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Abstract 

Defect-free dissimilar Al/zinc coated steel and Al/AlSi coated steel welds were 

successfully fabricated by refill friction stir spot welding. However, Al alloy and 

uncoated steel could not be welded under the same welding condition. Al-Zn eutectic 

layer formed at the Al/zinc coated steel interface showed non-uniformity in thickness 

and nanoscale intermetallic (IMC) produced was discontinuous. The bonding 

formation between the Al-Zn layer and the surrounding materials was attributed to a 

liquid/solid reaction mechanism. Bonding formation at Al alloy and AlSi coated steel 

interface was attributed to a solid/solid reaction mechanism, as the joining process did 

not involve with melting of base metals or AlSi coating materials. Kissing bond 

formed at the weld boundary acted as a crack initiation and propagation site, and the 

present study showed that weld strength of Al 5754/AlSi coated steel was greatly 

influenced by properties of original IMC layer. 

Keywords: Refill friction stir spot welding, Al alloy, Steel, Coated materials, Joining 

mechanism. 

 

1. Introduction 

Al alloys provide low density and excellent corrosion resistance, steels are 

mainly selected for contributing cost-effective strength and high stiffness. Dissimilar 

joining Al alloys to steels is an effective method to combine the attractive property 

profiles of these most common structural materials in one hybrid part [1]. Currently, 

there are two major approaches to join Al alloys to steels, which are mechanical 

joining such as self-piercing rivets and clinching [2, 3], and metallurgical joining such 
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as fusion and solid-state joining technologies [4-8]. The mechanical joining 

technologies introduce use of fasteners such as screws or rivets, which increases the 

cost and structure weight. Fusion joining technologies are problematic since they 

could result in formation of bulk intermetallic compounds (IMCs) at elevated 

temperatures [9]. These IMCs are brittle, and a thick or continuous IMC layer 

severely deteriorates the weld strength [10]. 

Conventional friction stir spot welding (FSSW) is a relatively new solid-state 

joining technology, which is a natural alternative to fusion welding due to that it 

avoids the problems of solidification and liquation cracking [11-29]. Mazda has used 

conventional FSSW to join Al alloy to coated steels in aluminum trunk lid [27], 

acceptable weld strength was achieved although keyhole significantly decreased 

effective bonded area [11-15]. There are three main approaches of joining Al alloy to 

steel by conventional FSSW: (i) directly joining Al to uncoated steel through the 

formation of IMCs while avoiding plunging the tool pin into bottom steels [11-16], (ii) 

mechanical interlocking by displacing the bottom steel into the Al sheet [17-23], and 

(iii) adoption of coatings on steels to promote the interfacial bonding [24-28]. It is 

noted that a relatively longer welding cycle (5-15 s) needs to be applied to promote 

the IMCs layer formation when directly joining Al to uncoated steels [11, 12, 14], 

which is impractical for the mass production. Meanwhile, advanced tool material such 

as WC–Co [19], WC [20, 22], W25Re [17, 18, 21], tungsten carbide [22], or silicon 

nitride should be used to obtain interlocking mechanism by plunging tool pin into the 

bottom steels [23].  

Refill FSSW, a new solid-state joining technology developed by Schilling et al. 

in Helmholtz-Zentrum Geesthacht (HZG, former GKSS) [30], showed great 

advantages comparing to conventional FSSW as refill FSSW could significantly 

increase effective weld area and weld strength [31-33]. Refill FSSW process has been 

described in detail in the prior literature, and successfully applied to join lightweight 

materials [32, 34-37], and dissimilar metals [38-46]. Al/steel dissimilar refill friction 

stir spot weld strength is much higher than conventional FSSW due to the larger 

bonded area and preferable improved weld integrity [39, 42, 44]. Given the large 

discrepancies in physical and chemical properties between Al and Fe, it is rather 

challenging to directly join Al alloys to steels [47, 48]. Furthermore, it is impractical 

to plunge expensive steel tool into harder bottom steels to obtain the mechanical 

interlocking. According to the literature available, joining Al alloys to steels by refill 

FSSW consistently involves adoption of coatings on steel for promoting interfacial 

bonding, while avoiding plunging the tool into the bottom steels. Excellent weld 

strength can be achieved by pure metallurgical joining mechanism [39-44]. In this 

case, condition of material contact surface plays a crucial role in determining 

interfacial microstructure and weld strength [39, 40].  

Galvanizing and aluminizing are the two most commonly used processing 

techniques for protecting steel components exposed to corrosive and oxidic 

environments [49-51]. Coated material has a pronounced influence on the joining 
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mechanisms due to differences in physical and chemical properties [26], which it acts 

as a filler material between materials to be joined [39], preventing direct contact of Al 

and Fe and thus formation of bulk IMCs. Fukada et al. first reported the feasibility of 

joining Al alloy to zinc-coated steel by refill FSSW, it was found that IMC layer in 

some micro mater thickness was not observed at the Al/steel interface, and the weld 

strength exceeded JIS standard value for RSW [43]. More recently, Shen et al. 

reported that presence of zinc coating promoted formation of Al-Zn eutectic structure 

layer, with generation of an additional brazing effect out of sleeve periphery [39]. 

Ding et al. demonstrated that strong bonding was achieved between Al alloy and AlSi 

coated steel, with weld strength showed less sensitivity to welding parameters than 

Al/zinc coated weld [40]. It would be worthwhile to clarify effect of coated material 

on interfacial joining mechanism since the crack mainly propagated along the Al/steel 

interface [26, 39-44, 46]. Therefore, Al 6022 was used to join to uncoated and zinc 

coated DP600 steels, and Al 5754 was used to join to AlSi coated steel by refill FSSW, 

interfacial microstructure and joining mechanisms were obtained.  

2. Experimental procedures 

Top Al alloys used in the present study were 1.6 mm thick Al 6022-T4 and Al 

5754-O, and the bottom steels were 2.0 mm thick zinc coated DP600 steel and AlSi 

coated Usibor 1500P steel (or 22MnB5 alloy) [39, 40]. For direct-comparison, 2.0 

mm thick uncoated DP600 steel was selected as experimental materials. Al in small 

quantity has been generally applied into zinc bath for slowing down reaction rate of 

zinc-iron, due to the role of inhibition of Al [51]. Approximately 10 wt. % silicon can 

be applied as an added element in aluminum bath to minimize the IMC thickness and 

flatten interface between IMC layer and steel substrate [50, 52, 53]. Chemical 

compositions of the Al alloys, steel substrates and the coated materials are listed in 

Table. 1. As shown in Fig. 1, grain size of Al 6022 sheet material was approx. 79 μm 

with precipitates β-Mg2Si at grain boundaries [54]. Zinc coating thickness on the 

DP600 steel substrate is approx. 10 μm, while the coating on the boron steel is 

comprised of a 18.5 μm thick AlSi eutectic layer and a 9.5 μm thick ununiform IMC 

layer, the IMC layer is identified to be a 8.5 μm thick Al7Fe2Si and a 1.0 μm thick 

Al5Fe2(Si) [40].  

a) b) c)  

Fig. 1. Microstructure of as-received base metals: (a) Al 6022-T4, (b) Zinc coated 

DP600 steel and (c) AlSi coated Usibor 1500P steel (or 22MnB5 alloy). 
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Table. 1. Chemical compositions of as-received materials and coated materials (wt%) 

[39, 40]. 

Materials Al Fe Si Zn Cr Mg Mn B Cu P Ti C S Cr+Mo+Ni 

Al 6022 Bal. 0.05-0.20 0.80-1.5 <0.25 0.1 0.07-0.45 0.02-0.10  0.01-0.11  <0.15    

Al 5754 Bal. 0.4 0.4   2.6-3.2 0.5        

DP600   Bal. 1.5    2   0.04  0.14 0.015 1 

22MnB5 0.03 Bal. 0.015  0.16  2.2 0.004  0.02 0.035 0.22   

Zn coating 0.3 2.0  97.7           

AlSi coating 86.2 1.3 12.5            

Fig. 2 schematically shows the joining steps applied in the present study, in 

which the tool did not plunge into the bottom steel during the entire joining process of 

the study. Diameters of clamping ring, sleeve and pin were 14.5, 9.0 and 6.4 mm, 

respectively. Al 6022/uncoated DP600 steel and Al 6022/zinc coated DP600 welds 

were manufactured using a rotational speed of 1800 rpm, a tool sleeve penetration 

depth of 1.0 mm and a welding time of 3.707 s [39]. The Al 5754/AlSi coated steel 

welds were manufactured using a rotational speed of 2800 rpm, a penetration time of 

0.5 s, a dwell time of 3.5 s and a retraction time of 0.5 s, which are constant during the 

welding process. Since penetration depth into upper Al 5754 varied from 0.9 to 1.4 

mm, plunging (retreating) rate had therefore varied adjusted with variation of 1.8 to 

2.8 mm/s. Prior to welding process, the base metals were sanitized with ethanol to 

remove impurities on surface. In reference to American Welding Society (AWS) 

standard D8.22M:2007 [55], the welds were fabricated by applying 30 mm × 100 mm 

coupons with a 30 mm × 30 mm overlap area, and all specimens were welded in 

center of the overlapped area. As shown in Fig. 2(e), a K type thermocouple was 

inserted to the Al 5754/AlSi coated steel weld boundary through the groove cut on the 

bottom steel sheet to record thermal cycle. Tool current, rotational speed and 

penetration were recorded by using a M-Scope software. 

 

Fig. 2. Schematic representation of refill FSSW process: (a) surface preheating while 

clamping and spindles rotation, (b) sleeve plunges into the sheets while pin moves 

upwards, (c) tool dwells at a predetermined penetration depth, d) spindles retract back, 

and (e) surface dwell to flatten the weld surface. 

At completion of welding, the weld was sectioned at weld center, which it was 

conducted using standard metallographic techniques with final polishing using 1 μm 
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diamond abrasive. Weld microstructure was observed using an OLYMPUS NTB 3558 

optical microscope, and a JEOL JSM-6460 scanning electron microscope (SEM) with 

20 kV operating voltage equipped with ENCA 3.5 energy dispersive X-ray (EDX) 

analysis system. Chemical compositions measured by EDX spectroscopy were 

reported as wt%. Transmission electron microscopy (TEM) study was conducted 

using FEI's Tecnai Osiris TEM equipped with X-FEG gun at 200 kV. To study phase 

identification and crystallography of weld materials, bright field, dark field imaging, 

selected area diffraction (SAD) technique were used. Scanning transmission electron 

microscopy (STEM) mode using bright field (BF) and high angle annular dark field 

(HAADF) detectors were applied in combination with EDX. The hardness 

distribution was measured at the mid-thickness of the top Al 6022 and Al 5754 sheets 

with a load of 50 gf and a dwell time of 10 s. The lap shear testing was performed at a 

constant cross head speed of 10 mm/min. 

3. Results and discussion 

3.1. Joining of Al alloy to uncoated steels 

Firstly, the Al 6022 sheet was used to join to uncoated DP600 steel to study the 

feasibility of directly joining Al alloy to uncoated steels. As shown in Fig. 3, effective 

interfacial bonding cannot be achieved between Al 6022 and the uncoated steel by 

using the same welding condition as joining Al 6022 to zinc coated steels. Top Al 

6022 and the bottom steel separated directly at completion of the joining process. 

Oxide films on surfaces of the coupon were unable to broken down into particles due 

to insufficient temperature and axial force imposed by welding tool. Macro plastic 

deformation was not observed at the interfacial center, because pin was not plunged 

into top Al 6022 material during the entire joining process. However, a small quantity 

of Al sheet materials was found to attach on the bottom steels at interfacial boundary 

area, which suggests occurrence of interfacial reaction between Al and Fe at the 

localized regions, regardless of a small reaction area that unable to promote effective 

bonding.  

 

Fig. 3. Macroscopic appearance of two unbonded two surfaces on Al and steel sides, 

respectively. 

 

3.2. Interfacial microstructure of Al/zinc coated steel weld 

In similarity with joining Al alloy to zinc coated steel using friction stir lap 
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welding [48], present study shows that the presence of zinc coating could 

significantly improve the weldability of Al alloy and steels. Fig. 4(a) shows a 

representative macroscopic view of Al 6022/zinc coated DP600 steel weld, which 

was produced using a rotational speed of 1800 rpm and 1.0 mm penetration depth. 

The sleeve plunge path was indicated by the black dash-dotted line, the weld was 

completely refilled, with no defects could be observed through the weld. Top surface 

of the weld showed a slightly higher position than original surface of Al 6022 due to 

the impact of axial force, which was imposed by clamp ring. It also suggests that 

there was no material loss during welding process. The Al/steel interface of weld was 

uniform, where no defects such as voids or cracking were detected. The observation 

was due to the production of weld was under an appropriate heat input welding 

condition in comparison to previous studies, thereby zinc coating material did not 

displaced into the top Al alloy [39].  

a)  

b) c) d)  

e) f) g)  

Fig. 4. (a) Cross section of the Al 6022/DP600 weld, (b) SEM image of magnified 

view of black rectangle in (a), STEM images in (c) magnified view of white rectangle 

in (b), (d) Al/Al-Zn layer interface, (e) Al-Zn layer/steel interface, (f) magnified view 

of red rectangle in (d), and (g) magnified view of blue rectangle in (e). 
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Magnified view of black rectangle in Fig. 4(a) is shown in Fig. 4(b), liquid state 

inter-diffusion between Al and zinc coating material produced an Al-Zn eutectic 

structure layer at the Al/steel interface, as the temperature at the interface exceeded 

Al–Zn eutectic point of 381°C [39]. Distribution of the Al-Zn layer was 

inhomogeneous due to a complex material flow pattern in the stir zone. As 

demonstrated by Fig. 4(c), which shows magnified view of white rectangle in Fig. 

4(b), Al-Zn solid solution structure was characterized by refined and equiaxed grains, 

which it could probably attributed to occurrence of dynamic recrystallization 

generated by frictional heat and severe plastic deformation imposed by welding tool. 

Images of interfaces at Al/Al-Zn layer and Al-Zn layer/steel of cross-section of 

the Al 6022/DP600 weld are shown in Fig. 4(d) and (e), respectively. The Al-Zn 

eutectic structure layer was well bonded to the top Al alloy materials and the bottom 

steel substrate, with no defects such as cracking or poles were observed at these 

interfaces. Sub-grain boundaries were noted within the Al-Zn eutectic structure grains 

(Fig. 4(d)), and this may be explained by plastic deformation and recovery throughout 

the welding process. The presence of sub-grain boundary is considered as beneficial 

to increase the weld strength because it can retard the movement of dislocation. 

Magnified views of red rectangle in Fig. 4(d) and blue rectangle in Fig. 4(e) were 

shown in Fig. 4(f) and (g), respectively. The chemical compositions in the regions 

I-VIII in are quantified in Table 2. As shown in Fig. 4(f-g) and Table. 2, the dark and 

white precipitates generated at the Al-Zn grain boundary have been identified as 

Zn-rich (regions I and II in Fig. 4(f), and region VI in Fig. 4(g)) and Al-rich (region 

III in Fig. 4(f)) phase particles, which their formation was associated with the eutectic 

reaction between Al and Zn.  

Table. 2. EDX quantification results (wt%) indicated in Fig. 4(f) and (g). 

 I II III IV V VI VII VIII 

Fe  0.1  0.1 37.8 1.1 100 0.6 

Al 5.8 7.01 92.2 65.3 43.6 1.2  66.2 

Zn 94.2 92.8 7.5 34.4 12.2 97.7  33.2 

Si  0.1 0.3 0.2 6.4    

 

Fig. 5 shows hardness distribution measured through the mid-thickness of the top 

Al 6022 sheet. As a heat treatable alloy, a significant soft weld zone was generated in 

the Al 6022 due to a thermal cycle induced  by the refill FSSW process, which it in 

turns could be attributed to the coarsening or dissolution of β-Mg2Si [34]. Given the 

only impact of thermal cycle in heat affected zone (HAZ) was to form coarse grain 

size and coarsening / dissolution of precipitates, minimum hardness can be noted at 

the periphery between HAZ and thermos-mechanically affected zone (TMAZ). The 

hardness of Al 6022 was slightly increased in stir zone (SZ) due to formation of fine 

grain size, which was resulted by dynamic recrystallization. 
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Fig. 5. Hardness distribution in middle-thickness of the top Al 6022 and Al 5754. 

Fig. 6 shows the bright field images (TEM) and the corresponding SAD patterns 

of the selected areas at (a) Al side, which its magnified view is shown as yellow 

rectangle in Fig. 4(c), (b) Al-Zn eutectic structure and (c) zinc rich precipitate at the 

grain boundary. In Figs. 4(d) and 6(a), a highly deformed structure was very 

pronounced with Al 6022 material between the solid Al 6022 stir zone and the liquid 

Al-Zn eutectic structure. The deformed structure was elongated along the horizontal 

direction due to the impact of axial force imposed by welding tool and a pattern that 

was indexed as a [101] zone axis. The grain appearance was comparable to 

thermos-mechanically affected zone [34], however a significant finer grain size (≤ 1 

μm in thickness) is shown than in the Al 6022 base metal (see Fig. 1(a)). The 

phenomenon could be explained by the occurrence of incomplete or discontinued 

dynamic recrystallization. As shown in Fig. 4(f) and Table. 2, Al-Zn eutectic structure 

is composed of 65.3%Al, 34.4%Zn, and low levels of Fe and Si, which presents a 

nanocrystalline structure with a [0 0 1] zone axis (see Fig. 6(b)), while the Zn-rich 

precipitate was indexed as a [3 6 2] zone axis (see Fig. 6(c)).  
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a)  

b)  

c)  

Fig. 6. Bright field images (TEM) and the corresponding SAD patterns of selected 

area at (a) Al side (magnified view of yellow rectangle as shown in Fig. 4(c)), (b) 

Al-Zn eutectic structure and (c) zinc rich precipitate at Al-Zn grain boundary. 

In Fig. 4(e) and (g), intimate bonding was formed at Al-Zn layer/steel substrate 

interface due to a liquid/solid reaction, and element maps for Fe, Al, Si and Zn at the 

two locations are shown in Fig. 7(a) and (b), respectively. In Fig. 7(a), a high 

concentration level of Si was observed at the Al-Zn layer/steel substrate interface, 

indicating that the material was originated from the substrate materials. In addition to 

the nanoscale IMCs of Fe4Al13 and FeAl [39], presence of Si at a high concentration 

level could have promoted the formation of nonuniform intermetallic layer, which 

shows amorphous or nanocrystalline structure (see Fig. 7(c)). Thickness of the IMCs 

layer is rather thin (< 200 nm), it is because that the presence of zinc coating could 

have prevented a direct contact between Al and steel, thereby inhibiting chemical 

reaction and interdiffusion. Furthermore, addition of silicon to aluminum has a 

retarding effect on the growth kinetics of reaction layers, although the growth 

suppression mechanism remains unclear [56, 57].  

1  µm1  µm
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a)  

b)  

c)  

Fig. 7. Element maps of Fe, Al, Si and Zn in the Al-Zn layer/steel substrate interface 

at locations of (a) Fig. 4(e) and (b) Fig. 4(g), (c) SAD pattern of (a) region V in Fig. 

4(g). 

 

3.3. Interfacial joining mechanism of Al/AlSi coated steel weld 

3.3.1. Heat generation and thermal cycle 

Fig. 8 shows welding parameters (sleeve and pin positions, rotation speed) and 

tool current over welding time during refill FSSW of Al 5754 and AlSi coated steel. 

Real joining process started when the tool accelerated to a predetermined rotational 

condition at 2800 rpm from free running speed of 500 rpm within 0.5 s. In the 

meanwhile, rotational speed reduced again to the free running speed of 500 rpm after 

the sleeve and pin move back to the home position (workpiece surface). The tool 

rotational speed was maintained at a constant level during entire joining process, and 

the tool sleeve and pin position remained identical during the dwell period. It is 

noteworthy to mention that the pin moved further and faster than the sleeve due to a 

larger volume of sleeve.  ACCEPTED M
ANUSCRIP
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Fig. 8. Tool rotational speed, position and current during welding process. 

 

According to Su and Gerlich et al. [58], the heat generation depends on tool axial 

force and torque: 

𝑄𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =  ∑ 𝐹𝑜𝑟𝑐𝑒(𝑛)(𝑛=𝑁
𝑛=1 𝑥𝑛 − 𝑥𝑛−1) + ∑ 𝑇𝑜𝑟𝑞𝑢𝑒𝑛=𝑁

𝑛=1 (𝑛)(𝑛),t  

where 𝑥𝑛 is the penetration depth at sample (𝑛),  is the angular velocity (rad s–1), 

𝑛 is the sample number, N is the final sample and 𝑡 is the sampling time. 

In the present study, as shown in Fig. 8, the tool axial force is corresponding to 

both pin current and sleeve current, and the tool torque is corresponding to the spindle 

current. It is noted that tool torque was generated from the friction between each 

component of the tool [39], and axial force was generated from the tool frictional and 

relative motions (resulted from the tool vibration) during the tool rotational speed 

acceleration phase. Both the tool axial force and torque significantly increased during 

the tool sleeve penetration period, which could be attributed to the increase of strain 

rate and axial force. It is worth noting that the tool axial force sharply dropped during 

the dwell period, while the spindle current maintained at a constant level, which it 

probably because Al 5754 melting phenomena had not been involved in the dwelling 

process. In this regard, in comparison to tool penetration, tool rotation is a more 

significant factor influencing heat generation, the findings are also in agreement with 

the previous research [58-60].  

Effect of tool penetration depth on thermal cycle at the Al 5754/AlSi coated steel 

interface is shown in Fig. 9. It is noted that interfacial temperature rapidly increased 

with increasing depth of tool sleeve penetration. Nonetheless, it was further observed 

that heating rate was not affected by the plunge rate, as heating rate during the tool 

penetration stage was determined by the tool rotational speed employed [60, 61]. 

Meanwhile, a higher extent of material was involved and stirred with increasing of 

penetration depth, which counteracts contribution of a higher plunging rate. The 
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temperature slightly dropped initially but gradually increased during the dwell period 

due to the impact of tool torque only (see Fig. 8) and this is because that the 

maximum temperature (482 ℃) did not exceed the solidus temperature of Al 5754 

(590 ℃). In subsequent, the temperature dropped at a relatively lower cooling rate 

when the spot weld cooled to room temperature following welding. 

 

Fig. 9. Thermal cycle at the Al 5754/AlSi coated steel interface during the joining 

process. 

 

3.3.2. Interfacial microstructure 

As shown in Fig. 10(a), defect-free Al 5754/AlSi coated steel weld was 

successfully manufactured by refill FSSW. The top Al 5754 was imposed onto the 

AlSi coatings as a result of the frictional heat and axial force imposed by the welding 

tool, whose microstructure has been extensively investigated elsewhere [40]. 

Magnified views of blue rectangle at weld center and the red rectangle at the weld 

boundary are shown in Fig. 10(b) and (c), respectively. In Fig. 10(a) and (b), the 

Al/steel interface was uniform, with no detection of macro defects at weld center. The 

original coating interface between the top Al 5754 and AlSi coating could not be 

identified since the two materials were mixed completely by a combination of 

mechanical stirring and solid interdiffusion. However, weld imperfection of partial 

metallurgical bonding or kissing bond was observed at the weld boundary [40, 62], 

which originated from the original interface between Al 5754 and AlSi coating layer 

and arrested at the AlSi/IMC layer interface. It is believed that formation of kissing 

bond was associated with insufficient frictional heat and plastic deformation, thereby 

the surface oxide film could not be completely broken into particles, thus allowing 

formation of an intimate metallurgical bonding. The presence of kissing bond is 

detrimental to the weld strength since it decreases the effective bonded area and acts 

as a crack initiation and propagation site. Hardness distribution of top Al 5754 

measured in midthickness is shown in Fig. 5. Significant softening had not observed 

in the weld zone when comparing against the hardness of the base material (marked 

by black dash-dotted line), and it is because that Al 5754 is not a heat treatable 
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material. 

a)  

b) c) d)  

Fig. 10. (a) Optical microscope of the cross-section of Al5754/Al-Si coated weld (1.4 

mm penetration depth) and magnified views of the (b) blue rectangle and (c) red 

rectangle in (a), (d) magnified view of red rectangle in (b). 

The maximum temperature shown in Fig. 9 did not exceed both solidus 

temperature of Al 5754 and eutectic temperature of AlSi coated material (577℃). The 

results suggested that a real solid-state process had been taken place when joining Al 

5754 sheet material to AlSi coated steel. The magnified view of white rectangle in Fig. 

10(b) was shown in Fig. 10(d), AlSi coating layer was well bonded to IMC layer and 

Al 5754 sheet materials. However, poles were noted at the IMC layer/steel substrate 

interface, which could be formed during the hot-dipping process. Fig. 11 shows a 

higher magnification at the IMC layer/steel interface, where concentration of Si 

permeated into the IMC layer. As indicated in Fig. 11 and Table. 3, chemical 

composition at regions of X and XII is consistent with that of Al7Fe2Si and Al5Fe2(Si), 

respectively. Considering that melting point of Al7Fe2Si and Al5Fe2(Si) is 855 ℃ and 

1030 ℃, respectively [63, 64], the joining process had not involved with activities of 

phase transformation. As shown in Fig. 12, the Al7Fe2Si phase is in a finger-like 

appearance with a [2 -2 1] zone axis, and the Al5Fe2(Si) was indexed as a [-1 3 4] 

zone axis.  
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Fig. 11. HAADF image at IMC layer/steel interface with element maps of Al, Fe and 

Si. 

Table. 3. EDX quantification results (wt%) indicated in Fig. 11(a). 

 IX X XI XII 

Al 46.13 54.8 0.34 26.3 

Fe 51.28 36.9 98.51 14 

Si 2.57 8.29 1.15 59.7 

a)  

b)  

Fig. 12. Bright field images (TEM) and corresponding SAD patterns of selected areas 

at (a) Al7Fe2Si and (b) Al5Fe2(Si). 

 

3.4. Mechanical properties of Al/coated steel welds 

Findings of previous studies demonstrated that a maximum lap shear strength of 

6.95 kN could be achieved for Al/zinc coated steel welds, with welds failed at the 

Al/steel interface under the lap shear loading [39]. Fig. 13(a) presents a typical 

interfacial fracture surface on the Al side, and quantification of the chemical 

composition of regions A–F is in Table. 4. Corresponding fracture path at different 

locations and quantification of chemical composition in regions I-IX is shown in Fig. 

14 and Table. 5, respectively. As shown in Fig. 13(a), the interfacial bonded area is 

larger than that of the sleeve diameter (indicated by black dash-dotted line), since the 

zinc coated material was displaced approx. 1 mm outside the sleeve periphery. The 

displaced zinc coated material reacted with Al material, and created a brazing effect 

and thus significantly increased the weld strength [39]. As shown in Figs. 13(b),14(a) 

0 . 5  µm0 . 5  µm

0 . 2  µm0. 2  µm
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and Tables. 4, 5, the crack initiated at the weld boundary and then propagated along 

the Al-Zn eutectic structure layer around the weld. In subsequent, the crack 

propagated along the IMC layer in sleeve stirring zone (regions C and D in Fig. 13(a), 

regions IV-VI in Fig. 14(b)), and thereafter fractured along the Al-Zn eutectic layer in 

the pin diameter zone (regions A and B in Fig. 13(a), regions VII-IX in Fig. 14(c)). 

Therefore, the interfacial bonded area can be divided into three categories: i) brazing 

area, ii) sleeve stirring area and iii) pin stirring area.  

 

a) b)  

Fig. 13. (a) Overall fracture surface of Al/zinc coated steel weld, (b) magnified view 

of region E in (a). 

 

Table. 4. EDX quantification results (wt%) indicated in Fig. 13. 

 A B C D E F 

Fe  0.63 28.34 41.39 1.30  

Al 50.88 52.89 46.10 43.85 56.06 100.00 

Zn 48.94 45.83 25.05 13.49 42.43  

Si 0.17 0.65 0.51 1.27 0.21  

a) b) c)  

Fig. 14. Fracture path at the location of (a) brazing area, (b) sleeve stirring area and (c) 

pin stirring area in Fig. 13. 

 

Table. 5. EDX quantification results (wt%) indicated in Fig. 14. 

` I II III IV V VI VII VIII IX 

Fe 3.13 4.74 2.91 56.41 14.57 17.26    

Al 62.01 61.59 46.41 31.68 71.45 73.52 66.9 58.52 62.61 
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Zn 34.86 33.67 50.68 10.99 10.9 7.89 33.1 41.2 36.83 

Si    0.92 3.08 1.33  0.28 0.56 

 

In Fig. 15, it was found that lap shear strength of Al 5754/AlSi coated steel weld 

had significant increase when tool penetration depth increased from 0.9 mm to 1.0 

mm, and then steady increased, as the tool penetration depth increased from 1.1 mm 

to 1.4 mm, to a maximum strength of 4.44 kN, which it exceeded the recommended 

minimum weld strength requirement of 3.79 kN according to the AWS D8.1M:2007 

standard (indicated by red dash dotted line) [65]. It is worth mentioning that the 

reported lap shear strength in present study shows a higher repeatability than previous 

research literatures as a dwelling period had been considered [40]. Furthermore, weld 

strength of Al 5754/AlSi coated steel weld showed less sensitivity to welding 

parameters of this study comparing to Al/zinc coated steel weld [39], this is probably 

because that melting of base metals or AlSi coated material was not carried out in this 

study.  

 

Fig. 15. Effects of tool penetration depth on weld lap shear strength. 

Figs. 16-19 show fracture surfaces and paths of Al 5754/AlSi coated steel welds 

produced at tool sleeve penetrations depth of 0.9 and 1.4 mm, respectively, which 

with no brazing effect is shown at welds interfaces compared to Al/zinc coated steel 

weld (Fig. 13). Full interfacial bonding was formed under all penetration depths due 

to contribution of a dwell period, whose area is consistent with tool sleeve diameter. 

As shown in Figs. 16-19 and Tables 6-9, the crack initiated at the kissing bond at weld 

boundary (region D in Fig. 16(a), regions I-III in Fig. 17(a), region E in Fig. 18(a), 

and regions I-III in Fig. 19(a)), then predominately propagated along the Al 5754/AlSi 

coating interface when the weld was fabricated under a lower penetration depth (see 

region B and C in Fig. 16(a)), which suggests that the bonding quality was poor 

between the Al 5754 and AlSi coating due to the insufficient temperature. In the end, 

the crack fractured at the AlSi coating/IMC layer interface at the weld center (region 

A in Fig. 16(a), and regions IV-VI in Fig. 17(b)). However, given that the crack was 
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more pronounced propagated along the IMC layer after it initiated at the kissing bond 

(regions A-D in Fig. 18(a), and regions IV-VI in Fig. 19(b)), when the weld was 

fabricated under a higher penetration depth (1.4 mm), preferable bonding could had 

been formed at Al 5754/AlSi coating interface and harder IMC layer is believed to be 

beneficial to the weld strength. 

 

a) b)  

Fig. 16. Fracture surface of the Al5754/AlSi coated steel weld: (a) overall and (b) 

magnified view in the white rectangle in a (0.9 mm penetration, 1.42 kN).  

 

Table. 6. EDX quantification results (wt%) indicated in Fig. 16. 

Region A B C D E F G H I 

Al 53.65 95.86 95.99 92.66 93.58 92.93 95.14 93.76 95.15 

Fe 38.23 1.07 0.72 0.59 1.79 0.83 1.07 0.42 0.45 

Si 8.12 2.26 2.38 4.91 2.80 4.15 2.60 4.23 2.50 

Mg  0.81 0.91 1.84 1.83 2.09 1.19 1.59 1.90 

 

a) b)  

Fig. 17. Fracture path at the location of (a) weld boundary and (b) center in Fig. 16(a). 
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Table. 7. EDX quantification results (wt%) indicated in Fig. 17. 

 I II III IV V VI 

Al 97.52 96.74 97.34 56.32 56.70 53.20 

Fe 1.64 0.69 0.29 32.13 32.31 36.21 

Si 0.26 0.36  11.55 10.98 10.59 

Mg 0.57 2.22 2.37    

 

a) b)  

Fig. 18. Fracture surface of the Al5754/AlSi coated steel weld: (a) overall and (b) 

magnified view in the white rectangle in a (1.4 mm penetration, 4.44 kN). 

 

Table. 8. EDX quantification results (wt%) indicated in Fig. 18. 

Region A B C D E F G H I 

Al 93.5 54.0 51.7 51.7 96.7 96.4 51.9 95.0 95.8 

Fe 2.8 38.2 40.6 40.5  0.1 40.9 0.6 0.6 

Si 3.7 7.8 7.7 7.8 1.1 1.3 7.1 3.1 1.6 

Mg     2.2 2.2 0.1 1.3 2.0 

 

a) b)  
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Fig. 19. Fracture path at the location of (a) weld boundary and (b) center in Fig. 18(a). 

 

 

 

Table. 9. EDX quantification results (wt%) indicated in Fig. 19. 

 I II III IV V VI 

Al 94.53 93.02 96.41 54.80 54.54 54.52 

Fe 3.60 4.00 2.17 32.70 33.84 33.44 

Si 0.92 1.58  12.50 11.62 12.04 

Mg 0.95 1.40 1.42    

4. Conclusions  

In this study, refill friction stir spot welding was used to join Al alloy to uncoated, 

zinc coated and AlSi coated steels, respectively. Effect of coated materials on the 

joining mechanism and interfacial microstructure were studied. The following 

conclusions can be drawn: 

(1) Defect-free Al 6022/zinc coated steel weld was successfully fabricated by refill 

friction stir spot welding. However, Al 6022 and uncoated steel could not be 

welded under the same welding condition. Al-Zn eutectic structure layer was 

produced at the Al 6022/zinc coated steel weld interface and a brazing effect was 

generated outside the sleeve periphery. 

(2) Interfacial bonding of Al6022/zinc coated steel weld was attributed to a 

liquid/solid reaction between the Al-Zn layer and the surrounding materials. 

Sub-grain boundary was noted in the Al-Zn eutectic structure, and the Al 6022 

material directly above the Al-Zn layer underwent insufficient dynamic 

recrystallization.  

(3) Bonding formation at Al 5754 and AlSi coated steel interface was suggested to be 

induced by a solid/solid reaction between Al alloy and AlSi coating material, as 

the joining process did not involve with melting of base metals or AlSi coating 

materials 

(4) Kissing bond formed at the weld boundary acted as a crack initiation and 

propagation site, and the present study showed that weld strength of Al 5754/AlSi 

coated steel was greatly influenced by properties of original IMC layer. 
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