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Abstract 

There are many cases where the elastic modulus of a structural member will vary longitudinally, 

such as when a steel column is heated by fire. In such a case, the fire can compromise the 

integrity of the structural frame. It is therefore necessary in stability analysis to accurately 

analyze members with longitudinally varying elastic modulus. A new analytical method is 

derived to evaluate the stability of an unbraced steel frame containing members that each consist 

of up to three segments of differing elastic modulus. The method is presented in the form of a 

lateral stiffness equation, which characterises the loss of stability in a frame when its lateral 

stiffness diminishes to zero. The proposed method is also demonstrated via a numerical example 

by analyzing the case of a post-blast explosion fire whereby the insulation along a segment of 

any member is damaged. A scenario analysis was also conducted to identify the most vulnerable 

location in a frame, whereby the damage to insulation resulting from a blast causes the greatest 

reduction to the fire resistance. From a design standpoint, the most vulnerable locations can be 

identified and further protected to improve safety. The proposed method provides more accurate 

assessments of frame stability in cases where elastic modulus vary longitudinally in members, 

and is validated via finite element analysis. 

Keywords: fire; stability; steel frame; unbraced; storey-based; segment; stepped; temperature 

distributions; semi-rigid; insulation damage 

The final publication is available at Elsevier via https://doi.org/10.1016/j.engstruct.2019.05.064. © 2019. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



1 

1.  INTRODUCTION 1 

It is not uncommon for fires to occur in large buildings, especially those containing steel frames. 2 

As a result, the effect of fires on structural steel frames has frequently been modeled numerically 3 

in the past few decades [1-4]. However, due to the variable and unpredictable nature of fire, 4 

assumptions will always be necessary in numerical models. Very often, these assumptions 5 

include uniform member temperatures, such as in the cases of [1,5-6]. However, Xu and Zhuang 6 

[3] demonstrated that the stability calculations of a steel frame can be significantly affected when 7 

a two-stepped temperature distribution is modeled in its columns, rather than assuming uniform 8 

temperature. The reason for using two-stepped columns is that room fires exhibit higher 9 

temperatures near ceilings and lower temperatures near floors [3]. As such, the assumption of 10 

two-stepped members is a progressive step towards realistic modelling of non-linear temperature 11 

distributions in columns. Presented in this paper is a new methodology that evaluates the storey-12 

based lateral stability of an unbraced steel frame and extends the use of stepped members 13 

towards applications where both columns and beams in a frame contain up to three segments of 14 

differing temperatures. The presence of multiple segments of varying temperatures in members 15 

of a frame can result from various fire scenarios, such as when fires initiate closer to one side of 16 

a compartment, or when insulation is damaged during a post-earthquake or explosion fire. 17 

Furthermore, an approach is presented for determining the individual buckling load three-stepped 18 

column, which is the upper limit for the applicability of the lateral stiffness equation [7]. The 19 

proposed method is demonstrated via numerical example whereby the damage to insulation due 20 

to a blast explosion is modelled as a segment along any members of a frame. The heating of the 21 

frame in fire until failure under various blast explosion scenarios is modelled to determine the 22 

location in the frame whereby the blast results in the highest reduction to its fire resistance.  23 
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2.  BACKGROUND 24 

The proposed method is in the form of a storey-based stability problem. The concept of storey-25 

based stability was initiated by Yura [8], who noted the fact that lateral instability could only 26 

occur with all columns in the frame buckling simultaneously, and that structural frames perform 27 

better when considered in whole over its individual members. Subsequently, LeMessurier [9], 28 

Lui [10] and Aristizabal-Ochoa [11] have developed matrix methods for the storey stability 29 

analysis of steel frames. Xu [12] later derived the lateral stiffness equation for a frame subjected 30 

to axial loading with considering P-∆ effects. Recently, Xu and Zhuang [3] extended Xu’s 31 

method [12] to include members with elevated temperatures under fire, including columns 32 

containing two temperature zones along their lengths. However, the method proposed by Xu and 33 

Zhuang [3] does not apply for more complicated thermal distributions in the frame members, 34 

such as in the case of a large compartment containing a localized fire or travelling fire [4], or 35 

when considering the effects of insulation delamination at plastic hinges caused by seismic 36 

loading [13-16]. To account for all of these considerations, the proposed method is in the form of 37 

a lateral stiffness equation for a storey frame with members containing up to three segments of 38 

uniform temperatures. Note that the purpose of this paper is not to detail the modelling process 39 

for any specific fire scenario, but to propose a method for assessing the lateral stability assuming 40 

that the temperatures in each segment of each member have been determined via other analyses. 41 

A variety of analysis approaches are already available to determine the temperatures and 42 

deformation of steel members in fire, such as the use of finite element modelling [14] or other 43 

numerical procedures such as [5,17-18]. 44 

 45 

 46 
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3.  PROPOSED MODEL 47 

Consider the 2D storey frame with n bays shown in Fig. 1. All frame members consist of three 48 

segments with different temperatures, assumed to be uniform within the segments. For columns, 49 

the lower, middle, and upper segments are denoted by the primary subscripts l, m, and u, 50 

respectively. For beams, the left, middle, and right segments are denoted by the primary 51 

subscripts L, M, and R, respectively. The beams and bays are numbered with primary subscripts 52 

from 1 to n, and columns are numbered with secondary subscripts from 1 to n+1. 53 

 54 

Figure 1 – Schematic of unbraced storey frame with three-segmented members  55 

The temperatures and lengths of each member are denoted in Fig. 1 by the variables T and L, 56 

respectively. Let the subscripts i and j correspond to the primary subscript of the columns and 57 

beams in the frame, respectively. Ic,i and Ib,j are the moments of inertia of column i and beam j, 58 

respectively. The moment of inertia is assumed to be constant over the entire length of each 59 

member. Let Lc,i = Lu,i + Lm,i + Ll,i be the height of column i, and Lb,j = LL,j + LM,j + LR,j be the 60 

length of beam j. The frame is subjected to prescribed gravity loads, Gi. The Eurocode 3 [19] 61 

method was adopted to model the degradation of the members due to elevated temperature, and 62 
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considers the tangent modulus of elasticity as a function of the axial load, P, and temperature, T, 63 

given in Eq. (1).  64 
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Where E0 is the elastic modulus of the segment at ambient temperature and μ is the degradation 66 

factor for the elastic modulus. σ and ε are the stress and strain in the segment, respectively, and a  67 

and b are coefficients defined in Euroocde 3 [19]. Ea, fp and fy are the modulus in the linear 68 

elastic range, proportional limit and yield stress, respectively, also defined in Eurocode 3 [19] 69 

and are functions of the temperature. Note that the proposed methodology can be extended to 70 

account for non-fire scenarios, where E0 can be any reference elastic modulus, and μ can be 71 

directly specified based on the relative elastic modulus in each segment. 72 

3.1 End Fixity Factors for Three-Segment Members 73 

All connections in the frame are generalized as semi-rigid connections. The end fixity factor 74 

concept established by Monforton and Wu [20] was employed to model the rotational stiffness of 75 

these connections. The end fixity factor, r, is defined as the ratio between the rotation at the end 76 

of the member, α, and the combined rotation,  , of the member and the connection due to a unit 77 

end-moment, as shown in Fig. 2. 78 

  79 

Figure 2 – Definition of End-fixity Factor 80 

Let the upper and lower end fixity factors of column i be denoted ru,i and rl,i, respectively. 81 

Similarly, let the end fixity factors at the corresponding ends of beam j be rL,j and rR,j, 82 
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respectively. The end fixity factors for members with three segments of constant elastic modulus 83 

are derived in Appendix C and are given in Eqs. (2a) and (2b), respectively, for the columns and 84 

beams in the frame. 85 
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Where R is the rotational stiffness of the connection at the corresponding end subjected to 88 

elevated temperature and τ is an adjustment factor given in Eqs. (4) to account for the different 89 

temperatures in the segments. Note that for semi-rigid connections subjected to elevated 90 

temperature, R can be adjusted via a reduction factor, kR, in Eqs. (3) [21]. 91 

 0)( RkTR RR   (3a) 92 

 01
0

 RR T
R

m
k  (3b) 93 

Where R0 is the rotational stiffness of the connection at ambient temperature and TR is the 94 

elevated temperature of the connection. For the purpose of simplicity, TR may be taken as the 95 

temperature of the nearest member segment. The value of kR can be obtained by correlations 96 

based on the experimental data in Al-Jabri et al. [22], whereby it is shown for various types of 97 

connections that the rotational stiffness parameter in the Ramberg-Osgood [23] rotational 98 

stiffness is linearly correlated with temperature. Based on the experimental results, the linear 99 

stiffness reduction slope factor, m, ranges between 1×10
4
 and 6×10

4
 Nm/°C [22]. Note that for 100 

idealized connections (R = 0 or R = ∞, corresponding to r = 0 or r = 1), the rotational stiffness is 101 

unaffected by temperature when using Eq. (3). 102 
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The end fixity factors in Eqs. (2) differ from those derived by Monforton and Wu [20] in that 103 

they consider members with three segments via a τ factor, which accounts for the differences in 104 

temperatures in each segment and is defined in Eqs. (4a) and (4b) for columns and beams, 105 

respectively.  106 
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Where μ is the degradation factor accounting for the effect of elevated temperatures on the 109 

elastic modulus in the corresponding segment of the member, obtained from Eq. (1). Note that 110 

Eqs. (4) extend the case of two-segmented members derived by Xu and Zhuang [3] to include 111 

three-segmented members. Therefore, the value of the end fixity factor varies based on the 112 

temperature of the segments of the members, as well as the axial load if the segment is in the 113 

non-linear elastic range. Note that R = 0 for an idealized pinned connection, and R = ∞ for a 114 

fixed connection. Similarly, r = 0 for a pinned connection, and r = 1 for a fixed connection.  115 

Where multiple beams are connected to the end of column, R is given as the sum of contributions 116 

from the beams in Eq. (5).  117 

 



l

l

l

u

u

u

m

j

jiil

m

j

jiiu RRRR

1

,,

1

,, ;  (5) 118 



7 

Where Ru,i and Rl,i are the rotational stiffness of the upper and lower end connections, 119 

respectively. mu and ml are the number of beams connected to the upper and lower ends of 120 

column i, respectively. The rotational resistance provided by beam j to column i at the 121 

corresponding end, Ri,j, can be calculated using Eq. (6), with the corresponding derivation shown 122 

in Appendix D. 123 
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In which the subscript N refers to the near end of beam j connected to column i, and the subscript 125 

F refers to the far end of beam j connected to column i. These subscripts are to be replaced by 126 

the subscripts L and R as necessary. The values of μN, μM, and μF for the corresponding segments 127 

are obtained from Eq. (1), and vNF is the ratio between the near end and far end connection 128 

rotations and corresponds to the buckling shape which needs to be assumed in advance in order 129 

to simplify the problem for analytical solutions [24]. It was demonstrated by Xu & Liu [24] that 130 

assuming vNF = 1 gives accurate estimations of results and corresponds to the asymmetric 131 

buckling mode. The coefficients λA, λB, λC, and λD are given in Eqs. (7a) through (7d) and are 132 

defined such at λA = λD = 1 and λB = λC = 0 in the case of a single segment beam with uniform 133 

ambient temperature (μN = μM = μF = 1). The coefficients λNN and λNF depend on the temperatures 134 

and lengths of each segment of the member, given in Eqs. (7e) and (7f). 135 

 FNRMLA    (7a)  136 

  FMNNNFB   4  (7b)  137 

  FMNFFNC   4  (7c)  138 
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 142 

Where the coefficients κN and κF also depend on the temperatures and lengths of each segment of 143 

the member and affect the coefficients λB, λC and λD, given in Eqs. (8). 144 
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Note that for single segment beams under uniform ambient temperature conditions (μN = μM = μF 147 

= 1), Eq. (6) converges to the equation for Ri,j derived by Monforton and Wu [20]. Where no 148 

other members contribute to the rotational rigidity of the end connection of a member, the end 149 

fixity factor at the corresponding end may be calculated using Eqs. (3). Expressing this in terms 150 

of the end fixity factor at ambient temperature gives Eq. (9) below.  151 
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R
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  (9) 152 

Where r is the end fixity factor at the condition-specified end, τ is the corresponding factor in Eqs. 153 

(4), and r0 is the end fixity factor of the corresponding end under ambient temperature conditions. 154 

Note that in the cases of pinned connections (r0 = 0) and fixed connections (r0 = 1) at ambient 155 

temperatures, the resulting end fixity factors at elevated temperatures remain unchanged (r = r0). 156 

3.2 Thermal Restraints 157 

The total axial load of column i experiencing elevated temperatures can be expressed as Pi = Gi 158 

+ Hi, with Gi being the applied gravity load and Hi being the additional axial load induced by 159 

restraint against thermal strains. Hi can be taken as zero where there are no physical restraints 160 

against thermal strains, or calculated using the procedure in Appendix A for restrained columns. 161 

3.3 Storey-based Lateral Stiffness 162 

In the proposed method, the storey-based lateral stiffness of the frame in Fig. 1 is calculated to 163 

evaluate the frame’s stability. The lateral stiffness of the frame is its ability to resist lateral 164 

deformation under given loading conditions, and is defined as the lateral force required to cause 165 

a unit lateral displacement of the storey. The frame becomes unstable when the lateral stiffness 166 

of the storey reaches zero [3,12]. 167 

In order to evaluate the lateral stiffness of an unbraced frame with three-segmented members, the 168 

lateral stiffness of a single three-segmented column illustrated in Fig. 3 must first be derived. For 169 

purposes of clarity, the subscript i is removed from Fig. 3 and subsequent equations referring to 170 

the variables and properties of this individual column. In order to account for P-∆ effects, the 171 

axial load P is also applied to the column. 172 
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 173 

Figure 3 – Single Three-Segment Column subjected to Second Order Effects 174 

A lateral load, Y, is assumed to act at each end of the column. The transverse deflection 175 

coordinates yl(x), ym(x), and yu(x) apply to the corresponding segments of the member. The 176 

rotational springs at each end of the column produce end moments Mu and Ml as per Eqs. (10).  177 

 uuu RM   (10a) 178 

 lll RM   (10b) 179 

Where the rotational stiffnesses of the upper and lower connections, Ru and Rl, respectively, can 180 

be obtained from Eqs. (3). Based on external equilibrium, Eq. (11) must be satisfied.  181 

  PYLMM clu  (11) 182 

Based on internal equilibrium via the method of sections, the internal bending moments in the 183 

three segments of the column are given in Eqs. (12).  184 
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   lll
l
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2
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 (12a) 185 

   mllml
m

cl LLxLYxxyPM
dx

yd
IE  ;)(
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 (12b) 186 

   cmlul
u

cl LxLLYxxyPM
dx

yd
IE  ;)(

2

2

 (12c) 187 

The system of differential equations in Eqs. (12) can be solved by applying the eight boundary 188 

and compatibility conditions in Eqs. (13), in addition to the external moment equation in Eq. (10).  189 

 0)0( ly  (13a)  190 

 )( cu Ly  (13b) 191 

 lly )0('  (13c) 192 

 ucu Ly )('  (13d) 193 

 )()( lmll LyLy   (13e) 194 

 )()( mlumlm LLyLLy   (13f)  195 

 )(')(' lmll LyLy   (13g) 196 

 )(')(' mlumlm LLyLLy   (13h) 197 

Eqs. (13a) through (13d) are boundary conditions at the ends of the column, whereas Eqs. (13e) 198 

through (13h) are compatibility conditions that define deformation continuity between each 199 

segment of the column. Based on the solution to the system of differential equations in Eqs. (12), 200 

the lateral stiffness of the column is equal to Y /∆, which is expressed in Eqs. (14).  201 
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Where the coefficients a1 through a5 are given in Eqs. (15). 204 

 umlulumlumumlmlumlm CSCCCSSCCSSSa   2
1  (15a)  205 

 umlulumlumlumlumlumluml SSSSCCCSCCCSa 22222
2    (15b) 206 

 umlumlumlulumlmlumlml CCCCSSSSCSCSa   222
3  (15c) 207 

 umlumlumlumumlumumlul CCCCSSSCSSSCa   222
4  (15d)  208 

 umlaaa 2435   (15e)  209 
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in which the modified loading coefficients l , m  and u  are related to the axial load factor of the 210 

column,  , and modified by the degradation factor μ of the corresponding segment due to 211 

elevated temperature. Sl, Sm, Su, Cl, Cm and Cu are all trigonometric functions of the 212 

corresponding modified load coefficients associated with each segment of the member. These 213 

functions are given in Eqs. (16). 214 
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Assuming that all of the columns of the storey experience the same deflection, the lateral 218 

stiffness of a storey in the frame is the sum of the contributions of the individual columns, given 219 

in Eq. (17). 220 
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This assumption is valid where rigid floor systems are provided to render the beams inextensible. 222 

Eq. (17) is applicable as long as Pi is positive and does not exceed the critical load of the 223 

individual column, Pu,i, at which yielding of the section or rotational buckling occurs, shown in 224 

Eq. (18). 225 

 },min{0 ,,, iyibiui PPPP   (18) 226 

Where Py,i is the yielding load of the column equal to the product of the section area and the 227 

lowest yield stress in the column, and Pb,i is the rotational buckling load determined via 228 

Appendix B. 229 
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Note that the proposed method applies to one-storey frames. However, it can be extended for use 230 

in multi-storey frames either via the storey decomposition method proposed by Liu and Xu [25], 231 

whereby a multi-storey frame can be decomposed into individual stories for analysis using the 232 

storey-based stability approach. The equivalent rotational stiffness of the column connections 233 

can be computed at each storey level, and instability is defined to occur when the product sum of 234 

the lateral stiffness in each storey diminishes to zero.  235 

3.4 Modelling of Nonlinear Temperature Distribution 236 

The proposed model using three-segment members can be applied towards different structural 237 

engineering applications. Most generally, if non-linear temperature distributions occur in the 238 

members, such temperature distributions can be represented using three segments in the 239 

proposed method, each with their own average temperatures.  Non-linear temperature 240 

distributions may result from localized fires, such as when a fire is located in a corner of a room, 241 

causing heating at ends of beams.  Also, since warm air rises, vertical gradients of temperatures 242 

are commonly observed in room fires [3]. Finally, yielding can occur near connections during 243 

seismic loading, causing localized loss of fire protection [14-16] and resulting in higher 244 

temperatures in the cross sections located in these areas during a post-earthquake fire. In the 245 

proposed method, the lateral stiffness of the frame can be calculated if the temperatures of every 246 

segment in each member are directly specified. This can be accomplished using any thermal 247 

analysis methods, such as the incremental time step method proposed by Pettersson et al. [17], or 248 

from finite element analysis. For example, Arablouei and Kodur [14] simulated the effects of 249 

localized insulation damage on temperatures in members segments by determining the relative 250 

temperatures between insulated and exposed steel obtained from finite element analysis. 251 

Relationships between the temperatures of different segments within the frame can therefore be 252 
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predicted with respect to the fire or reference temperature. In other words, the temperature of a 253 

given segment may be taken as a function of either a reference temperature or the duration of fire. 254 

3.5 Computational Procedure 255 

A summary of the procedure that can be followed to analyze the storey-based stability of frames 256 

with three-segmented members subjected to fire conditions using the proposed method is 257 

provided below. 258 

1. Specify the lengths of the segments in each member (Ll, Lm, Lu, LL, LM, LR). Determine 259 

other member properties (Ic, Ib) and specify vNF = 1 as necessary. 260 

2. Input the temperatures, Tk, of each segment in each member  261 

3. Input the specified gravity loads, Gi and calculate the thermal restraint forces, Hi, where 262 

applicable according to the procedure in Appendix A.  263 

4. Calculate the resulting degradation factors and elastic modulus (μ and E) using the 264 

Eurocode 3 [19] method in Eq. (1). Alternatively, E0 and μ can be specified manually. 265 

5. Calculate the end fixity factors for all ends of all members (ru, rl, rN, rF) using Eqs. (3). 266 

Note that for member ends not dependent on the rotational resistance of other members, r 267 

must be adjusted due to elevated temperature according to Eq. (9). 268 

6. Ensure that the values of Pi do not exceed Pu,i in Eq. (18). If Pu,i is exceeded then the 269 

column has failed locally via rotational buckling or yielding. 270 

7. Calculate lateral stiffness contribution, Si, for each column. The lateral stiffness, ΣS, is 271 

the summation of the lateral stiffness contribution from all columns in the storey frame in 272 

Eq. (17). If ΣS > 0 then the frame is stable. Instability analysis can also be performed by 273 

increasing either the applied gravity loads or temperatures of the members until 274 

instability occurs (ΣS = 0).  275 
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4.  NUMERICAL EXAMPLE 276 

A numerical example is provided to demonstrate the use of the proposed method towards a frame 277 

with three-segmented members in post-explosion fire scenarios. Explosions in buildings can 278 

cause local damages to insulation on members, and the lengths of the regions of damage can be 279 

modelled as segments of the members [14]. Moreover, explosions can ignite nearby fuel and 280 

cause room fires. Consider the two-bay frame shown in Fig. 4, where the sensitivity of the frame 281 

lateral stiffness to the location of insulation damage due to explosion blasts is analyzed. 282 

 283 

Figure 4 – Example two-bay unbraced storey frame subjected to post-explosion fire  284 

In each scenario, a blast is assumed to cause local delamination to a 1.0 m long segment at either 285 

an end or the middle of a member, followed by an ASTM E119 [26] fire, assumed to occur 286 

uniformly throughout the entire frame. The member subjected to insulation damage at an end or 287 

in the middle can conveniently be modelled as a two- or three-segment member, respectively. 288 

Note that single- and two-segment members are modelled as three-segment members with 289 
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identical properties in adjacent segments. The blast locations are numbered in Fig. 4 for each 290 

scenario (1 to 15). The scenarios are also compared to the case of a completely undamaged frame. 291 

The original thickness of insulation required to provide a nominal fire resistance of RN = 120 292 

minutes based on the prescriptive approach in Eq. (19) is applied on each member [27]. 293 

 
42/03.1

4.25




DW

R
t N

p  (19) 294 

Where tp is the thickness of the protective insulation (mm) required to provide the desired fire 295 

resistance rating, R (min), for a steel member with unit weight W (kg/m) and heated perimeter D 296 

(m). The density, thermal conductivity and heat capacity of insulation are assumed to be 400 297 

kg/m
3
, 0.12 W/mK and 1,500 J/kgK, respectively. The section properties are tabulated in Table 1. 298 

Table 1 – Member section properties in two-bay frame example 299 

Property  I A D W tp 

W200x36  34.1×10
6
 mm

4 
4,570 mm

2 
1.05 m 36 kg/m 39.4 mm 

W310x60  129×10
6
 mm

4
 7,610 mm

2 
1.40 m 60 kg/m 35.4 mm 

W410x67  245×10
6
 mm

4
 8,580 mm

2 
1.52 m 67 kg/m 34.9 mm 

 300 

The time-temperature relationships for the segments in each member subjected to the ASTM fire 301 

were computed using a 2D heat transfer finite element model in ABAQUS. The gas temperature 302 

is assumed to be uniform throughout the frame. Within the 1.0 m delamination length in each 303 

scenario, the insulation on one flange of the section is assumed to be removed. The density, 304 

thermal conductivity and heat capacity of steel are assumed to be 7,850 kg/m
3
, 40 W/mK and 305 

600 J/kgK, respectively. A convective heat transfer coefficient of h = 25 W/m
2
K and emissivity 306 

of 0.9 was assumed for all exposed surfaces. Quadratic heat transfer elements were used in the 307 

section meshes. As the blast damage can occur on any one of segment of the members in the 308 

frame, all of the sections in Table 1 are illustrated in Fig. 5 as protected with either damaged 309 

insulation (DI) and undamaged insulation (UI). 310 
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 311 

Figure 5 – Cross-sections of segments with damaged insulation (DI) and undamaged insulation (UI) 312 

The cross-sectional temperatures in the member segments under the these cases are plotted 313 

versus the duration and gas temperature of the ASTM E119 [26] fire in Fig. 6.  314 

 315 

Figure 6 – Time-temperature results from finite element analysis of segment cross-sections 316 

From Fig. (6), it is observed that when any section is subjected to damaged insulation its 317 

temperature is increased by up to 255°C over the course of the fire event compared to when it is 318 
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not damaged. The frame in Fig. 4 is subjected to the prescribed gravity loads shown, which are 319 

constant in the analysis. However, the columns are thermally restrained, and the additional axial 320 

forces in columns due to thermal expansion will be calculated according to Appendix A. As such, 321 

the internal axial forces, Pi, in the columns increase as the temperatures increase. Column 3 is 322 

rigidly connected to the ground (rl,3 = 1) while the other columns are pinned to the ground (rl,1 = 323 

rl,2 = 0). The ambient modulus of elasticity is E0 = 200 GPa. All beam-to-column connections are 324 

assumed to be semi-rigid end plate connections, with rN,0 = rF,0  = 0.493 for all beams in Eq. (8), 325 

which corresponds to ambient rotational stiffnesses of R0 = 19.56×10
6
 Nm. The linear stiffness 326 

reduction slope factor is taken as m = 2.88×10
4
 Nm/°C. The R0 and m parameters were selected 327 

based on a linear regression analysis of the results of Al-Jabri et al. [22] for Group 2 end plate 328 

connections.  The coefficient of determination for fitting the experimental data with the selected 329 

parameters was R
2
 = 0.97. As the duration of fire is increased, the lateral stiffness of the frame 330 

subjected to blast damages diminishes. The duration of fire at which lateral instability failure of 331 

the frame occurs, along with the maximum value of Pi/Pu,i at the time of failure, is listed for each 332 

of the scenarios in Table 2, where Pu,i is the rotational buckling load that varies with temperature. 333 

The failure times corresponding to two analyses are reported in Table 2: (1) with assuming 334 

asymmetrical buckling (vNF = 1) as necessary in the proposed method, and (2) with values of vNF 335 

calibrated at each beam-to-column connection based on an eigenvalue buckling analysis 336 

conducted in ABAQUS.  337 

Table 2 – Failure durations of fire in scenario analysis of frame subjected to post-explosion fires 338 

Scenario Damaged Location 
Failure Time 

(vNF = 1) 

Failure Time 

(vNF calibrated) 
(Pi/Pu,i)max 

U Undamaged frame 138.8 min 136.2 min P2/Pu,2 = 0.90 

1 Column 1, lower end 136.7 min 134.9 min P2/Pu,2 = 0.89 

2 Column 1, middle 129.9 min 128.8 min P1/Pu,1 = 0.85 

3 Column 1, upper end 131.8 min 130.2 min  P1/Pu,1 = 0.86 

4 Beam 1, left end 134.7 min 132.5 min  P2/Pu,2 = 0.87 
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5 Beam 1, middle 138.8 min 135.9 min  P2/Pu,2 = 0.90 

6 Beam 1, right end 138.4 min 136.3 min  P2/Pu,2 = 0.90 

7 Column 2, lower end 101.4 min 101.0 min  P2/Pu,2 = 0.99 

8 Column 2, middle 107.0 min 104.6 min  P2/Pu,2 = 0.97 

9 Column 2, upper end 109.7 min 109.7 min  P2/Pu,2 = 1.00* 

10 Beam 2, left end 138.1 min 136.5 min  P2/Pu,2 = 0.90 

11 Beam 2, middle 138.8 min 135.8 min  P2/Pu,2 = 0.90 

12 Beam 2, right end 130.6 min 128.6 min P2/Pu,2 = 0.85 

13 Column 3, lower end 107.6 min 103.7 min P3/Pu,3 = 0.78 

14 Column 3, middle 121.0 min 120.4 min  P3/Pu,3 = 0.98 

15 Column 3, upper end 120.9 min 120.7 min P3/Pu,3 = 0.98 

 * Denotes a value that is slightly below but rounds to unity 339 

To obtain the calibrated values for each scenario, the frame in Fig. 4 was modelled in ABAQUS 340 

by using B23 cubic Euler-Bernoulli (non-shear-deformable) wireframe elements in all members. 341 

The semi-rigid connections were also modelled using linear-elastic “Join + Rotation” connector 342 

section features, with temperature-dependent values of R. In the eigenvalue buckling analysis, 343 

the loads were proportionally assigned. The thermal restraints were considered by applying an 344 

additional factor to the gravity loads equal to the proportional increase in axial load experienced 345 

by the column due to the thermal restraints as calculated via the procedure in Appendix A. The 346 

time of failure corresponding to the calibrated vFN values in Table 2 were obtained via trial and 347 

error in changing the elastic modulus of the segments based on Eq. (1) and repeating the 348 

eigenvalue buckling analysis in ABAQUS until the critical applied gravity load factor of the 349 

frame corresponded exactly to the given applied loads. The calibrated values of vNF were then 350 

retrieved from the FEA model based on the rotational displacements from the buckled shape of 351 

the frame at the time of failure in ABAQUS. These values were inputted to the proposed method 352 

for re-analysis, and the failure times as determined using the proposed method with the 353 

calibrated values are presented in the corresponding column of Table 2. The resulting time of 354 

failure differed by at most only 0.02 minutes (0.015%) between the proposed method and the 355 

FEA model out of all the scenarios. Further to this, the time of failure obtained using the 356 
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calibrated vFN values in the proposed method were inputted into ABAQUS whereby the resulting 357 

critical load factor was calculated. The proportional load factors applied in ABAQUS were 1, 1 358 

and 1.5, corresponding to Columns 1, 2 and 3, respectively. As such, a critical load factor of 750 359 

kN would correspond to zero error between the FEA model and the proposed method. Out of all 360 

of the scenarios, the largest error in the critical load factor calculated in ABAQUS was only 361 

0.909 kN, and corresponded to a critical load factor of 749.091 kN. This difference of only 0.12% 362 

is negligible and may have resulted from interpolations used by ABAQUS on the temperatures 363 

located at nodes between adjacent segments, and/or truncation errors in the input form for the 364 

applied loads. Figs. 7 through 10 illustrate the buckled shapes of the frame in Scenarios U, 2, 7 365 

and 13, as obtained from the FEA model, respectively. Scenarios 2, 7 and 13 correspond to the 366 

minimum time of failure resulting from blast damage applied to any segment on Columns 1, 2 367 

and 3, respectively. 368 

 369 

Figure 7 – Buckled shapes of frames in Scenario U (no damage to insulation) 370 

 371 

Figure 8 – Buckled shapes of frames in Scenario 2 (worst case delamination in Column 1) 372 
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 373 

Figure 9 – Buckled shapes of frames in Scenario 7 (worst case delamination in Column 2) 374 

 375 

Figure 10 – Buckled shapes of frames in Scenario 13 (worst case delamination in Column 3) 376 

From observing the buckled shapes in Figs. 7 to 10, it can be observed that a configuration 377 

similar to symmetric buckling exists in the beams. In fact, 27 of the 32 calibrated values of vFN 378 

obtained from the 16 scenarios (one for each beam) were negative. As such, vFN = -1 may have 379 

been a more appropriate assumption in producing the un-calibrated results, although the resulting 380 

failure times only differ by 3.6% even with assuming vFN = 1. As such, the effect of vFN on the 381 

results of the failure time are not very significant in this example. Also, the column with the 382 

highest P/Pu ratio in Table 2 appears to experience the most curvature in the buckled shape for 383 

each scenario, and the curvature becomes more severe as the corresponding P/Pu ratio 384 

approaches unity. The implications of the P/Pu ratio are further explained in the following 385 

paragraph. 386 

In the un-calibrated analysis, the frame has a fire resistance of 138.8 min in the undamaged 387 

scenario. From Table 2, it can also be seen that damage to the insulation on the beams (Scenarios 388 

4 through 6 and 10 through 12) has the least effect on the fire resistance of the frame. The fire 389 

resistance is affected to a greater extent if delamination of the fire protection occurs at the ends 390 
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of the beams as opposed to in the middle, since the rotational rigidity of the beam-to-column 391 

connections is reduced more quickly in these cases. Nevertheless, this reduction is not very 392 

significant (up to 5.9% reduction for Scenario 12). Note that in the table, values of Pi/Pu,i greater 393 

than 0.9 indicate that individual column buckling is imminent, and that the lateral stiffness of the 394 

frame is decreasing very quickly at the time of failure. However, it is noted that individual 395 

column buckling cannot theoretically occur for non-lean-on columns as the lateral stiffness of the 396 

individual column approaches negative infinity as P approaches Pu. As such, the frame will 397 

always buckle globally prior to the achievement of individual buckling load. Such is the case 398 

when the insulation on any part of Column 2 is damaged (Scenarios 7 through 9), resulting in 399 

failure as quickly as 101.4 min. The damage to the insulation on the lower end of Column 2 400 

(Scenario 7) is the worst scenario and represents a 26.9% decrease to the fire resistance of the 401 

frame when compared with the undamaged case. It is also worth noting that damage to the 402 

insulation near the fixed support (Scenario 13) also significantly reduces the fire resistance of the 403 

frame to just 107.6 min (a 22.5% reduction). Overall, the results indicate that insulation damage 404 

to Column 2 has the greatest reduction to the failure time of the frame, and it is clear that the 405 

effect of blast damage to insulation can significantly reduce the fire resistance of a frame. From a 406 

design standpoint, the results of the scenario analysis can be used to identify the most vulnerable 407 

locations of a frame and increase the fire resistance in these locations by either strengthening the 408 

members or providing more insulation.  409 

5.  CONCLUSION 410 

Presented in this paper is a new method for computing the lateral stiffness of an unbraced semi-411 

rigid steel storey frame with three-segmented members, where the three segments in each 412 

member can be set to have different input temperatures, or manually prescribed elastic modulus. 413 
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The resulting lateral stiffness of the unbraced frame can then be computed. When the lateral 414 

stiffness reaches zero, the frame becomes unstable. The proposed methodology can be applied 415 

towards many modelling problems where non-linear or piece-wise temperature gradients occur 416 

longitudinally in members. A numerical example is presented in which the effects of blast 417 

damage to insulation during an ASTM E119 fire event are modelled via a member segment 418 

containing delaminated insulation. The proposed method was also validated via finite element 419 

analysis as it produces results that are virtually exact to the eigenvalue buckling analysis 420 

approach when the value of vNF corresponding to the buckling mode is calibrated. Based on the 421 

results of the numerical example, the location of the blast explosion can significantly influence 422 

the fire resistance of a frame. The failure mode of the frame can also be changed between 423 

individual column buckling depending on the location of fire or blast damage, which reinforces 424 

the importance of considering different fire scenarios when analyzing structures. 425 
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Appendix A  Thermal Restraints 488 

For fully restrained columns, the additional axial force Hi may be calculated via Eqs. (A.1). Eqs. 489 

(A.1) extend a similar derivation for two-segmented beams in Xu and Zhuang [3] to consider 490 

three segments, and the tangent modulus theory from the Eurocode 3 [19] is also applied. In 491 

utilizing Eq. (A.1) it is assumed that the differences in axial deformations among columns in the 492 

same storey of the frame are ignored [3].  493 
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Where Ac,i is the cross-sectional area of column i and εM(Pi) is the mechanical strain in the 498 

segment as obtained from the Eurocode 3 stress-strain curve in Eq. (A.2) [19]. The terms ΨT and 499 

ΨM refer to the thermal and mechanical deformations, respectively. 500 
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Where a, b, and c are the parameters defined in Eurocode 3 [19], and fp,T and fy,T are the 502 

proportional limit and yield stress tabulated in Eurocode 3 [19]. As the material may not always 503 

be linearly elastic, solving Eq. (A.1a) requires an iteration procedure of computing Pi and 504 

converges readily if it is assumed that Pi = Gi on the right-hand side of Eq. (A.1a) in the first 505 

iteration. In the numerical example, Hi converges to within only 1.0 N within only four iterations. 506 
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α is the coefficient of thermal expansion given in Eq. (A.3) [3] and T0 is the ambient temperature 507 

and may be taken as 20°C.  508 

 α(T) = (0.004T + 12) ×10
-6

 °C
-1

 (A.3) 509 

ki is the spring stiffness of the column restraint against axial strains, which may be taken as the 510 

total lateral stiffness of the connecting beams. The lateral stiffness of a connecting beam with 511 

index j is shown in Eq. (A.4), and is the same as the lateral stiffness of a column rotated on its 512 

side, without imperfections or axial loads. 513 
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Where the subscripts N, M and F correspond to the near, middle and far segments of the beam 515 

and the coefficients η0 through η4 are given in Eqs. (A.5).  516 
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Where the λ coefficients are given in Eqs. (A.6). 522 
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Note that since Hi is a function of the elastic modulus, which can be a function of the axial load, 527 

an iterative solution is required to determine the axial load of the column. However, since Hi is 528 

relatively small compared to Gi, the elastic modulus may be taken as a function of just the 529 

gravity load rather than the total axial load without introducing significant errors. Doing this 530 

prevents the need for an iterative solution, and simplifies the procedure of the time stability 531 

assessment. 532 

  533 
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Appendix B Rotational Buckling 534 

The rotational buckling load of a column, Pb,i, can be determined by solving for the buckling 535 

condition implicitly using the approach outlined by Hoblit [28]. Consider the buckled shape of 536 

column i in Fig. B.1. Once again, the subscript i is removed from Fig. B.1 and subsequent 537 

equations referring to the variables and properties of this individual column. 538 

 539 

Figure B.1 – Buckled Geometry of a Three-Segment Column 540 

The internal moment in each of the three sections of the column are given in Eqs. (B.1).  541 
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By solving the differential equations in Eqs. (B.1), the bending moment, angle and deflection of 545 

the column can be obtained at the upper and lower ends of the column, as well as the points 546 

between adjacent segments. Thus, for buckling to occur, Eqs. (B.2) must be satisfied.  547 
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Where the coefficients β1, β2 and β3 are given in Eqs. (23). 562 
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Where  l , m , u , Sl, Sm, Su, Cl, Cm and Cu are all shown in Eqs. (16). The lowest value of Pb 566 

that satisfies Eqs. (B.2) may be taken as the final value Pb,i for column i. The minimum value of 567 

Pb satisfying the system of fourteen equations in Eqs. (B.2) can be obtained by using root-finding 568 

algorithms, such as the Newton-Raphson method [29].  569 
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Appendix C End Fixity Factors for Three-Segment Members 571 

The end fixity factor for two-segmented members was previously derived by Zhuang [30]. A 572 

new, similar derivation is presented in following for the end fixity factors of three-segment 573 

members. Note that the derivation applies for both beams and columns. The end fixity factor is 574 

defined as the ratio between the rotation at the end of the member, α, and the combined rotation, 575 

 , of the member and connection due to a unit end-moment, as shown in Fig. C.1. 576 

 577 

Figure C.1 – Definition of end fixity factor for a three-segmented member 578 

Based on this relation, Zhuang [30] showed that the end fixity factor can be derived by 579 

determining the end rotation of an equivalent simply-supported member, RSS, subjected to a unit 580 

end moment at the same end and substituting the result into Eq. (C.1). 581 
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Where R is the rotational rigidity of the semi-rigid connection. For a member with uniform cross-583 

section, RSS may be taken as 3EI/L
3

, which results in the end fixity factors derived in [20]. 584 

Zhuang [30] showed that RSS for a two-segment member can be derived using the principle of 585 

virtual work. Using the same methodology, the principle of virtual work is henceforth applied 586 

towards three-segment members. Consider the simply supported member in Fig. C.2. 587 
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 588 
Figure C.2 – Equivalent simply-supported three-segment member subjected to unit end moment 589 

The virtual work principle is applied at the location of the end moment, M, on end A of the 590 

member in Eq. (C.2). 591 
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The value of the end rotation θ at A is therefore obtained via integration in Eq. (C.2). The value 593 

of RSS can then be obtained by dividing the moment M by θ and substituting the elastic modulus 594 

degradation factors from Eq. (1) to obtain Eq. (C.3). 595 
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Where τ is an adjustment factor that accounts for the non-uniformity of the elastic modulus in the 597 

member, and is expressed in Eqs. (4) based on end moments being applied on the corresponding 598 

ends of the members. Thus, substituting Eq. (C.3) into Eq. (C.1) yields the end fixity factor 599 

equation in Eqs. (3). 600 

  601 



34 

Appendix D Equivalent Rotational Stiffness of Connecting Beams 602 

The rotational rigidity of a beam being connected to the end of a column is derived in this 603 

appendix by utilizing the slope-deflection and conjugate-beam methods, similar to the approach 604 

demonstrated in [20] but extended for three-segmented members. Consider first the deformation 605 

of the beam shown in Fig. D.1. 606 

 607 

Figure D.1 – Generalized three-segment beam subjected to end moments  608 

The near and far ends of the beam in Fig. D.1 are denoted as N and F, respectively. The subscript 609 

M denotes the middle segment of the beam. The displacement symbols y,  , θ and Ω correspond 610 

to the end deflection, rotation of the connection, net rotation between the member end and 611 

connection, and chord rotation, respectively. The force symbols Y, q and M correspond to the 612 

transverse reaction, transverse load function and end moments, respectively. Then the internal 613 

moment can be expressed in Eq. D.1. 614 
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Where C1 and C2 are integration constants. The boundary conditions for Eq. (D.1) are given in 616 

Eqs. (D.2).  617 
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 FMLM )(  (D.2b)  619 

Substituting the boundary conditions into Eq. (D.1) to solve for the constants results in the 620 

internal moment equation in Eq. (D.3). 621 

    

















L L

FN

x x

dxxq
L

x

L

x
M

L

x
MdxxqxM

0 0

2

0 0

2 )(1)()(  (D.3)  622 

Traditionally in stability analysis, loads are assumed to be directly applied to the columns and the 623 

only effect of the connected beam being considered is the rotational restraint [12]. As such, it is 624 

assumed that no transverse loads are applied on the beam between the ends (q(x) = 0). Then let 625 

c(x) be obtained by dividing M(x) by E(x)I, resulting in Eq. (D.4). 626 
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Due to the piece-wise nature of E(x) in the three-segment beam, c(x) is piece-wise and can be 628 

split into individual functions of the local coordinates in each segment. Let the local coordinates 629 

xN, xM and xF correspond to the near, middle and far segments, given in Eqs. (D.5). 630 
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Then the corresponding local functions c are given in Eqs. (D.6). 634 

 


















L

x

IE

M

L

x

IE

M
xc N

N

FN

N

N
NN

00

1)(


 (D.6a)  635 

 


















L

x

L

L

IE

M

L

x

L

L

IE

M
xc MN

M

FMN

M

N
MM

00

1)(


 (D.6b)  636 

 


















L

x

L

L

L

L

IE

M

L

x

L

L

L

L

IE

M
xc FMN

F

FFMN

F

N
FF

00

1)(


 (D.6c)  637 

Let AN, AM and AF be the areas under the curves cN, cM and cF over their corresponding domains, 638 

respectively, expressed in Eq. (D.7). 639 
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The total area under c(x) is therefore A = AN + AM + AF, and the centroid, x , of c(x) can be 643 

expressed in Eq. (D.8). 644 
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Where Nx , Mx  and Fx are the global x coordinates of the centroids in each of the functions cN, cM 646 

and cF, respectively, and given in Eqs. (D.9). 647 
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By the conjugate beam method, the rotations of the beam ends are related to c by Eqs. (D.10). 651 
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Assume that Ω = 0, since the columns in the frame are not expected to experience significant 654 

differential axial deformations. Also, since the ends of the beam are semi-rigidly connected,   655 

can be expressed in terms of the end moments and rotational rigidities according to Eq. (D.11). 656 

 NNN RM /  (D.11a)  657 

 FFF RM /  (D.11b)  658 

Where R can be obtained by rearranging Eqs. (3). Thus, substituting Eqs. (D.11) into Eqs. (D.10) 659 

and solving explicitly for MN yields the end moments given in Eqs. (D.12). 660 
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Note that swapping the coefficients N and F in the terms of Eq. (12) yields MF. Finally, the beam 662 

rotational stiffness contribution to the end of the connected column, Ri,j in Eq. (6), is obtained by 663 

dividing Eq. (D.12) by θN. 664 


