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Abstract 

Recently, the Battery Electric Vehicle (BEV) has been considered to be a proper candidate 

to terminate the problems associated with fuel-based vehicles. Therefore, the development 

and enhancement of the BEVs have lately formed an attractive field of study. One of the 

significant challenges to commercialize BEVs is to overcome the battery drawbacks that 

limit the BEV’s performance. 

One promising solution is to hybridize the BEV with a supercapacitor (SC) so that the 

battery is the primary source of energy meanwhile the SC handles sudden fluctuations in 

power demand. Obviously, to exploit the most benefits from this hybrid system, an intelligent 

Energy Management System (EMS) is required. 

In this thesis, different EMSs are developed: first, the Nonlinear Model Predictive 

Controller (NMPC) based on Newton Generalized Minimum Residual (Newton/GMRES) 

method. The NMPC effectively optimizes the power distribution between the battery and 

supercapacitor as a result of NMPC ability to handle multi-input, multi-output problems and 

utilize past information to predict future power demand. However, real-time application of 

the NMPC is challenging due to its huge computational cost. Therefore, Newton/GMRES, 

which is a fast real-time optimizer, is implemented in the heart of the NMPC. Simulation 

results demonstrate that the Newton/GMRES NMPC successfully protects the battery during 

high power peaks and nadirs.  

On the other hand, future power demand is inherently probabilistic. Consequently, 

Stochastic Dynamic Programming (SDP) is employed to maximize the battery lifespan while 

considering the uncertain nature of power demand. The next power demand is predicted by a 

Markov chain. The SDP approach determines the optimal policy using the policy iteration 

algorithm. Implementation of the SDP is quite free-to-launch since it does not require any 

additional equipment. Furthermore, the SDP is an offline approach, thus, computational cost 

is not an issue. Simulation results are considerable compared to those of other rival 

approaches. 
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Recent success stories of applying bio-inspired techniques such as Particle Swarm 

Optimization (PSO) to control area have motivated the author to investigate the potential of 

this algorithm to solve the problem at hand. The PSO is a population-based method that 

effectively seeks the best answer in the solution space with no need to solve complex 

equations. Simulation results indicate that PSO is successful in terms of optimality, but it 

shows some difficulties for real-time application. 
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Introduction 

Governmental and state agencies aim to reduce vehicles fuel consumption due to its 

negative outcomes such as pollution and global warming [1]. Global interest in decreasing 

fuel consumption has led to emergence different kinds of Electric Vehicles (EVs). In one 

type, Battery Electric Vehicles (BEVs), the battery plays a major role in providing the power 

demanded by the driver. 

 Developing more environmentally friendly and fuel-efficient vehicles can be achieved by 

two different approaches: developing more-advanced automotive hardware, and better 

control policies [2]. Since the latter is much more cost-effective, more researchers focus on it 

[3]. Developing more-intelligent controllers that reduce the range anxiety promote EVs 

commercialization [4]. In particular, Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid 

Electric Vehicles (HEVs) in which there are more than one energy source, require an 

advanced, real-time implementable controller. 

1.1 Motivations and Challenges 

As mentioned, one of the highly promising solutions to reduce vehicles fuel consumption 

is Battery Electric Vehicles (BEVs). Unfortunately, there are some major practical problems 

for BEVs’ widespread applications, such as limited battery life, high cost, and also a short 

Time
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Fig. 1.1. Discharge and charge rate of the battery and supercapacitor [6]  
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driving range [5]. Automotive researchers have investigated many different strategies to 

extend the lifespan of the battery [5]. Some of them have suggested combining the battery 

with a Supercapacitor (SC) to compensate for BEVs drawbacks [7], [8]. 

With the current technology, there are various limitations in battery performance. First, the 

battery internal resistance converts a portion of energy to heat during charging or discharging 

cycles. Second, the battery capacity depends on the charge/discharge rate. Third, as shown in 

Fig. 1.1, the charge/discharge process of the battery is quite slow. Fourth, the battery cannot 

handle a large number of charging/discharging cycles. 

In contrast, SCs do not have these deficiencies. Most importantly, they have much lower 

internal resistances, in other words, Peukert’s Law does not affect SCs [5]. Furthermore, they 

can handle a great number of charging or discharging cycles efficiently. Also, as Fig. 1.1 

shows, the supercapacitor can be charged/discharged much more quickly than a battery. 

Also, the implementation of a combined SC-battery system decreases the current required 

from the battery; therefore, the total heat loss will be reduced, which in turn increases the 

lifespan of the battery. 

  In current BEVs, the battery is the only source for providing the demanded power by the 

driver. BEVs require the high density levels of both energy and power for 

deceleration/accelerations to satisfy the expected operation rate, so, meeting these conditions 

by only using a battery leads to producing a costlier battery. Table 1 shows higher power 

density for SCs than for batteries. SCs have a longer life than batteries as well [9]. Also, SCs 

Table 1-1 Comparing battery characteristics with SCs [5] 

 Energy 

Density 

(kWh) 

Power 

Density 

(kW) 

Number of 

Cycles at 

80% DOD 

Li-Ion 50-80 1000-

4000 

3000 

Supercapacitor 1-5 1000-

30000 

>1,000,000 
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have a great energy density and can hold a charge for long periods [5]. Thus, in BEVs 

hybridized with SC, the required high power density and energy density can be provided by 

the SCs and batteries, respectively. 

The potential advantage of using SCs in BEVs has been investigated previously. For 

example, as Fig. 1.2 shows, Golchoubian et al. [5] have addressed the maximum benefit of 

SC-battery hybrid storage system for a certain drive cycle. Styler et al. [7] have studied the 

impact of the SC-battery storage system on vehicle driving performance. Moreover, some 

researchers at Carnegie Mellon University have created the Charge-Car project [10], which 

intends to make BEVs less expensive by applying the SC-battery storage system as a 

practical solution. Carter et al. proposed a rule-based control (RBC) method [11], which is 

efficient in terms of computational time, but does not guarantee the optimality. Choi et al. 

 

 

Fig. 1.2 Maximum potential benefits of a battery-SC hybrid storage system [5] 

 

 

 

Fig. 1.3 Maximum potential benefits of a battery-SC hybrid storage system [5] 



 

 4 

have suggested an optimization-based approach [12]. L. Cheng et al. proposed the hybrid 

battery/SC system for light rail vehicles, and solved the Energy Management 

System (EMS) optimization problem by a simplified optimization method to reduce the 

computational cost [13].   

These promising reports have motivated the author to exploit the potential benefits of 

combining SCs with batteries by designing an optimal EMS [5]. As shown in Fig. 1.3, the 

EMS determines the power distribution between the battery and the supercapacitor at each 

moment. However, in designing an efficient EMS, there are some big challenges: next power 

demand prediction, solution optimality, computational cost and so on.  

In this thesis, four EMSs for the Toyota Rav4EV based on fundamentally different 

approaches are proposed: Model Predictive Control (MPC), Dynamic programming, 

Stochastic Dynamic Programming (SDP), and Particle Swarm Optimization (PSO). 

1.1.1 Model Predictive Control (MPC) 

Among various approaches proposed in the literature, the MPC algorithm seems to be a 

promising one for online optimization. It has demonstrated superior capability to deal with 

several inputs and outputs, satisfying constraints on states, updating the solution using 

current observations at each moment, and real-time optimization makes this controller a 

superior [14]. In the literature, numerous publications have shown the effectiveness of the 

MPC for different control applications, for instance, Ecological Adaptive Cruise Controller 

[15], traffic-information integration with the MPC [16], and improvements of fuel economy, 

safety, and comfort [17].  

Fig. 1.3 Design of a combined SC-battery system [5] 
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The author has applied the Nonlinear Model Predictive Control (NMPC) to the problem in 

hand since the NMPC does not include the linearization errors of the Linear Model Predictive 

Control (LMPC) and yields a more accurate solution [18]. Although the NMPC imposes 

much more computational cost, recent advances in the computational hardware make it more 

implementable [14]. However, the NMPC remains a challenging method in terms of 

computational burden. 

1.1.2 Dynamic Programming (DP) 

In 1957, Bellman introduced the DP approach [19]. This method solves complex problems 

by breaking them down into smaller, simpler sub-problems and solves these sub-problems 

recursively. The DP methodology is widely used in different areas, from control problems to 

economics [5], [20]. The DP tries all the possible solutions and returns the best one as the 

final answer. So, if the discretization number is chosen properly, it returns the global 

optimum. DP is a very effective method for optimization. However, since it calculates the 

cost of all of the possible routes, it entails a huge computational expense. In fact, it is an 

offline method. In this thesis, the maximum potential of the proposed EMS is investigated by 

DP. The DP solution provides an effective basis for evaluating the performance of the other 

proposed methods. 

1.1.3 Stochastic Dynamic Programming (SDP) 

Obviously, real-world driving involves a lot of uncertainties such as behavior of nearby 

cars, slip ratio of streets, and so on. As a result, the power demanded by a driver is highly 

nondeterministic. Consequently, an EMS should be able to handle the probabilistic nature of 

the power demand. Many researchers have proposed stochastic strategies for BEVs. 

So, the author has been motivated to solve this EMS design problem by SDP. In fact, the 

main advantage of the SDP method is that unlike many other techniques that consider the 

demanded power pre-defined values, the power demand is assumed to be unknown and 

stochastically changing [21]. In the SDP chapter, the control problem in hand is converted 

into SDP form, also, the power demand has been predicted based on a Markov chain 

assumption using some real drive cycles data points. The used drive cycles are categorized in 



 

 6 

two groups, which are training drive cycles and test ones. The Transition Probability Matrix 

(TPM) is built by the training cycles; meanwhile simulation results are based on the test drive 

cycles. 

1.1.4 Particle Swarm Optimization (PSO) 

In 1995, Dr. Eberhart and Dr. Kennedy introduced the PSO algorithm. This algorithm is 

inspired by the behavior of flock of birds or school of fish. This bio-inspired algorithm tries 

to optimize the objective function with no need to solve mathematical equations. It is 

initialed with a population of random particles. In the next iterations, each particle moves 

according to its velocity. The velocity of each particle is calculated based on both its own 

personal best position and the best value the population has obtained so far [22].  

PSO does not have many complicated calculations, only a few simple updating formulas. 

As a result, it can search the solution area quite quickly. This characteristic makes the PSO a 

suitable candidate for online control optimization problems.   

In this thesis, the PSO is applied for designing a novel EMS. PSO parameters are tuned 

accordingly to improve the accuracy and convergence speed. The performance of the PSO-

based EMS is evaluated in the simulation section using a control-oriented model.   

1.2 Problem Statement and Proposed Approach 

The purpose of this study is to propose an efficient EMS for a BEV hybridized with SC, in 

order to maximize the battery lifespan. This controller should perform more efficiently than 

other EMSs in the literature. Designing an EMS includes the following steps:  

Developing a control-oriented model, predicting the next power demand by the driver, 

designing a controller that maximizes the battery lifespan, implementing a nonlinear 

programming optimizer in the heart of the controller, and evaluating a proposed EMS.  

1.3 Thesis Layout 

The rest of the thesis is organized as follows. Chapter 2 reviews the relevant literature and 

introduces fundamental concepts applied through the thesis. In Chapter 3, a control-oriented 
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model for the vehicle system is developed. Chapter 4 applies the Newton/GMRES-based 

NMPC to the problem, followed by Chapter 5 in which the problem is solved by the DP 

method. Chapter 6 depicts the problem at hand in the framework of SDP and compares the 

results to those for rival approaches. Chapter 7 presents the PSO algorithm, describes the 

control problem in the PSO form, and provides the simulation results. Finally, Chapter 8 

concludes and suggests future work.  
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Literature Review and Background 

This chapter reviews the literature on various EMS control strategies, and also, briefly 

describes some basic concepts used in this investigation. Some commonly used architectures 

for a BEV hybridized with SC are addressed and the selected one is validated. Plus, the bases 

of the model predictive control and the stochastic dynamic programming are explained.  

2.1 BEV Hybridized with Supercapacitor (BEV-HSC) Topology 

In this publication, topology means a pattern by which the battery, supercapacitor, 

converter and other devices of the engine are connected. Many researchers have proposed 

topologies for a BEV Hybridized with Supercapacitor (BEV-HSC). From these available 

topologies, the author has chosen the one with sufficient degrees of freedom to allow various 

designs to be implemented. The selected topology also effectively balances circuit 

complications, accuracy and computational cost. A review of most popular architectures are 

described in the following [23].  

Fig. 2.1 shows the most basic hybridizing architecture in which there is no converter or 

inverter to connect the battery and SC. In this architecture, the supercapacitor plays a low-

pass filter (LPF) role. The DC, the battery, and the SC are parallel, and consequently, all 

have the same voltage. This strategy is quite cost-effective, but it is unable to effectively 

utilize the supercapacitor as shown in [23] .  

Fig. 2.2 illustrates a Supercapacitor/Battery architecture, in which a bidirectional DC/DC 

converter is placed between the battery/DC bus and the SC, so, the SC’s voltage can vary 
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Fig. 2.1. Basic Supercapacitor/Battery 

architecture 
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within a large range. In this topology, the converter should be bigger to handle a 

supercapacitor’s voltage. Since the battery is directly linked to the DC/bus, the DC/bus 

voltage cannot change. This strategy is the one most applied in hybrid energy storage 

systems [23], [24]. In addition, it provides enough degree of freedom to implement different 

control policies. Moreover, since there is only a single converter, the circuit complexity and 

cost are quite low. 

Placing the second bidirectional DC/DC converter between the supercapacitor and the DC 

bus results in a new architecture, shown in Fig. 2.3. This topology, the so-called cascaded 

configuration, extends the supercapacitor’s working range, but implementing the second 

converter imposes additional costs.  

In another design, known as the multiple converter configuration, one converter is 

paralleled with the battery, the other one with the SC, as in Fig. 2.4. Meanwhile both 

converters are paralleled with each other. This architecture allows the voltage of both the 

supercapacitor and battery to change more freely. In addition, the charge saved with the 
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Fig. 2.2 Supercapcitor/Battery architecture 
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Fig. 2.3 Cascaded architecture 
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supercapacitor can be completely utilized. However, the implementation of this topology is 

quite costly since it requires two complete converters [23].  

In order to decrease the expense of two full-sized converters in the multiple converter 

design, Napoli et al. suggested a multiple input converter configuration, as shown in Fig. 2.5 

[25]. 

2.2 Energy Management System (EMS) 

Although hybridizing BEVs with supercapcitors is considered to be an effective approach, 

exploiting the maximum potential of this hybrid system requires an efficient EMS. The EMS 
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Fig. 2.4 Multiple converter architecture 
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Fig. 2.5 Multiple input converter architecture 

 



 

 11 

determines the optimal power distribution between the battery and the SC at each moment in 

order to promote battery health and lifespan. 

Many researchers have proposed different EMSs for BEVs hybridized with SC, such as 

rule-based and optimization-based control. Several rule-based control (RBC) approaches 

have been addressed in[23],[11]. RBC strategies are quick enough for real-time applications, 

but they have shown some difficulties in finding the optimum input. Trovao et al. designed a 

rule-based controller in which the battery minimum and charging power are changeable [26]. 

In [27], offline control methods based on dynamic programming (DP) are presented. DP 

finds the global optimum, but since it assumes perfect knowledge of the future and requires 

huge computational time and memory, it is only an off-line optimization method and cannot 

be used for real-time applications. Song et al. have utilized a DP method to promote RBC 

optimality [28]. In [5], the maximum benefit of hybridizing BEVs with SC is investigated 

using DP for the Toyota Rav4EV. 

In [29], a novel optimization-oriented approach is presented and proved to be quick enough 

for online applications. In dealing with unknown situations, this approach shows similar 

performance to that of RBC. Ortuzar et al. have designed an EMS by developing a neural 

network for a battery/SC hybrid system and trained the network using several databases [24].  

Many researchers have applied the MPC method for energy management of the BEV-HSC. 

The MPC has efficiently solved different types of control problems [1], [30] . Hrezack et al. 

have developed a linear MPC (LMPC) approach and validated this approach experimentally 

[31]. The LMPC predicts the next demanded power using an estimator; and linearizes the 

control problem to reduce computational cost. Song et al. have compared two RBC methods, 

a fuzzy-based controller and the LMPC, assuming there is no information about the next 

demanded power [28]. Their simulation results show that the performance of the RBC is 

superior to that of the LMPC; the performances of the fuzzy-based controller and RBC do 

not noticeably differ. 

Recently, stochastic controllers have been used to predict the next power demand [32]. In 

[33], the authors have converted the energy management problem to a stochastic planning 
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one and solved it using reinforcement learning, computational sustainability, regression and 

so on. Laldin et al. have predicted future load demands using a Markov chain [34]. They 

have defined a limited number of states by defining ratio of velocity over acceleration based 

on a few drive cycles and applied Markov chain concept to find a solution.  

Not long ago, bio-inspired methods were found that can efficiently solved MPC problems 

and satisfyingly meet the constraints of control problems [35]. Zou et al. have designed an 

MPC using Particle Swarm Optimization (PSO) for a greenhouse climate control problem 

[36]. In [35], Susuki et al. used PSO for automatic tuning of MPC parameters.  

2.2.1 Model Predictive Control (MPC) 

MPC is an efficient approach that exploits the potentials of cutting-edge optimization 

concepts and satisfies automotive necessities, due to its capability of solving optimal control 

problems with multiple inputs and outputs [38].  Many researchers have addressed 

application of this controller for EMS of HEVs. For instance, Wang has designed an online 

controller for several hybrid architectures based on the MPC [39]. In [40], Nonlinear MPC 

(NMPC) has been applied to optimizes fuel economy while considering constraints on 

battery, vehicle, and location. Other researchers have utilized an MPC to compute hybrid EV 

power-split ratio. They have applied NMPC, LMPC, and RBC methods using the PSAT 

software. Simulation results have shown superiority of the NMPC [41],[42].  
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Fig. 2.6: MPC Block Diagram 
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MPC is a repetitive optimization process of a constrained control problem as it is shown in 

Fig. 2.6. Usually, an MPC-based controller is designed on a simplified yet accurate enough 

model of a plant, so-called control-oriented model. It utilizes information of the previous 

states and control actions to optimize a performance index of the limited prediction horizon 

[43]. 

The NMPC is a nonlinear version of the MPC, in which a nonlinear control-oriented model 

is utilized to predict future variables [44]. The NMPC technique is an effective approach, 

especially if the power demand is predicted accurately. However, this method has shown 

some difficulties for online applications due to its high computational cost. Recent 

developments in advanced computational equipment have encouraged many researchers to 

implement the NMPC method as the heart of computationally-efficient controllers [45],[46], 

[47]. Several fast nonlinear controllers have been developed, such as Generalized Minimum 

Residual (GMRES) [48], Shooting-based Newton [49], and so on. This thesis proposes the 

NMPC using a Newton/GMRES approach.  

2.2.2 Dynamic Programming (DP) 

DP is an effective optimization methodology that finds the global optimum solution. Since 

it comes at a huge computational cost, it is usually not practical for real-time applications. 

However, it is widely utilized for control problems by some researchers. In [50], [51] the 

authors improved the fuel efficiency by extracting near-optimal rules for the EMS of parallel 

HEVs using a DP global optimum. Based on this strategy, Lin et al. found an optimal power 

split between the engine and electric motor. In the other investigation, Gong et al. [52] 

enhanced fuel economy by applying DP to reinforce the charge-depletion policy to manage 

SOC drops in a PHEV using trip information. O’Keefe et al. [53] derived a near-optimal 

control strategy using DP and implemented the DP results as a basis of assessment for other 

approaches. They demonstrated that in optimum battery charge split policies, the state of 

charge reaches the lower limit at the last moment of the trip. In [54], a DP-oriented method is 

implemented to compute the optimum control in the framework of MPC while GPS and ITS 

provide incomplete information of the next power demands. 
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2.2.3 Stochastic Dynamic Programming (SDP) 

In EMS control problems, predicting the next power demand is a challenge since 

uncertainties are inevitable parts of driving. Therefore, stochastic decision making schemes 

have successfully been used for solving automotive EMS problems where their effectiveness 

are shown for dealing with future power demand uncertainties [32]. For instance, 

Golchoubian et al. have designed a Stochastic Nonlinear Model Predictive Controller (S-

NMPC) for SC-battery storage systems through applying a two-stage version of stochastic 

programming and demonstrated significant performance improvements [18]. Although this 

approach sounds promising due to its near-optimum solution, there are some difficulties in its 

real-time implementation because of high computational costs. Ermon et al. have formulated 

a hybrid capacitor/battery EMS logic as a stochastic problem that considers the probabilistic 

nature of power demand. Their newly proposed approach is based on a combination of 

optimization, data-mining, and machine learning which optimizes battery usage [33]. Zhang 

et al. have optimized an EMS logic for PHEVs, considering probabilistic drive-cycles, and 

proposed a stochastic drive cycle scheme by applying SDP to promote vehicle performance 

[55]. Opila et al. have investigated EMS control designs based on shortest path SDP (SP-

SDP). The controllers have been tested on a Ford automobile using many real driving cycles. 

Simulation results have indicated that the SP-SDP controllers increase performance by 2-3% 

compared to the performance of a Ford controller for a prototype automobile [56].  

Evaluating stochastic approaches requires generating probabilistic drive cycles. 

Schewarzer et al. have designed a method to create driving cycles from stochastic driving 

profiles. This methodology has been proposed to stochastically optimize EMS controllers in 

EVs [57]. 

In this thesis, the author has solved the problem in hand by the SDP approach and 

demonstrated successful simulation results. In this investigation, the power demand has been 

predicted based on a Markov chain assumption using some real drive-cycle data points. The 

used drive cycles are categorized in two groups, training drive cycles and test ones. The 

Transition Probability Matrix (TPM) is built by the training cycles; meanwhile simulation 

results are based on the test drive cycles. In comparison to the results of other methods, the 
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SDP results show more improvements. In addition, in terms of computational costs, it has a 

significant advantage over the rival approaches. 

2.2.4 Particle Swarm Optimization 

The other method applied in this thesis is the Particle Swarm Optimization (PSO) 

approach. PSO is a bio-inspired and population-based algorithm that seeks the best answer in 

the solution area. It begins with a number of particles that randomly are located in the 

solution area and tries to converge to an optimum point through a number of iterations. This 

approach is inspired by the way flocks of birds or schools of fish search for food. This 

method has a number of advantages as follows: 

First, PSO can be used in either engineering applications or scientific investigations since it 

is based on learning (intelligence). Second, this algorithm has a simple structure. Unlike 

many other evolutionary computation algorithms (such as ant colony), there is no need to 

adjust many parameters at the beginning. In other words, this algorithm does not involve 

mutation or overlapping parameters. In the process of developing several generations, only 

the best particle spreads information to other particles. Third, it has no complicated 

calculations, but only a few simple updating formulas; as a result, it searches the solution 

area very quickly. Fourth, for a unimodal function, it converges quickly to the optimum point 

if the parameters are tuned correctly. Next, there is no need for the function to be 

differentiable; only fitness values are required. This characteristic makes the algorithm 

applicable to a large range of objective functions. Finally, PSO is less dependent on the 

initial points compared to other heuristic methods. Consequently, convergence of the method 

is quite robust [58], [59]. 

PSO has been successfully applied to many different control problems. For instance, 

Coelho et al. proposed a model-free learning adaptive control approach that applied PSO for 

optimization [60]. In [61], the authors have designed a new version of PSO that utilizes 

Gaussian and Cauchy distributions to generate random values. Applying Cauchy random 

numbers helps PSO to escape from local optimums, and applying Gaussian ones speeds up 

the convergence process.  This modified PSO has satisfyingly optimized generalized 
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predictive controllers parameters. In [62], PSO has been applied for optimization procedure 

of MPC for nonlinear processes. Simulation results have shown PSO-based MPC to be very 

robust. Han et al. implemented a feedforward neural network at the heart of the MPC and 

tuned the parameters of the neural network by using PSO [63].   

In this investigation, PSO is implemented to optimize the power distribution between the 

battery and the supercapacitor at each moment.  
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 System Modeling 

This chapter presents the control-oriented model of the Toyota Rav4EV. First,  

longitudinal dynamics of Rav4 EV is investigated,  The next section depicts the problem in 

hand from the mathematical point of view. It presents and explains the objective function, 

constraints of the problem, and other related formulas. Moreover, it shows how the state of 

charge of the battery (𝑆𝑂𝐶𝑏𝑎𝑡𝑡) and the supercapacitor (𝑆𝑂𝐶𝑆𝐶) are updated at each moment; 

and how we can optimize this system by playing with our control input (𝑟). 

3.1 Longitudinal Dynamics of Toyota Rav4 EV 

In order to evaluate different proposed EMSs in this thesis, they should be tested for 

standard drive cycles such as Federal Test Procedure (FTP75), Urban Dynamometer Driving 

Schedule (UDDS) and so on. These drive cycles show the velocity over time. Since the input 

of EMS is the power demand (𝑃𝑑𝑒𝑚), the velocity should be converted to 𝑃𝑑𝑒𝑚. Converting 

the speed to the corresponding 𝑃𝑑𝑒𝑚 depends on the characteristics of each EV. 

The parameters of this vehicle are presented in Table 3.1 Barta et al. [64] derived these 

parameters by vehicle road tests and created a front-drive chassis model that was used as the 

powertrain model in the Maplesim simulation environment. The motor torque and power 

were calculated based on the longitudinal dynamics of the Rav4EV. Then, the model was 

Table 3-1 Longitudinal dynamics of the Rav4EV 

Parameter Value 

Vehicle mas (𝑀) 1970 kg 

Frontal area (𝐴) 2.464 m2 

Wheel radius (𝑟) 0.355 m 

Air density (𝜌) 1.29 kg/m3 

Drag coefficient (𝐷𝑐) 0.3 

Rolling resistance coefficient (𝑅𝑐) 0.015 

Gear ratio (𝐺) 0.973 
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transferred to the Simulink environment. More information about this model can be found in 

[64]. According to Table 3.1, for a Rav4EV moving at speed 𝑣(𝑡) and slope 𝛼(𝑡), the 

resistance force (𝐹𝑅) is calculated as follows: 

𝐹𝑅(𝑡) =
1

2
𝜌𝐷𝑐𝐴𝑣(𝑡)2 + 𝑅𝑐𝑀𝑔 + 𝑀𝑔𝑠𝑖𝑛(𝛼(𝑡)), (3.1) 

The motor generates the force and transfers it to wheels through the gearbox.  The 

demanded torque at each moment, 𝜏(𝑡), is calculated as follows: 

𝜏(𝑡) = (𝐹𝑅(𝑡) + 𝑀𝑣′(𝑡)) (
𝑟

𝐺
), (3.2) 

All of the variables are defined in Table 3.1. Consequently, the demanded power is 

computed as:  

𝐼𝑓 𝜏(𝑡) ≥ 0, 𝑃𝑑𝑒𝑚(𝑡) =
𝜏(𝑡)𝜔(𝑡)

𝐸𝑎
,  

𝐼𝑓 𝜏(𝑡) < 0, 𝑃𝑑𝑒𝑚(𝑡) =  𝜏(𝑡)𝜔(𝑡)𝐸𝑑, 

𝜔(𝑡) =
𝑣(𝑡)𝐺

𝑟
. 

(3.3) 

𝜔(𝑡), 𝐸𝑎, 𝑎𝑛𝑑 𝐸𝑑  refer to rotational velocity, efficiency while acceleration, and efficiency 

while deceleration, respectively. According to [65], 𝐸𝑎 = 0.85 and 𝐸𝑑 = 0.35. 
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3.2 The Topology of BEV Hybridized with the SC 

Fig. 3.1 depicts the used technology in this investigation. The supercapacitor is connected 

by a DC converter/bidirectional DC with the battery/DC bus, so, the supercapacitor voltage 

can change within a large range. The battery is directly linked to the DC bus, as a result, the 

DC bus voltage does not change noticeably. This topology provides large enough freedom 

degrees so that different EMSs can be applied. Since there is only one converter in the 

system, it fairly balances the circuit complexity, efficiency, and expense. This topology is 

widely used in BEVs hybridized with SC [65]. 

As mentioned before, the demanded power by the driver is provided by both the battery 

and the SC, i.e. 

𝑃𝑑𝑒𝑚 = 𝑃𝑏𝑎𝑡𝑡 + 𝐸𝑐𝑃𝑆𝐶 . (3.4) 

𝑃𝑑𝑒𝑚, 𝑃𝑏𝑎𝑡𝑡, 𝑃𝑆𝐶 , and 𝐸𝑐 refer to Power demand, power of the battery, power of the 

supercapacitor and efficiency of the converte,r respectively. 

Power loss of the DC bus is usually negligible, in other words, 𝐸𝑐 is assumed to equal one 

in this model. Since the converter structure does not have a noticeable effect on the EMS 

[66], it is not addressed in detail in this study. Since the motor and its inverter effect on 𝑃𝑑𝑒𝑚 

[65], do not influence the proposed control-based model, their structures are not described in 

detail in this study.  
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Fig 3.1. The EMS topology 

 

 



 

 20 

3.3 Control-oriented model 

The considered problem seeks an optimal energy management strategy for the combined 

supercapacitor-battery storage system of a given BEV. In this investigation, the vehicle’s 

motor can receive energy from the both supercapacitor and battery. Because of the 

aforementioned technical reasons, the battery should be used less whenever possible. As a 

result, the objective function is defined as follows: 

𝑍 =  ∑  𝐼𝑏𝑎𝑡𝑡
2 . (3.5) 

Where 𝐼𝑏𝑎𝑡𝑡 is the current from the battery. 

There are some constraints, which should be taken into account.  

When the supercapacitor’s voltage is low, the SC should supply higher current to produce 

the same power. The higher the supplied current, the greater the conduction loss, 

necessitating a larger and more costly converter.  

As a result, the state of charge of the supercapacitor (𝑆𝑂𝐶𝑆𝐶) is limited to greater than 0.5. 

This limitation leads to implementing a less expensive and smaller converter since it prevents 

high current and huge conduction loss. The state of charge of the battery (𝑆𝑂𝐶𝑏𝑎𝑡𝑡) should 

change between the lower band and the upper band to hinder battery over-charges when a 

fully charged battery is exposed to downhills.  Also, the battery and the supercapacitor 

provide the demanded power (𝑃𝑑𝑒𝑚) for the motor. So, the constraints will be as follows: 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶𝑏𝑎𝑡𝑡  ≤ 𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑎𝑥, 

𝑆𝑂𝐶𝑆𝐶_𝑚𝑖𝑛 ≤  𝑆𝑂𝐶𝑆𝐶  ≤ 𝑆𝑂𝐶𝑆𝐶_𝑚𝑎𝑥, 

𝑃𝑑𝑒𝑚 = 𝑃𝑏𝑎𝑡𝑡 + 𝑃𝑆𝐶 . 

(3.6) 

The following values for the upper and lower limits are considered [5]: 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 =  0.2, 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑎𝑥 =  0.9, 

𝑆𝑂𝐶𝑆𝐶_𝑚𝑖𝑛 =  0.6, 

𝑆𝑂𝐶𝑆𝐶_𝑚𝑎𝑥 =  0.8. 

(3.7) 
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Moreover, the optimization variable "𝑟" is defined as given below: 

𝑃𝑏𝑎𝑡𝑡 = 𝑟𝑃𝑑𝑒𝑚, 

𝑃𝑆𝐶 = (1 − 𝑟)𝑃𝑑𝑒𝑚, 
(3.8) 

While accelerating, the battery and the supercapacitor provide the demanded power by the 

motor. In this case, the power demand is positive. On the contrary, while braking, the battery 

and/or the supercapacitor receive electrical energy from the motor. Hence, the power demand 

is negative.  

−1 ≤ 𝑟 ≤ +1. (3.9) 

To sum up, the optimization problem is to minimize the squared current from the battery 

over the entire vehicle trip (where tf is the length of the trip) considering the previously 

defined constraints. 

𝑍 = 𝑚𝑖𝑛 ∑ 𝐼𝑏𝑎𝑡𝑡
2

𝑡𝑓

𝑡=𝑡0

(𝑡). 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏𝑎𝑡𝑡(𝑡) ≤ 𝑆𝑂𝐶𝑏𝑎𝑡𝑡_𝑚𝑎𝑥, 

𝑆𝑂𝐶𝑆𝐶_𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑆𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑆𝐶_𝑚𝑎𝑥, 

−1 ≤ 𝑟(𝑡) ≤ +1. 

(3.10) 

In order to solve this decision making problem, the relationship between the state variables 

should be investigated. The electrical circuit models of the battery and the supercapacitor are 

shown in Fig. 3.1. 

Using the considered model for the supercapacitor, the following equations are written [5]:  
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𝑃𝑆𝐶 = 𝐼𝑆𝐶𝑉𝑆𝐶 − 𝑅𝑆𝐶𝐼𝑆𝐶
2 , 

𝑉′ = −
𝐼𝑆𝐶

𝐶
 , 

𝑆𝑂𝐶𝑆𝐶 =
𝑉𝑆𝐶

𝑉𝑆𝐶 𝑚𝑎𝑥
, 

 

𝑆𝑂𝐶′
𝑆𝐶 = −

[𝑆𝑂𝐶𝑆𝐶𝑉𝑆𝐶 𝑚𝑎𝑥− √(𝑆𝑂𝐶𝑆𝐶𝑉𝑆𝐶 max)2−4𝑃𝑆𝐶𝑅𝑆𝐶 ]

2𝑅𝑆𝐶𝐶𝑉𝑆𝐶 𝑚𝑎𝑥
. 

 

(3.11) 

𝐼𝑆𝐶 and 𝑉𝑆𝐶 denote the current and voltage of the supercapacitor. Capacitance (𝐶), internal 

resistance (𝑅𝑆𝐶) of the supercapacitor, and the maximum voltage (𝑉𝑆𝐶 𝑚𝑎𝑥) that the 

supercapacitor can hold are assumed to be constant. 

Similarly, we can write the following equations for the battery:  

𝑃𝑏𝑎𝑡𝑡 = 𝐼𝑏𝑎𝑡𝑡𝑉𝑏𝑎𝑡𝑡 − 𝑅𝑏𝑎𝑡𝑡𝐼𝑏𝑎𝑡𝑡
2 , 

𝐼𝑏𝑎𝑡𝑡 =
[𝑉𝑂𝐶 − √𝑉𝑂𝐶

2 − 4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡]

2𝑅𝑏𝑎𝑡𝑡
, 

𝑆𝑂𝐶′
𝑏𝑎𝑡𝑡 = −

𝐼𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡
, 

𝑆𝑂𝐶′
𝑏𝑎𝑡𝑡 = −

[𝑉𝑂𝐶− √𝑉𝑂𝐶
2−4𝑃𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡  ]

2𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡
. 

 

(3.12) 
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Fig. 3.1 Internal resistances of supercapacitor and battery [5] 
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𝑉𝑏𝑎𝑡𝑡 is the voltage of the battery. Capacitance (𝐶𝑏𝑎𝑡𝑡), internal resistance (𝑅𝑏𝑎𝑡𝑡), and the 

open circuit voltage (𝑉𝑂𝐶) of the battery are assumed to be constant.  

As a result, the next-step state formulations for the state of charge of the battery and the 

supercapacitor will be: 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡(𝑡 + 1) = 𝑆𝑂𝐶𝑏𝑎𝑡𝑡(𝑡) −

[𝑉𝑂𝐶 − √𝑉𝑂𝐶
2 − 4𝑃𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡] ∆t

2𝑅𝑏𝑎𝑡𝑡𝐶𝑏𝑎𝑡𝑡
, 

𝛽 = √(𝑆𝑂𝐶𝑆𝐶(𝑡)𝑉𝑆𝐶 𝑚𝑎𝑥)2 − 4𝑃𝑑𝑒𝑚𝑅𝑆𝐶(1 − 𝑟(𝑘)), 

 

𝑆𝑂𝐶𝑆𝐶(𝑡 + 1) =  𝑆𝑂𝐶𝑆𝐶(𝑡) +
−[𝑆𝑂𝐶𝑆𝐶(𝑡)𝑉𝑆𝐶 𝑚𝑎𝑥 − 𝛽 ]∆t

2𝑅𝑆𝐶𝐶𝑆𝐶𝑉𝐶 𝑚𝑎𝑥
. 

(3.14) 
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Newton/GMRES-based Nonlinear Model Predictive Control         

(NG-NMPC) 

As mentioned, success stories of implementing MPC in control problems [45], [46], [47] 

have motivated the author to implement the nonlinear MPC to the problem at hand. In this 

chapter, the control problem is transformed to the framework of NMPC; then, 

Newton/GMRES approach is applied at the heart of the NMPC for optimization process. 

Simulation results show superiority of this method. 

4.1 Structure of NMPC 

NMPC is a nonlinear version of MPC, which is more accurate than linear MPC since it 

does not have linearization errors. A control-oriented model implemented at the NMPC 

utilizes future data and current states to predict next states. By estimating the states over the 

prediction interval with the length 𝑁𝑝, NMPC optimizes an open-loop finite interval control 

problem at each moment. Doing so, NMPC determines the optimum control output at each 

time span of the control interval of size 𝑁𝑐. Only the first optimum control output is applied, 

the next ones are ignored. Applying the first optimal control action updates the initial 

condition of the next control problem. The process of applying the first control input and 

updating calculations is repeated until the last time step of the drive cycle.  

Manifestly, the applied control-oriented model at the heart of an MPC-based controller 

deeply influences on its efficiency. The more detailed the control-oriented model depicts the 

controlled system, the more effectively the MPC predicts, thus, the better performance it 

yields.  

Nonetheless, implementing accurate control-oriented models imposes high computational 

cost and slows the convergence process, which in turn hinders applicability of the MPC in 

practice [43]. Figure 4.1 depicts the structure of NMPC.  
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4.2 Newton/GMRES NMPC 

Not long ago, the emergence of a new and fast optimization-based method, Generalized 

Minimum Residual (GMRES), for control applications inspired many researchers to develop  

GMRES-based optimal controllers [47]. Ohtsuka proposed combining the Continuation and 

GMRES  methods; so-called C/GMRES method. C/GMRES is a swift numerical optimal 

controller for control input series. Since it finds an answer for the differential equation only 

once each step, it notably reduces computational cost. Therefore, a C/GMRES-based NMPC 

is a valid candidate for a real-time implementable EMS. A comprehensive explanation of this 

Future

Past control input 
at time K 

Past 
Output

Future control input at time K+1

Past control input 
at time K+1 

Past

K+NPK+NCK+1K

Predicted Future Output

Control Horizon

Prediction Horizon

Future control input at time K

Future
Past

 

Fig. 4.1 Basis of the NMPC [67] 
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solver can be found in [48]. Furthermore, Kelly developed a Newton/GMRES method that 

utilizes a forward-difference GMRES algorithm that employs Newton steps to solve 

equations. It is proved that using finite difference does not weaken the Newton/GMRES 

performance, if the steps of the forward difference approximation of derivatives are small 

enough. The Newton/GMRES finds an acceptable answer using the Newton-iterative method 

through only a limited number of iterations [68].   

The above-mentioned challenges have motivated the authors of this paper to design a novel 

EMS, the NG-NMPC, for the problem in hand, based on the longitudinal dynamic 

characteristics of Rav4EV. The main purpose of the proposed EMS is to maximize battery 

life.  

4.3 Newton/GMRES-Based Nonlinear Model Predictive Controller Approach 

(NG-NMPC) 

As mentioned before, the main goal is to extend battery longevity. The EMS distributes the 

demanded power between the battery and the supercapacitor in a way that protects the battery 

during sudden acceleration or braking. In other words, the EMS handles power fluctuations 

by the supercapacitor as much as possible; meanwhile the battery is the major power source. 

In this study, the authors propose a novel EMS using Nonlinear MPC (NMPC). MPC is 

proved to be an efficient controller for the BEV hybridized with the SC. NMPC is a kind of 

MPC for handling nonlinear systems. NMPC is preferable to MPC since it does not have 

linearization errors although it increases the computational cost [18]. 

A control-based model implemented at the heart of the NMPC utilizes future data and 

current states to predict next states. By estimating 𝑃𝑑𝑒𝑚 over the prediction interval with the 

length 𝑁𝑝, NMPC optimizes an open-loop finite interval control problem at each moment. As 

a result, NMPC determines the optimum power distribution between the battery and the 

supercapacitor at each time span of the control interval of size 𝑁𝑐. Only the first optimum 

power distribution is applied, the next ones are ignored. Applying the first optimal power 

split updates the initial condition of the next control problem. The process of applying the 
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first control output and updating situations is repeated until the last time step of the drive 

cycle.  

NG-NMPC is a novel version of NMPC that solves the problem using a Newton/GMRES-

based approach. Briefly, this controller finds the root of a nonlinear problem in real-time. 

Using a single-shooting method is preferred rather than multiple-shooting one since the 

problem is not big and nonlinear enough to utilize a multiple-shooting technique.  

One of the major difficulties of applying NMPC is satisfying inequality constraints. Many 

researchers have proposed different handling methods, but none of them sounds perfect. In 

fact, each of those methods has its own disadvantages. Huang et al. compared different 

constraint-handling strategies in [47]. 

4.4 Optimal Control Theory 

In this section, the mathematics form of the NMPC is presented. The Optimal Control 

theory proves that any optimization problem in the form of equation (7) can be converted to a 

root finding problem of a set of nonlinear equations, if necessary optimality conditions are 

satisfied. Suppose the following performance index that is a function of a state 𝑥 and an input  

𝑢 

 𝐽 =  𝜑 (𝑥(𝑡, 𝑁𝑝)) + ∫ 𝐶(𝑥(𝑡, 𝜔), 𝑢(𝑡, 𝜔))𝑑𝜔
𝑁𝑝

0

. (4.1) 

Constraints: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 

𝐶𝑒𝑞𝑢𝑎𝑙(𝑥(𝑡), 𝑢(𝑡)) = 0. 

(4.2) 

𝑁𝑝𝑟, 𝑡, 𝜑, 𝐶, 𝑓(. ), and 𝐶𝑒𝑞𝑢𝑎𝑙 denote the prediction horizon, time, the terminal cost at the 

end of the prediction horizon, the trajectory cost, system dynamics, equality constraints 

respectively. Suppose that prediction time, 𝜔, consists of 𝑛 timesteps with the length of ∆𝜔. 

So, the performance index, 𝐽, can be written as follows: 
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𝐽 =  𝜑(𝑥𝑛(𝑡)) + ∑ 𝐶(𝑥𝑖(𝑡), 𝑢𝑖(𝑡))∆𝜔.

𝑛−1

𝑖=0

 

𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) + 𝑓(𝑥𝑖(𝑡), 𝑢𝑖(𝑡))∆𝜔.   

𝐶𝑒𝑞𝑢𝑎𝑙(𝑥𝑖(𝑡), 𝑢𝑖(𝑡)) = 0. 

(4.3) 

Ohtsuka defined the 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛,𝐻, as follows [48]: 

𝐻(𝑥, 𝑢, 𝜑, 𝜈) =  𝐶(𝑥, 𝑢) + 𝜑𝑇𝑓(𝑥, 𝑢) + 𝑣𝑇𝐶𝑒𝑞𝑢𝑎𝑙(𝑥, 𝑢). (4.4) 

𝜑 and 𝜈 refer to Costates and Lagrange multipliers. If the following conditions are 

satisfied, the above problem can be transformed to Two Point Boundary Value Problem.  

𝑥𝑖+1 = 𝑥𝑖 + 𝑓(𝑥𝑖 , 𝑢𝑖)∆𝜏,                   (𝑠𝑡𝑎𝑡𝑒 𝑒𝑞. ) 

𝜑𝑖 = 𝜑𝑖+1(𝑡) + 𝐻𝑥
𝑇(𝑥𝑖 , 𝑢𝑖 , 𝜑𝑖+1, 𝑣𝑖)∆𝜏,           (𝑐𝑜𝑠𝑡𝑎𝑡𝑒 𝑒𝑞. )  

𝐻𝑢
𝑇(𝑥𝑖 , 𝑢𝑖 , 𝜑𝑖+1, 𝑣𝑖)  = 0, 

𝐶𝑒𝑞𝑢𝑎𝑙(𝑥𝑖 , 𝑢𝑖) = 0. 

(4.5) 

Consequently, variable states within the prediction horizon can be computed recursively. 

State variables update by time-forward equations. The first updating state equation is 𝑥0(𝑡) =

𝑥(𝑡). In contrast, costate variables update by time-backward equations. The first updating 

costate equation is 𝜑𝑛(𝑡) =  𝜃𝑥
𝑇(𝑥𝑛(𝑡)). As a result, the (𝑥𝑖)𝑖=0

𝑛  and (𝜆𝑖)𝑖=0
𝑛  series are 

composed in terms of the (𝑢𝑖)𝑖=0
𝑛−1 and (𝑣𝑖)𝑖=0

𝑛−1 series. Vector 𝑈(𝑡) can be defined as a 

combination of (𝑢𝑖)𝑖=0
𝑛−1 and (𝑣𝑖)𝑖=0

𝑛−1 series as below: 

𝑈(𝑡) = [𝑢0
𝑇(𝑡), 𝑣0

𝑇(𝑡), 𝑢1
𝑇(𝑡), 𝑣1

𝑇(𝑡), … , 𝑢𝑛−1
𝑇 (𝑡), 𝑣𝑛−1

𝑇 (𝑡)]𝑇. (4.6) 

𝑈(𝑡) can be calculated by solving the equation (4.6), which describe the necessary 

constraints of optimality. Briefly, 𝑈(𝑡) is calculated as follows: 
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𝐺(𝑈(𝑡), 𝑥(𝑡)) =  

[
 
 
 
 
 
 
 
 

𝐻𝑢
𝑇(𝑥0, 𝑢0, 𝜑1, 𝑣0)
𝐶𝑒𝑞𝑢𝑎𝑙(𝑥0, 𝑢0)

⋮
𝐻𝑢

𝑇(𝑥𝑖 , 𝑢𝑖 , 𝜑𝑖+1, 𝑣𝑖)

𝐶𝑒𝑞𝑢𝑎𝑙(𝑥𝑖 , 𝑢𝑖)

⋮
𝐻𝑢

𝑇(𝑥𝑛−1, 𝑢𝑛−1, 𝜑𝑛, 𝑣𝑛−1)
𝐶𝑒𝑞𝑢𝑎𝑙(𝑥n−1, 𝑢𝑛−1) ]

 
 
 
 
 
 
 
 

= 0. (4.7) 

 

4.5 Newton/GMRES Method 

In the previous section, it was shown that the control optimization problem leads to solving 

the equation (4.7).  In the first step, Newton’s approach can be applied to this problem. 

𝐺𝑈 (𝑈𝑖(𝑡), 𝑥𝑖(𝑡)) ∆𝑈(𝑡) = −𝐺 (𝑈𝑖(𝑡), 𝑥𝑖(𝑡)). 

𝑈𝑖+1 = 𝑈𝑖(𝑡) + ∆𝑈(𝑡). 

(4.8) 

Obviously, the larger the states number and prediction horizon, the more challenges to 

compute the Jacobian, 𝐺𝑈(𝑈, 𝑥), will be. Also, Jacobian estimation using approximation 

techniques imposes a high computational cost.  

Some researchers have developed alternatives based on inner iterations of Newton’s 

technique [68]. Theses methods, so-called Newton-iterative, find the solution of equation 

(4.8) through a few inner iterations on ∆𝑈 without calculating 𝐺𝑈(𝑈, 𝑥) accurately. A 

Newton-GMRES approach is one of the Newton-iterative methods that applies forward 

difference Generalized Minimal Residual (FDGMRES) technique to calculate Newton steps. 

This method approximates the solution of equation (4.8) as follows: 

𝐺𝑢(𝑈, 𝑥)𝑧 ≈ 𝐷ℎ𝐺(𝑈, 𝑥 ∶ 𝑧, 0) =
𝐺(𝑈 + ℎ𝑧, 𝑥) − 𝐺(𝑈, 𝑥)

ℎ
. (4.9) 

In the above equation, ℎ represents a small value that is greater than zero. 

This method is promising since the linear equation converges after only a limited number 

of iterations. Reference [53] provides more information about FDGMRES method. [68] 
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Implementing FDGMRES method for finding roots in continuous time develops another 

method, the Continuation/GMRES (C/GMRES) approach [48].  This method solves 

𝐺(𝑈, 𝑥) = 0 by stabilizing 𝐺(𝑈, 𝑥) to zero through the computation of the derivative of 𝑈(𝑡) 

with respect to time using the following equation: 

𝐺′(𝑈(𝑡), 𝑥(𝑡)) =  −𝐸𝑝𝐹(𝑈(𝑡), 𝑥(𝑡)). (4.10) 

Where 𝐸𝑝 refers to a matrix of positive eigenvalues. Differentiation of the above equation 

leads to the following [69]Error! Reference source not found. 

𝐹𝑈(𝑈(𝑡), 𝑥(𝑡))𝑈′ =  −𝐸𝑝𝐹(𝑈(𝑡), 𝑥(𝑡)) − 𝐺𝑥(𝑈(𝑡), 𝑥(𝑡))𝑥′.  (4.11) 

Equation (4.11) is a linear algebraic equation, which finds 𝑈′ by FDGMRES method [48]. 

𝑈(𝑡) is found by computing the integral of 𝑈′(𝑡) in real time.  

4.6 Simulation Results 

To investigate the effectiveness of the proposed NG-NMPC, it was implemented for one-

and-half consecutive Urban Dynamometer Driving Schedule (1.5xUDDS) drive cycle. As 

discussed in details in Chapter 3, the performance index is to minimize the battery 

consumption at the end while satisfying the problem constraints. To extend the battery 

lifespan, an efficacious EMS should protect the battery against the sudden fluctuations of the 

power demand. 

Fig. 4.2 shows the smooth reduction of 𝑆𝑂𝐶𝑏𝑎𝑡𝑡 in which the NG-NMPC effectively 

protects the battery against power-demand fluctuations. As mentioned, the power-surges into 

and out of the battery raise its temperature, which ultimately shorten its life and efficiency 

[65]. Consequently, the smooth trend of 𝑆𝑂𝐶𝑏𝑎𝑡𝑡 leads to extend the battery lifespan. In 

contrast, 𝑆𝑂𝐶𝑆𝐶 has a lot of sudden rises and drops; that is, the NG-NMPC makes the SC 

responsible for handling sudden acceleration/deceleration as much as possible. 

Fig. 4.3 and 4.4 demonstrate the power distribution between the battery and the 

supercapacitor for the test drive cycle. As expected, the plot of 𝑃𝑏𝑎𝑡𝑡 is smoother than that of 

𝑃𝑆𝐶. Fig. 4.5 shows the result of implementing NG-NMPC on the cost function.   
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Fig. 4.2 SOCs vs. time for the UDDS drive cycle 

 

 



 

 32 

 

  

 

 

Fig. 4.3 Powers vs. time for the UDDS drive cycle 
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Fig. 4.4 Close-up view of Fig. 4.3 
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Fig. 4.5 Cost Function vs. time (0.01s) for the UDDS drive cycle 
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Dynamic Programming 

In this chapter, Dynamic Programming (DP) is applied to the problem at hand. Although 

because of its huge computational cost, it cannot be used for super-fast online applications, 

DP is worthwhile to implement since it yields the global optimum. The DP solution is an 

effective basis for evaluating the accuracy of other approaches’ solutions.  

In the following, the problems is converted to the DP form. Then, the sensitivity analysis 

of the DP’s parameters is provided; the simulation results are presented. At the end, Table 5.1 

provides the comparison between different cases.   

5.1  Structure of DP 

DP is an effective and deterministic optimization approach. It computes the cost of all the 

possible solutions and selects the best one as the final answer. In particular, for this control 

problem, it considers all the feasible values of  𝑃𝑆𝐶 𝑎𝑛𝑑 𝑃𝑏𝑎𝑡𝑡 for a given 𝑃𝑑𝑒𝑚 as a priori and 

calculates the objective function (∑  𝐼𝑏𝑎𝑡𝑡
2 ) for the prediction horizon for each possible power 

distribution. Obviously, DP chooses the minimum performance index (𝑍∗ = ∑  𝐼𝑏𝑎𝑡𝑡
2 ) as the 

optimum solution and returns the corresponding 𝑃𝑆𝐶 𝑎𝑛𝑑 𝑃𝑏𝑎𝑡𝑡 for the prediction horizon as 

the optimum power split between the battery and supercapacitor. Since DP can be applied 

only on discrete models, the control inputs (𝑟, 𝑃𝑏𝑎𝑡𝑡, 𝑃𝑆𝐶) and control-oriented model 

variables (𝑆𝑂𝐶𝑏𝑎𝑡𝑡, 𝑆𝑂𝐶𝑆𝐶) are discretized by 𝑑𝑡 = 1𝑠. At each moment, the state of the 

system is described by 𝑆𝑂𝐶𝑏𝑎𝑡𝑡, 𝑎𝑛𝑑 𝑆𝑂𝐶𝑆𝐶. So, the state variable (𝑥𝑡) can be defined as 

follows: 

𝑥𝑡 = [
𝑆𝑂𝐶𝑏𝑎𝑡𝑡,𝑡  

𝑆𝑂𝐶𝑆𝐶,𝑡
] , 𝑡 = 0, 1… , 𝑇 − 1 (5.1) 

The control input (𝑢𝑡) is defined as follows: 

𝑢𝑡 =  [
𝑃𝑏𝑎𝑡𝑡,𝑡 

𝑃𝑆𝐶,𝑡
] , 𝑡 = 0, 1 … , 𝑇 − 1 (5.2) 
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As mentioned, the DP solves the problem recursively, that is, it begins at the final point 

(𝑡 = 𝑇) assuming 𝑍𝑇𝑇
∗  = 0 and moves backward to the first point. Within the framework of 

DP, the performance index is written as follows: 

𝑍𝑇−𝑡,𝑇
∗ (𝑥𝑇−𝑡) = 𝑚𝑖𝑛 {𝑓( 𝑥𝑇−𝑡, 𝑢𝑇−𝑡) + 𝑍𝑇−(𝑡−1),𝑇

∗ (𝑔(𝑥𝑇−𝑡 , 𝑥𝑇−𝑡)}, 

 𝑥𝑡+1 = 𝑔(𝑥𝑡 , 𝑢𝑡), 𝑡 = 1,… , 𝑇 

(5.3) 

As shown, the minimum performance index of the t-stage policy of a T-stage process 

(𝑍𝑇−𝑡,𝑇
∗ (𝑥𝑇−𝑡)) is calculated based on the minimum performance index of the previous (t-1)-

stage policy. This recursive minimization will be repeated until the whole prediction horizon 

is covered. More information is provided in [67], [70].  Fig. 5.1 shows the simulation results 

of applying DP in a framework of MPC to the control problem. DP-MPC approach is 

implemented via different prediction horizons and grid sizes to investigate the effect of each 

parameter.  

5.2 Sensitivity Analysis of DP’s Parameters 

As expected, increasing the prediction horizon enhances the solution’s accuracy. DP uses 

the perfect knowledge of the future as a priori; hence, increasing the time horizon provides 

more data about the next seconds and improves the optimality. In particular, for the problem 

at hand, the longer the prediction horizon is, the less battery will be used, and the greater the 

battery state of charge will be. Fig. 5.2, 5.3, and 5.4 illustrates the effect of the prediction 

horizon parameter on the MPC performance.   

Another parameter that effects DP performance is the grid size. In fact, DP yields the 

global optimum if and only if the grid size is chosen properly. Obviously, a greater grid size 

leads to a more accurate and optimum final answer; however, increasing the grid number will 

exponentially increase the calculation cost.   

Fig. 5.5 and 5.6 show the simulation results of implementing DP with different grid sizes.  

Similarly, increasing the grid size will lower the battery usage, which in turn decreases the 

cost function and ultimately yields a greater state of charge of the battery.   
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 DP uses the future information as a priori; also, as shown in Table 5.1, it has a huge 

computational time that exponentially increases by increasing the grid size. Thus, it is far 

from online application in practice. It only provides a good baseline for comparing the 

performance of the other implemented approaches. 

  

 

 

  

 

Fig. 5.1 Comparison of the battery power loss for different prediction horizons in DP-MPC 
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Fig. 5.2 Comparison of State of Charge of the Battery for different prediction horizons in DP-MPC 
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Fig. 5.3 Close-up view of Fig. 5.2 
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Fig. 5.4 Comparison of cost function for different prediction horizon in DP-MPC 
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Fig. 5.5 Comparison of the cost function for different grid sizes in DP-MPC 
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Fig. 5.6 Comparison of the battery state of charge for different grid sizes in DP-MPC 

Table 5-1 Comparing computational cost of different methods in DP-MPC 
Method Time 

(seconds) 

Final Battery Power Loss 

(kWh) 

DP-MPC Grid Size = 10 8 640 

DP-MPC Grid Size = 20 52 477 

DP-MPC Grid Size = 30 165 452 
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Stochastic Dynamic Programming (SDP) 

As mentioned previously, the uncertain nature of the demanded power has motivated the 

author to solve this EMS design problem by SDP. In fact, the main advantage of this work is 

that unlike many other studies that consider the demanded power to be pre-defined values, 

the power demand is assumed to be unknown beforehand and stochastically changing, which 

is generated using a Markov chain [21]. In other words, the Transition Probability Matrix 

(TPM) is created assuming the power demand as a Markovian state. This means that the next 

power demand (𝑃𝑑𝑒𝑚) is only dependent on the current power demand and not on the 

previous ones. Another assumption is that power demand changes within a finite range. The 

TPM determines the next possible power demands with their corresponding probabilities. In 

this study, the power demand has 20 discrete states. Obviously, the larger number of 

discretization, the more accurate the TPM will be. However, a large discretization number 

leads to high computational costs. By trial-and-errors, the number is set to be 20 [18]. This 

number turns out to be accurate enough and does not impose too much complexity in our 

model. As a result, the TPM is a 20 by 20 matrix that maps the current 𝑃𝑑𝑒𝑚 to the next 𝑃𝑑𝑒𝑚 

[18]. Therefore, the Markov chain is formulated as follows:  

𝑝𝑛𝑚 =𝑃𝑟{𝑃𝑑𝑒𝑚(𝑡 + 1) = 𝑝𝑛|𝑃𝑑𝑒𝑚(𝑡) = 𝑝𝑚}, 

𝑛, 𝑚 𝜖 {1,2, … ,20}. 
(6.1) 

Obviously, the sum probability of all the possible next states equals to one: 

∑𝑝𝑛𝑚 = 1

𝑚

. (6.2) 

𝑃𝑑𝑒𝑚(𝑡) is a Markovian state at time 𝑡 and 𝑝𝑛𝑚 represents the probability of future power 

demands. In other words, it indicates the probability of transition from the current state 

(𝑃𝑑𝑒𝑚(𝑡)) to the future state (𝑃𝑑𝑒𝑚(𝑡 + 1)). 

These probabilities are calculated using a number of driving cycles from the ChargeCar 

website [71]. The drive cycles represent vehicle speeds over time, but TPM is based on the 
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power demands. Thus, the vehicle speeds are converted to the corresponding power demands 

according to the characteristics of Toyota Rav4EV as mentioned in Chapter 3.  

6.1 Stochastic Energy Management System Design 

In this section, a stochastic optimization formulation is developed. Since there is no final 

cost or final constraint in our model and the model equations are time-invariant, the problem 

is considered as an infinite horizon problem. The infinite horizon approach creates a 

collection of time-independent policies that can be applied for an online optimal power 

distribution efficiently. In general, for a Markovian SDP problem, the expected cost is 

defined as follows: 

𝐽𝜋(𝑥0) =  lim
𝑁→∞

𝐸𝑤 {∑ 𝛾𝑘

𝑁−1

𝑘=0

𝜑(𝑥𝑘 , 𝜋(𝑥𝑘))}. 
(6.3) 

𝐽𝜋(𝑥0) refers to the expected cost, 𝜋(𝑥𝑘) is the control policy, 𝜑 is the one-time step cost, 

and 𝛾 is the discount factor ranging between zero and one. In our problem, the objective 

function is sum of the squared 𝐼𝑏𝑎𝑡𝑡 and the penalty for the power demand prediction as 

follows: 

𝜑 =  𝐼𝑏𝑎𝑡𝑡
2 +  𝛼.𝑀, (6.4) 

𝑀 is the squared value of difference between the predicted power demand and the real 

power demand. 𝛼 is a weighting factor. The policy iteration algorithm has two stages: the 

policy assessment and revising the policy. In every iteration, first, 𝐽𝜋(𝑥0) for the current 

policy is calculated as given below: 

𝐽𝜋
𝑠+1(𝑥𝑖) =  𝜑 (𝑥𝑖 , 𝜋(𝑥𝑖)) + 𝐸𝑃𝑑𝑒𝑚(𝑖+1)

 { 𝛾𝐽𝜋
𝑠(𝑥′)}, (6.5) 

𝑥′ shows the generated states at the end of a time step. Then, 𝐽𝜋
  is calculated to update the 

policy by minimizing the following equation: 

𝜋(𝑥𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛[𝜑(𝑥𝑖 , 𝑢) + 𝐸𝑃𝑑𝑒𝑚(𝑖+1)
{𝛾𝐽𝜋

 (𝑥′)}]. (6.6) 
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This optimum policy comes back to the first step to update the performance index. The 

updating process repeats until 𝜋(𝑥)converges, that is, it does not improve noticeably 

anymore [32]. 

In order to apply the SDP method effectively, the first step is to find the proper state 

number. A large number of the states makes the problem too complex and computationally 

expensive which is also called “curse of dimensionality”. On the other hand, by choosing 

small number of states, the considered model will be inaccurate and miss a lot of details. 

Consequently, the minimum number of states should be selected to represent major 

characteristics of the system efficiently. In practice, a proper number of states that depict the 

system accurately enough is found by trial-and-errors. In this investigation, the authors 

consider three state variables: 𝑆𝑂𝐶𝑏𝑎𝑡𝑡, 𝑆𝑂𝐶𝑆𝐶  and 𝑃𝑑𝑒𝑚.  

Moreover, every state variable should be discretized. Choosing the correct number of 

discretization is also critical since a large number of discretization makes SDP too slow [32]. 

On the contrary, a small value will yield invaluable results. Here, 𝑆𝑂𝐶𝑏𝑎𝑡𝑡, 𝑆𝑂𝐶𝑆𝐶  and 𝑃𝑑𝑒𝑚 

are discretized as follows: 

𝑃𝑑𝑒𝑚 ϵ {𝑃𝑑𝑒𝑚
1 , 𝑃𝑑𝑒𝑚

2 , …., 𝑃𝑑𝑒𝑚
𝑚 }, 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡 ϵ {𝑆𝑂𝐶𝑏𝑎𝑡𝑡
1 , 𝑆𝑂𝐶𝑏𝑎𝑡𝑡

2 , …., 𝑆𝑂𝐶𝑏𝑎𝑡𝑡
𝑁𝑏 }, 

𝑆𝑂𝐶𝑆𝐶 ϵ {𝑆𝑂𝐶𝑆𝐶
1 , 𝑆𝑂𝐶𝑆𝐶

2 , …., 𝑆𝑂𝐶𝑆𝐶
𝑁𝑐}. 

(6.7) 

 

So, the total space indexing will be as given below: 

{𝑥𝑖 ,  𝑖 = 1,  2, … ,  𝑚𝑁𝑏𝑁𝑐}, 

𝑥1 = {𝑃𝑑𝑒𝑚
1 , 𝑆𝑂𝐶𝑏𝑎𝑡𝑡

1 , 𝑆𝑂𝐶𝑆𝐶
1  }, 

𝑆𝑂𝐶𝑆𝐶 ϵ {𝑆𝑂𝐶𝑆𝐶
1 , 𝑆𝑂𝐶𝑆𝐶

2 , …., 𝑆𝑂𝐶𝑆𝐶
𝑁𝑐}. 

(6.8) 

Solving this problem by SDP provides a look-up table that can be used online. In fact, the 

main advantage of applying SDP is that it does not compute the control variable online. At 

each moment, the EMS controller simply finds and applies the stored control index that 
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corresponds to the current situation. A current situation is described by the state variables to 

the controller. So, in practice, applying SDP is quite computationally cost-effective. 

Furthermore, applying SDP does not require any additional equipment to predict the future 

power demands, for instance advanced ITS and GPS sensors and devices. Moreover, it is 

 

Fig. 6.1. Flowchart of a policy iteration algorithm 

[72] 
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able to handle complicated nonlinear objective functions and constraints that cannot be easily 

solved by any other mathematical and numerical approaches [32]. 

6.2  SDP-based Simulation Results 

The output of the SDP is an optimum policy consisting of several rules, which determine 

the power distribution between the battery and the supercapacitor every second. In order to 

evaluate the policy, it is compared to the no supercapacitor (no-SC), the buffer, the 

Generalized Rule-based Dynamic Programming (GRDP) [73] and Dynamic Programing 

(DP) methods. The buffer method is the most basic approach to supervise BEVs hybridized 

with SCs. In this approach, the SC provides the demanded power as much as possible. If the 

stored power in the SC is not enough, the battery helps the SC to handle 𝑃𝑑𝑒𝑚 [73].  

In the GRDP method, the DP algorithm is implemented for a training drive cycle. Then, 

one simple linear rule is obtained to determine the optimum control variable, see Fig. 6.2.  

 

 

Fig. 6.2. Calculating GRDP from a training set 

 



 

 48 

Fig. 6.3 demonstrates the performance of different applied methods to this problem. As 

expected, the DP has the best performance since it finds the global optimum by discretizing 

the state variables. Unlike many other mathematical approaches that can be stuck in local 

optimums, it selects the global optimum among all of the possible solutions. But the DP 

strategy assumes the perfect information of the future power demands that would never 

happen in the reality. Therefore, no method can outperform DP in terms of optimality. 

However, due to high computational cost and using future information as a priori, it is not a 

practical approach. 

On the contrary, the no-SC method has the worst performance as expected since there is 

nothing to contribute the battery to provide the demanded power.  

The GRDP only outperforms the no-SC method. Although the GRDP strategy is based on 

the DP that finds the best solution, it shows a weak performance since the GRDP is 

completely dependent on the drive cycles that are used as training data. Therefore, when the 

obtained simple linear rule is applied to the test data, it is not as effective as a buffer or an 

SDP algorithm. The buffer method outperforms the no-SC and GRDP since it always tries to 

handle the power demand by the SC as much as possible. This approach lowers the power 

demand load on the battery. 

The SDP shows a satisfying performance which means that by applying this algorithm the 

battery current decreases notably. As a result, the lifespan of the battery will increase. 

Naturally, it cannot beat the DP since the DP assumes the full-knowledge of the future power 

demand as a priori. But, it outperforms other methods mainly because of the SDP ability to 

handle uncertainties. This result is noticeable, since applying SDP does not need 

implementing new sensors or equipment, so it is quite cost-effective. On the other hand, SDP 

does not require online calculations; it is an offline method and provides a look-up table that 

can be implemented quite fast. Comparing to the S-NMPC version of this problem which 

involves high online computational cost that makes real-time applications a challenge [5], 

this algorithm is much more practical. 
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Also, the small distance between SDP and DP performance (5%) demonstrates that SDP 

can find near-global optimum solutions. 

Fig. 6.4 compares the performance of SDP with those of other approaches. Similar to Fig. 

6.3, the SDP outperforms the no-SC, buffer, and GRDP. 

As shown in Fig. 6.5, by applying the SDP algorithm the supercapacitor handles more 

fluctuations compared to other considered methods except the DP. This means that the SDP 

more effectively protects the battery during sudden accelerations and brakes. Since the 

battery can handle only a limited number of charge/discharge cycles, this policy contributes 

to extending the lifespan of the battery. Clearly, we cannot plot 𝑆𝑂𝐶𝑆𝐶 when there is no 

supercapacitor (no-SC). 

Fig. 6.6 shows that by applying the SDP method, the battery consumes less electrical 

energy than with the buffer and no-SC approaches, thus the battery lifespan will increase. 

Also, Fig. 6.7 illustrates in more detail that the SDP performance is close to the DP 

performance, and superior to the buffer and no-SC performance. 

Although the difference seems very small, it is promising since these results are based on 

only 2000 seconds. Consequently, long-term applications of the SDP technique can protect 

the battery and promote its health effectively. 
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Fig. 6.3. The cost function vs. time (seconds) for the FTP 75 drive cycle  
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Fig. 6.4.  Comparison of the battery current-squared sum vs time (seconds) for the UDDS  

drive cycle for different solvers 
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Fig. 6.5 State of charge of the supercapacitor vs time (seconds) for the FTP 75 drive cycle  
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Fig. 6.6 State of charge of the battery vs. time for the FTP drive cycle 
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Fig. 6.7 Close-up view of Fig. 6.6 
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Particle Swarm Optimization 

As mentioned in the introduction, many researchers have applied Particle Swarm 

Optimization (PSO) to optimize MPC control commands [36], [37]. The success stories 

about implementing PSO in control problems have motivated the author to solve this 

problem with this algorithm.   

In this chapter, PSO is applied at the heart of MPC to optimize the power distribution 

between the battery and supercapacitor for the control horizon. Only the calculated 

distribution (control command) of the first time step is applied; the calculated control 

commands of all other steps are ignored. Then, the control horizon moves forward for one 

time step; after that, the optimization process is repeated until the whole prediction horizon is 

covered.  

This chapter is organized as follows: in section 7.1, PSO structure is described, followed 

by section 7.2 in which the effectiveness of this algorithm is investigated by optimizing some 

benchmark problems. In section 7.3, the control problem is transformed to a PSO structure. 

The final section shows the result of implementing PSO in the control problem.   

7.1 Structure of PSO 

PSO is a bio-inspired technique that seeks the optimum point of the objective function. It is 

initialized by a population of random particles. In the next iterations, each particle moves 

according to its velocity. The velocity of each particle is calculated based on both its own 

personal best position (𝑃𝑏𝑒𝑠𝑡), and the best position of the group obtained so far_global best 

(𝐺𝑏𝑒𝑠𝑡). The process of updating the position of each particle is repeated until the iteration 

number is reached, or the difference between the global best of the last two iterations is 

negligible.  At the end, the algorithm returns the last global best as the final optimum. 

In general, the formula for updating the position of PSO particles is as follows: 

𝑉𝑗
𝑡+1 = 𝑤𝑉𝑗

𝑡 + 𝑐1𝑟1 × (𝑃𝑏𝑒𝑠𝑡𝑗
𝑡 − 𝑃𝑗

𝑡)𝑐2𝑟2 × (𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑃𝑗
𝑡). (7.1) 
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𝑃𝑗
𝑡+1 = 𝑃𝑗

𝑡  + 𝑉𝑗
𝑡+1. 

Introduction of variables: 

𝑉𝑗
𝑡 

velocity of bird (particle) 𝑗 at iteration 𝑡 

𝑤 
inertia parameter 

𝑐1, 𝑐2 
cognitive and social coefficient 

𝑟1, 𝑟2 
random numbers from uniform distribution 

𝑃𝑗
𝑡  

position of bird (particle) 𝑗 at 𝑡𝑡ℎ iteration  

𝑃𝑏𝑒𝑠𝑡𝑗
𝑡 

best location of bird (particle) 𝑗 in the previous iterations 

𝐺𝑏𝑒𝑠𝑡𝑡 
best position of the group obtained so far 

 

𝑐1 and 𝑐2 should be set up in advance; they are usually equal to two. 𝑤 is an inertia 

parameter; mostly it is large at first iterations and gradually decreases, since, in many cases, 

the algorithm aims to search more freely at first iterations and converges at the end. 𝑤 is 

updated according to equation 7.2. 

𝑤 = 𝑤𝑚𝑎𝑥 −
 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
× 𝐼𝑡𝑒𝑟. (7.2) 

  

In equation 7.2, variables are defined as below: 

𝑤𝑚𝑎𝑥 
inertia weight at the beginning 

𝑤𝑚𝑖𝑛 
inertia weight at the ending 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 
Maximum number of iteration 

𝐼𝑡𝑒𝑟 
Current number of iteration 
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Start

Define optimal variables and set 
constraints domain

Initialize particles randomly at the first 
iteration

Compute the fitness value of each 
particle

Find personal best and global best

Calculate each particle’s velocity

Update each particle position

Meeting termination 
conditions?

Return the global best at the last 
iteration

Stop
 

Fig. 7.1 PSO Flowchart [74] 
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7.2 Capability of PSO in solving complicated problems 

Naturally, finding the global optimum for multimodal functions is more challenging than 

doing so for unimodal functions. In order to investigate the potential of PSO, it is applied to 

optimize the Schwefel function, which has a lot of local optimums [75].  

This function is defined as below: 

𝑓(𝑥) = 418.9829𝑑 − ∑𝑥𝑖 sin (

𝑑

𝑖=1

|𝑥|)0.5. 

−500 ≤  𝑥𝑗  ≤ 500. 

(7.3) 

This function has a global optimum 𝑓(𝑥∗) = 0 at 𝑥∗= (420.9687,…,420.9687) 

The effectiveness of the PSO algorithm depends on the numbers of the following: the 

particles (population size), the dimensions of each particle, and the iterations. As illustrated 

in Fig. 7.1, the larger the numbers of particles and iteration are, the more effectively particles 

can search the feasible area, so the greater the computational time is required and the more 

accurate final answers will be. The following figures show the effects of these parameters.   

As shown in Fig. 7.2, increasing the dimension of each particle makes the problem 

exponentially bigger and much more challenging to solve.  

 

Fig. 7.2 Comparison of different iteration and particle numbers on optimization of Schwefel function 

(Dimension = 5) 
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7.3 Applying PSO-MPC to the control problem 

In the problem at hand, PSO is implemented in the heart of the MPC. PSO aims to 

minimize the performance index over the control horizon (𝑁𝑐). Consequently, it should 

determine the optimal power distribution at each second of the control horizon 

{𝑟1, 𝑟2, 𝑟3, … , 𝑎𝑛𝑑 𝑟𝑁𝑐 }. As mentioned, in PSO, each particle is a solution. That is, to solve the 

control problem with the length of 𝑁𝑐, each particle has 𝑁𝑐 dimensions. For instance, to 

solve this control problem for 100 seconds, it should calculate 𝑟1, 𝑟2, 𝑟3, … , 𝑎𝑛𝑑 𝑟100. In other 

words, each particle has 100 dimensions. At the last iteration, PSO chooses the particle that 

has the minimum performance index as the final answer.  

Within the MPC frame, only the first dimension (𝑟1) is applied. Consequently, the engine 

receives the power from the battery according to 𝑟1  in the first second. The car proceeds for 

 

Fig. 7.3 Comparison of different iteration and dimension numbers on optimization of Schwefel 

function (Bird Number = 10) 

 

Table 7-1 Dimension = 100, Iteration = 100 

Number of 

particles 
Mean Error Runtime 

10 3*105 0.5 s 

100 1*102 4 s 

1000 2*10-9 45 s 

10000 9*10-10 450 s 
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one second, then, the system will be updated; since there is more information about the route 

and the demanded power in the following seconds can be predicted more accurately. The 

PSO-MPC will be implemented in the next 𝑁𝑐 seconds; this cycle will be repeated until the 

whole length of the prediction horizon (𝑁𝑝) is covered. Table 7.1 shows the effect of the 

number of particles on the PSO-MPC’s performance. As mentioned, since DP-MPC finds the 

global optimum, the evaluation of the PSO-MPC’s performance is based on the DP-MPC 

solution. Obviously, the greater the number of particles is, the more-effectively the algorithm 

can search the solution area, leading to a more-optimal solution being found. On the other 

hand, a large number of particles increases the computational cost. Consequently, for the 

problem at hand, which requires a sufficiently fast controller to find the optimum in few 

milliseconds, PSO-MPC is not fast enough to do so. Decreasing the number of particles 

increases the convergence speed of the PSO-MPC, but the answer is not accurate enough. 

The computational cost of the PSO-MPC is a function of the following parameters: 

 

Fig. 7.4 PSO-MPC with an initial guess 
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𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡
=  𝑂(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑟𝑑𝑠 ∗  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∗ 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛) 

(7.4) 

Moreover, the standard PSO initializes with a random population, so in every run, it finds a 

different answer for the same problem. Thus, it is not stable enough to optimize control-

based driving problems, which require high levels of reliability and numerical stability.   

In order to enhance the stability and reduce the computational cost of the PSO-MPC, 

random initialization is replaced by initialization with the DP-MPC’s solution. Fig. 7.4 shows 

the simulation result. 

As shown, the battery power loss decreases by 20% over 1900 seconds. Although this 

combination is successful in terms of optimization, it shows some difficulties for online 

superfast optimization. Table 7.2 compares the run times of these methods. 

  
Table 7-2 Comparing computational cost of different methods 

Method Time 

(seconds) 

Final Battery Power Loss 

(kwh) 

DP-MPC Grid Size = 10 8 640 

DP-MPC Grid Size = 20 52 477 

DP-MPC Grid Size = 30 165 452 

PSO-MPC with Initial Guess (Grid Size = 10) 23 540 
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Conclusion and Future Works 

In this thesis, several widely used topologies have been reviewed and the best-fit topology 

has been chosen based upon the BEV-HSC characteristics. An accurate control-oriented 

model has been developed and utilized to define the optimization control problem to 

maximize the battery lifespan.   

A number of EMSs of the BEV-HSC have been proposed using a few deterministic and 

probabilistic approaches for Toyota Rav4EV. Several simulations have examined the 

performance of the presented methods compared to performance of widely-used EMSs in the 

literature.  

The NMPC has solved the problem at hand. The Newton/GMRES method, which is a fast 

optimizer, solves the optimization problem at the heart of the NMPC while the exterior 

penalty method handled the problem constraints. Also, the maximum potential of applying 

MPC for this hybrid system has been investigated by DP. The sensitivity analysis of DP-

MPC parameters has been done. DP has yielded an affective baseline for comparison since it 

has provided the global optimum upon choosing a proper number of discretization.  

In order to design a more effective EMS, a method to handle uncertainties has been sought. 

First, the future power demand has been predicted by a Markovian chain where the TPM has 

been created using real drive cycles. Then, SDP has been applied to find the optimum policy 

using a policy iteration algorithm. The simulation results have showed the effectiveness of 

the proposed algorithm. These results were based on a very short drive cycle (around 2000 

seconds) which means that the long-term implementation of SDP can save a considerable 

amount of the stored charge in the battery, which in turn leads to extending the lifespan of the 

battery. On the other hand, SDP tries to protect the battery against fluctuations of the 

demanded power during sudden accelerations and brakes by assigning a higher share of the 

power demand to the supercapacitor.  
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Also, from an economical point of view, this approach is preferable since it only relies on 

offline calculations and does not require any extra equipment. Moreover, since it does not 

involve online calculations, it is suitable for real-time applications and the computational cost 

is not an issue.  

Finally, the optimal control problem was solved by PSO-MPC. PSO is a fast bio-inspired 

optimization technique that search the solution area effectively. A sensitivity analysis of 

PSO-MPC parameters has been presented. Simulation results demonstrate that although 

PSO-MPC is successful in terms of optimality, it is not fast enough for real-time application. 

8.1 Contributions 

To the best knowledge of the author 

 In this thesis, the Newton/GMRES-based NMPC approach has been utilized for the 

EMS of the BEV-HSC for the first time. 

 DP-MPC has been implemented in the problem at hand for the first time. 

 This investigation is the first utilization of SDP with no knowledge of future for the 

EMS of the BEV-HSC. 

 TPM has been created using real driving information  

 Also, this study is the first execution of PSO-MPC to this particular problem.  

8.2 Future Works 

 To implement SDP in this problem, the power demand is assumed as a Markovian 

state. That means the next power demand is predicted based on the current power 

demand and not the previous ones. Designing a new EMS controller by predicting 

the future power demands more accurately using previous ones is still in hand. 

 Applying hardware-in-the-loop experiments can add more validity to the proposed 

approaches. 

 The proposed EMSs can be improved in terms of robustness and stability. 
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 Designing more advanced methods to enhance the accuracy of power demand 

prediction can improve the MPC perfromance. 

 Developing a faster version of PSO could make it more applicable for real-time 

applications. 
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