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Abstract

In this paper, we study profit maximizing hub location problems. We formulate mathe-

matical models determining the location of hubs, designing the hub networks, and routing

the demand in order to maximize profit. The profit is calculated by summing the total rev-

enue minus total cost. Total cost includes the total transportation cost, the installation cost

of hubs, and the cost of operating hub links. We consider all possible allocation strategies:

multiple allocation, single allocation, and r-allocation. As an extension, for each allocation

strategy, we also model the cases in which direct connections between non-hub nodes are

allowed. To test and evaluate the performances of the proposed models, we use two well-

known data sets from the literature. We analyze the resulting hub networks under various

different parameter settings.

Keywords: Hub location, hub network design, profit maximization.

1 Introduction

Hubs serve as switching, sorting, connecting, and consolidation points in many-to-many distri-

bution networks. In hub networks, demand between origin-destination pairs are routed through

hubs instead of using direct connections. The aim is to reduce the costs of establishing a net-

work connecting many origins and destinations, and also to consolidate flows at hubs to exploit

economies of scale. Hub networks have widespread applications in air passenger and freight

transportation, express shipment, postal delivery, public transportation networks, and telecom-

munications (Campbell et al. [16] and Contreras [21]).

Hub location problems generally consist of two main decisions: the location of hubs and

the allocation of demand nodes to these hubs. The optimal routes of flow on the hub network

to satisfy the demand between origin-destination pairs is also to be determined. Several hub

location problems are proposed in the literature. The reader may refer to reviews on this area

by Campbell et al. [16], Alumur and Kara [3], Campbell and O’Kelly [19], and Contreras [21].
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Hub location problems can be classified based on the design of the access network which

represents the allocation of demand nodes to hubs. There are two basic allocation strategies in

the literature: single allocation and multiple allocation. In single allocation, each node must be

allocated to exactly one hub. In multiple allocation, on the other hand, there is no limit on the

maximum number of hubs that a node can be allocated to. Additionally, Yaman [61] introduced

the r-allocation strategy, where each node can be allocated to at most r hubs.

Different applications call for different design characteristics for access networks. For in-

stance, in express delivery networks, non-hub nodes are customarily allocated to a single hub

due to ease of management. However, single allocation may not be reasonable for other appli-

cation areas, especially if multiple allocation strategy is economically justifiable. On the other

hand, in some applications such as air passenger or public transportation, both single and multi-

ple allocation strategies are two extremes. In such cases, r-allocation strategy can be considered

where the number of connections between a non-hub node and a hub node is restricted by a

fixed number. Additionally, allowing for the possibility of direct connections between non-hub

nodes is also of interest, particularly in air passenger transportation where most of the clients

prefer non-stop flights to arrive at their destinations or in freight transportation where there

is enough demand to send direct shipments between non-hub nodes. Note that, in spite of the

similarities between these allocation strategies, there are some fundamental differences which

necessitate them to be modeled separately.

Classical hub location problems are modeled mainly from a cost point of view. Hence, generic

models aim to minimize total network cost to satisfy all demand. However, from a profit point

of view, it may be more advantageous not to serve all demand. As such, some origin-destination

pairs may remain unserved when it is not profitable to be served. The decision on how much

demand to serve should be made by considering the trade-off between revenue and cost.

In this paper, we focus on profit maximizing hub location problems. Taking profit into

consideration, we allow for the possibility of serving a subset of the demand. In this regard, we

assume that a portion of the demand can be unserved when it is not profitable. This assumption

actually provides a more realistic framework for designing hub networks.

The profit maximizing hub location problems introduced in this study aim to find how many

hubs to locate and where, how to allocate demand nodes to these hubs, the optimal design of

the hub network, and optimal routes of flow to satisfy the demand selected to be served between

origin-destination pairs.

Our contribution in this paper is to introduce new problems and develop mathematical

models determining the locations of hubs, designing the hub networks, and routing the demand

in order to maximize profit. We introduce novel mathematical formulations determining the
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set of demand nodes to be served to maximize profit in hub location problems. We model the

multiple and single allocation versions as well as the r-allocation strategy. For each allocation

strategy, we also model the versions in which direct connections between non-hub nodes are

allowed. We present extensive computational analysis to evaluate the solution potential of the

proposed models with emphasis on the effect of the choice of parameters.

Potential applications of profit maximizing hub location problems arise in the design of airline

passenger and freight transportation networks, truckload and less-than-truckload transportation,

and express shipment and postal delivery. Our models are applicable to the design of new hub

networks as well as for improving the existing ones. The proposed models can be used as decision

support tools for evaluating prospective locations of hubs and deciding on the optimal shipment

strategies, while determining the set of origin-destination pairs to be served.

The remainder of the paper is organized as follows: In the next section, we present a survey

of the relevant literature. In Section 3, we define the problem and introduce some notation to

be used in the following sections. We formulate mixed-integer linear programming models for

the profit maximizing hub location problems in Section 4. In Section 5, we test and evaluate

our models on instances derived from the CAB and AP datasets. Finally, Section 6 provides

some concluding remarks.

2 Literature Review

As mentioned in the introduction, hub location problems presented in the literature are com-

monly classified according to the selection of allocation decisions. The proposed mathematical

models and algorithms are usually dependent on these access network design decisions. For some

example studies, the reader may refer to Ernst and Krishnamoorthy [29], Labbé et al. [36], and

Chen [20] for single allocation, and to Ernst and Krishnamoorthy [30], Boland et al. [13], and

Contreras et al. [24] for multiple allocation models and algorithms. There are studies simulta-

neously addressing both allocation strategies as well such as Campbell [14], Skorin-Kapov et al.

[56], and O’Kelly et al. [49].

Regarding the design of the network in-between hubs, earlier studies on hub location assumed

the inter-hub network to be complete with a direct link between every hub pair (for example,

the seminal papers O’Kelly [45] and O’Kelly [46], Campbell [14], Ernst and Krishnamoorthy

[29], and Skorin-Kapov et al. [56]). For many studies, this is a direct consequence of having

triangle inequality for transportation costs and not having any fixed costs for inter-hub links in

the models. However, many real-life hub networks from various applications do not operate fully

interconnected hub networks. Despite significant contributions on designing complete inter-hub
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networks, relatively little effort has been devoted to the possibility of designing incomplete inter-

hub networks. Examples of such studies are Nickel et al. [44], Campbell et al. [17], Alumur et al.

[5], Contreras et al. [25], Alumur et al. [6], and Lüer-Villagra and Marianov [37].

Designing distinct topologies for inter-hub networks are also considered in the literature.

Contreras et al. [25], and Martins de Sá et al. [41] studied the problem in which hubs are

connected by means of a tree network. Potential applications arise when the set-up costs for

hub links are high. Yaman [60] designed a hierarchical three-level hub network, where the top

level consists of a complete network and the second and third levels are unions of star networks.

Alumur et al. [4] studied the design of a hierarchical star-mesh-star hub network with multiple

transportation modes. Yaman and Elloumi [62] modeled the design of two-level star networks

taking service quality considerations into account. Contreras et al. [26] analyzed the case where

the hubs are connected by means of a cycle, and Martins de Sá et al. [42] by means of a line.

In most of the hub location studies, direct connections between non-hub nodes is not possible.

Some authors included this possibility in their models such as Aykin [9], Aykin [10], Nickel et al.

[44], Sung and Jin [57], Wagner [59], and Mahmutoğulları and Kara [38].

Other recent developments in hub location include modeling uncertainty (Contreras et al.

[23], Alumur et al. [7], and Meraklı and Yaman [43]), incorporating the time dimension (Contr-

eras et al. [22], Alumur et al. [8], and Correia et al. [27]), taking multiple modes of transportation

into account (Alumur et al. [6] and Serper and Alumur [55]), and modeling reliability of hubs

(Kim and O’Kelly [34], Azizi et al. [11], and Tran et al. [58]).

Most of the classical hub location models assume that the transportation cost of flows via

hub links is reduced by an exogenous discount factor independent of flow (usually referred as

α). However, as noted by Campbell and O’Kelly [19], taking a flow-independent discount for

transportation on hub links may undermine the basic definition for economies of scale. To

deal with this issue, different approaches have been considered in the literature, including flow-

dependent discounts for inter-hub links using a non-linear cost function (O’Kelly and Bryan

[48] and Horner and O’Kelly [32]), considering economies of scale with flow thresholds (Podnar

et al. [52]), hub arc location models (Campbell et al. [17] and Campbell et al. [18]), incomplete

inter-hub network designs (Alumur et al. [5] and Contreras et al. [25]), and models with fixed

and variable cost components (Kimms [35], O’Kelly et al. [50], and Serper and Alumur [55]).

In this paper, we follow the classical assumption, where the economies of scale is exploited

only between hubs and calculated by using a constant discount factor. Due to the complexity of

our problems, as noted in O’Kelly and Bryan [48], it would be impractical to incorporate a flow-

dependent economies of scale function directly into our models, which would lead to a non-linear

cost function. On the other hand, as noted in Campbell [15], allowing incomplete hub networks
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that do not require full connectivity of all hub nodes provides a better match between optimal

flows and transportation cost discounts. This is exactly the case in our problem. Moreover,

we analyze the resulting flows on network connections as well as the impact of flow-dependent

economies of scale on transportation cost through our computational analysis to justify the use

of a constant economies of scale discount factor.

There are not many studies in the literature focusing on maximization objectives within

hub location problems. Perhaps, one of the early works is Campbell [14] introducing the hub

maximal covering location models. Given a number of hub facilities to locate, the problem

aims to maximize the demand covered. Campbell [14] defined different notions for coverage.

Hwang and Lee [33] studied uncapacitated single allocation p-hub maximal covering problem and

proposed a heuristic algorithm for the problem. More recently, Peker and Kara [51] extended the

definition of coverage and introduced the notion of partial coverage that changes with distance.

They developed mixed-integer programming formulations with partial coverage for single and

multiple allocation versions.

Similar to hub maximal covering problems, we do not force all demand nodes to be served

in this study. However, we do not have a given budget for locating hubs and we maximize profit

instead of the covered demand. Moreover, we also consider total transportation cost which is

not taken into account in covering type hub location studies.

There are studies determining the locations of hubs within a competitive environment. In

these studies, instead of having a single firm, there are a number of firms competing to serve the

demand. Hence, competitors’ decisions affect the profit of a firm. Different objective functions

are considered in competitive hub location problems, such as maximizing the demand captured,

and maximizing total revenue or profit. Examples of studies considering a competitive environ-

ment include Marianov et al. [39], Eiselt and Marianov [28], Gelareh et al. [31], and Lüer-Villagra

and Marianov [37]. There are also some studies considering a game theoretic framework in ad-

dressing competitive hub location problems such as Sasaki and Fukushima [54] and Sasaki et al.

[53].

Even though objective functions of some competitive hub location studies also aim at max-

imizing profit, we do not consider a competitive environment in this study. In our study, there

is only a single firm that wants to design its hub network in the most profitable way. Moreover,

we do not force all demand to be served.

Alibeyg et al. [1] introduced a hub network design problem with profits. The problem aims

to determine the locations of hubs, decide which edges to activate, select pairs of nodes and a

set of commodities to be served, and make routing decisions with the objective of maximizing

total profits. They considered a multiple allocation setting and assumed that each origin and

5



destination path consists of at least one and at most two hub nodes. The demand between

two pairs of nodes is served through at most three edges. They modeled different variations of

the problem and use CAB dataset to test the performance of their models using CPLEX. In a

subsequent study, Alibeyg et al. [2] proposed an exact algorithm for the profit-oriented models

introduced by Alibeyg et al. [1]. They embedded Lagrangean relaxation within a branch-and-

bound algorithm. They also used reduction tests and partial enumeration to reduce the problem

size as well as the computational effort.

Perhaps the most related study to ours is Alibeyg et al. [1]. Similar to Alibeyg et al. [1],

we study hub network design problems with profits and introduce profit maximizing objective

functions. In this paper, we provide a new modeling framework for the problem. Unlike Alibeyg

et al. [1], we do not assume that the demand between pair of nodes can be served through at

most two hubs or three edges. In our problem, the demand of an origin-destination pair can

be shipped through any number of hubs and network connections as necessary. We include

additional design variables to account for the design of the inter-hub network. Incomplete

hub networks are employed in many real-life applications including but not limited to freight

transportation, rapid transit systems, express shipment and postal delivery networks. Therefore,

relaxing a commonly used assumption on the structure of the origin-destination paths, which

limits the number of hub nodes to two, leads to a more realistic model where non-trivial routing

decisions are explicitly taken into account. In our computational analysis, we present a direct

comparison of our results with one of the models presented in Alibeyg et al. [1]. Furthermore,

in this paper, we study multiple, single, and r-allocation versions of the problem and also allow

for the possibility of direct connections between non-hub nodes.

3 Problem Definition and Notation

The hub location problems that we study in this paper determine the location of hubs and design

the hub network in order to maximize profit. The location decision focuses on the selection of

a set of nodes to establish hubs, whereas the network design decisions deal with the design of

the links to connect nodes of the network. The optimal routes of flows through the network are

also to be determined.

There is a given set of nodes as well as the demand that can be served between them.

Demand is defined between pairs of nodes. The problem is to determine which set of origin-

destination (O-D) pairs to serve and how to serve them to maximize profit. Taking profit into

consideration, the problem measures the trade-off between the revenue and cost in determining

which O-D pairs to serve. In this regard, it is assumed that some O-D pairs can remain unserved
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if it is not profitable to serve them.

We assume that hubs have enough capacity to handle all flow. In this case, the demand

of an O-D pair can be satisfied completely, if it is profitable and partial satisfaction of the

demand would be unreasonable. The amount of demand handled at hubs may in turn effect

the capacities of the hubs to be established. However, we do not consider the capacities of the

hubs to be established in our models. The capacity of a hub is dependent on various factors

including decisions related to frequency and scheduling. For example, the capacity of an airport

hub is dependent on the maximum hourly or daily numbers of aircraft movements. Similarly,

the capacity of a transfer hub in an express shipment delivery network depends on the amount

of parcels that can be sorted, for example, in an hour. As we do not model the time dimension

in this study, it is difficult to assess and account for the capacity of a hub.

A set of hub nodes are to be located to serve the demand. All nodes can be potential hub

facilities. A set of hub links to operate between hub nodes is also to be determined. We do

not impose a fully interconnected hub network. Demand of an O-D pair can be shipped on any

number of network connections as necessary. Moreover, no particular network structure (such

as a star or a tree network) is assumed for the inter-hub network.

For the design of the access network, we consider all possible allocation strategies introduced

in the literature; i.e., single allocation, multiple allocation, and r-allocation. Additionally, we

consider the cases where the demand of an O-D pair can be shipped directly without using any

intermediary hub facilities. Considering all the possibilities for shipments, the problem is to

design the hub network in the most profitable way.

The objective of our problem is the maximization of total profit. Total profit is calculated by

subtracting total cost from the total revenue. Revenue is obtained from satisfying the demand

of each O-D pair. We assume that price is exogenously determined by the market and that the

revenue is independent from the route of flow of the demand.

Total cost includes the variable transportation cost, the fixed installation cost of hubs, and

the fixed cost of activating links. The transportation cost on the hub network between each O-

D pair is calculated by the cost of transportation from origin-to-hub (collection), between hubs

(transfer), and from hub-to-destination (distribution). In case of direct connections, there is no

collection, transfer, and distribution legs. In this case, transportation cost is calculated by the

cost of shipping all demand between an O-D pair using the direct connection in-between. Unit

transportation costs do not need to satisfy triangle inequality. In addition to transportation

cost, there is a fixed cost involved for operating an inter-hub link as well as a direct link between

non-hub nodes. No operational cost is considered for the allocation connections.

There is economies of scale between hubs, for example, due to bulk transportation or frequent
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service. It is assumed that economies of scale is reflected on the transportation cost by a constant

discount factor. We provide extensive analysis with varying values of the economies of scale

factor.

We introduce the following notation for the parameters required for modeling the problem:

N Set of nodes.

wij Amount of demand to be shipped from node i ∈ N to node j ∈ N .

(Oi =
∑
j∈N

wij denotes the flow originated at node i ∈ N .)

rij Revenue from satisfying a unit demand from node i ∈ N to node

j ∈ N .

cij Unit cost of transportation from node i ∈ N to node j ∈ N .

fk Fixed installation cost of a hub at node k ∈ N .

gkl Fixed cost of activating a hub link from hub k ∈ N to hub l ∈ N .

qij Fixed cost of activating a direct link from node i ∈ N to node

j ∈ N .

α Transportation cost discount factor (0 ≤ α < 1 ).

We model single, multiple, and r-allocation versions of the profit maximizing hub location

problem. For each allocation rule, we also model the cases in which direct connections between

non-hub nodes are allowed. In the following section, we introduce the mathematical formulations

for different versions of the problem.

4 Mathematical Formulations

In this section, we present mixed-integer linear programming (MILP) models for different ver-

sions of the profit maximizing hub location problem. In the next section, we introduce our

MILP model for the multiple allocation problem. In Section 4.2, we present MILP models for

the single allocation and the r-allocation versions of the problem. In Section 4.3, we introduce

models allowing for direct connections with all allocation rules.

4.1 Multiple allocation model

We now introduce a mathematical model for the multiple allocation version of the problem. In

this problem, a non-hub node can be allocated to as many hubs as it is profitable. So, there is

no limit on the number of hubs that a non-hub node can be allocated to. The decision variables

that need to be defined for the multiple allocation model are as follows:
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hk =

 1, if a hub is located at node k ∈ N ,

0, otherwise.

yijkl =


1, if the demand between node i ∈ N and j ∈ N is satisfied through a path

with the first hub k ∈ N and the last hub l ∈ N ,

0, otherwise.

zkl =

 1, if an inter-hub link is operating from hub k ∈ N to hub l ∈ N ,

0, otherwise.

fikl = Amount of demand originated at node i ∈ N and routed on the inter-hub link from

hub k ∈ N to hub l ∈ N .

The profit maximizing multiple allocation hub location problem is modeled as:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + clj)wijyijkl +
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl

+
∑
k∈N

fkhk +
∑
k∈N

∑
l∈N

gklzkl] (1)

s.t.
∑
k∈N

∑
l∈N

yijkl ≤ 1 i, j ∈ N (2)

∑
l∈N

yijkl +
∑

l∈N :l 6=k
yijlk ≤ hk i, j, k ∈ N (3)

∑
l∈N, l 6=k

fikl −
∑

l∈N, l 6=k
filk =

∑
j∈N

∑
l∈N

wijyijkl −
∑
j∈N

∑
l∈N

wijyijlk i, k ∈ N (4)

fikl ≤ Oizkl i, k, l ∈ N, k 6= l (5)

zkl ≤ hk k, l ∈ N, k 6= l (6)

zkl ≤ hl k, l ∈ N, k 6= l (7)

fikl ≥ 0 i, k, l ∈ N (8)

hk ∈ {0, 1} k ∈ N (9)

yijkl ∈ {0, 1} i, j, k, l ∈ N (10)

zkl ∈ {0, 1} k, l ∈ N, k 6= l (11)

The objective function value (1) represents net profit. Total cost is subtracted from the total

revenue to calculate the net profit. The first term of the objective function calculates the revenue

obtained from satisfying the demand. The terms in parenthesis represent the transportation cost,

the installation cost of hubs, and the cost of operating hub links, respectively. While calculating
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the total transportation cost, the hub-to-hub transportation is discounted by the economies of

scale discount factor, α.

Constraints (2) state that there must be a unique path recognized by the first and the last

hubs, if the demand between a given pair of nodes is to be satisfied. Constraints (3) ensure that

the demand between origin and destination nodes can be satisfied only through located hubs.

Constraints (4) are the flow balance equations. Constraints (5) enforce that the flow is routed

only on the operated hub links. Constraints (6) and (7) indicate that an inter-hub link can only

be operated if both of the end nodes of that link are hubs. Constraints (8)-(11) represent the

non-negative and binary variables.

In an uncapacitated environment, there always exists an optimal solution of the problem

where the demand of each O-D pair is either satisfied fully or not satisfied at all. Therefore, we

defined yijkl variables as binary. However, integrality property holds for these variables. Hence,

even though if we let yijkl ≥ 0 for all i, j, k, l ∈ N , there exists an optimal solution of this model

where yijkl ∈ {0, 1} ∀ i, j, k, l ∈ N . In our computational experiments, we solved the model with

yijkl variables being binary as we obtained better solution times compared with real variables.

As mentioned in the problem definition, we assume that hubs have enough capacity to handle

all flow. If this is not the case, then one may add the following sets of constraints into the model:

∑
i∈N

∑
l∈N

fikl ≤ Γkhk k ∈ N (12)

yijkl ≥ 0 i, j, k, l ∈ N (13)

where Γk is defined as the available capacity of a hub located at node k ∈ N . In the presence

of capacity constraints (12), yijkl variables should be defined as continuous routing variables

denoting the fraction of the demand from node i ∈ N to j ∈ N that is satisfied through a path

with the first hub k ∈ N and the last hub l ∈ N .

4.2 Single allocation and r-allocation models

In this section, we first introduce the mathematical model for the single allocation profit max-

imizing hub location problem. In the single allocation problem, each non-hub node can be

allocated to at most one hub node. To model this problem, in addition to the decision variables

introduced in the previous section, we define an additional binary variable as follows:

xik =

 1, if demand node i ∈ N is allocated to hub node k ∈ N ,

0, otherwise.

(xkk = 1 indicates that a hub is located at node k ∈ N .)
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The rest of the variables are the same as introduced in the multiple allocation model. The

profit maximizing single allocation hub location problem is modeled as:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + clj)wijyijkl +
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl

+
∑
k∈N

fkxkk +
∑
k∈N

∑
l∈N

gklzkl] (14)

s.t. (2), (4), (5), (8), (10), (11)∑
k∈N

xik ≤ 1 i ∈ N (15)

xik ≤ xkk i, k ∈ N (16)

yijkl ≤ xik i, j, k, l ∈ N (17)

yijkl ≤ xjl i, j, k, l ∈ N (18)

zkl ≤ xkk k, l ∈ N, k 6= l (19)

zkl ≤ xll k, l ∈ N, k 6= l (20)

xik ∈ {0, 1} i, k ∈ N (21)

The objective function value (14) accounts for the net profit obtained from summing the total

revenue minus total cost as in the multiple allocation version. Constraints (15) ensure that every

demand node can be allocated to at most one hub node. To guarantee that the demand nodes

can be allocated to only installed hubs, constraints (16) are included in the model. Constraints

(17) and (18) link path variables with allocation decisions. Constraints (19) and (20) ensure that

an inter-hub link is operated only in-between hubs. Constraints (21) are the domain constraints.

The rest of the constraints are the same as introduced in the multiple allocation model.

As mentioned in Marin et al. [40], constraints (17) and (18) can be strengthened by replacing

them with the following sets of constraints:

∑
l∈N

yijkl ≤ xik i, j, k ∈ N (22)

∑
k∈N

yijkl ≤ xjl i, j, l ∈ N (23)

Even though using the above strengthened constraints will result in a better LP relaxation

bound, in our preliminary experiments, we observed that the solution times of the model using a

commercial solver gets worse. Thus, we employed constraints (17) and (18) in our computational

experiments.
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Yaman [61] introduced the r-allocation version of a hub location problem where each node

can be allocated to at most r hubs. This version is actually a generalization of the single and

multiple allocation versions. When r = 1, the problem reduces to single allocation, whereas,

when r = |N |, it reduces to multiple allocation. In order to model the r-allocation version of the

profit maximizing hub location problem, we introduce the following set of constraints to replace

constraints (15) in the single allocation model:

∑
k∈N

xik ≤ r i ∈ N (24)

The MILP formulation of the profit maximizing r-allocation hub location problem consists of

the objective function (14) and constraints (2), (4), (5), (8), (10), (11), (16)-(21), and (24).

4.3 Models allowing for direct connections

In the previous models, we assumed that direct transportation between demand nodes (without

using any hubs) is not allowed. In this section, we model the variation in which direct connections

between non-hub nodes are allowed. To allow for direct services, we need to define an additional

binary variable sij as follows:

sij =

 1, if there is a direct connection from non-hub node i ∈ N to non-hub node j ∈ N ,

0, otherwise.

We first introduce the profit maximizing multiple allocation hub location problem with direct

connections:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl +
∑
i∈N

∑
j∈N

rijwijsij − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + cjl)wijyijkl

+
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl +
∑
i∈N

∑
j∈N

wijcijsij +
∑
k∈N

fkhk +
∑
k∈N

∑
l∈N

gklzkl

+
∑
i∈N

∑
j∈N

qijsij] (25)

s.t. (3)− (11)

sij + hj ≤ 1 i, j ∈ N (26)

sij + hi ≤ 1 i, j ∈ N (27)

sij +
∑
k∈N

∑
l∈N

yijkl ≤ 1 i, j ∈ N (28)

sij ∈ {0, 1} i, j ∈ N (29)
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The objective function (25) sums the revenues obtained from satisfying the demand through

the hub network and also through direct connections. In addition to the previously defined

costs, the total cost includes the cost of operating direct links between non-hub nodes as well. To

guarantee that the direct connections are operated only between non-hub nodes, constraints (26)

and (27) are included in the model. Constraints (28) result from modifying constraints (2) to

ensure that there is either a unique path through the hub network or a direct link to satisfy

the demand between a given pair of nodes. Finally, constraints (29) provide the domain for the

binary direct-connection variables.

We also model the profit maximizing single allocation hub location problem with direct con-

nections:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl +
∑
i∈N

∑
j∈N

rijwijsij − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + cjl)wijyijkl

+
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl +
∑
i∈N

∑
j∈N

wijcijsij +
∑
k∈N

fkxkk +
∑
k∈N

∑
l∈N

gklzkl

+
∑
i∈N

∑
j∈N

qijsij] (30)

s.t. (4), (5), (8), (10), (11), (15)− (21), (28), (29)

sij + xjj ≤ 1 i, j ∈ N (31)

sij + xii ≤ 1 i, j ∈ N (32)

The objective function (30) calculates net profit considering the revenue obtained through

direct connections as well as the cost of operating those links. Constraints (31) and (32) are

included in the model to assure that direct connections are allowed only between non-hub nodes.

The rest of the constraints are the same as introduced in the previous models.

For the r-allocation model with direct connections, we simply need to replace constraint (15)

with constraint (24) in the single allocation version of the formulation.

4.4 Variable Fixing

To decrease the computational burden with all the proposed models, the values of some decision

variables can be fixed with preprocessing. To this end, we exploit the following properties of our

mathematical models:

yijkl = 0 i, j, k, l ∈ N : rij < (cik + clj) (33)
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As noted in the problem definition, only profitable demand will be served. Hence, when the

revenue from satisfying a unit demand between O-D pair i, j ∈ N is strictly smaller than the

sum of unit transportation costs from origin i to hub k (collection) and from hub l to destination

j (distribution), no profit can be obtained from satisfying the demand of the O-D pair i, j ∈ N
through hubs k, l ∈ N . Accordingly, the optimal value for the variable yijkl can be set to zero

when the above mentioned condition is met.

In the next section, we present computational analysis with all of the introduced mathemat-

ical formulations.

5 Computational Results

We performed extensive computational experiments to analyze the resulting hub networks and

the performance of the proposed mathematical models. We used two well-known benchmark

data sets from the literature for hub location: the U.S. Civil Aeronautics Board (CAB) and the

Australia Post (AP) datasets. Both of these datasets are readily available in OR Library [12].

Computational experiments were carried out on a workstation that contains: Intel Core i7-

3930K 2.61GHz CPU, and 39 GB of RAM. The mathematical models were solved using IBM

ILOG CPLEX 12.7. Variable fixing was employed as detailed in Section 4.4. All the instances

were solved to optimality (10−5 gap) using the default settings.

The organization of this section is as follows: In the next section, we present computational

results with the CAB dataset. In this section, we also provide some managerial insights obtained

from solving the models on this data set. Section 5.2, presents analysis on the economies of scale

factor. In Section 5.3, we compare our results with results from the relevant literature. To better

understand the performance of the mathematical models from a computational point of view,

we present numerical results with larger-sized instances derived from the AP dataset in Section

5.4.

5.1 Results with the CAB dataset

CAB dataset is based on airline passenger interactions between 25 cities in United States in 1970

(O’Kelly [46]). OR Library provides the transportation costs (cij) and the demand between each

pair of cities (wij) for this dataset (Beasley [12]). As customarily done in the literature, we scaled

the demand values so that the total demand adds up to one. Since CAB dataset does not provide

any information regarding the revenues, we used average transportation costs to estimate values

for the revenues. We test three different values such that rij ∈ {1000, 1500, 2000} for each O-D

pair i, j ∈ N , referred to as low, medium, and high revenue levels, respectively. Motivated from

14



the postal delivery applications, where the price of sending a letter is the same between any

two locations, the revenue per unit demand is taken to be independent from the O-D pair. We

also test three different values for hub installation costs generated by O’Kelly [47] such that

fk ∈ {50, 100, 150} for all k ∈ N . Similarly, we refer these values as low, medium, and high cost

levels, respectively. Cost of operating an inter-hub link is set to be 10% of hub installation costs;

i.e., gkl = 0.1fk for all k, l ∈ N . The cost of operating a direct link, on the other hand, is set to

be the 20% of the operational cost of an inter-hub link; i.e., qij = 0.2gij for all i, j ∈ N . These

values can be interpreted by assuming that the frequency of service on the inter-hub links is five

times more than that of direct connections. Operational costs are dependent on the level of hub

installations costs (low, medium, or high) and taken to be the same for all potential links. The

discount factor α is taken as 0.2, 0.4, 0.6, and 0.8 as customarily done in the literature. Table

1 summarizes the parameter settings with the CAB dataset.

Table 1: Parameter settings with the CAB dataset.
Description Parameter Value

Set of nodes |N | 25
Demands wij OR Library [12]
Revenue per unit demand rij Low: 1000, Medium: 1500, High: 2000
Transportation cost per unit of flow cij OR Library [12]
Installation cost of a hub fk Low: 50, Medium: 100, High: 150
Operational cost of an inter-hub link gkl Low: 5, Medium: 10, High: 15
Operational cost of a direct link qij Low: 1, Medium: 2, High: 3
Discount factor for inter-hub connections α 0.2, 0.4, 0.6, 0.8

We initially took runs with the multiple and single allocation models (without any direct

connections) under different parameter values. The results obtained from solving the models

are summarized in Table 2. The first two columns report the values of the cost parameters and

the discount factor, respectively. For each allocation rule, the next three columns indicate the

maximum net profit, total percentage of satisfied demand, and the locations of the hub nodes,

respectively, in the optimal solutions of the corresponding instances. The “CPU time (s)”

columns present the run time of instances (in seconds) obtained from solving the problems to

optimality. To demonstrate the results with different revenue levels, Table 2 is split horizontally

into three parts for high, medium, and low revenue levels.

Observe from Table 2 that when the costs increase, net profit values decrease along with the

percentage of satisfied demand. Note that net profit is directly proportional to the percent of

satisfied demand. With increased cost levels, the models tend to result in locating fewer hubs.

As expected, when the number of opened hubs in the solutions increase, CPU time required for

solving the instances to optimality also increase. Hence, low cost instances tend to require more

CPU time compared with high cost instances.
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Table 2: Multiple and single allocation solutions with the CAB dataset.

Multiple Allocation Single Allocation

Costs α
Net

profit
Satisfied

demand (%)
Hub

locations
CPU

time (s)
Net

profit
Satisfied

demand (%)
Hub

locations
CPU

time (s)

High revenue

Low 0.2 1190 100.00 4,7,12,14,17 4891 1181 99.67 4,7,12,14,17 12343
0.4 1033 97.33 4,7,12,14,17 4130 1013 96.33 4,7,12,14,17 9384
0.6 926 94.00 4,7,12,14,17 2428 874 83.50 4,12,17 8933
0.8 850 86.83 1,4,12,17 754 774 70.67 4,12,18 9048

Medium 0.2 913 99.00 4,12,17,24 802 895 96.33 4,12,17 8280
0.4 804 93.00 4,12,17 615 790 92.00 4,12,17 7271
0.6 735 89.33 4,12,17 520 690 82.33 4,12,18 8138
0.8 681 79.67 18,21 57 649 67.00 20 4102

High 0.2 740 97.00 4,12,17 550 735 96.33 4,12,17 8738
0.4 634 93.00 4,12,17 362 620 92.00 4,12,17 6490
0.6 599 67.00 20 90 599 67.00 20 1363
0.8 599 67.00 20 28 599 67.00 20 1324

Medium revenue

Low 0.2 690 94.00 4,7,12,14,17 1756 685 93.33 4,7,12,14,17 9116
0.4 550 89.00 4,7,12,14,17 1249 532 86.33 4,7,12,14,17 7924
0.6 456 68.00 4,12,17 504 423 55.67 4,18 7180
0.8 426 64.00 4,12,17 283 371 51.67 4,18 5597

Medium 0.2 429 83.17 4,12,17 549 418 81.67 4,12,17 4329
0.4 349 62.67 4,17 142 331 58.67 4,17 2854
0.6 328 61.00 4,17 33 310 52.67 20 1546
0.8 325 61.00 4,18 23 310 52.67 20 1388

High 0.2 267 62.67 4,17 214 262 62.00 4,17 3414
0.4 260 52.67 20 64 260 52.67 20 1100
0.6 260 52.67 20 19 260 52.67 20 1073
0.8 260 52.67 20 17 260 52.67 20 1060

Low revenue

Low 0.2 199 58.83 4,12,14,17 80 192 57.33 4,12,14,17 6057
0.4 157 35.33 4,17 39 146 33.67 4,17 1152
0.6 142 33.33 4,17 11 119 27.33 4,17 1031
0.8 132 31.33 4,17 9 115 16.00 17 1121

Medium 0.2 69 36.00 4,17 21 67 36.00 4,17 939
0.4 65 16.00 17 13 65 16.00 17 802
0.6 65 16.00 17 10 65 16.00 17 789
0.8 65 16.00 17 7 65 16.00 17 895

High 0.2 15 16.00 17 7 15 16.00 17 622
0.4 15 16.00 17 6 15 16.00 17 584
0.6 15 16.00 17 6 15 16.00 17 591
0.8 15 16.00 17 5 15 16.00 17 421

We next observe the effect of the economies of scale factor on the solutions presented in Table

2. When the α value increases; that is, when the effect of economies of scale on transportation

costs is lower, the net profit values and the percentage of satisfied demand decrease. The number

of located hubs, on the other hand, either decreases or remains the same. Note that, in Table 2,

there are some instances with high cost levels resulted in locating only one hub. Economies of

scale factor has no effect in such instances. For a given revenue and cost level, the instances

resulted in opening one hub yield the same net profit value and the same percentage of satisfied
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demand independent from the value of α.

We tested all instances with three different revenue levels. When the revenue level decreases

from high to low, the net profit values as well as the percentages of satisfied demand decrease.

For a given cost level and α value, an increase in the revenue level results in satisfying more

demand and may require opening more hubs.

Multiple allocation problem provides an upper bound for the single allocation problem in

terms of net profit and percentage of satisfied demand. From the computational point of view,

the single allocation model is more time consuming than the multiple allocation counterpart. In

addition to the variables introduced for the multiple allocation model, recall that an additional

binary variable was defined to model the single allocation problem. Hence, single allocation

model is expected to be more challenging than the multiple allocation version.

The most time-consuming instance with the single allocation problem lasted around 3.43

hours, whereas the longest instance took 1.36 hours with the multiple allocation model. High

revenue instances required more CPU time than medium and low revenue ones. This is because

more hubs were opened with higher revenue levels to satisfy more demand. In general, the

average CPU time requirements of the instances listed in Table 2 were 9.23 minutes and 1.13

hours for multiple and single allocation problems, respectively.

We also calculated the linear programming (LP) relaxation gaps of the multiple and single

allocation models with all the instances listed in Table 2. Most of the gaps are strictly positive

where the average LP gaps for the multiple and single allocation models are 4.46% and 15.87%,

respectively. The LP gaps vary a lot with different parameter values. The maximum LP gap

that we observed among the instances in Table 2 was 16.45% with the multiple allocation and

28.02% with the single allocation models, whereas the minimum was 0.02% with the multiple

allocation and 7.24% with the single allocation model.

With both of the models, the locations of the hubs and also the corresponding network

designs differ a lot depending on the revenue and cost levels, and the α value. However, there

are some common nodes that are selected as hubs in most of the instances, such as Chicago (4),

Los Angeles (12), and New York (17). This is because these nodes generate higher amount of

demand compared with other nodes in the CAB dataset.

We depict the optimal networks of a few instances from the multiple and single allocation

solutions in Figures 1 and 2. In both of these figures, squares represent the established hubs,

bold lines the inter-hub links, and the thin lines the allocation connections. Since CAB dataset is

symmetric, hub arcs are activated for both directions. Hence, the depicted links are undirected.

There are some demand nodes in these figures without any connections at all (see for example

Figures 1d and 2d). In such cases, no demand generated from those nodes is served in the
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optimal solution of the problem.

(a) High revenue, Low costs, α = 0.2, Satisfied de-
mand = 100%

(b) High revenue, Low costs, α = 0.8, Satisfied de-
mand = 86.83%

(c) High revenue, Medium costs, α = 0.2, Satisfied
demand = 99.00%

(d) Low revenue, Medium costs, α = 0.2, Satisfied
demand = 36.00%

Figure 1: Multiple allocation solutions.

Values of all the parameters except the α value are the same in Figures 1(a) and 1(b).

Observe that the number of allocation links used in Figure 1(b) is much higher than that of

Figure 1(a). This is because when α = 0.2, most of the non-hub nodes are allocated to a single

hub in order to take advantage from economies of scale, and, thus, decrease transportation cost

of the flows via the inter-hub links. Whereas, when α = 0.8, most of the non-hub nodes are

allocated to at least two hubs. In this case, more flow is shipped using one hub on a route rather

than using more hubs and inter-hub links. Moreover, when the discount due to economies of

scale is high (α = 0.2), the percentage of satisfied demand goes up to 100%.

Figure 1(a) corresponds to an instance with low cost level, whereas Figure 1(c) corresponds

to medium costs. All the parameter values except the cost levels are the same in these two

figures. When the cost level is increased from low to medium, note that one less hub is opened

and the percentage of satisfied demand drops from 100% to 99%. The 1% of unsatisfied demand

in Figure 1(c) refers to the demand between O-D pairs Dallas (7)–Seattle (23), Houston (10)–

Seattle (23), and New Orleans (16)–Seattle (23). The demand between those city pairs are not

served as it is not profitable.

The only difference between the instances depicted in Figures 1(c) and 1(d) is the revenue
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level. When the revenue level is high (Figure 1c), four hubs are opened with 99% of total satisfied

demand. On the other hand, when the revenue level is low (Figure 1d) the number of opened

hubs reduces to two, and only 36% of the total demand is served. Note that some demand nodes

in Figure 1(d) are not served at all. The demand generated from the cities on the East Coast

and South–West (Los Angeles (12), Miami (14), Phoenix (19), San Francisco (22), Seattle (23),

and Tampa (24)) remain entirely unserved in the optimal solution.

Figure 2 depicts instances from the single allocation solutions. In Figure 2(a), when the

revenue level is high, five hubs are located and 99.68% of the demand is satisfied. The only

unserved O-D pair is Denver(8)–Seattle (23) in this instance. On the other hand, in Figure 2(b),

when the revenue level is low, one less hub is opened and the percentage of satisfied demand

drops down to 56.33%. Similarly, when Figures 2(c) and 2(d) are compared, one less hub is

opened and the percentage of satisfied demand decreases from 92.00% to 58.67% when the

revenue level is reduced from high to medium.

(a) High revenue, Low costs, α = 0.2, Satisfied de-
mand = 99.67%

(b) Low revenue, Low costs, α = 0.2, Satisfied de-
mand = 57.33%

(c) High revenue, Medium costs, α = 0.4, Satisfied
demand = 92.00%

(d) Medium revenue, Medium costs, α = 0.4, Satis-
fied demand = 58.67%

Figure 2: Single allocation solutions.

All the parameters in Figures 1(a) and 2(a) are the same; the only difference is the allocation

strategies. Note that both of the models resulted in exactly the same hub locations and inter-

hub networks. The differences between the resulting networks of these two instances are the

consequence of the allocation strategies. In particular, Denver (8) is allocated to hubs located

19



in Dallas (7) and Los Angeles (12) with the multiple allocation model (Figure 1a), whereas it

is allocated to a single hub located in Dallas (7) with the single allocation model (Figure 2a).

All demand is satisfied in the multiple allocation solution, whereas the percentage of satisfied

demand is 99.68% with single allocation. Allocating Denver (8) to Los Angeles (12) in addition

to Dallas (7), makes it possible to serve the demand between the O-D pair Denver(8)–Seattle (23)

in the optimal solution.

Observe from Figures 1 and 2 that Chicago (4), Los Angeles (12), and New York (17) are

commonly preferred cities for locating hub nodes. Moreover, except for the 2-hub networks, note

that the most profitable inter-hub networks are not fully interconnected, they are incomplete.

Next, we solve our models with direct connections under the same parameter values. The

results for the multiple and single allocation models with direct connections are reported in

Table 3. In addition to the columns in Table 2, columns labeled ‘Satisfied demand–direct (%)”

are included in Table 3 to highlight the percentage of the demand satisfied only through direct

connections.

Similar conclusions can be drawn from Table 3 as from Table 2. An increase in the cost level

results in a decrease in the percentage of satisfied demand and net profit. Besides, an increase

in the α value, may also yield to a decrease in net profit. As expected, a decrease in the revenue

level results in a decrease in net profit as well.

Multiple allocation with direct connections problem provides again an upper bound for the

single allocation with direct connections problem. Thus, multiple allocation results in better

net profits. Observe from Table 3 that in the instances with the same set of parameter values,

percentage of satisfied demand with direct connections obtained with the single allocation model

is higher than that of the multiple allocation model. That is, more demand is shipped through

direct connections with the single allocation model compared with multiple allocation.

There are some instances with a hyphen sign (-) written under the hub locations columns

in Table 3. No hubs are established in such instances, and, hence, the demand is satisfied only

through direct connections. In this case, both allocation strategies yield the same net profit for

the same set of parameter values.

Observe from Table 3 that percentage of satisfied demand through direct connections in-

creases when fewer hubs are opened in the solutions. Moreover, when Tables 2 and 3 are

compared, the models with direct connections result in opening fewer hubs. Fewer hubs are

required with direct connections because a certain portion of the demand is served through

direct service. Also note that the models with direct connections result in higher net profit

values compared with the models not allowing for direct connections. If it was not profitable

to serve the demand through direct connections, then no direct links would be established in
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Table 3: Solutions allowing for direct connections with the CAB dataset.

Multiple Allocation with Direct Connections Single Allocation with Direct Connections

Costs α
Net

profit

Satisfied
demand–
total (%)

Satisfied
demand–
direct (%)

Hub
locations

CPU
time (s)

Net
profit

Satisfied
demand–
total (%)

Satisfied
demand–
direct (%)

Hub
locations

CPU
time (s)

High revenue
Low 0.2 1192 100.00 0.33 4,7,12,14,17 6537 1190 99.67 1.00 4,7,12,14,17 11628

0.4 1042 97.83 0.67 4,7,12,14,17 6171 1027 95.33 3.00 4,12,14,17 9143
0.6 945 94.50 2.33 4,7,12,25 2948 909 79.00 9.67 4,20 8457
0.8 904 82.83 8.33 20,21 619 889 77.67 16.00 5 2018

Medium 0.2 925 99.00 1.33 4,12,18,24 3331 917 96.00 1.67 4,12,17 8675
0.4 826 93.33 2.00 4,12,18 2666 814 91.67 2.33 4,12,18 7299
0.6 779 76.00 7.00 5 264 779 76.00 7.00 5 1856
0.8 779 76.00 7.00 5 27 779 76.00 7.00 5 1325

High 0.2 750 97.33 1.33 4,12,17 2461 738 96.67 1.33 4,12 5448
0.4 696 69.33 4.33 20 88 696 69.33 4.33 20 1933
0.6 696 69.33 4.33 20 35 696 69.33 4.33 20 1332
0.8 696 69.33 4.33 20 41 696 69.33 4.33 20 1379

Medium revenue
Low 0.2 694 94.67 0.67 4,7,12,14,17 4322 689 93.67 1.00 4,7,12,14,17 10296

0.4 558 83.17 1.67 4,12,14,17 2868 547 81.33 3.33 4,12,14,17 8612
0.6 505 67.00 5.33 4,18 536 497 59.00 11.33 20 1923
0.8 497 59.00 11.33 20 159 497 59.00 11.33 20 1118

Medium 0.2 451 84.33 1.67 4,12,17 2491 431 83.00 1.67 4,12,17 4404
0.4 401 55.67 6.00 20 223 401 55.67 6.00 20 1421
0.6 401 55.67 6.00 20 44 401 55.67 6.00 20 1077
0.8 401 55.67 6.00 20 36 401 55.67 6.00 20 957

High 0.2 325 54.33 3.33 20 34 325 54.33 3.33 20 1123
0.4 325 54.33 3.33 20 31 325 54.33 3.33 20 891
0.6 325 54.33 3.33 20 32 325 54.33 3.33 20 948
0.8 325 54.33 3.33 20 31 325 54.33 3.33 20 919

Low revenue
Low 0.2 213 49.33 2.00 4,14,17 2101 210 48.00 1.67 4,14,17 2527

0.4 181 31.67 5.67 20 56 181 31.67 5.67 20 890
0.6 181 31.67 5.67 20 42 181 31.67 5.67 20 783
0.8 181 31.67 5.67 20 39 181 31.67 5.67 20 795

Medium 0.2 119 5.67 5.67 - 32 119 5.67 5.67 - 665
0.4 119 5.67 5.67 - 29 119 5.67 5.67 - 618
0.6 119 5.67 5.67 - 35 119 5.67 5.67 - 664
0.8 119 5.67 5.67 - 36 119 5.67 5.67 - 635

High 0.2 89 4.33 4.33 - 32 89 4.33 4.33 - 699
0.4 89 4.33 4.33 - 29 89 4.33 4.33 - 651
0.6 89 4.33 4.33 - 31 89 4.33 4.33 - 654
0.8 89 4.33 4.33 - 30 89 4.33 4.33 - 637

the resulting networks. Hence, allowing for direct connections provide an upper bound for

no-direct-connection problems.

The single allocation with direct connections model is computationally more difficult than

the multiple allocation version. The increase in run times is a consequence of the additional

binary variable defined for the single allocation version of the problem. The average CPU time

requirements for the instances listed in Table 3 is 17.81 minutes for the multiple allocation, and

48.33 minutes for the single allocation model.

Figure 3 provides optimal networks of some instances with direct connections when α =

0.2. Figures 3(a) and 3(b) depict multiple allocation instances, while Figures 3(c) and 3(d)
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depict their single allocation counterparts. The dash-lines in these figures indicate the direct

connections between non-hub nodes. Note that resulting optimal inter-hub networks are all

incomplete.

When the cost level is increased from low (Figures 3a and 3c) to medium (Figures 3b and 3d),

fewer hubs are opened, and more demand is satisfied through direct connections. Figures 3(a)

and 3(c) that correspond to multiple and single allocation problems, respectively, resulted in

locating exactly the same hubs and the same inter-hub network design. However, the allocation

links and the direct connections are different. In Figures 3(b) and 3(d), when the allocation

strategy is changed from multiple to single, one less hub is opened and the percentage of satisfied

demand through direct connections increased from 1.33% to 1.67%.

(a) Multiple allocation: High revenue, Low costs,
Satisfied demand = 100% (0.33% with direct con-
nections)

(b) Multiple allocation: High revenue, Medium
costs, Satisfied demand = 99.00% (1.33% with di-
rect connections)

(c) Single allocation: High revenue, Low costs, Sat-
isfied demand = 99.67% (1.00% with direct connec-
tions)

(d) Single allocation: High revenue, Medium costs,
Satisfied demand = 96.00% (1.67% with direct con-
nections)

Figure 3: Multiple and single allocation solutions with direct connections when α = 0.2.

Next, we compare instances presented in Figures 1, 2, and 3. Note that the values of all the

parameters are the same in Figures 1(a), 2(a), 3(a), and 3(c). Each of these figures corresponds

to an optimal solution obtained under a different model. However, all optimal solutions resulted

in opening the same set of hubs and inter-hub links. The only differences are the allocation

links and direct connection decisions. Shipping the demand between San Francisco (22) and
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Seattle (23) directly as seen in Figure 3(a) resulted in an increase in the net profit value from

1190 to 1192 compared with Figure 1(a). Total percentage of satisfied demand in the instances

depicted in Figures 2(a) and 3(c) are exactly the same (99.67%). However, 1% of the demand

is satisfied through direct connections in Figure 3(c), and this resulted in an increase in the net

profit from 1181 to 1190.

Table 4: r-allocation solutions with the CAB dataset.

r-Allocation without Direct Connections r-Allocation with Direct Connections

r=2 r=3 r=2 r=3

Cost α
Net

profit
CPU

time (s)
Net

profit
CPU

time (s)
Net

profit
CPU

time (s)
Net

profit
CPU

time (s)

High revenue

Low 0.2 1187 20788 1190 21895 1191 20001 1192 21174
0.4 1021 20700 1033 21134 1034 19108 1042 20602
0.6 897 18534 926 20409 921 16800 945 17418
0.8 835 15671 850 17381 904 4149 904 4287

Medium 0.2 905 18890 913 19924 925 18144 925 19147
0.4 804 16423 804 16562 826 16722 826 17015
0.6 735 14544 735 15276 779 1312 779 1245
0.8 681 10500 681 10662 779 1216 779 1422

High 0.2 740 14719 740 15283 750 14603 750 15067
0.4 634 11466 634 12084 696 1301 696 1385
0.6 599 2140 599 2266 696 1434 696 1283
0.8 599 2130 599 2160 696 1430 696 1323

Medium revenue

Low 0.2 687 17332 690 18037 692 19527 694 21001
0.4 542 16749 550 17712 552 16899 558 19084
0.6 456 14959 456 15134 505 4897 505 5242
0.8 426 14279 426 14623 497 1295 497 1448

Medium 0.2 429 7578 429 7982 451 13212 451 14154
0.4 349 7053 349 7379 401 1898 401 2138
0.6 328 4741 328 5044 401 2012 401 1980
0.8 325 3191 325 3335 401 1827 401 2001

High 0.2 267 5763 267 6182 325 1416 325 1461
0.4 260 1786 260 1644 325 1323 325 1526
0.6 260 1500 260 1587 325 1284 325 1315
0.8 260 1401 260 1509 325 1217 325 1542

Low revenue

Low 0.2 195 12633 199 14689 213 4010 213 4142
0.4 157 1913 157 2133 181 779 181 785
0.6 142 1332 142 1428 181 764 181 791
0.8 132 804 132 1044 181 873 181 803

Medium 0.2 69 825 69 998 119 623 119 675
0.4 65 205 65 225 119 651 119 602
0.6 65 187 65 243 119 604 119 634
0.8 65 186 65 214 119 652 119 704

High 0.2 15 45 15 49 89 623 89 637
0.4 15 43 15 46 89 640 89 662
0.6 15 43 15 44 89 638 89 651
0.8 15 42 15 46 89 681 89 676

We also want to analyze the performance of the r-allocation models. Looking at the optimal

multiple allocation solutions, we observed that a non-hub node is allocated to at most three
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hubs with the CAB dataset. Therefore, when r = 3, r-allocation problems reduce to multiple

allocation on this dataset. We thus set r to 2 and 3 to take runs with the two r-allocation models

under different parameter values. Table 4 presents the results obtained with the r-allocation

models.

Note that, when r = 3, r-allocation models result in exactly the same optimal solutions

obtained with the multiple allocation models. Moreover, when r = 2, most of the instances

again resulted in the same optimal solutions with r = 3. Hence, we only report net profit values

and CPU times in Table 4. Note that instances with r = 3 provides an upper bound for r = 2.

Thus, for the same set of parameters, when r value is increased from 2 to 3, the net profit value

either increases or remains the same.

Regarding the CPU time requirements, r-allocation models turned out to be the most chal-

lenging set of models compared with single and multiple allocation. They are computationally

more difficult than multiple allocation models because an additional set of binary variables

needs to be defined. Compared with single allocation, allowing the models search for r allo-

cations instead of just one seems to increase the CPU times considerably as well. The most

time-consuming instance with the r-allocation models took a little less than 6 hours to solve to

optimality. The averages of the CPU times listed in Table 4 is 1.89 hours.

Figure 4: Profit comparison under different parameter values with four different models.

Net profits change significantly with the cost levels and the economies of scale factor under
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different allocation strategies. Figure 4 provides an insight for the change in net profits under

different parameter values.

Each graph presented in Figure 4 corresponds to a different level of revenue: high, medium,

and low. For each revenue level, we depict optimal net profit values obtained with four different

models under different cost levels and discount factor α.

Observe from Figure 4 that multiple allocation model with direct connections results in the

best net profit values. As already discussed, this model actually provides an upper bound for

all the remaining models. The lowest profits are obtained with the single allocation model when

direct connections are not allowed.

Figure 4 also illustrates the impact of α on net profit. It is clear that profits decrease with

increasing α, for a given cost level. The effect of α on profits is higher with lower cost levels.

Note that there are some instances in which the profits are insensitive to α. In such instances,

either no hub or one hub is opened in the optimal solutions. In other words, no economies

of scale is achieved as there is no inter-hub transportation. In such cases, multiple and single

allocation strategies result in exactly the same net profits.

In general, we can conclude from Figure 4 that when the effect of economies of scale on

transportation costs is higher (when α value is lower), the decision maker can obtain significantly

more profit. Hence, economies of scale is an important factor in designing and operating hub

networks. As noted in the problem definition, in this study, we assume that economies of scale

is exploited only on the inter-hub links and that it is independent from the amount of flow. This

is a simplification of real-life for the sake of modeling the problem efficiently. We next want to

analyze the consequences of this simplification.

5.2 Economies of scale analysis

We analyzed optimal flows on all network connections in the resulting solutions. The amount

of flow routed on the inter-hub links and allocation connections are obviously less when direct

connections between non-hub nodes are allowed. Hence, we concentrated on the optimal flows

with the models allowing for direct connections to observe if the amount of flow routed on the

inter-hub links justify economies of scale. For this analysis, we sorted flows on all links of the

network to see if there are any allocation links or direct links carrying larger flows than inter-hub

links. We could identify only a few such instances where the flow on one allocation link exceeded

the flow on an inter-hub link. For example, in the instance from Table 3 with high revenue and

medium cost levels with α = 0.4, the allocation link New York (17)–Philadelphia (18) carries

more flow than the inter-hub link Chicago (4)–Los Angeles (12). This is because all demand

originating at New York and destined to all other cities has to use the allocation link from
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New York to Philadelphia. However, as mentioned above, only a few instances do not justify

economies of scale in our experimentation. This is because our models do not enforce the

establishment of fully interconnected inter-hub networks. Note that in all of our solutions with

more than two hubs, the resulting inter-hub networks are incomplete. By the inclusion of inter-

hub network design decisions in hub location models, more flow is consolidated on hub-to-hub

links.

We also wanted to analyze the impact of using a flow-independent economies of scale factor

on the inter-hub links. Incorporating a flow-dependent economies of scale factor in our models

would computationally be impractical due to its non-linear nature. Instead, we decided to

recalculate the transportation costs of our optimal solutions by using flow-dependent discounts.

For this analysis, we adopted the non-linear concave function introduced in O’Kelly and Bryan

[48]. While recalculating the transportation costs, we replaced α and for each inter-hub link

k, l ∈ N , we calculated the discount through the function:

1− θ(
∑
i∈N

fikl)
β k, l ∈ N (34)

where 0 < θ ≤ 1, β > 0, and
∑
i∈N

fikl is the amount of flow routed on the inter-hub link from

hub k to hub l. Note that since total demand is scaled and it adds up to one, we do not need

to scale the flows in this calculation.

For each instance with the given revenue and cost levels, we compared net profits obtained

from using different combinations of constant and flow-dependent discount factors, α, θ, and β.

We observed through this analysis that for any given value of α, there is a valid combination of

θ and β values which results in comparable transportation costs. For example, in the instances

with high revenue and low cost levels, total transportation cost recalculated by using θ = 0.9

and β = 0.1 in the above function results in a 2% decrease in the net profit on average when

compared with using α = 0.2, which is the highest economies of scale discount that we used in our

experimentation. Similarly, with high revenue and medium cost levels, using the combination of

θ = 0.75 and β = 0.2 results in only a 0.23% decrease in the net profit on average compared with

using α = 0.4. This analysis shows that the α values used in our computational experiments

actually provide good estimates for flow-dependent discounts.

We would like to note that the analysis that we performed with this flow-dependent discount

function is post-processing. As noted by O’Kelly and Bryan [48], modeling the problem assuming

a fixed discount factor not only miscalculate the total network cost but may also wrongly select

optimal hub locations and allocations. Incorporating a more realistic calculation of economies

of scale within the proposed models is definitely an important avenue for future research.
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5.3 Comparison with the literature

As discussed in our introduction, hub location problems with profits considering the multiple

allocation strategy was already introduced in Alibeyg et al. [1]. In this paper, in addition to

studying all allocation possibilities, we included additional design variables to account for the

design of the inter-hub network which in turn makes the problem more complicated. To justify

the increased complexity of the proposed models, we present a computational comparison of

our multiple allocation model and the PO1 model presented in Alibeyg et al. [1, 2]. For this

comparison, we concentrated on the instances resulted in opening more than two hubs in the

optimal solutions obtained from our multiple allocation model. Table 5 presents the results.

Table 5: Comparison of our multiple allocation model with PO1 from Alibeyg et al. [1, 2].

PO1 Multiple Allocation Model

Cost alpha
Net

profit
Satisfied

demand (%)
LP

gap (%)
CPU

time (s)
Net

profit
Satisfied

demand (%)
LP

gap (%)
CPU

time (s)
Profit

gap (%)

High revenue

Low 0.2 1146 100.00 3.49 1851 1190 100.00 2.73 4891 3.86
0.4 991 95.67 3.61 1611 1033 97.33 4.31 4130 4.23
0.6 889 91.67 5.28 1084 926 94.00 2.77 2428 4.19
0.8 832 85.33 7.95 449 850 86.83 2.27 754 2.21

Medium 0.2 887 97.05 6.05 764 913 99.00 7.31 801 2.96
0.4 791 88.33 4.91 416 804 93.00 5.84 615 1.62
0.6 723 85.67 9.09 287 735 89.33 3.70 521 1.63

High 0.2 723 93.33 6.22 325 740 97.00 8.04 550 2.27
0.4 619 88.33 13.52 144 634 93.00 9.45 362 2.31

Medium revenue

Low 0.2 656 88.00 3.35 1081 690 94.00 4.91 1756 5.16
0.4 517 83.00 6.95 605 550 89.00 6.43 1249 6.36
0.6 440 64.00 4.24 427 456 68.00 3.49 504 3.65
0.8 411 61.00 6.61 212 426 64.00 2.85 283 3.56

Medium 0.2 401 82.00 17.73 324 429 83.17 12.63 549 6.98

Low revenue

Low 0.2 183 55.33 8.99 111 199 58.83 4.79 80 8.74

For each instance, Table 5 provides the net profit, percentage of satisfied demand, LP relax-

ation gap, and the run time of the instances obtained by solving the PO1 model from Alibeyg

et al. [1, 2] and our multiple allocation model introduced in Section 4.1. The last column of

Table 5 presents the percentage of the gap between the net profits obtained from these two

models.

Firstly, a comparison of the CPU times and LP relaxation gaps reported in Alibeyg et al. [1]

with Table 5 reveals that our test instances are computationally more challenging than the ones

reported in Alibeyg et al. [1]. We would like to note that we used variable fixing while solving

both of the models under the default settings of CPLEX.

Our multiple allocation model provides an upper bound in terms of the net profit value and
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the percentage of satisfied demand. Observe from Table 5 that all the profit gaps are strictly

positive. This is because in all of our solutions with more than two hubs, there exist paths

in which more than two hubs are used to satisfy the demand between O-D pairs. PO1 model

needs to activate additional hub links to satisfy the same or even less amount of demand that is

satisfied with our multiple allocation model. For example, with high revenue and low cost levels

when α = 0.2, 100% of the demand is satisfied under both of the models. In this instance, our

multiple allocation solution resulted in operating an incomplete inter-hub network (Figure 1a)

and 14% of the total flow is routed using more than two hubs on a route. While, the PO1

solution, which restricts the number of hubs on a route to at most two and activates hub arcs

of a fully inter-connected hub network, resulted in a 3.83% decrease in the net profit. The

percent gap in profits goes up to 8.74% in the instances listed in Table 5. Moreover, since the

demand is scaled in our data, the magnitude of the objective function value is relatively low in

our experiments, otherwise the difference in the net profits would have been higher. We believe

these results provide a clear indication of the added benefit of incorporating more complex paths

into the models.

5.4 Results with the AP dataset

In this section, we test the performance of our models on a 40-node subset of the Australia Post

(AP) dataset (Ernst and Krishnamoorthy [29]). The distances and the demand between each

pair of cities are provided in OR Library (Beasley [12]). Collection and distributions costs per

unit are taken equal to one. For the revenue of each O-D pair, we again test three different

values such that rij ∈ {20, 30, 50} for all i, j ∈ N . We refer to these values as low, medium, and

high revenues, respectively. There are two different sets for hub installation costs available on

the AP dataset referred to as loose and tight. Cost of operating an inter-hub link is assumed

to be 10% of the average installation costs from the AP data. Similar to the CAB dataset, the

cost of operating a direct link is taken to be the 20% of the operational cost of an inter-hub

link. Operational costs are assumed to be the same for all potential links. For all instances, the

discount factor α is taken as 0.75, as defined in the AP dataset (Beasley [12]).

The results obtained from solving the multiple and single allocation models without and

with direct connections are summarized in Tables 6 and 7, respectively. As noted in the first

two columns, we tested three different revenue and two different cost levels.

Similar conclusions can be drawn with the AP dataset as with the CAB dataset. Net profits

and the percentage of satisfied demand decrease with decreasing revenue levels. Tight (high)

fixed cost instances result in lower net profits. In the models with direct connections (Table 7), a

decrease in the revenue level results in an increase in the percentage of satisfied demand through
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Table 6: Multiple and single allocation solutions with the AP dataset.

Multiple Allocation Single Allocation

Revenue Costs
Net

profit
Satisfied

demand (%)
Hub

locations
CPU

time (h)
Net

profit
Satisfied

demand (%)
Hub

locations
CPU

time (h)

H
ig
h

Loose 118303 98.13 12,22,26,28 3.82 73384 91.25 11,12,22,28 6.87

Tight 105850 97.75 11,14,29 3.07 46736 90.38 11,14,29 6.12

M
ed

iu
m Loose 42868 77.69 12,22,26,28 2.91 36904 64.06 11,22,28 5.04

Tight 32716 69.13 14,29 0.09 29569 51.56 29 1.20

L
o
w

Loose 14099 22.63 28 0.03 14099 22.63 28 0.53

Tight 6404 23.50 29 0.05 6404 23.50 29 0.48

Table 7: Solutions allowing for direct connections with the AP dataset.

Multiple Allocation with Direct Connections Single Allocation with Direct Connections

Revenue Costs
Net

profit

Satisfied
demand-
total (%)

Satisfied
demand-

direct (%)

Hub
locations

CPU
time (h)

Net
profit

Satisfied
demand-
total (%)

Satisfied
demand-

direct (%)

Hub
locations

CPU
time (h)

H
ig

h

Loose 119998 98.50 1.00 12,18,22,28 4.61 76026 87.00 4.75 11,12,22,28 7.01

Tight 106614 95.25 1.13 14,29 3.66 48101 86.13 5.38 11,14,29 6.59

M
ed

iu
m Loose 44222 76.06 1.19 11,22,28 3.05 38694 63.19 5.56 11,22,28 5.82

Tight 36252 71.00 5.25 19,22 0.57 34179 54.75 12.31 29 2.15

L
ow

Loose 15077 23.44 1.31 28 0.04 15077 23.44 1.31 28 0.39

Tight 6677 23.63 0.25 29 0.09 6677 23.63 0.25 29 0.34

direct connections.

The CPU times obtained from solving the models with the AP dataset indicate that larger-

sized instances are more challenging, and, consequently, more time consuming than small-sized

instances, as expected. Because of the higher run times, CPU times in Tables 6 and 7 are

reported in hours. Note that, in addition to the size of the instances, computation times also

vary a lot with different parameter values as well as allocation strategies. In particular, when

the revenue level decreases from high to low, the CPU times in Table 6 drops from about 7 hours

to less than 1 hour. The most difficult instances were with the single allocation model allowing

for direct connections. Average CPU time requirement of the instances presented in Tables 6

and 7 with the 40-node AP dataset is 2.66 hours.

6 Conclusions

We studied hub location problems with the aim of maximizing profit. We defined new problems

and developed efficient mathematical models addressing the questions of where to locate hubs

and how to design hub networks in order to maximize profit. We determined optimal routes of
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flow to transport the demand between origin-destination pairs while allowing a portion of the

demand to be unserved. We introduced mixed-integer linear programming models for multiple,

single, and r-allocation versions of the problem. We also modeled the possibility of direct

connections for each allocation strategy. The proposed models design hub networks in the most

profitable way considering all possibilities for shipments.

We performed computational experiments on the well-known CAB and AP datasets to an-

alyze the resulting hub networks and performance of the proposed mathematical models. We

tested all models under various different parameter settings. We varied revenues, costs, and the

economies of scale discount factor, and analyzed the optimal locations of hubs, design of the

hub network, and percentage of satisfied demand.

The results provided insights on where to locate hubs, how to design hub networks, what

portion of the demand to serve, and how to route flows. The most profitable inter-hub network

designs with more than two hubs turned out to be incomplete. Trade-off between different

allocation strategies as well as the impact of allowing for direct connections is explored. The

best net profit values were obtained with the multiple allocation model allowing for direct

connections, whereas, the lowest profits were obtained with the single allocation model when

direct connections are not allowed. The choice of the allocation strategy did not result in

a significant difference on the locations of hubs in the optimal solutions. The effect of the

economies of scale discount on total profit is also analyzed. The results showed that the decision

maker can obtain significantly more profit when the discount on transportation costs due to

economies of scale is higher.

For future research, exact solution methodologies or heuristic algorithms can be developed

for the introduced problems. Given the computational effort required to solve some of the

instances, efficient solution algorithms are needed to solve realistically-sized instances. Another

future research direction would be to incorporate a more realistic calculation of economies of

scale into the proposed models. Embedding uncertainty in the models is another area of research

which is definitely worth pursuing.

Acknowledgment

This research was funded by the Natural Sciences and Engineering Research Council of Canada

(NSERC) with grant RGPIN-2015-05548. This support is gratefully acknowledged.

30



References

[1] Alibeyg, A., Contreras, I., Fernández, E., 2016. Hub network design problems with profits.

Transportation Research Part E: Logistics and Transportation Review 96, 40–59.

[2] Alibeyg, A., Contreras, I., Fernández, E., 2017. Exact solution of hub network design

problems with profits. European Journal of Operational Research 000, 1–15.

[3] Alumur, S., Kara, B. Y., 2008. Network hub location problems: The state of the art.

European Journal of Operational Research 190 (1), 1–21.

[4] Alumur, S., Yaman, H., Kara, B., 2012. Hierarchical multimodal hub location problem with

time-definite deliveries. Transportation Research Part E 48, 1107–1120.

[5] Alumur, S. A., Kara, B. Y., Karasan, O. E., 2009. The design of single allocation incomplete

hub networks. Transportation Research Part B: Methodological 43 (10), 936–951.

[6] Alumur, S. A., Kara, B. Y., Karasan, O. E., 2012. Multimodal hub location and hub network

design. Omega 40 (6), 927–939.

[7] Alumur, S. A., Nickel, S., Saldanha-da Gama, F., 2012. Hub location under uncertainty.

Transportation Research Part B: Methodological 46 (4), 529–543.

[8] Alumur, S. A., Nickel, S., Saldanha-da Gama, F., Seçerdin, Y., 2016. Multi-period hub
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[42] Martins de Sá, E., Contreras, I., Cordeau, J.-F., Saraiva de Camargo, R., de Miranda, G.,

2015. The hub line location problem. Transportation Science 49 (3), 500–518.

[43] Meraklı, M., Yaman, H., 2016. Robust intermodal hub location under polyhedral demand

uncertainty. Transportation Research Part B: Methodological 86, 66–85.
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