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Abstract

Until recently, most works on the computational modelling of fracture relied on a New-
tonian mechanics approach, i.e., momentum balance equations describing the motion of
the body along with fracture criteria describing the evolution of fractures. Robustness
issues associated with this approach have been identified in the previous literature, several
of which, as this thesis shows, due to the discontinuous dependence of stress field on the
deformation field at the time of insertion of displacement discontinuities. Lack of continu-
ity limits applicability of the models and undermines reliability of the numerical solutions.
In particular, solutions often show non-convergent behaviour with time step refinement
and exhibit nonphysical velocity fields and crack activation patterns. In addition, implicit
time-stepping schemes, which are favoured in quasi-static and low-velocity problems, are
challenging in such models. This is not a coincidence but a manifestation of algorithmic
pitfalls of such methods.

Continuity of stresses is in general hard to achieve in a computational model that em-
ploys a crack initiation criterion. Energy (variational) approaches to fracture have gained
increased popularity in recent years. An energy approach has been shown to avoid intro-
duction of a crack initiation criterion. The central idea of this model is the minimization
of a mechanical energy functional, whose term representing the energy due to the cracks is
a nondifferentiable function of the interface openings at zero opening displacement. A con-
sequence of this formulation is that crack initiation happens automatically as a by-product
of energy minimization. This avoids the complexities arising from the introduction of an
extrinsic activation criterion but entails minimization of a nondifferentiable potential.

The aim of this research is to develop robust and efficient computational algorithms for
numerical implementation of the energy approach to cohesive fracture. Two computational
algorithms have been proposed in a discontinuous Galerkin finite element framework, in-
cluding a continuation algorithm which entails successive smooth approximations of the
nondifferentiable functional and a block coordinate descent algorithm which uses general-
ized differential calculus for the treatment of nondifferentiability. These methods allow for
a seamless transition from the uncracked to the cracked state, making possible the use of
iterative solvers with implicit time-stepping, and completely sidestepping robustness issues
of previous computational frameworks.

A critical component of this work is validation of the robustness of the proposed numer-
ical methods. Various numerical simulations are presented including time step and mesh
size convergence studies and qualitative and quantitative comparison of simulations with
experimental observations and theoretical findings. In addition, an energy-based hydro-
mechanical model and computational algorithm is presented for hydraulic fracturing in

v



impermeable media, which shows the crucial importance of continuity in multi-physics
modelling. A search algorithm is developed on the basis of graph theory to identify the set
of fluid-pressurized cracks among cracks in naturally fractured domains.
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Chapter 1

State-of-the-art of cohesive zone
modelling: a review



1.1 Introduction

Fracture is one of the most commonly encountered failure modes of materials observed in
a wide range of engineering applications from aerospace and automotive to biomechanics
and geomechanics. The prevention of fracture-induced failure is, therefore, a major concern
in engineering design. There are numerous works in the engineering fracture mechanics
literature that deal with an analytical solution to the problem of a single crack in a solid
body, see e.g., [3] and references therein. In these works, crack growth is assumed to
occur by the extension of the crack as an idealized surface in a dominant path. In real-
life circumstances, however, fracturing processes mainly involve the nucleation, growth,
and coalescence of multiple cracks and micro-branches. As explained in [36], “all fracture
is dynamic at some scale” due to the dynamic process of the bond rupture, even when
dynamic effects are not significant at the macroscopic scale and the crack appears to be
advancing quasi-statically. Thus, “the dynamic fracture problem is the most fundamental
in the science of fracture.”

Fracture in brittle and quasi-brittle materials has been extensively studied from different
perspectives by researchers in the theoretical, experimental and computational communi-
ties. A recent review of the theoretical and experimental developments in dynamic brittle
fracture has been given by Fineberg and Bouchbinder [47]. Theoretically, the Rayleigh
wave speed vg is the limiting velocity of a mode-I propagating crack [50]. However, exper-
iments have shown that the crack velocity is limited by just about half of its theoretical
value and never reaches vy [50]. Experimental observations have also shown that, under
certain conditions, a single crack will bifurcate into two growing cracks [130]. For a crack
propagating through a specimen at constant velocity, Yoffe [180] found that the hoop stress
ogg attains a maximum for a nonzero value of ¢ if the velocity of the crack is larger than
0.65vg. This work was probably the first to give an explanation of why a propagating
crack in a linear elastic specimen bifurcates before it reaches the Rayleigh speed. Other
experimental results have shown that the crack faces roughen at velocities 0.3 ~ 0.4vg
[132, 149]. The structure of this roughness is a periodic side branching conjoining the main
crack [149]. Sharon et al. [150] suggest that this pattern is due to an inherent dynamic
instability in the crack’s advance when the velocity exceeds 0.36vp. These authors relate
the fluctuations in velocity of the leading crack observed in the experiment to the growth
of side branches. Ravi-Chandar et al. [133] describe the periodic patterns as an outcome
of nucleation, growth and coalescence of microcracks. This differs from the previous rea-
soning as standalone microcracks are assumed to grow independently of the main crack
and then coalesce to form the branches.

While the above theoretical and experimental developments have greatly enhanced our



understanding of the fracture phenomenon, they clearly show the inherent complexities in
computational modelling of fracture. Within the context of continuum mechanics, fracture
of solids can be modeled using either a strong discontinuity approach (also referred to as
the discrete approach) or an approach in which the displacement field is continuous (also
referred to as the smeared approach). In the discrete approach, the displacement of the
solid body is allowed to be discontinuous across crack faces to achieve a clear physical
representation of cracks. The most well-known theories behind the strong discontinuity
approach are linear elastic fracture mechanics (LEFM) [75, 3], and the cohesive zone model
[11, 43]. The finite element method (FEM) and its variants have been extensively used in
numerically modelling discrete fracture. Among such methods one can count the interface
element method [177, 25, 116], the discontinuous Galerkin (DG) method [96, 129, 68|,
the extended finite element method (XFEM) [99, 169, 13|, the embedded discontinuity
method [8, 7] and the cracking particle/node method [153, 128], to name only a few. In the
smeared approach, the displacements are continuous everywhere but the material strength
is gradually reduced to model material failure processes. Degradation of the material
strength in the continuous approach is modelled by making use of continuum damage
mechanics [88]. Successful modelling of dynamic crack propagation, including bifurcation,
has been reported, for example, in [125, 114, 115] using nonlocal damage models [123].

The present research concerns computational modelling of cohesive crack propagation
within the context of the discrete fracture approach. This review is therefore intended to
be neither a complete survey of all existing approaches to failure modelling nor historically
complete in any one area. In particular, the continuum damage mechanics approach as
well as alternative frameworks such as peridynamics [152], the discrete element method
[37] or molecular dynamics [74] are intentionally not touched upon in the remaining of this
chapter. Instead, the main focus will be to discuss, firstly, the issues with existing cohe-
sive zone modelling methods and, secondly, promising directions for future development,
identified through a comprehensive review of the cohesive zone modelling literature. The
remaining of this chapter is structured as follows. A brief description of the cohesive crack
model will be given in Section 1.2. Issues with intrinsic and extrinsic cohesive crack models
are then discussed in Sections 1.3. This is followed by discussing the issue of mesh depen-
dence in Section 1.4. The hybrid discontinuous Galerkin method and energy approaches
to fracture are those topics identified as promising and are discussed in Sections 1.5 and
1.6, respectively. Section 1.7 presents an overview on the objectives of this research and
the methodologies used to achieve them. Finally, statement of contributions is given in
Section 1.8.



1.2 The cohesive crack model

In the vast majority of materials, failure is a continuous process that involves gradual
degradation of stiffness before a dominant crack forms. In fact, formation of cracks is
usually associated with softening response after the material reaches its ultimate strength.
Softening may be attributed to small-scale yielding, micro-crack initiation, growth and
coalescence in the fracture process zone (FPZ) prior to the impending formation of the
crack, as schematically shown in Figure 1.1. In LEFM, it is assumed that the size of the
FPZ is small compared to a characteristic length of the specimen, thus neglected in the
stress analysis of the solid body. A consequence of this assumption is that the theoretical
stress field is singular (infinite magnitude) at the crack-tip in LEFM theories [3]. While
the use of LEFM may be justified in perfectly brittle materials, the nonlinear material
behaviour in the FPZ must be taken into account in the more general case as the utility
of LEFM diminishes.

The concept of cohesive crack was first introduced by Barenblatt [11] and Dugdale [43]
to describe the nonlinear failure processes occurring ahead of a forming crack-tip. In this
model, the near-tip fracturing processes is lumped onto an extension of the crack faces
referred to as the cohesive process zone (CPZ). The softening material behaviour is then
modelled by postulating an opening-dependent traction in the CPZ expressed as a decaying
function of the crack opening. As the maximum cohesive traction in the CPZ is equal to
the maximum tensile strength of the material, the model avoids the nonphysical singular
stress field occurring in LEFM. Various traction-separation functions have been proposed
in the literature, a comprehensive review of which is given in [120].

Depending on how the pre-softening, elastic behaviour is modeled in the CPZ, cohesive
crack models are categorized in two groups: intrinsic (or, initially elastic) models and
extrinsic (or, initially-rigid) models. A schematic of the intrinsic and extrinsic cohesive

Traction-free | Fracture process zone | Intact

Figure 1.1: Schematic of the fracture process zone [62]
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Figure 1.2: a) initially-elastic and b) initially-rigid cohesive models with linear softening

models with linear softening is shown in Figure 1.2. In these graphs, the horizontal axis
represents some norm of the crack opening, §, and the vertical axis show some norm of
the cohesive traction, t..s. In both intrinsic and extrinsic models, the maximum effective
stress attained is the material strength o, followed by a descending branch until cohesion
is lost at a critical effective opening d.. Whereas in the intrinsic model the maximum
effective stress o, is associated with an elastic opening 6. of the crack faces, in the extrinsic
model no crack opening is allowed before o, is reached. In fact, intrinsic models involve an
initially elastic branch with slope k = 0./d. representing the elastic stiffness of the material
in the CPZ before the material strength is reached.

Intrinsic cohesive models are best suited for modelling pre-existing, physical initially
elastic interfaces whose faces show relative elastic displacement prior to the onset of dam-
age. In such cases, the parameter k represents the elastic stiffness of the material that
bonds adjacent layers. Numerical implementation of intrinsic cohesive models is normally
associated with embedding the discontinuity in the displacement field along the a prior:
known failure path from the start of the simulation [176]. Extrinsic cohesive models, on
the other hand, are preferred for fracture of homogeneous solids, in which the failure path
is not known in advance and no displacement discontinuity is present before the mate-
rial strength is reached. Within a numerical simulation framework, this often amounts to
the adaptive insertion of displacement discontinuities in the body [25]. The discretization
scheme used for introducing displacement discontinuities is technically independent of the
type of cohesive crack model.



1.3 Modelling cohesive cracks using interface elements

The interface element method is among the most widely used discretization schemes for
modelling displacement discontinuities. In this method, displacement discontinuities (i.e.,
cracks) are allowed to propagate through the inter-element boundaries of the mesh using
interface elements. Figure 1.3 schematically shows interface elements in 2D and 3D. To
insert interface elements in the mesh, one has to duplicate the nodal points of the “bulk”
elements sharing an edge of the mesh, allowing for a jump in the displacement field across
the edge. The interface element method limits crack nucleation sites to a finite number
of possible paths, thus introducing a degree of obvious mesh dependence. A discussion of
the ramifications of this as well as a comparison with its alternative, XFEM, which allows
introduction of cracks independent of element edges, will be given in Section 1.4.

Interface elements have been used with both intrinsic and extrinsic cohesive crack mod-
els. When the crack trajectory is unknown a priori, an intrinsic cohesive crack model
requires that interface elements be inserted everywhere in the mesh at the start of the
simulation as proposed by Xu and Needleman [177]. As noted by Klein et al. [84], this
introduces artificial compliance to the finite element (FE) model with the elastic stiffness
approaching zero in the limit of mesh size refinement. Alternatively, extrinsic cohesive
models can be used in conjunction with adaptive insertion of interface elements whenever
and wherever a fracture criterion is met as proposed by Camacho and Ortiz [25]. This
approach suffers from an issue known as time-discontinuity [117] leading to several algo-
rithmic pitfalls and nonphysical solutions. In the following subsections, we will discuss the
artificial compliance and time-discontinuity issues in further detail.
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Figure 1.3: Schematic of interface elements in a) two-dimensional and b) three-dimensional
meshes




1.3.1 Intrinsic models: the issue of artificial compliance

In order to explain the artificial compliance issue, let us consider the simple case of an elastic
bar [84] as shown in Figure 1.4. The bar has elastic modulus E and is discretized with
continuum elements of size h in its undeformed state. Consider now that interface elements
of thickness zero and elastic stiffness k are inserted everywhere between the continuum
elements. The effective modulus of the bar is [84]

Eeﬁc:E<1—m>, (1.1)

from which F.g < E Vh,k > 0, and E.g — 0 as h — 0 Vk > 0 making convergence
under mesh refinement impossible. The opening induced by the elastic surfaces introduces
artificial compliance to the mesh, which progressively increases as the mesh is refined and
more interface elements are introduced. In a finite element formulation, the use of initially
elastic interface elements may be viewed as imposing the displacement continuity at the
element edges using a penalty method, which is known to undermine consistency of the
discrete finite element weak formulation [10].

From equation (1.1), one may argue that the original stiffness of the bar may be recov-
ered in the limit of kh — oo, which may be attained if & — oo Vh > 0. However, other
numerical issues arise when k is too large. In static problems or in dynamic problems with
implicit time-stepping, a very large value of k£ may lead to ill-conditioning of the system of
finite element equations to be solved during iterations [48]. In explicit time-stepping, on
the other hand, too large values of k£ put extremely severe restrictions on the critical time
step size At defined by the Courant-Friedrichs-Lewy (CFL) condition [35] as

At < Ate, = min ( \/7 \/7) (1.2)

Bulk elements (E) \ |(_h)|

|

Interface elements (k)

Figure 1.4: Schematic of a one-dimensional bar with elastic interfaces



in which p is the material density. One can verify that for finite h > 0, At,, — 0 as k — oc.
Another issue arising from the use of a large initial stiffness k is traction oscillations along
interface elements [144]. A common strategy to alleviate this problem has been to employ
reduced Lobatto or trapezoidal integration for the interface elements which is, however,
shown to not work well in many cases [157]. The reason is that initially elastic interface
elements share stability properties with equivalent mixed-mode formulations (i.e., the use
of Lagrange multipliers for enforcement of the constraint), hence exhibiting oscillations due
to the violation of the inf-sup Ladyzhenskaya-Babuka-Brezzi condition [23].

It has been shown that the artificial compliance introduced by the initial stiffness of the
cohesive model leads to dependence of the crack paths on the orientation of the elements
[178, 177, 143]. In their initial simulations, Xu and Needleman [177] reported that, for a
structured triangular mesh, the crack advances in a straight path when the triangles are
oriented at £45° and +60° whereas it propagates in a zig-zag fashion when the triangles
are oriented at +£15° and £30°. In fact, the initially elastic interface elements give rise to
anisotropy in the FE mesh, which is dependent on the mesh configuration, thus introducing
a nonphysical mesh sensitivity. Another issue caused by artificial compliance is the partial
transmission and reflection of stress waves across interface elements in the mesh [45, 129].
In consequence, initially elastic models may fail to predict the formation of cracks due
to underprediction of the magnitude and speed of the stress waves in the solid body.
Rodovitzky et al. [129] reported that an initially elastic model failed to predict the spall
of an elastic bar subjected to axial impulsive loading.

1.3.2 Extrinsic models: the issue of time-discontinuity

Suppose that a spatial discretization of the solid body is carried out using the FEM. The
spatially discretized model yields a system of ordinary differential equations with unknown
U(t), the vector of nodal displacements, expressed as

MU(t) + Fine (U, &) — Foyy = 0, (1.3)

in which M is the (consistent or lumped) mass matrix, Fy,; is the internal force vector, Foy
is the vector of external forces, and k is a vector of history variables. The above equation
is said to be time-continuous if F, is a continuous function of U for all (U, k) encountered
on its solution trajectory [117]. Note that as equation (1.3) is already spatially discretized,
spatial continuity is not relevant here.

As a result of time discontinuity, solution of an initial value problem (IVP) may not



exist or may be nonunique. Consider, for example, the following IVP [117],

du(t)
dt

= f(u), u(0)=0 (1.4)

with f(u) a discontinuous function of u defined as,

f(u) = {‘1 w0 (15)

1 u < 0.

The solution to the above IVP is plotted in Figure 1.5, showing that no solution exists
for ¢ > 0. An attempt to solve this IVP numerically, e.g., with a finite difference scheme,
results in a solution that oscillates around u = 0. If, as another example,

1 u>0
f<u>={0 e (16)

the IVP would not have a unique solution, e.g., the following function could be a solution
to the IVP for any choice of ¢,

u(t) =

{0 0<t<t wn

t—t;1 t>1;.
The numerical solution of this ill-posed IVP would be sensitive to small perturbations,

which would cause one or the other solution to be selected. It should be noted that
discontinuity in F does not raise any of the issues caused by discontinuity in F;,. For

u (%)

Figure 1.5: The solution to the IVP Equation (1.4) with discontinuous f(u) Equation (1.5)



instance, the differential equation du/dt = f in which f is a discontinuous function of ¢,
has a unique solution that can be easily found numerically or analytically [117].

Initially-rigid cohesive zone models based on adaptive insertion of displacement discon-
tinuities are time-discontinuous [117, 140], that is, the internal force vector Fy,; in equation
(1.3) is a discontinuous function of the deformation U at the time a crack is inserted. The
reason is that there is an infinite locus of possible component values of the force vector at
an interface point that satisfy the crack propagation criterion at the time of inserting the
displacement discontinuity. Whereas prior to activation the internal force vector is com-
puted from the bulk elements adjoining the interface, after activation it is computed from
the cohesive traction-separation model. Both vectors satisfy the scalar damage initiation
criterion but they are different, thus leading to a discontinuity of the internal force vector.
In a class of initially-rigid models that rely on an effective crack opening displacement
defined as a norm of the opening displacement, such as the one proposed in [113], a more
challenging form of time-discontinuity is encountered, in which the cohesive force vector
is not defined at damage nucleation (i.e., zero effective displacement discontinuity) due to
division by zero [117]. Time-discontinuity is not an issue specific to the interface element
method. Discretization schemes based on the XFEM, in which the displacement disconti-
nuities are modelled by introducing additional enrichment degrees of freedom rather than
duplicating the existing nodal points, are time-discontinuous for similar reasons.

Time-discontinuity results in several numerical issues including presence of nonphysical
shocks [95, 154], lack of convergence in the error norm as the time step and mesh is
refined [140, 117], over-activation of interfaces [147, 140], nonphysical velocity fields [73,
95], and inability to perform implicit time-stepping [72, 161, 101]. Remedies proposed to
achieve time-continuity typically rely on “encoding” knowledge of the interface stress or
opening displacement immediately prior to activation into a modified cohesive traction-
separation model. Among these remedies one can name a material strength that is a
variable parameter computed at the time of crack nucleation [117, 153, 166], an offset
of the interface opening at activation [140, 167, 72|, and a correction force vector added
to the enrichment degrees of freedom [95, 154]. Such remedies are not always grounded
in physical reasoning. For example, there is no basis for asserting that the interface can
“remember” its traction at the time of failure. However, they are of theoretical interest
since they validate the assertion that time-discontinuity causes the pathological behaviours
mentioned above.

Time-discontinuity of extrinsic cohesive zone models introduces challenges in obtaining
convergence in implicit time integrators due to the interference of crack propagation criteria
with Newton’s iterations. Many researchers have simply sought to circumvent these chal-
lenges either by using explicit time integrators or by dealing with crack propagation at the
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end of the implicit step. In the latter case, which has been particularly prevalent in XFEM
implementations, cracks are kept fixed within the computations of the Newton solver. Once
convergence is achieved, a stress criterion is checked at the crack-tip to answer the binary
question of whether or not the crack should advance. While crack propagation angle may
be determined by using, for example, the maximum hoop stress direction criterion [44],
the crack advancement length is often taken to have a pre-determined value, e.g., the size
of a generic element in the crack-tip area [99], or is determined by a Paris-type fatigue law
[100]. Among the very few authors who have proposed intricate time-stepping schemes for
discrete fracture is Areias and coworkers [6, 4]. These authors combine discrete equilibrium
equations with the cohesive traction-separation model to form a nonlinear complementarity
problem. An implicit solution is then made possible through smoothing of the complemen-
tarity conditions, leading to a mixed formulation with displacements and cohesive forces
as unknowns. A certain level of approximation is thus introduced due to smoothing. In
addition, these works make no attempt to address the question of time-continuity.

Computational modelling of fracture using an extrinsic cohesive zone model relies en-
tirely on a Newtonian mechanics approach, i.e., equilibrium equations used for describing
motion of the body along with fracture criteria describing evolution of displacement discon-
tinuities (cracks). Continuity of stresses is in general hard to achieve in these computational
models. A more recent development that can completely resolve the time-discontinuity is-
sue is the energy approach to cohesive fracture [116, 91], which will be discussed in Section
1.6.

1.4 Mesh dependence: crack path and length conver-
gence

Defining element edges as potential crack sites enables modelling complex failure patterns
in a straightforward manner. Branching, fragmentation and coalescence of cracks are often
natural outcomes of the method. However, the method introduces a certain degree of mesh
dependence as mentioned previously. Supposedly, mesh refinement can alleviate this issue
by providing more potential sites of crack nucleation and propagation in the mesh. In fact,
accurate results have been reported in the literature by using sufficiently refined meshes,
see e.g., [129, 105, 182, 120] among others. Besides mesh refinement, methods proposed
in the literature to resolve mesh dependence more rigorously include employing special
families of meshes possessing the isoperimetric property, adaptive strategies involving re-
meshing and realignment of the element edges during the simulation, and the XFEM and
its variants.
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1.4.1 The isoperimetric property and pinwheel meshes

For spatial convergence, element edges need to represent the true crack, including its
length, as the mesh is refined. The length of the true versus approximated crack path is
physically signicant because a fundamental assumption of cohesive crack models is that
the energy needed to create a crack is proportional to its length. However, convergence
of the crack path does not guarantee convergence of the crack length. Indeed, failure
of length to converge is the typical behaviour for any family of structured meshes. For
example, consider the cross-quadrilateral mesh with aspect ratio 1:1 shown in Figure 1.6
and assume that the true crack path is the line segment connecting the upper-left and
lower-right corners of the domain. It can be shown that no matter how much the mesh is
refined, the best approximation to the crack path (which is not uniquely determined) is a
jagged line that is always longer than the correct path by approximately %8 [118].

Papoulia et al. [118] pointed out that there is one family of triangulations known
to have the above convergence property in 2D, namely, pinwheel tiling. Pinwheel tiling
possesses the “isoperimetric” property that for any line segment (p,q) and for any € > 0,
there exists a triangulation 7; such that the shortest (p, q) path approximated using only
edges of 7; has length ||p — ¢|| + € [118]. The pinwheel tiling starts with a 1: 2: /5 right
triangle (Figure 1.7a) and subdivides it into five 1: 2: 4/5 subtriangles that are similar to
each other. This subdivision process may be repeated indenitely, yielding a tiling of the
original triangle with an arbitrary level of renement. To change the tiling into a mesh
suitable for finite element computations, one can remove hanging nodes in the tiling by
splitting all the 1: 2: v/5 triangles at the final recursion level of the tiling into three (Figure
1.7b). The generalization of the pinwheel tiling to arbitrary triangles (not only 1: 2: v/5)
has been proposed in [55]. Pinwheel meshes converge slowly (in terms of crack paths) and
are not easy to generate except for the simplest domain geometries. In addition, generating
meshes that posses the isoperimetric property in 3D is not a trivial task [118].

Figure 1.6: An example of failure in crack length convergence (reproduced from [118])
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Figure 1.7: Generation of isoperimetric meshes based on pinwheel tiling

1.4.2 Adaptive re-meshing methods

Paulino et al. [122] proposed node perturbation and edge-swap operators to address biased
mesh orientation in structured 4k meshes. These operators lead to geometrically and topo-
logically unstructured meshes, as summarized in Figure 1.8. Numerical results reported
in [122] showed improved spatial convergence; however, no formal proof of convergence in
the sense described in Section 1.4.2 exists for these schemes. The same authors combined
NP and ES operators with adaptive mesh refinement and mesh coarsening schemes for
improved spatial convergence [121]. Further, Lew and coworkers [131] proposed “universal
meshes,” a technique to create conforming triangulations of the domain by only perturbing
nodes of a background universal mesh in the vicinity of the crack. In this method, the
crack propagation angle is determined explicitly using, for example, the maximum circum-
ferential stress criterion [44]. In the context of LEFM, adaptive remeshing is often used in
conjunction with a posteriori error estimates to refine the new mesh in the crack-tip area,
see e.g., [78].

Remeshing can be difficult and computationally expensive especially in dynamic frag-
mentation and multiple crack growth simulations, in which the mesh typically needs to be

(a) the initial 4k mesh (b) the NP operator (c) the ES operator

Figure 1.8: NP and ES operators applied to an initially structured mesh [122]
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updated numerous times during the course of the simulation. Mota et al. [103] showed
that the computational complexity of mesh topology modification algorithms could in fact
be exorbitant, (O(n'?), where n is the number of interface elements) and proposed an
insertion scheme which is of order O(n). In addition, remeshing requires projection of
the solution fields from the old mesh to the new. Even with excellent projection schemes,
significant discontinuities can be introduced in the velocity, stress and displacement fields,
which can further deteriorate the time-continuity of the model. Lastly, adaptive insertion
of interface elements makes the application of scalable parallel computational schemes,
necessary for problems of increasing size, very difficult [129]. The issue comes forth by
noting that mesh refinement is critical for mitigating mesh dependence of the results and
for resolving the size of the CPZ which could be extremely small in brittle materials.

1.4.3 Interface elements vs. XFEM

As pointed out previously, the XFEM, pioneered by Belytschko and coworkers [99, 100], can
model cracks independent from the element edges by allowing the cracks to pass through
within the elements. This is normally achieved by enriching the approximate solution space
by discontinuous basis functions (e.g., the Heaviside function) on the basis of the partition
of unity method [94].

In XFEM, crack surfaces are tracked explicitly using level set methods [156]. This can be
an intractable task, particularly for problems involving multiple cracks and fragmentation.
In fact, XFEM modelling of dynamic crack propagation inevitably requires a branching
criterion, which can be quite ad-hoc and is mostly limited to two crack branches, see
e.g., [38, 8]. Methods proposed to overcome this limitation of XFEM include the cohesive
segment method of Remmers et al. [134] and the cracking node method of Belytschko
and coworkers [153, 128]. In these methods, cracks are represented by a set of overlapping
segments as illustrated in Figure 1.9. Convergence of the crack length in the sense discussed
in Section 1.4.2 thus remains an open question in these methods.

Numerical implementation of XFEM algorithms often involves “hidden” tolerances.
One example of this is the case, in which the crack crosses (or, is too close to) a nodal point
of the mesh and, as a result, a singular system of finite element equations is encountered.
The commonplace practice for resolving this issue is to introduce a minimum distance
tolerance that determines whether or not the cut node should be enriched [42]. Another
example of such hidden tolerances encountered in the cracking node method [153] is a
set of minimum distance criteria introduced to avoid injection of spurious parallel crack
segments in problems involving multiple cracks and fragmentation. In general, the XFEM
appears to be best suited for modelling one or a small number of dominant cracks.
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Figure 1.9: Schematic of a typical arrangement of crack segments to represent the true
crack in the cracking node method [153]

1.5 Discontinuous Galerkin method for cohesive crack
modelling

In the discontinuous Galerkin method, the discrete finite element weak form is obtained
by seeking an element-wise-continuous approximate solution (as opposed to the standard
Galerkin formulations where a domain-wise-continuous approximation is sought) [89]. The
continuity of the solution field at inter-element boundaries is then enforced weakly by mak-
ing use of a method, due to Nitsche [107], which ensures consistency and stability of the
finite element formulation.! Within the context of solid mechanics, the DG method has
been sometimes referred to as the “interior penalty method” [9]. Among several applica-
tions, the Nitsche method has been used in [46] for boundary condition enforcement, in
[51] for domain decomposition, in [173] for contact and in [69] for incompressible elasticity.
Recently, the DG method has found application in cohesive zone modelling, which will be
discussed in the following.

1.5.1 The discontinuous Galerkin weak form

Suppose that a finite element discretization €2, of a solid body is achieved and let 0%,
denote the exterior boundary of the mesh. The mesh is subjected to traction t on 0,
and displacement u on 0,82, where 0,0, and 9,2, are disjoint parts of 9€2;,. Although the
DG method does not require the finite element mesh to be conforming, we consider here, for
simplicity, that the mesh is conforming. Let I';;, denote the union of all element edges in the

'We recall that consistency and stability of the finite element formulation are two requirements necessary
for convergence of the finite element solution.
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interior of the mesh and let the normal to I';, be denoted n;. Neighbouring elements in the
mesh do not share nodal points/edges, allowing for the insertion of interface elements along
all inter-element edges of the mesh as shown in Figure 1.10. The approximate displacement
field denoted uy, is element-wise continuous but exhibits a displacement jump [u,] on 'y,
and satisfies u;, = 1 on 9,£;. The DG weak form can be written as [89]

/ péuh- ﬁh dV—}-/ gy . 5€h dV + / [[5uh]]- (<0‘h> ng + n[[uh]]) dsS =
1973 Qp, Can (1.8)

/ 5uh-’1§ds+/ dup-bdV =0,
8tQh 3Qh

which must be satisfied for any admissible test displacement function duy,. The test function
ouy, is approximated similarly to uy, except that du, = 0 on 0,£2;,. In the above, o, is the
Cauchy stress tensor computed strongly from the infinitesimal strain tensor e, = V*uy, p
is the material density, b is the vector of body forces per unit volume, and 7 is a strictly
positive numerical parameter to be discussed shortly. The jump and average operators are
defined as

1
[¥] =T — % and (x) = 5(*+ +%*7), (1.9)
where
+F = lim x(x £&ny), x € gy (1.10)
£—0+

The above definition for the jump operator makes the choice for the direction of ng im-
material as the value of *-n, remains unchanged when the direction of ng is reversed.
The DG weak form can be made symmetric by the introduction of additional terms to the
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Figure 1.10: Interface elements in a DG mesh. The bulk elements are shrunk for better
illustration
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weak form (1.8). This, along with further details on its derivation, has been discussed in
[89, 110] among others.

The interfacial traction (o) ng + nfuy] appearing in the integral on I'yj, in (1.8) is
often referred to as the Nitsche traction, see e.g., [142]. The first term of the Nitsche
traction ensures consistency of the finite element formulation. Were it not for this term, the
formulation would correspond to a penalty formulation which gives rise to the complexities
associated with artificial compliance discussed in Section 1.3.1 due to lack of consistency.
The second term of the Nitsche traction is a penalization term introduced for the stability
of the formulation. In linear elasticity, the penalty parameter n may be defined as

7
_ 1.11
=X (1.11)

in which p is the shear modulus, hg is an element-wise measure of the mesh size, and x > 0
is a dimensionless parameter which must be greater than a minimum threshold dependent
on the order of approximation to ensure stability [89]. Radovitzky et al. [129] suggested
that the range 2 < y < 10 leads to stable numerical results for quadratic approximations.
The DG formulation was extended to finite deformation in [109]. Extension to dynamics
was proposed in [111], where it was shown that the explicit stable time step is reduced by

a factor of 1/,/x.

1.5.2 The hybrid DG-cohesive element method

The idea of using DG formulations in cohesive zone modelling was first proposed by
Mergheim et al. [96], who modelled adhesive interfaces in two dimensions. In this work,
the DG method was used only in the pre-failure state along a a priori known surface. At
the onset of material failure, the DG formulation gives its place to an extrinsic cohesive
zone model formulation describing the nonlinear fracturing processes until the formation of
a traction-free interface. Radovitzky et al. [129] used a similar approach for modelling dy-
namic fracture in 3D by introducing the DG formulation in the entire finite element mesh.
Thanks to the DG formulation, issues associated with the effect of artificial compliance
discussed in Section 1.3.1 were effectively avoided. Because the method does not require
adaptive insertion of elements, it is also readily amenable to scalable parallel computa-
tions [129]; see also [105] for more details on the numerical implementation of this method.
Other applications of the DG method to cohesive crack modelling include the space-time
DG approach proposed by Abedi et al. [1] and the cohesive interface formulation proposed
by Hansbo and Salomonsson [70].
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To switch from the DG formulation to the cohesive zone formulation, a binary variable
a is defined that takes a value of zero before fracture and of 1 after fracture. The boundary
integral on 'y, in (1.8) is replaced by

/F (1= a)[5un]- ({os) g + fus]) dS + / 04 6y oo []) S, (112)

Can

in which teops([us]) is the cohesive traction computed from an extrinsic cohesive zone
model. For an initially uncracked body, a is 0 everywhere on I'y; at the start of the
simulation but becomes 1 anywhere and at any time a fracturing criterion is met and then
remains constant. The fracturing criterion can be written for the cohesive zone model of,
for example, Ortiz and Pandolfi [113] as

g =\ (oh:Mg@ng)2+ B 2(on: [I-ng®ng)2 >0, — a=1, (1.13)

where o, is the material strength in tension and f is a constant of the cohesive zone model
representing the ratio of the material strength in shear to that in tension.

The switch from DG to cohesive zone is performed at the quadrature point level, thus
affording the possibility of sub-element crack resolution. When the faces of a cracked in-
terface come into contact, i.e., when [u,] = 0 and [u,] < 0, the nonpenetration constraint
in the normal direction is enforced by using the normal component of the DG traction. In
that case, the tangential response is still governed by the cohesive zone model. Radovitzky
et al. [129] showed that the hybrid DG-cohesive element method is free of the artificial
compliance effect and guarantees transmission of longitudinal waves in both the pre- and
post-failure stages. However, as will be shown in the following, the hybrid DG-cohesive
element method is still not time-continuous in its present form.

1.5.3 Attaining time-continuity

In this section, a preliminary method, based on Sam et al. [140], is presented for making the
hybrid DG-cohesive element method time-continuous. Since time-continuity concerns the
initiation of damage, introduction of a history variable that accounts for the irreversibilty
of subsequent fracturing processes [113] is neglected in the presentation that follows.

Suppose that the fracturing criterion is met at an interface Gauss point at t = ty. To
assure time-continuity in the hybrid DG-cohesive zone method, one needs to have

(oh) ng + n[ud] = teons([up]), (1.14)
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in which the superscript 0 implies that the variables are evaluated at t = ¢;. Note that
since the DG method enforces displacement continuity only weakly, the interface shows a
nonzero, albeit very small, displacement jump [u?] at the onset of fracture. This nonzero
jump is a result of the numerical solution and does not represent a physical crack opening
displacement. As discussed in Section 1.3.2, the above criterion is not guaranteed to hold
in general. The basic idea of the method proposed by Sam et al. [140] is to start with an
initially elastic cohesive zone model and apply a shift of the origin such that the cohesive
traction for zero crack opening displacement matches the traction obtained from bulk
stresses at interface activation. Consider a generic initially elastic cohesive model that
represents the cohesive traction as a function f(d) of the crack opening displacement 8.
An activation opening displacement &, is first defined such that

£(8.) = (%) na (1.15)

Note that the activation opening displacement d, is defined locally at the Gauss point
level, i.e., each Gauss point on the interface has its own d,. A cohesive traction-separation
model that can ensure time-continuity in (1.12) is now given by

teons([un]) = £(8 + 84) + PH& (Omax), (1.16)

in which pY) = n[u?] is the penalty component of the Nitsche traction at crack nucleation
and &(dmax) is a decaying function of the maximum effective opening displacement attained
in the loading history, .y, satisfying £(0)=1. The term pl¢(dmax) is not present in the
original work of Sam et al. [140] who modelled initially-rigid cohesive interfaces by adaptive
insertion of interface elements rather than the present DG approach. The function &(dpayx)
is thus introduced to phase out p? with the opening of the interface to alleviate alteration
of the original traction-separation model with the physically meaningless traction p). A
convenient choice for &(0max) would be the exponential form &(0pay) = e~%max/% where
a > 1 is a constant that determines how fast the function decays. By taking, for example,
a = 300, the function &(dyax) decays to zero within machine precision once 6.y reaches
0.19.. The actual crack opening displacement d to be used in the evaluation of f is different
from the displacement jump at the interface and is given by

5 = [w] - [ul]. (117)

With the above definition, one can verify that the condition (1.14) is satisfied by the
cohesive model (1.16) at [u,] = [u)].

Within a time discrete framework, t, does not necessarily coincide with any of the
discrete time steps defined for time integration. Suppose the activation criterion (1.13) is
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first satisfied at time step t;. Let to = t; — At be the time step immediately prior to ;.
The activation time ty is taken to be an intermediate point between t; and ¢, determined
by linear interpolation as

to = Ayt + Asts, (1.18)

where the interpolators 0 < A; < 1 and 0 < Ay <1 are given by,

1

2
O.— 0 O — O
Ay =S "ol and Ay = e T (1.19)
0'1 —0'2 0'1 —0'2
eff eff eff eff

In the above, ol and o%; are effective stresses obtained at ¢; and ¢, respectively. The
variables [u?] and (o9) needed for the computation of cohesive traction defined through
equations (1.15)-(1.17) are interpolated in a similar manner as,

[up] = Ai[u,] + As[ui],
(1.20)
(o)) =A1{o})+ A {o7).

Illustrative example. Rectangular block with a weak interface In order to validate
the assertion that the modified cohesive model given by (1.16) corrects the pathological
behaviour emanating from time-discontinuity, the mixed-mode failure of a weak interface
shown in Figure 1.11 was analyzed numerically. Time integration was performed explicitly
using the central difference scheme. Results of the temporal convergence study (Figure
1.11b) show that the time-continuous model exhibits the expected second order convergence
rate at selected pre- and post-failure stages while the time-discontinuous model shows very
poor convergence or no convergence at all in the post-failure stage. In addition, the velocity
contours obtained by the two methods, shown in Figure 1.12, clearly indicate that the time-
continuous model resolves the pathological behaviour observed in the time-discontinues
model. It must be noted this pathological behaviour is different than shock waves induced
due to external shock forces. In addition, the spurious irregularities do not go away with
mesh or time step refinement.

Finally, it is worth mentioning that even though the cohesive traction (1.16) makes the
hybrid DG-cohesive element approach time-continuous, the method is still not amenable
to implicit time-stepping. In particular, it was found that a Newton-Raphson iteration
for the solution of the nonlinear system of equations fails to converge at crack activation
in many cases. Failure to converge is typically due to an oscillatory behaviour between
cracked (cohesive zone model formulation) and uncracked (DG formulation) conditions.
It thus appears that the hybrid DG-cohesive element method is best suited for dynamic
problems and explicit time-stepping.
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Figure 1.11: Rectangular block with a weak interface; a) problem definition, boundary
conditions and the FE mesh, b) results of the temporal convergence study
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Figure 1.12: Contours of the vertical velocity field obtained by the time-continuous and
time-discontinuous hybrid DG-cohesive element methods (color bar in mm/s)

1.6 Energy approaches to fracture

In Griffith’s LEFM theory [66], the elastic energy release rate G induced by the infinitesi-
mal growth of an existing crack-tip along a a priori known path is compared to a critical
energy rate GG, and propagation occurs when G = G,.. Even though fracture mechanics,
as proposed by Griffith [66], is solidly based on energy methods, early works in com-

21



putational fracture mechanics, including those reviewed in the preceding sections, have
generally favoured a Newtonian approach, i.e., balance of forces, along with crack propa-
gation criteria (in the discrete approach) or with damage evolution laws (in the smeared
approach). However, energy approaches to fracture have gained big interest in recent years.
Francfort and Marigo [49] expanded Griffith’s energy theory by formulating brittle fracture
as an energy minimization problem that simultaneously seeks the displacement field and
the crack path, represented as a set valued variable, that minimize the sum of the bulk
and surface dissipated energies in the loaded body. This has been the core idea idea of
energy (variational) approaches to fracture, see also [30]. In the context of LEFM, numer-
ical implementation of the energy approach has been achieved by representing the cracks
as a “phase field” [20]. In the context of cohesive fracture, the energy approach has been
formulated as a nondifferentiable energy minimization problem [116, 91]. An important
difference between the two approaches is that the first leads to a smeared crack whereas
the second is a discrete cohesive crack approach. In what follows, each of these methods
are briefly discussed.

1.6.1 Crack as a phase field

In the spirit of the variational approach to brittle fracture [49], deformation and fracture
of a solid body 2 containing an evolving crack S is formulated by the minimization of
its potential energy functional 7 expressed, in the absence of inertial effects and external
forces, as

(e, S) = (e)dV + / G.dS, (1.21)

oS S

where v is the strain energy density function represented as a function of the strain tensor
e = V°u and G, is the (constant) fracture energy. Note that the displacement field u is
continuous everywhere in Q\S except for discontinuities across the unknown crack surfaces

S.

Numerical implementation of the energy formulation in this context was achieved by
Bourdin et al. [20], who approximated the original functional by an elliptic functional, in
which an additional “phase field” was introduced that regularizes the sharp crack surface
into a diffuse zone and interpolates between the unbroken and the broken state of the
material. The above functional is approximated by 7 as [20]
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F(e, d: Vd) = / g(d)y(e) dV + /Q G, Fw(d)Jrlo(Vd- Vd)} qv,

Q Co lo
1
with ¢ :4/ Vw(s)ds.
0

in which 0 < d < 1 is a new unknown, the phase field, taking a value of 1 close to S
and 0 away from it, and [y is a numerical parameter that controls the width of the diffuse
region. Furthermore, w(d) is a function characterizing the local part of the dissipated
energy, which could be taken as w(d) = d or w(d) = d?; g(d) is a monotonically decreasing
stiffness degradation function of d with ¢g(0) = 1 (no damage) and g(1) = 0 (complete loss
of stiffness). More details on different forms of g(d) and its effect on the numerical results
along with a recent review on phase field modelling of fracture can be found in [93]. A vari-
ational formulation using the regularized potentials (1.22) leads to an equilibrium equation

governing the bulk deformation and an additional equation governing the evolution of the
phase field.

(1.22)

The phase field method leads to a smeared crack whose thickness, however, is controlled
by Iy so the method is free of the several issues, such as mesh dependence, that plague
conventional damage mechanics. It has been shown that the approximate functional (1.22)
converges to the original functional (1.21) as Iy — 0 in a I'-convergence sense? [20]. How-
ever, phase field models inherit the deficiency of Griffith’s theory in the limit because they
predict crack nucleation at a critical stress inversely proportional to the square root of [
[18]. Therefore, Iy is may be regarded as a material property that should be fixed for a
specific problem as in gradient-damage models [127]. More recently, phase field methods
have been extended to the case of cohesive fracture, see e.g., [106, 62]. These models dif-
fer from a Barenblatt description of cohesive fracture (i.e., an opening-dependent fracture
energy functional as in Section 1.6.2); rather, they build on the work of Lorentz et al. [92]
who derived the cohesive zone behaviour as the asymptotic response of a nonlocal damage
model associated with a particular stiffness degradation function g(d). In consequence, in
these models, the length scale [y is no longer a material constant but a purely numerical pa-
rameter. Phase-filed formulations of fracture are thus closely related to gradient/nonlocal
damage models of continuum damage mechanics even though they are entirely based upon
an energy description of discrete brittle fracture.

2'-convergence is a notion of variational convergence that implies convergence of minimizers.
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1.6.2 Nondifferentiable energy minimization for cohesive frac-
ture

In the context of cohesive fracture model, the energy functional of the fracturing body is
expressed as

w(eS) = [ vV + [ vosullu)ds (123

oS S

where .5 is the cohesive surface energy density function which, according to Barenblatt’s
cohesive crack model [11], depends nontrivially on the displacement jump [u] across the
unknown discontinuity surface S. On the basis of the variational approach to fracture,
Charlotte et al. [30, 29] and Bourdin et al. [21] showed that nondifferentiablity of ©)cons at
zero displacement jump is the necessary requirement for obtaining a stress criterion for the
initiation of cracks (i.e., nonzero displacement jump at finite stresses) as a result of the loss
of stability of the elastic response. This was also shown in 1D earlier on by DelPiero [39]. In
the above, fracturing processes are assumed to be reversible for simplicity of presentation.

Irreversibly can be modelled by introducing a history variable as described, for example,
in [113].

It is noted that a phase field approximation to the functional (1.23) would not be
possible as the surface energy function t..s is not a constant parameter but an opening
dependent function. Numerical implementation of the above energy formulation can, how-
ever, be achieved by restricting the evolution of crack surfaces S to a set of a priori known
boundaries I'y. As I'y represents potential sites of crack nucleation and propagation, the
displacement field is allowed to be discontinuous everywhere across I'y, and a new vari-
able d is introduced that represents the magnitude of the displacement jump on I'y. The
potential (1.23) is rewritten as

#(e,8) = (€)dV + | teons(d) dS, (1.24)

Q\I'y T4

which should now be minimized subject to the constraint Ju] = d on I'y. Numerical im-
plementations of initially-rigid interfaces using a formulation similar to the above has been
proposed by Lorentz [91] and Papoulia [116]. Consistent with earlier findings in [30, 29, 21],
both authors pointed out that the initially-rigid behaviour across the interfaces is associ-
ated with the nondifferentiability of the cohesive potential 1. at zero interface opening.
The usual step of passing to a weak form thus does not apply in such formulations as the
objective functional is not globally differentiable. Instead, methods corresponds to a con-
strained nondifferentiable energy minimization problem. Because crack nucleation happens
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automatically as a result of energy minimization, these methods completely sidestep the
complexities arising from the use of an extrinsic failure criterion in previous stress based
formulations (see Section 1.3.2). However, the need arises for a solution method able to
handle the nondifferentiability. Whereas Lorentz [91] used a generalized definition of the
derivative at the nondifferentiable point, Papoulia [116] proposed a continuation method
with successive smoothing of the cohesive surface energy function cops.

A major difference between the numerical implementations proposed in [91, 116] and
that of phase field is that the former preserve the discrete nature of fracture and are thus
able to model the opening of cracks and associated post-failure mechanisms. A sharp
representation of the crack in phase field models must be determined a posteriori or,
alternatively, by coupling the method with an algorithm that allows transition of diffuse
damage to sharp crack faces, see e.g., [61].

To demonstrate the role of nondifferentiability, consider the simple one-dimensional
model shown in Figure 1.13a proposed by Papoulia [116]. Let J; and §; denote the de-
formation of the spring and the opening of the interface, respectively. The displacement
compatibility constraint is §; +0s = A, where A is an externally applied displacement. Let
1s(ds) and 1;(6;) denote the energy functions associated with the spring and the interface,
respectively, and suppose that the total potential energy of the system, 7, is the sum of

7 I
Spring  Interface
(a)
Vs ¥,
G
s Jc 0;
(b) (c)

Figure 1.13: a) the one-dimensional model of a spring and a cohesive interface, b) potential
energy of the spring, c¢) potential energy of the interface
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these two potentials, 7(ds,6;) = 15(ds) + 1:(6;). The potential of the spring is the classi-
cal quadratic ¢, = kd2/2, where k is the spring constant, see Figure 1.13b. That of the
interface can be written for a linear softening relationship as

6 ) loe
i (6;) —/0 O, (1 50) dd = o0.0; 5 5052-, (1.25)
for 0 < §; < &, followed by a constant G. = 0.0./2 for 6; > J. (i.e., complete loss of
cohesion), see Figure 1.13c. For ¢; < 0, the interface potential is written as i, = —cd;
which, with ¢ > 1 being a large penalty parameter, implies that a high value of compressive
traction will act to impose a zero interpenetration constraint when A < 0. At §; = 0, the
slope of ¢; is o, on the positive side of §; and —c on the negative side of d;. The equilibrium
configuration of the spring-interface system is denoted (07, ¢%), the minimizer of the total
energy functional, that is,

It can be shown that the configuration (6 = 0,0% = A) is one such minimizer [116]. To
this end, the derivatives to the left and to the right of §; = 0 can be easily evaluated, with
0s = A, as

gg (0%, A) = kA + o,
0 (1.27)
g(() 7A):—k}A—C,

of which the second is always negative for A > 0 and the first is positive for small A. A well-
known theorem in nonsmooth optimization, specialized to the univariate case, states that
if w(x) is a real-valued function such that its left-derivative 7’(z, ) and its right-derivative
7'(z¢) both exist at a point zy and if 7'(z5) < 0, 7(xf) > 0, then x is a local minimizer
of m. Accordingly, it can be argued that for small values of A, of either sign, the minimum
is attained when ¢; = 0, i.e., the interface remains exactly at zero opening displacement.
This is possible because v jumps discontinuously from a negative to a positive value at
0; = 0, i.e., 1; is not differentiable at the origin. In contrast, one can verify that if ;

were differentiable at §; = 0, then any small value of A would lead to a nonzero minimizer
§* 0 [116].
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1.7 Motivation, objectives and methodology

As with many other physical phenomena, computational modelling of fracture constitutes
an indispensable tool not only to predict failure of cracked structures but also to provide
an ever-closer understanding of fracture process mechanisms. Robustness issues in existing
methods of discrete fracture have led to many of the algorithmic pitfalls and nonphysical
solutions discussed in previous sections. The demands for obtaining reliable simulation
results in engineering applications motivates development of new computational methods.
In particular, the newly proposed methods need to deliver the following properties:

e Preserve the discrete nature of fracture Methods that smear crack faces over a narrow
region, such as methods of continuum damage or phase field methods, are not pursued
in this research. A distinct advantage of the sharp crack approach is that it is able
to model the opening of cracks and associated post-failure mechanisms. This is
especially useful in coupled multi-physics problems, in which additional unknowns,
defined locally along the crack faces, are explicitly dependent on the crack opening
field (e.g., hydraulic fracturing).

e Be free of nonphysical parameters Regularization parameters such as the initial stiff-
ness k of intrinsic cohesive models (Section 1.3.1) or the activation opening d, in
“shifted” initially-rigid models (Section 1.5.3) have no rigorous mathematical or phys-
ical grounds and undermine robustness of the numerical algorithm. Methods should
be free of such parameters.

e Time-continuity The continuity of the internal forces as a function of deformation
should be preserved throughout the solution trajectory including at initiation of
damage. As discussed in Section 1.3.2, this is crucial to the mathematical soundness
of the computational algorithm. Methods that rely on an external fracture criterion
violate this condition and are therefore not pursued in this research.

e Be amenable to both quasi-static and dynamic problems In addition to explicit time-
stepping, which is best-suited for fast dynamic problems, methods should be applica-
ble with implicit time-stepping to address problems with slow/quasi-static loading.
As discussed in Section 1.5.3, time-continuity is not always sufficient to make im-
plicit time-stepping possible. Methods that switch from one formulation to another
at crack activation (e.g., from DG to cohesive element) are likely to result in non-
convergence of nonlinear Newton-Raphson solvers due to an oscillatory behaviour
between “cracked” and “uncracked” conditions.
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e Be capable of handling multiple cracks In conventional engineering fracture mechan-
ics, crack growth is assumed to occur by extension of a single dominant crack. How-
ever, a wide variety of circumstances exists in which the fracture process involves
nucleation and growth of multiple cracks, fragmentation, bifurcation of cracks or
micro-crack branching. Numerical methods are expected to offer a desirable flexibil-
ity in modelling these phenomena while producing accurate crack trajectories.

Recognizing these needs, several computational algorithms have been proposed in this
research by pursuing and advancing the nondifferentiable energy minimization approach
to cohesive fracture discussed in Section 1.6.2. For reasons mentioned earlier - notably
the lack of an explicit activation criterion - the nondifferentiable energy minimization
approach is a firm basis for developing robust computational algorithms for modelling
initially-rigid interfaces. To demonstrate that the newly proposed algorithms deliver the
properties mentioned above, the following strategies have been employed in this research
where appropriate:

o Temporal and spatial convergence studies Convergence tests provide reliable means
of examining the mathematical soundness and robustness of the newly proposed al-
gorithms. This is especially true in dynamic crack propagation problems where there
are limited, if any, analytical solutions available, against which numerical solutions
may be verified. For spatial convergece, methods should not only exhibit expected
rates of convergence in the error norms, but also produce convergent crack paths and
lengths (i.e., convergence in dissipated fracture energies).

o Verifying numerical results against experimental findings The predictive capabilities
of the numerical models can be examined by making comparisons with several exper-
imental data reported in the previous literature. In particular, comparisons are made
with crack trajectories, load-displacement curves and crack-tip velocities when such
data is available. Experimental data are obtained from the literature. Experiments
were not conducted as part of this research.

e Solving multi-physics problems Many real-world problems involve several interacting
physical phenomena. Application of the methods to such problems exposes them to
new simulation challenges and examines their capabilities in modelling more com-
plex problems. An example of multi-physics problems involving fracture is hydraulic
fracturing, in which cracks are driven by the injection of a fracturing fluid.
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1.8 Statement of contributions

Chapter 2 of this dissertation consists of a paper published in International Journal for
Numerical Methods in Engineering (2018) 115:627-650. The paper was co-authored by
myself and my supervisor, Dr. Katerina Papoulia. In this paper, I developed the relevant
mathematical and computational techniques, implemented a computer program to perform
the numerical simulations and wrote the manuscript. Dr. Papoulia provided supervisory
guidance through overseeing formulations and editing the manuscript.

Chapter 3 has been incorporated within a paper that has been submitted for publication
in Computer Methods in Applied Mechanics and Engineering. The paper was co-authored
by myself and my supervisor, Dr. Katerina Papoulia. I developed the mathematical and
computational formulation and implemented a computer program to conduct the numerical
simulations. I also wrote the manuscript. Dr. Papoulia provided supervisory guidance
through overseeing formulations and editing the manuscript. At the time of this writing,
the paper is under revision.

Chapter 4 has been incorporated within a paper that has been submitted for publication
in Computer Methods in Applied Mechanics and Engineering. This paper was co-authored
by myself, my supervisor, Dr. Papoulia, and by our research collaborators, Dr. Nasser
Khalili, Professor of Geotechnical Engineering, and Dr. Mohammad Vahab, post-doctoral
fellow, in the Department of Civil and Environmental Engineering at the University of New
South Wales, Australia. I designed the collaborative work, developed the computational
formulation and wrote the manuscript. I also worked with the second author (Dr. Moham-
mad Vahab) in the computer implementation of the proposed algorithms and conducted
the numerical simulations. Dr. Papoulia and Dr. Khalili were involved in overseeing the
formulation and editing the manuscript. At the time of this writing, the paper is under
revision.
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Chapter 2

A continuation method for
rigid-cohesive fracture in a
discontinuous Galerkin finite element
setting
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This chapter is based on the following journal article:

Hirmand MR and Papoulia KD, A continuation method for rigid-cohesive fracture
in a discontinuous Galerkin finite element setting. International Journal for Numerical
Methods in Engineering, (2018) 115:627-650.

This paper was co-authored by myself and my supervisor, Dr. Katerina Papoulia. In
this paper, I developed the relevant mathematical and computational techniques, imple-
mented a computer program to perform the numerical simulations and wrote the manuscript.
Dr. Papoulia provided supervisory guidance through overseeing formulations and editing
the manuscript.
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2.1 Introduction

An energy minimization formulation of initially rigid cohesive fracture is introduced within
a discontinuous Galerkin finite element setting with Nitsche flux. The finite element dis-
cretization is directly applied to an energy functional, whose term representing the energy
stored in the interfaces is nondifferentiable at the origin. Unlike finite element implemen-
tations of extrinsic cohesive models, activation of interfaces happens automatically when a
certain level of stress encoded in the interface potential is reached. Thus, numerical issues
associated with an external activation criterion observed in the previous literature are ef-
fectively avoided. Use of the Nitsche flux avoids the introduction of Lagrange multipliers
as additional unknowns. Implicit time-stepping is performed using the Newmark scheme,
for which a time-discretized “dynamic potential” is developed to properly incorporate mo-
mentum. A continuation strategy is employed for the treatment of nondifferentiability
which performs faster than the one proposed in [116]. The resulting sequence of smooth
nonconvex problems is solved using the trust region minimization algorithm. The method
inserts cohesive interfaces at bulk element edges, which, in the absence of any information
regarding crack paths, can be all element edges in the domain. The minimization algorithm
then decides which interfaces activate, given the applied boundary conditions. Robustness
of the proposed method and its capabilities in modelling quasistatic and dynamic problems
are shown through several numerical examples.

This chapter is organized as follows. In Section 2.2, we present the formulation of
the energy approach. In Section 2.3, we present the DG finite element discretization of
the energy functional. The proposed optimization algorithm for the minimization of the
discretized functional, which entails a continuation method for the treatment of nondif-
ferentiability in conjunction with a trust region minimization algorithm for solving the
resulting smooth problem, is presented in Section 2.4. Section 2.5 contains the temporal
discretization scheme and a proposed functional that properly incorporates inertia into the
formulation. Section 2.6 presents several numerical simulations of quasistatic and dynamic
crack propagation problems. Finally, Section 2.7 offers some concluding remarks.

2.2 Formulation of the energy approach

We consider a body Q C R™im (ng,,, = 2,3) bounded externally by €2 and containing an
evolving (ngim — 1)-dimensional surface S in the interior of its domain representing cracks,
as shown in Figure 2.1. The external boundary 0f2, whose unit outward normal is denoted
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u=uaua

Figure 2.1: Schematic of a solid body 2 containing evolving crack surfaces S. The discon-
tinuity boundary I'y represents potential crack paths

n, consists of disjoint parts 9,2 and 9 €2, on which displacement and traction bound-
ary conditions are prescribed, respectively, for each coordinate direction @ = 1 : ngjm,
0y, QU 0, = 0Q and 0,,Q2N 9, Q2 = 0 Va. Let u(x,t) : Q — R™im x [0,7] be the
displacement of the fractured body, which is continuous and differentiable everywhere in
O\S except for nonzero jumps across crack surfaces S. To overcome the complexities
associated with treating crack surfaces § as an unknown of the energy minimization for-
mulation, we restrict evolution of & to a set of a prior: known discontinuity boundaries
'y € Q. These represent potential crack paths so that S C I'; throughout the course of
crack propagation. Consistent with this assumption, the displacement is allowed to admit
a jump [u(x,t)] everywhere on I'y. An auxiliary discontinuity opening displacement field
d(x,t) : I'y — R™im x [0, 7] is then defined that tracks the evolution of § in I'y by requiring
that

g(u,0) = [u(x,t)] —d(x,t) =0 on T, (2.1)

It follows from the above formulation that S(t) = {x € I'y|(x,t) # 0}. The complete
state of deformation and fracture of the body is thus described by two independent un-
knowns, namely u and §.

Let ng denote the unit normal to the discontinuity. For simplicity, we assume that the
deformation is small, so we do not differentiate between the normals to the deformed and
undeformed configurations. This assumption does not compromise the main aspects of the
method, although it does undermine its ability to quantify the crack opening, which, in the
scale of some problems, may indeed be large; see [116] for a fully nonlinear formulation.
Accordingly, the normal and sliding components of the jump are defined as [u,] = [u] - ny
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and [us] = [u] — [un]nag, respectively. Similar definitions can also be made for the dis-
continuity opening 4, that is, J, = d-ng and ds = & — d,ng. Defining the opening d and
deformation u as independent variables enables the energy formulation to model the bulk
and the cracks as independent entities which are, however, related through constraint (2.1)
for compatibility of the unknowns fields.

The potential energy of an elastic body is expressed as the sum of the elastic strain
energy stored in the bulk, the work of external and body forces, the energy stored in the
interfaces and the energy due to momentum:

m(u,d) = Y (e(u)) dV—/ u-bdV—
/ u-de—l—/ (Yeons(0) + Ir+(d,)) dS + Tayn(0).
0:Q2 Ty
The strain energy density function in the first integral is
1
¥ (e(u)) = 5e(u) : D : e(u), (2.3)

2

in which D is the elasticity constitutive tensor and e(u) = V*u € R™im x R™im ig the
symmetric part of the displacement gradient. In the second and third integrals, b is the
body force per unit volume and tisa prescribed traction vector on 9, (for simplicity of
notation, it is assumed that 9, Q = 0,Q,a = 1 : ngim)-

The fourth integral in (2.2) contains two terms, the first of which is the cohesive energy
corresponding to an initially rigid model and the second an interpenetration penalty that
precludes overlap of the discontinuity faces. The two potential functions ¥..ns and Ig+ are
functions of & and of §,, = - ngy, respectively. The precise form of these functions will be
discussed in Section 2.4. Both potentials are nondifferentiable at their origins (§ = 0 and
0, = 0, respectively). This is the crucial mathematical property that keeps the interfaces
closed until a certain level of stress/elastic energy is reached in the body (i.e., initially rigid
behavior), see the discussion in 1.6.2. In addition, the cohesive potential 1cops is nonconvex
in & so as to capture the expected softening behavior when an interface point opens. The
last term in the potential (2.2) stores the “dynamic energy” due to inertia. Because a time
dependent potential is difficult to achieve, we obtain a proper “time-discretized” form of
this potential using finite difference approximations to the displacement unknowns after
time discretization in Section 2.5.

We characterize the equilibrium of the body by the solution of the following constrained
minimization problem that must be solved at each time step:

find (u*,6*) € U x D minimizing 7(u, §) subject to g(u,d) =0, (2.4)
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where U and D are spaces of admissible solutions to be approximated by a particular finite
element discretization and g(u, d) is a linear constraint function as defined in (2.1).

The Lagrangian for the constrained optimization problem (2.4) is

L(w,8,A) = 7(u, 8) + / A gdS (2.5)
Ty

where A is the Lagrange multiplier field. A saddle point of the above Lagrangian corre-

sponds to a solution (u*,d*) of (2.4).

In a usual variational approach, one would now pass to the derivative of the energy
functional to arrive at a weak form through a variational formulation. In our setting, this
is not a valid approach because the energy functional in (2.5) is not globally differentiable.
We therefore directly apply finite element discretization to the energy functional and solve
the resulting finite-dimensional, nondifferentiable energy minimization problem. We note
that variational formulations introducing a traction-opening relationship and relying on an
extrinsic failure criterion for activation are not mathematically equivalent to the present
energy minimization formulation.

In the work of Lorentz [91] a formulation is obtained from the nondifferentiable en-
ergy functional by exploiting the concept of a sub-gradient. The method leads to a set
of nonlinearly constrained equations to be solved and a constitutive update relation for
the opening of the interfaces. A DG implementation of Lorentzs method was presented in
[161]. Our method differs from that of Lorentz [91] in that it makes use of a nondifferen-
tiable, nonconvex optimization algorithm to directly tackle the finite-dimensional energy
minimization problem arising from a finite element discretization of the energy potential.

2.3 The finite-dimensional problem

The proposed finite element discretization is based on the DG method [89]. The body
Q is approximated by a mesh ,, bounded by 9, Q) = U, @5 N, = BVe # ¢,
where @§ represents the interior of element wf (Figure 2.2). The deformation field u(x,?)
is approximated by a piecewise polynomial approximation uy(x, t) in the finite-dimensional
space of kinematically admissible solutions

Uu, = {uh]w; € PP(wy) Ywy, € Qp;up, = ay, on aanh} , (2.6)

where PP(wf) is the space of polynomials of order up to p with support in wi and uy, is
a prescribed displacement on the Dirichlet boundary in the direction . For the quadratic
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Figure 2.2: Schematic of the discontinuous Galerkin discretization, €2y, of the domain and
related definitions

triangles used in Section 2.6, p = 2. Neighbouring elements do not share nodal points
and edges, which allows for jump discontinuities [uy(x,t)] of polynomial order p at inter-
element boundaries.

The union of element boundaries excluding 02, constitutes the discretized discontinuity
boundary I'yj, = U.0wy \0S2,. The two faces of the discontinuity are denoted by positive
and negative signs as th and I';, with the unit normal pointing toward I zh' Although
the DG discretization does not require the FE mesh to be conforming on I'y;, we use,
for simplicity, only conforming meshes. Conventional interface elements [113] of dimension
Naim — 1, denoted by 74 in Figure 2.2, are placed at inter-element boundaries to provide a
means for numerical integration on I'gy. It follows that U,y = T'gp.

The finite element approximation of 8, &y, is independent of u;, and thus, of [u(x,t)].
As the potential (2.5) does not involve spatial derivatives of §, the regularity require-
ment for §;, is weaker than that for u, and admits discontinuous approximations along
an interface element. For simplicity, we follow the discretization used in [91], whereby a
piecewise-constant approximation is employed. Such approximation can be constructed by
introducing M nodal points with coordinates §; € 'y, [ = 1,2,, M on the interface. The
location of the nodal points is chosen to be the Gauss quadrature points of the interface
elements. As such, each Gauss point on the interface holds an interface opening degree
of freedom representing the constant value of the approximation in some vicinity of the
Gauss point. The size of this vicinity does not affect the numerical integration on - as
values of the integrands are only needed at the Gauss points.

The Lagrange multiplier A is replaced by a numerical flux )\EG expressed as a function of
primal variables (uy, ;) due to Nitsche [107]. This circumvents the need for the fulfillment
of the Ladyzhenskaya-Babuska-Brezzi (LBB) condition [23], which restricts the types of
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numerically stable displacement-multiplier interpolation combinations, and reduces the
number of unknowns compared to a Lagrange multiplier method. Additionally, the method
is computationally more cost effective compared to an augmented Lagrange method as

computation of the multiplier field does not require an outer augmentation loop as in
[116]. The DG flux AP€ is [89]

1
AC = (o) ng + 519m (2.7)
in which o, = o(u,,) is the Cauchy stress tensor, obtained strongly from uy, (x) = %(*Jr +
x~), and 7 is a sufficiently large penalty number. The first term in (2.7) ensures consistency
of the numerical scheme, whereas the second term ensures stability. The penalty number
on each interface element 7 is taken as

(2.8)

¢ meas(v¢ -1 . . .
in which hg|,e = 2 ( meas(“’eﬁ) + eab(l’i) ) is the characteristic element size, u is the shear
h meas(w; ") meas(w; )

modulus and x is a number that must be taken larger than a certain threshold to ensure
stability of the method and insensitivity to the magnitude of the penalty number. The
range 2 < x < 10 is suggested in [109]. Note that, as suggested by Equation (2.7), in the
limit as g, — 0, A}¢ takes the value of (o),) ng irrespective of the magnitude of 7.

With finite element approximations uy, d; and /\5(;, the minimization problem (2.5)
results into the following finite-dimensional problem:

min {EDG(uha‘sh) = m(up, 65) +/ (o) ng- g, dS + 1/ n9h Gn dS} , (29
(U.d) Tan 2 Can

where U and d denote the global vector of nodal unknowns corresponding to u; and 6y,
respectively. A straightforward minimization of the above potential is out of reach due
to nondifferentiability and nonconvexity of the potential function. In what follows, we
will describe a minimization algorithm that is capable of handling the nondifferentiable,
nonconvex problem.
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2.4 Nondifferentiable energy minimization

2.4.1 The cohesive potential

We consider a general class of cohesive models proposed by Ortiz and Pandolfi [113],
in which the cohesive potential is expressed as a function of a scalar effective opening
displacement 0 defined by

5(60. 84) = \/ (50 + 1186, (2.10)

in which ;7 = max(0,9,) and the material constant § weights the normal and tangen-
tial components of the displacement vector. The particular form of potential function
considered in this chapter is

0.5 — 782 §€10,4,)
COs(S = ¢ 25(2 e 211
Peohs (0) {ﬂ 8 € [0e, 00), o

2
in which o, and ¢, are the cohesive model parameters representing material strength and
critical opening displacement, i.e., opening displacement at loss of cohesion, respectively,
see Figure 2.3a. The above, nonconvex in ¢, potential corresponds to linear softening
behavior in the cohesive process zone:

tcohs (5 )

5 (6 ng + 5%8,), 6#0, (2.12)

teons = V5¢ =

where t..s 1s the cohesive traction vector and

o (1 . g) 5 €0,4,)
teohs(0) = {0 5 € [5.00). (2.13)

is a scalar effective traction (Figure 2.3b). The value ©¢ons(0) — teons(00) represents the
critical fracture energy, which for the present model is G, = 0.d./2. We note that the gra-
dient (2.12) is not defined at zero interface opening d,, = ||d5|| = 0, i.e., the potential (2.11)
regarded as a function of (d,, d,) is not differentiable at the origin. The nondifferentiability
is due to the presence of the ratios d,,/d and d5/9, which follows from the definition of the
norm (2.10). These are both 0/0 at § = 0, which, in contrast to the nonsingular, smoothed
by continuation case described in Section 2.4.2, cannot be resolved with use of L’Hopital’s
rule. This nondifferentiability is fundamental to the model; it is precisely the reason that
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Figure 2.3: a) Cohesive potential 1.ps and b) effective cohesive traction teons = % as
functions of the scalar effective opening o

the interfaces exhibit initially rigid behavior, that is, the minimizer of the potential occurs
at & = 0 until a positive critical value of the load is attained.

The interpenetration penalty is the indicator function Ig+(d,) defined as:

_Joo 0, € (—00,0)
Ig+(0,) = {O 5. ¢ [0, 00). (2.14)

The indicator function precludes interpenetration since negative displacement jumps would
result in infinite energy (hence not a minimum). The interpenetration potential is also
nondifferentiable at the origin. The contact traction teon(d) = 31]%2%)11(1 is zero for 9,, —
0", whereas for 4, — 0~ it is undefined. Different definitions of the interpenetration
potential are possible, e.g., [116]. Figure 2.4 shows variation of the total interface potential

® = Yeons + Ir+ as a function of the normal and tangential components of the opening field.

2.4.2 Treatment of nondifferentiability: continuation algorithm

Nondifferentiable objective minimization algorithms usually include solution of a sequence
of differentiable problems to achieve the solution of the nondifferentiable problem within de-
sired accuracy [14, 174]. The methodology presented in this chapter follows that proposed
in [116]. It entails construction of an outer solution loop, referred to as the continua-
tion loop, in which the interface potentials are approximated by a differentiable, smooth
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Figure 2.4: Variation of the total interface potential ¢ = tons + Igr+ or o, = 1.0 and
d. = 1.0 a) as a function of §,, and 0, and b) as a function of ¢,, in the plane §; = 0. The
potential exhibits a sudden jump to infinity when §,, becomes negative

function. Smoothness is successively decreased within the continuation iterations, and the
previously converged smooth solution is used to form a suitable starting point for the next
run of the minimization algorithm with the new, less smooth model. The process is con-
tinued until a desired level of accuracy is achieved for the approximation of the nonsmooth
potential. In this manner, the problem to be solved in each continuation iteration is mini-
mization of a smooth, nonconvex potential that can be solved using an appropriate smooth
minimization algorithm such as the trust region method (see Section 2.4.3).

Several continuation strategies can be introduced. The one proposed here is outlined
in Algorithm 2.1. Two smoothing parameters are introduced. The first, J., represents
the radius of a vicinity of the origin in which the interface potential is approximated by a
differentiable expression. The second, &, is a fictitious critical opening displacement that
replaces the true critical opening of the cohesive model at intermediate steps of continua-
tion.

The approximate, smooth cohesive potential @Zcohs used within the continuation itera-
tions is expressed as

0'206662 5 € [O, 68)
¢cohs(5; 567 50) - % (5 - 25_526 - %) 5 € [567 5c) (215)
oebe § € [6,, 00).

This potential corresponds to an initially elastic model, with d, the interface opening
corresponding to ., which has a well-defined gradient everywhere including at 6 = 0.
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Algorithm 2.1 The continuation algorithm

Initiate the solution U =0 and d = 0.
Loop on time steps i = 0,1,..., N

Initiate smoothing parameters: 6° and 6°
Loop on continuation 5 =1,2,...,J
(i) Solve the smooth problem (Algorithm 2.2) with approximate potentials Deohs
and Ig+ (eqns. (2.15) and (2.16))
(ii) Initiate the starting point for the next round of smooth minimization prob-
lem: for each interface point I, set d; = 0 if d; < 6,
(iii) j — j + 1; decrease 6, and 5, using eq. (2.17) to form the new, less smooth
model
End loop on continuation
1 — 1 + 1; update unknowns

End loop on time steps

Notice that for the smooth potential (2.15), teons(d) = 0.6/0, for 6 € [0,0.), and the § in
the denominator of (2.12) cancels out with the § now appearing in the numerator of ¢.ops(0).
In a similar manner, the smooth interpenetration penalty potential Iz+ is expressed as

@l 5, € (—00,0)

In+(8,:6.) = { 2.

0 8y € [0, 00). (2.16)

The parameter ¢ is a constant that determines the maximum effective penalty traction
that resists interpenetration, which, in subsequent calculations, is fixed at ¢ = 5. In the
limit §. — 0, the smoothed potentials (2.15) and (2.16) approach the original nonsmooth
potentials (2.11) and (2.14). Thus, we initiate the continuation loop with a relatively large
0. and successively decrease it within the continuation iterations until a sufficiently small
tolerance is achieved for the approximation. Figure 2.5 shows variations of the smoothed
interface potential ¢ = Ycons + Ir+ for two levels of smoothness.

The reason for the replacement of the critical opening d. by the fictitious value ZS\C in
(2.15) is as follows. In our experience, starting from a solution, in which all interfaces
under tension are slightly open, it is easily possible that § on one or more interfaces
exceeds its critical value. At this point these interfaces lose cohesion and will not recover
on subsequent iterations. This behavior is certainly enhanced by nonconvexity of the
potential for § € [0, d.). The sudden change of curvature from o./6. > 1 to —0./d. < 1 at
0 = J. can also cause rapid changes in the search direction of the trust region optimization
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Figure 2.5: Variation of the smoothed interface potential gg = QZcohs + fw as a /function of
the normal and tangential components of the opening field with o, = 1.0 and §. = 1.0 for
a) 0. = 0.1 and b) §. = 0.01. The graphs on the right show the variation of the potential
with ¢,, in the plane 6, = 0

algorithm and create convergence difficulties, especially when ¢, is small. This behavior can
be prevented by limiting the step-size of the optimization method. In our case, however,
this is better achieved by replacing . by a larger fictitious value . during intermediate
steps of continuation. The fictitious value is chosen to be fairly large on the first iteration
of continuation and is decreased to the true value on the final iteration.

We reduce the smoothing parameters in an exponential fashion using the relations

j ~ 1—
, SO\ . 50
ol e c
o0, = 52 (@) ) 0y = 0c (5—6) ) (2.17)

where 60 and ;5\2 are initial values on the first continuation step, J is the number of contin-

S

42



uation steps, and j € {0,1,2,..., J} is the continuation iteration index. Other choices of
reduction are also possible. The continuation is performed globally, i.e., there is a single
value of §, and 9. for all domain interfaces in each continuation step.

The solution obtained in a continuation step is used to form a starting point for the
optimization algorithm in the next continuation step. To do so, the effective opening
of all interface points is checked against the smoothing parameter §. at the end of each
continuation step. An interface Gauss point I whose effective opening has remained smaller
than d. is deemed to be at zero-opening and its nodal opening, d;, is set to zero in the
long vector of nodal unknowns d. The optimization algorithm is initiated in the next
continuation step using this modified vector of unknowns.

Irreversibility. Following Ortiz and Pandolfi [113], the physical requirement of an
irreversible fracturing process can be modeled through incorporating a history variable in
the cohesive potential, which, at time t¢;, is defined as the maximum opening attained up
until time ¢;, i.e., the evolution of which is dmax; = Mmaxpegy,.+,_,30(t') in a time discrete
setting. Note that 0. is fixed at the beginning of time-step ¢ and, as such, is not an
additional variable but a parameter in the context of optimization. Let oyax,; denote the
effective traction corresponding to dmax,;. We assume unloading to the origin, for which
the cohesive potential at time step ¢ is given by

2;71;?,2” 5 € [07 5max,i)
Yeons (5 Omais 0c) = & 52— (§ = B — 220 ) 6 € e ) (2.18)
UCT(SAC o€ [gc, 00).

The above potential, which is differentiable everywhere, becomes operative only after an
interface point activates, therefore dyax; > 0. An interface point is said to be activated
when its effective opening, obtained at the end of a solution step, exceeds §*!. For the
interface points that are identified as activated, potential (2.18) replaces (2.15) in the
computations of subsequent time steps. The maximum opening of interface points is then
updated t0 dmax i+1 = Max{dmaxi, d(t;)}-

2.4.3 Solving the smooth problem: trust region algorithm
A trust-region algorithm, see e.g., [174], is used for the solution of the smooth problem in

each step of the continuation iteration, i.e., in step (i) of the inner continuation loop in
Algorithm 2.1. The method is particularly capable of handling nonconvex objectives as
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the one in (2.15) or (2.18). It bears emphasis that the standard Newton’s method cannot
be used here due to nonconvexity of the potential.

Algorithm 2.2 The trust region minimization algorithm

Given yg, Ag > 0 and r € [0, i)
Loop on trust region iterations k£ = 0, 1, ... until convergence

(i) Check for convergence

if % < tolg and EDG()’Z%;GE(;S(Y k1) < tol,, declare convergence and exit

(ii) Obtain the solution of the minimization problem (2.19), dy*
LPC (i) —LPC (y +dy*)
mp(0)—mg(dy*)
(iv) Update trust region radius
if r < i’ then

(iii) Evaluate the ratio r =

Ak+1 = 05Ak

elseif r > 3 and ||dy*|| = Ay, then
Apyr = 24

end

(v) Update solution estimate
if r > rg, then
Yit1 = Y&+ dy*
else
Yie+1 = Yk
end
End loop on trust region iterations

Let y = {U,d} denote the vector of all unknowns. The trust region iteration is
initialized with yq, obtained from the converged solution of the previous continuation step,
as explained in the previous subsection, and with a trust region radius A taken to be the
real-space diameter of a typical mesh element. This value is reset at the beginning of each
continuation step. Algorithm 2.2 outlines the steps involved in the trust region algorithm.
The k' iteration of the trust region algorithm seeks the solution of the following quadratic
sub-problem

ncllinmk(dy) st. |ldy|| < Ay, (2.19)
y

where my(dy) = LP%(yi) + g(yx)-dy + sdy-H(yy)-dy obtained from the first three
terms of the Taylor series expansion of £P¢ around the current solution estimate y; with
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g(yr) = VLPY(y,) and H(yy) = V2LP%(y;), the gradient and Hessian of the potential
LPG evaluated at yj, respectively. Since the model is more accurate near yy, the method
tries to find a minimum within a ball of radius Ay in which the model can be “trusted”.
Details of the finite element formulation for the gradient and Hessian of the potential may
be found in Appendix A.

Within the trust region iterations, variation of the trust region size and the decision on
whether or not to accept a solution increment are made based on the agreement between
the improvement (increment) in the true objective, £LP%(y,) — LP%(y), + dy*), and the
increment of the model function, my(0) — mg(dy*) (see the parameter r in Algorithm
2.2), where dy* is the solution of subproblem (2.19). The solution dy* is accepted as
a valid increment only if the actual reduction in the potential is “big” enough (r > rgy
in Algorithm 2.2). The iterations may be terminated when the desired tolerances for the
gradient and the relative variation of the potential (tolg and tol,, respectively) are achieved.
In order to solve the trust region subproblem (2.19), the “nearly exact” method of More and
Sorensen [102, 174] has been employed which is particularly capable of handling indefinite
Hessians. The method reduces (2.19) to a one-dimensional root finding problem expressed
as ||p(&)|| = Ax, p(&) = —(H(yx) + £I)"'g(yx), that must be solved for £&. For details on
the trust region subproblem algorithm, the reader is referred to [102, 174].

Remark 1. Continuation vs. regularization. The continuation approach proposed in
this chapter is not equivalent to simple regularization of the cohesive traction-separation
relationship. Continuation entails a series of regularizations until ¢, is driven arbitrarily
close to the rigid-cohesive model within desired tolerance. Prior to activation, zero interface
opening is found to be the minimizer of the potential, rather than appearing as a result of
penalization and is enforced consistently as a constraint on the deformation of the body.
Such approach sidesteps the numerical issues related to the artificial compliance of initially
elastic models [84]. Furthermore, the smoothing parameter 0, does not contribute to the
u—u block of the Hessian matrix (see Appendix A), which facilitates convergence for small
values of 9,.

Remark 2. Effect of the penalty on definiteness of the Hessian. As the term % de; ngy:

g, dS in the finite-dimensional potential (2.9) is quadratic in d, the magnitude of the
penalty n affects convexity of (2.9) thus definiteness of the Hessian matrix. One can
show that the potential in (2.9) is convex in d provided that n > max{o./d., 5%0./d.}.
The latter is not a necessary condition of the trust region minimization algorithm. The
penalty number is only a stabilizer of the discontinuous Galerkin method in contrast to the
condition 7 > 0./0. of Lorentz [91], which is necessary for existence and stability. Later
in Chapter 3, it will be shown, however, that convexity in this context is equivalent to
a minimum mesh resolution criterion necessary for obtaining accurate dissipated fracture
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energies (see Equation (2.24) below).

Remark 3. C? differentiability of the potential. The usual theorems that guaran-
tee success of the trust region method assume that the objective function is twice C2-
differentiable. Even though the smoothed interface potentials (2.15) and (2.16) are only
Cl-differentiable, the trust region algorithm performed satisfactorily in all of our numeri-
cal experiments. Twice differentiable smoothed potentials can be constructed, e.g., using
cubic splines [116] or the sigmoid smooth step function [31].

2.5 Time integration and the dynamic energy

In this section, we present the time domain discretization scheme and the proposed “time-
discretized” energy functional mqy,. Let us refer to the time-discrete case, with N time
steps uniformly spaced by time intervals At: t € {to = 0,...,t;_1,%;,....,tx = T}. Suppose
that an equilibrium state is known at ¢;_; and the equilibrium state at ¢; is sought. We
choose the potential mqy, at time step ¢; in such a way that

Vo, Tagn = /Q . pi; dV, (2.20)
d

in which p is the material density and u; and 1; are the finite difference approximations
to u(t;) and (t;), respectively. The dynamic energy may, at ¢; is a function of bulk
acceleration only since the interfaces are massless. We now make use of the well-known
implicit Newmark scheme [104] to establish the link between the displacement field u; and
its second and first time derivatives as

2(u—w) At?

alAtQ where ﬁZ =u;_1 + Atl'll'_l + (1 - &1)7112'_1, (221)

and
W =11 + (1 — a2) A,y + a2 At (2.22)

respectively, in which a; and ay are Newmark parameters, which, when a; > ay > 0.5,
guarantee unconditional stability of the Newmark scheme (we used a; = as = 0.6). In
such setting, the size of At is limited by accuracy of the results and convergence of the
iterative optimization algorithm rather than stability of the time integration scheme.

Inserting the time discrete relation for W;, from (2.21) into (2.20) and integrating the
resulting equation with respect to u;, the appropriate form of the dynamic energy mgyy is
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obtained as a function of the unknown displacement u; as

1
Tdyn = ———5 u;- (u; — ZGZ d‘/, 2.23
= g e (= 28) (2.23)

where the constant of integration is dropped since the energy minimizer is independent of
a constant additive term. Once the solution u; is obtained, Equations (2.21) and (2.22)
may be used to update the acceleration and velocity fields at ¢;, respectively.

2.6 Numerical simulations

The proposed numerical algorithm was implemented in 2D using quadratic triangular finite
elements. The examples that follow focus on convergence properties of the method and on
asserting the method in a quasistatic, a low velocity, and a highly dynamic simulation. Be-
cause accuracy of the crack path for this class of models has already been analyzed in, e.g.,
[118], we have not used isoperimetric or other special meshes in most of the simulations.
Interface elements were placed everywhere in the mesh from the start of the simulations
as potential sites of crack nucleation and propagation. Numerical integration on interface
elements was performed with 3-point Gauss quadrature so that three points holding discon-
tinuity degrees of freedom were introduced in each interface. Unless otherwise mentioned,
the simulations were performed with 15 continuation steps and continuation parameters
6% = 0.15,, 6% = 271969 and 60 = 5000.. The tolerances used for the trust region algorithm
were toly = 1 x 107* and tol, = 1 x 107°. In all simulations, the length of the cohesive
zone was estimated as [12]

, (2.24)
where E' = E for plain stress, ' = E/(1—v?) for plain strain, F is the Young’s modulus,

v is Poisson’s ratio, and a is a coefficient taken as 7/8 according to Barenblatts cohesive
crack theory [11].

2.6.1 Convergence studies
Spatial convergence study: rectangular block with a weak interface

In this problem, we study convergence of the finite element solution with mesh refinement.
The problem considered for this purpose is that of a weak interface subjected to combined
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loading, as summarized in Figure 2.6a. The horizontal and vertical displacements u, and
u, applied to the top edge of the block are monotonically increased in a quasi-static fashion
until complete failure of the interface, while the bottom edge is fixed in both directions.
The problem was solved with a sequence of six meshes, each one being embedded in the
former, with element size twice smaller. For simplicity, and since it does not affect crack
propagation (the crack forms along the weak interface), structured meshes were used.
Figure 2.6b shows an illustration of the first and second levels of refinement (shown in
thick and thin lines, respectively). For the material properties considered, the length of
the cohesive process zone, according to (2.24), is . ~ 0.52 mm. This length is discretized
with approximately one interface element in the coarsest mesh and 32 interface elements
in the finest mesh so that adequate resolution is ensured with mesh refinement.

The finite element solution obtained using the finest (sixth) mesh is taken to be the
“exact” solution, and the normalized error in the displacement norm is defined as

\/th\Fth (Wexact — Up)* (Uexact — Up) dV

\/th\Fd,h Uexact * Uexact dv

(2.25)
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Figure 2.6: a) schematic of a rectangular block with a horizontal weak interface and b) the
first and second levels of mesh refinement used in the computation of convergence rates.
The number of elements in mesh 7 is 4 (i =1: 6)
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The rate of convergence in the displacement error norm is computed at two different times
t; and to, corresponding to pre- and post-failure of the interface, respectively. In addition,
three values of x = 2, 5 and 10 in equation (2.8) have been considered in each case
in order to show that the solution is independent of the penalty parameter n. Results
are shown in Figure 2.7. Both pre- and post-failure, the estimated asymptotic rate of
convergence in e, is approximately 2.9, which is very close to the expected rate of 3
known for quadratic elements in the absence of cracks; robustness of the finite element
solution is preserved in the post-failure regime and the opening of the interface does not
introduce any degradation of convergence compared to the elastic condition. To provide
further comparison, convergence results of the continuous Galerkin elastic problem (i.e.,
no interface elements) are also included in the figures. The rate of convergence is also
independent of the penalty parameter, as shown in the figure.

Additionally, we define e,, a measure of violation of the constraint g, = 0, as

fpd A gn g ds
i (2.26)

€y = .
\/1 + Jr,, On- 8ndS

Convergence of e, to 0 with mesh refinement is shown in Figure 2.8. The rate of convergence
is approximately 1.9 in the asymptotic region and is nearly insensitive to the magnitude of
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Figure 2.7: Convergence in displacement error norms for the square block with a horizontal
weak interface at a) t; (pre-failure) and b) ¢, (post-failure)
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Figure 2.8: Convergence in constraint error e, for the square block with a horizontal weak
interface at a) t; (pre-failure) and b) t5 (post-failure)

the penalty. This observation is a direct consequence of consistency and stability of the DG
method and, together with the convergent behavior of e, (Figure 2.7), ensures convergence
of the local numerical flux )\EG.

We note that there is no need to require o./J. in order to guarantee convergence (in
[91] n ~ 100 0./6. is recommended). In our simulations, the penalty number 7, equation
(2.8) is as low as approximately 4 0./d. in mesh 1, corresponding to y = 2. In all cases,
the trust region algorithm converged within a reasonable number of iterations so that the
maximum number of iterations encountered throughout the simulations was 12.

Figure 2.9 shows the variation of the vertical and horizontal forces with the applied
displacements at the top of the block. Results are shown for the coarsest and finest meshes
1 and 6, respectively, using y = 5. The sum of areas under the vertical and horizontal
force-displacement curves yields the work done on the applied displacements to complete
failure of the interface, which equals 0.100042 N-mm for mesh 1 and 0.100013 N-mm for
mesh 6. The computed external work agrees well with the energy dissipated at complete
failure of the interface, whose value, obtained by multiplying the fracture energy by the
area of the interface, is 0.1 N-mm.
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Figure 2.9: Force-displacement curves for the rectangular block with a weak interface

Time-continuity study: three-point bending test

We study temporal convergence in a mixed-mode problem of a beam subjected to impact
loading in three-point bending. We note that time-continuity, as defined in [117], is an issue
that affects temporal convergence in a dynamic mixed mode setting and does not affect
mode-I crack propagation. Because the method herein does not correspond to a time
discretization of a differential equation, the difficulty of time-discontinuity is bypassed,
therefore we expect, although no proof of this yet exists, the rate of convergence with
decreasing time step to be approaching quadratic.

l v(t)
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h=1in v=0.2
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Figure 2.10: Time-continuity studies: schematic of the three-point bending test

The problem, summarized in Figure 2.10, was investigated experimentally by John and
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Shah [76] and studied numerically by several authors [139, 140]. Dynamic loading due to
impact at the top-centre of the beam is modeled by an imposed velocity boundary condition

o(t) = {vot/tr t<t, (2.27)

Vo t Z tr
in which vy = 0.05 ms and the rise time is ¢, = 196 us.

The FE mesh employed consists of 864 structured 6-noded triangles and 1248 6-noded
interface elements with a total of 5184 nodal points. The obvious bias that the structured
mesh introduces to the crack path is not important here since this example is only concerned
with temporal convergence of the results and not with accuracy of the crack trajectories.

In order to perform the temporal convergence study, different time step sizes At; were
used, where At; =1 x 107°/2" s, 4 =0 : 5. The normalized error in the displacement field
obtained with time step At; is defined as ear;, = ||U; — Uexact ||/ [ Uexact ||, Wwhere Uggaet 18
taken to be the solution obtained from the finest time step (i.e., i = 5). Figure 2.11 shows
convergence of this norm at two instants of the simulation, ¢; = 220 us, which corresponds
to a condition before any damage has initiated, and t, = 1025 us, which corresponds to
a post-failure condition, as the time step size is refined. It is seen that the proposed
nondifferentiable energy minimization algorithm exhibits the second order asymptotic rate
of convergence expected of the Newmark scheme in both the pre- and post-failure regimes.

To provide further comparison, convergence results obtained from a hybrid DG-cohesive
element method similar to that proposed in [129] are also plotted in the figure. A brief
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Figure 2.11: Temporal convergence results for the three-point bending test. The normalized
time step is defined as At; divided by the smallest time step
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Figure 2.12: Contours of the horizontal component of the velocity field @, (left) and ac-
tivation patterns (right) for the a) time-continuous and b) time-discontinuous models at
ty = 1025 ps. Color bar in mm/s

description of our implementation of this method, which is time-discontinuous, is as fol-
lows. The DG method is used to tie together the element edges prior to the nucleation
of cracks. Upon satisfaction of a fracturing criterion, the DG terms cease to operate and
give place to the tractions computed from a cohesive traction-separation model. The time-
stepping method employed to obtain the results with this method was the explicit central
difference scheme with At ~ 0.1At.,, where At,, is the critical time step size of the explicit
scheme. An implicit time-stepping was not possible due to the interference of the failure
criterion with the iterative solution algorithm. The DG-cohesive element method shows
nonconvergent behavior in the post-failure regime, typical of the behavior resulting from
discontinuity of internal forces at the time of activation [117, 140].

Figure 2.12 shows contours of the horizontal component of the velocity field 1, and the
activation patterns obtained from (a) the proposed method and (b) the time-discontinuous
method, both at time ¢, = 1025 us (post-failure). The results of the time-discontinuous
model show nonphysical irregularities in the velocity contours and overactivation of inter-
faces. The irregularities do not disappear with mesh or time step refinement, indicative
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of unphysical response resulting from numerical instability, namely the discontinuous de-
pendence of internal forces on the deformation field creating unphysical “shocks” when an
interface point activates. The shocks, in turn, lead to unphysical forces that may overacti-
vate the interfaces at random locations. This is typical behavior of methods that rely on
an extrinsic failure criterion, see e.g. [95].

2.6.2 Quasi-static simulation: single-edge notched beam

We reproduce here the experimental results of Galvez et al. [52] on mixed-mode crack
propagation in a single-edge notched concrete beam. The problem setting, including rele-
vant mechanical properties, boundary conditions, and dimensions is summarized in Figure
2.13. The characteristic length of the material obtained from (2.24) is [. = 84 mm. This
is comparable to a limiting geometrical dimension of the beam, and thus, the simulation
corresponds to “large-scale” yielding conditions as is typical for concrete structures.

Two finite element meshes were used for the numerical simulation of the beam. The
“coarse” mesh consists of 1575 triangular elements and 2304 interface elements, and the
“fine” mesh consists of 3508 tiangular elements and 5172 interface elements. Both meshes
are finer in a region ahead of the notch tip for better resolution of the crack path. The de-
formed geometry of the beam obtained using the fine mesh is shown in Figure 2.14. Figure
2.15 shows a comparison of the dominant crack trajectories, obtained using both meshes,
with the experimental envelope reported by Galvez et al. [52]. Some interface activations
at the top edge of the beam, either not shown or not visible in the figures, was observed, as
also noted in the experiments of Galvez et al. [52]. Although the experimental crack path
was challenging to reproduce with a randomly oriented mesh and some realignment was

[}
37.5mm |
H | <—-150mm- — '
& — — < b
| >|| A : v B
T Plain strain E =38GPa
£ h=50mm v=0.18
£ o 0. =3MPa
o
1] £ G =69Pa-m
l = =15
=
i i , | i
:<—262.5mm : 75mm : 300mm : - —>:
37.5mm

Figure 2.13: Single-edge notched beam; problem setting and relevant mechanical properties
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Figure 2.14: Deformed geometry (magnified by a factor of 100) of the single edge notched
beam using the fine finite element mesh at 0.075 mm vertical displacement applied at point
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Figure 2.15: Comparison of the dominant crack trajectories with the experimental envelope
of Galvez et al. [52]

necessary, the numerical and experimental results are in good agreement, which improves

with mesh refinement. Special meshes [118, 122], which would facilitate the task, were not
used in this simulation.

Figure 2.16 shows load-deflection curves at a point, denoted A in Figure 2.13, and load-
crack mouth opening displacement (CMOD) curves obtained using the present method,
along with the experimental envelopes reported by Galvez et al. [52] and numerical results
reported by Areias and Belytschko [5], who used a 3D model with regularized unloading.

Results show favorable agreement, and little mesh dependence is observed in the global
response of the beam.
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Figure 2.16: a) load-displacement of point A and b) load-CMOD curves for the single edge
notched beam. Experimental envelopes from the work of Galvez et al. [52] and numerical
results reported by Areias and Belytschko [5] are also shown

2.6.3 Low-velocity impact: compact compression specimen

In this example, we model an unpublished experiment. on a Compact Compression Spec-
imen (CCS) similar to the one performed by Rittel and Maigre [138]. This specimen
is a horseshoe-shaped thin notched polymethymethacrylate sample, which is struck by a
split-Hopkinson bar on one of its cantilever arms. The schematic of the experiment and
specimen dimensions, together with the relevant material properties, are shown in Figure
2.17. A curved crack initiates at the tip of the notch and eventually splits the sample into
two pieces. The Hopkinson bar strike is modeled by a time-dependent uniform pressure
applied on the contact surface between the Hopkinson bar (diameter 12.7 mm) and the
specimen. The time history of the resultant impact load used in the numerical simulation,
shown in Figure 2.18, was obtained from experimental measurements made at 260 equally
spaced times. Every other surface is traction free, and no displacement boundary condition
is applied.

The finite element mesh used for the numerical simulation contains 822 bulk elements
and 1171 interface elements. In order to capture the true crack path more accurately, most
of the elements are clustered in the crack-path zone, the area ahead of the tip of the notch,
see Figure 2.19. The mesh in the crack-path zone is chosen to be of the pinwheel isoperi-
metric type [118], which possesses the property that, for any curve in the computational
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Figure 2.17: Compact compression specimen; experiment setup and model dimensions

domain, there is an approximation using mesh edges that tends to the curve, including a
correct representation of its length, as the grid size tends to zero. It was shown [118, 55]
that the isoperimetric property is a necessary condition for any possible spatial convergence
proof in cohesive zone modelling in the general case that the crack path is not known in ad-
vance. The minimum andmaximum element sizes in the crack-path zone are h,;, ~ 0.0231
mm and Ay >~ 0.0512 mm so that the cohesive process zone is discretized with adequate
resolution in this area (the characteristic length is [, = 0.075 mm). The remainder of the
mesh is generated by Delaunay triangulation.

The impact velocity of the incident bar is low (approximately 30 m/s) compared to
the dilatational wave speed in the material, which is v; = 2846 m/s, as calculated from
equation 4 of [60]. This justifies use of the implicit scheme proposed here. A time step
At = 0.2 us was used in the computations for a total simulation time of T" = 110 us,
whereas an explicit time step would be limited by the time required for the dilatational
wave to travel across the smallest element of the mesh, which is Amyin/vg >~ 0.008 us.

Figure 2.20 shows the final deformed shape of the specimen obtained from the numerical
simulation and from the experiment. The numerical and experimental crack trajectories
show excellent agreement; the overall crack path curves to the left, and the initiation angle
is approximately 45° with respect to the vertical. In our simulations, the crack initiated at
to = 56.4 us, which is again in good agreement with the experimentally observed initiation
time of t; = 66 us. Additionally, the numerical results obtained are consistent with the
numerical results reported in other works [116, 118, 122].
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Figure 2.18: Time history of total impact load in the CCS experiment
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Figure 2.19: The crack-path zone is shaded in grey. This zone is meshed with a pinwheel
isoperimetric mesh. The region of the CCS geometry outside the crack-path zone is meshed
using Delaunay triangulation. Dimensions are in mm

2.6.4 Dynamic fragmentation of a thick cylinder

In order to demonstrate the capabilities of the proposed algorithm in modelling multiple
crack growth problems, we consider the fragmentation of a thick cylinder subjected to an
impulsive internal pressure, previously studied by Song and Belytschko [153]. The problem
setup, material properties, and time history of the applied pressure are shown in Figure
2.21. The internal pressure decays exponentially with time as p(t) = poe'/*, where py = 400
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Figure 2.20: Final deformed shape of the specimen obtained from a) numerical simulation
and b) experiment by D. Rittel. Differences in deformation of the bulk may be due to
modelling approximations, including those in modelling the striker

MPa and tg = 100 us. Similar problems have been studied previously by other researchers,
see, e.g., [128].

The problem was solved using two meshes with different levels of refinement. The coarse
mesh had 1692 bulk elements, 2394 interface elements, and a total of 17334 nodal points
(displacement + opening). The fine mesh had 5844 bulk elements, 8472 interface elements,
and a total of 60480 nodal points. The minimum and maximum element sizes were Ay, ~
1.2 mm, hya.e >~ 3.4 mm in the coarse mesh and hy;, >~ 0.6 mm, Ay >~ 1.8 mm in the
fine mesh. The characteristic length of the material obtained from the parameters (Figure
21) is . = 2.8 mm. The size of the coarse mesh appears to be relatively large compared
with this characteristic length. However, as will be shown below, results obtained by both
meshes show convergent behavior in terms of the energy dissipated during fragmentation.

Because of the homogeneity of the material strength, cracks are expected to form ev-
erywhere along the inner surface of the cylinder when a critical level of loading is reached.
Additionally, as finer meshes provide more sites for the initiation of cracks, one expects
the number of crack nucleation sites to keep increasing with any level of mesh refinement,
leading to obvious mesh dependence of the results. Zhou and Molinari [182] proposed a
method to address mesh dependence, in which the strengths of cohesive elements were
chosen to follow a modified weakest link Weibull distribution. In a somewhat similar ap-
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Figure 2.21: Problem setup for fragmentation of a thick cylinder under impulsive internal
pressure

proach, we counter mesh dependence by introducing randomness in the critical strength
of the cohesive model. The randomness introduced has a normal distribution over the
computational domain with %2 standard deviation. So as to avoid mesh dependence of
the random distribution, a background material mesh was constructed that serves to in-
terpolate the random variable at each point of the domain using its nodal values. In this
manner, the location and number of the fragments are dominated by the distribution of
the material strength rather than by the configuration and size of the mesh.

Given that the dilatational wave speed in the material is vy = 5591 m/s, an explicit
time step would be limited by hpi,/vg =~ 0.2 us in the coarse mesh and hpi, /vg =~ 0.1 s
in the fine mesh. We performed the simulations using At = 0.3 us for a total time within
T = 78 us. This choice of the time step size was made to ensure the accuracy of the results
and convergence of the trust region iterations. With the exception of the first continuation
iteration within time steps involving multiple interface activations, which took up to 22
trust region iterations to converge, the trust region algorithm converged in at most 6
iterations throughout the computations for both meshes. Crack initiation along the inner
surface of the cylinder started at around 33 us in the coarse mesh and 32.1 us in the fine
mesh. Figure 2.22 shows the final deformed configuration and the activation patterns
obtained by the two meshes. The overall fragmentation and failure patterns are similar in
both cases even though arrested small cracks are more frequently observed in the fine mesh
simulation. The number of fragments is 13 in the coarse mesh and 14 in the fine mesh, yet
the approximate locations of fragments and failure patterns are in good agreement. We
note that the fragmentation patterns obtained correspond to the particular distribution
of the material strength considered. Other researchers have reported different numbers of
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Figure 2.22: a) Final deformed configuration (magnified by a factor of 10) and b) interface
activation patterns of the coarse and fine meshes at ¢t = 78 us

fragments. For instance, 12 to 16 fragments were obtained by Rabczuk and Belytschko
[128] whereas 18 to 20 fragments were obtained by Song and Belytschko [153] depending
on the size of the meshes used.

Figure 2.23 shows the time histories of the cohesive fracture energy for the coarse and
fine meshes. The rate of energy dissipation is very steep at the early stages of fragmentation
but becomes nearly constant after most cracks are arrested. The dissipated fracture ener-
gies obtained from the two meshes are in good agreement, indicating that the dissipated
energy is independent of the size of the mesh.These results are very encouraging and make
the proposed nondifferentiable energy minimization approach an appealing candidate for
tackling even more complicated crack propagation problems.
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Figure 2.23: Time histories of dissipated cohesive energy for dynamic fragmentation of a
thick cylinder

2.7 Conclusions

A nondifferentiable energy minimization approach for crack initiation and propagation
involving initially rigid cohesive interfaces was proposed that does not require a fracturing
criterion as a separate entity from the minimization process. In keeping with energy
approaches to fracture, the approach has a firm physical basis and bypasses the time-
discontinuity issue previously observed in the literature. This was demonstrated through
mesh refinement and time convergence studies, and the smoothness of velocity contours.
The proposed formulation incorporates momentum into the energy functional, extending
the application of the energy minimization approach to dynamic problems. Unlike other
methods for initially rigid cohesive fracture, the method is naturally amenable to implicit
time-stepping.

The method preserves the consistency and stability of the numerical scheme in both
pre-failure and post-failure conditions. In particular, the expected rate of convergence in
displacement error norms was recovered in our numerical experiments. The capabilities
of the method in modelling quasistatic to truly dynamic crack propagation problems were
exemplified through various examples.
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Chapter 3

Block coordinate descent energy
minimization for dynamic cohesive
fracture
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This chapter is based on the following journal article:

Hirmand MR and Papoulia KD, Block coordinate descent energy minimization for
dynamic cohesive fracture. Computer Methods in Applied Mechanics and Engineering, in
review (2019), Manuscript ID: CMAME-D-18-01800.

This paper was co-authored by myself and my supervisor, Dr. Katerina Papoulia. I
developed the mathematical and computational formulation and implemented a computer
program to conduct the numerical simulations. I also wrote the manuscript. Dr. Papoulia
provided supervisory guidance through overseeing formulations and editing the manuscript.
At the time of this writing, the paper is under revision.
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3.1 Introduction

The continuation strategy proposed in the previous chapter has its merits, particularly
in quasi-static settings but is computationally expensive for large models. In the present
chapter, we develop a new computational algorithm based on block coordinate descent
(Block-CD) minimization within the discontinuous Galerkin finite element framework. The
method allows a simple and robust implementation of the nondifferentiable energy mini-
mization algorithm for rigid-cohesive fracture that can be easily implemented in standard
finite element codes.

Block coordinate descent methods are iterative optimization algorithms, in which each
iterate is obtained by minimizing the objective with respect to one block of unknowns while
other blocks of unknowns are held fixed at their values from the previous iteration [175, 15].
As each sub-problem is a lower dimensional minimization problem, it can typically be
solved more easily than the full problem. In recent years, block-CD methods have found
increased popularity in data analysis and machine learning applications, see e.g., [137, 22].
In the context of structural analysis, and in particular in recent phase-field models of
fracture, block-CD minimization methods are encountered as operator split or staggered
iteration strategies , see e.g. [97]. Convergence of a block-CD method for nondifferentiable
minimization was studied in [163].

In our setting, a block-CD algorithm proves significantly advantageous as it allows to
efficiently separate the unknowns, in which the potential is nondifferentiable in small blocks
from the block of unknowns, in which the potential is differentiable. Furthermore, both
implicit and explicit time-stepping schemes can be used to advance the solution of the
minimization problem in time. In each iteration or each explicit update, the algorithm
minimizes the potential with respect to each crack opening displacement unknown and
with respect to the block of deformation unknowns, sequentially. This decomposes mini-
mization of the full nondifferentiable problem into a number of “small” nondifferentiable
sub-problems that must be solved locally at the inter-element boundaries of the finite ele-
ment mesh and an “easy” differentiable sub-problem that characterizes global equilibrium.
As a consequence, nondifferentiablity can be treated with great flexibility using generalized
differential calculus of nonsmooth optimization theories [32, 33]. On the basis of a con-
vexity analysis of the proposed nondifferentiable energy functional, we obtain a minimum
cohesive process zone resolution criterion, known empirically in the previous literature
as a requirement for capturing correctly the amount of dissipated fracture energy. The
method is free of any regularization parameters and preserves the discrete nature of frac-
ture while allowing for a smooth transition at crack initiation. Robustness of the method
is shown through several numerical examples of fragmentation and branching and through
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comparisons with existing numerical and experimental results.

This chapter is structured as follows. Section 3.2 briefly presents the formulation of the
energy approach for cohesive fracture. Section 3.3 presents the proposed block-CD algo-
rithm for nondifferentiable energy minimization in a DG setting. The update of opening
displacement unknowns entails solution of an algorithmic nondifferentiable energy min-
imization problem locally at the interface elements of the finite element mesh which is
discussed in Section 3.4. Section 3.5 presents a number of numerical simulations which
show the robustness of the method and exemplify its capabilities in modelling dynamic
problems involving branching and fragmentation. Finally, Section 3.6 offers concluding
remarks and suggests future research.

3.2 Formulation of the energy approach

A solid body @ C R™im (ng,, = 2,3) is considered, which is bounded externally by 0
and contains an evolving (ngy, — 1)-dimensional surface S in the interior of its domain
representing cracks, as shown in Figure 3.1. The external boundary 0f2 consists of dis-
joint parts 9, and 9,Q (9,2 N QN = O and 9,02 U 9,2 = 99Q), on which the possibly
time-dependent displacement u and external traction t are prescribed, respectively. Let
u(x,t) : Q — R™im x [0, 7] be the displacement of the fractured body, which is continuous
and differentiable everywhere in Q\S except for nonzero jumps across S. To overcome the
complexities associated with treating crack surfaces S as an unknown of the energy min-
imization formulation, we restrict evolution of § to a set of a priori known discontinuity
boundaries I'y C 2. These represent potential crack paths so that S C I'y throughout the
course of crack propagation. Consistent with this assumption, the displacement is allowed
to admit a jump [u(x,t)] everywhere on I'y. An auxiliary discontinuity opening displace-
ment field d(x,t) : I'y — R™im x [0, 7] is then defined that tracks the evolution of S in T'y
by requiring that

g(u,0) = [u(x,t)] —d(x,t) =0 on Ty (3.1)

It follows from the above formulation that S(t) = {x € T'y|d(x,t) # 0}. The complete
state of deformation and fracture of the body is thus described by two independent un-
knowns, namely u and 4.

The normal and sliding components of the opening are defined as 6, = d-ny and
6, = & — d,ng, where ng is the normal to the discontinuity. For convenience of the
subsequent presentation, we also define a unit tangent to the discontinuity, my, and a
scalar sliding component, ds, so that s = dsmy and |6s] = ||ds||. A similar notation is
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Figure 3.1: Schematic of a solid body 2 containing evolving crack surfaces S. The discon-
tinuity boundary I'y represents potential crack paths.

employed throughout this chapter for the normal and sliding components of other vector
quantities (e.g., tractions).

In the context of quasi-brittle fracture, we assume infinitesimal deformation and con-
sider the bulk of the material governed by the standard theory of linear elasticity for
isotropic solids. The strain energy density function v is defined on the “uncracked” part of
the body Q\I'y as ¥(e(u)) = 2e(u) : D : e(u), where D is the elasticity constitutive tensor
and g(u) = V*u € R™im x R™im jg the strain tensor defined as the symmetric part of
the displacement gradient. Further, we define a cohesive surface energy function tops(6),
which, as mentioned in the introduction, depends nontrivially on § and is, in particular,
a nondifferentiable function of § at & = 0 before a crack initiates on I'y. The latter is a
mandatory requirement for the model to produce zero opening displacement on I'y until a
critical state of tensile stress is reached [30, 116]. Interpenetration of the crack faces is pro-
hibited through the indicator function Ig+(d, ), which introduces infinite energy for 4,, < 0.
The precise form of these functions will be discussed in a following subsection where an
internal history variable is also introduced that takes into account the irreversibility of the
fracturing processes.

An expression of the total potential energy of the body is obtained as a the sum of
the strain energy due to bulk deformation 7 (u), the dynamic energy due to momentum
change 74y, (1), the energy due to opening of the interfaces miy(d), and the energy due to
the work of external forces Wey(u),

m(u,0) = Te(0) + Tayn (W) + Tings(6) — Wexe (1), (3.2)
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where

ﬂ—el(u) = T ’lvb (8(11)) dv7

Tant(8) = ]C (Veans(8) + T (6,)) dS, (3.3)

mgmz/ wa#/‘uM&
O\ly X9

and b is a vector of body forces per unit volume. Following [73, 116] and because a time-
dependent potential is generally difficult to achieve, the dynamic potential gy, (1) is chosen
in such a way that the following relation holds at each time step within a time-discrete
framework:

Vuﬂrdyn = /Q\F puldV, (34)
d

where p is the bulk density and the subscript ¢ denotes the finite difference approximation
to the unknown fields at time step t; of discretized time domain. In contrast to [73, 116],
the exact form of may, (1) does not need to be determined explicitly in our minimization
algorithm as will be shown in Section 3.3.

The equilibrium of the fractured body is then characterized by the solution of the
following constrained minimization problem that must be solved at each time step:

find (u*,6*) € U x D minimizing 7(u, §) subject to g(u,d) =0, (3.5)

where U and D are spaces of admissible solutions and g(u, d) is a linear constraint function
defined in (3.1) accounting for the compatibility of deformation fields on T',.

3.2.1 The rigid-cohesive surface energy function

The cohesive energy 1.qps is of the type introduced by Barenblatt. For an isotropic material,
Yeons should be made a function of §,, and ||d;||, starting from 0 and progressively growing
up to Griffith’s energy GG. when the norm of opening displacement grows from 0 to infinity
[30]. Here, we consider a general class of such models proposed by Ortiz and Pandolfi [113].
A scalar effective opening displacement 0 is defined as

5= \/(61)* + 188,17, (3.6)
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where ¢ = max(0,9,), and 5 > 0 is a constant to be defined shortly. We note that the
dependence of 1.,ps on positive values of the normal opening implies that ¢..ns introduces
no resistance against interpenetration of crack faces (i.e., 4, < 0 does not contribute to the
potential); the non-penetration in compression/contact is enforced solely via the indicator
function discussed below. We further note that, as shown in [30], the use of ¢ is essential
for modelling failure in a continuum. If ¥ is made a direct function of §;" and ||d,||, the
model corresponds to an adhesive interface.

To model the physical requirement that the fracturing process is irreversible, a non-
negative history variable Opay(t) is introduced, which represents the maximum opening
attained up until time ¢. This allows the interface to “remember” the level of damage
induced as the crack evolves. The variable is initially zero and evolves monotonically in
time as ) )

- {5 if § = Gomae and § > 0 a7

0 otherwise,

so that Smax(t) > 0Vt > 0. The first of the above corresponds to the case of an interface
point undergoing loading, while the second to an interface point that is unloading or
reloading.

Let §. be an effective opening displacement at which )..s reaches the Griffith surface
energy G. and the interface looses cohesion, i.e., Yeons(0; Omax) = Ge fOr dpax > .. We
assume elastic linear behaviour in unloading/reloading and linear softening interface re-
sponse in loading when 0.« < 0., for which the irreversible cohesive potential may be
written as
o8 — 39262 if § = Spax and § > 0

3.8
20cOmax + %51; (1-— ‘S‘g%)éz otherwise. (38)

wcohs(é; 5max) = {

The above expressions correspond to the shaded areas in Figures 3.2a and 3.2b, respectively.
One can verify that the cohesive energy cons is a continuous function of & at § = dpax. At
this point, the interface undergoes loading if § > 0 and unloading otherwise.

Prior to the initiation of damage, i.e., at the origin with § = .« = 0, the cohesive
potential 1. is not a differentiable function of §. In this case, Yons admits directional
derivatives in the directions (6, \, 0, ||d;]| = 0) and (6, = 0, ||ds]| — 0), which are o, and
fo., respectively. As explained in [30], these directional derivatives represent the material
strength under monotonous normal and sliding solicitations, respectively. It follows that
B in the definition (3.6) is the shear to normal material strength ratio. The three material
constants 0., o, and G, are related as G. = 0.6./2 (that is, only two can be chosen
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d wcohs d Yeohs
do do

>0 Dissipated
energy -
///
//
0=0max o B 6<Jmax  Omax O J

(a) (b)

Figure 3.2: Definition of the cohesive potential 1. for the case of a) loading and b)
unloading or reloading. In each case, 1. equals to the total shaded area. The dissipated
portion of the energy is shaded darker

independently). Before .., reaches d., the energy dissipated during the fracturing process
is given by 0.0max/2, see also Figure 3.2.

The indicator function (interpenetration penalty) Ig+(0,) is defined as

_Joo 4, € (~00,0)
T+ (0n) = {o 5, € [0,00). (3.9

With the above definition, negative displacement openings are not admissible as they
would result in infinite energy, hence, not a minimum. Therefore, interpenetration of the
crack faces is prohibited, i.e. 9, > 0. Again, we note that a gradient of the indicator
function (3.9) is only properly defined for §,, > 0. Variation of the total interface potential
¢ = Yeons + Ir+ with 9,, and 5 is shown in Figure 3.3, in which it is assumed that the
interface undergoes loading and no unloading occurs.
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Figure 3.3: Variation of the total interface potential ¢ = t.ons + Ig+ as a function of 9,
and d, with 0. = 1.0, §. = 1.0 and 5 = 1.0. ¢ is not differentiable at § = 0 and everywhere
on the plane 9,, =0

3.3 Block coordinate descent algorithm for nondiffer-
entiable energy minimization

As noted in [116, 73], passing to a weak form would not be a valid approach in the present
setting because the interface potential 7y in (3.2) is not globally differentiable. Instead,
we apply finite element discretization directly to (3.5) to arrive at a sequence of finite-
dimensional constrained nondifferentiable energy minimization problems defined at each
time step in a time-discrete framework. In this section, we propose a solution method based
on block coordinate descent algorithms for the nondifferentiable minimization problem
obtained from a particular finite element discretization of (3.5).

3.3.1 Spatial discretization: the finite-dimensional problem

The infinite-dimensional spaces U and D in (3.10) are approximated by their finite-dimensional
counterparts Uy, and D}, containing finite element approximations constructed as described
in Chapter 2.

Suppose that €2 is discretized by a finite element triangulation €2;. We take I'y, to be
the set of all inter-element boundaries in €2,. This set is postulated a priori and assumed
to not depend on the deformation (i.e., no re-meshing or realignment of the element edges
occurs during the course of the simulation). Neighboring elements in €2, do not share
nodal points and edges, allowing for a displacement jump [us] on I'yj,, where uy, is the
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element-wise continuous approximation of u. Interface elements of dimension ng;, — 1 are
placed at interelement boundaries providing a means for Gauss quadrature on I'y;. The
choice of I'y, is made for the convenience of the finite element implementation. However,
the formulation can be applied to other discretization schemes such as XFEM [100, 99]
that allow for the introduction of displacement jumps independent from the element edges.
It is required that u; = u; on 0,12.

In addition, a piece-wise constant approximation d;, of d is introduced. To this end, each
Gauss point on I'gy is assigned an opening degree of freedom representing the constant
value of the approximation in some vicinity of that Gauss point. The total number of
Gauss points (opening nodal points) is denoted M and their coordinates are denoted &/,
I =1,2,...,M. We note that such approximation of 8, which is possible because no spatial
derivatives of § exist in (3.10), makes the resulting finite-dimensional potential separable
with respect to each nodal opening displacement unknown. This property is an essential
ingredient of the proposed block-CD minimization algorithm presented in Section 3.3.3. In
addition, the constraint (3.1) can be enforced on the Gauss point level, thus affording the
possibility of sub-element crack resolution.

The constrained minimization problem (3.5) is now reduced to the following finite-
dimensional problem that must be solved at each time step:

(I{Jl}él) {ﬁDG(uh,éh) = ﬂ(uh,éh) —|—7T£G(uh,5h)} s (310)

where U and d denote the global vector of nodal unknowns corresponding to u;, and 6y,
respectively, and W]QDG is the discontinuous Galerkin constraint functional introduced to
enforce the compatibility constraint g = 0,

7P (uy, 8,) = /F APC. g dS. (3.11)
d,h

In the above, AP% is the DG numerical flux due to Nitsche [107] defined as a function of

u;, and é;, as .
XE = (o) na + Sngn, (3.12)
where o, is the Cauchy stress tensor computed strongly from uy,, n is a penalty number

and (x) = 3(*T 4 *7). The penalty number is taken to be

Xt
=Ar 1
T’ hs Y (3 3)

in which p is the shear modulus, h, is the interface element size and y is a parameter which
must be taken sufficiently large to ensure stability of the DG method, typically 2 < y < 10
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[73, 129]. An augmented Lagrangian formulation is obtained if one replaces () ng; with
an independent Lagrange multiplier unknown as in [116, 91]. It was confirmed in Chapter
2 that convergence of the finite element method with mesh size and time step refinement
is insensitive to the magnitude of the penalty in both the pre- and post-failure regimes.

The finite-dimensional minimization problem (3.10) is especially well suited for a block-
CD minimization algorithm because of the separability of the objective £P%(uy, d;,) with
respect to each opening unknown dy, I = 1,...M, and to the block of deformation unknowns

U.

3.3.2 Temporal discretization

Consider now a discretization of time domain with N time steps uniformly spaced with time
intervals At : t € {tg =0, ...,t;,ti11,ty = T'}. Suppose that a solution is known at ¢; and a
solution is sought at ¢;,1. Let U; and d; denote the finite difference approximations to U(¢;)
and d(t;), respectively. Similarly, U; and Uj; represent the finite difference approximations
to U(t;) and U(t;), respectively. We assume that the body is initially at rest and intact,
that is Uy = 0, UO = 0 and dg = 0. The evolution of the finite difference approximations
to the time derivatives of the displacement unknowns in successive time steps ¢; and ¢,
is described using the generalized Newmark scheme [104] as

2 2

+1 +1 1 9 ( +1 ) +1 9 (314)

~

Ui+1 == Ui—i—l + CLQA'[J(UH_l - Uz) Wlth Ui+1 = Uz + AtUZ,

where a; and a, are Newmark parameters. An implicit time-stepping scheme with uncon-
ditional stability corresponds to a; > ay > 0.5, whereas an explicit time-stepping scheme
corresponds to a; = 0 and as = 0.5.

Within the time-discrete framework, the loading conditions § = d,ayx and & > 0 appear-
ing in (3.7) and (3.8) are reduced to d;11 = Omax,i+1 > Kk = max{dy, ..., 0;} and the cohesive
potential is computed from the first of (3.8) with the current value of ;7. Otherwise, i.e.,
in the case of unloading or reloading, the second of (3.8) is used to compute the cohesive
potential with dmaxit1 = Omaxi- Accordingly, calculation of the cohesive potential in a
time-step ¢+ 1 can be performed without use of dyax;+1 but, rather, by comparison of 9,1
with dmax; Whose value is fixed at the beginning of a time-step. The time-discrete form of
the cohesive potential may thus be written as
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005i+1 - %3_251‘24_1 5max S 57L+1 S 50
wcohs(5i+l; 6max) = %Uc(smax + %&:ﬁ(l - %)5124_1 5i+1 < 5max S 50 (315)
Gc 5max 2 50 or 51‘—4—1 2 507

where Omax = Omax. Here and subsequently, we shall omit the time step index ¢, for sim-
plicity of presentation; the formulation that follows concerns solution of the minimization
problem (3.10) at time step i + 1.

3.3.3 The block coordinate descent algorithm

The block-separable structure of the finite-dimensional minimization problem (3.10) sug-
gests the block strategy as follows. The minimization problem (3.10) is split into two
sub-problems by solving for each d;, I = 1,..., M in one, and for U in the other in a
decoupled manner, iteratively until convergence to a desired tolerance is achieved. In the
following, we will present the formulation of the two-step scheme resulting from the above
strategy for the update of the opening displacement unknowns and of the deformation
unknowns in a typical iteration of the block-CD algorithm.

Considering the displacement unknowns U, and therefore, me1, mgyn and Wey, to be con-
stant, minimization of the discrete potential (3.10) with respect to the opening unknowns
d; leads to the following set of “local” algorithmic minimization problems that serve to
update the opening displacement unknowns d;:

Hclli,n {m(d]; U) = Yeons(dr; Omax.s) + g+ (dnr) + )\],:L)’(;’-th} for I =1: M. (3.16)

In the above, )\],?E’ and g,, ; denote the corresponding variables evaluated at x = &§; i.e.,

gn; = [un(&;)] — dr and )\EE} = (on(&;))ng + 319, ;. Bach nondifferentiable energy
minimization problem in (3.16) involves d; as its unknown which is only of dimension
Ndim = 2, 3. Solution of (3.16) will be discussed in detail in Section 3.4.

Next, for a known interface opening field d (thus treating the interface potential 7,
as constant), we minimize the discrete potential (3.10) with respect to U to obtain the
following minimization problem used to update the block of deformation unknowns:

m{}n {WU(U; d) = Wel(uh) + Wdyn(uh) — Wext(uh) -+ W?G(uh, (5}1)} . (317)

In contrast to the local minimization problems (3.16), the above minimization problem
is quite straightforward as the algorithmic objective function 7, is quadratic and convex
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in U and everywhere differentiable. The first order minimality condition for the global
minimization problem (3.17) leads to the linear system of equations

R,(U;d) = MU + K, U — K,4d — Fey, = 0, (3.18)

obtained by taking the gradient of the discrete objective function in (3.17) with respect
to U, in which the mass matrix M, stiffness matrices K, and K,; and the external force
vector Fo are given by

M = (N pN“dV,

Qp\l'a,n

Ko = / B'DBdV + / (NENYTyNI g5
Qp\Tan Lan

+ / (NFMYTH,DB dS + / (BNTDalNM g3, (3.19)
Can r

d,h

K= / (NEDT)N? dS + / (BNTDalN® ds,
La,n T

d,h

Feoxi = / (NIt dS.
23Y]

In the above, N*(x) and IN?(x) are the matrices of finite element shape functions approx-
imating u;, and &y, respectively; B is the strain-displacement matrix containing spatial
derivatives of the displacement shape functions; NI“l and B{® contain traces of N* and B
on the interface I'y;, and are defined to approximate the jump [u,] and average Cauchy
stress (o) on Iy, respectively. D (by a slight abuse of notation) is the elasticity matrix
and ng contains the components of the normal n,; and is defined for the transformation
from tensorial to matrix formulation (see also Equation A.7). Equation (3.18) is essentially
a standard finite element method with the added feature that interface openings d; are
imposed at the interelement boundaries of the finite element mesh.

The block-CD algorithm resulting from the above minimization strategy is outlined in
Algorithm 3.1. As U and U are linked through the Newmark’s time-marching scheme
(3.14), one can solve (3.18) for either U or U. In Algorithm 3.1, we solve for U in
an incremental fashion whereby an increment AU, obtained by evaluating the residual
R.,(U;d) at the current estimate solution, is used to update U in each iteration. The
corresponding Jacobean matrix J = dR,,/0U is

At?
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Algorithm 3.1 Block-CD nondifferentiable energy minimization algorithm; the sub-script
© + 1 is omitted for simplicity of presentation

Given U, UZ-, UZ and d;
Update . = max{dy, ..., ;} at all interface points [ =1: M

Initiate block-CD iterations. Set predictors,
U = U, + AtU;,
U0 = U,L and dO = dz
Loop on block-CD iteration j = 0,1, ...
Update of opening field (Algorithm 3.2)
d)* = argmin 7w5(d; U9) forall T =1: M
ds
Update d: d7 — d7*!
Update of deformation field
AU = —J7IR,,(U7; dit)
Uit = U7 4+ AUIH!
Uit = UJ + CLlATtQAI“Jj—H
U/t = U7 + ap, AtAUIH
if explicit, go to next time step

if % < tolg and W < toly, go to next time step

End Loop on block-CD iterations

In an explicit time-stepping scheme (a; = 0) the Jacobian matrix simplifies to J = M.
In that case, one can replace M with a lumped mass matrix as is typical in explicit time-
stepping calculations. In linear elasticity, the Jacobian J remains constant throughout the
calculations and needs to be factorized only once at the start of the simulation.

In implicit calculations, convergence of the block-CD iterations is determined based on
the residual of the optimality condition (3.18) as well as on the difference between the
opening unknowns d in successive block-CD iterations.
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3.4 Update of the opening field

3.4.1 Characterization of a minimum at nondifferentiable points

For the solution of the nondifferentiable problem (3.16) we make use of the generalized
differential calculus of nonsmooth optimization [32, 33], a brief description of which is
presented in Appendix B for completeness of presentation.

Let us suppose that 7s(d;; U) possesses a minimizer, i.e., it is a locally convex function
of d; in the domain of admissible solutions d; € R s.t. d,; > 0. We will get back to
convexity of ms(d;; U) in general in Section 3.4.2. Using definition (B.3), the minimality
condition of s, equation (3.16), can, with use of (3.1) and (3.10), be expressed at each
interface point I as: dj is a minimizer of 75 if and only if

0 € Oeons(dT; Omax,r) + OIF (dyy ;) + {nd} — 71}, (3.21)
in which
T = (o) -ng + nfu] (3.22)

is a traction computed from the known deformation field at interface point I (here and in
the remaining of this section, the subscript h is dropped for simplicity of presentation).

The generalized gradient of 1. is defined at the origin as

a,lvbcohs«); 0) = {tgohs € R dim | tgohs,n 2 0 and ||tgoth5 S OC} ) (323)
where [|t0,,.]l 5 is an effective norm of to, defined as,

1€%nell 5 = 1/ o) + 162010/ 8112 (3.24)

We show in Figure 3.4, a graphical interpretation of 09ps(0;0) in the plane 65 = 0
and in the plane §,, = 0. In the plane §, = 0 (Figure 3.4a), the set of slopes 0 < ° <o,

cohs,n

of lines passing through the origin constitutes 0tons(0;0). In the plane §, = 0 (Figure
3.4b), the slopes that constitute 9teons(0;0) are —o. <2, /B < o.. In the general case,

cohs,s
the generalized gradient 0.ops(0;0) may be interpreted as the set of “tensile” cohesive
tractions t2, . € R™im whose effective norm is below the material strength o.. Anywhere

else than the origin, the generalized gradient of w..s coincides with its gradient, i.e.,
a¢cohs(6; 5max) - {v¢c0hs<6; 5max)}7 where
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Figure 3.4: Graphical interpretation of 0t¢ons at the origin; a) in the plane ds = 0 and b)
in the plane §,, = 0

tco S 57 5max
v¢cohs(6; 5max) = tcohs((s; 6max> - % (@jnd + /6268) ) (325>

in which tcons(0; dmax) = dteons/d0 is a scalar cohesive traction.

Next, the generalized gradient of Ig+ at d,, = 0 is expressed as
OIg+(0) = {tcontng € R™m™ | toone < 0} (3.26)

A schematic of the generalized gradient 0Ig+(0) is shown in Figure 3.5. Each member of
OIg+(0) corresponds to the negative slope teony < 0 of a line passing through the origin. In
fact, the above generalized gradient implies that interpenetration is precluded through a
normal contact stress t.ont, Wwhose value is, however, not uniquely defined. Note that the
normal n, appears in (3.26) because the generalized gradient is taken with respect to 4.
For §,, > 0, the generalized gradient of Ig+ is {0} whereas it is the empty set () for ¢,, < 0
(32, 33].

In view of the above, two cases require special attention when obtaining a minimum
solution through (3.21): 1) at the origin, where both s and Ig+ are nondifferentiable,
2) at points away from the origin, at which d,, ; = 0, so that only Ig+ is nondifferentiable.
Considering the minimality condition (3.21) at these points, the following propositions are
deduced:

Proposition 1. Suppose that dypax s = 0. A minimizer of 75 occurs at dj = 0 (i.e., at
the origin) if and only if 7; < 0., where 77 is an effective norm of the tensile part of 7
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Figure 3.5: Graphical interpretation of 0lgr+ at 9, =0

defined as

1 = il = /()2 + llrer/ I (3.27)

Proof. We will show this by verifying that p; < 0. guarantees that the minimality
condition (3.21) holds at d; = 0,

0e 0wcohs(0; 0) + 0IR+ (0) + {—’T]} .

The summation 09eops(0; 0)+ 01+ (0) on the RHS of the above expression is denoted d¢(0)
and can be expressed as

D6(0) = {timf € Rraim |

thelly < 0e}
The minimality condition now reads
0 € 96(0) +{—T;} = 7; € 0¢4(0),

which is ensured with 7; < o.. At the minimizer dj = 0, t},; = 7.

Proposition 2. Suppose that the minimizer d} occurs not at the origin. Then, dj, ; =0
if and only if 7,, 7 < 0.

Proof. The minimality condition of 75 equation (3.21) is expressed at (d,,; = 0,d ;) as
O S 8]]R+ (0) + {tcohs(ds,l; 5max,[)} + {nds,l - T[} .

In the above, the cohesive traction teons, given by (3.25), is a function of d;; only since
d,.r = 0. Noting that the normal components of nd; ; and teons(ds r; dmax,r) are both zero,
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one obtains 7, m,; € 0Ig+(0) from the above minimality condition, which is ensured when
T, < 0. In that case, €7, = pn,s at the minimizer dj ; = 0. In the sliding direction, the

minimizer satisfies teons(d} ;5 Omax,z) +nds; = Ts1-

The first proposition serves as an initiation criterion, whereas the second proposition
serves to identify the case an interface undergoes contact (compression) after a crack has
formed. In fact, the above propositions readily determine if a minimizer of 75 occurs at
a nondifferentiable point. If not, solution is sought in a domain where 7y is differentiable
using a smooth minimization algorithm such as the trust region method. Accordingly, we
propose Algorithm 3.2 for the solution of the minimization problem (3.16).

Algorithm 3.2 Update of opening at node [

Compute 77 = (o) - ng + nfu;], equation (3.22)

Compute 77 = \/(7;1)2 + ||7s.1/5|%, equation (3.27)

if 77 < 0., and dpaxs = 0, then
pre-activation state with dj = 0 (Proposition 1)

else
if 7,,; <0, set dy ; = 0 (Proposition 2) and solve (3.16) for d,; only,
else, declare dy ; > 0 and solve (3.16) for d;

end

3.4.2 Convexity and existence of a minimum

As already pointed out, the underlying assumption in the above presentation is that ;s
attains a minimum at dj, which would be the case only if m; were a convex function
of d;. However, the cohesive potential ©.ps as defined in (3.15) is a strictly concave
function of the opening in its loading branch. The convexity of 7y, therefore, depends on
the magnitude of the penalty parameter n as the term }\Eg’- gn.; in (3.16) introduces a
quadratic term %ndl- d; in m5. To further investigate this, let us consider the simple 1D
case of only normal (axial) deformation (i.e., ds; = 0) and assume that a crack has not
yet formed, i.e., dymax,r = 0. The generalized gradient of 75 may be expressed in the domain
of admissible solutions (i.e., d,; > 0) as

{tintf,n — Tn,I | tintf,n S Uc} dn,I =0
87r5(dn,1) = {O'C — Tn,] + (77 — Hc)dn,]} dnJ € (O, 5c (328)
{ndn,l - Tn,[} dn,[ € [507 OO);
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where H, = 0./J.. The above expression implies that 75 is convex in (0, d.) if n > H,. (this
would change to n > $2H. if the sliding direction was considered) and in [d., 00) if n > 0.
While the latter condition is automatically satisfied thanks to the definition (3.13), the
former is not readily guaranteed. Let us suppose now that 7, ; < o, (including negative
values). In this case, it is easily seen that d;;, ; = 0 is a global minimizer of 75 only if n > H.
(one can verify this by noting that the sub-gradient cannot be 0 in (0, d.) or in [d., 00) in
this case). If n > H. does not hold, then convexity is lost in (0, .) and d;;, ; = 0 would only
be a local minimizer of 75 (note that s is zero at d,, ; = 0, infinite for negative values of d,, s
and greater than zero in some positive neighbourhood of d,, ; = 0, hence a local minimum).
In that case, the other candidate for a local minimizer of ms lives in [J., 00) where 7y is
convex. This minimizer would be an undesirable, physically questionable solution as it
implies premature crack nucleation. In addition, it is generally not clear which of the two
cases corresponds to a global minimizer of 7.

A similar argument could be made for the case of 7, ; > o.. In that case, the minimizer
can no longer occur at d,,; = 0 as 0 & {tinttn — T | tinttn < 0c} and must be sought
within (0,00), i.e., a crack nucleates. Again, a global minimum exists only if n > H,.
Otherwise, convexity is lost in (0,d.) and a local minimum is obtained in [d.,00). This
implies an immediate transition to complete loss of cohesion and would lead to dissipation
of incorrect amount of fracture energies from a physical point of view. In the general case,
the condition for convexity of ms may be expressed as

n > max(H., 3*H.,). (3.29)

Remark 1. The characteristic lengths of the cohesive process zone, [., can be expressed
as [12]
s M
l. = dav o (3.30)
where y is the shear modulus as mentioned previously, v/ = ﬁ for plane strain, v/ = 1+v
for plane stress, v is the Poissons ratio and a = 7/8 according to Barenblatts cohesive
crack theory [11]. With 0 < v < 0.5, one has § < 4ar’ < 7. It has been observed that for
the crack to capture the correct amount of dissipated fracture energy, the characteristic
length . must be adequately resolved by the discretization, i.e., hy < I, see, e.g., [25]. We
show that the above requirement is closely related to the convexity condition (3.29). By
recourse to the definition of 7 equation (3.13), and assuming 5 = 1, equation (3.29) may
be recast in form of hy < [,, where

I, = xﬁ- (3.31)
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By taking 2 < x < 10 for stability of the DG method, the condition defined by I, slightly
relaxes the one defined by [.. In fact, /. would be just about the lower bound of /. In
consequence, it may be argued that convexity is ensured with 2 < x < 10 when hg < [..
Under such conditions, the role of the penalty parameter remains only a stabilizer of the
DG method. The present discussion would still be valid if an augmented Lagrangian
approach [116, 91] was used rather than a DG formulation, provided that the penalty is
defined through (3.13).

3.4.3 Trust region algorithm for smooth optimization

The smooth minimization problems encountered in the “Else” block of Algorithm 3.2
are solved using the trust region minimization algorithm. The trust region iteration is
initialized with an estimate d?, which is taken to be the converged solution of the previous
block-CD iteration, and with a trust region radius A taken to be the real-space size of the
interface element under consideration. This value is reset at the beginning of each block-
CD iteration. The trust region algorithm seeks the solution to the following constrained
minimization sub-problem in each of its iterations:

rg&nmk(ddf) s.t. ||ddr|| < Ay, (3.32)
I

in which k is the iteration index, and my,(dd;) = 75(d})+Vms(d})- dd;+3dd;- V2(d})- dd;,
obtained from the first three terms of the Taylor series expansion of 75 around the current
solution estimate df. We recall that the solution is being sought in a domain where m; is
differentiable and the gradient V75 and Hessian V?m; are properly defined. In order to
solve the trust region sub-problem (3.32), the nearly exact method of More and Sorensen
[108] has been employed, which is particularly capable of handling indefinite Hessians (i.e.,
nonconvex potentials). For further details regarding the trust region algorithm, the reader
is referred to [108].

The trust region algorithm always converges to a solution. It is known that the second
order necessary conditions for minimality (i.e., convexity) will be satisfied at the termina-
tion point of the trust region iteration. In consequence, the condition presented in Section
3.4.2 is not a requirement for convergence of the trust region iterations. In our computa-
tional experiments, the trust region algorithm took at most 10 iterations to converge when
proper initial estimates were used, irrespective of the magnitude of the penalty 7.

Remark 2. With § = 1, it is possible to obtain a closed form expression for the
solution of the smooth minimization problems. In that case, the minimizer dj may be
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expressed in a compact form as
+
-
d; = —Ldaz, (3.33)
br

where
TI

T omant/Oman TI < Tmax,I and 5max,1 < 0.

d; = ﬁ Tmax,] < T S n(gc and 6max7l S 5(: (334)
L TI Z 7750 or 5max,[ Z 507

7

and Tmax s = Omax. ] + MOmax, ;- 10 the above, it is assumed that the convexity condition
equation (3.29) is fulfilled. In cases that § # 1, the above solution may be used as an
initial estimate for initiation of the trust region iterations when the crack first nucleates.

Remark 3. We note that the method presented in this section automatically recovers
the case of linear elastic fracture mechanics (i.e., no cohesion after a crack forms) in the
limit when 6, — 0. In that case, Propositions 1 and 2 remain valid as nucleation and
contact criteria but a minimizer of w5 would always occur in (5. ~ 0,00) for any finite
n > 0 in the post-failure stage. Accordingly, the post-failure crack opening displacement
may be expressed for a linear elastic fracture mechanics model simply as d% = 77 /7.

3.5 Numerical simulations

In this section, we simulate a variety of problems involving fragmentation and branching
using the proposed block-CD algorithm. Unless otherwise stated, the coefficient y in the
definition of the penalty number (3.13) was taken as 10 and the characteristic length of
the cohesive crack model, [., was adequately resolved by the finite element discretization
so that hy < [.. In consequence, convexity of the interface potential and robustness of the
numerical results were ensured, see Section 3.4.2.

3.5.1 Fragmentation of a thick cylinder

We consider the fragmentation of a thick cylinder subjected to impulsive internal pressure.
The problem set-up and material properties are shown in Figure 3.6a. The internal pressure
decays exponentially with time as p(t) = poe "', where py = 400 MPa and t, = 100
ps. The problem has been previously studied by Song and Belytschko [153] using an
XFEM algorithm and by Hirmand and Papoulia [73] using the present energy approach
but with a continuation-trust region minimization strategy, as well as by Geelen et al.
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Figure 3.6: Fragmentation of a thick cylinder; a) problem definition and relevant properties
and b) distribution of the random modulus used in the computations

[62] using a phase-field regularized cohesive algorithm. Zhou and Molinari [182] produced
a detailed study of mesh dependence of the results. In order to break the symmetry of
the model and counter mesh dependence, the material was considered nonhomogeneous by
introducing randomness to the elastic modulus F(x). The random field was discretized
on a background material mesh by making use of the Karhunen- Loeve (KL) expansion
[148] with a squared exponential covariance function. Figure 3.6b shows one sample of the
random fields used in our computations, which was generated using a length scale of 5 mm
and standard deviation of 0.05. In the following, we show results using the implicit scheme.
Our experiments with the explicit scheme, not reported here, led to similar conclusions.

We considered three meshes with different levels of refinement, containing 20042, 30258
and 40654 6-noded triangular elements with average element size 0.25 mm, 0.19 mm and
0.15 mm, respectively. The length of the fracture process zone obtained from (3.30) is
l. = 2.8 mm, which is discretized with adequate resolution by all meshes. In all cases, a
three-point Gauss quadrature scheme was used for numerical integration along interface
elements (i.e., three nodal opening unknowns per interface). We performed implicit time-
stepping with At = 2At,,., where A, is the critical time step of the explicit scheme, for
a total simulation time of 7" = 85 wus. This choice of time step size was made based on
accuracy considerations and in order to facilitate convergence of the block-CD algorithm
within a reasonable number of iterations (this topic will be discussed further in what
follows). The convergence tolerances (see Algorithm 3.1) were set to tolg = 5 x 1072 and
toly = 1077,
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Mesh 1 Mesh 2 Mesh 3
Figure 3.7: Final deformed meshes (magnified 10 times) and activated interfaces obtained

for fragmentation of a thick cylinder at 7' = 85 us

The final deformed configurations and activation patterns obtained by the three meshes
are shown in Figure 3.7. In all simulations, fragmentation initiates at around 37 us at the
inner surface of the cylinder and continues until the cracks reach the outer surface at about
78 ps. Results obtained with different meshes are generally in good agreement and, even
though some mesh dependence is observed in terms of the location, shape and size of the
fragments, different meshes appear to produce a consistent number of 13 — 15 fragments
(the number also depends on the method of counting). More importantly, the time histories
of the dissipated fracture energy and the elastic strain energy, shown in Figure 3.8, exhibit
convergence with mesh refinement. Our numerical experiments with other samples of the
random field and with meshes of different element orientations led to similar observations.

In all simulations, convergence of the block-CD iterations was achieved in a maximum of
8 iterations after initiation of cracks; the algorithm converged to machine precision in only
one iteration prior to activation of the interfaces. An alternative to setting predetermined
tolerances as convergence criteria of the block-CD algorithm in implicit computations would
be to use At < At., and allow for only one passing of iterations (i.e., j = 1 in Algorithm
3.1). A similar approach has been common particularly in the so-called staggered solutions
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Figure 3.8: Time histories of the a) dissipated fracture energy and b) elastic strain energy
obtained for fragmentation of a thick cylinder

of phase-filed models of fracture [18, 90, 97]. The final deformed geometries and the crack
activation patterns obtained using such scheme with At = 0.95At., are shown in Figure
3.9. Results obtained are seemingly identical with the converged results shown previously
in Figure 3.7. A similar statement could be made for the time histories of dissipated
fracture energy and stored elastic energy which are, however, not shown here for the sake
of conciseness. The present scheme reduces the computational cost of implicit computations
significantly while offering desirable accuracy.

In order to show that the numerical results are insensitive to the penalty number, we
repeated the implicit computation for mesh 1 with x = 2 and y = 5 in addition to the
previously used value of y = 10. The smallest penalty used, i.e. the one corresponding
to x = 2, is as low as, approximately, 75H,.. The final activated interfaces and the time
histories of the dissipated fracture energy and stored elastic energy obtained with different
values of x exhibit excellent agreement, as shown in Figures 3.10 and 3.11. In Figure 3.12a
we also report convergence profiles of the block-CD iteration at a representative time after
initiation of cracks. Robustness of the algorithm is not affected by the magnitude of the
penalty and a similar stable behavior is observed for different values of y. We, however,
note that the number of iterations required for convergence increases with the size of the
time step. For instance, typical convergence profiles corresponding to At = 5A. and
At = 2A., are compared in 3.12b. The average number of iterations was 19 for At = 5A,,.

86



Mesh 1 Mesh 2 Mesh 3

Figure 3.9: Final deformed meshes (magnified 10 times) and activated interfaces obtained
in the alternative implicit computations (nonconverged, with one passing of block-CD
iterations) at 1" = 85 us

3.5.2 Dynamic crack branching instability

In this example, we consider crack branching in a pre-cracked block loaded dynamically
in tension. Experimental test results have been reported by Sharon and Fineberg [130,
149] and the problem has been extensively studied numerically using different methods
including XFEM and cohesive element methods [13, 105, 121], phase field [18, 97, 106]
and peridynamics [16, 67]. Ganguly [53] and Ganguly and Papoulia [54] reported in detail
on the mesh sensitivity of a similar problem. The geometric configuration and material
properties taken from Nguyen and Wu [106] are summarized in Figure 3.13. These material
properties lead to a characteristic fracture process length of [, = 0.27 mm obtained from
equation (3.30). A uniform tension oq = 1.0 MPa is applied at the top and bottom edges
of the specimen as a step function in time.

The mesh used consists of 28106 elements which are more refined in an area ahead of
the notch-tip with an average size of 0.08 mm. For this problem, we used both implicit and
explicit time-stepping schemes for a total simulation time of 7' = 80 us. Explicit compu-
tations were performed using At = 0.8A.,;, whereas implicit computations were performed
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Figure 3.10: Comparison of activation patterns obtained with different magnitudes of the
penalty number for fragmentation of a thick cylinder using mesh 1

using At = 2At,, with tolg = 5 x 1073 and toly; = 10~7. The final deformed geometries
and crack activation patterns obtained by the two schemes were seemingly identical. We
show the results obtained by the explicit scheme in Figure 3.14. Slight differences between
the upper and lower branches of the crack are due to asymmetry of the mesh. Some micro-
branching right before the major branching occurs could be the signature of roughening of
crack faces [130, 149] and resembles the widening of smeared crack/damaged zone in phase
filed [18] and peridynamic simulations [67]. It is worth mentioning that a minimum of
four Gauss points was found necessary for numerical integration along interface elements
(i.e., four opening nodes per interface) to obtain satisfactory results in this simulation. We
note that, in our setting, each interface Gauss point is a potential site of crack nucleation.
The minimum number of Gauss points was not chosen based on accuracy of the numerical
integration but, rather, for increased resolution in the representation of potential loci of
crack branching along the major crack-tip trajectory.

We report the global response of the plate obtained using implicit and explicit schemes
in Figures 3.15 and 3.16. These include the time histories of the stored elastic energy and
the dissipated fracture energy and the time history of the crack-tip velocity, respectively.
In both implicit and explicit schemes, the cracks initiate from the notch-tip at around 11.2
us and propagate for a length of approximately 14.6 mm until major branching occurs at
around 29.6 ps. The tips of the lower and upper crack branches reach to the right edge
of the plate at around 71.1 us. The crack-tip velocities always remain below the Rayleigh
wave speed vg = 2125 m/s [121] with a maximum of approximately 0.66vr = 1400 m/s.
These results are all in good agreement with numerical results reported previously in the
literature, e.g., [106, 121, 18, 16].

In order to further exemplify the capabilities of the method in modelling multiple
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Figure 3.11: Comparison of a) dissipated fracture energies and b) stored elastic energies
obtained with different magnitudes of the penalty number for fragmentation of a thick
cylinder using mesh 1

branches, we repeated the simulation with oy, = 3 MPa using explicit time-stepping. For
this simulation, we introduced randomness in the material strength to break the symmetry
of the model and facilitate crack branching at random locations of the mesh. The random-
ness introduced follows the modified weakest link Weibull distribution proposed by Zhou
and Molinari [182], in which the probability of introducing a weak cohesive element is set
to increase with element size. The Weibull modulus m in the modified Weibull distribution
(see [182]) was taken to be 25. The activation patterns given in Figure 3.17 at different
instants of the simulation show multiple branches and suggest that crack branching hap-
pens earlier than in the case of g = 1.0 MPa and at a smaller angle. Similar observations
were reported in [16, 106].

3.5.3 Mixed-mode crack propagation under impulsive loading:
the Kalthoff test

A doubly notched specimen under impact loading is investigated in this final example. The
problem set up together with the relevant material properties and boundary conditions are
shown in Figure 3.18a. This problem was originally proposed by Kalthoff and Winkler [77],
who investigated failure mode transition from brittle fracture at an angle of approximately
70° to shear band formation at an angle of about —10° by varying the loading rate. Here,
we focus on brittle fracture which occurs at relatively lower loading rates by imposing a
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Figure 3.12: Convergence profiles of the block-CD iterations a) for At = 2At, and different
values of x and b) for different values of At with x = 10

velocity boundary condition of vy = 16.54 m/s [121] at the bar-specimen interface. By
taking advantage of the twofold symmetry of the experimental setup, only half of the
specimen is considered in numerical simulations, see Figure 3.18b. The problem has also
been simulated numerically by several researchers using different methods, see e.g. Park et
al. [121] (interface elements), Song and Belytschko [153] (XFEM), Borden et al. [18] and
Nguyen and Puh [106] (phase field). The characteristic length of the cohesive process zone
is [, = 0.61 mm. Material properties and other input parameters were taken from Park et
al. [121].

We considered two meshes and performed time-stepping explicitly with At = 0.8At,,
for a total simulation time of 7" = 85 us. In both meshes, most elements are clustered
in the “crack zone”, the upper-right block of the domain where a crack is expected (see
Figure 3.18b). The average element size in the crack zone is approximately 0.17 mm in
the “coarse” mesh and 0.11 mm in the “fine” mesh. A comparison of the final crack paths
obtained by the two meshes together with the final deformed geometry of the specimen
obtained using the fine mesh are shown in Figure 3.19. In both cases, the crack initiates
from the notch-tip at around 19.5 us and reaches the top boundary of the specimen at
around 78.9 us. The crack trajectories are not generally straight and the propagation
angles become slightly smaller at intermediate stages of the simulation. Nonetheless, the
overall crack path remains fairly close to the experimental observation in both meshes so
that that the average angle is 67.2° in the fine mesh and 65.3° in the coarse mesh.

Next, in Figure 3.20 we show the time histories of the dissipated fracture energy and
of the stored elastic energy. Results of the two meshes are in good agreement so that
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Figure 3.13: Dynamic crack branching instability; problem definition and relevant proper-
ties

Figure 3.14: Dynamic crack branching instability; final deformed geometry (magnified 20
times) and crack activation patterns

the total dissipated energy (i.e., the final values of dissipated energy at the end of the
simulation) obtained by the two meshes show less than %5 difference. Finally, we show
in Figure 3.21 the time histories of the crack-tip velocities obtained using the coarse and
fine meshes. Consistent with existing numerical simulation results [121, 153], the crack
propagation velocities remain well below the Rayleigh wave speed vg = 2800 m/s with an
average of approximately 0.55vg = 1550 m/s.

3.6 Conclusion

In keeping with recent developments of energy approaches to fracture, the proposed method
has a firm physical basis and significantly simplifies the numerical implementation of
initially-rigid cohesive zone models. In each of its iterations, the algorithm obtains crack
opening displacements at each interface Gauss point locally through minimization of a

91



04 0.18 |
0.35 o Explicit scheme 0.16 f— Explicit scheme
B S Implicit scheme o Implicit scheme
,é 03 E 014 |
= g E o2 |
a 0.25 | ~
- I ) ~
2 F & 0.1
5 o02fF g
3 i S 008 |
S 015 | Z
7 b & 006 F
.2 F o
a o1p 004 |
0.05 ;— 0.02
0 b ol AN EANRNTEN NN AN ERFAAN NA obo v v ey
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time (ps) Time (ps)
(a) (b)

Figure 3.15: Time histories of the a) dissipated fracture energy and b) stored elastic energy
obtained using explicit and implicit schemes for dynamic crack branching instability

nondifferentiable functional. These are then enforced, in a numerically consistent manner,
on the deformation of the finite element mesh at the inter-elements boundaries. Notably,
both implicit and explicit time-stepping schemes are possible for advancing the solution
of the nondifferentiable energy minimization problem in time. Furthermore, the method
offers desirable exibility from a computer programming perspective: it can be implemented
within an existing solid mechanics finite element code with minimal effort. Robustness of
the method was shown by presenting various numerical simulation results obtained with
both explicit and implicit time-stepping schemes for a range of problems involving branch-
ing and fragmentation.

In the present work, potential crack paths were a priori limited to the set of inter-
element boundaries of the finite element triangulation. In a more general analysis, the
orientation of the cracks (or the finite element triangulation itself) may be viewed as an
additional unknown field in the context of optimization. Future efforts may be made in
the direction of such analysis by using adaptive schemes or other discretization methods
such as the extended finite element method.
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Figure 3.18: Mixed mode crack propagation under impulsive loading (the Kalthoff test);
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Figure 3.20: Time histories of a) dissipated fracture energy and b) stored elastic energy
for mixed mode crack propagation under impulsive loading (the Kalthoff test)
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Chapter 4

Robust simulation of hydraulically
driven fracture networks in naturally
fractured impermeable media
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4.1 Introduction

Hydraulic fracturing, a.k.a. fracking, is the process of injecting a highly-pressurized water
mixture into subterranean rocks to generate a permeable fracture network. Hydraulic frac-
turing treatments have been widely used as a well-stimulation technique in low-permeability
oil and gas reservoirs to make economic exploitation possible [158]. Among other examples
of hydraulically driven fractures one can name structural failure in gravity concrete and
rock-fill dams [145, 81, 79]. In that case, hydraulically driven fractures form due to an
over-topping wave acting on the body of the dam.

Besides analytical solutions proposed for simplified hydraulic fracture settings [63, 155,
40, 41], different numerical methods have been used to model hydraulic fracturing including
interface element methods [17, 145, 2, 28], mesh-free methods [168, 65, 160, 141], extended
finite element methods [87, 135, 136, 81, 64], and phase-field methods [170, 98, 171], among
many others. For a more comprehensive review of the numerical modelling of hydraulic
fracturing, the interested reader is referred to a recent review by Lecampion et al. [86].
Schrefler and coworkers pointed out that a fully-dynamic simulation should be applied
“In most fracturing events” [26] and that “there should be no restriction on the fracture
velocity” [126] in a physically sound hydraulic fracturing model.

Time-discontinuity is especially problematic in the context of dynamic hydraulic frac-
turing and, as we show later in this chapter, a solution may not be obtained if a time-
discontinuous fracture model is used. The reason is that the mass balance equation govern-
ing fluid flow within the hydro-fractures is dependent on the crack opening velocity field,
whose numerical solution shows spurious oscillations in any time-discontinuous model. One
expects that similar issues may be encountered in any coupled, multi-physics problem in
which crack opening velocity fields play a role in the distribution of the local interfa-
cial fields, e.g., rate dependent [183, 19] or thermo-chemo-mechanical fracturing processes
[162, 58]. Most previous hydraulic fracturing models have simply sought to avoid this issue
by neglecting inertial effects and by keeping the crack fixed within the computations of
a solution step. This is not a coincidence but a manifestation of the robustness issues in
previous hydraulic fracturing implementations using time-discontinuous crack propagation
algorithms. The non-differentiable energy minimization approach avoids spurious velocity
fields thus makes possible robust implementation of dynamic hydraulic fracturing in a way
that no additional restriction is made on the crack-tip velocity.

We will assume in our hydro-mechanical modelling that the hydraulic fracturing process
occurs in an impermeable domain in a short period of time. Accordingly, the fluid flow
is defined only on the hydro-fracture network boundaries. The set of coupled hydro-
mechanical equations governing the hydraulic fracturing problem is solved using a block-CD
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solution strategy similar to the one proposed in Chapter 3. It is understood that sequential
solution methods sometimes suffer from convergence issues in hydraulic fracturing problems
especially in cases that the fracture toughness is relatively low [64, 119]. To avoid such
complexities and focus our attention to issues arising form lack of time continuity, we
restrict our simulations to “toughness dominated” hydraulic fracturing (i.e., relatively high
fracture toughness). In addition, we use adequately small time steps so that an accurate
solution can be obtained in only one passing of block-CD iterations in each time increment.

Another limitation in the hydraulic fracture literature is that the problem set up is
in most cases limited to a single hydro-fracture approaching one or a few pre-existing
discontinuities, see e.g., [82, 159, 181, 80, 83]. Despite the large body of work in this area,
realistic simulation of hydraulic fracturing in naturally fractured formations still remains
a formidable task. In our setting, multiple discontinuities can initiate and propagate along
the inter-element boundaries (interface elements) anywhere in the mesh. Thus, the method
offers desirable flexibility in modelling multiple hydraulic fractures in naturally fractured
media. Identifying the set of pressurized fractured interfaces would not be a trivial task in
this context and requires analyzing the complex topological information of the fractured
interfaces in the finite element mesh. We propose a search algorithm on the basis of graph
theory to identify, among all, the set of fractured interfaces subjected to the fracturing
fluid pressure. The versatility of graph theory in tracking complex fracture networks is
demonstrated in the literature by several authors, see e.g., [34, 179]. A consequence of
this approach is that different interaction scenarios including coalescence, diversion of flow
into the faults, offset crack propagation, etc. can be modelled in a unified fashion in the
present approach.

This chapter is organized as follows. In Section 4.2, we state the problem and assump-
tions made. Formulation of the energy approach to hydraulic fracturing and its discon-
tinuous Galerkin finite element implementation are presented in Section 4.3. In section
4.4, we present the coupled block-CD algorithm proposed for the solution of the coupled
hydro-mechanical problem. The algorithm involves a two-step scheme in each iteration, in
which the set of mechanical and hydraulic unknowns are updated sequentially. Section 4.5
is devoted to numerical simulation results which show the robustness of the proposed com-
putational algorithm in modelling multiple hydraulic fracture growth in naturally fractured
media. Finally, concluding remarks are presented in Section 4.6.
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4.2 Problem statement and assumptions

Consider a quasi-brittle impermeable solid body @ C R™im in 2D (ng, = 2), containing a
set of evolving hydro-fractures driven by injection of a fracturing fluid as well as a set of
pre-existing fractures and/or weak surfaces, as shown in Figure 3.1. We assume that the
evolution of hydro-fractures is restricted to a set of a priori known internal discontinuity
boundaries I'y C Q. To allow for the hydro-fractures to merge/collide with the pre-existing
discontinuities in the body, we require I'y to encompass all preexisting discontinuity bound-
aries, if any exist. We denote by piy; the possibly time-dependent injection pressure and
let the injection point be xi,; € I'y.

The deformation of the fracturing body is described by a displacement field u(x,?) :
0 — R™im x [0, 7") admitting a jump [u(x,t)] on I';. On the basis of the non-differentiable
energy minimization approach to cohesive fracture, the evolution of cracks with nonzero
displacement jumps within I'; is tracked by defining an auxiliary discontinuity opening
displacement field §(x,t) : I'y — R™im x [0,7") and requiring that

g(u,6) = [u(x,t)] —d(x,t) =0 on Ty. (4.1)

The normal and sliding components of the displacement jump are defined as [u,] = [u]- n,
and [us] = [u]—[u,]ng, where n, is the unit normal to the discontinuity. Similar definitions
are made for the auxiliary opening field 9.

Pinj

Natural
fracture

Figure 4.1: Schematic of a naturally fractured body €. T'y represents potential sites of
cracks and discontinuities whereas I', C I'; represents the hydro-fractures pressurized by
the fracturing fluid. The external boundary 02 consists of disjoint parts 9,2 and {2
(0,.2N 02 =0 and 9,02 U 9, = 99), on which the displacement u and external force t

are prescribed, respectively
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We assume infinitesimal deformations and consider the standard theory of linear elastic-
ity for isotropic solids. The strain energy density function ¢ is defined on the “uncracked”

part of the body Q\I'y as

1

Y(e(un)) = §e(u) :D:e(u), (4.2)

where D is the elasticity constitutive tensor and e(u) = V*u € R™im x R™im ig the in-
finitesimal strain tensor. Further, we define an opening-dependent cohesive surface energy
function ©eons(9; Omax) and an indicator function Ip+(d,) on I'y. The surface energy func-
tion 9¢ons involves three material constants, o., 0. and 3, which represent material strength
under normal tensile load, critical effective opening displacement at loss of cohesion and
shear to normal material strength ratio, respectively. Furthermore, d,,., is a history vari-
able taking into account the irreversibility of the fracturing process. The indicator function
I+ is introduced to prohibit interpenetration of the crack faces. We recall that both of
these functions are nondifferentiable at their origins as a requirement for modelling the
initially-rigid behavior on I'y. For the precise forms of ¥..ns and Iz+ used here, the reader
is referred to Chapters 2 and 3.

The hydraulic response of the fluid within the hydro-fractures is described by introduc-
ing a scalar fluid pressure field p(x,t) : I', — R x [0,T), where I',(t) C I'; denotes the
set of hydro-fracture boundaries pressurized by the fracturing fluid. We consider that I',
is formed of a subset of inter-connected, fully-cracked surfaces in I'; that are linked to the
fluid injection point X;n;. Thus, x;,; € I',. We further assume that the entire length of I',
is filled with fluid; that is, the so called fluid-lag zone is assumed to be of negligible size
[56, 57]. Tt is noted that the interaction of the hydraulically driven fractures with each
other and with pre-existing discontinuities may lead to the formation of cracks away from
the hydraulically driven fractures which are not in I',. Thus, the domain I', is not known
a priori in the present setting.

We assume that the fracturing fluid is incompressible and that the flow within the
hydro-fractures is fully-developed and laminar at any instance of time during fracturing.
Furthermore, we assume that the fluid flow within the hydro-fractures is one-dimensional
and that the flow exchange between the hydro-fracture and the surrounding medium is
insignificant compared to the one-dimensional flow within the hydro-fracture. Consider
the local Cartesian coordinate system (s,7) defined on I', as shown in Figure 4.2. The
directions of s and r are aligned with the tangent and normal to the discontinuity boundary,
respectively. The longitudinal rate of flow ¢ within a fracture is described by Darcy’s law
as
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Figure 4.2: Schematic of the hydro-fracture and relevant definitions

dp
ds’
in which k is the longitudinal permeability of the flow canal between the hydro-fracture
faces. In the above, the pressure field p is taken to be positive in compression. By
Poiseuille’s law, the hydro-fracture permeability k& may be related to its opening by
3 3
LB (4.4)
R2pg f 120
in which hg is the so-called hydraulic aperture of the crack, py is the fracturing fluid
viscosity, and 1.04 < f < 1.65 is a coefficient that accounts for the deviation from the
ideal conditions of parallel, smooth hydro-fracture faces [172, 184]. To summarize, the
complete hydro-mechanical response of the hydraulically fractured body is described by
three independent variables u, § and p.

q=—k (4.3)

4.3 Formulation of the hydraulic fracturing problem

4.3.1 The coupled hydro-mechanical model

The complete hydro-mechanical response of the hydraulically fractured body is described
by two equations, one describing the mechanical equilibrium of the fractured body and the
other describing mass balance of the fluid within the hydro-fractures. An expression of the
total mechanical energy of the body is obtained as the sum of energy due to elastic strain
of the body me(u), dynamic energy due to inertial forces mqyn(u), energy due to opening
of the interfaces m(d) and energy due to work of the fluid pressure on the crack faces

Whuid (u; p) :
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7T(11, 57p) = 71-el(u) + 7Tdyn(u) + 7Tintf((s) - Wext(u) - Wﬁuid<u;p)7 (4’5>
where

mai(u) = ¢ (e(u)) dv,

O\l

Wintf(é) = /1" (wcohs(é) + [R+ (5n)) dSa

Wext(u):/ u~de+/ u-tds,
Q\Fd 8tQ

Wiuia(a; p) :/ [u]- pngds,

Ip

(4.6)

and the dynamic energy term mqy,(u) is chosen in such a way that the following relation
holds at each time step in a time-discrete framework

Vuiﬂ—dyn(ui) = / puldV, (47)
NIy

where the subscript ¢ denotes finite difference approximation to the corresponding un-
known. In the definition of W, b is the body force vector and 7 is the prescribed
traction on 0,€). The mechanical equilibrium of the fractured body is characterized by the
following constrained minimization problem at each time step:

find (u*,6*) € (U x D) minimizing m(u, d;p) s.t. g(u,d) =0, (4.8)

where U and D are spaces of admissible solutions and g(u, d) is a linear constraint function
defined in (4.1).

The above mechanical equilibrium equation is complemented by the following mass
balance boundary value problem that governs variation of the fluid pressure field p within
the hydro-fractures [80],

— 4+ [t,] =0 on T'y;  p(Xinj) = Dinj- (4.9)

We note that the hydro-mechanical coupling between the deformation of the fractured
body and the fluid pressure is achieved by the introduction of the work of pressure field
Wiuia in the total energy functional (4.7) and the dependence of the fluid pressure p on
[w,] through (4.4) and (4.9).
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Remark 1. The crack opening displacement field d could be used instead of the
displacement jump [u] in the definition of Wyua and in equations (4.4) and (4.9). In
numerical experiments, we found that results are at least seemingly identical, even though
the computational algorithm proposed in Section 4.4 would be slightly different if the
coupling between the solid and the fluid problem is made through 4.

4.3.2 Finite element discretization

The coupled problem defined by the system of equations (4.8) and (4.9) is solved by means
of finite element discretization. The finite element discretization is applied directly to
the minimization problem (4.8) to arrive at the finite-dimensional minimization problem
describing equilibrium and fracture in the body. This equation is solved simultaneously
with the discrete form of the mass balance equation (4.9) obtained through a standard
finite element weak formulation.

The finite element discretization of u and § follows the DG scheme presented in Chap-
ters 2 and 3. The finite element triangulation is denoted €,, and I'y), is taken to be the
union of nonexterior surfaces of the bulk elements in €2;,. The finite element approximation
uy, allows for a displacement jump [u,] on I'y,. Furthermore, each Gauss point of the
interface elements in I'y is assigned a nodal opening displacement unknown to construct
0. The total number of Gauss points (opening nodal points) is denoted M and their
coordinates are denoted &;, [ = 1,2, ..., M.

Next, the finite element discretization is completed by approximating the pressure filed
p with a C°-continuous approximation pj, on the domain of flow continuity equation T, .
The (ngim — 1)-dimensional mesh constructed on I',; for this purpose is assumed to be
conforming to the underlying finite element mesh. That is, the nodal points that serve
to interpolate the pressure field on I',;, are located at the vertices of the elements in €2;.
In the subsequent presentation, U, d and P denote the global vector of nodal unknowns
corresponding to uy, &, and py,, respectively. Note that it is required that u, = u on 9,2
and pp,(Xinj) = Pinj for admissibility of the approximate solution fields.

The discontinuous Galerkin method is used to obtain the spatially discretized form of
the constrained minimization problem (4.8) as

(Uvd) Fd,h

min {ﬁDG(uh,(Sh;ph) = ﬂ(uh,éh;ph) —l—/ AEG-ghdS} s (410)
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in which AP is the DG numerical flux defined as

1
ALS = (n)ng+ 519n- (4.11)
In the above, o7, is the Cauchy stress tensor computed strongly from uy, (x) = %(*JF +x7)
and n > 0 is a sufficiently large penalty number (see Chapters 2 and 3 for a detailed discus-

sion of the role of 7 regarding accuracy and convergence within the present formulation).

The mass balance equation (4.9) is solved for p simultaneously with (4.10) using a
standard finite element discretization. Following the usual steps of the Bubnov-Galerkin
technique, the finite dimensional weak form of the flow boundary value problem (4.9) that
governs the evolution of the fluid pressure on I', j, is expressed as [80]

dpy, , dpn, / .
Chp s — Jds =o, 4.12
/F G [ Al (4.12)

which must be satisfied for any admissible test pressure function p,. The test function py, is
approximated similar to pj, except that pj,(xin;) = 0. In the above, dS is a differential area
which would be equal to Bds in a 2D setting, where B is the width of the hydro-fracture.

Note that, as mentioned previously, the domain I',, is not known a prior: within the
present setting which naturally allows for the propagation of multiple hydro-fractures and
pre-existing discontinuities in the mesh. In fact, I', ;, needs to be determined as part of the
solution by analyzing the topological information of the fully-cracked interface elements in
Iy, within the present DG finite element discretization. As mentioned in the introduction,
we propose a search algorithm on the basis of graph theory to identify the set of pressurized
interface elements forming Iy, ,, which will be discussed in further details in Section 4.4.2.

4.4 Computational procedure: coupled block-CD al-
gorithm

In this section, we propose an iterative solution algorithm for the solution of the cou-
pled system of hydro-mechanical equations defined by equations (4.10) and (4.12). The
algorithm involves solution of the equilibrium problem (4.10) using a block-CD energy
minimization in a way proposed in Chapter 3 simultaneously with the mass balance weak
form (4.12).

We now categorize the set of unknowns to be obtained to two groups. The first group,
denoted mechanical unknowns, consists of U and d, and the second, denoted hydraulic
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unknowns, involves I', , and P. Consider the time-discrete case, with uniform time step
increments At, and suppose that the sets of mechanical and hydraulic unknowns {U;; d;}
and {(I',.):; P;} are known at time step ¢; and sought at time step ¢;;,. Each iteration of
the algorithm involves a mechanical update step, which updates the mechanical unknowns
by solving (4.8) with fixed hydraulic unknowns, followed by a hydraulic update step, which
updates the hydraulic unknowns through the solution of (4.12) using the updated values
of the mechanical unknowns.

The algorithm resulting from the above solution strategy, with a Newmark scheme [104]
for the time integration of the displacement unknowns, is outlined in Algorithm 4.1. In
the two subsections that follow, we discuss each of the mechanical and hydraulic update
steps involved in the algorithm. In order to simplify the presentation, we shall omit the
time step index ¢ and the coupled block-CD iteration index j; the formulation that follows
concerns a typical iteration of the algorithm at time step #;,1.

4.4.1 Mechanical update step

The mechanical update step itself involves two sub-steps, in which d and U are updated
sequentially assuming that the hydraulic unknowns {I',,,P} are fixed at their current
values. These sub-steps are obtained using the block-CD algorithm as explained in Chapter
3.

The opening displacement unknowns are updated locally at each nodal point I defined
on I'gy through the following algorithmic nondifferentiable minimization problem

Héin {m(d[, U) = Yeons(dr; Omax.1) + Ir+(dn 1) + Ag’?-g}u} forI=1: M, (4.13)
I

in which d; is the nodal opening displacement at node (interface Gauss point) I. Be-
cause eops and Ig+ are not globally differentiable, a straightforward solution of (4.13) is
not readily available. A thorough explanation of the solution of (4.13) using generalized
differential calculus is given in Chapter 3. The traction 7; appearing in the algorithm is
computed strongly from the deformation field at interface Gauss point I as

71 = (on(§;1)) na + nlun(&p)]- (4.14)

In addition, 77 is an effective norm of the tensile part of 7; defined as

71 = /max(r,r,0)2 + |71/ B2 (4.15)
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Algorithm 4.1 Coupled block-CD algorithm for hydraulic fracture propagation; the sub-
script ¢ + 1 is omitted for simplicity of presentation

Given mechanical unknowns {U;, U;, U;,d,} and hydraulic unknowns {P;, (T),4),}
Update 0pax = max{0max.0, ---» Omax:} at all interface points I =1: M
Initiate iterations:

Mechanical unknowns: set d° = d; and Newmark’s scheme predictors
U = U; + AtU; + 220, and U° = U, + AtU;,.

Hydraulic unknowns: set P® = P; and I') , = (T1),-
Loop on iterations 7 = 0,1, ...
Mechanical update step
Update d. For all interface points I =1: M on I'gp:
if 7/ < o, and dpaxs = 0, then
pre-activation state with dJ*" = 0
else
if Tn‘ ; <0, set de}l = 0 (contact case) and solve (4.13) for dg}l only,
else, declare d?;' > 0 and solve (4.13) for d}™
end

Update U: ) ) )
AU = —J71R,(U’; d’T1, P7); then U/t = UJ + AU/
U/t = U7 4 0, 22 AU/
Uit = U7 + ap AtATUTH
Hydraulic update step
Update fluid pressure domain: F;h — T/ 21

Identify fully-cracked interfaces, then form G = {V,E} and C
Identify isolated sub-graphs Gj, = (Vk, Ek) caG

Find V s.t. Vinj € V,/, then set Lpn = Vi
Update P:
j+1 i+1\ "1 (i+1gTi+!
Pt = () (Q) U
Set negative values in P/*! to zero

Check for convergence:

if ”FROHH < tolp and Fﬂ“ —1 ?n =0, go to next time step

End Loop on iterations
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Next, the displacement unknowns are updated through the solution of the following
system of equations for U,

R,(U;d,P) = MU + K,,U - K,4d — Q,,P — Foy = 0, (4.16)

which characterizes the global equilibrium of the body subjected to opening displacements
d and fluid pressure P at element edges. We refer the reader to Chapter 3 for definitions
of the mass matrix M, the stiffness matrices K,,, K.q and the external forces vector Fy.
The hydro-mechanical coupling matrix Q,, is defined as

Qu, = /F (N1 T, NP 5, (1.17)
p,h

in which NI[*J and N? are the matrices of finite element shape functions approximating [uy,]
and py, respectively. Equation 4.16 can be solved either implicitly or explicitly depending
on the values of the Newmark scheme parameters a; and ay used (see Algorithm 4.1). An
implicit scheme with unconditional stability corresponds to a; > as > 0.5, whereas an
explicit time-stepping scheme corresponds to a; = 0 and a, = 0.5. In Algorithm 4.1, we
solve for U in an incremental fashion whereby an increment Aﬂ, obtained by evaluating the
residual R, at the current estimate of the solution, is used to update U in each iteration.
The corresponding Jacobean matrix J = R,/ 9U is expressed as

At?

4.4.2 Hydraulic update step

For a given set of mechanical unknowns {U,d}, fixed at their values obtained in the
mechanical update step, we first construct the domain I',;, and then solve the weak from
(4.12) for the pressure field on I, .

The algorithm proposed for the construction of I, ;, relies on concepts of graph theory.
An undirected simple graph is constructed as an ordered pair G = (V,E), in which V is
the set of vertices and E is the set of edges. Each “vertex” in V is a fully-cracked interface
element of the mesh. By fully-cracked we mean complete loss of cohesion (dpax > 9c)
at all Gauss points of the interface element. Edges in E are defined on the basis of the
connectivity of interface elements; any two fully-cracked interface elements with at least
one end point (in 2D) or boundary edge (in 3D) are linked by an “edge”. Accordingly,
an adjacency matrix C is defined in which C;; = 1 if vertices (interfaces) i and j are
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Figure 4.3: Example of the construction of the domain I',;, in a 2D mesh. The mesh is
shown on the left and the associated graph, in which K = 2, is shown on the right. The
thicker edges of the mesh denote fully-cracked interface elements

linked by an edge and Cj; = 0 otherwise. Using the pathway search algorithm introduced
by Segdewick [146], the connectivity matrix is then used to identify the set of connected
components (isolated sub-graphs) G = (Vk, Ek) C G,k =1,.., K, where K is the number
of connected components, each formed by a subset of fully-cracked interface elements of the
mesh. In a MATLAB script, this can be simply achieved using the “conncomp” command.
Assuming a single crack emanating from the injection point (perforation), let 7i,; denote
the interface element representing that crack. The set of interface elements defining I, 5, is
determined by the vertices of the isolated sub-graph that contains ~iyj; that is, one finds Vi
st Y € Vi, k' € {1,..., K}, then sets ', ;, = V. The above algorithm applies to a single
injection point; however, it can be easily extended to the case of multiple injection points
and/or multiple cracks emanating from each injection point. The algorithm described
above is schematically shown in Figure 4.3

With I', j, constructed, the system of discrete finite element equations corresponding to
(4.12), i.e., the system used to compute the distribution of the pressure field on I', j, reads

R,(P;U)=HP - Q,,U =0, (4.19)
in which Q,, = 5p and H is the hydro-fracture permeability matrix given by
H= / (BP)TkBP dS, (4.20)
Fp h
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with B? = dN”/ds containing spatial derivatives of N?. Note that the domain I', , may
change from one iteration to the next. In consequence, the size of the system of equations
(4.19) is not generally fixed within the iterations.

Convergence of the coupled block-CD algorithm is checked at the end of the hydraulic
update step on the basis of the residual norm of the global equilibrium equation (4.16) and
variation of I', ; in successive iterations.

Remark 2. Treatment of fluid-lag. The assumption of zero fluid-lag in I', ;, may lead
to relatively large negative values of fluid pressure (i.e., suction) in a vicinity of the hydro-
fracture tip due to the presence of a singularity in the pressure field [56]. Estimates in
practical hydraulic fracture treatments with large solid toughness show that the fluid-lag
zone is in fact of very small size [57]. The common practice in many hydraulic fracturing
simulations has been to consider the fluid vapour pressure as a cut-off value of the solution
obtained using a zero-lag assumption, see e.g., [165]. A similar approach was taken in the
present work, whereby the fluid vapour pressure is taken to be zero, i.e., negative nodal
pressure values obtained from (4.19) are set to zero (see Algorithm 4.1). Nonetheless,
it is possible to account for fluid-lag within the present framework, e.g., by taking the
“wetted” portion of the cracks as an additional unknown as in [87, 165] or by introducing
a nonnegative pressure field constraint as in [151].

Remark 3. Convergence of the sequential iterative solver. As mentioned in the in-
troduction, we avoid the complexities associated with the convergence of sequential so-
lution schemes in hydraulic fracturing problems [64, 119] by restricting the simulations
presented in Section 4.5 to “toughness dominated” hydraulic fracturing (i.e., relatively
large fracture toughness). This allows to focus our attention to the issues caused by lack
of time-continuity in previous stress-based methods and to demonstrate the capabilities
of the method in modelling multiple hydraulic fractures in naturally fractured media. In
addition, adequately small time steps are used (At < At.) so that an accurate solution
can be obtained in only one passing of block-CD iterations (i.e., j = 1 in Algorithm 4.1)
in each time increment.

4.5 Numerical simulation results

In this section, we present numerical simulation results in plane strain, which show the ro-
bustness and versatility of the proposed hydraulic fracturing computational algorithm. In
all simulations, six-noded triangular elements are used and interface elements are inserted
everywhere in the mesh as potential sites of crack nucleation and propagation. The numeri-
cal integration on the interface elements is performed using a three-point Gauss quadrature
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scheme (i.e., three opening displacement nodes per interface element). In addition, linear
interpolation is used for the pressure field along each interface element in I', ;. In all simu-
lations, material properties used are Young’s modulus £ = 10GPa, Poissons ratio v = 0.2,
and material density p = 2500kg/m?>. Cohesive fracture model properties used are critical
stress 0. = 1MPa, critical opening displacement 6. = 0.1mm, and mode-mixity parameter
f = 1. The fracturing fluid is assumed to be water with dynamic viscosity p = 1073Pa-s
and the coefficient f in equation (4.4) is taken to be 1.05.

In all simulations, it is assumed that the injection pressure pjy; is increased from zero to
a critical value within a relatively short time so that the hydraulic fracturing process has a
duration of approximately 30~100 milliseconds. Such dynamic loading conditions occur in,
e.g., pulsating hydraulic fracturing [71] or dynamic structural failure in gravity dams [145].
Nonetheless, the method and conclusions remain valid for slower loading conditions as well.
It is understood that the use of element boundaries as potential crack surfaces introduces a
degree of obvious mesh dependence. We have not performed mesh convergence analysis in
the simulations presented as this subject has been already addressed in previous chapters.

4.5.1 Effect of time-continuity on stability and robustness

With this example, we examine the effect of time-continuity on the robustness of the
hydraulic fracturing simulation algorithm. We show that a numerical solution fails to be
obtained with a time-discontinuous extrinsic model of cohesive fracture due to instability
of the algorithm. The problem considered is that of a rectangular block of dimensions
10m X 4m containing a perforation (pre-notch) of length 3m in the middle of its left
edge, as shown in Figure 4.4. The fracturing fluid is injected into the perforation with an
injection pressure pi,; increased linearly from 0 to 1.0MPa in 100ms. The FE mesh used
in the simulations, also shown in Figure 4.4, contains 7140 elements and 42840 (7140 x 6)
nodal points.

The problem was solved with the present time-continuous algorithm and a time-
discontinuous algorithm which is in essence similar except that the mechanical update step,
which concerns deformation and fracture of the body, is replaced by a time-discontinuous,
hybrid DG-cohesive element method similar to [129]. In the hybrid DG-cohesive element
algorithm, the DG method is used to tie together the element edges prior to the nucle-
ation of cracks. Upon satisfaction of an extrinsic fracturing criterion, the DG terms cease
to operate and give place to the tractions computed from a cohesive traction-separation
model. Fluid pressure is incorporated in the equilibrium equations of the fractured body
as an external force applied on the fully-cracked interface elements of the mesh. The
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time-discontinuous method cannot be used with implicit time-stepping due to the interfer-
ence of the above interface activation criteria with the iterations [73]. Thus, both of the
simulations were performed explicitly with At = 0.8At,,.

Figure 4.5 shows velocity contours in a vicinity of the hydro-fracture obtained by the
proposed method and by the hybrid DG-cohesive element method at a hydro-fracture
propagation length of approximately 0.6m. In addition, Figure 4.6 shows time histories of
the opening velocity of the hydro-fracture mouth (i.e., point A in Figure 4.4) obtained by
the two methods. The time-discontinuous model (hybrid DG-cohesive element) exhibits
nonphysical, spurious oscillations in both space and time. This is typically observed be-
haviour of time-discontinuous models and it emanates from the formation of unphysical
shocks in the body at crack nucleation due to discontinuity of the force vector. Because
the mass balance equation (4.9) is dependent on the normal crack opening velocity field
[4,], unphysical solutions are obtained for the fluid pressure field exhibiting extremely
large values (i.e., high gradients) with spurious oscillations in time. These pathological be-
haviours eventually lead to instability of the algorithm and failure to obtain a solution in
subsequent time steps because the elements on the two sides of the hydro-fracture become
extremely distorted by the applied pressures.

In contrast to the time-discontinuous model, no sign of instability was observed in
solutions obtained with the proposed time-continuous algorithm. The final hydro-fracture
trajectory together with the distribution of the pressure field obtained are shown in Figure
4.7 (negative pressure values in the fluid-lag zone are removed from the profile of the
fluid pressure distribution). In addition, Figure 4.8 shows the time history of the crack-
tip velocity. The hydro-fracture initiates from the perforation tip at ¢ = 11.5ms and
branches into two tips at ¢ = 20.3ms after it has propagated for approximately 1.65m.

Pinj om

wy

II 10 m I

Figure 4.4: Hydro-fracture propagation in a rectangular domain; problem definition,
boundary conditions and FE mesh
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Figure 4.5: Contours of the vertical component of the velocity field 4, (color bar in
mm/s) obtained with a) the time-continuous coupled block-CD algorithm and b) the time-

discontinuous hybrid DG-cohesive element method. Deformation magnified 100 times.
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Figure 4.6: Time histories of the hydro-fracture mouth opening velocity obtained by the

time-continuous (coupled block-CD) and time-discontinuous (hybrid DG-cohesive element)
methods in 10 < ¢ < 16 ms

The branching of the hydro-fracture tip allows the deformable block to dissipate excessive
input energy under the dynamic loading conditions [47]. The maximum crack propagation
velocity attained is estimated to be 0.4vg ~ 480 m/s, where vy is the Rayleigh wave
speed in the material which is approximated as vg ~ 1200m/s [59]. The upper and
lower tips propagate symmetrically and eventually reach the boundaries of the domain at
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Figure 4.7: a) Crack propagation trajectory and b) profile of the fracturing fluid pressure
(colour bar in MPa) obtained for hydro-fracture propagation in a rectangular block at
t = 35.8ms

t = 35.8ms. The overall response of the hydraulically driven crack agrees well with the
expected behaviour known from theoretical and experimental findings in previous dynamic
fracture literature [130, 149]. In addition, we performed a temporal convergence study by
solving the hydraulic fracturing problem with different time step sizes At; = 0.8At /2" s,
1 = 0: 4. The normalized error in the velocity and pressure fields obtained with time step
At; is defined as e, = HUZ —UexaCtH / HUexactH and e, = [|P; — Pexact]| /|| Pexact ||, respectively,
in which the solution obtained from the finest time step size (i = 4) is taken to be the
exact solution (denoted by the subscript “exact”). Results of the temporal convergence
study obtained at hydro-fracture propagation length of approximately 0.5m are shown in
Figure 4.9. Convergent behaviour is observed, indicative of the numerical soundness of the
computational algorithm. Similar results could also be obtained with the implicit time-
stepping scheme which are, however, not shown here for the brevity of the presentation.

4.5.2 Simultaneous hydro-fracture growth in an intact domain

The simultaneous growth of hydro-fractures has been analyzed previousely by Pierce and
Bunger [124] and Vahab and Kalili [164], among many others. It has been shown that,
in a uniformly spaced cluster of initial perforations, the so called stress shadowing effect
leads to the arrest of hydro-fracture growth from the middle perforations whereas hydro-
fractures propagate from the outer perforations in a diverging fashion. In this example,
we verify the predictive capabilities of the proposed method by simulating an example of
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Figure 4.8: Time history of the crack-tip velocity. After branching, the reported crack-tip
velocity is that of the upper branch. The velocity was obtained from the crack length vs.
time curve produced by considering only the time steps at which crack propagation occurs

simultaneous hydro-fracture growth from multiple perforations.

A 10mx10m square block is considered in plane strain with traction free boundaries.
The block contains three perforations of length 0.5m at its left edge with lateral spacing
of 1.0m. The three perforations are subjected to fracturing fluid pressure pi,; which is
increased linearly from zero to 1.5MPa in 50ms. The time stepping is performed implicitly
using At = 0.99At.,. The FE mesh used in the analyses consists of 6593 triangular elements
and 39558 nodal points. The mesh is more refined in an area ahead of the perforation tips
for better resolution of crack trajectories. Figure 4.10 shows the problem definition and
the FE mesh.

The hydro-fracture trajectories along with the contours of maximum principal stress o,
obtained at different instants of the simulation are shown in Figure 4.11. In addition, the
profile of the fracturing fluid pressure along the hydro-fractures obtained at the end of the
simulation is shown in Figure 4.12. The hydro-fractures are propagated from the off-center
perforations only and little crack propagation occurs from the middle perforation tip. In
addition, the hydro-fracture tips propagate symmetrically in a diverging fashion. Note that
the stress shadowing effect is apparent in the contours of the maximum principal stress
(Figure 4.11b). The stress field ahead of all perforation tips is tensile at early stages of the
simulation. As the off-centre hydro-fractures grow, tensile stresses reduce significantly at
the middle perforation tip and eventually become compressive, suppressing further hydro-
fracture propagation. The numerical results obtained are in overall agreement with the
expected behaviour known from previous literature [124, 24, 164].
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Figure 4.9: Temporal convergence in velocity and pressure error norms for the hydro-
fracture propagation in a rectangular domain. The asymptotic rate of convergence is
estimated to be approximately 1.93 in the velocity error norm and 1.28 in the pressure
error norm

4.5.3 Hydraulic fracturing in a cemented naturally fractured do-
main

We consider again a 10mx10m square block in plane strain with traction free boundaries.
The block is subjected to fluid injection from a perforation of initial length 0.5m which
is located at the middle of the left edge of the block. To mimic the conditions in reser-
voirs with bedding planes and weak interfaces, the domain contains 20 uniformly-spaced
naturally-cemented fractures, each of length v/2m and oriented at an angle of 45° with
respect to the horizontal. These naturally-cemented fractures are assumed to have differ-
ent fracture properties from the medium surrounding them. We take the strength of the
natural fractures to be ao., where o, is the cohesive strength of the domain, and analyze
two cases @ = 0.1 and o = 0.5. In both cases, the critical opening displacement 9, is taken
to be the same as that of the rest of the domain. The injection pressure pi,; is increased
linearly from zero to 1.5MPa in 50ms. The problem definition and the FE mesh used in
the simulations are shown in Figure 4.13.

The hydro-fracture propagation trajectories obtained with the two natural fracture
strengths are shown in Figure 4.14 at different instants during the solution. Figure 4.15
shows the final deformed geometries together with contours of the principal stress oy ob-
tained at the end of the simulation. In the case a = 0.1, propagation of the hydro-fracture
activates the cemented discontinuities away from the pressurized hydro-fractures as they
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Figure 4.10: Simultaneous hydro-fracture growth in an intact domain; problem definition
and FE mesh

have little strength compared to the rest of the domain. It is observed that the hydrauli-
cally driven cracks generally tend to deflect toward a direction normal to the pre-existing
interfaces. In the case a = 0.5, on the other hand, little fracture activation occurs away
from the fracturing zone and a different propagation path is obtained compared to the one
when a = 0.1. Results obtained clearly indicate the capabilities of the proposed method
in handling different interaction scenarios such as activation of natural faults, coalescence
of discontinuities in the domain and offset crack propagation.

Furthermore, Figure 4.16 shows the time histories of the total hydro-fracture length (i.e.,
the length of pressurized interfaces I, ;) obtained with the two natural fracture strengths.
The final length of the induced network of hydro-fractures is approximately 30% larger
for a = 0.1. This is in accordance with previously reported observations that hydraulic
fracturing treatments in formations with strongly bonded natural discontinuities require
higher injection pressures [159].

It is worth noting that the hydro-fracture lengths show a step-wise evolution as can be
seen in Figure 4.16. This type of behaviour is in agreement with experimental observations
and field data [27]. Schrefler and coworkers pointed out that to capture such nonsmooth
behaviour, the model must include dynamics [26] and put no restriction on crack velocity,
i.e., be free of pre-determined crack increment lengths [126]. The majority of numerical
hydraulic fracturing models fail to capture such nonsmooth behaviour [126].
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Figure 4.11: Simultaneous hydro-fracture growth in an intact domain; a) hydro-fracture
growth trajectories, b) contours of maximum principal stress

4.5.4 Multiple hydro-fracture growth in a heavily fractured do-
main

Nearly all geological formations heavily bear natural discontinuities and fractures. Hy-
draulic fracturing in such formations has been studied numerically using a variety of al-
gorithms, e.g., [85, 112]. In this final example, we further demonstrate the capabilities
of the method by modelling an example of hydraulically driven fracture networks in a
heavily fractured domain. As shown in Figure 4.17, the 10mx 10m domain considered has
traction-free boundaries and is populated by one hundred randomly oriented pre-existing
fractures that have zero strength in both tension and shear. The lengths of the pre-existing
fractures were sampled from a normal distribution with a mean value of 0.5m and standard
deviation of 12.5cm. A trial and error scheme was implemented to ensure that all fractures
have a minimum center-to-center distance of 0.75m from each other. The fluid is injected
into the domain through four perforations of initial length 0.25m oriented at 0°, 90°, 180°
and 270° with respect to the horizontal in a wellbore of diameter 0.5m located at the center
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Figure 4.12: Profile of the fracturing fluid pressure (colour bar in MPa) obtained for
simultaneous hydraulic fracturing in a square block at ¢ = 50 ms. Dimensions in m

of the domain. The injection pressure py,; is increased linearly from zero to 2.25MPa in
50ms.

The evolution of the discontinuities in the domain during the hydraulic fracturing pro-
cess is shown in Figure 4.18. As can be observed, hydraulic fracture propagation starts from
the bottom perforation tip earlier than from the other three perforations. This is due to the
heterogeneity induced by the pre-existing fractures, which leads to delayed attainment of
the critical stress at the right, top and left perforation tips (i.e., those oriented at 0°, 90° and
180°, respectively). In subsequent time steps, however, the hydro-fracture initiated from
the top perforation propagates at a higher speed compared to the other hydro-fractures in
the domain. This is a result of the complex interaction between pre-existing and evolving
discontinuities which cannot be predicted unless the effect of pre-existing discontinuities is
explicitly taken into account. The simulation was terminated at ¢ = 47ms, as soon as the
top hydro-fracture reached the top boundary of the domain. In addition, it is observed that
the hydro-fractures initiated from the right and left perforations deflect downward, away
from the hydro-fracture initiated from the top perforation. This is similar to the behaviour
observed in the multi-zone hydraulic fracturing example in Section 4.5.2, in which multiple
hydraulically driven fractures propagate in a diverging fashion.

Figures 4.19a and 4.19b respectively show the deformed geometry of the fractured body
and the distribution of the pressure field in I', ;, obtained at the end of the simulation. The
distribution of the fluid pressure field shows that several of the pre-existing cracks are
subjected to the fracturing fluid pressure as they become part of I', ;, upon coalescence of
propagating hydro-fractures with these pre-existing cracks. We note that the zero pressure
values obtained in the left and bottom hydro-fracture branches are not a result of fluid-lag
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Figure 4.13: Hydraulic fracturing in a naturally-fractured block. The FE mesh consists of
12983 6-noded triangular elements and 77898 nodal points

but are due to the closure of crack faces (i.e., contact condition) at points A and B (see
Figures), which occurs during the hydraulic fracturing process and blocks the flow of the
fracturing fluid beyond these points. Notably, the crack faces are in contact at points A
and B from the moment of crack initiation at these points. To model the blockage of fluid
flow due to such conditions, a zero pressure constraint was imposed on the solution of the
flow continuity equation (4.19) at those nodal points in I',;, that were disconnected from
the injection points (perforations) due to crack closure at A and B. The points A and B
remain in contact through the entire course of the hydraulic fracturing process, thus the
above constraint was kept active until the end of the simulation.

4.6 Conclusion

A computational algorithm was presented for the simulation of hydraulic fracturing in nat-
urally fractured media. The method offers desirable flexibility in handling the interaction
between multiple evolving fractures in the body. The set of coupled hydro-mechanical
equations are solved using an iterative solution strategy in which the mechanical and hy-
draulic unknowns are updated sequentially, in a decoupled manner until convergence is
achieved. The set of pressurized cracked interfaces, i.e., those connected to the injec-
tion point through a network of interconnected cracked interfaces, was determined using a
search algorithm that relies on principles of Graph theory.

It was shown through numerical simulations that the use of the time-continuous, non-
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Figure 4.14: Hydraulic fracture trajectories obtained for hydro-fracture propagation in
cemented naturally fractured block; a) a = 0.1, b) a = 0.5, where « is the ratio of the
fracture strength of the pre-existing fractures over that of the domain

differentiable energy minimization model of fracture is essential for the stability (i.e., ability
to obtain a solution) and robustness (i.e., satisfactory convergence rates with time step
refinement) of the hydraulic fracture propagation algorithm. Because time-discontinuous
models lead to nonphysical velocity fields, robustness of the solution obtained for the
fracturing pressure field is lost given that the mass balance equation defined locally along
the cracks is dependent on the crack opening velocity field. One expects that a similar
behaviour would be observed in any multi-physics problem with local interfacial fields
dependent on crack opening velocities. Further numerical results were presented to show
the capabilities of the proposed algorithm in modeling simultaneous hydro-fracture growth
as well as fracking in naturally fractured media.
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(a) (b)

Figure 4.15: Contours of the maximum principal stress (colour bar in MPa) obtained at
the end of the simulation for hydro-fracture propagation in naturally-fractured block; a)
a =0.1, b) a = 0.5. Deformation magnified 50 times in both cases

Total hydro-fracture length (m)

20 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0 55
Time (ms)

Figure 4.16: Time histories of the total hydro-fracture length obtained with o = 0.1 and

a = 0.5 for hydraulic fracturing in a cemented naturally fractured domain. The bigger

“steps” in the the evolution of hydro-fracture lengths correspond to time steps at which

the hydro-fractures merge with pre-existing weak surfaces
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Figure 4.17: Multi-zone hydraulic fracturing in a heavily fractured square domain. The

FE mesh used in the computations consists of 11468 triangular elements and 68808 nodal
points
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Figure 4.18: Evolution of discontinuities in multi-zone hydraulic fracturing of a heavily
fractured square domain
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Zero pressure
due to fluid-lag
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Figure 4.19: Multi-zone hydraulic fracturing in a heavily fractured square domain; a) final
deformed configuration (magnified 50 times) and contours of the maximum principal stress

o1, b) final distribution of the fluid pressure field in I', ;. Color bar in MPa
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Chapter 5

Conclusions and future work
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5.1 Summary

Numerical simulation of fracture is an indispensable tool, not only for predicting failure
of structures across engineering disciplines, but also for studying mechanisms involved in
the fracturing process. Despite the large body of work in discrete crack modelling, most
previous method suffer from numerical issues, several of which, as this thesis showed, due
to time-discontinuity of the extrinsic cohesive model, leading to lack of convergence of
numerical solutions and nonphysical simulations. In particular, existing methods have
been mostly limited to explicit time-stepping. Implicit schemes, suited for low-velocity
and quasi-static problems, are not well represented in the current literature.

The central idea of this research has thus been to develop robust and mathematically
sound computational models that are free from the issues mentioned above. In doing so,
several computational algorithms were proposed for the numerical implementation of the
nondifferentiable energy minimization approach to cohesive fracture. The key feature of all
algorithms proposed is the lack of a stress criterion for activation of cracks. This enables
the algorithms to overcome difficulties associated with time-discontinuity. The methods
allow for a seamless transition from the uncracked to the cracked state, making possible
the use of iterative solvers with implicit time-stepping. A critical component of this work
was a strong effort to validate the robustness of the proposed computational frameworks.
This was done through performing time step and mesh size convergence studies, qualitative
and quantitative comparison of simulations with experimental observations and theoretical
findings, and application of the methods to multi-physics problems.

In Chapter 2, a discontinuous Galerkin implementation of the nondifferentiable energy
minimization approach to cohesive fracture was introduced in which all element edges
are potential sites of cracks. The nondifferentiability was treated using a continuation
algorithm on the basis of successive smoothing of the interface potential, an idea originally
introduced in [116]. The smooth problems were solved using a trust region method capable
of handling the nonconvex objective function. The DG method improves the computational
efficiency of the algorithm by eliminating Lagrange multiplier unknowns. Implicit time-
stepping was performed using the well-known generalized Newmark scheme [104] for which
a proper dynamic potential was also introduced. The temporal convergence tests and the
smoothness of velocity contours confirmed that the nondifferentiable energy minimization
approach to cohesive fracture completely bypasses the time-discontinuity issue. In addition,
a mesh refinement study was performed to show that the method preserves consistency and
stability of the finite element formulation in both pre- and post-failure conditions. Various
examples confirmed the capabilities of the method to model quasistatic to truly dynamic
crack propagation. In addition, the numerical framework was validated by comparing
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simulations with experiments. These included load-displacement curves and crack paths
in a quasi-static three-point bending beam and the crack path and crack nucleation time
in a low-velocity impact of a compact-compression specimen.

In chapter 3, a block coordinate descent algorithm was proposed for nondifferentiable
energy minimization within the DG framework proposed in Chapter 2. In each of its
iterations, the algorithm obtains crack opening displacements by solving a small nondiffer-
entiable minimization problem at each interface Gauss point using generalized differential
calculus. These crack openings are then enforced on the deformation of the finite element
mesh when solving the global equilibrium equations. This makes the method extremely
easy to incorporate into standard finite element codes. In addition, a distinct advantage of
the method is that it allows for both explicit and implicit time integration schemes. It was
shown that even though convexity in this context is not a requirement for convergence of
the iterations, it is equivalent to a minimum CPZ resolution criterion, known empirically
in the previous literature as a requirement for capturing correctly the amount of dissipated
fracture energy. The block-CD algorithm appears to be best suited for dynamic applica-
tions as the number of iterations required for convergence can be exorbitant when time
steps are large. Several mesh convergence studies were presented to show that the method
produces convergent dissipated fracture energies. Numerical crack velocities remained well
below the Rayleigh wave speed and the crack bifurcated at approximately 0.6vg when
analyzing a dynamic crack branching instability.

In Chapter 4, a hydro-mechanical model and computational algorithm was presented
for hydraulic fracturing in impermeable media on the basis of the block-CD algorithm
proposed in Chapter 3. The hydro-mechanical model is based on nondifferentiable energy
minimization for deformation and fracture of the solid body coupled with mass balance of
the fracturing fluid within the cracks. Because the mass balance equation is dependent on
the crack opening velocity field, time-discontinuous models give rise to spurious solutions
for the coupled fluid pressure field defined locally along the crack faces. It was shown
that these spurious solutions can eventually lead to instability of the computational algo-
rithm in these models. Thus, this work exemplifies the pivotal role of time-continuity in
modelling multi-physics problems. In addition, an algorithm was proposed on the basis of
graph theory to identify the set of pressurized cracks within the domain. This extends the
applicability of the method to multiple hydraulically driven fracture networks in naturally
fractured media, a quality that is generally hard to achieve in other simulation techniques,
including XFEM.
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5.2 List of publications and presentations

5.2.1 Journal papers

Outcomes of this research were published /submitted for publication in peer-reviewed jour-
nals. These articles are listed below:

e Hirmand MR and Papoulia KD, A continuation method for rigid-cohesive frac-
ture in a discontinuous Galerkin finite element setting. International Journal for
Numerical Methods in Engineering, (2018) 115:627650

¢ Hirmand MR and Papoulia KD, Block coordinate descent energy minimization for
dynamic cohesive fracture. Computer Methods in Applied Mechanics and Engineer-
ing, in review (2019), Manuscript ID: CMAME-D-18-01800

e Hirmand MR, Vahab M, Papoulia KD, Khalili N, Robust simulation of hydrauli-
cally driven fracture networks in naturally fractured impermeable media. Computer

Methods in Applied Mechanics and Engineering, in revision (2019), Manuscript ID:
CMAME-D-19-00248

e Vavasis S, Papoulia KD, Hirmand MR, A second-order cone interior-point method
for initially rigid cohesive fracture. Computer Methods in Applied Mechanics and
Engineering, in revision (2019), Manuscript ID: CMAME-D-18-01856

5.2.2 Conference presentations

Outcomes of this research were also presented at the following conferences:

e Hirmand MR, Papoulia KD, Discontinuous Galerkin formulation with Nitsche flux
for cohesive fracture simulations. Keynote presentation in the VII European Congress
on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016),
Crete, Greece. June 5-10, 2016

e Papoulia KD, Hirmand MR, Vavasis S, nondifferentiable energy minimization for
cohesive fracture. 2/th International Congress of Theoretical and Applied Mechanics
(ICTAM 2016), Montreal, Canada. August 21-26, 2016
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e Hirmand MR, Papoulia KD, nondifferentiable energy minimization with Nitsche
flux for time-continuous cohesive fracture. 14th U.S. National Congress on Compu-
tational Mechanics (USNCCM14), Montreal, Canada. July 17-20, 2017

e Hirmand MR, Papoulia KD, Explicit nondifferentiable energy minimization for
dynamic cohesive fracture propagation, 13th World Congress on Computational Me-
chanics and 2nd Pan American Congress on Computational Mechanics (WCCM XIII
and PANACM 1), New York, USA. July 22-27, 2018

e Vavasis S, Papoulia KD, Hirmand MR, A second-order cone interior-point method
for initially rigid cohesive fracture, 13th World Congress on Computational Mechanics
and 2nd Pan American Congress on Computational Mechanics (WWCCM XIII and
PANACM 1II), New York, USA. July 22-27, 2018

5.2.3 Industry presentations

This research was funded in part by NSERC-CRD project COMP410-CRIAQ.! Methods
proposed in this research along with numerical simulations of matrix and fiber cracking
in composite components were presented to the industrial and academic partners of the
project in a number of group meetings and seminars. The presentations delivered are listed
below.

e State-of-the-art of cohesive zone modelling, University of Laval, Quebec City, Septem-
ber 2015

e Towards a robust approach to dynamic crack propagation simulation, Bombardier
Aerospace BAN3, Montreal, April 2016

e A robust approach to dynamic crack propagation with special reference to multi-scale
modelling of composites, Webex video-conference, October 2016

e nondifferentiable energy minimization for cohesive crack propagation simulations,
Bombardier Aerospace BAN3, Montreal, April 2017

e Simulation of cohesive fracture propagation in composite materials, Webex video-
conference, February 2018

Industrial partner CRIAQ, Consortium de Recherche et dInnovation en Arospatiale au Qubec
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e Modelling delamination and matrix cracking in aerospace components, Bell Heli-
copter Textron Canada, Montreal, May 2018

e Dynamic crack propagation and progressive failure analysis in woven composite air-
craft structures, Webex video-conference, December 2018

5.3 Recommendations for future work

Some of the research directions that can be pursued in future efforts are suggested below:

1) Tt is intuitive that material failure is a continuous process that involves different
forms of degradation, depending on the material, before a dominant crack forms. That is,
localization of damage leads to the formation of a dominant crack in a seamless manner.
The nondifferentiable energy minimization algorithms proposed in this research describe
cracks as discrete discontinuities. The phase field approach and other continuum damage
mechanics models, on the other hand, rely entirely on a smeared damage approach. Both of
the methods are unable to describe the transition from distributed damage to the formation
of dominant cracks. For the reasons explained in this research, however - notably lack of an
activation criterion - nondifferentiable energy minimization algorithms are well positioned
to make this type of analysis possible. This would be a major break-through in failure
analysis. An interesting topic future research would be developing a numerical frameworks
that can bring us closer to this goal.

2) In the present research, potential crack paths were a priori limited to the set of
inter-element boundaries of the finite element mesh. This is not a mandatory requirement
of the methods but a choice for convenience of the finite element implementation. The
nondifferential energy minimization approach to cohesive fracture can be generalized by
viewing the orientation of the cracks (or the finite element triangulation itself) as an
additional unknown field in the context of energy minimization. In that case, the zero
displacement jump condition prior to crack nucleation may be enforced “strongly” via
a continuous finite element approximation. Interface elements (or enrichment degrees of
freedom in an XFEM setting) can then be inserted adaptively to introduce the cracks.

3) Interface potentials used in this research were taken to be of the form proposed by
Ortiz and Pandolfi [113], in which the potential is made a function of a norm of crack
opening displacements (see Section 3.2.1, for example). This type of cohesive potential is
best suited for modelling generalized fracture in homogeneous materials. In the case of an
inhomogeneous material with different fracture responses in different directions, such as
fiber-reinforced composites, the predictive capabilities of this model may be diminished. A
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valuable contribution would thus be developing interface potentials with higher predictive
capabilities for inhomogeneous material such as composites.

4) Extending the current two-dimensional computer code to three-dimensional would
be a valuable contribution that makes the analysis of real-world applications possible.
Implementing parallelized computer program that can handle the increasing computational
costs of such simulations can significantly facilities this task.
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Appendix A

Matrix equations of the continuation
algorithm

The finite element approximation u,(x,t) is expressed in compact form as

wy(x,t) = N“(x)U(t), xe€Q, (A.1)

where U(t) is the vector of all displacement nodal degrees of freedom and N*(x) is the
matrix of finite element shape functions. The traces of the shape functions on FZiL, ny and I'yy
are denoted by N“* and N“~, respectively, and are used to approximate the displacement
jump [u] as

[un(x,t)] = NM(x)U®#)  with NM=[N"* —N*7|, x¢&Tly. (A.2)
Similarly, the finite element approximation d;(x,t) is written as
on(x,t) = N°(x)d(t), x&Tgy, (A.3)

where d(t) is the vector of all discontinuity opening nodal degrees of freedom and N°(x)
is the matrix containing the finite element shape functions.

The gradient vector of the finite-dimensional potential in (2.9) is given by

gz{ 5 } (A4
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with

gu = / BTa'h dV + / (NU)TU_}L dVv
Qh\Fd,h Qh\Fd,h

- / (Nt dV — / (N b dV (A.5)
8tQh Qh\r‘d,h

+ / (NEDTAPS 43 + / (B“)"Dnlg, dS,
Can

Lan

and

gs = / (Na)T(tcohs + teont — S\SG> dS, (AG)
Lan

where X],?G = (on)ng + ng,. In the above, B is the usual strain-displacement matrix
containing spatial derivatives of the displacement shape functions, o (by a slight abuse
of notation) denotes the Cauchy stress in vector form, and B{") = %[BJr B~] serves to
approximate (o) using the strain-displacement matrices BT and B~ computed on the
two sides of the discontinuity. Ty contains the components of the normal vector ng and is
defined for the transformation from tensorial to matrix formulation as

0 ny, ng
ng, 0 0 n, 0 n, (A7)
ng=1(0 n, 0 n, n, 0 in 3D.

0 0 n, 0 ny ng

The Hessian matrix is given by

H,, H,
H=— o w 7 A8
|:H6u H&J (A.8)
with
2
H,, = / B'DBdV + > / (NY)TpNdV + / n(NFHTNI g5
Qp\la,n as At Qu\T'q.n Tan
+ / (NFYTR,DB dS + / (B TDa;NM gg,
Lan La,n (AQ)
H,=H! = - / n(NIEHTN® 485 — (B)TDayN° ds,
Tan Can

Hy; = / n(N°)TN’ dS + / (N))TD,;N? dS,
La,n La,n
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in which Dy = Vs(teons + teont) and D (by a slight abuse of notation) is the elasticity
matrix. In the above, ay is the Newmark scheme parameter, n is the penalty parameter
as defined in Equation (2.8), and p is the material density, as mentioned previously in the
text.
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Appendix B

Generalized differential calculus

Let f : R™im — R be a real valued function (not necessarily differentiable or convex)
and suppose that f is Lipschitz continuous near x € R™im. The generalized directional
derivative of f evaluated at x in the direction v is a well-defined finite quantity given by

.60 = 1 sup TV 6V§> — 1)

y—X

(B.1)

The generalized gradient of f at x, denoted Jf(x), is a non-empty sub-set of R"i= and is
defined as [32, 33|

If(x) ={s e R"~ |s.v < fl(x) forall veR"m}. (B.2)

The above definition of generalized gradient reduces to the singleton set {V f(x)} when f
is differentiable (smooth) at x. At a non-differentiable point, the slope corresponding to
each member of Jf(x) is less steep than the slope of any directional derivative of f at x
considering all admissible directions v. In the context of convex analysis, Jf(x) is usually
referred to as the sub-differential of f. In that case, each member of 0f(x) is called a sub-
gradient of f at x. Just as in differential calculus, where derivatives are rarely computed
from the definition, one appeals to a body of theory and to certain rules that characterize
generalized gradients, see [32, 33].

Suppose now that f is a convex function of x so that it attains a minimum (and not a
maximum) in its domain of definition. The definition of the generalized gradient equation
(B.2) allows for generalization of the minimality condition of f. It follows that a point x*
is a global minimizer of f if and only if [32, 33]

153



0 € 0f(x¥), (B.3)
that is, 0 is a sub-gradient of f at x*. The above condition reduces to the well-known
condition V f(x*) = 0 when f is differentiable at x*. A useful property of the generalized

gradient is that O(f; + f2)(x) = df1(x) + 0 f2(x), in which the RHS stands for addition in
a Minkowski sense, i.e., adding each member in 9 f;(x) to each member of 9 fy(x).!

! Actually, one generally has O(f1+ f2)(x) C 9f1(x)+09f2(x). The inclusion turns to equality only under
certain conditions as explained in [32, 33]. It is possible to show that an equality holds in our subsequent
analysis of 7.
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