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Abstract

Cloud computing environments often deal with random-arrival computational work-

loads that vary in resource requirements and demand high Quality of Service (QoS) obli-

gations. A Service Level Agreement (SLA) is employed to govern the QoS obligations of

the cloud service provider to the client. A service provider conundrum revolves around

the desire to maintain a balance between the limited resources available for computing

and the high QoS requirements of the varying random computing demands. Any imbal-

ance in managing these conflicting objectives may result in either dissatisfied clients that

can incur potentially significant commercial penalties, or an over-sourced cloud computing

environment that can be significantly costly to acquire and operate.

To optimize response to such client demands, cloud service providers organize the cloud

computing environment as a multi-tier architecture. Each tier executes its designated tasks

and passes them to the next tier, in a fashion similar, but not identical, to the traditional

job-shop environments. Each tier consists of multiple computing resources, though an

optimization process must take place to assign and schedule the appropriate tasks of the

job on the resources of the tier, so as to meet the job’s QoS expectations. Thus, scheduling

the clients’ workloads as they arrive at the multi-tier cloud environment to ensure their

timely execution has been a central issue in cloud computing. Various approaches have

been presented in the literature to address this problem: Join-Shortest-Queue (JSQ), Join-

Idle-Queue (JIQ), enhanced Round Robin (RR) and Least Connection (LC), as well as

enhanced MinMin and MaxMin, to name a few.

This thesis presents a service-level-driven load scheduling and balancing framework

for multi-tier cloud computing. A model is used to quantify the penalty a cloud service

provider incurs as a function of the jobs’ total waiting time and QoS violations. This
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model facilitates penalty mitigation in situations of high demand and resource shortage.

The framework accounts for multi-tier job execution dependencies in capturing QoS vio-

lation penalties as the client jobs progress through subsequent tiers, thus optimizing the

performance at the multi-tier level. Scheduling and balancing operations are employed

to distribute client jobs on resources such that the total waiting time and, hence, SLA

violations of client jobs are minimized.

Optimal job allocation and scheduling is an NP combinatorial problem. The dynamics

of random job arrival make the optimality goal even harder to achieve and maintain as

new jobs arrive at the environment. Thus, the thesis proposes a queue virtualization as an

abstract that allows jobs to migrate between resources within a given tier, as well, altering

the sequencing of job execution within a given resource, during the optimization process.

Given the computational complexity of the job allocation and scheduling problem, a genetic

algorithm is proposed to seek optimal solutions. The queue virtualization is proposed as

a basis for defining chromosome structure and operations. As computing jobs tend to

vary with respect to delay tolerance, two SLA scenarios are tackled, that is, equal cost

of time delays and differentiated cost of time delays. Experimental work is conducted to

investigate the performance of the proposed approach both at the tier and system level.

vi



Acknowledgements

First and foremost, I am grateful to Almighty Allah, for giving me the knowledge, abil-

ity, persistence, courage, and determination to complete this PhD satisfactorily. Without

His blessings, this accomplishment would not have been possible.

I would like to thank my supervisor, Professor. Otman Basir, for the continuous sup-

port, guidance, encouragement, and advice he has provided throughout the time of my

PhD. It has been an enriching experience working with and learning from him. His con-

structive critiques and feedback have made my work stronger. It is hard to describe my

deep thankfulness for the uncountable ways in which Professor. Basir has influenced the

progress of my PhD. Thank you for your understanding, patience, cooperation, and trust.

I would like to extend my sincere appreciation to my PhD committee members: Profes-

sor. Simon Yang, Professor. Kshirasagar Naik, Professor. Behzad Moshiri, and Professor.

Frank Safayeni for dedicating the time to review my PhD dissertation. I am grateful for

their inspiring remarks, insightful suggestions, and support. Their invaluable comments

and perspectives on research have contributed greatly to the improvement of my PhD work.

Thank you to my many friends and colleagues. I had the chance to meet and discuss

my research with them throughout the long journey of my PhD. Big thanks to University

of Waterloo and Department of Electrical and Computing Engineering, staff and faculty,

for supporting my research efforts to come to a successful conclusion. I cannot express how

lucky I am to have had all of you around me to share in my issues and celebrations.

And finally, my Parents, I cannot express my gratitude enough. Thank you for your

unconditional love and prayers, for always being there to listen and help.

vii



Dedication

To my Parents,

To my Brothers and Sisters,

For believing in me and encouraging me in all of my pursuits,

I cannot thank you enough for the support and love you have given me.

viii



Table of Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Goal Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11

2.1 Cloud Computing Environments . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Workload Complexity and Variability . . . . . . . . . . . . . . . . . 12

2.1.2 Characteristics of Cloud Computing Environments . . . . . . . . . 12

2.1.3 Service Models in Cloud Computing . . . . . . . . . . . . . . . . . 14

ix



2.1.4 Deployment Models in Cloud Computing . . . . . . . . . . . . . . . 15

2.2 Job Scheduling and Load Balancing . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Problem Formulation 32

3.1 Typical Multi-Tier Cloud Environment Architecture . . . . . . . . . . . . . 32

3.2 Flow of Jobs in a Multi-Tier Cloud Environment . . . . . . . . . . . . . . . 33

3.3 Job Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Operational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 The Migration Operator . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 The Re-Ordering Operator . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Service-Level-Driven Job Scheduling in Multi-Tier Cloud Computing 39

4.1 SLA-Driven Load Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Minimum Penalty Job Scheduling . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Evaluation of Schedules . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Evolving the Scheduling Process . . . . . . . . . . . . . . . . . . . . 44

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



4.3.1 Virtualized Queue Experiment . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Segmented Queue Experiment . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Service-Level-Driven Job Scheduling: Multi-Tier Dependency Consider-

ations 58

5.1 SLA-Driven Load Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Multi-Tier Waiting Time Allowance ωALi Formulation . . . . . . . 61

5.1.2 Differentiated Waiting Time ωPTi,j Formulation . . . . . . . . . . . 62

5.2 Multi-Tier-Based Minimum Penalty Scheduling . . . . . . . . . . . . . . . 64

5.2.1 Evaluation of Schedules . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Evolving the Scheduling Process . . . . . . . . . . . . . . . . . . . . 67

5.3 Experimental Work and Discussion on Results . . . . . . . . . . . . . . . . 67

5.3.1 The Experimental Approach . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 QoS Penalty Scheduling Evaluation of the Waiting Time Allowance

ωALi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 QoS Penalty Scheduling Evaluation of the Differentiated Waiting

Time ωPTi,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.4 Comparison of the Approaches . . . . . . . . . . . . . . . . . . . . . 78

5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 SLA-Driven Load Scheduling in Multi-Tier Cloud Computing: Financial

Impact Considerations 83

6.1 Differentiated Cost of Time-Based Scheduling . . . . . . . . . . . . . . . . 84

6.2 Differentiated Cost of Time-Based Scheduling: A Multi Tier Consideration 86

6.3 Experimental Work and Discussion of Results . . . . . . . . . . . . . . . . 87

6.3.1 Experimental Evaluation: Performance Penalty . . . . . . . . . . . 88

6.3.2 Evaluation of Differentiated Scheduling: Multi-Tier Considerations 93

6.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusion and Future Directions 104

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References 111

xii



List of Figures

3.1 Modeling Parameters and Operators of 2 Consecutive Tiers of the Multi-Tier

Cloud Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The Virtual Queue of a Tier j . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 A Tier-based Genetic Approach on the Virtual Queue . . . . . . . . . . . . 45

4.3 Total Waiting Time using Tier-Based Scheduling . . . . . . . . . . . . . . 50

4.4 Total Waiting Time using Queue-Based Scheduling . . . . . . . . . . . . . 53

4.5 Maximum Waiting Time Performance Comparison . . . . . . . . . . . . . . 55

5.1 The System Virtual Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 A System Virtualized Queue Genetic Approach . . . . . . . . . . . . . . . 66

5.3 SLA Penalty in System Virtualized Queue Scheduling using Multi-Tier ωALi 69

5.4 SLA Penalty in Segmented Queue Scheduling using Multi-Tier ωALi . . . . 72

5.5 SLA Penalty in System Virtualized Queue Scheduling using Differentiated

ωPT i,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 SLA Penalty in Segmented Queue Scheduling using Differentiated ωPT i,j . 76

xiii



5.7 Comparison of the Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Differentiated Waiting Penalty using Tier-Based Scheduling . . . . . . . . 88

6.2 Differentiated Waiting Penalty using Queue-Based Scheduling . . . . . . . 90

6.3 Maximum Differentiated Waiting Penalty Performance Comparison . . . . 92

6.4 Differentiated SLA Penalty using Multi-Tier ωALi Based System Virtualized

Queue Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Differentiated SLA Penalty using Multi-Tier ωALi Based Segmented Queue

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Differentiated SLA Penalty using ωPT i,j Based System Virtualized Queue

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Differentiated SLA Penalty using ωPT i,j Based Segmented Queue Scheduling 100

6.8 Comparison of the Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiv



List of Tables

4.1 Total Waiting Time using Tier-Based Scheduling . . . . . . . . . . . . . . 49

4.2 Total Waiting Time using Queue-Based Scheduling . . . . . . . . . . . . . 52

4.3 Total Waiting Time of Jobs in each Approach . . . . . . . . . . . . . . . . 55

5.1 SLA Penalty in System Virtualized Queue Scheduling using Multi-Tier ωALi 70

5.2 SLA Penalty in Segmented Queue Scheduling using Multi-Tier ωALi . . . . 71

5.3 SLA Penalty in System Virtualized Queue Scheduling using Differentiated

ωPT i,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 SLA Penalty in Segmented Queue Scheduling using Differentiated ωPT i,j . 77

5.5 Total SLA Violation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Differentiated Waiting Penalty using Tier-Based Scheduling . . . . . . . . 89

6.2 Differentiated Waiting Penalty using Queue-Based Scheduling . . . . . . . 91

6.3 Total Differentiated Waiting Penalty . . . . . . . . . . . . . . . . . . . . . 92

6.4 Differentiated SLA Penalty using Multi-Tier ωALi Based System Virtualized

Queue Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



6.5 Differentiated SLA Penalty using Multi-Tier ωALi Based Segmented Queue

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Differentiated SLA Penalty using ωPT i,j Based System Virtualized Queue

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Differentiated SLA Penalty using ωPT i,j Based Segmented Queue Scheduling 99

6.8 Total Differentiated SLA Penalty . . . . . . . . . . . . . . . . . . . . . . . 101

xvi



Chapter 1

Introduction

Cloud computing is a paradigm for delivering services to clients in a pay-as-you-go manner

over the Internet [18, 102, 151]. Cloud computing leverages a set of technologies, such as

visualization and utility-based pricing models, to deliver high-quality services and meet

client demands. The services are provided to clients as software, platforms, and infras-

tructures. Such services are accessed and delivered over the Internet using broad network

connections.

Resources of cloud environments are pooled in large-scale data centers and provisioned

to clients on-demand. Such resources can include computing, memories, storage, and

applications. Different cloud models are used to control the access of clients to cloud

resources. The models can generally be public, private, or community. In a public cloud,

the infrastructures are made publicly available. A private cloud shares its resources with

specific clients (within an organization). In contrast, a community cloud shares its resources

among clients of similar concerns (security, privacy, and so on).

Multi-tier architecture is currently widespread and used to promote flexible applica-

1



tions [5, 52, 60]. In a multi-tier architecture, the presentation, business/processing, and

data management layers are physically separated. New reusable components would be

modified and added in any tier, independently of and without affecting other tiers. A

reusable component can be used by different applications. The multi-tier architecture

brings performance advantages. For example, redundant resources of any tier would help

the system recover from any resource/network failure and continue servicing applications.

Also, large amounts of workloads can be accommodated and executed at each tier, inde-

pendently of other tiers [132]. The tiers are not identical, yet are dependent on each other.

Typically, each tier consists of multiple resources of similar functionalities. Each resource

employs a queue to buffer incoming jobs.

The arrival of client jobs to a cloud computing environment can be periodic, aperiodic,

or sporadic. Client jobs vary in computational needs and QoS requirements [2, 36, 137].

Each job has an arrival time, prescribed service demand, and tardiness allowance. Different

client jobs comprise workloads of different requirements. The arrival rate of such workloads

is often unpredictable [15, 142, 150]. because cloud resources are limited, jobs waiting in

the resource queues of the environment may incur long unexpected delays and, thus, cause

client dissatisfactions. Accordingly, there is a need to effectively accommodate incoming

workloads, to benefit all jobs and meet client demands [13, 90, 155, 157].

Cloud computing service providers strive to maintain a balance between the desire to

maintain satisfied clients and, at the same time, a cost-effective infrastructure, under low-

and high-volume demands. Recent studies propose approaches that meet such require-

ments [54, 99, 102]. Examples of such approaches are the RR [6], Max-Min [74], Min-

Min [25, 78, 105], and LC [124]. JSQ [51], JIQ [82], and bio-inspired approaches [141] have

also been proposed. Such approaches are, however, typically designed to work in single-

tier environments. They are not suitable for the multi-tier environments. Furthermore,
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such approaches in their optimization strategies fail to capture QoS obligations and/or

constraints, and lack the ability to measure the system state at run-time.

In this thesis, a service-level-driven scheduling and balancing workload management

framework is proposed to handle workload variations and bottlenecks in multi-tier cloud

environments. Tier-specific characteristics are periodically captured at run-time. The

framework tackles changes in the tier-state by undertaking scheduling and balancing op-

erations at run-time. The operations are intended to distribute incoming client jobs on

resource queues of each tier such that QoS expectations of client jobs are met and any po-

tential SLA violations are mitigated. Waiting times of client jobs in the cloud environment

are, therefore, minimized.

1.1 Motivation

In a cloud computing environment, client jobs have different service demands and QoS

obligations that should be obtained by the cloud service provider. The arrival of such jobs

tends to be random in nature. Cloud resources should deliver services to meet different

client demands, yet such resources might be limited. Arrival rates of jobs dynamically vary

at run-time, which in turn cause bottlenecks and execution difficulties on cloud resources.

It is typical that an SLA is employed to govern the QoS obligations of the cloud computing

service provider to the client. A service provider conundrum revolves around the desire

to maintain a balance between two conflicting objectives: the limited resources available

for computing and the high QoS expectations of varying random computing demands.

Any imbalance in managing these conflicting objectives may result in either dissatisfied

clients and potentially significant commercial penalties, or an over-sourced cloud computing

environment with large assets of computational resources that can be significantly costly
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to acquire and operate.

Various scheduling approaches are presented in the literature to address the problem

so that QoS expectations of client jobs are obtained. Such approaches often focus on

optimizing system-level metrics at the resource level of the cloud computing environment,

and hence aim at minimizing the response times of client jobs by allocating adequate

resources. The response time of a job entails two components: the job’s waiting time at

the queue level and the job’s service time at the resource level. The bottleneck of jobs in

the queues has a direct impact on the waiting times of client jobs and, thus, their response

times.

A major limitation in the schedulers of existing approaches is that they often optimize

performance of schedules at the individual resource level. As such, they fail to take ad-

vantage of any available capacities of the other resources within the tier. Furthermore,

single-resource-driven scheduling is blind to the impact of the resultant schedules on other

tiers. Due to complications of the bottleneck shifting and dependencies between tiers of the

multi-tier cloud environment, SLA violations of client jobs in a tier would escalate when

such jobs progress through subsequent tiers of the cloud environment. Also, such schedules

are blind to penalties incurred by the cloud service provider due to SLA violations.

For a limited number of resources with huge queueing-level bottlenecks, it is a chal-

lenging task to formulate optimal schedules for jobs of different service demands such that

QoS obligations are met. To further enhance performance, it is imperative to consider the

waiting times of jobs at the queueing level and quantify their associated QoS penalties

incurred by the cloud service provider. Such penalties should be employed to measure the

service-quality levels provided to the clients, thus, drive the cloud service provider toward

getting improved performance and cost reduction in a multi-tier cloud environment.
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1.2 Problem Statement

Multi-tier cloud environments often experience workloads of variant arrival rate at run-

time. Such workloads entail jobs submitted by different clients that vary in computing-

resource demands and QoS requirements. Client jobs often tend to arrive in random

fashion. Each job comes to the cloud environment with a specific arrival time, prescribed

service demand, and tardiness allowance. Typically, an SLA is employed to govern the

QoS expectations of the client, as well as a model to compute penalties in cases of QoS

violations. Client jobs should be executed, in accordance with their QoS expectations, at

the earliest opportunity on the available resources.

Workload variations occur within a short period of time and are often unpredictable.

Such workloads cause unpredictable bottlenecks and execution complications on resources,

which in turn cause long unexpected delays for client jobs and lead to SLA violations. As

tiers are dependent on each other, bottlenecks of a tier would shift to subsequent tiers,

potentially increasing the likelihood of SLA violations of client jobs.

A major challenge cloud computing service providers face is maintaining a maximum

resource utilization while ensuring adequate resource availability to meet the SLA and QoS

expectations of varying computational demands. Failing to meet its clients’ expectations

may result in harsh financial penalties and client dissatisfaction. However, procuring large

assets of computational resources can be prohibitively costly. Thus, it is imperative that a

cloud service provider efficiently accommodates and responds to such demands in a timely

manner, so that the client experience and system performance are optimized. Jobs should

be allocated to resources and scheduled for processing so as to minimize their waiting

time in the environment. The goodness of any scheduling strategy hinges on its ability to

produce schedules that meet client demands with the least cost.
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Generally speaking, client jobs have different QoS expectations that are needed to

achieve the required job response times. Resources of a multi-tier cloud environment have

different capabilities. Such resources are limited and should deliver services so that the

QoS expectations of jobs are met, thus, clients are satisfied with the service provided. The

primary focus is on the queueing level of the multi-tier cloud environment represented by

the resource queues of all tiers. As such, the problem to be addressed in this thesis is

stated as follows:

Consider the case of a multi-tier cloud computing environment, where each tier

constitutes a set of identical computing resources. Client jobs to be processed by

this environment tend to be of variant computing demands and random arrival

times. Each job traverses through the tiers of the environment in a sequential

manner, spending a definite period of time at each tier. This time includes

waiting for execution time. It is assumed that the processing of these jobs

is subject to an SLA that is signed between the client and service provider.

The SLA defines delay tolerance terms as well as delay penalty terms. It is

desirable that these jobs are scheduled for execution by the limited resources of

the environment such that any execution delay penalties are avoided or at least

minimized.

Emphasizing the notion of penalty in scheduling the jobs allows for job priority treat-

ment that is based on economic considerations. As such, the service provider is able to

leverage job tardiness allowance and QoS penalty considerations to compute schedules

that yield minimum total penalty. This strategy is particularly useful in situations of un-

expected excessive demands or inadequate resources, such that it would be impossible to

meet the SLA/QoS requirements.
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1.3 Goal Statement

This thesis tackles the execution of client jobs at the queueing-level side of the multi-tier

cloud environment. Thus, the primary concern is on reducing the waiting times and SLA

violations of client jobs in resource queues of the multi-tier cloud environment. The wait-

ing times of client jobs affect their response times in the multi-tier cloud environment, and

consequently client satisfaction. To tackle the problem and achieve the goals, a penalty-

oriented service-level-driven scheduling and balancing framework is proposed in this thesis.

The framework adopts two queue operators, reordering and migrate, to manage the exe-

cution of workloads on resource queues of each tier in a multi-tier cloud environment, so

that quality goals of client jobs are obtained and the penalty incurred by the cloud service

provider is mitigated.

The following objectives are considered to address the problem and fulfill the goals:

• Formulate scheduling strategies that can be utilized to optimize the performance of

schedules at various architectural granularities of the multi-tier cloud environment.

• Develop strategies that mitigate the computational complexity of scheduling the ex-

cessive client demands on resource queues, as well as facilitate the exploration and

exploitation through the search space of schedules to find an optimal solution.

• Develop a model to compute SLA violation penalties of client jobs and support

the commitment of the cloud service provider in delivering better service and client

experience.
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1.4 Thesis Contributions

The following contributions are presented in this thesis:

• A penalty-aware QoS-driven scheduling framework is proposed to minimize SLA

penalties, incurred on clients and cloud service providers, in a multi-tier cloud com-

puting environment.

• The utilization of resources within a tier is examined and leveraged to influence tier-

driven schedules that account for the mutual performance impact of tier resources

on the system performance.

• The effect of tier dependencies on the system performance is investigated, so as to

produce multi-tier-driven schedules that contemplate the impact of schedules opti-

mized in a tier on the performance of schedules formulated in subsequent tiers.

• A penalty model that allows for differential treatments of jobs so as to ensure finan-

cially optimal job schedules.

• Queue operators are proposed for facilitating dynamic job allocation on resources

and sequencing within a resource so as to account for load balancing due to a new

job arrival.

• A queue virtualization scheme is designed to formulate schedules at the tier and multi-

tier levels of the cloud environment, as well as alleviate and simplify the complexity

of optimal scheduling.

• A genetic algorithm based scheduling approach is proposed for finding optimal sched-

ules.
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1.5 Thesis Organization

The thesis is structured as follows:

• Chapter 1 introduces the motivation behind the problem addressed in the thesis. The

problem and goal statements are explained, followed by the research objectives and

contributions of the thesis.

• Chapter 2 highlights the background and literature review. The concepts of cloud

computing environments and workload variations are explained. The main charac-

teristics, service models, and deployment models of cloud computing are clarified.

The literature review of job scheduling and load balancing is presented. The chap-

ter concludes with the primary challenges of existing work, which are subsequently

addressed in the thesis.

• Chapter 3 presents a problem formulation. It explains the architecture of the multi-

tier cloud computing environment adopted in the thesis, flow of client jobs between

tiers of the cloud environment, characterizations of job performance parameters, and

the way client jobs are handled in resource queues of the tiers. Also, the operators

used to manage the scheduling and allocations of client jobs in each tier of the cloud

environment are presented. Then, the chapter formally defines the research problem

tackled in the thesis.

• Chapter 4 presents a service-level scheduling in multi-tier cloud computing. It

presents the tier-driven virtualized queue abstraction and the GA-based approach

employed to facilitate the optimal scheduling at the tier level.

• Chapter 5 proposes a QoS-driven scheduling that addresses the dependencies between
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tiers and formulates schedules optimized at the multi-tier level of the cloud environ-

ment. The chapter presents the system virtualized queue abstraction and GA-based

approach employed to efficiently seek optimal schedules at the multi-tier level.

• Chapter 6 addresses the differentiated QoS penalty to formulate schedules that are

optimal in financial performance.

• Chapter 7 concludes the thesis and provides future directions that pave the way to

enhance/extend the framework’s functionalities.
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Chapter 2

Background and Literature Review

Considerable research has been devoted to addressing a wide spectrum of challenges in

cloud computing [24, 91, 131]. Much of it focused on load scheduling and balancing. This

research has become more active since the emergence of cloud computing as a new comput-

ing paradigm. But cloud computing paradigm, as it introduces innovative ways to execute

client demands, introduces challenges particularly in load management. This chapter pro-

vides a review of prominent research to address various aspects of load scheduling and

balancing.

2.1 Cloud Computing Environments

Cloud computing is a recent revolution in computing paradigms [58, 59, 83, 97]. Massive

resources are pooled together in a substantial data infrastructure. Such resources are

provided to clients as a service [79, 103, 156], to perform complex tasks that are not easily

achievable through their own resources. The primary characteristics of a cloud computing
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environment include on-demand self-service, broad network access, resource pooling and

multi-tenancy, rapid elasticity, and measured service [30, 38].

2.1.1 Workload Complexity and Variability

Cloud computing environments experience variant workloads at run-time. Such workloads

consist of multiple jobs, issued by different clients [11, 122, 126]. Client jobs are of differ-

ent types and come in different sizes. Variations in workloads occur within a short period

of time, causing bottlenecks [3, 81, 143, 147]. Such demands occur while a limited and

distributed number of resources are available [27]. These variations are not easily pre-

dictable [142], as well as necessitate a proper regime of responses and dynamic scheduling

and balancing techniques. Such techniques should measure incoming workloads and plan

for the best usage of resources, so as to manage the execution of workloads in accordance

with the SLA signed by the clients.

2.1.2 Characteristics of Cloud Computing Environments

A cloud computing environment is generally characterized as follows [18, 57, 108, 121]:

• On-demand self-service. Services are provided on-demand to clients. A client can

automatically allocate cloud resources, when needed, from the service provider. The

resource allocation is achieved through a web-based portal. Examples of on-demand

resources are servers, storage, and Virtual Machines (VMs).

• Broad network access. Cloud resources are remotely accessed over the Internet.

They are used by different clients via heterogeneous platforms such as laptops, mo-

bile phones, and workstations. However, access to services always depends on the
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deployment model. Some services can be privately accessible using a private network,

while other services are publicly accessible through the Internet.

• SLA enforcement. Cloud computing establishes key performance measures and ex-

pectations required to control the relationship between client and cloud service provider.

Examples of such measures are the response time for processing client demands, the

time availability of cloud services to clients, the number of clients that can be sup-

ported by the cloud service, and disaster recovery expectations.

• Resource pooling and multi-tenancy. Cloud resources are pooled together in huge

data centers and dynamically (de-)allocated to clients at run-time. Resources are

shared between multiple tenants and allocated to each tenant on-demand, to increase

resource utilization and decrease operation cost.

• Rapid elasticity. The cloud computing environment adapts to changes in its work-

loads. Thus, cloud resources are automatically reallocated when client demands vary

(increase or decrease).

• Measured service. Resource usage is monitored, and resources are provided to clients

using the pay-per-use pricing model. The model identifies the usage of resources for

billing purposes. The usage bill is reported to clients and service providers.

Overall, cloud computing is about utilizing resources as a service such that client SLAs

are guaranteed with a minimal pricing cost. Cloud resources are broadly accessed by clients

and reallocated on-demand.
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2.1.3 Service Models in Cloud Computing

The three generic service models of the cloud computing environments are as follows [19,

32, 57, 86, 132]:

• Software as a Service (SaaS). The SaaS provider offers applications as a service to its

clients. An application in a data center can be provided to several clients. However,

a client of a SaaS provider does not manage/control the underlying infrastructure

and platform. Examples of SaaS include web-based email (e.g., Gmail), business

applications (e.g., Salesforce), Google drive and Docs, and Microsoft Office.

• Platform as a Service (PaaS). The PaaS provider offers platforms (high-level software

infrastructures) as a service to its clients. A platform helps clients build, deploy,

configure, and control their applications; using tools and programming languages

(e.g., Java and .Net). Examples of PaaS include operating systems, Google App

Engine, Microsoft Azure, Amazon Web Services, and database/web servers.

• Infrastructure as a Service (IaaS). The IaaS provider offers infrastructure resources as

a service to its clients. Clients can deploy/run their applications and platforms within

the provided infrastructure. Virtualization is used to efficiently utilize the space of

physical machines and meet client demands. The client does not manage/control the

underlying infrastructure, yet can control the platforms and applications. Examples

of IaaS include Amazon Elastic Compute Cloud (Amazon EC2), VMWare, Oracle

cloud computing, Sun Microsystems cloud services, and IBM smart business cloud

solutions.

Generally, each service model represents a combination of software, networks, and pro-

cessing resources provided to clients as a service.
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2.1.4 Deployment Models in Cloud Computing

A deployment model is the process of making cloud resources available for use by clients. It

represents a type of cloud computing environment that contains applications and platforms.

In general, there are four common deployment models: private, public, community, and

hybrid. These models are explained as follows [18, 32, 57, 135, 138]:

• Private. Also known as an internal model, its resources are provided as a service by

a single organization for exclusive access/use by a group of its clients. The private

model is entirely operated/managed by the organization or a third party. Thus, it

offers the highest degree of control over security, privacy, and performance. However,

it comes with a high cost and suffers elasticity challenges.

• Public. Also known as an external model, its resources are provided as a service

for the general public using the pay-per-use pricing model. The public model shares

resources among multiple organizations/tenants. Each tenant has its own separate

virtual space. However, the public model provides minimal control over network and

security settings.

• Community. In this model, the resources are provisioned to specific clients (or or-

ganizations) who have similar concerns or common interests, such as data security

standards. The reduced organizational cost is the main advantage of this model.

Thus, the community model is more attractive than the public model and is less

expensive than the private model. However, security and privacy concerns are still

an enforceable priority.

• Hybrid. This model is a combination (federation) of two or more deployment models

(private, public, or community). For example, when private and public models are

15



combined, some resources run privately while others are publicly available. Also,

sensitive data might reside in the private cloud while other data reside in the pub-

lic cloud. However, hybrid models should be properly split. Also, hybrid models

should be connected using standardized technologies to enable interoperability and

data portability between models. For instance, a sudden surge in incoming work-

loads to an overloaded cloud environment can be directed to another underloaded

cloud environment. Similar to public models, security challenges are still to be taken

seriously in hybrid models.

2.2 Job Scheduling and Load Balancing

Cloud computing has emerged as the computing environment of choice due to attractive

attributes such as massive scalability, multi-tenancy, elasticity, flexible economics, self-

provisioning, and security. Cloud computing environments experience workloads of variant

arrival rates, computational demands, and tardiness allowances [7, 77, 150]. Such workloads

vary dynamically at run-time and often are not easily predictable [92, 123]. Workload

variations cause bottlenecks and delays for jobs waiting in the system, thus, incurring

execution difficulties on cloud resources to meet client demands and requirements [6, 122].

The issue of job scheduling has been an active area of research since the early days of

computing [130, 146]. Scheduling approaches play a primary role in executing workloads of

cloud computing environments [33, 44, 64, 87, 106]. Client jobs are to be effectively sched-

uled and consolidated on fewer resources to deliver better system performance. Existing

approaches investigate the problem from various perspectives, mostly tackled in a single-

tier environment subject to common conflicting optimization objectives. The makespan

and response time of jobs, as well as resource utilization, are typically the performance
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optimization metrics used to assess the efficacy of service delivery in achieving better user

experience/satisfaction and SLA guarantees. Because the scheduling problem is NP-hard,

the efficacy of scheduling approaches depends not only on fulfilling client demands and

QoS obligations, but also on optimizing system performance.

Existing approaches offer various scheduling strategies to execute client jobs [12, 61,

113, 118, 119]. These approaches are customized to work in certain environments, though

aim at meeting specific performance goals and QoS expectations [4, 112, 129, 140, 154].

Min-Min [78], Max-Min [74], LC [62, 124], bio-inspired [141], JSQ [51, 89, 94], and JIQ [82]

are typical scheduling approaches in the literature.

As stated by Schroeder et al. [118], it is difficult to decide on which scheduling and bal-

ancing techniques to employ in a given real cloud environment. For instance, the Random

and RR approaches are widely used because of their simplicity and ease of implementation.

In some systems, a user might take the role of a dispatcher to schedule jobs for execution

on a specific resource [118]. However, the incoming workloads of cloud computing environ-

ments vary dynamically at run-time and, thus, such approaches might not perform well in

practice. Furthermore, fair load unbalancing between resources is desirable and has been

proven to minimize the slowdown of each job, as shown by Schroeder et al. [118].

Randomly selecting a resource to execute a job is typically not efficient. The service de-

mand is not considered when the job is dispatched for execution by a specific resource. The

SLA terms relating to the job allocated to a randomly selected resource are not considered

when the scheduling decision is taken. As such, the QoS obligations and waiting times of

client jobs leaving the cloud computing environment might not be met. Nevertheless, a

random dispatching of jobs has low time complexity when it is used in any environment.

In contrast, a uniform dispatching (in a round-robin manner) of jobs for execution on the

available resources might overcome problems of random dispatching and minimize waiting
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times of jobs, especially if jobs are similar in their service demands.

Furthermore, random and uniform distributions of client jobs on the available resources

do not consider the resource states in advance. Consequently, some resources may get

overloaded, while other resources may be underloaded and inefficiently utilized. Client

jobs in each tier and each queue would not be properly scheduled for execution. Because

the random and uniform distributions of jobs do not account for the QoS obligations of

clients when a job is scheduled for execution, some inexpensive and delay-tolerant jobs

might get executed before high-priority jobs.

Schroeder et al. [118] evaluate the Least-Work-Left, Random, and Size-Interval based

Task Assignment (SITA-E) [53] scheduling approaches on a single-tier environment that

consists of distributed resources with one dispatcher. They also propose an approach that

purposely unbalances the load between resources. The mean response time and slowdown

metrics are used to assess each approach. Another deadline constraint problem has been

tackled in Kumar et al. [70] for a single-tier environment. Stavrinides et al. [128] investigate

the effect of variable workloads on the performance of a single-tier environment, focusing

on fair billing and meeting QoS requirements of clients to avoid SLA violations.

The Round Robin algorithm, which has been popular in process scheduling, has been

adopted in cloud computing to tackle the job scheduling problem. The Round Robin

algorithm aims at distributing the load equally to all resources [117]. Using this algorithm,

one Virtual Machine (VM) is allocated to a node in a cyclic manner. The scheduler starts

with a node and moves on to the next node, once a VM is assigned to that node. This is

repeated until all the nodes have been allocated to at least one VM. Although Round Robin

algorithms are based on a simple rule, more load is added to servers, thus unbalancing the

traffic. In general, Round Robin algorithms have shown improved response times and load

balancing.
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The primary drawback is that these approaches do not consider migrating client jobs

between resource queues and, as a result, fail to produce optimal schedules. If a job

does not change the resource on which it has been scheduled, job schedules would only

be optimal at the resource level. Such approaches do not consider the relative execution

time of a job with respect to the utilization times of all other resource queues of the tier,

so as scheduling decisions are taken at the tier level. New scheduling options for the job

would have been considered on other resource queues of the tier if decisions were taken at

the tier level, which in turn would help alleviate the potential of SLA violations and their

associated commercial penalties. Also, a multi-tier environment has different requirements,

architecture, and complications coming from tier dependencies with bottleneck shifting

between tiers. Such approaches do not account for such requirements, thus would not

accurately capture QoS obligations and meet SLA commitments of clients in a multi-tier

environment.

Min-Min and Max-Min based approaches have been widely adopted in load balanc-

ing [25, 71, 105]. Enhanced Min-Min and Max-Min approaches are also proposed in the

literature to overcome drawbacks of traditional ones, though they are widely adopted to

tackle the problem by producing schedules at the individual resource level of the tier. Liu

et al. [78] present an improved Min-Min approach to increase resource utilization and ex-

ecute long tasks in a reasonable time. Dynamic priorities are assigned to jobs waiting in

the system, to avoid execution delays for large jobs.

Rajput et al. [110] present a Min-Min based scheduling algorithm to minimize the

makespan of jobs and increase the resource utilization in a single-tier environment. Li

et al. [74] present a Max-Min scheduling approach that estimates the total workload and

completion time of jobs in each resource, so as to allocate jobs on resources to reduce

their average response time. Patel et al. [105] present an enhanced Min-Min algorithm to
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effectively use underutilized resources of the grid environment, by assigning the task with

the maximum completion time to a resource that produces a better makespan. Huankai

et al. [25] present an enhanced Min-Min algorithm that considers user priority to schedule

tasks, with the goal of reducing the makespan and increasing resource utilization.

Although the service demand of the job is considered as a service priority parameter,

scheduling of jobs using Min-Min and Max-Min approaches is not always optimal. Gen-

erally, a Min-Min approach schedules the job with the minimum completion time on the

resource that executes the job at the earliest opportunity, yet negatively affects the exe-

cution of jobs with larger completion times [105]. In contrast, a Max-Min based approach

typically utilizes powerful resources to speed-up the execution of jobs with the maximum

completion times, however, producing poor average makespan [74]. Typically, a Min-Min

approach would either increase the waiting times of large jobs or leave large jobs unex-

ecuted, while a Max-Min approach would either increase the waiting times of small jobs

or leave small jobs unexecuted. For instance, a Min-Min approach sometimes executes a

small job that has recently arrived to the environment, yet leaves a large job already in

the queue unexecuted.

In their optimization strategies, the Min-Min and Max-Min based approaches rely pri-

marily on the computational demands of jobs to produce optimal schedules at the resource

level. They fail to produce minimum penalty schedules that accurately account for QoS

obligations of jobs at the multi-tier level, which would negatively impact provider’s SLA

commitments. In addition, such approaches do not consider tier dependencies of a multi-

tier cloud environment, thus, SLA violation penalties of schedules at the resource level

would propagate and escalate in subsequent tiers, which would negatively impact entire

system performance.

In addition, the scheduling decisions of Min-Min and Max-Min approaches dedicate
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powerful resources to execute specific jobs without accurately considering the different

QoS expectations of jobs. For instance, a Max-Min approach assigns the job with the

maximum execution time to the resource that provides the minimum completion time for

the job, yet does not account for different job constraints and impacts of their violations on

the QoS. Also, states of resource queues are not considered when decisions are taken, and

accordingly, ineffective distribution of workloads among the resource queues is expected

to occur. Furthermore, such approaches tackle jobs that mainly arrive in batches. When

jobs of different constraints and requirements arrive in a consecutive/dynamic manner to a

multi-tier cloud computing environment, the scheduling decisions of such approaches would

fail to accurately capture the QoS obligations and economic impacts of these jobs on the

service provider and client.

Bio-inspired meta-heuristic approaches to tackle the scheduling problem are addressed

in the literature [20, 48, 80, 109]. Ant Colony Optimization (ACO) [45], honey bee [8–10],

and Particle Swarm Optimization (PSO) [66, 111, 120] are examples of such approaches.

These approaches are adopted to efficiently solve NP-hard computational problems and

deliver a near-optimal performance in a timely manner, while potentially reducing the

running time of the scheduling algorithms.

Babu et al. [9] adopt the honey bee algorithm to distribute workloads between resources

and minimize each job’s response time. Jobs removed from overloaded queues are treated

as honey bees while underloaded queues are treated as food sources. However, scheduling

a job for execution using the honey bee approach does not mean that other jobs waiting in

the queues of the tier would be satisfied and benefit from the scheduling decision. Zhang et

al. [149] propose a meta-heuristic scheduling algorithm that provides near-optimal resource

configurations so as to maximize the profit and minimize the response time of jobs; however,

in a centralized single-tier environment. Goudarzi et al. [47] present a heuristic-based
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allocation method to meet client SLAs and maximize the profit of the service provider in

a data center of multiple clusters; each cluster adopts a centralized dispatcher associated

with multiple resources together comprising a single-tier environment.

Kiyarazm et al. [66] propose a PSO-based scheduling method that aims at maximizing

the average queue utilization in multi-processor systems. Also, the PSO algorithm has

been used by Nouiri et al. [101] to minimize the maximum makespan. Pandey et al. [104]

report a PSO algorithm for minimizing the computational cost of application workflow.

Job execution time is used as a performance metric. The PSO-based resource mapping

demonstrated superior performance when compared with Best Resource Selection (BRS)-

based mapping. Furthermore, the PSO-based algorithm achieved optimal load balance

among the computing resources.

Also, Zuo et al. [158] present an ACO-based scheduling method that finds a balance

between system performance represented by the makespan of jobs and the budget cost on

the client. Ghumman et al. [45] combine the ACO algorithm with Max-Min scheduling to

minimize the job makespan. Mateos et al. [88] propose an ACO approach to implement a

scheduler for cloud computing applications. The goal of the scheduler is to minimize the

weighted flow-time of jobs, while also minimizing the makespan. The load is calculated on

each resource, taking into consideration CPU utilization of all the VMs that are executing

on each host. CPU utilization is used as a metric that allows Ant to choose the least loaded

host to allocate its VM.

Nevertheless, such bio-inspired formulation makes scheduling decisions that benefit spe-

cific jobs at the expense of other jobs. Such approaches disregard economic penalties that

may result from scheduling decisions. Instead, they focus on optimizing system-level met-

rics. Job response time, resource utilization, maximum tardiness, and completion time

are typically used metrics. Furthermore, the former meta-heuristic approaches tackle the
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problem in a single-tier environment and typically aim at optimizing the performance of

schedules locally at the individual resource level of the tier, similar to Min-Min and Max-

Min based approaches. But, they do not support the complexity and obligations of the

multi-tier environment, therefore do not produce job schedules that are optimized at the

multi-tier level and would not accurately mitigate QoS penalties.

In addition, bio-inspired approaches in their scheduling strategies quite often attempt

to schedule a job at the tier level. However, such approaches would not necessarily produce

an optimal schedule for all jobs at the system or environment level. That is because the

performance of job schedules is optimized to benefit specific jobs by minimizing their re-

sponse times, while QoS expectations and response times of other jobs in resource queues

of the tier are disregarded. Also, bio-inspired approaches have a slow convergence to the

target solution due to the network overheads incurred to search for and converge toward an

acceptable scheduling. The convergence gets even more difficult when a cloud computing

environment experiences huge bottlenecks and high incoming arrival rates of jobs. There-

fore, such approaches would often produce poor load balancing between resource queues.

Furthermore, bio-inspired approaches disregard the waiting times of jobs in resource queues

of all tiers. In a multi-tier environment, such approaches would not necessarily minimize

SLA violations and their associated penalties at the multi-tier level of the environment.

As such, the potential penalty to be incurred by the service provider is not considered.

Some approaches take advantage of knowledge obtained about the system state to make

scheduling decisions [126]. The LC and WLC, Shortest-Queue [89, 94], Random selection,

WRR, and JIQ are the most popular examples of such approaches. Gupta et al. [51] present

and analyze the JSQ approach in a farm of servers, which is similar in architecture to a

single-tier cloud environment. JSQ assumes the resource of the least number of jobs is the

least loaded resource. The LC and WLC approaches perform similarly to the JSQ.
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In contrast, the weighted algorithms (e.g., WRR and WLC) are commonly used in

balancing the load among resources in cloud computing environments [62, 140]. Wang et

al. [140] effectively apply the WRR algorithm, by determining weights for resources based

on their computational capabilities, then allocating and balancing the workloads among

these resources. An improved WRR algorithm has been proposed by Devi et al. [31] that

utilizes the static/dynamic scheduling concepts to particularly handle the non-preemptive

dependent tasks. Powerful resources would receive extra workloads of jobs. However, the

states of the resource queues are not accurately measured, and thus scheduling decisions

taken based on only weights of resources often lead to load inbalance among the resource

queues. Maguluri et al. [85] present a throughput-optimal algorithm that tackles the ex-

ecution of jobs with unknown sizes. A throughput-based scheduling generally disregards

the actual job running times in resources, and instead, focuses on queue lengths measured

by the number of jobs, which is not necessarily accurate.

Chien et al. [28] propose a balancing algorithm to estimate the finishing time of the task

execution in a resource. They aim at maximizing system throughput, minimizing response

time, and avoiding resource overloading. Also, Keerthika et al. [65] propose a multicon-

strained scheduling algorithm for grid computing in a centralized single-tier architecture.

The algorithm aims at decreasing the task failure rate and scheduling makespan. Guirguis

et al. [50] use adaptive scheduling to primarily minimize the tardiness. They generally focus

on optimizing the system-level metrics at the resource level, without a clear consideration

of states of resource queues or translating levels of service quality into a quantifiable QoS

penalty incurred by the service provider. Yaun et al. [148] present a heuristic approach

for optimizing cost in workflow scheduling, rather than the scheduling of jobs in cloud

computing environment, that is tackled in this thesis.

Wang et al. [139] and Lu et al. [21, 82] present the JIQ balancing algorithm that assigns
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incoming jobs to only idle resource queues in a single-tier environment. Multiple dispatch-

ers are employed to hold incoming jobs, each dispatcher keeps IDs of idle resources in the

tier. An idle resource informs specific dispatcher(s) of its availability to receive jobs. The

JIQ is typically used for large-scale load balancing problems to minimize the communi-

cation overhead incurred between such resources and multiple distributed dispatchers at

the time of job arrivals. However, the JIQ-based balancing algorithm does not account

for QoS expectations of jobs when a scheduling decision is made. Thus, high-priority and

delay-intolerant jobs might have to wait in a dispatcher to get an idle resource, while si-

multaneously some other delay-tolerant jobs in another dispatcher have already got idle

resources for execution. In a complex multi-tier environment, the former balancing ap-

proaches would produce schedules that are poor in performance as they neither effectively

reflect the system state nor account for dependencies between the tiers, thus would not

accurately meet the different QoS obligations of clients.

Furthermore, resource over allocation is a viable option proven to provide high system

performance, meet client demands, and mitigate SLA violations [56, 114]. Typically, clients

negotiate with the service provider to submit estimates on the execution/completion times

of their jobs. However, such estimates often tend to be either underestimated or inaccurate.

For this purpose, Reig et al. [114] present an analytical predictor to infer job information

and accordingly decide on the minimum allocation of resources required to execute client

jobs before their deadlines; that is, to avoid inaccurate run-time estimates of clients and

thus mitigate SLA violations. However, the scheduler policy adopts a job rejection strategy

in two different scenarios. A job is rejected when its SLA obligations cannot be met,

or when another higher priority job arrives in the system that negatively impacts SLA

obligations of both jobs. However, such rejection policies would incur harsh SLA violation

penalties to the client and service provider.
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Hoang et al. [56] present a Soft Advance Reservation (SAR) method to meet SLA

requirements and tackle error-prone estimates on job executions provided by clients. Gen-

erally speaking, an over-sourced environment would reduce the likelihood of SLA violations

and thus dissatisfied clients, however it would be significantly costly to acquire and oper-

ate. In contrast, the cloud service provider may allocate a small number of resources to

reduce the operational cost, but with the expense of rejecting or discarding jobs that the

provider would not meet their QoS expectations.

As power consumption has recently become a primary issue in data centers of cloud com-

puting environments, load distribution has also been applied in multi-server systems with

dynamic power consumption/management and speed. Traditional balancing mechanisms

might not effectively handle the issue. Li et al. [73] propose an optimal task dispatching

algorithm to minimize the average power consumption and average response time of tasks.

The multi-server system is modeled on queueing systems, and the stream of arriving tasks is

modeled on the Poisson distribution with arrival rate λ, using the exponential distribution

function.

Redundancy-based strategies are also adopted and proven to speed up the execution of

jobs [16, 40, 41, 72]. For instance, Nahir et al. [98] present a replication-based balancing

algorithm that aims at minimizing the queueing overhead and the job’s response time.

Multiple copies (replicas) of each client’s job are created and distributed in resource queues

of a tier. Once a copy of the job completes the execution from a resource, other copies

are deleted from the other resource queues of the tier. In addition, Kristenet et al. [42, 43]

present the power of d choices for redundancy to send copies of a job to only d resources

selected at random, so as to reduce the number of duplicated jobs in resource queues of

the tier.

However, the optimization strategy of replication-based approaches does not employ
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the different QoS obligations and demands of jobs, thus, would not mitigate SLA viola-

tion penalties. If the mechanisms of admission control and resource over-allocation are

not adopted, a replication-based approach might overload resource queues of tiers with

a significant amount of jobs. Thus, the scheduler would potentially experience difficul-

ties in managing the execution of such workloads to meet QoS obligations globally at the

multi-tier level.

Some existing approaches employ different tardiness cost functions to quantify SLA vio-

lation penalties so as to accordingly optimize the performance of job schedules and mitigate

their associated penalties. Chi et al. [26] and Moon et al. [93] adopt a stepwise function

to represent different levels of QoS penalties. However, the stepwise function does not

exactly reflect QoS penalty models required to tackle SLA violations of real systems. This

function would typically incur a sudden change in the QoS penalty (increment/decrement

from one level to another) when a slight variation in the job’s completion time occurs at the

transient-edge of two consecutive steps of the function, which is inaccurate. In addition, a

fixed penalty level would be constantly held for each period of SLA violation, which thus

inaccurately incurs equal SLA penalties for different service violation times in the same

step-period. Also, formulating the cost value of each penalty level with respect to SLA

violation times is still an outstanding issue.

Stavrinides et al. [128] use a linear monetary cost function to quantify multiple penalty

layers (categories) of SLA violations. The tardiness metric, represented by the completion

time of client jobs, is employed to calculate the cost incurred from the different layers

of SLA violations. They investigate the effect of workloads of different computational

demands on the performance of schedules in a single-tier environment, focusing on fair

billing and meeting QoS expectations of clients. However, the linear function would not

also reflect the monetary cost of SLA violations in real systems, thus, the performance and

27



optimality of schedules formulated based on such cost calculations would be affected.

Overall, scheduling decisions of existing approaches are either locally optimal for each

resource, or only focused on optimizing system-level metrics such as response time and

throughput at the resource level. Such decisions are made without accurately considering

the state of resource queues, primarily represented by the waiting time of jobs at the

queueing level. Also, existing approaches do not accurately account for dependencies and

bottleneck shifting between tiers of the multi-tier environment, thus, their decisions might

not effectively schedule jobs among resource queues of tiers, which in turn leads to delays

and SLA violations in executing jobs. In addition, existing approaches in their optimization

strategies are not often penalty-aware, which fails to accurately capture QoS obligations.

In the presence of huge queueing bottlenecks of jobs accumulated in tiers of a multi-tier

cloud environment, producing optimal job schedules onto a limited number of resource

queues to achieve quality goals of client jobs by considering tier dependencies is a challeng-

ing task, but yet deserves the attention and detailed investigation of researchers. Failing

to meet its clients’ QoS demands may result in clients’ dissatisfaction and harsh financial

penalties.

In this thesis, a penalty-oriented service-level-driven scheduling and balancing manage-

ment framework is proposed to overcome challenges of previous approaches in executing

client demands in multi-tier cloud environments. The framework manages the execution of

workloads on resource queues of each tier by triggering periodic scheduling and balancing

decisions at run-time using two queue operators: reorder and migrate. Such decisions de-

pend on information periodically collected from the current system state at the queueing

level of the multi-tier environment. Jobs are scheduled for execution by considering their

relative execution time with respect to the utilization of resource queues of each tier in

the cloud computing environment. The framework generally aims at reducing the waiting
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time for each job while SLA violations are mitigated, and as a result a reduction in the

likelihood of dissatisfied clients is achieved.

2.3 Research Challenges

This section highlights the research challenges of load scheduling and balancing in multi-tier

cloud computing environments. The proposed approaches in existing studies suffer from nu-

merous drawbacks. They do not effectively cope with the unexpected changes/complexities

of a multi-tier cloud computing environment and its incoming workloads. In this thesis, a

penalty-oriented service-level-driven scheduling and balancing management framework is

presented to tackle the execution of workload variations/bottlenecks at the queueing level

of the multi-tier cloud environment. The challenges relevant to the framework of this thesis

are categorized as follows:

• Pragmatic QoS

The impact of job execution violation on the QoS differs from one job to another.

SLAs tend to provide a context based on which differential job treatment regimes can

be devised. The impact of job violation on QoS tends to be captured in a penalty

model. This model should be leveraged to influence scheduling in a multi-tier cloud

computing environment so as to minimize the penalty payable by the cloud service

provider, and hence attain a pragmatic QoS.

• Optimal Job Schedules

Current cloud computing approaches contemplate single-resource-driven schedules,

however, they fail to exploit queue dynamics to migrate jobs between the resources
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of a given tier so as to achieve optimal tier-driven scheduling. Furthermore, such

approaches fail to contemplate the impact of schedules optimized in a given tier on

the performance of schedules on the subsequent tiers because they do not consider

the effect of tier dependencies. Consequently, SLA violation penalties in a tier shift

to and escalate in subsequent tiers, leading to increase the likelihood of dissatisfied

clients. Therefore, optimal schedules should be formulated at the tier and multi-

tier levels of the environment, such that QoS obligations are met and a high system

performance is maintained.

• Treatment of Waiting Times of Client Jobs

Schedule optimality of existing approaches is defined based on job response time

metrics computed at the resource level of the tiers. However, equal response times

for jobs of different service demands do not imply that the jobs are equally satisfied

of the QoS provided, because their waiting times can be different. As such, existing

approaches should account for the waiting times of jobs computed at the queueing

level of the tiers, so as to accurately evaluate and improve client satisfactions.

• Dynamically Measuring and Responding to the System State at Run-Time

Existing approaches often consider the resource capabilities to make scheduling de-

cisions, by employing service strategies that typically harness powerful resources to

execute high-priority jobs, yet may leave low-priority jobs often waiting longer than

expected. However, such approaches disregard the system state at the queueing

level of the tiers when scheduling operations are undertaken. Consequently, some

resource queues may get overloaded, while other queues may remain idle or under-

utilized. Such improper scheduling of workloads incurs SLA violations and client

dissatisfaction. Therefore, such approaches should continuously monitor tier states
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at the queueing level to capture tier-specific characteristics and respond to workload

variations, so as to mitigate any potential performance degradation.

• Managing Complexity in Multi-Tier Cloud

Existing approaches typically optimize the performance of schedules at the fine-grain

level of resources. Such approaches do not tackle the complexity of the multi-tier

cloud computing environment that comes from the dependencies between the tiers,

and therefore lack proper management of escalations in SLA violation penalties.

However, the efficacy of such approaches should be evaluated at the coarse-grain

level of tier resources and multi-tier level of the environment. Formulated schedules

should consider the relative execution times of jobs with respect to the utilization

times of resources in the tiers.

2.4 Summary

This chapter covers a review of supporting concepts, characteristics, service models, and de-

ployment models of cloud computing environments. Also, the chapter reviews the research

state-of-the-art on scheduling and balancing in cloud computing environments. Existing

approaches in previous studies and their drawbacks are discussed. A revealing insight

gained from the review is the absence of a framework that manages the scheduling and

responds to workload variations at the tier and multi-tier levels of the cloud environment.

The proposed framework is intended to schedule and balance workloads between resource

queues of tiers so as to achieve quality goals and mitigate SLA penalties of client jobs.
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Chapter 3

Problem Formulation

This chapter presents a formalization of the research problem tackled in the thesis. The

architecture of a multi-tier cloud environment, as well as the flow of jobs between tiers and

resource queues of each tier, are examined. The operations used on job parameters that

influence scheduling performance are identified.

3.1 Typical Multi-Tier Cloud Environment Architec-

ture

The architecture of a multi-tier cloud computing environment consists of N sequential

tiers:

T = {T1, T2, T3, ..., TN} (3.1)

Each tier Tj employs a set of identical computing resources Rj:

Rj = {Rj,1, Rj,2, Rj,3, ..., Rj,M} (3.2)
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where M is the number of resources in tier Tj. Each resource Rj,k employs a queue Qj,k

that holds jobs waiting for execution by the resource. A job dispatcher JDj is employed

to buffer incoming client jobs to tier Tj. Resources Rj of each tier Tj are available directly

after the job dispatcher JDj. Figure 3.1 presents the general architecture of a two-tier

cloud computing environment.

3.2 Flow of Jobs in a Multi-Tier Cloud Environment

Typically, a stream S of jobs arrives to a multi-tier cloud environment.

S = {J1, J2, J3, ..., Jl} (3.3)

Each job Ji goes through the tiers of the cloud environment. A job Ji starts at the first

tier T1 and leaves the environment from the last tier, tier TN . As shown in a two-tier cloud

environment in Figure 3.1, a stream S of incoming jobs arrives at the job dispatcher JDj.

The job dispatcher JDj queues these jobs to the resource queues Rj of the tier. Dispatched

jobs wait in the jth tier to be executed by the resources Rj. Jobs leave from the resources

Rj of the jth tier to the queue of the job dispatcher JDj+1 of the (j+1)th tier, which in

turn queues these jobs to the resource queues Rj+1 of the (j+1)th tier for execution.

Figure 3.1 depicts a typical job processing flow. Job Ji arrives at tier Tj at time Ai,j

via the queue of the job dispatcher JDj of the tier. Job Ji waits ω
βj
i,j time units according

to an ordering βj of the jobs waiting for execution at resource Rj. Job Ji gets its turn of

execution by resource Rj,k. The prescribed execution time of job Ji is Ei,j. Afterward, job

Ji leaves tier Tj at time Di,j to be queued by the dispatcher of tier Tj+1.

Job Ji has a response time RT βi and end-to-end waiting time ωT βi according to the

overall ordering β of jobs at the N tiers of the cloud environment. Each job Ji has a
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Figure 3.1: Modeling Parameters and Operators of 2 Consecutive Tiers of the Multi-Tier

Cloud Environment

service deadline DLi. Because the execution time Ei,j of job Ji is prescribed, the service

deadline DLi is used to compute a waiting time allowance ωALi for job Ji.

3.3 Job Characterization

As shown in Figure 3.1, the waiting time ω
βj
i,j of each job Ji at tier Tj is defined as the

difference between the time it starts execution by one of the resources and its arrival time
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Ai,j. The end-to-end waiting time ωT βi of job Ji according to the overall ordering β across

all tiers in the multi-tier cloud environment is defined as the summation of the job’s waiting

time ω
βj
i,j in all tiers. The response time RT βi of job Ji in the multi-tier cloud environment

is defined as the difference between the departure time Di,N of job Ji from the last tier TN

and the arrival time Ai,1 of job Ji to the first tier T1. The response time RT βi of job Ji

can also be viewed as the summation of waiting times ω
βj
i,j and execution times Ei,j. The

performance parameters ω
βj
i,j, ωT

β
i , and RT βi for each job Ji are computed as follows:

ω
βj
i,j = Di,j − Ei,j − Ai,j (3.4)

ωT βi =
N∑
j=1

ω
βj
i,j (3.5)

RT βi = Di,N − Ai,1 =
N∑
j=1

(ω
βj
i,j + Ei,j) = ωT βi + ETi (3.6)

3.4 Operational Considerations

The primary focus of this thesis is on formulating optimal schedules for client jobs on

resource queues of a multi-tier cloud environment so that the waiting time ωT βi of each job

Ji at the queueing level is minimized and, thus, the likelihood of SLA violation penalties

of client jobs is mitigated. The two operators migrate and reorder are proposed to allocate

jobs among the resources and alter their sequencing within a resource queue so as to create

an optimal schedule.

3.4.1 The Migration Operator

The migrate operator MGj is responsible for migrating a job from one queue to another

queue within the same tier. The operation of migrating a job Ji from a queue Qj,k (source
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queue) to another queue Qj,k̈ (destination queue) is defined as follows:

MG(Qj,k→Qj,k̈)(Ji) (3.7)

The migration operation of Equation 3.7 changes the waiting time ω
βj
i,j of the migrated

job Ji at the queueing level of the multi-tier environment, as well as the states of Qj,k and

Qj,k̈. The migration decision is intended to reduce the waiting time ω
βj
i,j of the migrated job

by moving the job into another queue in the same tier such that SLA violation penalties

of client jobs are minimized. Also, the migration decision transitions each queue from a

state s to a new state s′ (s→s′).

MG(Qj,k→Qj,k̈) ≡


(ω

βj
i,j|Qj,k̈ < ω

βj
i,j|Qj,k)

s(Qj,k) =⇒ s′(Qj,k)

s(Qj,k̈) =⇒ s′(Qj,k̈)

(3.8)

3.4.2 The Re-Ordering Operator

The re-ordering operator ORj,k is responsible for re-ordering client jobs of a queue Qj,k

at tier Tj. A queue Qj,k has, at any time, a set of client jobs SJj,k. The operation of

re-ordering the set of jobs SJj,k in Qj,k is defined as follows:

ORj,k(SJj,k) (3.9)

The re-ordering operation of Equation 3.9 changes the waiting time ω
βj
i,j of each job Ji

in the set of jobs SJj,k and the state of Qj,k. The re-ordering decision ORj,k(Ji) is intended

to reduce the waiting time ω
βj
i,j of job Ji in Qj,k, so as to minimize potential SLA violation.

Accordingly, the re-ordering decision ORj,k(Ji) transitions the Qj,k from a state s to a new
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state s′ (s→s′).

ORj,k(Ji) ≡

(ω
βj
i,j|äj,k < ω

βj
i,j|aj,k)

s(Qj,k) =⇒ s′(Qj,k)

(3.10)

3.5 Problem Formulations

A job Ji in Qj,k of tier Tj has a prescribed execution time Ei,j, tardiness ωALi, and expected

waiting time ω
βj
i,j according to the ordering βj of client jobs in tier Tj. The primary focus

is on formulating optimal schedules for job execution by resources Rj of each tier Tj such

that the response time RT βi of each job Ji is minimized and the QoS obligations of the job

are met. The client jobs are scheduled for execution by the resources of each tier in the

multi-tier environment by means of the migration and re-ordering operators.

The response time RT βi of job Ji, calculated in Equation 3.6, is a function of the

waiting time ω
βj
i,j and the execution time Ei,j. The objective is to minimize the RT βi , which

is formulated as follows:

minimize (RT βi ) = minimize
( N∑
j=1

(ω
βj
i,j + Ei,j)

)
(3.11)

However, the execution time Ei,j is a prescribed client demand. The primary concern is

on the queueing level of the multi-tier environment. Therefore, the formula for minimizing

the response time RT βi can be stated as:

minimize (RT βi ) ≡ minimize
( N∑
j=1

ω
βj
i,j

)
(3.12)

The goal is to find an optimal sequence of migrate and reorder operations that can yield

a minimized total waiting time for all jobs queued at the resources of the environment.
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It is assumed that resources of each tier are of identical capabilities. A non-preemptive

scheduling is adopted so as to allow for a predictable waiting time. A job, once execution

has started in a resource, cannot be stopped until completion.

3.6 Summary

This chapter explains the formulation of the problem tackled in the thesis. The architecture

and operators used in the multi-tier cloud environment are outlined. The flow of client

jobs between resource queues and tiers, as well as the calculations of job parameters,

are clarified. The next chapters present the formulations of SLA-driven penalty-oriented

scheduling approaches of the workload management framework proposed to tackle the

research problem.

38



Chapter 4

Service-Level-Driven Job Scheduling

in Multi-Tier Cloud Computing

A novel service-level-driven approach for load scheduling and balancing in multi-tier cloud

environments is proposed. Load scheduling and balancing operators distribute and schedule

jobs among a set of computing resources, such that the total waiting time of client jobs is

minimized, and thus the potential of a penalty to be incurred by the cloud service provider

is mitigated. A penalty model, however, quantifies the amount of penalty the cloud service

provider would incur as a function of the jobs’ total waiting time.

A virtual queue abstraction facilitates optimal job scheduling at the tier level. This

problem is NP-complete, thus, a genetic algorithm is proposed as a tool for the cloud

service provider to compute scheduling and load balancing decisions that minimize the

likelihood of dissatisfied clients. Experimental results demonstrate the efficacy of the pro-

posed approach. It is shown that the proposed approach is more effective in minimizing

the total waiting time (or SLA penalties) of client jobs compared with existing approaches.
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4.1 SLA-Driven Load Scheduling

A multi-tier cloud computing environment consisting of N sequential tiers is considered,

as in Equation 3.1. Each tier Tj employs a set of identical computing resources Rj as in

Equation 3.2. Each resource Rj,k employs a queue Qj,k to hold jobs waiting for execution

by the resource. Jobs with different computational requirements are submitted to the

environment. It is assumed that these jobs are submitted by different clients and, hence,

are governed by different SLAs. Jobs arrive at the environment in streams, as shown in

Equation 3.3.

The index of each job Ji signifies its arrival order at the environment. For example,

job J1 arrives at the environment before job J2. Jobs arrive in a random manner. Job Ji

arrives at tier Tj at arrival time Ai,j. It has a prescribed execution time Ei,j, that is:

Ji = {Ai,j, Ei,j} , ∀ Tj∈T (4.1)

Jobs submitted to tier Tj are queued for execution based on an ordering βj. As shown

in Figures 3.1 and 4.1, each tier of the environment consists of a set of resources. Each

resource has a queue to hold jobs assigned to it. For instance, resource Rj,1 is associated

with queue Q1,j that consists of 4 jobs (J6, J7, J8, and J10) waiting for execution. A virtual

queue is a cascade of all queues of the tier. The total execution time ETi of each job Ji is:

ETi =
N∑
j=1

Ei,j (4.2)

Each job Ji has a response time RT βi that is a function of the total execution time ETi
and the total waiting time ωT βi :

RT βi =
N∑
j=1

(Ei,j + ω
βj
i,j) = ETi + ωT βi (4.3)
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where ω
βj
i,j represents the waiting time of job Ji at tier Tj; βj is the ordering that governs

the order of execution of jobs at tier Tj. ωT βi represents the total waiting time job Ji spends

waiting for its turn to be executed at all tiers. Each job Ji has a departure time Di,j from

tier Tj, which will be the arrival time Ai,j+1 of the job to the next tier Tj+1. The primary

concern is on the queueing level of the environment represented by the total waiting time

ωT βi of job Ji at all tiers T .

The service time of job Ji in the environment is subject to an SLA that stipulates an

exponential penalty curve %i as follows:

%i = χ ∗ (1− e−ν(RT
β
i −ETi))

= χ ∗ (1− e−ν(ωTi
β))

= χ ∗ (1− e−ν
∑N
j=1 ω

βj
i,j )

(4.4)

where χ is a monetary cost factor and ν is an arbitrary scaling factor. The total penalty

cost of stream l across all tiers is given by ϕ:

ϕ =
l∑

i=1

%i (4.5)

The objective is to find ordering β = (β1, β2, β3, . . . , βN) for jobs at each tier Tj such

that the stream’s total penalty cost ϕ is minimum:

minimize
β

(ϕ) ≡ minimize
β

( l∑
i=1

N∑
j=1

ω
βj
i,j

)
(4.6)

4.2 Minimum Penalty Job Scheduling

During scheduling of client jobs for execution, a job is first submitted to tier-1 by one of

the resources of the tier. Jobs should be scheduled in such a way that minimizes total
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Figure 4.1: The Virtual Queue of a Tier j

waiting time. Finding a job scheduling that yields minimum total waiting time is an

NP problem. Given the expected volume of jobs to be scheduled and the computational

complexity of the job scheduling problem, it is prohibitive to seek optimal solution for the

job scheduling problem using exhaustive search techniques. Thus, a meta-heuristic search

strategy, such as Permutation Genetic Algorithms (PGA), is a viable option for exploring

and exploiting the large space of scheduling permutations [144]. Genetic algorithms have

been successfully adopted in various problem domains [75], and have undisputed success

in yielding near optimal solutions for large scale problems, in reasonable time [101].
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Scheduling client jobs entails two steps: (1) allocating/distributing the jobs among the

different tier resources. Jobs that are allocated to a given resource are queued in the queue

of that resource; (2) ordering the jobs in the queue of the resource such that their total

waiting time is minimal. What makes the problem increasingly hard is the fact that jobs

continue to arrive, while the prior jobs are waiting in their respective queues for execution.

Thus, the scheduling process needs to respond to the job arrival dynamics to ensure that

job execution at all tiers is waiting-time optimal. To achieve this, job ordering in each

queue should be treated as a continuous process. Furthermore, jobs should be migrated

from one resource to another so as to ensure balanced job allocation and maximum resource

utilization. Thus, two operators are employed for constructing optimal job schedules at

the tier level:

• The reorder operator is used to change the ordering of jobs in a given queue so as to

find an order that minimizes the total waiting time of all jobs in the queue.

• The migrate operator, in contrast, is used to exploit the benefits of moving jobs

between the different resources of the tier so as to reduce the total waiting time at

the tier level. This process is adopted at each tier of the environment.

However, implementing the reorder/migrate operators in a PGA search strategy is not

a trivial task. This implementation complexity can be relaxed by virtualizing the queues

of each tier into one virtual queue. The virtual queue is simply a cascade of the queues of

the resources of the tier. In this way, the two operators are converged into simply a reorder

operator. Furthermore, this simplifies the PGA solution formulation. A consequence of this

abstraction is the length of the permutation chromosome and the associated computational

cost. This virtual queue will serve as the chromosome of the solution. An index of a job in

this queue represents a gene. The ordering of jobs in a virtual queue signifies the order at
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which the jobs in this queue are to be executed by the resource associated with that queue.

Solution populations are created by permuting the entries of the virtual queue, using the

order and migrate operators. The virtual queue in Figures 4.1 and 4.2 of the jth tier has

three queues (Qj,1, Qj,2, and Qj,3) cascaded to construct one virtual queue.

4.2.1 Evaluation of Schedules

A fitness evaluation function is used to assess the quality of each virtual-queue realization

(chromosome). The fitness value of the chromosome captures the cost of a potential sched-

ule. The fitness value fr,G of a chromosome r in generation G is represented by the total

waiting time of jobs that remain in the virtual queue.

fr,G =
l∑

i=1

(ω
βj
i,j) (4.7)

The waiting time ω
βj
i,j of the ith job in the virtual queue of the jth tier should be

calculated based on its order in the queue, as per the ordering βj.

The normalized fitness value Fr of each schedule candidate is computed as follows:

Fr =
fr,G∑n

C=1(fC,G)
, r∈C (4.8)

Based on the normalized fitness values of the candidates, Russian Roulette is used to

select a set of schedule candidates to produce the next generation population, using the

combination and mutation operators.

4.2.2 Evolving the Scheduling Process

To evolve a new population that holds new scheduling options for jobs in resource queues

of the tier, the crossover and mutation genetic operators are both applied on randomly
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Figure 4.2: A Tier-based Genetic Approach on the Virtual Queue
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selected schedules (virtual queues) of the current generation. The crossover operator pro-

duces a new generation of virtual queues from the current generation. The mutation

operator applies random changes on a selected set of virtual queues of the new generation

to produce altered virtual queues. These operators diversify the search direction into new

search spaces to avoid getting stuck in a locally optimum solution. Overall, the Single-

Point crossover and Insert mutation genetic operators are used. Rates of crossover and

mutation operators are both set to 0.1 of the population size in each generation.

Figure 4.2 explains how each virtual queue in a given generation is evolved to create

a new virtual queue of the next generation, using the crossover and mutation operators.

Each chromosome (virtual queue) represents a new scheduling of jobs. The jobs and their

order of execution on the resource will be reflected by the segment of the virtual queue

corresponding to the actual queue associated with the resource. As a result of the evolution

process, each segment of the virtual queue corresponding to an actual queue will be in one

of the following states:

• Maintain the same set and order of jobs held in the previous generation;

• Get a new ordering for the same set of jobs held in the previous generation;

• Get a different set of jobs and a new ordering.

For instance, queue Qj,1 of Chromosome (1,n) in the first generation maintains exactly

the same set and order of jobs in the second generation shown in queue Qj,1 of Chromosome

(2,n). In contrast, queue Qj,2 of Chromosome (1,1) in the first generation maintains the

same set of jobs in the second generation, yet has got a new order of jobs as shown in

queue Qj,2 of Chromosome (2,1). Finally, queue Qj,2 of a random Chromosome (1,C) in

the first generation has neither maintained the same set nor the same order of jobs in the
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second generation shown in queue Qj,2 of Chromosome (2,C), which in turn would yield a

new scheduling of jobs in the queue of resource Rj,2 if Chromosome (2,C) is later selected

as the best chromosome of the tier-based genetic solution.

4.3 Experimental Results

The adopted cloud environment consists of two tiers, each of which has 3 computing

resources. The jobs generated into the cloud environment are atomic and independent

of each other. A job is first executed on one of the computing resources of the first tier

and then moves onto one of the resources of the second tier. Each job is served by only

one resource at a time, as the scheduling strategy is non-preemptive.

Jobs arrive at the first tier and are queued in the arrival queue (tier dispatcher) of the

environment. The arrival behaviour is modeled on a Poisson process. The running time

of each job in a computing resource is assumed to be known in advance, generated with

a rate µ=1 from the exponential distribution function exp(µ=1) [7]. In each tier Tj, job

migrations from a queue to another queue are permitted. The Poisson and exponential

models of job arrivals and execution are widely employed in the literature to represent the

performance parameters of simulated real data.

Two experiments are conducted. In the first experiment, the virtualized queue is uti-

lized to seek optimal schedules that produce minimum total waiting time among all jobs.

Thus, the proposed genetic algorithm operates on all queues of the tier simultaneously. In

the second experiment, the genetic algorithm is applied to the individual queues of the

tier. The penalty exponential scaling parameter ν is set to ν=0.01. In both experiments,

each population employs 10 chromosomes.
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In these experiments, however, the synthesized datasets are used instead of real datasets

to validate the scheduling performance in the multi-tier environment. The reason is that the

architecture of multi-tier environments requires synthesized datasets that mimic the service

demand of jobs in each tier individually, whereas existing real datasets and their simulation

models do not accurately represent the architectural complexity of such environments.

Furthermore, synthesized data produces generalizable and repeatable results, thus em-

ploying the same performance parameters used to generate the synthesized data would help

produce a similar conclusion. On the other side, employing real datasets in such multi-

tier environments would potentially produce biased results. For instance, a simulated real

dataset with huge times between arrivals and small service demands of client jobs would

make resource queues of a tier most of the time empty, which consequently would not

produce effective schedules that evaluate the efficacy of the proposed SLA-driven schedul-

ing and balancing framework. Also, real datasets with different characteristics may create

different bottlenecks in resource queues and therefore formulate schedules that produce

different conclusions with various performance enhancements.

4.3.1 Virtualized Queue Experiment

The tier-based genetic solution is applied to the virtual queue. The virtual queue starts

with an initial state that represents an initial scheduling βj of jobs in the tier (initial tier-

state), which in turn yields an initial fitness and penalty of the virtual queue. The initial

fitness of the virtual queue represents the total waiting time of jobs in the tier according

to their initial scheduling in the virtual-queue. The tier-based genetic solution shown in

Figure 4.2 is then applied to the virtual queue (globally at the tier level of the environment),

which after some iterations finds a new enhanced scheduling of jobs in the virtual queue
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Table 4.1: Total Waiting Time using Tier-Based Scheduling

Virtual-Queue

Length

1 Initial2 Enhanced3 Improvement

Waiting Penalty Waiting Penalty Waiting % Penalty %

Figure 4.3a 12 47.8462 0.380 30.4821 0.263 36.29% 30.90%

Figure 4.3b 15 50.8813 0.399 41.1748 0.338 19.08% 15.37%

Figure 4.3c 19 88.0743 0.586 46.3381 0.371 47.39% 36.66%

Figure 4.3d 31 126.4679 0.718 94.0426 0.610 25.64% 15.07%

Figure 4.3e 32 217.1755 0.886 164.4844 0.807 24.26% 8.92%

Figure 4.3f 27 63.0545 0.468 51.2031 0.401 18.80% 14.32%

1 Virtual-Queue Length represents the total number of jobs in queues of the tier. For instance, the first entry (12) of

the table means that the 3 queues of the tier altogether contain 12 jobs.

2 Initial Waiting represents the total waiting time of jobs in the virtual queue according to the initial scheduling of jobs

before using the tier-based genetic solution.

3 Enhanced Waiting represents the total waiting time of jobs in the virtual queue according to the final/enhanced

scheduling of jobs found after using the tier-based genetic solution.

(enhanced tier-state) that optimizes the objective function. The new enhanced tier-state

yields a new improved fitness and penalty of the virtual queue, which in turn is translated

into a new enhanced scheduling of jobs in the resource queues of the tier that reduces the

total waiting time and penalty of jobs globally at the tier level of the environment.

The results shown in Table 4.1 and Figure 4.3 demonstrate the effectiveness of using the

queue virtualization along with the tier-based genetic solution to reduce the total waiting

time and thus penalty of jobs at the tier level of the environment. Results of applying

the tier-based genetic solution are reported in 6 different events. Figures 4.3a to 4.3c are

mapped to their corresponding first 3 events of Table 4.1. For the virtual queue of 19 jobs

shown in Table 4.1, the results show that the tier-based genetic solution has improved the
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(a) Waiting Time in Virtual Queue of 12 Jobs

 

 

(b) Waiting Time in Virtual Queue of 15 Jobs 

 

(c) Waiting Time in Virtual Queue of 19 Jobs

 

 

(d) Waiting Time in Virtual Queue of 31 Jobs 

 

(e) Waiting Time in Virtual Queue of 32 Jobs

 

 

(f) Waiting Time in Virtual Queue of 27 Jobs

Figure 4.3: Total Waiting Time using Tier-Based Scheduling
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fitness of the tier-state by 47.39%, reduced the total waiting time of jobs at the tier level

of the environment from 88.0743 time units for the initial tier-state to 46.3381 time units

for the enhanced tier-state. The penalty has also been improved by 36.66%, reduced from

0.586 for the initial tier-state to 0.371 for the enhanced tier-state.

Figure 4.3c demonstrates the effectiveness of the tier-based genetic solution in gradually

reducing the total waiting time of jobs in the virtual queue of 19 jobs. However, the tier-

based genetic solution required 500 iterations, each of which contained 10 chromosomes, to

get the enhancement on the tier-state. A total of only 5,000 global scheduling options for

jobs in the tier are effectively explored in the search space of 19! (approximately 1.22×1017)

different global scheduling options at the tier level of the environment to improve the fitness

and penalty of the tier-state by 47.39% and 36.66%, respectively. Similarly, improvements

are achieved on the fitness and penalty of the other 2 events of the virtual queue (12 and

15 jobs) shown in Table 4.1, with their corresponding Figures 4.3a and 4.3b, respectively.

In contrast, Figures 4.3d to 4.3f are mapped to the second 3 events of Table 4.1. The

tier-based genetic solution required 1,000 iterations, each of which contained 10 chromo-

somes, to get the enhancement on the tier-state of each event. In this case, a virtual queue

of a large number of jobs required more iterations so that more possible global scheduling

options for jobs at the tier level of the environment are explored. For the virtual queue

of 31 jobs shown in Table 4.1, the tier-based genetic solution improved the fitness and

penalty of the tier-state by 25.64% and 15.07%, respectively. However, Figure 4.3d shows

that a total of only 10,000 out of 31! (approximately 8.22×1033) possible global scheduling

options for jobs at the tier level of the environment are effectively explored to achieve the

enhancements. Similar improvements are achieved on the fitness and penalty of the other

2 events of the virtual queue (32 and 27 jobs) shown in Table 4.1, and their corresponding

Figures 4.3e and 4.3f, respectively.
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Table 4.2: Total Waiting Time using Queue-Based Scheduling

Queue

Length

1 Initial2 Enhanced3 Improvement

Waiting Penalty Waiting Penalty Waiting % Penalty %

Resource 1 Figure 4.4a 14 154.1339 0.786 98.5818 0.627 36.04% 20.24%

Resource 2 Figure 4.4b 16 137.3684 0.747 69.4641 0.501 49.43% 32.95%

Resource 3 Figure 4.4c 15 130.0566 0.728 77.3358 0.539 40.54% 25.99%

Resource 1 Figure 4.4d 19 150.8208 0.779 98.1834 0.625 34.90% 19.69%

Resource 2 Figure 4.4e 23 208.596 0.876 87.2667 0.582 58.16% 33.53%

Resource 3 Figure 4.4f 14 145.0253 0.765 63.8502 0.472 55.97% 38.35%

1 Queue Length represents the number of jobs in the queue of a resource.

2 Initial Waiting represents the total waiting time of jobs in the queue according to the initial scheduling of jobs before using

the queue-based genetic solution.

3 Enhanced Waiting represents the total waiting time of jobs in the queue according to the final/enhanced scheduling of jobs

found after using the queue-based genetic solution.

4.3.2 Segmented Queue Experiment

The genetic solution is applied at each individual queue level. Each one of the three queues

holds an initial set of jobs to be executed on the resource associated with that queue. The

waiting time of each job is calculated based on its position in the queue. The proposed

genetic algorithm is then used to seek an optimal ordering of the jobs that are queued for

execution by the resource associated with that queue, such that the total waiting time of

these jobs is minimized. The genetic algorithm in this case seeks an optimal schedule in a

reduced search space, as the optimal order is sought on each queue individually. In other

words, a genetic search strategy is performed on each queue. The total waiting time, of all

jobs in the three queues, is computed.

Table 4.2 shows the results of applying the genetic algorithm on the three resource

52



 

 

(a) Waiting Time in

Resource-Queue 1 (14 Jobs)

 

 

(b) Waiting Time in

Resource-Queue 2 (16 Jobs)

 

 

(c) Waiting Time in

Resource-Queue 3(15 Jobs) 

 

(d) Waiting Time in

Resource-Queue 1 (19 Jobs)

 

 

(e) Waiting Time in

Resource-Queue 2 (23 Jobs)

 

 

(f) Waiting Time in

Resource-Queue 3 (14 Jobs)

Figure 4.4: Total Waiting Time using Queue-Based Scheduling

queues, in two different instances. The first instance represents a job allocation whereby

resource-1 is allocated 14 jobs, resource-2 16 jobs, and resource-3 15 jobs. The second

instance represents a job allocation whereby resource-1 is allocated 19 jobs, resource-2 23

jobs, and resource-3 14 jobs. Table 4.2 enumerates the total number of local orderings

(schedules) for the first instance. There are 14! possible orderings for queue-1, 16! for

queue-2, and 15! for queue-3. The table shows a 36.04% improvement from the initial

ordering for queue-1, a reduction from 154.1339 time units of total waiting time to 98.5818

time units of total waiting time. The QoS violation penalty improved by 20.24%, from

0.786 due to the initial ordering, to 0.627 due to the improved ordering computed by the

genetic search strategy.

Figure 4.4a depicts the total waiting time of jobs allocated to resource-1 during the
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search process. After 150 genetic iterations, an optimal solution is found. In each itera-

tion, 10 chromosomes are used to evolve the optimal schedule. Thus, 1,500 orderings are

constructed and genetically manipulated throughout the search process, as apposed to 14!,

if a brute-force search strategy is employed. Similar results are achieved at resource-2 and

resource-3, as can be seen in the figure.

Table 4.2 reveals the magnitude of search space growth as a result of increasing the

number of jobs allocated to a given resource. For example, the impact of increasing the

number of jobs allocated to resource-1 from 14 jobs to 23 jobs is considered. In a brute-force

search strategy, the search space will increase from 14! to 23!. In contrast, the genetic search

strategy needed to expand the search space from 1,500 populations to 7,500 populations.

After 7,500 genetic iterations, the waiting time was improved by 58.16% from the initial

ordering. The total waiting time of jobs was reduced from 208.596 waiting time units in

the initial job ordering to 87.2667 waiting time units in the genetically improved ordering.

Figures 4.4d to 4.4f demonstrate the effectiveness of using the queue-based genetic solution

to decrease the total waiting time of jobs in the three resources: resource-1, resource-2,

and resource-3, respectively.

4.3.3 Comparison

Figure 4.5 and Table 4.3 contrast the performance of both genetic strategies, that is the

virtualized queue search strategy and the individualized queue strategy. The initial order-

ings of the three queues, and by implication, that of the virtualized queue are the same.

WRR-based ordering entailed 3, 617 units of total waiting time. WLC-based ordering en-

tailed 3,001 units of total waiting time. The individualized queue genetic search strategy

was produced an ordering that entails 2,464 units of waiting time, a 32% reduction com-
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Table 4.3: Total Waiting Time of Jobs in each Approach

Virtualized Queue Segmented Queue WLC WRR

1961.34 2464.61 3001.82 3617.95

pared with the WRR strategy and 18% reduction compared with the WLC strategy. The

virtualized queue genetic search strategy produced an ordering that entails 1,961 units

of waiting time. That is a reduction of 46% compared with the WRR strategy and 35%

reduction compared with the WLC strategy.

 

 Figure 4.5: Maximum Waiting Time Performance Comparison

Figure 4.5 depicts the average waiting performance of the four scheduling strategies.

The virtualized queue genetic strategy produced the shortest average waiting time per job,

with an average waiting time of 10 time units. The individualized queue search strategy
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produced an average waiting time of 13 time units. Hence, WRR and WLC job ordering

strategies delivered inferior performance.

However, the individualized queue strategy yielded a maximum job waiting time of

19 time units. The WRR produced a maximum job waiting time of 32 time units, while

the WLC produced a maximum job waiting time of 24. The virtualized queue scheduling

strategy delivered a maximum job waiting time of 16 time units. Overall, the virtualized

queue scheduling strategy delivered the best performance in minimizing the total waiting

time and, thus, the lowest QoS penalty.

4.3.4 Conclusion

A service-level-driven approach and a genetic algorithm are proposed to tackle the job

scheduling problem in a multi-tier cloud computing environment. A connection between

penalties payable due to SLA violations and job waiting time is made. This leads to a

framework for facilitating penalty management and mitigation that cloud service providers

can utilize in situations of high demands and limited resources. It is assumed that each tier

of the environment consists of a set of identical computing resources. A queue is associated

with each one of these resources.

To achieve maximum resource utilization and minimum waiting time, a virtualized

queue abstraction is proposed. Each virtual queue realization represents an execution

ordering of jobs. This virtualized queue abstraction collapses the search spaces of all

queues into one search space of orderings, and thus allows the genetic algorithm to seek

optimal schedules at the tier level.

Experiments were devised to investigate the performance of the proposed biologically

inspired strategy against WRR and WLC, as well as an individualized queue strategy.
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The conclusion is that the proposed job scheduling strategy delivers performance that is

superior to that of both WRR and WLC. The genetic search strategy when applied at the

individual queue delivers performance also superior to that of WRR and WLC. However,

the genetic search strategy applied at the virtual queue still delivered the best performance

compared with other search strategies.

The proposed scheduling strategy does not contemplate the impact of schedules opti-

mized in a given tier on the performance of schedules on subsequent tiers. Therefore, it is

imperative to expand the work reported in this chapter to investigate such impact and to

extend the proposed algorithms so as to mitigate the impact of tier dependency. Further-

more, the formulation presented in this chapter treats the penalty factor of each job as a

function of time identically. Typically, cloud computing jobs tend to vary with respect to

their SLA violation penalties. Therefore, it is imperative to modify the penalty model so

as to reflect such sensitivity and force the scheduling process to produce minimum penalty

schedules, and not necessarily minimum total waiting time schedules.

4.4 Summary

This chapter presents a service-level-driven approach that tackles the scheduling and bal-

ancing of client jobs in the multi-tier cloud environment. A penalty model is used to

quantify the penalty payable by the cloud service provider due to QoS violations, thus,

producing minimum-penalty schedules. The operators that manipulate the scheduling of

jobs on resource queues of tiers are major players in this model. The virtual queue abstrac-

tion and genetic approach are presented to facilitate optimal scheduling at the tier level

of the environment. Finally, experimental results demonstrate the efficacy of the proposed

approach in minimizing SLA penalties of jobs incurred by the cloud service provider.
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Chapter 5

Service-Level-Driven Job Scheduling:

Multi-Tier Dependency

Considerations

A novel penalty-driven job scheduling and allocation approach is proposed to contemplate

the impact of schedules optimized for one tier on the performance of schedules constructed

in subsequent tiers, thus optimizing performance globally at the multi-tier level of the

cloud environment. The proposed approach accounts for tier dependencies to mitigate the

potential of shifting and escalation of SLA violation penalties when jobs progress through

subsequent tiers. The scheduling and allocation process is formulated as a problem of

assigning jobs to the resource queues of the cloud computing environment, where each

resource of the environment employs a queue to hold the jobs assigned to it. The ordering

of jobs in a given queue signifies the sequence of job execution by the respective resource.

Because the scheduling problem is NP-hard, a biologically inspired genetic algorithm
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supported with virtualized and segmented queue abstractions is proposed to efficiently

seek (near-)optimal schedules at the multi-tier level, in a reasonable time. The computing

resources across all tiers of the cloud environment are collapsed into one resource by means

of a single queue virtualization. A chromosome that mimics the sequencing and allocation

of the tasks in the new virtual queue is introduced. System performance is optimized at

this chromosome level. Chromosome manipulation rules are enforced to ensure that task

dependencies are met. Experimental results demonstrate the performance efficacy of the

proposed approach under various load conditions and in comparison with other commonly

used approaches.

5.1 SLA-Driven Load Scheduling

The target completion time C(t)i of job Ji represents an explicit QoS obligation on the

service provider to complete the execution of the job. Thus, the C(t)i incurs a service

deadline DLi for the job in the environment. The service deadline DLi is higher than the

total prescribed execution time ETi and incurs a total waiting time allowance ωALi for job

Ji in the environment.

DLi = C(t)i − Ai,j

= ETi + ωALi
(5.1)

Each job Ji has a response time RT βi that is a function of its total execution time ETi
and total waiting time ωT βi , as shown in Equation 4.3. The ω

βj
i,j represents the waiting

time of job Ji at tier Tj before job Ji is submitted for execution in a resource Rj,k. The

βj governs the order of execution of jobs at tier Tj. The ωT βi represents the total time job

Ji spends waiting for its turn to be executed at all tiers T of the environment, according
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to the ordering β. Each job Ji has a departure time Di,j from tier Tj, which will be the

arrival time Ai,j+1 of the job to the next tier Tj+1.

β =
N⋃
j=1

βj (5.2)

As such, the time difference between the response time RT βi and the service deadline

DLi represents the service-level violation time αβi of job Ji, according to the ordering β of

jobs in tiers T of the environment.

(RT βi −DLi) =

α
β
i > 0, The client is not satisfied

αβi ≤ 0, The client is satisfied

(5.3)

However, the execution time Ei,j of job Ji at tier Tj is predefined in advance. Therefore,

the resource capabilities of each tier Tj are not considered and, thus, the total execution

time ETi of job Ji is constant. Instead, the primary concern is on the queueing level of the

environment represented by the total waiting time ωT βi of job Ji at all tiers T according

to the ordering β.

Accordingly, the service-level violation time αβi of job Ji in the environment is subject

to an SLA that stipulates an exponential penalty curve %i:

%i = χ ∗ (1− e−ν(RT
β
i −DLi))

= χ ∗ (1− e−ν(ωT
β
i −ωALi))

= χ ∗ (1− e−ν(α
β
i ))

(5.4)

where χ is a monetary cost factor and ν is an arbitrary scaling factor. As such, the total

penalty cost of stream l across all tiers is given by ϕ computed as in Equation 4.5.
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5.1.1 Multi-Tier Waiting Time Allowance ωALi Formulation

The performance of job schedules is formulated with respect to the multi-tier waiting time

allowance ωALi of each job Ji. Accordingly, the SLA violation penalty is evaluated at the

multi-tier level of the environment. The objective is to seek job schedules in tiers of the

environment such that the total SLA violation penalty of jobs would be minimized globally

at the multi-tier level of the environment.

The total waiting time ωT βi of job Ji currently waiting in tier Tp, where p<N , is not

totally known because the job has not yet completely finished execution from the multi-tier

environment. Therefore, the job’s ωT βi at tier Tp is estimated and, thus, represented by

ωCX β
i,p according to the scheduling order β of jobs. As such, the job’s service-level violation

time αβi at tier Tp would be represented by the expected waiting time ωCX β
i,p of job Ji in

the current tier Tp and the waiting time allowance ωALi incurred from the job’s service

deadline DLi at the multi-tier level of the environment.

αβi = ωCX β
i,p − ωALi (5.5)

where the expected waiting time ωCX β
i,p of job Ji at tier Tp incurs the total waiting time

ωT βi of job Ji at the multi-tier level.

ωCX β
i,p =

(p−1)∑
j=1

(ω
βj
i,j) + ωELi,p + ωRMβp

i,p (5.6)

where ω
βj
i,j(∀j ≤ (p− 1)) represents the waiting time of job Ji in each tier Tj in which the

job has completed execution, ωELi,p represents the elapsed waiting time of job Ji in the

tier Tp where the job currently resides, and ωRMβp
i,p represents the remaining waiting time

of job Ji according to the scheduling order βp of jobs in the current holding tier Tp.

βj =

Mk⋃
k=1

I(Qj,k), ∀j∈ [1, N ] (5.7)
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ωRMβj
i,j =

∀∑
h∈I(Qj,k), h precedes job Ji

Eh,j, ∀j∈ [1, N ] (5.8)

where I(Qj,k) represents indices of jobs in Qj,k. For instance, I(Q1,2) = {3, 5, 2, 7} signifies

that jobs J3, J5, J2, and J7 are queued in Q1,2 such that job J3 precedes job J5, which

in turn precedes job J2, and so on. However, the elapsed waiting time ωELi,j affects the

execution priority of the job. The higher the time of ωELi,j of job Ji in the tier Tj, the

lower the remaining allowed time of ωALi of job Ji at the multi-tier level, thus, the higher

the execution priority of job Ji in the resource.

The objective is to find scheduling orders β = (β1, β2, β3, . . . , βN) for jobs of each tier

Tj such that the stream’s total penalty cost ϕ is minimal:

minimize
β

(ϕ) ≡ minimize
β

( l∑
i=1

N∑
p=1

(ωCX β
i,p − ωALi)

)
(5.9)

5.1.2 Differentiated Waiting Time ωPTi,j Formulation

The performance of job schedules is formulated with respect to a differentiated waiting

time ωPTi,j of the job Ji at each tier Tj. The ωPTi,j is derived from the multi-tier waiting

time allowance ωALi of job Ji, with respect to the execution time Ei,j of the job Ji at

the tier level relative to the job’s total execution time ETi at the multi-tier level of the

environment.

ωPT i,j = ωALi ∗
Ei,j
ETi

(5.10)

In this case, the higher the execution time Ei,j of job Ji in tier Tj, the higher the job’s

differentiated waiting time allowance ωPT i,j in the tier Tj. Accordingly, the SLA violation

penalty is evaluated at the multi-tier level with respect to the ωPTi,j of each job Ji.
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The waiting time ω
βj
i,j of job Ji at tier Tj would not be totally known until the job

completely finishes execution from the tier, however, it can be estimated by ωPX βj
i,j ac-

cording to the current scheduling order βj of jobs in the tier Tj. As such, the service-level

violation time αT βji,j of job Ji in the tier Tj according to the scheduling order βj of jobs

would be represented by the expected waiting time ωPX βj
i,j and the differentiated waiting

time allowance ωPTi,j, of the job in the tier Tj.

αT βji,j = ωPX βj
i,j − ωPTi,j (5.11)

αβi =
N∑
j=1

αT βji,j (5.12)

where αβi is the total service-level violation time of the job Ji at all tiers of the environment

according to the scheduling order β. The expected waiting time ωPX βj
i,j incurs the actual

waiting time ω
βj
i,j of job Ji in tier Tj, and thus depends on the elapsed waiting time ωELi,j

and the remaining waiting time ωRMβj
i,j of the job Ji according to the scheduling order βj

of jobs in the current holding tier Tj.

ωPX βj
i,j = ωELi,j + ωRMβj

i,j
(5.13)

The elapsed waiting time parameter ωELi,j of job Ji in tier Tj affects the job’s execution

priority in the resource. The higher the time of ωELi,j, the lower the remaining time of

the differentiated waiting allowance ωPTi,j of job Ji in the tier Tj, therefore, the higher the

execution priority of the job Ji in the resource, so as to reduce the service-level violation

time αT βji,j of the job in the tier Tj.

As such, the objective is to find scheduling orders β = (β1, β2, β3, . . . , βN) for jobs of

each tier Tj such that the stream’s total penalty cost ϕ is minimal:

minimize
β

(ϕ) ≡ minimize
β

( l∑
i=1

N∑
j=1

(ωPX βj
i,j − ωPT i,j)

)
(5.14)
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5.2 Multi-Tier-Based Minimum Penalty Scheduling

The concern is with the SLA-driven, penalty-based scheduling of jobs in a multi-tier cloud

environment. The scheduling tackles tier dependencies by contemplating the impact of

schedules optimized in a given tier on the performance of schedules in subsequent tiers.

Thus, the potential of shifting and escalation of SLA violation penalties of schedules in

a tier is mitigated when jobs progress through tiers of the environment. It is desired to

produce job schedules that are penalty-minimum at the multi-tier level.

However, finding job schedules at the multi-tier level to minimize the SLA violation

penalties is an NP problem. Jobs can be tightly coupled with the client experience and QoS

obligations. It is never desirable to adopt a brute-force search strategy to seek minimum

penalty schedules at the multi-tier level; given the prohibitively large number of candidate

schedules (permutations) of an excessive volume of critical jobs with their computational

complexity. The dimensionality of the search space at the multi-tier level demands an

effective strategy that finds acceptable solutions. Therefore, a meta-heuristic search strat-

egy is a viable option for efficiently exploring and exploiting the large space of scheduling

permutations.

To formulate optimal schedules such that SLA violation penalties of jobs are reduced

at the multi-tier level, the allocation and ordering operators examined in Section 4.2 are

employed. However, it is complicated to apply such operators at the multi-tier level. As

such, the operator complexities are mitigated by virtualizing resource queues of the multi-

tier environment into a single system virtual queue that represents the chromosome of the

scheduling solution, as shown in Figure 5.1. This system-level abstraction converges the

operators into simply a reorder operator running at the multi-tier level.
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Figure 5.1: The System Virtual Queue

5.2.1 Evaluation of Schedules

The quality of a job schedule in a system virtual queue realization (chromosome) is assessed

by a fitness evaluation function. For a chromosome r in generation G, the fitness value

fr,G is represented by the SLA violation cost of the schedule in the system virtual queue

computed at the multi-tier level. Two different fitness evaluation functions are adopted in

two different solutions:

fr,G =


∑l

i=1(ωCX
β
i,p − ωALi), ωALi based Scheduling∑l

i=1(ωPX
βj
i,j − ωPT i,j), ωPT i,j based Scheduling

(5.15)

In both scenarios, the SLA violation cost of job Ji is represented by the job’s waiting

time (either ωCX β
i,p or ωPX βj

i,j) according to its scheduling order β in the system virtual
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Figure 5.2: A System Virtualized Queue Genetic Approach

queue and the job’s waiting allowance (either ωALi or ωPT i,j) incurred from its service

deadline DLi at the multi-tier level.

The normalized fitness value Fr of each schedule candidate is computed as in Equa-

tion 4.8. Based on the normalized fitness values of the candidates, Russian Roulette is

used to select a set of schedule candidates that produce the next generation population,

using the combination and mutation operators.
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5.2.2 Evolving the Scheduling Process

The schedule of the system virtual queue is evolved to produce a population of multiple

system virtual queues, each of which represents a chromosome that holds a new schedul-

ing order of jobs at the multi-tier level. To produce a new population, the Single-Point

crossover and Insert mutation genetic operators are applied on randomly selected system

virtual queues from the current population. Rates of these operators in each generation

are set to be 0.1 of the population size. The evolution process of schedules of the system

virtual queues along with the genetic operators are explained in Figure 5.2. Each segment

in the system virtual queue corresponds to an actual queue associated with a resource in

the tier. In each generation, each segment is subject to the states examined in Section 4.2.

5.3 Experimental Work and Discussion on Results

A client’s job entails a service deadline DLi that governs its execution in the multi-tier cloud

environment, to eventually deliver the service within a certain completion time C(t)i . To

devise a time that a cloud service provider can leverage to treat each job in the scheduling

process, the waiting time allowance ωALi of each job Ji is generated with respect to the

job’s total execution time ETi at the multi-tier level:

ωALi = ETi ∗ 20% (5.16)

Accordingly, the differentiated waiting time allowance ωPTi,j of each job Ji is generated

using Equation 5.10. Performance of schedules are optimized with respect to ωALi and

ωPTi,j such that the SLA penalty is reduced.
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5.3.1 The Experimental Approach

Two experiments are conducted, the system virtualized queue and segmented queue. To

seek optimal schedules that produce minimum SLA penalty among all jobs at the multi-

tier level, the system virtual queue is employed and the multi-tier-driven genetic algorithm

operates on all queues of the multi-tier environment simultaneously. The system virtual

queue starts with an initial system-state and a QoS penalty that represent a schedule β

of jobs. The genetic solution finds an enhanced schedule that reduces the SLA penalty

of the system-state at the multi-tier level, which in turn is translated into an enhanced

schedule of jobs in the resource queues of tiers. In contrast, the segmented queue scheduling

employs the genetic solution to seek an optimal schedule at the individual queue level of

the tiers, in a reduced search space, such that the QoS penalty is reduced at the queue

level of the tier and consequently at the multi-tier level. However, the penalty exponential

scaling parameter is set to ν=0.01. In both experiments, each population employs 10

chromosomes.

5.3.2 QoS Penalty Scheduling Evaluation of the Waiting Time

Allowance ωALi

The job schedules have been conducted according to the multi-tier waiting time allowance

ωALi of each job Ji. The service-level violation time of each job Ji is measured at the

multi-tier level with respect to the ωALi of the job; accordingly, the SLA violation penalty

payable by the service provider is quantified. The system virtualized queue and segmented

queue genetic solutions are used to efficiently seek optimal job schedules. Overall, the

scheduling approach has been proven to enhance performance by producing optimal job

schedules that reduce the total service-level violation time of jobs and their associated SLA
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 (a) SLA Penalty at System-Level (Total of 46 Jobs) 

 

(b) SLA Penalty in Tier T1 (21 Jobs)

 

 

(c) SLA Penalty in Tier T2 (25 Jobs)

Figure 5.3: SLA Penalty in System Virtualized Queue Scheduling using Multi-Tier ωALi

penalty globally at the multi-tier level of the environment, as shown in Figures 5.3 and 5.4

as well as Tables 5.1 and 5.2.

The scheduling approach along with the system virtualized queue genetic solution has

been applied to seek an optimal scheduling of jobs. Figure 5.3 and Table 5.1 represent a
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Table 5.1: SLA Penalty in System Virtualized Queue Scheduling using Multi-Tier ωALi

Number

of Jobs

1 Initial2 Enhanced3 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 5.3a 46 184.39 1.2 121.69 0.91 34.01% 24.17%

Tier T1, Figure 5.3b 21 84.60 0.57 62.16 0.46 26.53% 18.91%

Tier T2, Figure 5.3c 25 99.80 0.63 59.53 0.45 40.35% 28.95%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. For instance, the first entry (46 jobs) shows

that the multi-tier environment contains 46 jobs in total. The second (21 jobs) and third (25 jobs) entries of the table mean that the 3

queues of tier-1 and tier-2 are allocated 21 and 25 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized

queue genetic solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using

the system virtualized queue genetic solution.

state of a multi-tier environment that contains 46 jobs; 21 jobs are allocated to tier T1 and

25 jobs are allocated to tier T2. At the start, the total service-level violation time of the

initial scheduling order of the 46 jobs on both tiers initiates with 184 units of violation

time (as shown in Figure 5.3a). Then, the scheduling approach along with the system

virtualized queue genetic setup forms an enhanced schedule for the 46 jobs on resource

queues of both tiers, that optimizes the performance at the multi-tier level by 34% to

reach 121 units of violation time. As a result, the SLA penalty payable by the service

provider is also optimized by 24%, a reduction from 1.2 for the initial schedule to 0.91 for

the enhanced schedule of the 46 jobs (as shown in Table 5.1).

The former enhancements achieved globally at the multi-tier level of the environment

would consequently optimize the performance of job schedules in each individual tier, thus,

reducing the total service-level violation time and SLA penalty of the virtual-queue of each

tier. For instance, the initial schedule of the virtual-queue (25 jobs) of tier T2 shown in
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Figure 5.3c began with 99.8 units of violation time. Then, the performance was optimized

by 40% to reach 59.5 units of violation time for the enhanced scheduling of jobs as a

consequence of applying the scheduling approach along with the system virtualized queue

genetic setup. As such, the total SLA penalty of jobs at tier T2 was reduced by 28.95% (as

shown in Table 5.1). Similarly, the results reported in Figure 5.3b and Table 5.1 demon-

strate the effectiveness of the system virtualized queue scheduling approach in reducing

the total service-level violation time and penalty of the virtual-queue (21 jobs) of tier T1

by 26.5% and 18.9%, respectively.

Table 5.2: SLA Penalty in Segmented Queue Scheduling using Multi-Tier ωALi

Number

of Jobs

Initial1 Enhanced2 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 5.4a 77 333.37 2.537 181.26 1.56 45.63% 38.51%

Resource R1,1, Figure 5.4b 10 62.13 0.463 17.34 0.16 72.09% 65.59%

Resource R1,2, Figure 5.4c 12 38.93 0.322 26.84 0.24 31.05% 27.00%

Resource R1,3, Figure 5.4d 12 43.08 0.350 28.41 0.25 34.06% 29.35%

Resource R2,1, Figure 5.4e 14 67.57 0.491 33.43 0.28 50.52% 42.15%

Resource R2,2, Figure 5.4f 15 59.86 0.450 33.77 0.29 43.58% 36.37%

Resource R2,3, Figure 5.4g 14 61.80 0.461 41.46 0.34 32.91% 26.37%

1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue

genetic solution.

2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the

segmented queue genetic solution.

In contrast, the scheduling approach with the segmented queue genetic solution was

applied on each individual queue of the tier to seek an optimal scheduling of jobs in that

queue. The results (reported in Figure 5.4 and Table 5.2) demonstrate the effectiveness of

this scheduling approach in optimizing the performance of the job schedule of 77 jobs in
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(a) SLA Penalty at System-Level (Total of 77 Jobs) 

 

(b) SLA Penalty in Resource

R1,1 (Queue of 10 Jobs)

 

 

(c) SLA Penalty in Resource

R1,2 (Queue of 12 Jobs)

 

 

(d) SLA Penalty in Resource

R1,3 (Queue of 12 Jobs) 

 

(e) SLA Penalty in Resource

R2,1 (Queue of 14 Jobs)

 

 

(f) SLA Penalty in Resource

R2,2 (Queue of 15 Jobs)

 

 

(g) SLA Penalty in Resource

R2,3 (Queue of 14 Jobs)

Figure 5.4: SLA Penalty in Segmented Queue Scheduling using Multi-Tier ωALi
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the environment so as to reduce the service-level violation time and SLA penalty. Tier T1

is allocated 34 jobs distributed into 12, 10, and 12 jobs in the resource queues Q1,1, Q1,2,

and Q1,3, respectively. On the other side, tier T2 contains 43 jobs whereby Q2,1 is allocated

12 jobs, Q2,2 10 jobs, and Q2,3 12 jobs.

The initial schedule of the 77 jobs in resource queues of both tiers has 333 units of

violation time at the multi-tier level, as shown in Figure 5.4a. After the scheduling approach

with the segmented queue genetic setup has been applied on each individual queue of each

tier, an enhanced scheduling of jobs in each queue reduced the total service-level violation

time of jobs by 45% to reach 181 units of violation time. As a result, the total SLA

violation penalty payable by the service provider is optimized by 38.5%, a reduction from

2.537 for the initial scheduling to 1.56 for the enhanced scheduling of jobs.

Similar observations are in order with respect to improving the total service-level vio-

lation time and SLA penalty of each individual resource-queue in each tier as a result of

employing the segmented queue genetic solution. For instance, the resource-queue Q1,1 of

tier T1 shown in Figure 5.4b contains 10 jobs, but its total service-level violation time and

penalty is reduced by 72% and 65.6%, respectively.

Thus, the system virtualized queue and segmented queue genetic solutions have effi-

ciently explored a large solution search space using a small number of genetic iterations to

achieve such enhancements. Figure 5.3b shows that the system virtualized queue required

a total of only 1,000 genetic iterations to efficiently seek an optimal schedule of jobs in

tier T1, each iteration employing 10 chromosomes to evolve the optimal schedule. As such,

10×103 scheduling orders are constructed and genetically manipulated throughout the

search space, as opposed to 21! (approximately 5×1019) scheduling orders if a brute-force

search strategy is employed seeking the optimal scheduling of jobs. Similar observations

are in order with respect to the results reported on the segmented queue genetic solution.
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5.3.3 QoS Penalty Scheduling Evaluation of the Differentiated

Waiting Time ωPTi,j

Job schedules are conducted according to the differentiated waiting time allowance ωPTi,j
of each job Ji at the tier level, which is derived from the waiting time allowance ωALi of

the job at the multi-tier level of the environment. Thus, the service-level violation time of

each job Ji is measured with respect to the ωPTi,j of the job in the tier, and accordingly the

SLA violation penalty payable by the service provider is quantified. The system virtualized

queue and segmented queue genetic solutions are used to efficiently seek optimal scheduling

orders of jobs. Overall, the efficacy of the scheduling approach is proven to produce optimal

schedules that reduce total service-level violation time of jobs and their associated SLA

penalty at the multi-tier level of the environment (as shown in Figures 5.5 and 5.6, as well

as Tables 5.3 and 5.4).

Table 5.3: SLA Penalty in System Virtualized Queue Scheduling using Differentiated ωPT i,j

Number

of Jobs

1 Initial2 Enhanced3 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 5.5a 58 219.53 1.34 149.62 1.05 31.85% 21.64%

Tier T1, Figure 5.5b 26 112.47 0.68 68.03 0.49 39.51% 26.91%

Tier T2, Figure 5.5c 32 107.07 0.66 81.58 0.56 23.80% 15.14%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. For instance, the first entry (58 jobs) shows

that the multi-tier environment contains 58 jobs in total. The second (21 jobs) and third (25 jobs) entries of the table mean that the 3

queues of tier-1 and tier-2 are allocated 26 and 32 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized

queue genetic solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using

the system virtualized queue genetic solution.

Figure 5.5a and Table 5.3 represent a multi-tier environment that comprises 58 jobs; 26
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 (a) SLA Penalty at System-Level (Total of 58 Jobs) 

 

(b) SLA Penalty in Tier T1 (26 Jobs)

 

 

(c) SLA Penalty in Tier T2 (32 Jobs)

Figure 5.5: SLA Penalty in System Virtualized Queue Scheduling using Differentiated

ωPT i,j

jobs are allocated in tier T1 and 32 jobs are allocated in tier T2. At the start, the schedule

of the 58 jobs in both tiers produced 219.5 units of violation time. After the scheduling

approach along with the system virtualized queue genetic solution is applied on the tiers,
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(a) SLA Penalty at System-Level (Total of 109 Jobs)

 

 
(b) SLA Penalty in Resource

R1,1 (Queue of 17 Jobs)

 

 

(c) SLA Penalty in Resource

R1,2 (Queue of 17 Jobs)

 

 

(d) SLA Penalty in Resource

R1,3 (Queue of 15 Jobs) 

 

(e) SLA Penalty in Resource

R2,1 (Queue of 21 Jobs)

 

 

(f) SLA Penalty in Resource

R2,2 (Queue of 16 Jobs)

 

 

(g) SLA Penalty in Resource

R2,3 (Queue of 23 Jobs)

Figure 5.6: SLA Penalty in Segmented Queue Scheduling using Differentiated ωPT i,j
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an enhanced schedule for the 58 jobs in both tiers has been formed. Consequently, the

service-level violation time of the enhanced scheduling of jobs is optimized at the multi-tier

level by 31.85% to reach 149.6 units of violation time. As a result, the associated SLA

violation penalty presented in Table 5.3 is optimized by 21.64%, a reduction from 1.34 for

the initial schedule to 1.05 for the enhanced schedule of jobs. Similarly, such enhancements

reduce the total violation time and SLA penalty of the virtual queue of each individual

tier (Figures 5.5b and 5.5c, as well as Table 5.3). For instance, the violation time and SLA

penalty of the virtual queue (26 jobs) of tier T1 are respectively reduced by 39.5% and

26.9%, as shown in Figure 5.5b.

Table 5.4: SLA Penalty in Segmented Queue Scheduling using Differentiated ωPT i,j

Number

of Jobs

Initial1 Enhanced2 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 5.6a 109 558.33 3.61 358.73 2.69 35.75% 25.49%

Resource R1,1, Figure 5.6b 17 94.88 0.61 56.49 0.43 40.46% 29.57%

Resource R1,2, Figure 5.6c 17 81.28 0.56 53.34 0.41 34.37% 25.70%

Resource R1,3, Figure 5.6d 15 78.71 0.54 54.11 0.42 31.26% 23.30%

Resource R2,1, Figure 5.6e 21 94.92 0.61 62.42 0.46 34.25% 24.25%

Resource R2,2, Figure 5.6f 16 92.29 0.60 57.35 0.44 37.86% 27.58%

Resource R2,3, Figure 5.6g 23 116.25 0.69 75.03 0.53 35.46% 23.21%

1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue

genetic solution.

2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the

segmented queue genetic solution.

Furthermore, similar observations are in order with respect to the segmented-queue

genetic solution shown in Figure 5.6 and Table 5.4, where the total service-level violation

time and penalty of the 109 jobs in the resource queues of both tiers are reduced at the
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multi-tier level by 35.7% and 11%, respectively. Also, these enhancements affect the total

violation time and penalty of the job schedules in each individual queue of each tier. For

instance, the total violation time of Q1,1 (17 jobs) shown in Figure 5.6b is reduced by 40.5%,

which accordingly reduced the SLA violation penalty of jobs in the queue by 29.5%.

5.3.4 Comparison of the Approaches

Figure 5.7 and Table 5.5 contrast the performance of the scheduling approaches with respect

to the total service-level violation time of jobs. The initial job schedules in the resource

queues, and by implication, that of the system virtualized and segmented queues are the

same. The WRR-based scheduling of jobs entails 3,812 units of violation time, whilst the

WLC-based scheduling entails 3,563 units of violation time (as shown in Table 5.5). The

scheduling approach along with the system virtualized queue and segmented queue genetic

solutions are applied to efficiently find optimized schedules that reduce the service-level

violation time of jobs at the multi-tier level.

Table 5.5: Total SLA Violation Time

Multi-Tier

ωPTi,j Based Scheduling

Multi-Tier

ωALi Based Scheduling
WLC WRR

System

Virtualized Queue
Segmented Queue

System

Virtualized Queue
Segmented Queue

1859 2495 2363 2700 3563 3812

The multi-tier-based scheduling with respect to the total waiting allowance ωALi along

with the segmented queue genetic solution entail 2,700 units of violation time, a 29% re-

duction compared with the WRR strategy and 24% reduction compared with the WLC
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strategy. For the system virtualized queue genetic setup, the multi-tier ωALi based schedul-

ing produces job schedules that entail 2,363 units of violation time, which is a reduction

of 38% compared with the WRR strategy and 34% compared with the WLC strategy.

In contrast, the multi-tier-based scheduling with respect to the differentiated waiting

time allowance ωPTi,j generally produces better performance than the multi-tier ωALi based

scheduling. The ωPTi,j based scheduling along with the system virtualized queue genetic

solution produces job schedules that entail 1,859 units of violation time, a reduction of

51% compared with the WRR strategy and 48% compared with the WLC strategy. On

the other side of using the segmented queue genetic solution, the ωPTi,j based scheduling

entails 2,495 units of violation time, which yields 35% and 30% reductions compared with

the WRR and WLC strategies, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Comparison of the Approaches
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Figure 5.7 depicts the average and maximum waiting performance of the scheduling

strategies. However, the ωPTi,j based scheduling along with the system virtualized queue

genetic strategy shows the shortest average violation time and, therefore, the best per-

formance among all the strategies; approximately an average of 9 units of service-level

violation time. Using the segmented queue genetic solution, the ωPTi,j based scheduling

produces 13 units of average service violation time, which is close to the multi-tier ωALi
based scheduling used along with the system virtualized queue genetic solution that shows

approximately 14 units of average violation time. Nevertheless, the WRR and WLC job

scheduling strategies delivered inferior performance.

Furthermore, similar observations are in order with respect to the maximum waiting

performance. The WRR and WLC scheduling strategies produce the highest values of the

maximum violation time of jobs, approximately 37 units of violation time for the WRR

and 32 units of violation time for the WLC. The ωPTi,j based scheduling, used along with

the system virtualized queue genetic strategy, delivers the best performance in minimizing

the total service-level violation time and thus the lowest SLA penalty; a maximum of 16

units of violation time.

5.3.5 Conclusion

A penalty-driven approach is proposed to address the optimal scheduling and allocation

of jobs of various QoS obligations and computational demands in a multi-tier cloud en-

vironment. The approach employs the job’s waiting time and service-level violation time

to measure the penalty payable due to SLA violations, thus establishes a multi-tier-driven

framework for quantifying and facilitating the management of SLA penalty that a cloud

service provider can utilize to formulate penalty-based schedules.

80



The scheduling approach contemplates the impact of schedules optimized in a given

tier on the performance of schedules on subsequent tiers. The approach accounts for de-

pendencies between tiers of the cloud environment to produce minimum penalty schedules

at the multi-tier level. The performance of job schedules in a tier is optimized such that

the potential of shifting and escalation of SLA violation penalties are mitigated when jobs

progress through subsequent tiers.

The multi-tier-based biologically inspired genetic algorithm efficiently facilitates the

optimal scheduling of jobs, in a reasonable time. System virtualized and segmented queue

abstractions mitigate the operator complexities of the scheduling process at the multi-tier

level. Each queue abstraction represents a realization of an execution scheduling order

of jobs. The virtualized abstraction collapses and reduces the solution search spaces of

all queues of the multi-tier environment into a simple search space with one searching

operator, that helps using the PGA efficiently seek optimal job schedules at the multi-tier

level.

The scheduling approach employs the multi-tier waiting time allowance ωALi and the

differentiated waiting time allowance ωPTi,j of each job to make multi-tier-driven scheduling

decisions. Both experiments demonstrate the efficacy of the scheduling approach in opti-

mizing the performance of job schedules, thus minimizing the service-level violation time

and penalty payable by the cloud service provider at the multi-tier level. This scheduling

approach with respect to both types of waiting time allowances, along with the system vir-

tualized queue genetic solution, produces superior performance compared with the WRR

and WLC scheduling strategies.

However, the penalty model treats the violation penalty of different job waiting times

to be identical. In fact, jobs of equal waiting times might not necessarily be similar in

QoS penalty as such jobs tend to have different sensitivities to waiting and SLA violation.
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As such, it is imperative to design a penalty model that accounts for various QoS penalty

classes, so that the performance of schedules is optimized at the tier and multi-tier levels

to reflect such sensitivities.

5.4 Summary

This chapter presents a penalty-driven job scheduling and allocation approach that opti-

mizes performance at the multi-tier level to produce multi-tier-driven minimum-penalty

schedules. A system queue virtualization design scheme is presented. A biologically in-

spired genetic algorithm supported with the virtualized and segmented queue abstractions

efficiently seeks (near-)optimal schedules at the multi-tier level. The experimental results

demonstrate the effectiveness of the proposed approach in optimizing the performance

under various load conditions and in comparison with other commonly used approaches.

82



Chapter 6

SLA-Driven Load Scheduling in

Multi-Tier Cloud Computing:

Financial Impact Considerations

Cloud service providers strive to maintain the highest QoS provided to clients, so as to

maintain client satisfaction. The more satisfied the clients, the higher the likelihood they

will choose the cloud service provider to execute their demands. However, cloud jobs often

differ with respect to delay tolerance. Certain tasks are time-critical and, hence, cannot

tolerate execution delays. Take, for example, the first notice of a loss application. Once

a vehicle gets into an accident, an on-board system detects and sends the accident data

to the cloud service provider to process and determine accident location severity, and as a

result, notify the appropriate police department. Any delay in processing these data leads

to catastrophic consequences. Thus, the SLA that governs this application produces severe

penalties reflective of these consequences.
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Therefore, the cloud service provider must ensure resource availability for these tasks

under all circumstances. Availability has to be a function of the SLA impact associated

with these jobs. Cloud service providers must formulate cost-optimal schedules that ac-

count for the differentiated impact of delays in executing client jobs to minimize potential

penalties due to such delays. A differentiated impact scheduling approach is proposed for

this purpose.

6.1 Differentiated Cost of Time-Based Scheduling

The excessive volume of client demands and the potential lack of adequate resource avail-

ability are critical situations for the cloud service providers. Priorities are, therefore, given

to jobs according to the impact of potential delays in their execution. Such priorities must

be reflected in the scheduling strategy in a way that ensures the financial viability of the

cloud service provider and, at the same time, high client satisfaction. The scheduling strat-

egy should leverage the available delay tolerance of client jobs so as to satisfy the critical

demands of delay intolerant jobs.

A unit of waiting time ωTi of job Ji would incur a differentiated financial service cost

ψi. Such situations demand the cloud service provider emphasize the notion of financial

penalty in the scheduling of client jobs so that schedules are computed based on economic

considerations. The service penalty cost ψi is assumed to follow a normal distribution with

a mean µ and variance σ.

ψi = N(µ, σ) (6.1)

The service time of job Ji is subject to an SLA that stipulates an exponential differen-
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tiated financial penalty curve ηi as follows:

ηi = χ ∗ (1− e−ν ψi
∑N
j=1 ω

βj
i,j ) (6.2)

As such, the total differentiated financial performance penalty cost of the job stream l

across all tiers is given by ϑ as follows:

ϑ =
l∑

i=1

ηi (6.3)

The objective is to find job orderings β = (β1, β2, β3, . . . , βN) such that the stream’s

total differentiated financial penalty cost ϑ is minimal:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
j=1

( ψi ω
βj
i,j ) (6.4)

To achieve this objective, the genetic algorithm formulation of the single-tier minimum

penalty job scheduling in Section 4.2 is employed. The job schedule of the virtual queue

of each tier is evolved to produce a schedule that holds a minimum differentiated financial

penalty cost ϑ. The fitness value fr,G of a chromosome r in a generation G used to evaluate

the cost of a potential schedule is formalized by the differentiated financial waiting penalty

of the job schedule, according to the scheduling order βj of jobs in each tier Tj.

fr,G =
l∑

i=1

(ψi ω
βj
i,j) (6.5)

The normalized fitness value Fr of each schedule candidate is computed as in Equa-

tion 4.8.
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6.2 Differentiated Cost of Time-Based Scheduling: A

Multi Tier Consideration

Consider a set of client jobs subject to a service deadline DLi. This deadline represents

a target completion time. Let C(t)i and αβi , respectively, be the target completion time

and service-level violation time of job Ji. A unit of SLA violation time αβi of the job Ji

at the multi-tier level of the environment incurs a differentiated financial SLA violation

cost ζi. The cost ζi of SLA violation at the multi-tier level is assumed to follow a normal

distribution with a mean µ and variance σ.

ζi = N(µ, σ) (6.6)

The service-level violation time αβi is subject to an SLA that stipulates an exponential

differentiated financial penalty curve ηi as follows:

ηi = χ ∗ (1− e−ν ζi α
β
i ) (6.7)

The total performance penalty cost ϑ of the stream l across all tiers is given by Equa-

tion 6.3 and, accordingly, the financial performance of job schedules is optimized such that

the differentiated SLA violation penalty is minimized at the multi-tier level.

The multi-tier waiting time allowance ωALi and differentiated waiting time allowance

ωPTi,j of each job Ji are used to optimize the financial performance of job schedules

at the multi-tier level of the environment. The objective is to find scheduling orders

β = (β1, β2, β3, . . . , βN) for jobs of each tier Tj such that the stream’s total differentiated

penalty ϑ is minimum, and thus the SLA violation penalty is minimum. The financially

optimal performance scheduling with respect to ωALi and ωPTi,j is formulated as:
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1. A Differentiated ωALi based Minimum Penalty Formulation:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
p=1

ζi (ωCX β
i,p − ωALi) (6.8)

2. A Differentiated ωPTi,j based Minimum Penalty Formulation:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
j=1

ζi (ωPX βj
i,j − ωPT i,j) (6.9)

To achieve these objectives, a genetic algorithm formulation of the multi-tier minimum

penalty job scheduling introduced in Section 5.2 is employed. The system virtual queue is

evolved to produce job schedules in resource queues of the tiers, so that the differentiated

SLA penalty cost ϑ is minimized at the multi-tier level. The fitness value fr,G of a chromo-

some r in a generation G used to evaluate the cost of a potential schedule is formalized by

the differentiated SLA violation penalty of the schedule, according to ordering β as follows:

fr,G =


∑l

i=1 ζi (ωCX β
i,p − ωALi), Differentiated Penalty ωALi based Scheduling∑l

i=1 ζi (ωPX βj
i,j − ωPT i,j), Differentiated Penalty ωPT i,j based Scheduling

(6.10)

The normalized fitness value Fr of each schedule candidate is computed as in Equa-

tion 4.8.

6.3 Experimental Work and Discussion of Results

The tier-based and multi-tier-based differentiated SLA-driven penalty scheduling are ap-

plied on the multi-tier environment. The differentiated service penalty cost ψi in Equa-

tion 6.1 for each job is generated using a mean µ of 1,000 cost units and a variance σ of

25. The penalty parameter ν is set to be ν= 0.01
1000

.
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(a) Differentiated Waiting Penalty in Virtual

Queue of 15 Jobs

 

 

 

 

 

 

 

 

 

 

 

(b) Differentiated Waiting Penalty in Virtual

Queue of 20 Jobs

 

 

 

 

 

 

 

 

 

 

 

(c) Differentiated Waiting Penalty in Virtual

Queue of 25 Jobs

 

 

 

 

 

 

 

 

 

(d) Differentiated Waiting Penalty in Virtual

Queue of 30 Jobs

Figure 6.1: Differentiated Waiting Penalty using Tier-Based Scheduling

6.3.1 Experimental Evaluation: Performance Penalty

The optimal schedule is the one with a minimum differentiated penalty cost. The penalty

cost performance of the proposed scheduling algorithm is mitigated. The effectiveness of

penalty cost-driven schedules that produce optimal enhancement and consider the perfor-

mance of the scheduling algorithm at the single-tier level is evaluated.
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Table 6.1: Differentiated Waiting Penalty using Tier-Based Scheduling

Virtual-Queue

Length

1 Initial2 Enhanced3 Improvement

Waiting Penalty Waiting Penalty Waiting % Penalty %

Figure 6.1a 15 38203 0.318 21168 0.191 44.59% 39.92%

Figure 6.1b 20 80039 0.551 46190 0.370 42.29% 32.85%

Figure 6.1c 25 130253 0.728 80532 0.553 38.17% 24.05%

Figure 6.1d 30 160271 0.799 102137 0.640 36.27% 19.88%

1 Virtual-Queue Length represents the total number of jobs in queues of the tier. For instance, the first entry of the

table means that the 3 queues of the tier altogether are allocated 15 jobs.

2 Initial Waiting represents the total waiting penalty of jobs in the virtual queue according to the their initial scheduling

before using the tier-based genetic solution.

3 Enhanced Waiting represents the total waiting penalty of jobs in the virtual queue according to the their final/enhanced

scheduling found after using the tier-based genetic solution.

The results reported in Table 6.1 and Figure 6.1 demonstrate the effectiveness of the

differentiated penalty-based scheduling in reducing total service penalty cost, at the vir-

tualized queue level. For instance, the penalty cost of the initial scheduling shown in

Figure 6.1a has a cost of 38,203 time units. The differentiated penalty scheduling algo-

rithm produces schedules that reduce this cost by 44.59%, to 21,168 units. Consequently,

the SLA penalty payable by the cloud service provider has also been improved by 39.92%,

a reduction from 0.381 for the initial scheduling to 0.191 for the enhanced penalty-based

scheduling.

In addition, the differentiated penalty-based scheduling demonstrates its effectiveness in

optimizing financial performance by formulating cost-optimal schedules at the individual-

queue level, as shown in Table 6.2 and Figure 6.2. For example, resource-3 (presented in

Figure 6.2c) demonstrates the efficacy of the penalty-based scheduling in improving the
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(a) Differentiated Waiting

Penalty in Resource-Queue 1

(8 Jobs)

 

 

 

 

 

 

 

 

 

 

 

(b) Differentiated Waiting

Penalty in Resource-Queue 2
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(c) Differentiated Waiting
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(13 Jobs)
 

 

 

 

 

 

 

 

 

 

 

(d) Differentiated Waiting

Penalty in Resource-Queue 1
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(e) Differentiated Waiting

Penalty in Resource-Queue 2
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(f) Differentiated Waiting

Penalty in Resource-Queue 3

(9 Jobs)

Figure 6.2: Differentiated Waiting Penalty using Queue-Based Scheduling

penalty cost of the job schedule by 25%, a reduction in cost from 36,344 to 27,126 time

units. As a result, the performance of the differentiated penalty cost of the queue-state is

optimized by 21.94%, reduced from 0.305 due to the initial scheduling order to reach 0.238

due to the improved differentiated penalty based schedule.

To contrast the financial performance of the scheduling strategies, Table 6.3 and Fig-

ure 6.3 evaluate the differentiated service penalty cost. The WLC and WRR entail a cost

of 3.65×106 and 3.9×106 time units, respectively. However, the virtualized queue and

segmented queue scheduling approaches show superior performance compared with WLC
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Table 6.2: Differentiated Waiting Penalty using Queue-Based Scheduling

Queue

Length

1 Initial2 Enhanced3 Improvement

Waiting Penalty Waiting Penalty Waiting % Penalty %

Resource 1 Figure 6.2a 8 37541 0.313 20431 0.185 45.58% 40.96%

Resource 2 Figure 6.2b 10 35853 0.301 24126 0.214 32.71% 28.85%

Resource 3 Figure 6.2c 13 36344 0.305 27162 0.238 25.26% 21.94%

Resource 1 Figure 6.2d 12 54202 0.418 33130 0.282 38.88% 32.60%

Resource 2 Figure 6.2e 8 62432 0.464 47481 0.378 23.95% 18.60%

Resource 3 Figure 6.2f 9 58319 0.442 44934 0.362 22.95% 18.09%

1 Queue Length represents the number of jobs in the queue of a resource.

2 Initial Waiting represents the total waiting penalty of jobs in the queue according to their initial scheduling before using

the segmented queue genetic solution.

3 Enhanced Waiting represents the total waiting penalty of jobs in the queue according to their final/enhanced scheduling

found after using the segmented queue genetic solution.

and WRR, yet show inferior performance in improving the service penalty cost compared

with the differentiated penalty-based scheduling approaches.

In fact, the differentiated penalty virtualized and segmented queue-based scheduling ap-

proaches produce schedules that improve service penalty cost. The differentiated penalty-

based scheduling of the segmented queue genetic approach reduces the service penalty

to a cost of 2.7×106 time units, demonstrating a superior performance compared with

WLC and WRR. In contrast, the differentiated penalty-based scheduling of the virtual-

ized queue genetic approach optimizes financial performance by reducing service penalty

cost to 2.4×106, demonstrating the best financial performance compared with the other

scheduling strategies.

Overall, single-tier-driven differentiated penalty scheduling produces schedules that en-
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Figure 6.3: Maximum Differentiated Waiting Penalty Performance Comparison

Table 6.3: Total Differentiated Waiting Penalty

Differentiated Penalty

Virtualized Queue

Differentiated Penalty

Segmented Queue

Virtualized

Queue

Segmented

Queue
WLC WRR

2423344 2709716 2976390 3004961 3652770 3899232

hance financial performance. The virtualized queue and segmented queue genetic ap-

proaches employed in the scheduling process demonstrate their effectiveness in efficiently

facilitating the search for financially performance-optimal schedules at the tier-level and

individual queue-level of the tier, respectively.
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6.3.2 Evaluation of Differentiated Scheduling: Multi-Tier Con-

siderations

This is concerned with formulating performance-optimal schedules that produce a mini-

mum differentiated SLA penalty at the multi-tier level. The experiments are conducted

using the system virtualized queue and segmented queue genetic scheduling, explained in

section 5.3. The QoS penalty function fr,G of the multi-tier genetic scheduling in Equa-

tion 6.10 is used instead of the QoS fitness function of the genetic scheduling in Equa-

tion 5.15. Thus, the penalty function evaluates the effectiveness of schedules to reach an

optimal financial performance by minimizing the differentiated multi-tier SLA penalty.

Table 6.4: Differentiated SLA Penalty using Multi-Tier ωALi Based System Virtualized

Queue Scheduling

Number

of Jobs

1 Initial2 Enhanced3 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 6.4a 69 446183 1.66 262387 1.35 41.19% 18.38%

Tier T1, Figure 6.4b 40 327232 0.96 193614 0.86 40.83% 11.05%

Tier T2, Figure 6.4c 29 118951 0.70 68773 0.50 42.18% 28.51%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. The multi-tier environment contains 69 jobs

in total. The 3 queues of tier-1 and tier-2 are allocated 40 and 29 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized

queue genetic solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using

the system virtualized queue genetic solution.

The results shown in Table 6.4 and Figure 6.4 represent a system-state of a multi-tier

environment that is allocated 69 jobs; 40 jobs are allocated to tier T1 and 29 jobs are

allocated to tier T2. The differentiated multi-tier penalty ωALi based scheduling of the

93



 

 

 

 

 

 

(a) Differentiated SLA Penalty at System-Level (Total of 69 Jobs)

 

 

 

 

 

 

(b) Differentiated SLA Penalty in Tier T1

(40 Jobs)

 

 

 

 

 

 

(c) Differentiated SLA Penalty in Tier T2

(29 Jobs)

Figure 6.4: Differentiated SLA Penalty using Multi-Tier ωALi Based System Virtualized

Queue Scheduling

system virtualized queue genetic approach has gradually reduced the SLA penalty cost.

The differentiated ωALi based scheduling genetic evaluation function in Equation 6.10 is
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employed. The financial performance of the system-state is optimized by 41.19%, through

formulating an enhanced cost-optimal schedule that reduces the SLA penalty from a cost of

446,183 time units for the initial schedule to a cost of 262,387 time units for the improved

schedule computed at the multi-tier level. As such, the differentiated SLA penalty cost

payable by the cloud service provider has been improved by 18.38%, a reduction in the

penalty from 1.66 for the initial schedule to 1.35 for the improved cost-optimal schedule of

the system-state.

Similarly, the differentiated multi-tier penalty ωALi based scheduling of the segmented

queue genetic approach shows an improved financial performance on the system-state.

Cost-optimal schedules are formulated in each individual queue to efficiently reduce the

differentiated SLA penalty cost at the multi-tier level, as shown in Table 6.5 and Figure 6.5.

In a multi-tier environment allocated 75 jobs, the differentiated SLA penalty improves by

22.6% at the multi-tier level. The SLA penalty cost of the system-state has been reduced

from 2.14 for the initial schedule to reach 1.66 for the cost-optimal schedule.

In the same way, the financial performance of the differentiated multi-tier penalty ωPT i,j
based scheduling of the system virtualized queue genetic approach corroborates the finan-

cial performance of the former differentiated penalty ωALi based scheduling. Cost-optimal

schedules at the multi-tier level are also produced by the differentiated multi-tier penalty

ωPT i,j based scheduling of the segmented-queue genetic approach, which corroborates as

well the financial performance of the differentiated multi-tier penalty ωALi based scheduling

of the segmented queue genetic approach.

For instance, the SLA penalty of the system-state shown in Table 6.6 and Figure 6.6

is optimized at the multi-tier level by 22.05%, a reduction in the SLA penalty cost from

1.71 for the initial schedule to reach 1.33 for the improved schedule efficiently computed

by the differentiated multi-tier penalty ωPT i,j based scheduling of the system virtualized
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(a) Differentiated SLA Penalty at System-Level (75 Jobs)
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Figure 6.5: Differentiated SLA Penalty using Multi-Tier ωALi Based Segmented Queue

Scheduling
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Table 6.5: Differentiated SLA Penalty using Multi-Tier ωALi Based Segmented Queue

Scheduling

Number

of Jobs

Initial1 Enhanced2 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 6.5a 75 267775 2.14 196484 1.66 26.62% 22.60%

Resource R1,1, Figure 6.5b 9 39837 0.33 24775 0.22 37.81% 33.22%

Resource R1,2, Figure 6.5c 13 34988 0.30 25724 0.23 26.48% 23.17%

Resource R1,3, Figure 6.5d 10 30976 0.27 22281 0.20 28.07% 25.02%

Resource R2,1, Figure 6.5e 13 54131 0.42 44182 0.36 18.38% 14.56%

Resource R2,2, Figure 6.5f 16 57945 0.44 45633 0.37 21.25% 16.69%

Resource R2,3, Figure 6.5g 14 49899 0.39 33890 0.29 32.08% 26.83%

1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue

genetic solution.

2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the

segmented queue genetic solution.

queue genetic approach. In addition, the differentiated multi-tier penalty ωPT i,j based

scheduling of the segmented queue genetic approach improves the financial performance of

the SLA penalty by 25.35% at the multi-tier level, which reduces the SLA penalty cost of

the system-state from 1.8 for the initial schedule to 1.35 for the enhanced schedule shown

in Table 6.7 and Figure 6.7.

A comparison of the financial performance of the differentiated penalty-based schedul-

ing strategies in optimizing the differentiated SLA penalty cost at the multi-tier level is

presented in Table 6.8 and Figure 6.8. The differentiated multi-tier penalty ωALi based and

ωPT i,j based scheduling efficiently produce optimal schedules that reduce the SLA penalty

cost, using the system virtualized queue and segmented queue genetic scheduling solu-

tions. However, compared with the differentiated service penalty scheduling approaches,
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 (a) Differentiated SLA Penalty at System-Level (Total of 66 Jobs)

 

(b) Differentiated SLA Penalty in Tier T1

(35 Jobs)

 

(c) Differentiated SLA Penalty in Tier T2

(31 Jobs)

Figure 6.6: Differentiated SLA Penalty using ωPT i,j Based System Virtualized Queue

Scheduling

the multi-tier ωALi based and ωPT i,j based scheduling approaches demonstrate a superior

performance in reducing the SLA penalty cost.
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Table 6.6: Differentiated SLA Penalty using ωPT i,j Based System Virtualized Queue

Scheduling

Number

of Jobs

1 Initial2 Enhanced3 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 6.6a 66 412442 1.71 232573 1.33 43.61% 22.05%

Tier T1, Figure 6.6b 35 259880 0.93 153300 0.78 41.01% 15.29%

Tier T2, Figure 6.6c 31 152562 0.78 79273 0.55 48.04% 30.05%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. The multi-tier environment is allocated 66

jobs in total. The 3 queues of tier-1 and tier-2 are allocated 35 and 31 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized

queue genetic solution.

3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using

the system virtualized queue genetic solution.

Table 6.7: Differentiated SLA Penalty using ωPT i,j Based Segmented Queue Scheduling

Number

of Jobs

Initial1 Enhanced2 Improvement

Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 6.7a 57 216897 1.80 154844 1.35 28.61% 25.35%

Resource R1,1, Figure 6.7b 9 48050 0.38 37272 0.31 22.43% 18.45%

Resource R1,2, Figure 6.7c 9 45753 0.37 31513 0.27 31.12% 26.38%

Resource R1,3, Figure 6.7d 11 39447 0.33 32400 0.28 17.87% 15.10%

Resource R2,1, Figure 6.7e 10 32291 0.28 24992 0.22 22.60% 19.87%

Resource R2,2, Figure 6.7f 8 26630 0.23 15065 0.14 43.43% 40.18%

Resource R2,3, Figure 6.7g 10 24726 0.22 13601 0.13 44.99% 41.95%

1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue

genetic solution.

2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the

segmented queue genetic solution.
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(a) Differentiated SLA Penalty at System-Level (57 Jobs)
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Figure 6.7: Differentiated SLA Penalty using ωPT i,j Based Segmented Queue Scheduling
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Table 6.8: Total Differentiated SLA Penalty

Differentiated Penalty Multi-Tier

ωPTi,j Based Scheduling

Differentiated Penalty Multi-Tier

ωALi Based Scheduling

Multi-Tier

ωPTi,j Based Scheduling

Multi-Tier

ωALi Based Scheduling
WLC WRR

System

Virtualized Queue

Segmented

Queue

System

Virtualized Queue

Segmented

Queue

System

Virtualized Queue

Segmented

Queue

System

Virtualized Queue

Segmented

Queue

1431984 1800853 1589481 1897843 2074843 2521244 2228040 2692282 3559464 3805631

Differentiated multi-tier penalty ωALi based scheduling of the segmented queue genetic

approach reduces the SLA penalty by approximately 47% compared with WLC and 50%

compared with WRR; however, it shows an inferior financial performance compared with

the differentiated multi-tier penalty ωPT i,j based scheduling of the segmented queue genetic

approach. In contrast, differentiated multi-tier penalty ωALi based scheduling of the system

virtualized queue genetic approach produces schedules that entail a cost of 1.59×106 time

units of the SLA penalty at the multi-tier level, a reduction of 55% and 58% compared with

WLC and WRR strategies, respectively. Superior financial performance is demonstrated

in the differentiated multi-tier penalty ωPT i,j based scheduling of the system virtualized

queue genetic approach, which produces schedules that reduce the SLA penalty to around

a cost of 1.43×106 time units.

6.3.3 Conclusion

An SLA-driven scheduling approach is proposed to tackle the differentiated penalty of

delay-sensitive jobs in a multi-tier cloud computing environment. The notion of financial

penalty in scheduling client jobs is emphasized so that schedules are effectively produced

based on economic considerations. Job treatment regimes are devised in a differentiated

QoS penalty model, in order that the cloud service provider computes schedules that

capture the financial impact of job violation on the QoS provided. Optimal financial
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Figure 6.8: Comparison of the Approaches

performance is delivered to clients who cannot sustain the cost of SLA violations and

delays. Scheduling is conducted using the proposed meta-heuristic approaches, the system

virtualized and segmented queue-based genetic solutions, to facilitate optimal scheduling

of jobs on resource queues of tiers.

Cost-optimal schedules are formulated to reduce the penalty cost of SLA violations of

client jobs that are embarrassingly costly to delay, accordingly maximize client satisfactions

and thus loyalties to the cloud service provider. The schedules maintain a balance between

providing the highest QoS to clients and ensuring an efficient system performance with a

reduced operational cost, thus fulfilling the different QoS expectations and mitigating their

associated commercial penalties. It is shown that the financial performance of the system

is improved and the SLA penalty cost is reduced, under different SLA commitments of

client jobs.
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6.4 Summary

This chapter presents a differentiated penalty scheduling and allocation approach for multi-

tier cloud environments. The approach employs the proposed virtualized and segmented

queue abstractions to efficiently seek financially (near-)optimal schedules. The approach

demonstrates its effectiveness in improving the financial performance of the system by

producing minimum-penalty schedules.
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Chapter 7

Conclusion and Future Directions

The problem of workload scheduling and balancing in the multi-tier cloud computing en-

vironment is tackled in this thesis. This chapter highlights the conclusion and future

directions.

7.1 Conclusion

This thesis presents a service-level-driven load scheduling and balancing framework that

enables the cloud service provider achieve improved performance and cost reduction. The

framework addresses the optimal scheduling and allocation of client jobs of various service

demands and QoS expectations on a limited number of cloud resources in a multi-tier

cloud environment. A penalty model is used to translate SLA violations of client jobs in

the multi-tier cloud environment into a quantifiable system penalty payable by the cloud

service provider. The SLA stipulates a penalty curve that depends on the total waiting

time and SLA violations of client jobs.
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The framework accounts for tier dependencies to tackle the complications of the multi-

tier cloud environment. The framework contemplates the performance impact of job sched-

ules formulated in a tier on the performance of job schedules of subsequent tiers, so that the

potential of shifting and escalation of SLA violations is mitigated when client jobs progress

through tiers of the cloud environment. Thus, the framework produces job schedules that

are performance-optimal at the multi-tier level.

The framework considers the system state to reflect the continuous changes of work-

loads in resource queues of tiers. Tier-specific characteristics are continuously monitored

and captured at run-time, including information about job schedules of client jobs at the

queueing level of the multi-tier cloud environment. Accordingly, scheduling and balancing

operators (reordering and migration) are employed to dynamically respond to workload

variations at run-time. Decisions of such operations are designed such that QoS obliga-

tions of client jobs are met at the tier and multi-tier levels of the cloud environment. Such

decisions reduce the waiting time and SLA violations of client jobs, thus decreasing the

likelihood of dissatisfied clients and their associated commercial penalties incurred by the

cloud service provider.

The dimensionality and complexity of the large search space of all possible job schedules

are mitigated by virtualizing resource queues of tiers into a single virtual queue, represented

as a cascade of resource queues. This virtual queue abstraction is proposed to facilitate

optimal scheduling at the tier and multi-tier levels. As such, the two operators are effec-

tively converged into simply a reorder operator that simplifies the solution formulation of

the PGA. The queue virtualization provides the system with the freedom to create new

scheduling options for each job by considering the relative execution time of the job with

respect to the utilization time of other resource queues of the tier. As a result, client jobs

are allowed to be migrated from a queue to another queue in the tier and, thus, scheduling
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decisions are taken globally at the tier-level.

A meta-heuristic approach based on PGA is proposed to efficiently find (near-)optimal

schedules for client jobs waiting in the resource queues, in a reasonable time. Given the

prohibitively large number of candidate schedules of a large volume of client jobs with

different computational complexities and QoS obligations, the proposed queue virtualiza-

tion and biologically inspired genetic approaches efficiently seek multi-tier-driven penalty-

minimum optimal schedules. The large space of possible schedules is efficiently explored

using a limited number of genetic iterations, producing improved QoS under different SLA

commitments and load conditions.

As well, the complexity of the virtual-queue grows exponentially which, at some large

volumes of loads, would negatively affect the decision of the genetic approach. Thus, the

proposed segmented queue genetic-based approach adopts the queue virtualization locally

at the individual queue level of the tier, which in turn makes a single-resource-driven

optimal schedule that considers the relative execution time of a job locally to its current

holding queue and separately of the utilization times of other resource queues of the tier.

The segmented queue genetic-based approach proves its effectiveness in minimizing the

waiting times of client jobs and their associated QoS commercial penalty in the multi-tier

cloud environment.

7.2 Future Directions

The management of workloads for execution in cloud computing environments still has

many challenges that should be investigated and addressed [35, 37, 100]. The main chal-

lenges are primarily relevant to the scalability of cloud resources in responding to workload

variations at run-time [29, 96, 136]. The scalability mainly involves formulating optimal
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schedules of workloads for execution on cloud resources, to efficiently accommodate the

growth of such workloads on the allocated resources. This section presents future direc-

tions to improve and extend the functionalities of the framework.

Energy-Efficient QoS-Aware Schedules

A cloud data center has many resources to execute various client demands [63, 67, 107].

Cloud data centers of service providers (e.g., Google, Yahoo, Facebook, and Amazon)

typically demand a huge amount of energy to fulfill different computational needs and QoS

expectations of client jobs [68, 69, 152]. A sustainable cloud computing environment would

reduce the energy cost required to run cloud data centers [1, 76, 145]. Due to its impact

on system performance, energy saving has therefore become of paramount importance in

cloud computing [14, 49, 116, 153].

However, on one hand, a cloud client typically demands a service with fast response

time and minimum energy consumption. On the other hand, the cloud service provider

strives to effectively meet SLA obligations of clients while employing cloud resources that

service client demands with the least operational energy cost. Furthermore, reporting real-

time data from client devises to be processed in a cloud service provider creates a tier that

incurs communication delays and QoS penalties. This tier might even involve multiple

interior tiers to process such data before reaching the multi-tier environment at the cloud

service provider side.

As such, a major challenge of cloud service providers is maintaining a maximum energy

efficiency (minimum consumption) while ensuring high system performance to fulfill the

different QoS expectations in executing client jobs of varying computational demands. Any

imbalance in managing these conflictive objectives may result in failing to meet QoS obli-
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gations of clients and, thus, financial penalties on the cloud service provider. Accordingly,

it is required to propose scheduling approaches that aim for not only fulfilling QoS obliga-

tions of clients, but also producing multi-tier-driven energy-efficient optimal schedules with

minimal SLA penalties on the cloud service providers and clients. This situation shows one

of the future values of the proposed SLA-driven load scheduling and balancing framework

which can be leveraged and extended to incorporate communication/computation cloud

energy models that reflect the complexity of the new tiers of such environments.

Workload Prediction Models

Cloud computing, as a large-scale environment, typically experiences variant workloads

that dynamically increase and decrease at run-time [39]. Cloud resources are often over-

loaded with client jobs, thus leading to a demand for effective approaches that proac-

tively predict and react to such variations. The framework’s functionalities can be ex-

tended to handle workload prediction and resource (de-)allocation in the cloud environ-

ment at run-time. Statistical models can be used to estimate the current and future

workloads [34, 127, 133], so as to help decide the optimal resource (de-)allocation in ad-

vance [17, 22, 23].

The commonly used models in the literature are Moving Average, Simple Exponential

Smoothing, and Auto-Regressive Integrated Moving Average (ARIMA) [55, 84, 115, 134].

Such approaches can make fast prediction response when applied to simple systems [46, 95,

125], however, they would not behave effectively when applied to large-scale systems such

as cloud computing environments. In a complex, multi-tier cloud environment, it is not

feasible to maintain an accurate prior knowledge of the performance parameters of client

jobs at run-time. Furthermore, existing approaches often treat the system as a blackbox

by only modeling the relationships between input and output parameters. However, the
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current system state at the queueing level is not accurately considered to make workload

prediction decisions. Instead, the tail of workload distribution is often used to predict

future workloads, which typically makes the prediction inaccurate because it disregards

the workload history.

It is required to propose a bottleneck prediction approach that mainly computes the

current system state at the queueing level of the multi-tier environment and thus make

dynamic prediction decisions at run-time. The QoS obligations of client jobs can be used to

identify the bottleneck state. The likelihood of dissatisfied clients and their associated QoS

commercial penalties can be periodically calculated to decide the amount of bottlenecks

(backlog) in the tier, thus to accordingly decide the optimal resource (de-)allocation that

tackles such bottlenecks and reduces SLA violations at the multi-tier level.

Dynamic Resource (De-)Allocation Models

Client jobs are demanding computationally and often require a large number of cloud

resources, yet demand a fast service response time so as to achieve client satisfactions with

minimal SLA violations. The workload of client jobs often increases suddenly causing huge

bottlenecks and execution difficulties on cloud resources. Such resources might not be

adequate to guarantee service of such workloads, thus leading to SLA violations.

Cloud service providers often adopt a static resource allocation strategy that concen-

trates on service availability guarantees with less focus on performance. The static strategy

allocates resources to meet the worst-case scenario of workload demands and thus handles

all client jobs, yet yields a cloud computing environment that is significantly costly to

acquire and operate. This static strategy leaves cloud resources under-utilized when the

workload level is below the worst-case workload scenario.
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However, independent per-tier dynamic strategies are also adopted to frequently (de-

)allocate cloud resources in each tier, to avoid drawbacks of the static allocation. But, the

performance of (de-)allocating cloud resources in existing strategies is not optimized at

the multi-tier level of the cloud environment. A resource allocation strategy is required to

complement the former prediction strategy so as to tackle optimal (de-)allocation of cloud

resources at the multi-tier level, such that QoS obligations of client jobs are fulfilled and

their associated commercial penalties are mitigated.
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