is by their
response to the question “Is the quantum state real?” Discussion of this question can be
dated back to the famous debates of Bohr and Einstein, but the modern version of this
debate was largely kicked off by [47]. As always, ‘real’ is not entirely well-defined, but in
this context most folks have in mind some notion of objective, observer-independent, ‘out-
there-in-the-world’ existence. Cabello [15] provides the most up-to-date taxonomy based
on interpretations’ answer to this question; while most of its content is not novel, it makes
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Interpretations of quantum theory

ψ-epistemic

ψ-doxastic

state-antirealiststate-realist

ψ-ontic

Figure 1.1: A Venn diagram categorizing interpretations of quantum theory, based on
Cabello’s classification scheme. I have renamed his “type-I” and “type-II” as state-realist
and state-antirealist, respectively, which gains the advantage of specificity but of course
loses the fuzziness that can be helpful in capturing a wider range of interpretations. These
labels refer to whether or not an interpretation maintains that states (that is, any kind of
states, not just quantum ones) have an objective existence; they are divided in the diagram
by the black line. Additionally, Cabello reserves ψ-ontic (the quantum state is real) and
ψ-epistemic (the quantum state is a state of knowledge) for state-realist interpretations,
while I have extended ψ-epistemic into the state-antirealist region and used Schack’s term,
ψ-doxastic, for interpretations that claim that the quantum state is a subjective expression
of belief.
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a few important distinctions that are relevant to the present work. I have adapted this
taxonomy with some of my own terminology and some of Schack’s [76], and represented it
as the Venn diagram in Fig. 1.1. In addition to their stance on the reality of the quantum
state, interpretations are also distinguished by their stance on the reality of any potential
state describing a system. I term these two categories state-realist and state-antirealist. Of
course, although the categories in the Venn diagram are drawn as mutually exclusive and
complete, any attempt at a categorization of a set as fuzzy as the interpretation zoo will
not actually be so.

The question “Is the quantum state real?” then has three answers that have appeared
in the literature, though more are probably possible. The first, “Yes, quantum states are
objective elements of the world” corresponds to ψ-ontic2 interpretations. This category
is the most straightforward and requires little explication; examples include pilot wave
theories, many-worlds, and the ψ-complete interpretation. This third interpretation, while
not widely discussed, says that the (single-world) quantum state is in fact all that there is;
other ψ-ontic interpretations generally specify more machinery.

The second answer that appears in the literature is “No, the quantum state represents
knowledge about reality.” Interpretations taking this view are variously termed epistemic,
statistical, or ψ-epistemic, though we will use the latter here. The obvious next question is
“Knowledge about what?” and different ψ-epistemic interpretations answer said question
in a few different ways. Most state-realist ψ-epistemic interpretations say that the quantum
state represents knowledge about that non-quantum state that they believe is real. State-
antirealist ψ-epistemic interpretations must, ipso facto, be a little more creative about
their answer to the latter question. One example is instrumentalist interpretations like
Copenhagen interpretations and non-interpretations, which say that the quantum state
just represents knowledge about future experimental results, and nothing more.

ψ-doxastic interpretations provide the third potential answer: “No, the quantum state
represents the beliefs of agents.” As mentioned above, the border between these and state-
antirealist ψ-epistemic interpretations is a fuzzy one. In fact, the only interpretation that
Cabello puts into this final category (and, as far as I know, the only interpretation that
labels itself as such) is QBism. The advantage here is to avoid the question “Knowledge
about what?” although many disadvantages are incurred in the process. In particular,
QBism has been accused of being solipsistic and overly anti-realist in general. They deny
both, instead arguing for “participatory realism” about structural elements of quantum
theory like Born’s rule [35, 83].

2Etymologies: ψ is the standard symbol for a wavefunction or quantum state, and so is used here to
refer to the quantum state. -ontic comes from the Ancient Greek on, meaning being, existence, essence;
-epistemic from episteme, meaning knowledge; and -doxastic from doxa, meaning belief.
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In order to clarify these positions, it might help to consider them in analogy to the
everyday experience of flipping a coin and covering it as soon as it lands. Given that we
don’t know how it landed, we might assign it a 50% chance of being heads-up and a 50%
chance of being tails-up. This probability distribution represents our knowledge of the
coin. ψ-epistemic interpretations maintain that the quantum state is like this probability
distribution. A state-realist will say that, before we look at it, the coin still has some
definite, objective state; in this case, either heads or tails. ψ-ontic interpretations then
say that the proper analogy for the quantum state is this objective state, rather than the
probability distribution. State-antirealists, on the other hand, say that there is no fact
of the matter about the coin, no real state3. ψ-doxastic interpretations would then say
that the quantum state properly corresponds to the probability distribution, but viewed
as a description of belief (usually expressed as a willingness to bet on the outcome of the
coin-flip) rather than knowledge.

The present work is concerned with state-realist ψ-epistemic interpretations, not out
of some conviction that states must be real, but because that class allows for a quantita-
tive mathematical treatment via the ontological models formalism [45, 47, 72, 80]. The
ontological models formalism, described in Chapter 2, captures almost all state-realist
interpretations, with the exception of many-worlds interpretations and those that reject
classical probability theory as a way to describe the behavior of these states. Generalized
Probabilistic Theories (GPTs) [8], while not usually viewed as interpretations, are the only
examples that I know of the latter case. Many-worlds interpretations are ψ-ontic; GPTs,
not really being interpretations per say, are agnostic to the ψ-epistemic/ψ-ontic distinction.
As such, all examples of state-realist ψ-epistemic interpretations that I am aware of are
describable by the ontological models formalism, so for convenience I will use “state-realist
ψ-epistemic interpretations” as synonymous with “ψ-epistemic interpretations that can be
described in the ontological models formalism.” The ontological models formalism, as a
framework that describes a large number of interpretations, is a tool that is well-suited for
pursing the pluralist/generalist project that I described earlier. In particular, it gives us
a precise mathematical criterion distinguishing between ψ-ontic and ψ-epistemic interpre-
tations, which allows us to really discuss them categorically, rather than as collections of
examples.

State-realist ψ-epistemic interpretations are a very attractive class of interpretations,
as sort of the best-of-all-worlds compromise. ψ-ontic interpretations, while often straight-

3The analogy breaks down a little bit here—there is debate about whether state-(anti)realism at the
quantum level implies state-(anti)realism at the macroscopic level of coins. Most people, regardless of their
interpretation of quantum theory, would agree that in the case of the coin there is a fact-of-the-matter
about the coin before it is observed.
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forward, suffer from a number of known issues including the measurement problem, unex-
plained physical collapse of wavefunctions, nonlocality, and others. Many of the desirable
features of ψ-ontic interpretations can be retained by loosening to state-realism rather
than ψ-onticity specifically, although we do know from Bell’s theorem and subsequent ex-
periments that any state-realist interpretation must be manifestly nonlocal [11]. On the
other hand, there are many qualitative arguments for why quantum mechanics has the
character of a theory describing knowledge [5, 27, 34, 81], which suggests that ψ-epistemic
interpretations provide a very natural understanding of quantum theory.

There is one catch that I haven’t mentioned: there is a severe dearth of actual state-
realist ψ-epistemic interpretations. There are some nicely behaved and well-developed
ones that only describe certain subtheories of quantum theory (i.e. they disallow certain
experimental sequences), are toy theories that are qualitatively similar but nonidentical
to quantum theory, or can only describe a qubit (a two-level quantum system). For a
few years, there was doubt as to whether or not such interpretations exist at all for full
quantum theory. Eventually a couple of examples were constructed that apply to the whole
of quantum theory, but they are rather unnatural and have no basis in anything physical;
they are based solely on mathematical abstractions. However, as proofs of concept, these
examples aim to show that state-realist ψ-epistemic interpretations do exist in some form.

One of the main contributions of this work is to show that this last conclusion is no
longer warranted. With the exception of a couple of specific interpretations [17, 58, 64,
81] and two other studies [16, 52], all work in the ontological models formalism to date
has considered experiments that involve only a single measurement. Most relevantly, all
examples of state-realist ψ-epistemic interpretations (in dimension d ≥ 3) only consider
a single measurement. We extend the formalism in order to include the possibility of
sequential measurements, and in doing so show that the existing examples of state-realistic
ψ-epistemic interpretations for full quantum theory are no longer valid.

Importantly, this is not a categorical result like “There are no state-realistic ψ-epistemic
interpretations of quantum theory.” Such a result is called a no-go theorem; the most
famous example is Bell’s theorem [11] which says that any state-realist interpretation must
be nonlocal; i.e. for certain experimental setups, a state must extend beyond the lightcone
of the event it is describing4. Such no-go theorems exist for ψ-epistemic interpretations, but
all make one additional assumption beyond the basic structure of the ontological models
formalism. This additional assumption can be interpreted as the negation of a property
that ψ-epistemic models are required to have.

4More specifically, the causal influence corresponding to a state update under measurement must travel
faster than the speed of light, but this is not the usual phrasing of this property.
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For example, the first no-go theorem that was explicitly concerned with the ψ-epistemic/ψ-
ontic distinction5 was the PBR theorem due to Pusey, Barrett, and Rudolph [68]. The PBR
theorem’s extra assumption is called the preparation independence postulate (PIP), which
roughly says that, for two systems whose quantum states are uncorrelated, the real states
of the system must also be uncorrelated. It shows that, under the addition of the PIP,
no ψ-epistemic interpretation can exist. Equivalently, any existing ψ-epistemic interpreta-
tion must violate the preparation independence postulate. Thus, although these types of
results are usually presented as ruling out some type of ψ-epistemic interpretation, they
are perhaps more properly understood as restrictions on the structure thereof. Because of
the (previously accepted) existence of ψ-epistemic interpretations, it was understood that
any no-go theorem needs an additional assumption. Other no-go theorems [1, 19, 43, 61]
have been proven for other additional assumptions/properties and are reviewed thoroughly,
along with the rest of the ψ-epistemic/ψ-ontic debate, in [55].

The results of this thesis differ in two ways from these no-go theorems. First, as already
stated, we do not make a categorical statement, but evaluate a set of examples. Second, we
do not make an additional assumption to do so6. Because we rule out all known examples
in this fashion, we reopen the possibility of a no-go theorem for state-realist ψ-epistemic
interpretations as long as that theorem takes into account sequential measurements. This
result is interesting, because it was previously the accepted wisdom that “A straightforward
resolution of the collapse of the wavefunction, the measurement problem, Schrödinger’s
cat and friends is one of the main advantages of ψ-epistemic interpretations” [55]. All
of the ‘paradoxes’ listed here have to do with how the quantum state changes during
measurement, which is only important when considering sequential measurements. While
this accepted wisdom may still be true for state-antirealist interpretations, we will show
that within the class of state-realist interpretations, those that are ψ-epistemic are actually
at a disadvantage when it comes to describing state update under measurement relative
to ψ-ontic interpretations. Thus, while these ‘paradoxes’ are obviously still an issue for
ψ-ontic interpretations, state-realist ψ-epistemic interpretations do not necessarily resolve
them in the straightforward way expressed in the quote above.

While reopening the possibility of a no-extra-assumptions no-go theorem is exciting,
it would of course be even more exciting to prove such a theorem. In Chapter 5, we’ll

5Bell’s theorem is the first (valid) no-go theorem of any kind in quantum theory, and can be read as
ruling out certain types of ψ-epistemic interpretations. The PBR theorem can also be read as having less
to do with ψ-epistemic interpretations and more directly with the PIP [28].

6Although it seems fairly self-evident to myself and others that modeling sequential measurement is
not an additional assumption, we further justify this position in the conclusion (Chapter 6) for the benefit
of any naysayers.
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draw from computational mechanics [21, 78] to construct a new set of tools for attempting
this, and describe our progress so far along this track. It is, of course, still possible that
state-realist ψ-epistemic models do exist—luckily, anything we learn using computational
mechanics that doesn’t support a no-go theorem will most likely help in the construction
of a ψ-epistemic model, so this new framework is interesting regardless of the actual final
answer to the question, “is the quantum state real?” This is especially so because other
properties of interest to the quantum foundations community, like contextuality, also have
nice expressions in this framework.

Of course, regardless of this hypothetical result, it was clear before the present work
and even clearer after it that state-realist ψ-epistemic interpretations are not as natural
an explanation of quantum theory as was previously thought—all of the previously known
no-go theorems point towards unnatural constructions at best. As such, it is already worth
thinking about what it might mean to move outside of the ontological models formalism.
Computational mechanics also provides some resources for this line of thought; we’ll discuss
some potential avenues, along with their implications, in Chapter 6.

Chapters 2–4 appeared in [74] (authored with Piers Lillystone and Joseph Emerson),
with the exception of Sections 2.2, 2.7, 3.2.2, and 4.3. The sections that did appear in [74]
have been expanded, some extensively.
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Chapter 2

Extending the ontological models
formalism for sequential
measurements

. . . and the judge wasn’t gonna look at the twenty-seven 8 by 10 colored glossy
pictures with the circles and arrows and a paragraph on the back of each one
explainin’ what each one was to be used as evidence against us. . .

– Arlo Guthrie, Alice’s Restaurant

We begin by reviewing the standard treatment of the ontological models formalism for
prepare-and-measure-once experiments (Sections 2.1–2.3). We then add in a description of
state update under measurement and reformulate the entire framework from a stochastic
processes/hidden Markov models point of view (Sections 2.4–2.6). This formalizes and
motivates our definition of state update while simultaneously clarifying a number of the
underlying assumptions of the ontological models formalism. We close by including some
remarks pointing towards interesting consequences for current notions of contextuality
when including sequential measurements (Section 2.7).

2.1 The ontological models formalism

Before we define ontological models, we need to define an operational theory [80]. In
this framework, we describe an experiment via a preparation, a transformation, and a
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(a) An operational theory

k

λ′
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λ

P

(b) An ontological model of the operational
theory

Figure 2.1: Influence diagrams for (a) operational theories and (b) ontological models.
The boxes represent choices made by the experimenter, circles represent uncontrolled ran-
dom variables, and arrows represent possible causal influences. Time proceeds from left
to right. In this particular case, P, T , and M represent an experimenter’s choice of prepa-
ration, transformation, and measurement, respectively. k represents the outcome of the
experiment, while λ and λ′ are the ontic state of the system at two different times.

measurement. The operational theory must first specify a set P of allowable preparations,
a set T of allowable transformations, and a set M of allowable measurements. Then, for
any P ∈ P , T ∈ T , and M ∈M , it must define the probability

Pr(k|M,T, P ) (2.1)

of some outcome k ∈ K for a particular experiment. K is the set of possible outcomes,
which we usually take to be Z for convenience. An influence diagram [51] of this setup is
shown in Fig. 2.1a; as k is the only uncontrolled random variable (circle), and it has causal
arrows coming from all three of P, T,M , we see that Eq. 2.1 is exactly what’s needed to
specify the behavior of this influence diagram.

Note that the use of this framework is not limited to quantum theory; for example, P
could be flipping a coin into a box and covering it, T could be shaking the box, and M
could be opening the box to see which side of the coin is face-up. This generality is one
of the factors that allows us to draw such strong connections to the theory of stochastic
processes in Section 2.6.

When we include transformations, this setting is called the prepare-transform-measure
operational framework, and when we omit transformations it is the prepare-measure frame-
work. Since later we will be considering multiple measurements, we refer to it here as the
prepare-and-measure-once framework. Often we take P to be the set of pure quantum
state preparations, T to be the full set unitary maps on a Hilbert space, and M to be all
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projective measurements on this Hilbert space. In this case, we say we are describing the
full quantum theory1; in contrast, a subtheory is described by taking subsets of P ,T ,M for
the full quantum theory. For example, in quantum information settings we often consider
only measurements in the standard basis.

When modeling full (pure-state) quantum theory, we have the operational probability
distribution

PrQ(k|M,T, P ) = tr
(
MkUTρPU

†
TM

†
k

)
. (2.2)

Here ρP is the density matrix corresponding to the preparation P ; UT is the unitary
corresponding to the transformation T , and Mk is the kth measurement operator of the
measurement M .

An ontological model [45, 72, 80] supplements this operational point of view by asserting
that a system has a state λ, called an ontic state. To specify an ontological model, we first
choose an ontic state space Λ, which is the set of all possible states that the system can
attain. Then, preparations are described by a preparation distribution µ(λ|P ), which is the
probability of obtaining some ontic state λ ∈ Λ given the preparation P . Transformations
are described by a transition matrix Γ(λ′|λ, T ), which is the probability of preparing a new
state λ′ given the previous state λ and the choice T of transformation. Finally, measure-
ments are represented by a response function ξ(k|λ,M) which describes the probability of
an outcome k given the ontic state λ and the choice of measurement M . We say that an
ontological model successfully reproduces quantum theory if∫

Λ

dλ′
∫

Λ

dλ ξ(k|λ′,M)Γ(λ′|λ, T )µ(λ|P ) = PrQ(k|M,T, P ) (2.3)

∀P ∈ P , T ∈ T ,M ∈M ,

or, in a prepare-and-measure-once experiment,∫
Λ

dλ ξ(k|λ,M)µ(λ|P ) = PrQ(k|M,P ) (2.4)

∀P ∈ P ,M ∈M .

In both cases we’ve written PrQ for the quantum probability Eq. 2.2, but in general it
would be whatever probability distribution is specified by the operational theory. Note
that this consistency condition amounts to marginalizing over the ontic states λ, λ′—more
on this later.

1Larger sets can be considered (e.g. including mixed states, CPTP maps, and/or non-projective mea-
surements), but all of the models studied in this paper fit the given definition. In addition, a ψ-onticity
theorem proven for pure quantum theory will hold for mixed-state quantum theory.
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2.2 Contextuality

For the most part, this thesis is not explicitly concerned with contextuality [53, 80], but we
give its definition(s) here since it is important to ensure that we do not assume noncontextu-
ality. We will also present some preliminary observations about contextuality’s relationship
to sequential measurements in Section 2.7, although this line of investigation has not been
fully developed. We focus on generalized contextuality [80] rather than Kochen-Specker
contextuality because (a) accounting for potential contextuality in the generalized sense is
sufficient to account for potential contextuality in the Kochen-Specker sense and (b) this
is the definition that is affected by the inclusion of sequential measurements.

In [80], Spekkens defines two preparations P, P ′ as operationally equivalent if they give
the same measurement statistics:

P ∼
op
P ′ ⇐⇒ Pr(k|M,P ) = Pr(k|M,P ′) ∀M ∈M , k ∈K. (2.5)

The operational equivalence of measurements and transformations is defined similarly but
separately:

M ∼
op
M ′ ⇐⇒ Pr(k|M,P ) = Pr(k|M ′, P ) ∀P ∈ P , k ∈K. (2.6)

T ∼
op
T ′ ⇐⇒ Pr(k|M,T, P ) = Pr(k|M,T ′, P ) ∀P ∈ P ,M ∈M , k ∈K. (2.7)

Roughly, noncontextuality is the condition that operational equivalence implies equivalence
at the ontological level as well. A model is then preparation noncontextual if

P ∼
op
P ′ =⇒ µ(λ|P ) = µ(λ|P ′) ∀P, P ′ ∈ P . (2.8)

Similarly, it is measurement noncontextual or transformation noncontextual if, respectively,

M ∼
op
M ′ =⇒ ξ(k|λ,M) = ξ(k|λ,M ′) ∀M,M ′ ∈M , (2.9)

T ∼
op
T ′ =⇒ Γ(λ′|λ, T ) = Γ(λ′|λ, T ′) ∀T, T ′ ∈ T . (2.10)

A model is preparation contextual if it is not preparation noncontextual, etc. We must
make sure that we don’t assume any kind of noncontextuality, as noncontextual models
of quantum theory do not exist [80]. The accidental assumption of noncontextuality was
the error in von Neumann’s ‘proof’ that no ontological models (then called hidden variable
theories) of quantum theory exist [89]2.

2An important historical note: this error was pointed out by Hermann in 1935 [49], though ignored by
the physics community until it was re-discovered by Bell in 1966 [11].
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2.3 ψ-epistemic ontological models

Within the ontological models formalism, we can define a set of precise criteria to dis-
tinguish ψ-epistemic interpretations from ψ-ontic interpretations. Consider first the ψ-
epistemic criterion, proposed in [47] as a test for whether an interpretation admits at least
some quantum states that are not uniquely determined by the underlying state of reality.
We begin by defining the support Supp(f(·)) of a distribution as the set of ontic states on
which it is nonzero. i.e., for a preparation distribution,

Supp(µ(·|P )) = {λ ∈ Λ : µ(λ|P ) > 0}. (2.11)

Then, following [52], we account for potential preparation contextuality by defining

∆ψ =
⋃

Pψ∈Pψ

Supp(µ(·|Pψ)) (2.12)

where Pψ ⊆ P is the set consisting of every possible preparation corresponding to the
quantum state |ψ〉. We refer to ∆ψ as the support of a quantum state |ψ〉, to distinguish
it from the support of a particular preparation Pψ. Then a pair of states |ψ〉 , |φ〉 is
ontologically distinct in a particular model if ∆φ ∩ ∆ψ = ∅, and ontologically indistinct
otherwise3. This leads us to the standard definition of a ψ-epistemic ontological model [47,
55]:

Definition 1 (ψ-epistemic). An ontological model is ψ-epistemic if there exists a pair of
states |ψ〉 , |φ〉 that are ontologically indistinct; i.e. ∃ |ψ〉 , |φ〉 : ∆φ ∩∆ψ 6= ∅.

The motivation for this definition can be seen most clearly via Fig. 2.2. On the left hand
side is a depiction of the ontic space for a ψ-epistemic model, where some of the supports
overlap. On the right is the ontic space for a ψ-ontic model; since none of the supports
overlap, they must partition the state space. As such, there is exactly one quantum state
corresponding to each point in the ontic state space—even if it wasn’t included explicitly
in the ontology, one ‘might as well’ have named the ontic state (ψ, extra information).

As noted in [55], this definition is highly permissive in the sense that, if an ontological
model were to contain only a single pair of quantum states that are ontologically indistinct,

3For this purposes of this paper we assume there exists a measure that is absolutely continuous with
respect to all other measures in the ontological model. Therefore, we can work with probability densities,
rather than the full measure-theoretic treatment. While this assumption is not strictly true in all of our
models, it does not affect our results. A strict treatment of many of the models/definitions presented here
can be found in [55].
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Figure 2.2: Venn diagrams for the ontic state space of a ψ-epistemic OM (left) and a
ψ-ontic OM (right). The regions shown are the supports of four unique quantum states;
although they are shown partitioning the state space in the ψ-ontic diagram, this is done
for illustrative purposes and really only holds for the set of all quantum states.

then it would not achieve the full explanatory power expected of the ψ-epistemic viewpoint;
this is exactly the case with the ABCL0 model discussed in Section 3.2.5.

There are, however, proposals to strengthen the notion of ψ-epistemicity, two of which
are relevant to our discussion [55, 63].

Definition 2 (Pairwise ψ-epistemic). An ontological model is pairwise ψ-epistemic if, for
all pairs |ψ〉 , |φ〉 of nonorthogonal quantum states, |ψ〉 and |φ〉 are ontologically indistinct.

Definition 3 (Never ψ-ontic). An ontological model is never ψ-ontic if every ontic state
λ ∈ Λ is in the support of at least two quantum states:

∀λ ∈ Λ : ∃ψ, φ : λ ∈ ∆ψ ∩∆φ. (2.13)

Note that both of these definitions imply the weaker notion of ψ-epistemicity, but are
independent from one another.

2.4 Adding sequential measurements

The standard definitions of operational theories and ontological models involve a sin-
gle measurement and a single measurement outcome despite the fact many important
quantum experiments (e.g. Stern-Gerlach, double slit [75]) and quantum algorithms (e.g.
measurement-based error correction [39]) involve sequential measurements. Thus we will
refer to the usual definition of prepare-measure as prepare-and-measure-once experiments.
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Figure 2.3: Influence diagrams for a prepare-and-measure-twice operational theory and its
ontological models. We have essentially replaced the transformation in Fig. 2.1 with a
measurement, and made the necessary adjustments of adding another outcome k and more
causal arrows as described in the text.

Here we introduce sequential measurements; an influence diagram for two measurements
is shown in Fig. 2.3. It is described by the probability distribution

Pr(k′, k|M ′,M, P ) = Pr(k′|k,M ′,M, P )Pr(k|M,P ). (2.14)

In the case of quantum mechanics, this operational probability becomes

Pr(k′, k|M ′,M, P ) = tr
(
M ′

k′MkρPM
†
kM

′†
k′

)
. (2.15)

It is also typical in quantum foundations to describe measurements by positive operator
valued measures (POVMs). However, they do not fully specify how a measurement updates
a state. Although one can obtain a POVM {Ek} from a set of generalized measurement
operators {Mk} by the relation Ek = M †

kMk, the decomposition of {Ek} into {Mk} is not
unique. Thus although M is often described by POVMs, consideration of state update
requires that we specify generalized measurement operators instead.

As an example of when this is important, consider a coarse-graining of the measurement
{Mk} = {[0], [1], [2]}, where we denote the projector onto a state

[ψ] = |ψ〉〈ψ| (2.16)

as in [55]. We can either coarse-grain coherently, i.e. measure {M ′
k} = {[0] + [1], [2]} or

we can coarse-grain decoherently by measuring {Mk} and then combining outcomes 0 and
1 into a single measurement result and ‘forgetting’ which one actually occurred. While
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these two processes are represented by the same POVM {Ek} = {[0] + [1], [2]}, their state
update behavior is different: if the state 1√

2
(|0〉+ |1〉) is measured, it will stay the same in

the coherent case or update to the mixed state 1
2
([0] + [1]) in the decoherent case.

We are now in a position to supplement the definition of an ontological model in order
to model sequential measurement. In textbook quantum theory, the state updates during
a measurement in a way that depends on the previous state, the measurement procedure,
and the measurement outcome: Lüder’s rule states that for a measurement outcome cor-
responding to a projector Πk, a quantum state |ψ〉 will update during measurement to

|ψ′〉 =
Πk |ψ〉√
〈ψ|Πk|ψ〉

. (2.17)

We allow for dependence on all of these things by representing this via a state update rule
η(λ′|k, λ,M). As with µ, Γ, and ξ, we require that η is normalized. Although this object
looks very similar to the transition matrix for transformations, it is distinguished by two
important features which we emphasize by choosing a new symbol to represent it.

The first distinction is simple, in that η depends on a measurement outcome k, while
Γ does not; this is analogous to the fact that generally in quantum theory we can only
implement measurement update maps probabilistically (i.e. by post-selecting on a not-
necessarily-deterministic measurement outcome).

The second distinction is the fact that η(λ′|k, λ,M) is not defined for all λ ∈ Λ. Roughly
speaking, it doesn’t make sense to ask “What is the new state λ′ after measuring state λ and
obtaining outcome k?” if the outcome k could not have occurred given the previous state λ.
Thus η(λ′|k, λ,M) is well-defined only for λ ∈ Supp(ξ(k|·)). This property of η is analogous
to the fact that Eq. (2.17) is only well-defined when its denominator 〈ψ|Πk|ψ〉 6= 0, i.e.
only when the measurement Πk could have responded to the pre-measurement quantum
state |ψ〉.

This second distinction is central to the main result of this paper; by showing that η
is non-normalizable on some domain, we are able to conclude that that domain cannot be
part of the support of ξ.

The consistency condition with quantum theory is given by equations similar to Eqs. 2.3
and 2.4 where we marginalize out λ; a formal statement will be postponed until Section 2.6,
where we will also provide more formal treatments of the properties of η and other exten-
sions of the ontological models formalism discussed so far.

Although, as stated above, we do not assume noncontextuality of any kind, most of our
results hold for a projector independent of its full measurement context. We are explicit
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about this when it is the case, and write ξ(Π|λ) rather than ξ(k = 0|λ,M = {Π, . . .}) for
notational convenience; η(λ′|λ,Π) is defined similarly.

2.5 Some easy cases of state update rules

There are two cases in which, given a prepare-and-measure-once ontological model for
quantum theory, we can always augment it with a state update rule for measurement.
First, if we only include rank-1 projective measurements in the subtheory we’re modeling,
we can simply re-prepare in the measured (unique, pure) state:

η(λ′|k, λ,M{Πi}) = µ(λ′|PΠk) for tr(Πk) = 1. (2.18)

This is normalized for all λ since µ is normalized, and faithfully reproduces quantum
statistics since µ does. It is independent of the previous state λ, which, besides being
unsatisfying in an explanatory sense, is also not possible in general (this follows from
Section 4.1).

Second, it is quick to prove, again by construction, that ψ-ontic models can always be
given a state update rule. Since there is a unique quantum state |ψλ〉 associated with every
ontic state λ, we can define

η(λ′|k, λ,M) = µ

λ′∣∣∣∣P =
Mk[ψλ]M

†
k

tr
(
Mk[ψλ]M

†
k

)
. (2.19)

Again, normalization and faithfulness follow because µ has these properties. Note that this
construction works for any kind of measurement, not just projective measurements.

These observations together suggest that in order to find anything interesting involving
state update, we ought to examine higher-rank measurements in ψ-epistemic models. This
suspicion will be confirmed by the main result of this paper, which applies to exactly these
types of measurements and models.

2.6 A new perspective: ontological models as hidden

Markov models of stochastic channels

In the context of sequential measurements, it is illuminating to motivate the definition of
an ontological model from the point of view of the hidden Markov models (HMM) litera-
ture. We do this in order to (a) provide a rigorous treatment of sequential-measurement
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Figure 2.4: A quantum circuit can be pictured as a stochastic channel, as described in the
text. The inputs to the channel at are the choice of operation, and the outputs kt report
the results of measurements (a trivial output kt = 0 occurs if the input was a preparation
or a transformation).

scenarios presented informally in Section 2.1 and (b) clarify the assumptions that define
the ontological models framework. Additionally, this leads directly to the computational
mechanics approach that we will describe in Chapter 5.

In an abstract sense, we picture a quantum circuit as a memoryful stochastic channel
(Fig. 2.4). The channel that we often discuss with regards to a quantum circuit is the
(quantum) channel that takes the input quantum state and maps it to the output quantum
state. For present purposes, we will instead think of it as a channel, used repeatedly at
each time step, from the experimenter to individual measurement outcomes. Pictorially,
one might think of this as ‘rotating the channel ninety degrees’ in a circuit diagram.

Another, perhaps more concrete, presentation is shown in Fig. 2.5 and involves simply
extending the influence diagrams in Fig. 2.3 to an arbitrary number of measurements. The
only difference is that now we don’t differentiate between preparations, transformations,
and measurements, thinking of any of those as a choice of action a on the system. Accord-
ingly, there is an output for every input; if the input was a preparation or transformation,
we specify a trivial, deterministic output k = 0 that carries no information.

For a moment, we will move to the usual setting of computational mechanics, which
examines bi-infinite strings of input and output symbols (this is to anticipate further discus-
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(a) A causal and stationary channel
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Figure 2.5: Influence diagrams for stochastic channels. We no longer distinguish between
preparations, transformations, and measurements, referring to all of them as “actions”
a. Additionally, we have extended to an arbitrary number of actions rather than jut two
or three. Note that no arrows point backwards in time, which corresponds to causality
(Def. 5). In the hidden Markov model the state λt mediates all causal influences through
time (Def. 6), which corresponds to the fact that no arrows move past the states λt without
going through them.

sion of computational mechanics in Chapter 5). As in the operational theories framework,
our inputs and outputs could come from any alphabet; we denote the set of possible in-
puts/actions as A, and the set of possible outputs as K. For example, we could use
A = K = {0, 1} and thus describe binary input-output processes as in [7]. Later, we will
restrict to semi-infinite sequences that begin with a preparation, as these are the input
sequences that have well-defined behavior in quantum theory.

We denote the string of all inputs as←→a0 = . . . a−2a−1a0a1a2 . . . , and similarly the string

of outputs
←→
k0 = . . . k−2k−1k0k1k2 . . .. The subscript 0 indicates in both cases the time that

we take as an origin/reference point. The channel is then described by the conditional
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probability distribution

Pr(
←→
k0 |←→a0 ). (2.20)

This is the analog of Eq. (2.1) in the operational theories framework. Following [7], we
denote substrings with at:t+L = atat+1 . . . at+L−1. We also denote the past ←−at = a−∞:t,
future (including present) −→a t

•
= at:∞, and future (excluding present) −→a t

◦
= at+1:∞. We can

now define two properties of stochastic channels [7]:

Definition 4 (Stationary). A stationary channel is one that has time-translation symme-
try, so statistics are not affected by our choice of time-origin:

Pr(kt:t+L|←→at ) = Pr(k0:L|←→a0 ) and

Pr(
←→
kt |←→at ) = Pr(

←→
k0 |←→a0 ) ∀t, L,←→a . (2.21)

Definition 5 (Causal). A causal channel is one for which a finite output substring depends
only on input symbols in its past:

Pr(kt:t+L|←→a ) = Pr(kt:t+L|←−a t+L). ∀t, L,←−a (2.22)

It is shown in [7] that a channel satisfying these two properties can be specified entirely
by the single-symbol recurrence relation

Pr(k|a,←−a ,
←−
k ). (2.23)

From here on, we drop the time-origin subscript because the condition of stationarity means
that it is redundant. Note that this expression does not imply a Markov process, since it

depends in general on the entire histories ←−a and
←−
k . All we mean by single-symbol is that

we are not specifying the probabilities over the whole future, just a single output symbol.
We now construct an HMM as follows:

Definition 6 (Hidden Markov Model). A hidden Markov model (HMM) of a stationary,
causal channel is specified by an additional random variable λ taking values in a state space

Λ. It is given a joint probability distribution over
←→
λ ,←→a ,

←→
k so that the recurrence relation

above (Eq. 2.23) becomes

Pr(k, λ′|a, λ,←−a ,
←−
k ,
←−
λ ) = Pr(k, λ′|a, λ), (2.24)

where we’ve used a prime to denote the next time step. In other words, the state λ
renders the future conditionally independent of the past and induces a Markov process
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over the state space Λ that mediates the channel statistics. An influence diagram [51] of
a stationary, causal channel is shown in Figure 2.5 before and after the specification of an
HMM.

To see that specification of an HMM as in Eq. 2.24 is equivalent to the definition of an
ontological model given in Section 2.1, we factor the probability distribution from Eq. 2.24
and look separately at the cases where a is a preparation, transformation, or measurement:

Pr(k, λ′|λ, a)

= Pr(λ′|k, λ, a)Pr(k|λ, a)

=


µ(λ′|P )δk,0 a = P ∈ P

Γ(λ′|λ, T )δk,0 a = T ∈ T

η(λ′|k, λ,M)ξ(k|λ,M) a = M ∈M

. (2.25)

Here δ is the Kronecker delta, which we use to assign a trivial output for preparations
and transformations. The state update map η emerges naturally from this perspective of
a quantum experiment as a stochastic process, and here we see another reason why it is
only defined in the support of ξ. If we take the joint distribution Pr(k, λ′|λ, a) to be the
more fundamental object, then it is clear we can obtain ξ directly by marginalization

ξ(k|λ,M) =

∫
Λ

dλ′ Pr(k, λ′|λ,M) (2.26)

which is always well defined, and then find η by rearranging Eq. 2.25:

η(λ′|k, λ,M) =
Pr(k, λ′|λ,M)

ξ(k|λ,M)
(2.27)

Thus clearly η(λ′|k, λ,M) is only well-defined when ξ(k|λ,M) 6= 0.

Definitions 4–6 constitute an equivalent formulation of the ontological models formal-
ism. The assumptions of this construction can be broken down as follows: (a) quantum
theory is described by a stochastic channel, (b) this channel is stationary, (c) it is causal,
and (d) we assign the system a state which acts as an HMM of the channel. The authors
of [56] identify (c) and (d), calling them non-retrocausality and λ-mediation, respectively.
We will address these assumptions further in Chapter 6, and discuss what they might mean
for the search for a ψ-epistemic interpretation of quantum theory outside of the ontological
models formalism.

For now, note that we have said nothing in this analogy about the bogeyman that
is “reality”—the state λ defined here is not quite an operational object, but there is no
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stipulation that it must be “real.” Of course, the state being real is often the point of this
whole construction, but being able to discuss the ontological models formalism outside
of a realist framework should lend some clarity as to when and where results derived in
this formalism apply. In particular, it shifts the focus from the word “real” to the word
“state.” This is why we introduced the term “state-(anti)realist” in the introduction;
those categories are sometimes referred to simply as “realist” and “antirealist,” which are
meaningless words when not used with a referent.

2.7 Aside: contextuality and sequential measurements

As already stated, this thesis is not overly concerned with contextuality. However, we take
a moment to define the analogue of generalized contextuality in the HMM picture, since
this immediately raises some interesting questions for future investigation. As we have
unified preparations, measurements, and transformations in this picture, we can also unify
the definition of operational equivalence for two actions a, a′:

a ∼
op
a′ ⇐⇒ Pr(

←→
k |←−a a −→a◦ ) = Pr(

←→
k |←−a a′ −→a◦ ) ∀

←→
k ,←−a ,−→a◦ . (2.28)

We can also define a model to be noncontextual (overall) if

a ∼
op
a′ =⇒ Pr(

←→
k ,
←→
λ |←−a a −→a◦ ) = Pr(

←→
k ,
←→
λ |←−a a′ −→a◦ ) ∀

←→
k ,
←→
λ ,←−a ,−→a◦ . (2.29)

This definition clearly coincides with Spekkens’ in the case of preparations and transforma-
tions, but differs slightly in the case of measurements as our definition requires operational
equivalence to hold over all subsequent observations as well. For destructive measurements,
these definitions coincide.

However, for nondestructive measurements, many fewer measurements qualify as oper-
ationally equivalent if we take into account state update. For example, we can take the
measurement described in Section 2.4 where we coarse-grain the measurement {[0], [1], [2]}
either coherently or decoherently. According to Spekkens’ definition, since these are repre-
sented by the same POVM, they are operationally equivalent for the purposes of discussing
measurement contextuality. However, since they have different state update behavior, they
are not operationally equivalent under the definition of Eq. (2.28). This is exactly the type
of measurement used in the proof that any model of quantum theory must be measurement
contextual [80]. It is thus an open question whether or not models of quantum theory must
be contextual in the sense of Eq. (2.29) that takes into account state update behavior for
nondestructive measurements.
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This formulation also highlights a particularly pernicious form of contextuality that,
as far as I know, has not been identified in the literature. This is the assumption that,
when enacting a preparation, the new ontic state is independent of the previous ontic state.
As far as I can tell, it is not necessarily the case that this is true. To formalize this, it
makes sense to call an action a an “operational preparation” if it removes all dependence
on the past (this definition subsumes preparations in the operational theory sense along
with rank-1 measurements):

Pr(
−→
k
◦
|
←−
k ,←−a , k, a,−→a◦ ) = Pr(

−→
k
◦
|k, a,−→a◦ ). (2.30)

However, it does not follow from this that a must prepare an ontic state that is independent
of the previous ontic state:

a is an operational preparation 6=⇒ Pr(λ′|λ, k, a) = Pr(λ′|, k, a). (2.31)

That this implication holds is implicitly assumed by the definition of the preparation
distribution µ for ontological models.

To show how this issue might arise in a particular example, consider preparing the
state |0〉 on a qubit by measuring in the standard basis, and then applying a correctional
unitary if the result |1〉 was obtained. This is, operationally, a preparation: it completely
determines all future observations of the system. However, the system existed before the
preparation (as is the case with physical qubits used in NMR, ion traps, and more; the main
exception is photonic systems) and thus we might assume that it had some state before
the preparation. While the quantum state is now independent of this previous state, it
does not follow that the ontic state must be.

It is unclear exactly how much of an issue this is; it may be that it is perfectly legitimate
to marginalize over the previous ontic state, although it is not clear that that will always be
well-defined. Additionally, it is clearly related to the preparation independence assumption
for Bell’s theorem [11], and seems more general but may in fact not be.
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Chapter 3

A dictionary of ontological models

All God’s critters got a place in the choir
Some sing low, some sing higher
Some sing out loud on the telephone wire
And some just clap their hands, paws, or anything they got now

– Bill Staines & Janet Wheeler, All God’s Critters

We provide a number of examples of ontological models from the literature, illustrating
some of the properties described in the previous sections. For each model, we specify its
state update rule if it exists; those that can’t represent state update are noted but a proof
is postponed until Chapter 4. All of these state-update rules have not appeared previously
in the literature, with the exception of the one for Montina’s model, though its presen-
tation is new. Although many of these models can be easily defined for arbitrary types
of measurements, we only consider projective measurements for simplicity and notational
consistency.

3.1 ψ-epistemic models of a qubit

3.1.1 Kochen-Specker model

The Kochen-Specker (KS) model of a qubit [47, 53, 55] is an exemplar of what we look for in
a ψ-epistemic theory, with the unfortunate feature that it only works in d = 2 dimensions.
It is both pairwise ψ-epistemic and never ψ-ontic, and provides a very intuitively pleasing
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(a) Kochen-Specker
model

(b) Montina model (c) BB model (d) Bell Model

Figure 3.1: Visualizations of the state space, preparation distributions, and response func-
tions for (a) the Kochen-Specker model, (b) Montina’s model, (c) the Beltrametti-Bugajski
model for d = 2, and (d) Bell’s model for d = 2. Blue represents the support of prepa-
rations, and green the support of the response functions, where possible. Black objects
are generic elements of the state space. Figure created by Piers Lillystone, used with
permission.

interpretation of the statistical nature of quantum theory. We take the ontic space to
be the unit sphere S2, and denote by ~ψ the Bloch vector corresponding to |ψ〉 under the
usual mapping. Preparations and measurement outcomes are represented by distributions
over hemispheres, with response functions uniform and preparation distributions peaked
towards the center (Fig. 3.1a). Unitary transformations are represented by rotations of the
sphere. Since the only nontrivial measurements on a qubit are rank-1 measurements, this
is a case where we can use the state update rule described in Eq. 2.18 and just re-prepare
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the measured state for our update rule:

Λ = S2

µ(~λ|Pψ) =
1

π
Θ(~ψ · ~λ)~ψ · ~λ

Γ(~λ′|~λ, TU) = δ(~λ′ −RU
~λ)

ξ(k|~λ,Mφ) = Θ(k~φ · ~λ)

η(~λ′|k,~λ,Mφ) =
1

π
Θ(k~φ · ~λ′)k~φ · ~λ′ (3.1)

Here Θ is the Heaviside step function, RU is the rotation of the Bloch sphere corresponding
to a unitary U , and k ∈ {+1,−1}. This particular state update rule is not particularly
satisfactory in an explanatory sense, since it is independent of the previous ontic state.

An actual proof that this model reproduces quantum mechanics has not been presented
in the literature, so for completeness we include it in Appendix A.

Rudolph notes in [72] that in the Kochen-Specker model, one should update the state
to a cosine distribution peaked at the measurement vector, which is exactly what we have
done with our generic update rule. This clearly reproduces quantum statistics given that
the rest of the apparatus does, but does not give an account of the physical process (the
measurement invasiveness) that would cause one’s distribution to update in that fashion.
In the same paper, Rudolph notes the apparent arbitrariness of the cosine probability
distribution used in the KS model; he would prefer uniform distributions (or at least
something related to the maximum entropy principle) such as those he utilizes in the rest
of the paper. Montina notes in [62] that his model, further articulated in [64], satisfies this
criterion by simply adding a second vector.

3.1.2 Montina’s model

In [64], Montina introduces an ontological model based on the Kochen-Specker model that
explicitly accounts for measurement invasiveness. The model was constructed to show that
state update in a qubit can be successfully modeled by only updating a finite amount of
information in the ontic state. The original presentation is not stated in terms of the
ontological models formalism, and only explicitly models measurements in the standard
basis. As such, we will take some space to formally express the model and extend it to
model measurement in arbitrary bases.

We include this model here for two reasons. First, it is one of the few ontological
models in the literature that has explicitly considered state update under measurement.
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Second, it demonstrates that the generic rank-1 update (Eq. 2.18) that we used for the
Kochen-Specker model is not the only possibility; even though all measurements in this
model are rank-1, η has nontrivial dependence on the previous ontic state λ. Thus just
because we can construct a trivial update rule in some cases does not mean that there
is then nothing interesting to investigate. It also includes these features while remaining
pairwise ψ-epistemic and never ψ-ontic.

We first present Montina’s model as he describes it, and then derive µ, ξ,Γ, η based on
this description. The ontic space is

Λ = S2 × S2 × {−1, 1} × {−1, 1}. (3.2)

We write an arbitrary ontic state as λ = (~x+1, ~x−1, r, s), where

~x+1, ~x−1 ∈ S2 (3.3)

r, s ∈ {−1, 1} (3.4)

Montina refers to the vectors ~x+1, ~x−1 as noise functions, but we include them in the ontic
state of the qubit since, if they weren’t part of the ontic state, where would they exist?
As desired by Rudolph [72], the marginal distribution over ~xi is uniform at all times1, and
they evolve deterministically according to the rotation RU that corresponds to the unitary
evolution of the qubit; i.e., if ~xi is the vector before a transformation and ~x′i is the one
after, then

~x′i = RU~xi. (3.5)

r is the bit that is updated by each measurement. It acts as an index on which vector
(x+1 or x−1) to ‘pay attention to.’ Upon measurement in the standard basis, r updates to

r′ = sgn[(~x+1 · ~n)2 − (~x−1 · ~n)] (3.6)

where ~n is a unit vector along the z-axis. This means that we ‘pay attention to’ whichever
vector was closest to the axis of measurement at the time of the most recent measurement.

Finally, s ∈ {−1, 1} determines the result of a measurement in the standard basis. s
flips sign whenever the vector ~xr (that we are ‘paying attention to’) crosses the equator
(the geodesic normal to ~n) during a transformation. An example of an evolution of the
ontic state is shown in Fig. 3.2.

Montina shows that the conditional probabilities for consecutive measurements ob-
tained from this model align exactly with those of quantum mechanics.

1We use ~xi to refer generically to either/both of the vectors.
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r
−1

s

⃗n

+1
+1
−1

⃗x+1

⃗x−1

(a) Just before the first measurement, we have
some initial values for the ontic state.

!7

r
−1

s

⃗n

+1
+1
−1

⃗x+1

⃗x−1

(b) Just after the first measurement, r updates
to the index of the vector that is more closely
aligned with the axis along n. In this case, this
is ~x+1 so r changes to 1.

!8

r
−1

s

⃗n

+1
+1
−1

⃗x+1⃗x−1

(c) Just after the unitary transformation and
just before the second measurement, both of
the vectors have been rotated with the same ro-
tation matrix RU corresponding to the unitary.
r = 1 tells us that we should be “paying atten-
tion to” ~x+1, which has changed hemispheres
during the transformation, so s changes sign
from its previous value.

!9

r
−1

s

⃗n

+1
+1
−1

⃗x+1⃗x−1

(d) The second measurement reports the value
of s, in this case +1. Just after the second
measurement, we again must update r. This
time, ~x+1 is still more aligned with the z-axis
so r remains 1.

Figure 3.2: An example of the evolution for a particular ontic state of Montina’s model,
in an experiment consisting of two measurements in the standard basis separated by a
unitary transformation.
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Explicitly, Montina only models standard basis measurements with arbitrary unitary
transformations; the implicit process for other measurements is “rotate, measure, rotate
back.” For preparations, we measure in the standard basis then rotate our result to the
desired state using a transformation. We can make both of these implicit processes ex-
plicit, and in the process derive exact expressions for Montina’s model as expressed in the
ontological models formalism. The reader who is uninterested in the derivation may skip
to Eq. (3.20).

We begin with Γ, the transition matrix for some transformation TU corresponding to a
unitary U . This just amounts to wrapping (3.5) in a delta function and also writing down
the update rule for s using a Heaviside theta. r remains unchanged.

Γ(λ′|λ, TU) = δ
(
~x′+1 −RU~x+1

)
δ
(
~x′−1 −RU~x−1

)
θ [ss′ (~x′r · ~n) (~xr · n)] θ[rr′] (3.7)

Next, we describe preparations of a pure quantum state |ψ〉, which we construct by the
process:

1. Measure along ~n and get result s

2. Apply rotation Rs~ψ, where R~m is the rotation such that ~m = R~m~n.

We evaluate the probability distribution at each of these steps, denoting by λ = (~x+1, ~x−1, r, s)
the state after the measurement (step 1) and by λ′ = (~x′+1, ~x

′
−1, r

′, s′) the state after the
rotation (step 2). Our goal is to obtain the expression µ(λ′|ψ). Since ~x+1, ~x−1, s are all
independent, we can write

Pr(λ) = Pr(r|~x+1, ~x−1, s)Pr(x+1)Pr(x−1)Pr(s) (3.8)

where all three of the latter distributions are uniform:

Pr(x+1) = Pr(x−1) =
1

4π
, Pr(s) =

1

2
. (3.9)

r is determined by which ~x is closer to ~n, so we have

Pr(r|~x+1, ~x−1, s) = θ
[
rsgn

[
(~x+1 · ~n)2 − (~x+1 · ~n)2]] (3.10)

and can write the joint distribution as

Pr(λ) =
1

32π2
θ
[
rsgn

[
(~x+1 · ~n)2 − (~x+1 · ~n)2]] . (3.11)
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Now to find the distribution after the rotation, we multiply this expression by Γ and
integrate out λ:

Pr(λ′|Pψ) =
∑
r,s

∫
d~x+1 d~x−1 Γ(λ′|λ, Ts~ψ)Pr(λ). (3.12)

We first note that
δ
[
~x′i −Rs~ψ~xi

]
= δ

[
R−1

s~ψ
~x′i − ~xi

]
(3.13)

and
R−1

s~ψ
~x′r · ~n = ~x′r ·Rs~ψ~n = s~x′r · ~ψ. (3.14)

Using these two expressions and integrating out the δ-functions right away gives

Pr(λ′|ψ) =
∑
r,s

θ
[
s′s
(
s~x′r · ~ψ

)
(~x′r · ~n)

]
θ[r′r] (3.15)

· 1

32π2
θ

[
rsgn

[(
~x′+1 · ~ψ

)2

−
(
~x′−1 · ~ψ

)2
]]

(3.16)

=
1

(4π)2
θ
[
s′
(
~x′r′ · ~ψ

)
(~x′r′ · ~n)

]
θ

[
r′sgn

[(
~x′+1 · ~ψ

)2

−
(
~x′−1 · ~ψ

)2
]]

(3.17)

so we have (removing primes)

µ(λ|Pψ) =
1

(4π)2
θ
[
s
(
~xr · ~ψ

)
(~xr · ~n)

]
θ

[
r sgn

[(
~x+1 · ~ψ

)2

−
(
~x−1 · ~ψ

)2
]]

(3.18)

Using the same techniques, it is much easier to write down the response function

ξ(k|λ,Mφ) = θ
[
ks (~xr · ~n)

(
~xr · ~φ

)]
(3.19)

Summarizing these constructions, we can write

Λ = S2 × S2 × {−1,+1} × {−1,+1}
λ = (~x+1, ~x−1, r, s)

µ(λ|Pψ) =
1

(4π)2
Θ
[
s
(
~xr · ~ψ

)
(~xr · ~n)

]
Θ

[
r

[(
~x+1 · ~ψ

)2

−
(
~x−1 · ~ψ

)2
]]

Γ(λ′|λ, TU) = δ
(
~x′+1 −RU~x+1

)
δ
(
~x′−1 −RU~x−1

)
Θ [ss′ (~x′r · ~n) (~xr · ~n)] Θ[rr′]

ξ(k|λ,Mφ) = Θ
[
ks (~xr · ~n)

(
~xr · ~φ

)]
η(λ′|k, λ,Mφ) = δ

(
~x′+1 − ~x+1

)
δ
(
~x′−1 − ~x−1

)
Θ
[
ss′(~xr · ~n)

(
~xr · ~φ

)
(~xr′ · ~n)

(
~xr′ · ~φ

)]
·Θ
[
r′
[(
~x+1 · ~φ

)2

−
(
~x−1 · ~φ

)2
]]

(3.20)
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We prove that this construction reproduces quantum mechanics in Appendix A.

Note that, for measurement in an arbitrary basis, both r and s are updated (although
the ~xi remain static). This is in contrast to the case for standard basis measurements,
where only r is updated. The standard basis case led to Montina’s claim that state update
under measurement is accounted for by updating a single bit, but it is clear from the form
of η above that by including all measurements in our subtheory we have caused both bits
to be updated during measurement.

3.2 Models of full quantum theory for arbitrary di-

mension

3.2.1 Beltrametti-Bugajski model

The Beltrametti-Bugajski (BB) model [12, 47, 55] is perhaps the simplest ontological model
that describes a system of arbitrary dimension. Although it is ψ-ontic, it is the starting
point for the construction of the next three models in this section. For a d-dimensional
quantum system, we take the ontic space to be the quantum state space, which we denote
PHd−1 (the projective Hilbert space of dimension d − 1). Preparations, transformations,
measurements, and state update rules then follow directly from the usual quantum rules:

Λ = PHd−1

µ(λ|Pψ) = δ(|λ〉 − |ψ〉)
Γ(λ′|λ, TU) = δ(|λ′〉 − U |λ〉)

ξ(k|λ,M{Πi}) = 〈λ|Πk |λ〉

η(λ′|k, λ,M{Πi}) = δ

(
|λ′〉 − Πk |λ〉√

〈λ|Πk |λ〉

)
(3.21)

This provides an example of the generic update-rule for ψ-ontic models (Eq. 2.19), and
is depicted in Fig. 3.1c. The BB model is also termed ψ-complete, since it defines no
additional ontology besides the quantum state.

Note that, although the BB model takes the pure quantum states as its ontic state
space, it can still model mixed-state quantum theory, since any density matrix can be
written (nonuniquely) as a convex combination of pure states. This is why we discuss
ψ-onticity rather than ρ-onticity, since the BB model is “ρ-epistemic” and works for all
dimensions, including state update.
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3.2.2 ρ-complete model

That said, we can still define a model that takes the set of density matrices as its ontology
rather than the set of pure states. This model has not (to my knowledge) been proposed
in the literature, mostly because it is seen as an unnecessarily cumbersome version of the
BB model.

Λ = {density matrices} (3.22)

µ(λ|Pρ) = δ(λ− ρ) (3.23)

Γ(λ′|λ, TC) = δ(λ′ − C(λ)) (3.24)

ξ(k|λ,M{Mi}) = tr
(
MkλM

†
k

)
(3.25)

η(λ′|k, λ,M{Mi}) = δ(λ′ −MkλM
†
k) (3.26)

Here C is a CPTP map (potentially noisy quantum channel), and {Mi} is a set of gener-
alized (not necessarily projective) measurement operators. If we close this model under
convex combination, it’s horrendously contextual, but interestingly we don’t have to in-
clude convexity in order to reproduce all of quantum theory (while convexity is required
for the BB model to reproduce mixed-state quantum theory). This model does not have
many interesting properties from the usual perspective of quantum foundations work, but
we will discuss it further when we arrive in Chapter 5.

3.2.3 Bell’s model

Lewis et al. [57] extended a model of a qubit originally proposed by Bell [11] to arbitrary
dimension, which can be seen as a modification of the Beltrametti-Bugajski model [55]. It
is in some ways analogous to the de Broglie-Bohm interpretation of continuum quantum
theory, in that it is ψ-ontic while adding just a little bit of extra ontology in order to render
it outcome deterministic, which means that for any given ontic state, every measurement
has a predetermined outcome: ξ(k|λ,M) ∈ {0, 1} ∀k, λ,M . Bell, a big fan of the de
Broglie-Bohm interpretation, created this model with the intent of demonstrating that an
outcome deterministic model of finite-dimensional quantum theory is possible.

The ontic space is the Cartesian product of the projective Hilbert space with the unit
interval [0, 1]. Now we write λ as an ordered pair λ = (|λ〉 , pλ) where |λ〉 ∈ PHd−1, as
in the Beltrametti-Bugajski model, and pλ ∈ [0, 1]. Preparations remain essentially the
same, becoming a product distribution of a delta function on the quantum state space
with a uniform distribution over the unit interval. The response functions divide up the
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unit interval into lengths corresponding to probabilities of measuring each outcome, and
respond with outcome k when pλ is in the corresponding interval (Fig. 3.1d). This has the
effect of making the model outcome deterministic.

Λ = PHd−1 × [0, 1]

µ(λ|Pψ) = δ(|λ〉 − |ψ〉)
Γ(λ′|λ, TU) = δ(|λ′〉 − U |λ〉)

ξ(k|λ,M{Πi}) = Θ

[
pλ −

k−1∑
j=0

tr(Πj[λ])

]
Θ

[
−pλ +

k∑
j=0

tr(Πj[λ])

]

η(λ′|k, λ,M{Πi}) = δ

(
|λ′〉 − Πk |λ〉√

〈λ|Πk |λ〉

)
(3.27)

Since this model is still ψ-ontic, we once again use the generic state update rule for ψ-
ontic models. In this case, we can also see that this works because of the structure of the
preparations as product distributions. Since every state has a uniform distribution over
pλ, and this is uncorrelated with |λ〉, we don’t need to update any information about pλ
and so can just re-use the Beltrametti-Bugajski model update rule, attached to a uniform
distribution over pλ. This uniform distribution over pλ is not particularly visible in the
definitions of µ and η because it is equal to 1. That said, it is present and amounts to a
randomization step in the state update, which is necessary for an outcome-deterministic
model.

3.2.4 LJBR model

We now proceed to our first example of a ψ-epistemic model in d ≥ 3. In [57], Lewis et
al. construct a ψ-epistemic model based on their generalization of Bell’s model that we
described in the previous section. Referred to here as the LJBR model, it is motivated
by the observation that the order of segments in the response function of Bell’s model
does not matter: roughly, a re-ordering of these segments allows arbitrary modification
of preparation distributions within a subset of the ontic space, so they can be made to
overlap. We present here a description of the version of this model that has a preferred
basis rather than a single preferred state; Lewis et al. describe it briefly but don’t specify
it explicitly, spending more time on motivation and construction of the simpler version
with a single preferred state [57].

The LJBR model has the same ontic space as the Bell model, so we again write ontic
states as λ = (|λ〉 , pλ). It is constructed in a preferred basis {|j〉}, which we use in defining
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two helper functions. First,

zj(|λ〉) = inf
|φ〉:tr([j][φ])≥1/d

tr([λ][φ]). (3.28)

Note that zj(|λ〉) > 0 if and only if tr([j][λ]) > d−1
d

, so zj(|λ〉) is nonzero for at most a
single element of the preferred basis; we denote this unique vector (if it exists) as |jλ〉.
Second, we implicitly define a permutation πM,λ for each measurement M and ontic state
λ:

tr
(
MπM,λ(0)[jλ]

)
≥ tr

(
MπM,λ(1)[jλ]

)
≥ · · · ≥ tr

(
MπM,λ(|M |−1)[jλ]

)
. (3.29)

If there is no |jλ〉, i.e. zj(|λ〉) = 0 for all j, then we take πM,λ to be the identity permutation.
The final piece we need before defining the model itself is a set

Sj = {λ | zj(|λ〉) > 0} (3.30)

defined for each basis vector. Without further ado, the full specification of the model:

Λ = PHd−1 × [0, 1]

λ = (|λ〉 , pλ)

µ(λ|Pψ) = δ(|λ〉 − |ψ〉)
∏
j

Θ[pλ − zj(|ψ〉)] +
∑
j

zj(|ψ〉)µSj(λ)

ξ(k|λ,M{Πi}) = Θ

[
pλ −

k−1∑
l=0

tr
(
ΠπM,λ(l)[λ]

)]
Θ

[
−pλ +

k∑
l=0

tr
(
ΠπM,λ(l)[λ]

)]
(3.31)

where µSj(λ) is the uniform distribution over Sj (although it could be any distribution
whose support is exactly equal to Sj).

Roughly, all quantum states |ψ〉 with tr([j][ψ]) > d−1
d

will have support on Sj, and
so will all be ontologically indistinct from one another. The permutation included in the
definition of the measurements is constructed so that this shared support does not affect
the prepare-and-measure-once statistics: the measurement ordered first by the permutation
has a support which entirely contains Sj. This model is not pairwise ψ-epistemic, nor is it
never ψ-ontic. Note additionally that it was originally only defined for rank-1 projective
measurements, but it works just as well for higher-rank projective measurements (or, in
fact, any kind of measurement) without modification.

As advertised, this model cannot model sequential measurement/state update. The
proof will be presented in Section 4.2.1. For the moment, note that the new preparation
distribution is no longer a product distribution over the two parts of the state space, so
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the state update rule from the Bell model shouldn’t work. Indeed, it is straightforward to
combine that state update rule with µ and ξ from (3.31) and check that this is the case.
We also haven’t specified the transition matrix Γ, as it turns out that this model can’t
represent transformations either (Section 4.3.4).

3.2.5 ABCL models

In [1], Aaronson et al. construct two ψ-epistemic models also based on Bell’s model. The
first, which we will call ABCL0 , is very closely related to the LJBR model but is not
identical; rather than continuous regions of quantum states which overlap, this model has
exactly one pair of quantum states which are ontologically indistinct. However, it gains
the feature that any two nonorthogonal quantum states can be chosen as the single pair
that overlaps. As such, ABCL0 is really a class of models parametrized by the choice of
two states |α〉 , |β〉 which will be the two states that are ontologically indistinct.

The second, ABCL1 , is a convex mixture (to be defined) of the ABCL0 model con-
structed for all pairs |α〉 , |β〉 and is intended to demonstrate the possibility of a pairwise
ψ-epistemic model. This is the only known example of a pairwise ψ-epistemic model in
d ≥ 3, but it still is not never ψ-ontic [55, 63]. These models have come under criticism for
their “unnaturalness,” but we show here that their problems go deeper due to an inability
to represent state-update.

We begin with ABCL0 , defining a couple of helper functions like in the LJBR model.
Rather than ordering measurements with respect to traces with a preferred basis, we use
the defining states |α〉 , |β〉 and a function

gαβ(Π) = min{tr(Π[α]), tr(Π[β])}. (3.32)

We now define a new permutation σM
2 for each measurement M [55]:

gαβ(MσM (0)) ≥ gαβ(MσM (1)) ≥ · · · ≥ gαβ(MσM (|M |−1)). (3.33)

2To be precise, we should label this with α, β as well to emphasize that it belongs to the model defined
by that particular pair of states.
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With this, we can specify the ABCL0 model.

Λ = PHd−1 × [0, 1]

λ = (|λ〉 , pλ)

µ(λ|Pψ) =



[
Θ(pλ − ε)δ(|λ〉 − |ψ〉)

+
1

2
Θ(ε− pλ)[δ(|λ〉 − |α〉) + δ(|λ〉 − |β〉)]

] if |ψ〉 = |α〉 , |β〉

δ(|λ〉 − |ψ〉) otherwise

ξ(k|λ,M{Πi}) = Θ

[
pλ −

k−1∑
j=0

tr
(
ΠσM (j)[λ]

)]
Θ

[
−pλ +

k∑
j=0

tr
(
ΠσM (j)[λ]

)]
(3.34)

for ε ≤ |〈α|β〉|
d

. Now the preparation distributions for |α〉 and |β〉 overlap on {|α〉 , |β〉} ×
[0, ε]; as in the LJBR model, the permutation in ξ ensures that the preparation change
doesn’t affect the prepare-and-measure-once statistics by making sure measurements whose
support must contain this overlap region are ordered first.

We outline the ABCL1 model schematically and refer the reader to [1, 55] for details.
Given two ontological models specified by Λ1, µ1, ξ1 and Λ2, µ2, ξ2 respectively, the authors
define a convex combination of these models as Λ3, µ3, ξ3 such that

Λ3 = Λ1 ⊕Λ2

µ3 = pµ1 + (1− p)µ2

ξ3 = ξ1 + ξ2 (3.35)

Here p ∈ (0, 1) is some mixing parameter. If there’s overlap between two states in either
of models 1 or 2, then model 3 has overlap on these states. The ABCL1 model is then
defined essentially as a convex mixture of the ABCL0 models for all pairs |α〉 , |β〉, taking
care with respect to the uncountable size of this set.

In order to include state update in a convex combination of ontological models, the
most obvious (and perhaps only) option is to specify

η3 = η1 + η2. (3.36)

Once again, these models cannot represent state update consistently, which we prove in
Section 4.2.2. ABCL0 also can’t represent transformations, but ABCL1 representing trans-
formations is not strictly ruled out by any of our results. That said, it seems unlikely that
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it can, as any transformation would have to map between the submodels that have been
combined (Section 4.3.4).

3.3 Models of subtheories

Although we have dealt so far with models that include the full set of preparations, trans-
formations, and measurements for pure-state quantum theory, there is the possibility that
state update will be better accounted for in ψ-epistemic models of subtheories. It turns
out that although the stabilizer subtheory can be represented by a ψ-epistemic model,
the more general Kitchen Sink model which models any finite subtheory cannot in general
represent state update under measurement.

3.3.1 Kitchen Sink model

The Kitchen Sink model is a ψ-epistemic ontological model for any finite subtheory of quan-
tum theory [46, Section IIIC]. Given a finite set of projective measurementsM = {M (i)},
we choose our ontic states to be a list of measurement outcomes λ = (λ1, λ2, . . . , λ|M|).

That is, λi = k means that if M (i) = {Π(i)
j } is measured when the system is in the state

λ, the outcome Πk will occur with certainty. For a system of dimension d, the maximum
number of projectors in any given measurement is d, so we pad all of our measurements
with 0s until they have d elements. The Kitchen Sink model is then defined by

Λ = Z|M|d

µ(λ|ψ) =

|M|∏
i=1

tr
(

Π
(i)
λi

[ψ]
)

ξ(k|λ,M (i)) = δ(k, λi) (3.37)

The Kitchen Sink is pairwise ψ-epistemic for almost all subtheories, and also never ψ-ontic
if we include all pure states in our subtheory. Transformations can additionally be modeled
under the assumption of a closed subtheory, which means that any transformation included
in the subtheory must map states in the subtheory to other states in the subtheory, and
similarly for measurements. In other words, for all transformations T and measurements
M (i), there exists a j such that {M (j)

k } = {T (M
(i)
k )}. We denote this as j = T (i), which
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allows for a nice expression of transformations:

Γ(λ′|λ, T ) =
m∏
j=1

δ(λ′T (j), λj) (3.38)

We can only rule out the Kitchen Sink model for certain subtheories, as it is easy to
construct subtheories with trivial update rules (i.e. by only including rank-1 measure-
ments). That said, our requirements are few and are satisfied by the multi-qupit stabilizer
subtheory, arguably the most important subtheory of quantum theory. Specifically, we
only need to include two states |α〉 , |β〉 and two measurements M (1) = {Π, I − Π},M (2)

satisfying

〈α|β〉 6= 0 (3.39)

〈α|Π|α〉 6= 0 (3.40)

〈β|Π|β〉 6= 0 (3.41)

M (2) distinguishes Π |α〉 and Π |β〉 (3.42)

The first is required because we don’t expect orthogonal states to be ontologically indistinct.
The next two stipulate that there is a nonzero chance of obtaining an outcome Π when
measuring |α〉 and |β〉, so that its support overlaps with their support. The last condition
implies that the post-measurement states are ontologically distinct [55]; note that the
existence of such a measurement in any case requires that Π |α〉 and Π |β〉 are orthogonal.

The proof that such a subtheory cannot represent measurement update (in Section 4.2.3)
demonstrates that even subtheories have trouble with state update. In particular, the sta-
bilizer subtheory satisfies the requirements in Eqs. 3.39–3.42, so it cannot be modeled by
the Kitchen Sink. That said, we can show that the stabilizer subtheory still supports a
ψ-epistemic interpretation using other models.

3.3.2 Qupit stabilizer subtheory

We focus on the stabilizer subtheory for prime dimensional systems. For the case p = 2,
Lillystone and Emerson construct a ψ-epistemic model of the n-qubit stabilizer formalism
that successfully represents state update under measurement [58]. This model starts from
the Kitchen Sink model and augments Λ so that the problematic overlaps of the Kitchen
sink are removed. This model is not pairwise ψ-epistemic, but a modified version (see
appendix of [58]) is never-ψ-ontic. We don’t present the construction here because it is
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significantly more convoluted than the odd prime case. This reflects the often-observed
ill-behaved nature of the qubit stabilizer subtheory.

For p ≥ 3, the stabilizer subtheory admits a particularly nice ψ-epistemic ontological
model constructed from the discrete Wigner function [40, 88, 91], and so we restrict to odd
prime p for the rest of this section. We refer to qudits of odd prime dimension as quopits3,
with dimension p.

Before we specify our ontological model, we must describe the operational theory;
that is, the stabilizer subtheory of quantum mechanics. The construction begins with the
generalization of the operators X and Z to a single quopit, which are defined by their
action on the standard basis {|j〉} for j = 0, 1, . . . , p− 1:

X |j〉 = |j + 1〉 (3.43)

Z |j〉 = ωj |j〉 (3.44)

ω = e2πi/p (3.45)

All integer arithmetic is done modp. The full set of generalized Pauli operators on n
quopits is then given by

T(x,z) =
n−1⊗
j=0

ωxjzj/2XxjZzj (3.46)

for x = (x0, x+1, . . . , xn−1) ∈ Znp
and z = (z0, z1, . . . , zn−1) ∈ Znp

Note that, while the Pauli operators for qubits are both Hermetian and unitary, the gen-
eralized Pauli operators are only unitary.

We also define the symplectic inner product as

[(x, z), (x′, z′)] = z · x′ − x · z′, (3.47)

where · is the usual dot product on Znp . We will sometimes abbreviate λ ∈ Znp × Znp
rather than writing (x, z), as this will later be an element of our ontic space. We can now
define the phase-point operators Aλ, which are a symplectic Fourier transform of the Pauli
operators:

Aλ =
1

pn

∑
λ′∈Znp×Znp

ω[λ,λ′]Tλ′ (3.48)

3pronounced ["kwA pIts]
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Stabilizer measurements are the easiest to define. The are just measurements of the
Pauli operators T(x,z); in other words, projections onto their eigenspaces. Each Pauli
operator has eigenvalues {ωk} for k ∈ Zp. Each of the p eigenvalues have equally sized
eigenspaces, and thus each eigenspace has dimension pn−1. We can reformulate this in the
measurement operator picture rather than an observable picture, in order to match the
rest of this thesis and allow for some explicit calculations down the line. Let Π

(x,z)
k be the

projector onto the kth eigenspace of T(x,z), i.e. the eigenspace with eigenvalue ωk. The
reader can check that

Π
(x,z)
k =

1

p

p−1∑
m=0

(
ω−kT(x,z)

)m
. (3.49)

Then, the allowable stabilizer measurements are

M (x,z) = {Π(x,z)
k } for x, z ∈ Znp . (3.50)

We emphasize once more that each of these projectors is rank-pn−1; as observed in Sec-
tion 2.5, any projector with rank greater than one raises a potential difficulty in representing
state update.

Next, we define the stabilizer states. A stabilizer group G is defined as a set of pn

mutually commuting Pauli operators multiplied by a phase ω−k (where k ∈ Zp) [88]. This
group can be specified by a set of n generators, but care must be taken to make sure that
they actually generate the whole group G rather than a subgroup. There is a unique state
which is an eigenvector of all of these operators with eigenvalue +1; we say that G stabilizes
this state. A stabilizer state, then, is a state which is stabilized by a stabilizer group G.
To make this more concrete, we describe G by a set S of n triples (x, z, k); these triples
specify the generators of G. In symbols, we define S implicitly by

G = 〈{ω−kT(x,z)|(x, z, k) ∈ S}〉, (3.51)

where 〈·〉 indicates the group generated by the set ·. We must be careful, however, to make
sure that these generators commute and generate the full group. For the first condition, two
Pauli operators Tλ, Tλ′ commute if and only if the symplectic inner product [λ, λ′] = 0 [87].
For the second condition, S will generate the full group if and only if all of its elements
(x, z) are linearly independent (ignoring k) [17]. The explicit expression for the density
operator of a stabilizer state corresponding to S is then

ρS =
∏

(x,z,k)∈S

Π
(x,z)
k . (3.52)
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For an alternative expression as a sum of Paulis that is sometimes more computationally
convenient, see Appendix A.4.

Finally, the transformations of the stabilizer subtheory are called Clifford transforma-
tions. These are the transformations that map the set of Pauli operators to itself. In other
words, it is the normalizer of the Pauli group. We do not discuss transformations further,
as that would unnecessarily complicate our exposition.

With our operational theory defined, we can now describe the ontological model given
by the discrete Wigner function. In general, the Wigner function can actually describe the
full quantum theory, but in that case some of the probabilities become negative and it is
a quasiprobability representation (QPR) [30–32] rather than an ontological model. This
QPR is defined as

Λ = Znp × Znp

µ(λ|Pψ) =
1

pn
tr(Aλ[ψ])

ξ(k|λ,M{Πi}) = tr(ΠkAλ).

η(λ′|k, λ,M{Πi}) =
1

pn
tr(AλΠkAλ′Πk)

tr(ΠkAλ)
. (3.53)

State-update rules are not usually discussed explicitly in QPRs, but state update is a
completely positive (CP) map, and CP maps are described by an expression like η for
QPRs [30]. To double-check, we have also derived it explicitly in Appendix A.

If, however, we restrict to modeling preparations, transformations, and measurements in
the qupit stabilizer subtheory, then the representation is positive and it forms a well-defined
ontological model [40, 41]. Using our notation for stabilizer states and measurements from
above, we have

µ(λ|PS) =
1

pn

∏
(x,z,k)∈S

δk,[(x,z),λ]

ξ(k|λ,M (x,z)) = δk,[(x,z),λ]

η(λ′| k, λ,M (x,z)) =
1

p

δk,[(x,z),λ′]

δk,[(x,z),λ]

∑
c∈Zp

δλ−λ′,c(x,z) (3.54)

where δ is the Kronecker delta. We present a derivation of these expressions from the
QPR version (Eq. 3.53) in Appendix A. Note that the delta function in the denominator
of η that may be zero; this is fine, since that delta function is equivalent to ξ and η only
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needs to be defined in the support of ξ. This model is both pairwise ψ-epistemic and never
ψ-ontic.

Although it is known that the stabilizer states (measurements) are exactly the pure
states (projective measurements) for which µ (ξ) is positive [40, 41], the positivity of η has
not been investigated. Our expression above amounts to a proof in one direction, that it
is positive for any stabilizer measurement. It is an open question whether or not these are
the only projective measurements for which η is positive, though it does seem likely.

Tangentially, if we extend the Wigner function to the full quantum theory as a QPR, we
get negatively represented state update, as expected. One consequence of this is that some
state updates can’t be normalized, so the Wigner function state update must include a
renormalization step not allowed in ontological models or quasiprobability representations.
For example, in a single qutrit where λ takes the form (x, z) ∈ Z3 × Z3, the projector
Π = [0] + [1] has

tr
(
A(0,2)ΠAλ′Π

)


2/3 λ′ = (0, 2)

−1/3 λ′ = (1, 2)

−1/3 λ′ = (2, 2)

0 otherwise

. (3.55)

Since these add to 0, η(λ′|λ,Π) is not normalizable for λ = (0, 2). Alternatively, the
joint distribution Pr(k, λ′|λ,M) = ξ(k|λ,M)η(λ′|k, λ,M) is always well-defined and nor-
malizable, so if we restrict inquiry to that object then renormalization is not required.
Although further discussion of state update under measurement in quasi-probability rep-
resentations is beyond the scope of this paper, we note that Theorem 1 does not hold for
quasi-probability representations so this could be one potential direction for related future
work.
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Chapter 4

Restrictions on ontological models
from sequential measurements

If I had a hammer,
I’d hammer in the morning
I’d hammer in the evening
All over this land

– Pete Seeger and Lee Hays, The Hammer Song

In this chapter, we finally get around to discussing the restrictions that state update places
on ontological models. This consists of one main theorem (Section 4.1) which we then apply
to all three currently known examples of ψ-epistemic models in dimension d ≥ 3 in order
to show that they cannot represent state update (Section 4.2). Although we don’t have
a general ψ-epistemicity no-go theorem, we have taken our main theorem and applied it
to the two most obvious contexts that might lead to such a theorem (Section 4.3). This
leads to derivations of already-known restrictions on ontological models, which we include
anyway as a demonstration of state update’s relationship to these other properties.

4.1 The hammer: a general restriction on ψ-epistemic

models via state update

We now prove our central claim that consideration of a rule for state update under measure-
ment has consequences for the response function of an ontological model, so that consistent
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state update puts restrictions on how one may represent even a prepare-and-measure-once
experiment. We begin with a lemma that articulates a general property of the update rule
η, and then examine its consequences for response functions ξ.

Lemma 1. Suppose we have an ontological model with ontic space Λ, preparation distri-
butions µ(λ|P ), indicator functions ξ(k|λ,M), and state update maps η(λ′|k, λ,M). For a
particular ontic state λ and measurement projector Π, we define the set Sλ,Π of quantum
states that one could obtain after measurement of any quantum state consistent with λ:

Sλ,Π =

{
Π |φ〉√
〈φ|Π|φ〉

∣∣∣∣∣ ∀ |φ〉 : λ ∈ ∆φ

}
. (4.1)

It is then true that, independently of the measurement context of Π,

Supp(η(·|λ,Π)) ⊆
⋂

|ψ〉∈Sλ,Π

∆ψ. (4.2)

Proof. Suppose that measuring a state |φ〉 with a measurement M results in the updated
state |ψ〉 when we get outcome k, where Π is the kth projector in M . Then let PM,k,Pφ ∈ Pψ

be the preparation procedure associated with post-selection of this measurement outcome
after a particular preparation Pφ. It must be normalized on ∆ψ:

1 =

∫
∆ψ

dλ′ µ(λ′|PM,k,Pφ)

=

∫
∆ψ

dλ′
∫

∆φ

dλ η(λ′|k, λ,M)µ(λ|Pφ)

=

∫
∆φ

dλµ(λ|Pφ)

∫
∆ψ

dλ′ η(λ′|k, λ,M)

Since η is always positive, normalization of µ(λ|Pφ) then implies that∫
∆ψ

dλ′ η(λ′|k, λ,M) = 1 ∀λ ∈ ∆φ.

If η is normalized on a region, its support must be contained in that region. Thus for all λ
that are consistent with some preparation |φ〉 that could result in the post-measurement
state |ψ〉,

Supp(η(·|k, λ,M)) ⊆ ∆ψ.

The fact that this is true for all |ψ〉 that could result from the measurement leads to
Eq. 4.2.
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We note that Lemma 1 is easy to account for in ψ-ontic theories and for rank-1 mea-
surements, since in both cases Sλ,Π has a single element. This is why we were able to
write down update rules for these situations in Section 2.5. Outside of these trivial cases,
Eq. (4.2) is a very restrictive condition; depending on the structure of Sλ,Π, the intersection
may be a very small set. In particular, if any two of the post-selected quantum states are
orthogonal, then Sλ,Π is empty.

Theorem 1 (Main theorem). Suppose that a projector Π maps two states |α〉 , |β〉 to
ontologically distinct states Π |α〉 ,Π |β〉. Then the response function for Π cannot have
support on the ontic overlap of |α〉 , |β〉 for any measurement context of Π; i.e.

∆Π|α〉 ∩∆Π|β〉 = ∅ =⇒ ξ(Π|λ) = 0 ∀λ ∈ ∆α ∩∆β. (4.3)

Proof. Pick some λ ∈ ∆α ∩ ∆β. By Lemma 1, Supp(η(·|λ,Π)) = ∅ so η(λ′|λ,Π) is not
normalizable for this λ. As discussed in Section 2.1, this is only allowable if ξ(Π|λ) = 0.

Both the lemma and the theorem hold for non-projective measurements as well. We
emphasize that this result does not say anything directly about the overlap of the supports
of quantum states, just their overlap within the support of a particular response function.
In the following section, we deploy this theorem by showing that, in every known ψ-
epistemic model for d ≥ 3, measurements of this type exist and have support on the
relevant overlaps, leading to contradiction and demonstrating that these models cannot
reproduce state update under measurement.

4.2 The nails: known ψ-epistemic models cannot rep-

resent sequential measurement

4.2.1 LJBR

This model is the first to fall to Theorem 1:

Theorem 2. The LJBR model cannot represent state update under measurement in di-
mension d ≥ 3.

Proof. The general idea of the proof is to find a measurement which maps any two non-
identical states |α〉 , |β〉 to two again nonidentical states Π |α〉 ,Π |β〉 which both have no
support on any of the Sj, and so are ontologically distinct.
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Consider the preferred basis |j〉 of the LJBR model and the generalized x-basis defined
by

|Xk〉 =
1√
d

d−1∑
j=0

ωjk |j〉 , ω = e2πi/d. (4.4)

These x-basis states have the property tr([Xk][j]) = 1
d

for all j, k. There must exist
two elements |Xk1〉 , |Xk2〉 of the x-basis such that |α〉 , |β〉 differ on that two-dimensional
subspace or else |α〉 , |β〉 would be identical. Pick two such elements, and consider the
projector Π = [Xk1] + [Xk2]. The quantum overlap of the post-measurement state Π |α〉
with any basis vector |j〉 is, using the submultiplicativity of the trace,

tr([j]Π[α]Π)

tr(Π[α])
≤ tr([j]Π) =

2

d
≤ d− 1

d
(4.5)

and the same is true for Π |β〉. As described above, only states with tr([j][ψ]) > d−1
d

have
overlap with any other states in the LJBR model, so the post-measurement states are
ontologically distinct; by Theorem 1, ξ(Π|λ) = 0 for all λ ∈ Sj for all j since |α〉 and |β〉
were arbitrary.

However, when measured in the context of the rest of the rank-1 x-basis projectors, Π
will be ordered first by πM,λ for all λ since

tr(Π[j]) =
2

d
>

1

d
(4.6)

for all j. Thus, by the construction of the LJBR model, ξ(Π|λ) = 1 for all λ ∈ Sj, resulting
in a contradiction.

4.2.2 ABCL

Theorem 3. The ABCL0 model cannot represent state update under measurement in di-
mension d ≥ 3.

Proof. Call the two states defining the model |α〉 , |β〉. Let Π = [α]+ [γ], where |γ〉 is some
state such that

〈α|γ〉 = 0 and 0 < |〈γ|β〉|2 < 1− |〈α|β〉|2. (4.7)

Such a state exists by the results of Section 4.3.1. Under this measurement, |α〉 maps to
|α〉 and |β〉 does not get mapped to either |α〉 or |β〉. Thus the post-measurement states
are ontologically distinct, so by Theorem 1, ξ(Π|λ) = 0 for all λ ∈ ∆α ∩∆β.
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For the other half of the contradiction, note that tr(Π[α]) = 1 means gαβ(Π) =
tr(Π[β]) > 0 (since |α〉 , |β〉 are nonorthogonal) and gαβ(I − Π) = 1 − tr(Π[α]) = 0, so
Π is ordered first by σM when measured in the context M = {Π, I−Π}. Thus ξ(Π|λ) = 1
for all λ ∈ ∆α ∩∆β, resulting in a contradiction.

The failure of the ABCL1 model to reproduce state update follows directly from the
failure of the ABCL0 model.

Theorem 4. The ABCL1 model cannot represent state update under measurement in di-
mension d ≥ 3.

Proof. When we take a convex combination of models, we see that

Supp(ξ3(k|·,M)) = Supp(ξ1(k|·,M)) ∪ Supp(ξ2(k|·,M))

Supp(η3(·|k, λ,M)) = Supp(η1(·|k, λ,M)) ∪ Supp(η2(·|k, λ,M))

Thus if either of models 1 or 2 violates Theorem 1, model 3 must violate it as well. Since
all of the ABCL0 models being mixed violate Theorem 1, so must ABCL1 .

4.2.3 Kitchen Sink

Theorem 5. For any finite subtheory containing states and measurements satisfying the
conditions given in Eqs. 3.39–3.42, the Kitchen sink model cannot model state update under
measurement.

Proof. Theorem 1 implies that, if Π maps |α〉 , |β〉 to ontologically distinct states, then∫
Λ

dλ ξ(Π|λ)µ(λ|α)µ(λ|β) = 0. (4.8)

We evaluate this quantity for the Kitchen Sink’s response functions and preparation dis-
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tributions, using the states and measurement M (1) satisfying Eqs. 3.39–3.42:∫
Λ

dλ ξ(k = 0|λ,M (1))µ(λ|α)µ(λ|β)

=
∑

λ∈Z|M|r

δ(0, λ1)

|M|∏
j=1

tr
(
M

(j)
λj

[α]
)

tr
(
M

(j)
λj

[β]
)

=
∑
λ1∈Zr

δ(0, λ1) tr
(
M

(1)
λ1

[α]
)

tr
(
M

(1)
λ1

[β]
)

·
|M|∏
j=2

∑
l∈Zr

tr
(
M

(j)
l [α]

)
tr
(
M

(j)
l [β]

)
= tr

(
M

(1)
0 [α]

)
tr
(
M

(1)
0 [β]

)
·
|M|∏
j=2

∑
l∈Zr

tr
(
M

(j)
l [α]

)
tr
(
M

(j)
l [β]

)
(4.9)

This final expression will be zero if and only if at least one of its factors is 0. The first
two factors are nonzero by Eqs. 3.40 and 3.41. The rest of the factors are nonzero due to
Eq. (3.39) and the completeness condition on the measurements. Thus Eq. 4.9 is nonzero
and we have a contradiction, so state update cannot be represented faithfully.

4.3 Can our result lead directly to a general ψ-epistemicity

no-go theorem?

Given the fact that Theorem 1 has ruled out all known examples of ψ-epistemic ontological
models, the natural question to ask next is whether or not it can rule out ψ-epistemic
models categorically. However, this task is complicated by two issues that emerge when
we are not discussing a specific ontological model. First, how do we ensure that the post-
measurement quantum states are ontologically distinct? We address this by introducing
what we call orthogonalizing measurements. Second, all that we can generally conclude is
that a response function ξ = 0 on a certain domain, without concluding anything directly
about whether or not two quantum states can overlap. To account for this, we manufacture
situations in which, by nature of some well-known features of ontological models, the
response function ξ is also required to be 1 on a certain domain, reaching a contradiction
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in a similar way to the proofs in the previous section. Unfortunately, the two obvious ways
to set this up both result in restrictions that were already known from considerations other
than state update. We go through their proofs anyway to demonstrate their relation to
state update.

4.3.1 Orthogonalizing measurements

The only obvious way to apply Theorem 1 outside the context of a specific ontological
model is to use a measurement of the following kind:

Definition 7 (Orthogonalizing projector). A projector Π orthogonalizes two states |α〉
and |β〉 if 〈β|Π |α〉 = 0, 〈α|Π|α〉 6= 0, and 〈β|Π|β〉 6= 0.

This means that if we measure |α〉 and |β〉 with a measurement containing Π, then
upon obtaining the outcome Π (which has nonzero probability) we know that they have
been mapped to orthogonal states. Orthogonal states are always ontologically distinct [80],
so we can apply Theorem 1.

Before we apply orthogonalizing measurements to ontological models, we will discuss
some of their interesting features. As long as we are considering systems in d ≥ 3 di-
mensions, it is easy to construct two states that are orthogonalized by any given rank-2
measurement and easy to construct a (rank-2) measurement that orthogonalizes any two
given (non-identical) states. The constructions are similar, so we focus on the latter. Given
any two states |α〉 , |β〉, we can define a basis such that

|α〉 = |0〉

|β〉 = 〈α|β〉 |0〉+

√
1− |〈α|β〉|2 |1〉 (4.10)

and two more states |γ〉 , |δ〉 with a single free parameter 〈β|γ〉:

|γ〉 =
〈β|γ〉 |1〉+

√
1− |〈α|β〉|2 − |〈β|γ〉|2 |2〉√
1− |〈α|β〉|2

|δ〉 =
β∗1γ

∗
2 |0〉 − β∗0γ∗2 |1〉+ β∗0γ

∗
1 |2〉√

1− |〈β|γ〉|2
(4.11)
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where β1 = 〈1|β〉 , γ2 = 〈2|γ〉, etc. Since, as can be checked from their definitions, 〈δ|γ〉 = 0,
we can use these to define a projector Π = [δ]+[γ]. Then we see that since 〈α|γ〉 = 〈β|δ〉 =
0, the relations

〈β|Π |α〉 = 〈β|γ〉 〈γ|α〉+ 〈β|δ〉 〈δ|α〉 = 0

〈β|Π|β〉 = |〈β|γ〉|2 6= 0

〈α|Π|α〉 = |〈α|δ〉|2 =
1− |〈α|β〉|2 − |〈β|γ〉|2

1− |〈β|γ〉|2
6= 0 (4.12)

are satisfied as long as 0 < |〈β|γ〉| <
√

1− |〈α|β〉|2. Thus Π = [γ] + [δ] orthogonalizes

|α〉 , |β〉 for any value of the free parameter 〈β|γ〉 in the range specified above.

Orthogonalizing measurements clearly have applications to distinguishability and can
be used for unambiguous state discrimination [79]: if we obtain the outcome Π from
a measurement, then we can make a subsequent measurement that distinguishes with
certainty whether |α〉 or |β〉 was initially prepared. Defining

gαβ(Π) = min{tr(Π[α]), tr(Π[β])}, (4.13)

this protocol guarantees a success probability of at least gαβ(Π) regardless of the relative
frequencies with which |α〉 or |β〉 are prepared. As such, we might expect a bound on
gαβ(Π) that is a function of the quantum overlap 〈α|β〉:

Theorem 6. If a projector Π orthogonalizes |α〉 and |β〉, then gαβ(Π) ≤ 1 − |〈α|β〉|.
Furthermore, this is a tight bound.

Proof. We use the submultiplicativity of trace along with tr([α]Π[β]) = 0:

tr([α](I− Π)[β](I− Π)) ≤ tr([α](I− Π)) tr([β](I− Π))

tr([α][β]) ≤ (1− tr([α]Π))(1− tr([β]Π))

tr([α]Π) ≤ 1− |〈α|β〉|2

1− tr([β]Π)

=⇒ gαβ(Π) ≤ min{1− |〈α|β〉|2

1− tr([β]Π)
, tr([β]Π)}

Because the first argument of min is a continuous and monotonically decreasing function
of the second argument, the right-hand-side will be maximized when the two arguments
are equal. This sets tr([β]Π) = 1− |〈α|β〉|, so

gαβ(Π) ≤ 1− |〈α|β〉| . (4.14)
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Finally, to see that this bound is tight, we note that setting 〈β|γ〉 =
√

1− |〈α|β〉| in
Eq. 4.11 gives an example that saturates the bound.

The quantity gαβ(Π) was used to define the LJBR model discussed in Section 3.2.4
which, through the lens of orthogonalizing measurements, underscores the relationship
between distinguishability and ψ-epistemic models.

Although we have shown above that orthogonalizing measurements are generic in the
full quantum theory, one might wonder whether they exist in standard subtheories like the
stabilizer subtheory described in Section 3.3.2. Although for a single qupit (p a prime),
the stabilizer subtheory contains only rank-1 measurements, the n-qupit stabilizer sub-
theory contains rank-pn−1 measurements that describe measuring a single qupit. Some of
these higher-rank measurements can be orthogonalizing measurements: picking a two-qupit
subspace, we define the stabilizer states

|α〉 = |0〉
(
|0〉+ |1〉+ · · ·+ |p− 1〉

)
|β〉 = |00〉+ |11〉+ · · ·+ |p− 1〉 |p− 1〉 (4.15)

which are stabilized by Sα = 〈Z1, X2〉 and Sβ = 〈Z1Z
p−1
2 , X1X2〉, respectively1. By exam-

ination, we see that if we measure Z2 (i.e. measure in the standard basis on the second
qubit), any outcome besides |0〉 will orthogonalize these two states.

A related idea to orthogonalizing measurements, called partitioning measurements, was
defined in [52]. In our language, a partitioning measurement for a set {|ψi〉} of states is one
where each measurement outcome orthogonalizes at least one pair of states in {|ψi〉}. We
can also fine-grain orthogonalizing measurements (or partitioning measurements) in order
to construct antidistinguishing measurements such as those used in the proof of the PBR
theorem [68]. This relationship will be explored further in the next two sections.

4.3.2 Application 1: three-way overlap

As suggested above, we want to find some way to show that ξ is not zero on some subset
of the ontic space in order to derive a contradiction. The easiest way to do this is to find
some state |α〉 contained in the image of Π, so that the support of ξ(Π|λ) must contain
the support ∆α of the quantum state [45]. In other words,

〈α|Π|α〉 = 1 =⇒ ∀λ ∈ ∆α : ξ(Π|λ) = 1. (4.16)

1Here Z1 indicates a Z gate on the first qubit, X2 indicates an X gate on the second qubit, etc.
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We then consider two other states |β〉 , |γ〉 that are orthogonalized by Π, so ξ(Π|λ) =
0 ∀λ ∈ ∆β ∩∆γ. Clearly then ∆α ∩∆β ∩∆γ = ∅.

For which triples of states |α〉 , |β〉 , |γ〉 does such a projector Π exist? We first note
that, if Π orthogonalizes |β〉 , |γ〉, then we can write

Π =
Π[β]Π

tr(Π[β])
+

Π[γ]Π

tr(Π[γ])
, (4.17)

where each term is a rank-1 projector. Since Π orthogonalizes |β〉 and |γ〉, it follows that

tr
(

Π[β]Π
tr(Π[β])

[γ]
)

= 0, and vice versa. Also note that, since tr(Π[α]) = 1, we can infer that

I − Π will have 0 probability of responding to α.

Now consider the measurement

M = { Π[β]Π

tr(Π[β])
,

Π[γ]Π

tr(Π[γ])
, I − Π}. (4.18)

The first outcome has 0 probability of responding to |γ〉, the second outcome has 0 prob-
ability of responding to |β〉, and the final outcome has 0 probability of responding to
|α〉. This type of measurement is called an antidistinguishing measurement. When this
type of measurement exists for a set of states, they are called antidistinguishable [68] or
post-Peierls incompatible [18]. These arguments work in reverse, so we see that our de-
sired construction of measurement exists if and only if |α〉 , |β〉 , |γ〉 are antidistinguishable.
Unfortunately, it is already known that an antidistinguishable set of states must have no
mutual overlap [9], as this is the main tool leveraged in the PBR theorem [68]. It is inter-
esting to note that in [18], the authors show that three pure states are antidistinguishable
if and only if (

1− |〈α|β〉|2 − |〈β|γ〉|2 − |〈γ|α〉|2
)2 ≥ 4 |〈α|β〉|2 |〈β|γ〉|2 |〈γ|α〉|2

and

|〈α|β〉|2 + |〈β|γ〉|2 + |〈γ|α〉|2 ≤ 1, (4.19)

which gives an easily checkable condition for three states being able to have mutual overlap.

4.3.3 Application 2: state update + unitaries ≈ CPTP maps

Three-way overlap is fairly well understood in the literature, and doesn’t actually bear
directly on the question of the possibility of a ψ-epistemic model. We now try to find a
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restriction on pairwise overlaps. The obvious place to start would be to use the setup from
the last section, and simply set |γ〉 = |α〉; unfortunately, this immediately fails the test in
Eq. 4.19. As such, we set our sights on a slightly weaker condition:

Lemma 2. Given nonorthogonal |α〉 , |β〉 , and a target overlap 0 < t ≤ 1, then there exists
Π s.t.

tr(Π[α]) = 1 (4.20)

tr(Π[α]Π[β])

tr(Π[α]) tr(Π[β])
= t (4.21)

if and only if t ≥ tr([α][β]).

Proof. Let Π = [α] + [γ] and choose a basis such that

|α〉 = |0〉 (4.22)

|β〉 = β0 |0〉+

√
1− |β0|2 |1〉 (4.23)

|γ〉 = γ1 |1〉+

√
1− |γ1|2 |2〉 . (4.24)

Eq. 4.20 is satisfied by the definition of Π, and Eq. 4.21 requires

|γ1|2 =
|β0|2(1− t)
t(1− |β0|2)

. (4.25)

Then

|γ1|2 ≥ 0 ⇐⇒ |β0|2(1− t) ≥ 0 = True (4.26)

|γ1|2 ≤ 1 ⇐⇒ t ≥ |β0|2 (4.27)

where |β0|2 = tr([α][β]).

Why is this useful? In [55, Section 8.1], Leifer shows2 that, if unitary transformations
are included in the operational theory, then ontological distinctness can depend only on
the inner product of the states:

tr([α][β]) = tr([α][β′]) =⇒
(
∆α ∩∆β = ∅ ⇐⇒ ∆α′ ∩∆β′ = ∅

)
(4.28)

2Leifer doesn’t claim that this proof is original, but also gives no attribution in the section, and I can’t
find it anywhere else in the literature, so I will attribute it to him.
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Combining this with Lemma 2 and Theorem 1, we see that if a particular pair of quantum
states |α〉 , |β〉 is ontologically distinct, and |α〉′ , |β〉′ have a larger inner product than them,
then we can choose a projector that maps |α〉′ , |β〉′ to a pair of states with the same inner
product as |α〉 , |β〉, and thus conclude that they are ontologically distinct. We have arrived
at the much stronger condition

Theorem 7.

tr([α][β]) ≤ tr
(
[α]′[β]′

)
∧∆α′ ∩∆β′ = ∅ =⇒ ∆α ∩∆β = ∅. (4.29)

Again, this is not exactly a new restriction. In [55, Section 8.1], Leifer notes that this
result can be obtained by including CPTP maps in the operational theory. However, we
have come to the same conclusion while remaining in pure-state quantum theory; this
suggests that, for a ψ-onticity theorem, we may not need to look at mixed state quantum
theory, but rather pure state quantum theory is sufficient. This is the tack we follow in
Chapter 5.

4.3.4 A note on the relationship between state update and trans-
formations

As noted in the previous section, transformations also play a role in restricting the structure
of ψ-epistemic ontological models [55, Section 8.1]. If an ontological model successfully
represents all unitary transformations, then |〈ψ|φ〉| = |〈ψ′|φ′〉| implies that |ψ〉 , |φ〉 are
ontologically distinct if and only if |ψ′〉 , |φ′〉 are ontologically distinct. If the model also
includes all CPTP maps, then |〈ψ|φ〉| ≥ |〈ψ′|φ′〉| implies that |ψ′〉 , |φ′〉 are ontologically
distinct if |ψ〉 , |φ〉 are.

It immediately follows that the LJBR and ABCL0 models cannot faithfully represent
unitary transformations. In each model there exist quantum states which are ontologically
distinct from every other state; pick one of these states, and it is easy to find examples of
pairs of ontologically distinct states with any inner product.

However, transformations cannot necessarily rule out the ABCL1 model: since it is
pairwise ψ-epistemic, the unitary condition could in principle be satisfied. That said, the
transformation rule would be complicated because it would have to map between models
that are mixed together, so it is certainly an open question whether this is actually possible.

The Kitchen Sink in fact can represent measurements, as described in Section 3.3.1, so
it seems that (at least for this set of examples), state update puts a more severe restriction
on ontological models than transformations do.
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Chapter 5

Towards a ψ-epistemicity no-go
theorem via computational mechanics

Well I’m on my way
I don’t know where I’m going
I’m on my way
Taking my time
But I don’t know where

– Paul Simon, Me and Julio Down by the Schoolyard

Now that we’ve established that a ψ-epistemicity no-go theorem without any additional
assumptions is once again a possibility, the natural course of action is to start trying to
prove one. Unfortunately, as described in Section 4.3, the results described so far do not
lead us directly to one. In this section, we describe a powerful framework that may be able
to prove such a no-go theorem, and describe the way in which we think it may do so. The
framework is based on computational mechanics, so we begin by describing that research
program (Section 5.1); next, we discuss how it relates/applies to quantum mechanics and
the problem under consideration (Section 5.2). Finally, we present the progress so far and
ideas for how to wring a ψ-onticity theorem out of this framework (Section 5.4).

Due to the in-progress nature of this work, this chapter is significantly less well organized
than the previous ones and may contain small or large errors.
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5.1 Introducing computational mechanics

Computational mechanics [21, 78] is a research program stretching back 40 years that aims
to understand the informational and computational properties of stochastic processes and
complex systems. In many ways, it is similar to quantum foundations in its conception
and ethos, and might be described as “foundations of complex systems,” “foundations of
information processing,” or something the like. Its main tool, the ε-machine, is the (unique)
hidden Markov model that is simultaneously maximally predictive and minimally entropic;
the uniqueness of an ε-machine allows one to interpret its properties as intrinsic properties
of the stochastic process that it represents. The whole of computational mechanics is
built on top of Shannon information theory, for which we include a brief introduction in
Appendix B.

We will introduce the basic concepts of computational mechanics via much hand-waving
and under-rug-sweeping, as a full review of the subject is far outside the scope of this thesis.
For a recent summary of the history and wide applicability of this research program, we
recommend [21]. For a rigorous mathematical treatment of the basic tools, [78] provides a
comprehensive and clear development1.

We pick up the thread of thought, and more importantly notation, from Section 2.6
where we showed that ontological models are equivalent to hidden Markov models. We
have had to compromise between the notations for ontological models and computational
mechanics. We follow the (computational mechanics) convention that probability theory
uses capitalized letters in a particular way: X is a random variable, X is its alphabet (it’s
usually X but we want this available for Greek letters as well) and x ∈ X is a particular
element of its alphabet. We follow usual simplifying conventions to write PrX(x) = Pr(X =
x) = Pr(x). The case where this differs from standard ontological models is in Λ, which is
now the random variable representing the ontic state rather than the state space (which is
Λ, as we have used so far in this work).

For a moment, rather than describing an input-output process Pr(
←→
K |
←→
A ), we will look

at just a bi-infinite process with no input; these are described by a distribution Pr(
←→
K ). In

this case, a hidden Markov model of this process is some random variable Λ that renders

the future conditionally independent of the past; in symbols, Pr(
−→
K
•
|
←−
K,Λ) = Pr(

−→
K
•
|Λ).

This is equivalent to saying that the past and future share no mutual information when
conditioned on the state Λ:

I[
←−
K ;
−→
K
•
|Λ] = 0. (5.1)

1Incidentally, this paper is the first place that I encountered the quote from Plato that opens this thesis.
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K K

Λ

Ψ Eε

Figure 5.1: An I-diagram for a process with no input. The past and future outputs are
represented by the Ks with arrows, the ε-machine by Ψ, and a generic HMM by Λ. The
epistemicity E and excess entropy E are defined in the text.

We will only use the information-theoretic statement of conditional independence from
here forward, as it is more succinct. It is also very easy to visualize via I-diagrams [92] like
Fig. 5.1. These look very much like Venn diagrams, and are not just a heuristic analogy
for informational quantities but a strict formal representation. We introduce them more
thoroughly in Appendix B, but roughly speaking, the region assigned to a random variable
represents its entropy H; the overlaps between random variables are mutual informations
I; and regions that are in one circle but excluded from another correspond to conditional
entropies and conditional mutual informations. While the actual size of a region is arbi-
trary, the point of the diagram is that regions are additive. In this particular case, Eq. 5.1

is represented in Fig. 5.1 by the fact that Λ completely contains the overlap between
←−
K

and
−→
K
•

. This region, labeled E = I[
←−
K ;
−→
K
•

], is called the excess entropy of the process and

is a (usually loose) lower bound on the entropy of any HMM Λ.

The ε-machine of this process can be defined in two equivalent ways [84]. Chronolog-
ically the first to be defined, a history ε-machine has states which are equivalence classes
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of pasts generated by the equivalence relation ∼
ε
:

←−
k ∼

ε

←−
k ′ ⇐⇒ Pr(

−→
k
•
|
←−
k ) = Pr(

−→
k
•
|
←−
k ′) ∀

−→
k
•

. (5.2)

This relation says that two pasts are equivalent if they make equivalent predictions for the
future; in that case, we group those pasts into a single state, and only keep track of the
state (the equivalence class) rather than the particular pasts. The fact that these states
for form an HMM of the process should be fairly intuitive, but is also explicated further
and proven in [78].

Equivalently, A generator ε-machine is an unifilar irreducible HMM with probabilisti-
cally distinct states [7, Definition 3]. Irreducible means that every state is reachable from
every other state with a finite probability. Unifilar means that H[Λ′|K,Λ] = 0, where
Λ′ is the state one time step after Λ; in other words, state update maps (and transfor-
mations and preparations) are deterministic. Probabilistically distinct states means that

∀λ, λ′ ∈ Λ : ∃
−→
k
•

: Pr(
−→
k
•
|λ) 6= Pr(

−→
k
•
|λ′). In this case λ, λ′ are any two states that might

obtain in the present.

The ε-machine is shown on the information diagram in Fig. 5.1 labeled by Ψ (for reasons
that will be discussed shortly). Notice that it is contained entirely within the past outputs,

as from the history ε-machine definition it is easy to see that H[Ψ|
←−
K ] = 0.

As mentioned above, due to its uniqueness, some properties of the ε-machine can be
considered properties of the process. In particular, the statistical complexity C = H[Ψ] is
an important quantity that we will return to later.

That wraps up the most important elements in the usual setting for computational
mechanics, which concerns the ε-machines of no-input stochastic processes. Recently, the
computational mechanics group has also discussed input-output processes [7]. These are

processes of the type Pr(
←→
K |
←→
A ) that we discussed in Section 2.6. Although only history

ε-machines have been discussed in this setting, it is likely that they are still equivalent to
generator ε-machines. In this setting, we need just a few modifications to the definitions
that we will rattle off quickly; in each case, it amounts to finding the properly motivated

place to put
←−
A and

−→
A
•

.

An HMM for an input-output process is (equivalently to Def. 6) a random variable Λ
that satisfies

I[
−→
K
•

;
←−
K,
←−
A |Λ,

−→
A
•

] = 0. (5.3)

This suggests that we should define the excess entropy as

E←→
A

= I[
−→
K
•

;
←−
K,
←−
A |
−→
A
•

] (5.4)
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so that it still serves as a lower bound on H[Λ]. We have subscripted with
←→
A to emphasize

that, while the channel Pr(
←→
K |
←→
A ) is fixed, this quantity will in general depend on the

choice of input process Pr(
←→
A ). Similarly, we now denote the statistical complexity as [7]

C←−
A

= H[Ψ], (5.5)

although the definition does not change. The statistical complexity only depends on the

past inputs, hence its subscript
←−
A . The history ε-machine of a process is now defined by

the equivalence relation [7]

(
←−
k ,←−a ) ∼

ε
(
←−
k ′,←−a ′) ⇐⇒ Pr(

−→
k
•
|
←−
k ,←−a ,−→a• ) = Pr(

−→
k
•
|
←−
k ′,←−a ′,−→a• ) ∀

−→
k
•
,−→a• . (5.6)

The generator ε-machine for input-output processes has not been investigated in the com-
putational mechanics literature, but it is likely that a straightforward generalization of the
no-input case will still be equivalent to the history ε-machine [7]. For the three proper-
ties above, we generalize by saying that the definition of irreducible is the same, but now
‘unifilar’ means

H[Λ′|K,Λ, A] = 0 (5.7)

and ‘probabilistically distinct states’ is given by the condition [7]

∀λ1, λ2 : ∃ −→a• ,
−→
k
•

: Pr(
−→
k
•
|λ1,
−→a• ) 6= Pr(

−→
k
•
|λ2,
−→a• ). (5.8)

Whether constructed from the history or generator point of view, the ε-machine is a
unique HMM satisfying the given conditions2. That said, it is not the only HMM of the
process. So, a natural question to ask is how the ε-machine compares to other HMMs of
the process, which is exactly the question discussed in [73] for binary Markov processes
(with no input). In that work, I showed that the space of HMMs for those processes is
large, and that in general those HMMs can have smaller entropy than the ε-machine (As
discussed later, this is a sufficient condition for those models to be considered something
like ψ-epistemic). Unfortunately the ε-machine is the only HMM that has been studied
for input-output processes; as we will discuss in the next section, the ontological models
formalism is expressly concerned with comparing alternate HMMs to the ε-machine for
input output processes. This means that if we are to prove a ψ-epistemicity no-go the-
orem, a challenging prerequisite will be to merge these two previously studied branches
of computational mechanics. We take some baby steps in this work, and although this

2For the input-output case, equivalence of the history and generator constructions has not yet been
rigorously proven, but probably holds.
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process of merging will certainly be interesting in its own right, it is unlikely that we will
have to develop it quite as far as the individual branches if our only intention is to prove
a ψ-onticity theorem for quantum theory.

5.2 What does this have to do with quantum theory?

In order to convince the reader that the previous section was worthwhile, we will proceed
with a few key observations:

1: ψ is the ε-machine of pure-state quantum theory, and ρ is the ε-machine of
mixed-state quantum theory. To be precise, by ψ we mean the Beltrametti-Bugajski
model from Section 3.2.1 and by ρ we mean the ρ-ontic model of Section 3.2.2. In both
cases, we have already proven that the models are HMMs of their respective processes, so
we just need to check the three conditions that define a generator ε-machine.

Theorem 8. The Beltrametti-Bugajski model is the ε-machine of pure-state quantum the-
ory.

Proof.

1. The model is irreducible because we can always apply a unitary transformation to
get from any one state to another.3

2. It is unifilar because all three of µ,Γ, and η are δ functions and so have zero entropy.

3. The states are probabilistically distinct, because if we measure a particular quantum
state |ψ〉 with a measurement including [ψ], ψ is the only quantum state that gives
the outcome [ψ] with certainty.

3In this and the following case, it’s actually sufficient that we can re-prepare any quantum state/density
matrix that we like. For some reason I find this unsatisfactory, hence the tack taken above.
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Theorem 9. The ρ-ontic model is the ε-machine of mixed-state quantum theory.

Proof.

1. Irreducibility is a little more complicated in this case (if we don’t take the easy-out of
preparations), as we don’t have a set of reversible transformations between all density
matrices. If we’re trying to get from ρ → ρ′, then if tr

(
ρ′2
)
≤ tr(ρ2), there exists a

CPTP map that maps ρ→ ρ′. Otherwise, we can use some projective measurement
to map ρ → ρ′′ where ρ′′ is some pure state density matrix, and then find a CPTP
map to map ρ′′ → ρ′.

2. Again, µ,Γ, and η are all delta functions, so the model is unifilar.

3. Finally, the states are probabilistically distinct by Gleason’s theorem [38].

Recall that the ε-machine is unique for any particular process; as a sanity check, we can
make sure that ψ does not satisfy the conditions of an ε-machine for mixed-state quantum
theory even though it is a valid HMM. In particular, although it is still irreducible and
still has probabilistically distinct states, it is no longer unifilar. This is because, for a
non-unitary CPTP map, a pure quantum state will be mapped to a mixed quantum state,
which in this case would be represented as a convex combination of pure quantum states.
Thus it can be mapped to more than one state, and so is not unifilar.

2: Computational mechanics gives a succinct, precise expression of ψ-epistemicity
and other quantities of interest in quantum foundations. Besides noticing the ε-
machines above, my other main motivation for applying computational mechanics to onto-
logical models is the Refinement Lemma [78, Lemma 7]. This lemma says that any model
in a certain class of HMMs (not all HMMs) must be a fine graining (i.e. refinement) “al-
most everywhere” of the ε-machine states. “Almost everywhere” refers to the fact that this
may not hold on measure-0 subsets, which are irrelevant to the functioning of the model.
This sounds a lot like the partitioning of the state space that happens in ψ-ontic models
shown in Fig. 2.2, and is in fact the exact same condition. A later paper [22] expresses
this concept that a model R is a ‘refinement almost everywhere’ of the ε-machine S as the
equivalent condition H[S|R] = 0. Re-expressing in terms of our relevant variables, with Ψ
as our ε-machine and Λ our rival model, this reads H[Ψ|Λ] = 0 and is exactly equivalent
to the definition of ψ-onticity in the ontological models formalism.

Thus, we define the epistemicity E←−
A

of a model as

E←−
A

= H[Ψ|Λ]. (5.9)
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With this, we can say that a model Λ is ψ-ontic if ∀
←−
A : E←−

A
= 0, and ψ-epistemic if

∃
←−
A : E←−

A
> 0. One advantage of this formulation is that we now have a single real number

to describe this distinction, rather than a property of probability distributions. Addition-
ally, all of the “measure-0” caveats that accompany the usual definition are automatically
accounted for by this one.

A side-effect is that we have sort of implicitly defined a notion of ψ-epistemicity that
applies to any stochastic process, not just quantum theory. We will call this notion ε-
epistemicity, where we simply replace Ψ in Eq. (5.9) by the relevant ε-machine for the
process. This allows us to say that, although mixed state quantum theory may not allow
ψ-epistemic interpretations, it does allow an ε-epistemic interpretation, which in this case
we might call ρ-epistemic. This is because, as described above, the Beltrametti-Bugajski
model is such a model for mixed state quantum theory. We will return to this concept in
the next section.

Montina briefly touches on a related criterion in [65], but refers to I[Ψ; Λ] rather than
E = H[Ψ|Λ]4. These quantities are related by I[Ψ; Λ] = H[Ψ] − E , but because of (a)
the quantity H[Ψ] in the equation and (b) some pesky infinities, they are not sufficient to
describe one another. It is tempting to say that I[Ψ; Λ] = H[Ψ] is an equivalent condition
to E = 0, but this fails due to the fact that any of the three quantities may be infinite; thus
even if E > 0, it is possible that I[Ψ; Λ] = H[Ψ] =∞ (this is the case for the LJBR model,
as Montina notes). The mutual information is still an interesting quantity, in particular
for the communication complexity problem addressed by Montina, but it does not fully
capture the notion of ψ-epistemicity.

There are some other properties of ontological models that have nice information-
theoretic descriptions. For example, outcome determinism is expressible as the (single-
symbol) condition

H[K|Λ, A] = 0. (5.10)

This says that, if you know the ontic state and the choice of action/measurement a, then
you can predict the next outcome k with certainty.

There is also a form of preparation noncontextuality that is expressible as

I[Λ;
←−
K,
←−
A |Ψ] = 0. (5.11)

This says that the experimental procedure by which one arrives at a state λ is irrelevant
if you know the quantum state ψ that results from that experimental procedure. In the

4We leave out the subscript on E for this case because Montina considers only the uniform distribution
over preparations as his input.
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context of pure state quantum theory that we are mostly working in, this condition is
equivalent to preparation noncontextuality for pure states (PNCfPS), which is a very mild
condition that every model in Chapter 3 satisfies. In the context of mixed state quantum
theory, we get the usual definition of generalized preparation noncontextuality, which is
known to be an unsatisfiable condition for ontological models [80]. It would be interesting
to see whether it is possible to prove this result using the present information-theoretic
framework, as a warm-up for a ψ-epistemicity no-go theorem.

As described in Section 2.7, there is a new form of preparation contextuality that
becomes apparent in the HMM picture. In our new information theory notation, Eq. 2.31
can be expressed as

I[
−→
K
•

;
←−
K,
←−
A |K,A] = 0 6=⇒ I[Λ′; Λ|K,A] = 0. (5.12)

These last couple of paragraphs raise the question of whether or not transformation con-
textuality and measurement contextuality are expressible in information-theoretic terms.
So far I have not found a way of doing this, but it may exist. Similarly, Kochen-Specker
contextuality, deficiency, pairwise ψ-epistemicity, never-ψ-onticity, and other properties do
not have immediately obvious expressions.

3: Computational mechanics provides a powerful framework for bounding these
quantities. Because of the positivity of most Shannon information quantities, along with
the many additive relationships between them, it is very common to be able to put bounds
on these quantities. For a toy example, take the simple I-diagram for a no-input process
in Fig. 5.1. In that case, all of the atoms of the I-diagram are positive, so it is easy to read
off from the diagram that

E ≤ C − E, (5.13)

where C = H[Ψ] is defined above. Recall that both C and E are properties of the process,
and not the model Λ, so we have bounded a property of the model by properties of the
process. Thus, if it were the case that C −E = 0 for some process, we could conclude that
it admits no ε-epistemic model. The input-output process version of this gets significantly
more complicated, but also gives us more powerful tools to work with, as we will describe
in the next section.
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5.3 Review: computational mechanics and quantum

theory

This is not the first work to look at the relationship between computational mechanics and
quantum theory. Most of the work that combines the two does so in a way that contrasts
with our own: rather than using classical HMMs to model quantum processes, they use a
quantum version of HMMs to model classical processes [2–4, 42, 60, 66, 70, 82]. As such,
their results are not directly relevant to the subject under consideration.

The exception is a recent work by Cabello et al. [16] which actually applies compu-
tational mechanics directly to quantum foundations in much the same way that we do
here. The authors use it in combination with Landauer’s principle in order to evaluate the
thermodynamic cost of state-realist interpretations of quantum theory. In this way, they
claim to show that any ontological model with finite memory must dissipate an unbounded
amount of heat during every measurement, which is surely an undesirable consequence. Un-
fortunately, the work makes a subtle but severe technical error that renders their result a
tautology.

This occurs when the authors claim that an ε-machine is the HMM producing minimum
heat. In their argument, they show that it is minimal among prescient rivals, which are
actually a severely restricted set of HMMs. The fact that there can exist non-prescient
HMMs with smaller state-entropy than the ε-machine (and that they are in some sense
generic) was shown in [73]. In particular, prescient rivals are a proper subset of ψ-ontic
models, so the authors have accidentally assumed ψ-onticity. This contradicts their other
assumption about ontological models having finite memory, since quantum states are con-
tinuous. It is then no surprise that an infinite amount of information must be updated
during measurement, since we must update the entirety of the quantum state. In order
to show that their results actually holds for all ontological models, they would need to
essentially prove a ψ-epistemicity no-go theorem, which would then render their result
trivial.

5.4 Preliminary results & future directions

To begin with, we have drawn the general I-diagram for a general input-output process,
its ε-machine Ψ, and an arbitrary HMM Λ in Fig. 5.2. Immediately, we see that the epis-
temicity is no longer a single atom but the sum of nine Ei, which have been defined in
the diagram: E←−

A
=
∑9

i=1 Ei. Additionally, whereas the no-input case has all-nonnegative
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Figure 5.2: An I-diagram of an input-output process, its ε-machine Ψ, and an arbitrary
HMM Λ. The As are inputs, and Ks are outputs. The epistemicity E and excess entropy
E are defined in the text; this diagram defines the Ei which sum to E . This figure is
affectionately named the ‘squiggle monster.’
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atoms, many of the Ei (and other atoms) can now be negative, which significantly compli-
cates the bounding process. In particular, using 6≥ 0 to mean “not necessarily nonnegative”
we can read off from the diagram that

E1 = H[Ψ|
←→
A ,Λ] ≥ 0

E2 = I[Ψ;
−→
K
•
|
←−
A,Λ] ≥ 0

E3 = I[Ψ;
−→
A
•
|
−→
K
•
,
←−
A,Λ] ≥ 0

E4 = I[Ψ;
←−
K ;
←−
A |
−→
A
•
,Λ] 6≥ 0

E5 = I[Ψ;
←→
K ;
←→
A |Λ] 6≥ 0

E6 = I[Ψ;
←−
A ;
−→
A
•

;
←−
K |
−→
K
•
,Λ] 6≥ 0

E7 = H[Ψ|
←−
K,
−→
A
•
,Λ] ≥ 0

E8 = I[Ψ;
−→
K
•
|
←−
K,Λ] ≥ 0

E9 = I[Ψ;
−→
A
•
|
←→
K ,Λ] ≥ 0

(5.14)

However, we can group the negative quantities with positive ones in such a way that their
sum is positive; for example,

E1 + E4 = I[Ψ;
←−
K |
−→
A
•
,Λ] ≥ 0

E4 + E7 = I[Ψ;
←−
A |
−→
A
•
,Λ] ≥ 0

E3 + E6 + E9 = I[Ψ;
−→
A
•
|
−→
K
•
,Λ] ≥ 0.

These combinations are non-unique, as can be seen from the fact that E4 can be combined
with either E1 or E7 to form a positive quantity. Actually, it is less about the positivity of
Ei and more about the positivity of the surrounding atoms, but these are usually the same
condition. Deciding which ones are relevant/boundable will be part of the required future
work.

Above, we claimed that, although more complicated, input-output processes also give

us stronger tools. What are these? Recall that E←−
A

depends only on the past inputs
←−
A due

to causality. This means that, if we are able to bound it by some quantity, say F←→
A

that

depends on the whole input, then we can factor Pr(
←→
A ) = Pr(

−→
A
•
|
←−
A )Pr(

←−
A ) and we have

the much stronger bound
E←−
A
≤ inf
−→
A
•
|
←−
A

F←→
A
. (5.15)

In particular, if there exists some experiment
−→
A
•
|
←−
A such that F←→

A
= 0, then we can

conclude E←−
A

= 0. This kind of existence criterion is much easier to satisfy than the bare
∀ quantifier in our definition of ψ-epistemicity. This does not hold for every Ei that makes
up E←−

A
, but there is at least one decomposition of E←−a into quantities which only depend on
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Stabilizer Qubit Pure state Mixed state
Infinite input alphabet × X X X
Continuous ε-machine states × X X X
Non-Markovian X × X X
Repeatable measurements X X X ×
State-measurement complementarity X X X ×
Reversible transformations X X X ×
Tomography X X X X

Table 5.1: Properties (rows) of various operational theories (columns). Stabilizer refers
to the pure state stabilizer subtheory for power of odd prime dimensional systems (i.e.
n-quopits). Qubit refers to pure state qubit dynamics. Pure state refers to pure state
quantum theory for d ≥ 3, and Mixed state refers to mixed state quantum theory for
d ≥ 3. The properties are described in the text.

the past inputs:

E←−
A

= (E1 + E2 + E3) + (E4 + E5 + E6) + (E7 + E8 + E9) (5.16)

H[Ψ|Λ] = H[Ψ|
←−
A,Λ] + I[Ψ;

←−
K ;
←−
A |Λ] +H[Ψ|

←−
K,Λ] (5.17)

Unfortunately the middle term can be negative as it is a three-way mutual information.

The tough part, of course, will be figuring out which sums of Ei to bound, and how
to bound them. However, we are not flying completely blind. We have three examples
of theories that are closely related to pure state quantum theory, but which each admit a
ε-epistemic interpretation: the stabilizer subtheory for n quopits, full quantum theory for
a qubit (d = 2), and mixed state quantum theory (i.e. the operational theory that includes
mixed states, CPTP maps, and non-projective measurements). Note that ψ is still the
ε-machine for the stabilizer subtheory, by essentially the same proof that it is such for
pure state quantum theory. Our goal, then, is to find some set of properties of pure state
quantum mechanics that are not all simultaneously satisfied by the other three theories.
One strange thing to note is that both stabilizers and qubits are subtheories of pure state
quantum theory, while pure state quantum theory is a subtheory of mixed state quantum
theory. This means that, if it is true that any model of pure state quantum theory must
be ε-ontic, then ε-epistemicity is not a property that extends from theory to subtheory or
vice versa.

We have listed some properties that seem like they may be relevant in Table 5.1. The
first two rows single out the stabilizer subtheory. They are expressible as ∃A : H[A] =∞,
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and ∃
←−
A : H[Ψ] = ∞, respectively. It’s unclear how to apply these to get bounds on

anything. The third row singles out the single-qubit case; all single qubit (pure-state)
dynamics are Markovian, since the only nontrivial measurements have rank 1. The con-

dition of non-Markovianity can be expressed as I[
−→
K
◦

;
←−
K,
←−
A |K,

−→
A
•

] > 0, i.e. the present

symbol/input pair does not form an HMM of the process. It is especially unclear how
this might be applied, since we’re really looking for quantities that are restricted to be 0.
However, we note that it has been shown that ε-epistemic models are generic for binary
Markov processes [73], so this is one promising route (unfortunately the converse, which is
what we’re really after, has not been shown).

The next three rows single out mixed-state quantum mechanics. By repeatable measure-
ments, we mean that every measurement in the theory can be repeated; in informational
terms, ∀a : H[K|K ′, A = a,A′ = a] = 0 (this notation is a little weird, but it still expresses
a meaningful quantity). By state-measurement complementarity, we mean that for every
ε-machine state, there exists a measurement that will respond deterministically to that
state, but not to any other: ∀ψ : ∃a : H[k|Ψ = ψ,A = a] = 0 ∧ H[k|Ψ 6= ψ,A = a] > 0.
Again, the notation is weird and the application unclear. Reversible transformations also
probably has an information-theoretic expression, but I think the point has been made.

The final row of the table, tomography, does not distinguish between these theories but
it does give us a quantity exactly of the form in Eq. (5.15). In particular, in any theory
that allows for tomography, we have

∀
←−
A : ∃(

−→
A
•
|
←−
A,
←−
K ) : H[Ψ|

−→
A
•
,
−→
K
•

] = 0. (5.18)

The one caveat is that we have allowed the future choice of experiment to also depend on
the past outcomes; although this creates some issues with our formal construction of HMMs
in Section 2.6, it’s probably fine. We can demonstrate the above property by the following

(very informal) construction: the future experiment
−→
A
•

has a block structure, where each

block consists of first repeating
←−
A . If the sequence of outcomes is not the same as

←−
k , then

begin the next block. For each sequence that did reproduce the same outcomes, we are

guaranteed to have the same ψ at the end, conditioned on the actual values of ←−a ,
←−
k , as

we had after the actual initial experiment. Thus, we have a way of repeatedly preparing

ψ, and can perform a tomography experiment to determine ψ for each possible←−a ,
←−
k , and

thus reconstructing Ψ (I did say there would be hand-waving).

Presuming that this method actually works, and we don’t have to worry about the fact
that the entropy in Eq. 5.18 is infinite for any finite future experiment and only becomes
0 in the infinite-time limit, and the infinite-time limit is well defined in general, then we
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still have to actually use this result to bound some of the Ei. All three of E1, E2, E3 are

contained within the region H[Ψ|
−→
A
•
,
−→
K
•

], but unfortunately they appear to depend on

the future input so the trick from Eq. (5.15) won’t work. Additionally, the rest of the
atoms in that region are mostly negative, so it’s not necessarily clear that E1 + E2 + E3 is

actually upper bounded by the value of H[Ψ|
−→
A
•
,
−→
K
•

]. Additionally, it seems likely from the
computational mechanics literature that tomography is a generic property of ε-machines,
as it seems related to the notion of synchronization that is central to their development [22].

There is a special case that makes everything easier to analyze, which is models that
are PNCfPS. In that case, almost all of Λ becomes contained in Ψ, which means that more
regions are positive and bounds become easier to come by. In particular, the bound in
the previous paragraph holds in this case. As such, it may be that PNCfPS =⇒ ψ-ontic,
which would be a very interesting result and would be consistent with the set of examples
that we ruled out, which are all PNCfPS.

Whether or not this technique actually pans out to prove a ψ-onticity theorem is any-
one’s guess. While the initial assessments of this chapter are optimistic, we’ve certainly
ended up finding that the situation is daunting at best. Regardless, pursuing this line of
reasoning should almost certainly provide some new insights both into the structure of
ontological models and into quantum theory’s relationship to other probabilistic theories.
For example, if we prove that some Ei are 0 but not others, then we have at least gained
information about ‘where the epistemicity can come from.’
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Chapter 6

Conclusion

There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable. There is another theory which
states that this has already happened.

– Douglas Adams, The Restaurant at the End of the Universe

Throughout this thesis we’ve been promising a couple of discussions in the conclusion,
which we can now address.

First of all, we have repeatedly referred to our results as utilizing no additional assump-
tions, when we have clearly added a consideration of state update. While state update is
certainly an extra piece of mathematical structure, it enters the picture in a significantly dif-
ferent way than the additional assumptions of existing no-go theorems [1, 19, 43, 61, 68]. In
particular, it is introduced at the operational level—we say that we want to model sequen-
tial measurements, and the requirement of state update follows directly1. This introduction
at the operational level is in contrast to the additional assumptions in the literature, which
are all introduced at the ontological level and directly impose restrictions on the structure
of the ontological model. In other words, state update is a thing that we want to model,
whereas the ‘additional assumptions’ are about how we model it.

1One could perhaps argue that sequential measurements should be described by combining all of the
measurements into a single joint distribution and describing that as a single measurement step; however,
this is not a description of how things actually happen in experiments and is in contradiction with our
HMM analogy. It also suggests a rather unattractive ‘measurement at the end of the universe’ picture,
where we somehow need to wait until every measurement has been done before asserting that anything at
all has happened.
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Second, we may provide some (perhaps premature) speculation about where to head
with state-realist ψ-epistemic interpretations if we must leave the ontological models for-
malism behind. As described in the introduction, this seems likely, independent of the
actual existence or not of a ψ-epistemic ontological model. This is because all of the
restrictions posed by previous no-go theorems still hold, and, perhaps most importantly,
Bell’s theorem tells us that any such model will be nonlocal anyway. To further this discus-
sion, we recall the set of assumptions that characterize the ontological models formalism
set out in Section 2.6:

1. We can represent nature via stochastic channels

2. This process is causal (time-ordered)

3. This process is stationary (time-translation invariant)

4. A system has a state

5. The states of a system render the past and future observations of the system condi-
tionally independent of one another.

The first item on this list isn’t so much an assumption as a statement of fact; even Gen-
eralized Probabilistic Theories—which postulate non-classical probability theories for the
dynamics of states—reproduce the operational classical probabilities of quantum theory.

The fourth item on this list is the point of departure for state-antirealist ψ-epistemic
interpretations and its negation has already been explored in many examples of such
interpretations—while it is clearly an attractive option due to its many adherents, the
benefits of a state-realist version are perhaps worth enough that we should not be so hasty
to abandon the search for one.

If we want to explore state-realist ψ-epistemic interpretations outside of the ontological
models formalism, this leaves the possibility of negating items 2,3, and 5. In my few
discussions with senior members of the quantum foundations community, number 5 seems
to be the obvious answer to many people. Dropping it would essentially amount to adding
more causal arrows to the influence diagram in Fig. 2.5b which can move past a state
without being mediated by it. While this is probably the least radical option, it has
its own issues. First of all, this conditional independence is the definition of a state for
a hidden Markov model and it is very unclear whether an object that does not have this
property can be interpreted as any reasonable kind of state. Second, the nice mathematical
structure that accompanies hidden Markov becomes not so nice with the inclusion of these
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extra causal influences. One major reason to use hidden Markov models (and, in fact, the
justification for their name) is that they model an arbitrarily non-Markovian statistical
process by inducing a Markov process over the “hidden” states (this Markovianity follows
from assumption 5). Finally, it is hard (for me) to see a physical basis for this type of
interpretation. What would it mean for a measurement taken today to depend on a state
that the system held last week?

At this point we’re down to numbers two and three, which, you might guess, is where I
want to start trying to poke holes in the ontological models formalism. First, the downsides
to picking these two: they are very basic assumptions about how we construct theories and
how we understand time via special relativity. Indeed, a direct negation of either of these
two leads to many of the same issues as the negation of number 5. But I’m suspecting
that, if this is the joint we need to cut, then we may need something more radical than
simple negation.

In particular, I will just point out that time, both as a general concept and as an
element of physical theories, is not well understood [69]. Theorizing about time has been
a thread of thought dating back to Plato, and we’re still struggling to make sense of it,
whether it’s the subjective experience, the cognitive structure, the thing that is correlated
with increases in (statistical mechanics) entropy, a reversible parameter, or an element of
a dynamic spacetime distinguished from our familiar and friendly spacial dimensions by a
single minus sign in the metric.

Given this, and the many other ways in which a number of quantum foundations
research programs point towards time and causality as two of the central aspects of the
strangeness of quantum theory, it seems natural to conclude that these are some of the
big problems that we need to solve in order to make sense of quantum theory. Moreover,
they provide a direct link to start trying to think about quantum foundations as existing
in spacetime, rather than in quantum circuits and agents’ minds as it has tended to for
the last twenty years or so. In the spirit of foundations-as-path-towards-quantum-gravity
articulated in the introduction, this seems like a very appealing way to go.

Speculation aside, we have shown that consideration of sequential measurements, and
the state update rule needed to represent them, places nontrivial restrictions on the
structure of ψ-epistemic ontological models. These restrictions were used to demonstrate
that none of the known examples of ψ-epistemic ontological models, defined for a single-
measurement experiment, can be supplemented with a state update rule. As such, the
door is wide open for a no-go theorem ruling out ψ-epistemic ontological models with-
out any additional assumptions. This flips the script on the usual view that ψ-epistemic
interpretations have an advantage over ψ-ontic interpretations in describing this behavior.
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The importance of sequential measurements suggested an analogy between ontological
models and hidden Markov models, which further invited an application of computational
mechanics. These connections provide a new look at the structure of ontological models,
and promise to inform either a no-go theorem or the construction of a ψ-epistemic model.
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Appendix A

Proofs that models reproduce
quantum theory

A.1 Kochen-Specker model

Proof: The KS model reproduces quantum statistics. We first evaluate

Pr(φ|ψ) =

∫
Λ

dλξ(φ|λ)µ(λ|φ)

=

∫
Λ

dλ
1

π
Θ(~ψ · ~λ) ~ψ · ~λΘ(~φ · ~λ). (A.1)

It is convenient to pick a basis for R3 such that ~ψ = x̂ and ~φ lies in the half-plane
z = 0, y > 0 an angle γ away from the x-axis (and thus from ~ψ). We parametrize ~λ
by the usual polar angle α and azimuthal angle β. Summarizing,

~ψ = x̂

~φ = cos(γ) x̂+ sin(γ) ŷ

~λ = sin(α) cos(β) x̂+ sin(α) sin(β) ŷ + cos(α) ẑ

With the usual differential element dλ = dα dβ sinα, we can then calculate dot products
and substitute into Eq. A.1:

Pr(φ|ψ) =
1

π

∫ π

0

dα

∫ π

−π
dβ sinαΘ[sinα cos β] Θ[sinα(cos β cos γ + sin β sin γ)] sinα cos β
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Since α goes from 0 to π, sinα > 0 so it doesn’t affect the Heaviside function in either
case. Thus the first gives us bΘ(cos β), which restricts β to range from −π/2 to π/2. The

second can be written Θ(cos(β − γ)); since we chose ~φ to lie in the +y half-plane, γ ∈ [0, π]
and so β is further restricted to be less than π/2 − γ. Absorbing the Heaviside functions
into our integration limits then gives

Pr(φ|ψ) =
1

π

∫ π/2−γ

−π/2
dβ cos β

∫ π

0

dα sin2 α

=
1

2

∫ π/2−γ

−π/2
dβ cos β

=
1

2
(sin(π/2− γ)− sin(−π/2))

=
1

2
(cos γ + 1)

=
1

2

(
~ψ · ~φ+ 1

)
= |〈φ|ψ〉|2

A.2 Montina’s model

Montina proved in [64] that his model reproduces quantum mechanics. However, we ought
to check that our explicit ontological models presentation of his model still does. Since the
transformations were built into everything, let’s just evaluate the prepare-measure case:

Pr(k|Mφ, Pψ) =

∫
Λ

dλ ξ(k|λ,Mφ)µ(λ|Pψ)

=
∑
r,s

∫
d~x+1 d~x2 Θ

[
ks(~xr · ~n)(~xr · ~φ)

]
· 1

4π2
Θ
[
rsgn[(~x+1 · ~ψ)2 − (~x−1 · ~ψ)2]

]
Θ
[
s(~xr · ~ψ)(~xr · ~n)

]
After substituting above, we first evaluate the sum over s (examining only the terms that
depend on s):∑

s

Θ
[
s(~xr · ~ψ)(~xr · ~n)

]
Θ
[
ks(~xr · ~n)(~xr · ~φ)

]
= Θ

[
k(~xr · ~ψ)(~xr · ~φ)

]
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This can be seen from the fact that, of the two terms in the sum, the first theta function
will be 1 for exactly one of them. This is the term where sgn(~xr ·~n) = sgn(s~xr · ~ψ). So, we
can substitute this expression into the second theta function and eliminate the sum. Then
we have an s2 term, which is equal to 1 (since s = ±1), and we get the result on the right
hand side. Substituting this back into the original integral, we get

Pr(k|Mφ, Pψ) =
∑
r

∫
d~x+1 d~x2

1

4π2
Θ
[
k(~xr · ~ψ)(~xr · ~φ)

]
Θ
[
rsgn[(~x+1 · ~ψ)2 − (~x−1 · ~ψ)2]

]
.

(A.2)

This is the integral that Montina shows is consistent with quantum theory, so we’re done.

A.3 Kitchen Sink

Normalization

ξ is clearly normalized. Γ is normalized due to the assumption of a closed subtheory; U
acts as a permutation on the M js so the product of delta functions is satisfied exactly
once.

For µ,

∑
λ

µ(λ|ρ) =
∑
λ∈Zmr

m∏
i=1

tr
(
Ei
λi
ρ
)

(A.3)

=
m∏
i=1

∑
l∈Zr

tr
(
Ei
lρ
)

(A.4)

= 1 (A.5)

Where in the last step we’ve used the normalization condition on the POVM. Since η
amounts to re-preparing in the measured (rank-1) state, it is normalized because µ is.
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Prepare-measure

We proceed similarly to how we showed the normalization of µ:

∑
λ

ξ(k|λ,M i)µ(λ|ρ) =
∑
λ

δ(k, λ(M i))
m∏
j=1

tr
(
Ej
λ(Mj)

ρ
)

=
∑
λ

δ(k, λ(M i)) tr
(
E1
λ(M1)ρ

)
tr
(
E2
λ(M2)ρ

)
· · · tr

(
Em
λ(Mm)ρ

)
=
∑
λ1∈Zr

∑
λ2∈Zr

· · ·
∑
λm∈Zr

δ(k, λi) tr
(
E1
λ1
ρ
)

tr
(
E2
λ2
ρ
)
· · · tr

(
Em
λmρ
)

=
∑
λ1∈Zr

tr
(
E1
λ1
ρ
)
· · ·
∑
λi∈Zr

δ(k, λi) tr
(
Ei
λi
ρ
)
· · ·

∑
λm∈Zr

tr
(
Em
λmρ
)

=
∑
λi∈Zr

δ(k, λi) tr
(
Ei
λi
ρ
)

= tr
(
Ei
kρ
)

which is the desired quantum probability.
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Transformations (unitary)

∑
λ

Γ(λ′|λ, U)µ(λ|ρ) =
∑
λ∈Zmr

[
m∏
j=1

δ(λ′(UM jU †), λ(M j))

][
m∏
i=1

tr
(
Ei
λ(M i)ρ

)]

=
∑
λ∈Zmr

m∏
j=1

δ(λ′(UM jU †), λ(M j)) tr
(
Ej
λ(Mj)

ρ
)

=
m∏
j=1

∑
l∈Zr

δ(λ′(UM jU †), l) tr
(
Ej
l ρ
)

=
m∏
j=1

tr
(
Ej
λ′(UMjU†)

ρ
)

=
m∏
j=1

tr
(
U †Ej

λ′(Mj)
Uρ
)

=
m∏
j=1

tr
(
Ej
λ′(Mj)

UρU †
)

= µ(λ′|UρU †)

We get from the fourth line to the fifth line by reindexing, since assuming a closed subtheory
means that U induces a permutation on the set of M js.

A.4 The Wigner Function

When working with the Wigner function and stabilizer subtheory, we make free use of the
following identities, all derivable by plugging in the relevant definitions:

TλTλ′ = ω2−1[λ,λ′]Tλ+λ′

tr(Tλ) = pnδλ,0

tr(TλTλ′) = pnδλ,−λ′

T †λ = T−1
λ = T−λ

(Tλ)
m = Tmλ

AλAλ′ = ω2[λ′,λ]T2(λ−λ′)

tr(AλTλ′) = ω[λ′,λ]
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Derivation of OM presentation from QPR presentation

First, we evaluate ξ for a stabilizer measurement. We use σ, σ′ . . . ∈ Znp × Znp as dummy
variables for summing over the ontic space and l,m as dummy variables for summing over
Zp.

ξ(k|λ,M (x,z)) = tr
(

Π
(x,z)
k Aλ

)
=

1

pn+1

∑
m

ω−km
∑
σ

ω[λ,σ] tr
(
Tm(x,z)Tσ

)
=

1

pn+1

∑
m

∑
σ

ω[λ,σ]−km+2−1[m(x,z),σ] tr
(
Tm(x,z)+σ

)
=

1

p

∑
m

∑
σ

ω[λ,σ]−km+2−1[m(x,z),σ]δm(x,z),−σ

=
1

p

∑
m

ω[λ,−m(x,z)]−km+2−1[m(x,z),−m(x,z)]

=
1

p

∑
m

ω−m(k−[(x,z),λ])

= δk,[(x,z),λ]

In the last step, we use the fact that the sum over powers of the pth root of unity ω on a
vector space over Zp is equal to the size of the vector space if the power is 0 for all elements
of the vector space, and 0 otherwise.
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We now carry out a similar, if nastier, calculation for η:

η(λ′|k, λ,M (x,z))

=
1

pn tr
(

Π
(x,z)
k Aλ

) tr
(

Π
(x,z)
k AλΠ

(x,z)
k Aλ′

)
=

1

p3n+2δk,[(x,z),λ]

∑
l,m

∑
σ,σ′

ω[λ,σ]+[λ′,σ′]−km−kl tr
(
Tl(x,z)TσTm(x,z)Tσ′

)
=

1

p3n+2δk,[(x,z),λ]

∑
l,m

∑
σ,σ′

ω[λ,σ]+[λ′,σ′]−km−kl+2−1[l(x,z),σ]+,−1[m(x,z),σ′] tr
(
Tl(x,z)+σTm(x,z)+σ′

)
=

1

p3n+2δk,[(x,z),λ]

∑
l,m

∑
σ,σ′

ω[λ,σ]+[λ′,σ′]−km−kl+2−1[l(x,z),σ]+,−1[m(x,z),σ′]pnδσ′,−σ−l(x,z)−m(x,z)

=
1

p2n+2δk,[(x,z),λ]

∑
l,m

∑
σ,σ′

ω[λ,σ]−[λ′,σ]−l[λ′,(x,z)]−m[λ′,(x,z)]−km−kl+l2−1[(x,z),σ]−m2−1[(x,z),σ]

· ω−lm2−1[(x,z),(x,z)]−m22−1[(x,z),(x,z)]

=
1

p2n+2δk,[(x,z),λ]

∑
σ

ω[λ,σ]−[λ′,σ]
∑
l

ωl(2
−1[(x,z),σ]−[λ′,(x,z)]−k)

∑
m

ω−m(2−1[(x,z),σ]+[λ′,(x,z)]+k)

=
1

p2n+2δk,[(x,z),λ]

∑
σ

ω[λ−λ′,σ]pδk,[(x,z),λ′+2−1σ]pδk,[(x,z),λ′−2−1σ]

=
1

p2nδk,[(x,z),λ]

∑
σ

ω[λ−λ′,σ]δk,[(x,z),λ′]δ0,[(x,z),σ]

=
1

p2nδk,[(x,z),λ]

δk,[(x,z),λ′]

∑
σ

ω[λ−λ′,σ]δ0,[(x,z),σ]

=
1

p2nδk,[(x,z),λ]

δk,[(x,z),λ′]

∑
c∈Zp

p2n−1δλ−λ′,c(x,z)

=
1

pδk,[(x,z),λ]

δk,[(x,z),λ′]

∑
c∈Zp

δλ−λ′,c(x,z)

The final step follows from the fact that the delta function δ0,[(x,z),σ] identifies a subspace
of Znp × Znp ; which is a vector space over the field Zp. On this subspace, the exponent
[λ − λ′, σ] is 0 for all σ if and only if λ − λ′ = c(x, z) for some c ∈ Zp. The constraint
0 = [(x, z), σ] is one-dimensional, so the subspace it identifies has size p2n−1.

Finally, we evaluate µ. We do this in two steps, the first of which is to re-express ρS
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as a sum of Paulis rather than a product of projectors. This proof is much easier if we use
the notation S = {(λi, ki)}, where |S| = n (the number of quopits):

ρS =
n∏
i=1

Πλi
ki

(A.6)

=
n∏
i=1

1

p

∑
mi∈Zp

ω−mikiTmiλi (A.7)

=
1

pn

∑
m∈Znp

n∏
i=1

ω−mikiTmiλi (A.8)

=
1

pn

∑
m∈Znp

ω−
∑
imikiT∑

imiλi
(A.9)

The first step was to substitute the definition of ρS, the second to substitute the definition
of the projector. We then interchange the sum and the product, which results in a sum
over Znp rather than Zp; we’ve implicitly defined m = (m1, . . . ,mn). The last step combines
the phases and combines the Paulis—the latter is a special case of the composition rule
that we can use because all of the elements of S commute with one another, so the phase
one gets when combining Paulis disappears.

It is now easy to directly evaluate µ using this expression:

µ(λ|ρS) =
1

pn
tr(AλρS) (A.10)

=
1

pn
1

pn

∑
m∈Znp

ω−
∑
i kimi tr

(
AλT∑imiλi

)
(A.11)

=
1

p2n

∑
m∈Znp

ω−
∑
imikiω[

∑
imiλi,λ] (A.12)

=
1

p2n

∑
m∈Znp

ω
∑
imi([λi,λ]−ki) (A.13)

=
1

p2n

n∏
i=1

∑
mi∈Zp

ωmi([λi,λ]−ki) (A.14)

=
1

p2n

n∏
i=1

δki,[λi,λ]) (A.15)
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This is equivalent to the expression given in the main text when translated back to the
usual notation.

Derivation of state-update rule

From the Wigner function for states, we can derive the state-update rule. We are looking
for ηMk

(λ′|λ) such that

µ(λ′|PEMk (ρ)) =
∑
λ

η(λ′|k, λ,M)µ(λ|Pρ) (A.16)

where EMk
(ρ) = MkρMk

tr(MkρM
†
k)

is the channel described by Luder’s rule. To find it, we expand

the left-hand side of this equation:

µ(λ′|PEMk (ρ)) =
1

pn
tr

Aλ′ MkρM
†
k

tr
(
MkρM

†
k

)
 (A.17)

=
1

pn

tr
(
Aλ′MkρM

†
k

)
tr
(
MkρM

†
k

) (A.18)

=
1

pn

tr
(
Aλ′Mk(

∑
λ µρ(λ)Aλ)M

†
k

)
tr
(
Mk(

∑
λ µρ(λ)Aλ)M

†
k

) (A.19)

=
1

pn

∑
λ tr
(
Aλ′MkAλM

†
k

)
µρ(λ)∑

λ tr
(
MkAλM

†
k

)
µρ(λ)

(A.20)

where we have used the orthonormality of the Aλ′ to write ρ =
∑

λ µρ(λ)Aλ. Thus we can
identify

ηMk
(λ′|λ) =

1

N(λ)

1

pn
tr
(
Aλ′MkAλM

†
k

)
(A.21)

where N(λ) is a normalizing constant that may depend on λ. Summing over λ′ and setting

the result equal to one gives N(λ) = tr
(
MkAλM

†
k

)
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Appendix B

A (very) brief introduction to
Shannon information theory

We introduce the very basics of classical information theory along with more specific points
that are relevant to Chapter 5. We refer the interested reader to [20] as the canonical
introductory/reference text for Shannon information theory.

Shannon information is most straightforward and well-behaved when applied to dis-
crete random variables. The fundamental quantity is the discrete mutual information Idisc

between two random variables, defined as

Idisc[X;Y ] =
∑

x∈X,y∈Y

Pr(x, y) log
Pr(x, y)

Pr(x)Pr(y)
. (B.1)

The log is usually taken base 2, in which case the mutual information has units of bits;
other choices of base just change the units. We take 0 log 0 = 0, 0 log 0

0
= 0, etc. as these

functions are well-behaved in the limits towards 0. The mutual information is bounded by

0 ≤ Idisc[X;Y ] ≤ min{log |X|, log |Y |}. (B.2)

It is 0 if and only if X and Y are independent; in this case, Pr(x, y) = Pr(x)Pr(y) so every
element of the sum includes a term log(1) = 0. Note that it is symmetric in its inputs, i.e.
Idisc[X;Y ] = Idisc[Y ;X].

Before we move on to other informational quantities, we first give the more general def-
inition of mutual information which applies to any random variable, including continuous
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and singular random variables. Let ∆ = {∆i} be some finite partitioning of an alphabet
for a random variable, i.e. |∆| <∞ and⋃

i

∆i = X and ∆i ∩∆j = ∅ if i 6= j. (B.3)

Then we can define a coarse-grained version of that random variable as

Pr(X∆ = i) =
∑
x∈∆i

Pr(x)

or

Pr(X∆ = i) =

∫
∆i

dxPr(x), (B.4)

depending on whether X is a discrete or continuous random variable (If it’s mixed, a mix
of sums and integrals essentially works)1. The bounds and symmetry of Idisc carry over to
I, with the caveat that the upper bond min{log |X|, log |Y |} may be infinite.

Finally, this allows us to define the general form for mutual information as a supremum
over partitions ∆(1) and ∆(2):

I[X;Y ] = sup
∆(1),∆(2)

Idisc[X
∆(1)

;Y ∆(2)

] (B.5)

If X and Y are both discrete random variables, then Idisc[X;Y ] = I[X;Y ], so we only need
to work with I from here on.

The mutual information allows for definitions of all of the rest of the quantities of
interest in this paper. The Shannon entropy, or just entropy, of a random variable X is

H[X] = I[X;X], (B.6)

so it is sometimes also called the self-information. It describes the amount of uncertainty
present in the random variable, which is equivalent to the average number of bits needed
to communicate that random variable across a noiseless channel.

The joint entropy H[X, Y ] of two variables is simply the entropy of their joint random
variable, and doesn’t need further definition. The conditional entropy is defined as

H[X|Y ] = H[X, Y ]−H[Y ], (B.7)

1There are some issues with Riemann integrability here that are resolved by a proper measure theoretic
treatment, but in this appendix we are interested in communicating the general idea rather than precise
mathematics
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and describes the uncertainty present in X if one knows the value of Y . An equivalent
definition is

H[X|Y ] = H[X]− I[X;Y ]. (B.8)

We can then use this to define the conditional mutual information:

I[X;Y |Z] = H[X|Z]−H[X|Y, Z] (B.9)

= H[Y |Z]−H[Y |X,Z] (B.10)

In general, while it is possible to do all of this symbolically, it is usually easier to
use I-diagrams [20, 92]. This representation makes use of the fact that the information
quantities above are measures on sets; thus they are in strict analogy to set operations
and can be represented rigorously by Venn diagrams as in Fig. B.1. More particularly, the
additive relationships between these quantities behaves like set unions, set division, etc.
Looking at the first I-diagram which has two random variables, we see that the regions
labelled I[X;Y ] and H[X|Y ] together make up the circle labelled H[X]; we can then
conclude that I[X;Y ] + H[X|Y ] = H[X], which is indeed the same as Eq. (B.8). The
whole area of the diagram is the joint entropy H[X, Y ], and we can read off that this
is equivalent to I[X;Y ] + H[X|Y ] + H[Y |X], and thus use the diagram to generate new
relationships. The main feature of the three-variable diagram that makes it different from
the two-variable diagram is the existence of the three-way overlap that is labelled by the
tripartite mutual information I[X;Y ;Z], so far undefined. While operational notions of
tripartite mutual information are notoriously hard to pin down, the I-diagram provides
solid enough motivation for this new quantity, and we can read off its definition as

I[X;Y ;Z] = I[X;Y ]− I[X;Y |Z] (B.11)

or equivalently by swapping around X, Y , and Z on the right hand side. One has to be
careful as soon as I-diagrams have three-way overlaps, because the tripartite mutual infor-
mation is no longer positive and thus our information measures technically form a signed
measure on sets. Also, just because we see that I[X;Y |Z] is ‘contained’ within I[X;Y ], the
potential negativity of I[X;Y ;Z] does not allow us to conclude that I[X;Y |Z] ≤ I[X;Y ]
(which is indeed false in general).

To summarize the use of I-diagrams in reasoning about information measures, we write
down the formal substitutions: joint random variables correspond to unions (,→ ∪), mu-
tual informations to intersections (;→ ∩), and conditionals to set division (| → −) [92].

Generically, continuous random variables have infinite entropy H. However, a Dirac
delta function will have 0 entropy, and a weighted sum of Dirac deltas will have finite

95



H[X] H[Y]

I[X;Y] H[Y|X]H[X|Y]

(a) Two random variables

H[X] H[Y]

I[X;Y;Z]

H[Y|X,Z]H[X|Y,Z]

H[Z|X,Y]

I[X;Y|Z]

I[X;Z|Y] I[Y;Z|X]

H[Z]

(b) Three random variables

Figure B.1: Examples of generic I-diagrams, described in the text.
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entropy as calculated by treating the resulting distribution as a discrete distribution. This
can be seen by revisiting the supremum over coarse-grainings from the definition of I, this
time evaluated for H. For a random variable X ∼ δ(x0), we take

H[X] = sup
∆
Hdisc[X

∆]. (B.12)

In the coarse-graining, the delta function will exist in only the subset ∆i such that x0 ∈ ∆i.
Thus the coarse-grained distribution will be 1 or 0 everywhere, and the supremum over
entropies will be 0. We ignored some issues having to do with boundaries and Riemann
integration, but, as above, these are resolved by a proper measure-theoretic treatment.
The result for a weighted sum of Dirac deltas follows similarly. The results above may be
summed up by saying that the finitude of a random variable depends not on whether its
alphabet is continuous or discrete, but rather whether or not its support is continuous or
discrete.
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