
Approximation Algorithms for
Distributionally Robust
Stochastic Optimization

by

André Linhares Rodrigues

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2019

© André Linhares Rodrigues 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Nicole Megow
Professor, Institute of Computer Science,
Universität Bremen

Supervisor: Chaitanya Swamy
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal Member: Jochen Könemann
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal Member: Laura Sanità
Associate Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal-External Member: Lap Chi Lau
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The results in this thesis are chiefly based on the publication [85], which is joint work
with my supervisor Chaitanya Swamy. I have made a major contribution toward this
publication.

iv

Abstract

Two-stage stochastic optimization is a widely used framework for modeling uncertainty,
where we have a probability distribution over possible realizations of the data, called sce-
narios, and decisions are taken in two stages: we take first-stage actions knowing only the
underlying distribution and before a scenario is realized, and may take additional second-
stage recourse actions after a scenario is realized. The goal is typically to minimize the total
expected cost. A common criticism levied at this model is that the underlying probability
distribution is itself often imprecise. To address this, an approach that is quite versatile
and has gained popularity in the stochastic-optimization literature is the two-stage distri-
butionally robust stochastic model: given a collection D of probability distributions, our
goal now is to minimize the maximum expected total cost with respect to a distribution
in D.

There has been almost no prior work however on developing approximation algorithms
for distributionally robust problems where the underlying scenario collection is discrete,
as is the case with discrete-optimization problems. We provide frameworks for designing
approximation algorithms in such settings when the collection D is a ball around a central
distribution, defined relative to two notions of distance between probability distributions:
Wasserstein metrics (which include the L1 metric) and the L∞ metric. Our frameworks
yield efficient algorithms even in settings with an exponential number of scenarios, where
the central distribution may only be accessed via a sampling oracle.

For distributionally robust optimization under a Wasserstein ball, we first show that
one can utilize the sample average approximation (SAA) method—solve the distribution-
ally robust problem with an empirical estimate of the central distribution—to reduce the
problem to the case where the central distribution has a polynomial-size support, and is
represented explicitly. This follows because we argue that a distributionally robust problem
can be reduced in a novel way to a standard two-stage stochastic problem with bounded
inflation factor, which enables one to use the SAA machinery developed for two-stage
stochastic problems. Complementing this, we show how to approximately solve a frac-
tional relaxation of the SAA problem (i.e., the distributionally robust problem obtained by
replacing the original central distribution with its empirical estimate). Unlike in two-stage
{stochastic, robust} optimization with polynomially many scenarios, this turns out to be
quite challenging. We utilize a variant of the ellipsoid method for convex optimization in
conjunction with several new ideas to show that the SAA problem can be approximately
solved provided that we have an (approximation) algorithm for a certain max-min prob-
lem that is akin to, and generalizes, the k-max-min problem—find the worst-case scenario
consisting of at most k elements—encountered in two-stage robust optimization. We ob-

v

tain such an algorithm for various discrete-optimization problems; by complementing this
via rounding algorithms that provide local (i.e., per-scenario) approximation guarantees,
we obtain the first approximation algorithms for the distributionally robust versions of
a variety of discrete-optimization problems including set cover, vertex cover, edge cover,
facility location, and Steiner tree, with guarantees that are, except for set cover, within
O(1)-factors of the guarantees known for the deterministic version of the problem.

For distributionally robust optimization under an L∞ ball, we consider a fractional
relaxation of the problem, and replace its objective function with a proxy function that is
pointwise close to the true objective function (within a factor of 2). We then show that we
can efficiently compute approximate subgradients of the proxy function (for a certain notion
of approximate subgradients introduced by Shmoys and Swamy [114]), provided that we
have an algorithm for the problem of computing the t worst scenarios under a given first-
stage decision, given an integer t. We can then approximately minimize the proxy function
via a variant of the ellipsoid method by [114], and thus obtain an approximate solution
for the fractional relaxation of the distributionally robust problem. Complementing this
via rounding algorithms with local guarantees, we obtain approximation algorithms for
distributionally robust versions of various covering problems, including set cover, vertex
cover, edge cover, and facility location, with guarantees that are within O(1)-factors of the
guarantees known for their deterministic versions.

vi

Acknowledgements

First, I would like to thank Chaitanya Swamy for being such a dedicated supervisor.
Our weekly meetings have been a constant source of inspiration and encouragement, and
have been invaluable for the completion of this thesis. I am also thankful for his very
detailed and constructive advice and feedback regarding academic writing and talks, as
well as other academic and career matters.

I would also like to thank the other members of the examining committee, namely
Nicole Megow, Jochen Könemann, Laura Sanità, and Lap Chi Lau, for devoting time to
reading this thesis and providing helpful feedback.

Thank you to the other C&O professors from whose courses I have benefited, and with
whom I had the pleasure to collaborate, especially Ricardo Fukasawa, Jochen Könemann,
Joseph Cheriyan, and Laura Sanità. I am also grateful to the members of the department’s
administrative team for their assistance, particularly Melissa, Carol, and Megan; and to
my fellow graduate students for their friendship.

Finally, I am deeply grateful to my parents for their unwavering and unconditional
support.

vii

Table of Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 The distributionally robust stochastic optimization framework 1

1.2 Our contributions . 5

1.3 Basic definitions, notation, and conventions 7

1.4 Organization of the thesis . 8

2 Background 10

2.1 Robust optimization . 10

2.2 Stochastic optimization . 12

2.3 Distributionally robust stochastic optimization 16

2.4 Other models interpolating between robust and stochastic optimization . . 18

2.5 Some classical inequalities . 18

3 Two-stage distributionally robust stochastic optimization 20

3.1 Formal model description . 20

3.2 A general class of two-stage DRS problems 24

3.3 Overview of results and techniques . 27

viii

3.3.1 DRS optimization under a Wasserstein ball 28

3.3.2 DRS optimization under an L∞ ball 33

3.4 Some preliminary results and definitions 34

3.4.1 Optimizing over P or X via ellipsoid-based methods 35

3.4.2 Rounding fractional solutions . 40

4 DRS optimization under a Wasserstein ball: sample average approxima-
tion 42

4.1 Overview of the techniques . 43

4.2 Reformulating (Q(p̊)) as a two-stage stochastic problem 47

4.3 Reducing the inflation factor . 50

4.4 Main lemma and proof of the SAA theorem 55

4.5 Proof of Lemma 4.13 . 57

4.5.1 Overview . 57

4.5.2 Some preliminary lemmas . 58

4.5.3 Details of the proof . 64

5 DRS optimization under a Wasserstein ball: polynomial-size central dis-
tribution 68

5.1 Overview of the techniques . 70

5.2 Proof of Theorem 5.1 . 73

5.3 Solving (Qfr(p̂)) exactly in certain settings 78

5.4 Some hardness results . 79

6 DRS optimization under a Wasserstein ball: applications 84

6.1 Proof of Theorem 3.6 . 87

6.2 Obtaining an approximation algorithm for (Π) 91

6.3 Improved results in the unrestricted setting: a reduction from (DRSOW) to
the fractional SAA problem (Qfr(p̂)) . 92

ix

6.4 DRS set cover . 96

6.5 DRS vertex cover . 103

6.6 DRS edge cover . 104

6.7 DRS facility location . 106

6.7.1 Proof of Theorem 6.20 . 109

6.8 DRS Steiner tree . 112

6.8.1 Proof of Theorem 6.29 . 118

7 DRS optimization under an L∞ ball 120

7.1 Overview of the techniques . 121

7.2 A proxy function for h(p̊ ;x) . 122

7.3 Estimating P̊ free . 126

7.4 Computing approximate subgradients of the proxy function 129

7.5 Lipschitz-continuity of the proxy function 132

7.6 Proof of Theorem 7.1 . 132

7.7 Applications . 135

8 Conclusions and open directions 138

References 140

x

List of Figures

6.1 Problem reductions utilized by our frameworks for DRS optimization under
a Wasserstein ball. 88

xi

List of Tables

3.1 Approximation factors for DRS optimization under a Wasserstein ball. . . 29

3.2 Approximation factors for DRS optimization under an L∞ ball. 33

6.1 Approximation factors for DRS optimization under a Wasserstein ball. . . 87

7.1 Approximation factors for DRS optimization under an L∞ ball. 136

xii

Chapter 1

Introduction

In this chapter, we introduce the model studied in this thesis in Section 1.1, and give a
high-level overview of our main contributions in Section 1.2 (we postpone a more detailed
overview to Section 3.3). In Section 1.3, we list some basic mathematical definitions,
notation, and conventions that we use throughout this thesis. In Section 1.4, we outline
the contents of each of the following chapters.

1.1 The distributionally robust stochastic optimization
framework

In practical applications of optimization, one often encounters problems involving uncertain
parameters—for example, parameters that cannot be measured exactly, or that depend on
future events that cannot be predicted with certainty. A naive approach for tackling such
problems consists in computing estimates of all the uncertain parameters, and solving the
deterministic problem obtained by utilizing these estimates in lieu of the real (uncertain)
parameters. Unsurprisingly, this approach can lead to unsatisfactory (i.e., low-quality or
even infeasible) decisions. Therefore, developing models that incorporate uncertainty in
the parameters is crucial for making satisfactory decisions in such settings.

An important and widely used model is the two-stage recourse model, wherein we seek to
take actions in two stages. In the first stage, we make a here-and-now decision x, using only
limited information (or no information at all) on the uncertain parameters. In the second
stage, a scenario A is revealed (i.e., the values of the uncertain parameters become known),
and we can make a recourse decision zA in order to satisfy the requirements imposed in this

1

scenario. The second-stage actions are typically costlier than the corresponding first-stage
actions, as they may entail making decisions in rapid reaction to the observed scenario
(e.g., deploying resources with smaller lead time).

An oft-cited prototypical example is two-stage facility location, wherein we need to
decide where to set up facilities to serve clients, in the face of uncertain client demands.
We can open some facilities initially, given only limited information about demands; after
a specific demand pattern is realized, we can take additional recourse actions such as
opening more facilities, incurring their recourse costs. Different objective functions can be
adopted, depending in particular on the level of risk aversion of the decision maker and on
the granularity of the information on the uncertain parameters that is made available to
them. This choice leads to several variants of the two-stage recourse model; two popular
models are two-stage {robust, stochastic} optimization. We briefly define these models and
discuss some issues that may arise when utilizing them. We then define the model that
is the focus of this thesis, namely two-stage distributionally robust stochastic optimization,
which mitigates these issues by interpolating between robust and stochastic optimization.
We defer a discussion of previous work related to these models to Chapter 2.

Two-stage robust optimization. If no information on the likelihood of the different
scenarios is available, or if the decision maker is highly averse to risk, a suitable model is
two-stage robust optimization, wherein we seek to minimize the total cost in the worst-case
scenario. Formally, we consider the problem

min
(x,{zA}A∈A)

{
(cost of x) + max

A∈A

{
cost of zA

}}
,

where A denotes the set of all possible scenarios. While this model can be appealing in
the circumstances mentioned above, it is in some cases overly cautious, leading to severely
undesirable decisions. One potential issue is that the existence of a single catastrophic
scenario may force us to take first-stage actions that are unhelpful for all the remaining
scenarios, and this may occur even if such a scenario is extremely unlikely.

Two-stage stochastic optimization. If some information on the likelihood of the dif-
ferent scenarios is available, a less conservative approach is to leverage this information and
seek instead a decision that is desirable in expectation. This gives rise to another prominent
model, namely two-stage stochastic optimization, wherein we seek to minimize the total
expected cost incurred (with respect to the scenario realized). That is, if the scenario is

2

modeled as a random variable drawn from A according to a probability distribution p, then
we consider the problem

min
(x,{zA}A∈A)

{
(cost of x) + EA∼p

[
cost of zA

]}
,

where EA∼p[·] denotes the expectation when A is chosen according to p. A significant issue
that occurs when using this model to capture real-world applications, which is a common
source of criticism, is that the probability distribution p modeling the uncertainty is itself
often imprecise. Usually, one computes a distribution p based on some historical data.
While historical data may serve as a reasonably accurate representation of the behavior of
the underlying unknown parameters, it is not sufficient to give an exact characterization
of this behavior. For example, a scenario that occurs with extremely low (but positive)
probability is unlikely to be observed in the historical data, so an empirical distribution
computed in this way would be likely to incorrectly assign probability zero to such a
scenario. As another example, suppose we observe a sequence of N2 coin tosses, such that
in each batch of N coin tosses the number of heads is between 0.49N and 0.51N . Then,
while it is possible that this sequence arose from a coin without bias (i.e., the probability
of heads is equal to 0.5), all we can really say is that there is a range of biases concentrated
around 0.5 under which the above statistic is likely.1

Two-stage distributionally robust stochastic optimization. The issues encoun-
tered in {robust, stochastic} optimization that we discussed above motivate the study of
models that leverage information on the likelihood of the different scenarios, but do not
assume knowledge of the exact underlying distribution. As mentioned before, one usually
models the distribution to be statistically consistent with some historical data, so we re-
ally have a collection of probability distributions, and a more robust approach is to hedge
against the worst-possible probability distribution in this collection. (Note that the worst-
possible distribution depends on the chosen first-stage decision x.) This gives rise to the
model that is the focus of this thesis, namely two-stage distributionally robust stochastic
optimization. The setup is similar to that of the two-stage stochastic model, but we now
have a collection D of probability distributions, which we refer to as the ambiguity set; our
goal is to minimize the maximum expected total cost with respect to a distribution in D.

1More precisely, for any confidence level δ > 0, there is some ε > 0 (depending on δ and N) such that
for any coin with bias p ∈ [0.5− ε, 0.5 + ε], the probability of seeing the above statistics from a coin of
bias p is at least 1− δ.

3

That is, we consider the problem

min
(x,{zA}A∈A)

{
(cost of x) + sup

p∈D
EA∼p

[
cost of zA

]}
.

Distributionally robust stochastic (DRS) optimization is a versatile approach dating
back to Scarf [103] that has regained interest recently in the Operations-Research litera-
ture, where it is sometimes called data-driven or ambiguous stochastic optimization (see,
e.g., [16, 43, 52, 126], and the references therein).

The two-stage DRS model also serves to nicely interpolate between the extremes of:
(a) two-stage stochastic optimization, which optimistically assumes that the underlying
distribution p is known precisely (which can be captured by setting D = {p}); and (b) two-
stage robust optimization, which abandons the distributional view and seeks to minimize
the maximum cost incurred in a scenario, thereby adopting the overly cautious approach
of being robust against every possible scenario, regardless of how likely it is for a scenario
to materialize (this can be captured by letting D = {all distributions over A}, where A
is the scenario collection in the two-stage robust problem; alternatively, we could take D
to be the collection of all distributions over A concentrated at a single scenario A ∈ A).
Both extremes can lead to suboptimal decisions: with robust optimization, the presence of
a single scenario, however unlikely, may lead to decisions that are undesirable for all other
scenarios; with stochastic optimization, the optimal solution for a specific distribution p
could be quite suboptimal even for a “nearby” distribution q, as illustrated by the following
example.

Example: consider an instance of two-stage set cover with a single element e and a single
set S = {e}. Suppose that the first-stage and second-stage costs of buying S are 1 and M

ε

respectively, where ε ∈ (0, 1] and M � 1. The collection of scenarios is A := {∅, {e}}; a
scenario specifies which elements must be covered. Let p be the probability distribution
with p∅ = 1 and p{e} = 0, and q be the probability distribution with q∅ = 1 − ε and
q{e} = ε. The optimal solution under p is to not buy S in the first stage; this incurs cost
(1 − ε) · 0 + ε · M

ε
= M under q, but the optimal solution under q is to buy S in the first

stage and incur cost 1. This shows that even if ‖p− q‖ ≤ O(ε), we can find instances
where an optimal decision for p is undesirable under q.

4

1.2 Our contributions

Despite the modeling benefits and popularity of DRS optimization, to our knowledge,
there has been almost no prior work on developing approximation algorithms for discrete
two-stage DRS problems, and, more generally, for two-stage DRS problems with a discrete
underlying scenario set (as is the case in discrete optimization). (The exception is Agrawal,
Ding, Saberi, and Ye [2], which we discuss in Section 2.3; peripherally related is Wu, Du,
and Xu [130], who consider a DRS version of facility location where the uncertainty only
affects the costs and not the constraints, which yields a much simpler and more restric-
tive model.) In this thesis, we provide frameworks for designing efficient approximation
algorithms in such settings. In this section, we give a high-level overview of our contri-
butions. We refer the reader to Section 3.3 for a more precise and detailed exposition of
our main results and the techniques we use to obtain them, as well as a summary of the
approximation factors we obtain for various applications.

We develop general frameworks for designing approximation algorithms for discrete
two-stage DRS optimization problems where the ambiguity set D is a ball around a central
distribution p̊ under some metric L over probability distributions; that is, we have D =
{p : L(p̊, p) ≤ r}, where r > 0 is the radius of the ball. We consider three choices for the
metric L: (i) the L∞ metric, defined by L∞(p, q) := maxA∈A |pA − qA|; (ii) the 1

2
L1 metric

(also known as the total-variation distance), defined by 1
2
L1(p, q) := 1

2

∑
A∈A |pA − qA|; and

(iii) Wasserstein metrics, a rich class of metrics obtained by lifting an underlying scenario
metric ` : A×A → R+ to a metric over distributions, which includes the 1

2
L1 metric as a

special case (see Definition 3.1). Our results hold under the bounded-inflation assumption,
which roughly speaking encodes that each first-stage action has a corresponding second-
stage action whose cost is at most λ times higher, for a given inflation factor λ ≥ 1. The
cardinality of the scenario collection A may be very large, even exponential in the input
size; the central distribution p̊ may only be accessed via a sampling oracle.

DRS optimization under a Wasserstein ball. For a first-stage decision x and a
scenario A, let g(x,A) denote the minimum cost incurred in extending x to a feasible
solution for A, if we allow fractional second-stage decisions. For a broad class of problems,
we relate the approximability of a discrete two-stage DRS optimization problem under
a Wasserstein ball (where the Wasserstein metric is defined relative to a scenario metric
` : A×A → R+) to the approximability of the problem of computing

g(x, y, A) := max
A′∈A
{g(x,A′)− y · `(A,A′)} ,

5

given an integer first-stage decision x, a number y ≥ 0, and a scenario A. Informally, our
main result (see Theorem 3.6) is that we can compute an O(αβ1β2ρ)-approximate solution
for a discrete DRS problem in poly(input size, λ) time as long as we have the following
three ingredients:

(i) a second-stage (LP-relative) α-approximation algorithm, which is an algorithm that
given an integer first-stage decision x and a scenario A, computes an integer second-
stage decision zA of cost at most α·g(x,A) such that

(
x, zA

)
is feasible for scenario A;

(ii) a (β1, β2)-approximation algorithm for computing g(x, y, A), which is an algorithm
that given a tuple (x, y, A) computes a scenario A ∈ A such that

g
(
x,A

)
− y · `

(
A,A

)
≥ max

A′∈A

{
1

β1

g(x,A′)− β2y · `(A,A′)
}

;

and

(iii) a local ρ-approximation algorithm, which is an algorithm that rounds a fractional
first-stage decision to an integer one while incurring at most a ρ-factor blow-up in
the first-stage cost, and in the cost of each scenario.

The proof of the result above has two main components, which are of independent
interest. The first component (see Chapter 4) is a sample-average-approximation (SAA)
result for DRS optimization under a Wasserstein ball, which reduces the discrete DRS
problem (with a central distribution p̊ given by a sampling oracle) to a collection of SAA
problems with fractional second-stage decisions, wherein p̊ is replaced with an empirical
estimate p̂, constructed using poly(input size, λ) samples. The second component (see
Chapter 5) is an approximation algorithm for the SAA problems; this is obtained via
a variant of the ellipsoid method, using ingredients (ii) and (iii). Combining these two
components, we obtain an integer first-stage decision, and fractional second-stage decisions,
which we then convert into integer second-stage decisions using ingredient (i).

DRS optimization under an L∞ ball. Our main result for discrete DRS optimization
under an L∞ ball (see Theorem 3.9) is that, for a broad class of problems, we can compute
an O(ρ)-approximate solution in poly

(
input size, λ, 1

r

)
time, as long we have the following

ingredients:

(i) an algorithm that given a fractional first-stage decision and a number t ≤ min
{
|A| , 1

r

}
,

computes the t worst scenarios under the given first-stage decision in poly(input size, t)
time; and

6

(ii) a local ρ-approximation algorithm.

The proof of this result is presented in Chapter 7, and relies on a variant of the ellipsoid
method based on approximate subgradients by Shmoys and Swamy [114].

Applications. By applying the frameworks mentioned above for DRS optimization un-
der a Wasserstein ball or an L∞ ball, and furnishing the ingredients required by them, we
obtain the first approximation results for DRS versions of a variety of problems, including
set cover, edge cover, vertex cover, facility location, and Steiner tree. Tables 3.1 and 3.2
show the approximation factors that we obtain for various choices of the scenario collection
A and of the scenario metric ` (in the Wasserstein setting).

1.3 Basic definitions, notation, and conventions

In this section we state some basic definitions, notation, and conventions that will be used
throughout the thesis.

We use a := b to denote the fact that a is defined as b. For a set S, we denote by
2S the collection of all subsets of S. For a vector u ∈ RS, indexed by S, we denote by
‖u‖ :=

√∑
e∈S u

2
e its Euclidean norm, and by supp(u) := {e ∈ S : ue 6= 0} its support. For

an integer n, we let [n] := {1, 2, . . . , n} if n ≥ 1, and [n] := ∅ otherwise.

We denote by logb a the logarithm of a to base b. We often only care about the asymp-
totic growth of an expression; in such cases, the base is not relevant and we may omit it.
We denote by ln a the natural logarithm of a.

We denote by Pr[E] the probability of an event E. We denote by Eξ∼p[v] the expectation
of an expression v when a random variable ξ is randomly chosen according to a probability
distribution p. When the distribution of the random variable ξ is clear from the context,
we may simply write E[v].

Consider a real-valued function f : D → R, where D ⊆ Rn. A vector d ∈ Rn is a
subgradient of f at u ∈ D if we have f(v) ≥ f(u) + dᵀ(v − u) for every v ∈ D. It is
well known that a convex function has a subgradient at every point in the relative interior
of its domain (see, e.g., Theorem 23.4 of Rockafellar [99]). We say that f is K-Lipschitz
continuous (for some nonnegative number K) if we have |f(u)− f(v)| ≤ K ‖u− v‖ for
every u, v ∈ D. The smallest number K (if any) for which this holds is called the Lipschitz
constant of f . The following well known result shows that the existence of subgradients

7

with bounded Euclidean norm implies a bound on the Lipschitz constant of f (see, e.g.,
Claim 4.11 of Shmoys and Swamy [114]).

Lemma 1.1. Let f : D → R be a convex function, where D ⊆ Rn. Suppose that for every
point u ∈ D there exists a subgradient of f at u with Euclidean norm at most K. Then f
is K-Lipschitz continuous.

For parameters (n1, . . . , nk), we say that an expression f(n1, . . . , nk) is poly(n1, . . . , nk)
if there exist (absolute) constants c1, c2 > 0 such that f(n1, . . . , nk) ≤ (n1n2 . . . nk)

c1

for every n1, . . . , nk ≥ c2. We also write f(n1, . . . , nk) = poly(n1, . . . , nk) with the same
meaning.

This thesis deals mostly with NP-hard problems, so we focus on designing approximation
algorithms. For an instance I of an optimization problem P, we denote by OPT(I) its
optimal value (if it exists). An α-approximate solution for I (where α ≥ 1) is a feasible
solution that attains objective value:

• at most α ·OPT(I), if P is a minimization problem; and

• at least 1
α
·OPT(I), if P is a maximization problem.

An α-approximation algorithm for P is an algorithm that, given any instance of P, computes
in polynomial time an α-approximate solution for it. We also use the following broader
terminology to allow additive approximation, and algorithms whose running time depends
on additional parameters other than the input size. An approximate solution for an instance
I is a feasible solution whose objective value is within some bounded multiplicative factor
and/or additive term of OPT(I). An approximation algorithm for P is an algorithm that,
given any instance I of P, computes an approximate solution for I.

1.4 Organization of the thesis

In Chapter 2, we give an overview of relevant previous work on robust, stochastic, and
distributionally robust stochastic optimization. In Chapter 3, we formally define the DRS
optimization model that we study and the class of problems to which our frameworks
apply. We then give a summary of the main results we obtain for DRS optimization under
a Wasserstein ball or an L∞ ball (see Section 3.3), and prove some preliminary results.
The next two chapters contain the two components of our framework for DRS optimization
under a Wasserstein ball: Chapter 4 presents an SAA result, reducing the original problem

8

(with a central distribution given by a sampling oracle) to a collection of SAA problems
with an explicit central distribution; Chapter 5 shows how to approximately solve the SAA
problems. In Chapter 6, we show how to combine the two components to obtain our main
result for DRS optimization under a Wasserstein ball (Theorem 3.6). We then apply our
framework to obtain approximation algorithms for DRS versions of various problems under
a Wasserstein ball, namely set cover, edge cover, vertex cover, facility location, and Steiner
tree. In Chapter 7, we present our framework for DRS optimization under an L∞ ball,
and prove our main result in this setting (Theorem 3.9). We then apply our framework
to obtain approximation algorithms for DRS versions of various applications under an L∞
ball, such as set cover, edge cover, vertex cover, and facility location. In Chapter 8, we
discuss some directions for future research.

9

Chapter 2

Background

In this chapter, we give an overview of relevant previous work. We first consider robust
and stochastic optimization in Sections 2.1 and 2.2 respectively; while these two models
are not the focus of this thesis, our frameworks for distributionally robust stochastic (DRS)
optimization build upon various ideas that were originally developed for them. We give
an overview of previous work on DRS optimization in Section 2.3. There are various
other models that (like the DRS model) allow interpolating between robust and stochastic
optimization; we mention some of them in Section 2.4. Finally, in Section 2.5 we state
some classical inequalities that we use throughout this thesis.

2.1 Robust optimization

The study of single-stage robust optimization dates back to Falk [45], Soyster [120], and
Thuente [125], who considered linear programs with uncertain constraints or objective
function. Starting in the late 1990s, there has been a vast amount of work on various
robust models that apply to both continuous and discrete problems, with various types of
uncertainty sets, such as ellipsoidal and polyhedral (see, e.g., [8, 9, 10, 14, 15, 39, 41]).
For a comprehensive treatment of robust optimization, we refer the reader to the textbook
by Ben-Tal, El Ghaoui, and Nemirovski [4] and the survey by Bertsimas, Brown, and
Caramanis [11].

In the remainder of this section we give an overview of previous work on the two-stage
robust optimization model, which we described in Section 1.1. The study of two-stage
(and more generally, multistage) robust optimization (also known as adjustable robust op-
timization) was initiated by Ben-Tal, Goryashko, Guslitzer, and Nemirovski [5]; for a more

10

comprehensive treatment of this model, we refer the reader to Delage and Iancu [31] and the
references therein. In the remainder of this section, we focus on the demand-robust model
introduced by Dhamdhere, Goyal, Ravi, and Singh [33] (see also Goyal [56]). Whereas
earlier models imposed a fixed set of constraints (whose coefficients may be uncertain),
in the demand-robust model we are given a collection of constraints whose coefficients are
known exactly, but only an uncertain subset of these constraints needs to be satisfied. More
formally, we are given a collection of constraints indexed by a set U , and a scenario is a
subset of U . When a scenario A ⊆ U is realized, the pair of first-stage and second-stage
decisions

(
x, zA

)
must satisfy all the constraints indexed by elements of A (and constraints

indexed by U \ A may be ignored). For instance, in two-stage robust set cover, U is a
ground set of elements, and a scenario A ⊆ U indicates the set of elements to be covered
in that scenario; the constraints encode that in every scenario A, the combination of first-
stage and second-stage decisions

(
x, zA

)
(which indicate the sets that are picked in the

first stage and in scenario A respectively) should cover all the elements of A. In addition
to the uncertainty in the collection of constraints that must be satisfied, this model also
incorporates uncertainty in the objective function: if scenario A is realized, the cost of each
first-stage decision increases by a factor λA ≥ 1 in the second-stage (in some settings, the
factor λA is required to be uniform across all scenarios).

Earlier works in approximation algorithms for demand-robust optimization considered
the setting wherein the collection of scenarios A is given explicitly as part of the input (and
hence the number of scenarios is polynomial in the input size). For example, Dhamdhere,
Goyal, Ravi, and Singh [33] give LP-based approximation algorithms for demand-robust
shortest path, Steiner tree, vertex cover, facility location, minimum cut, and minimum
multi-cut; Golovin, Goyal, and Ravi [55] give improved approximation factors for demand-
robust shortest path and minimum cut; Chen, Megow, Rischke, and Stougie [25] give
LP-based approximation algorithms for a class of demand-robust scheduling problems.

A significantly more challenging setting is the one where the scenario collection A is
given implicitly, and its size may be exponential in the input size. The first results in this
setting were obtained by Feige, Jain, Mahdian, and Mirrokni [46], who give approximation
algorithms for demand-robust versions of set cover, edge cover, and vertex cover in the k-
bounded setting, wherein the scenario collection A is comprised of all subsets of cardinality
at most k of the ground set U (this scenario collection is specified implicitly by the pair
(U, k)). Their results are obtained by reducing a certain convex-program relaxation of the
problem to the fractional k-max-min problem: find the worst possible scenario given x = 0
as the first-stage decision, when we allow fractional second-stage decisions. More precisely,
the fractional k-max-min problem asks to find the set A ⊆ U with cardinality at most
k for which the minimum cost of a fractional second-stage decision zA that satisfies all

11

the constraints for scenario A is as large as possible. The authors also consider integer k-
max-min problems, wherein one seeks a scenario for which the minimum cost of an integer
solution is as large as possible. They prove that {fractional, integer} k-max-min {vertex
cover, edge cover, set cover} are APX-hard, and give approximation algorithms for these
problems by drawing a connection between them and online versions of the underlying
optimization problem.

Khandekar, Kortsarz, Mirrokni, and Salavatipour [80] expanded the collection of results
known for demand-robust problems in the k-bounded setting, by designing approximation
algorithms in this setting for Steiner tree, Steiner forest on a tree, and facility location.

Gupta, Nagarajan, and Ravi [60] give a framework for obtaining approximation al-
gorithms for demand-robust combinatorial problems in the k-bounded setting and for k-
max-min problems, under the assumption that the inflation factor λA is uniform across all
the scenarios. Using this framework, they obtain improved approximation factors for k-
bounded demand-robust Steiner tree and set cover, and the first approximation algorithms
for k-bounded demand-robust Steiner forest, minimum cut, and multicut. In a companion
paper, Gupta, Nagarajan, and Ravi [59] give approximation algorithms for demand-robust
problems wherein the scenario collection A is defined as the collection of subsets of a
ground set U that satisfy a series of knapsack and matroidal constraints. (This generalizes
the k-bounded setting, since the collection of subsets of U of cardinality at most k is the
collection of independent sets of a uniform matroid.)

2.2 Stochastic optimization

The study of stochastic optimization dates back to Dantzig [29]; although there is a vast
amount of literature on this field (see, e.g., [18, 97, 101, 110] and the references therein), its
study from an approximation-algorithms perspective is relatively recent. Various approxi-
mation results have been obtained in the two-stage stochastic model (which was introduced
in Section 1.1) over the last 15 years in the CS and Operations-Research (OR) literature.
In this section, we give an overview of relevant previous work from an approximation-
algorithms perspective. For a more comprehensive overview, we refer the readers to the
surveys by Romeijnders, Stougie, and Vlerk [100], Shi [112], and Swamy and Shmoys [122].

There are multiple ways of specifying the underlying probability distribution p for a
stochastic problem. Perhaps the most natural approach is the explicit-distribution model,
wherein p is represented as a collection of pairs {(A, pA)}A∈supp(p) specifying the probabilities
of the scenarios in the support of p.

12

For some applications, the scenario collection A may be extremely large, making it
impractical to specify the distribution p explicitly. To handle such cases, one must resort
to implicit representations of the distribution p. Two common approaches are the indepen-
dent activation model and the black-box model, which allow encoding two-stage problems
with exponentially many scenarios. In both models, the scenarios are subsets of a given
ground set U . In the independent-activation model, the scenario realized includes each
element e ∈ U independently with some given probability qe. We can therefore specify
the distribution p implicitly by specifying the values {qe}e∈U . In the black-box model, the
central distribution p can only be accessed via a very limited interface called a sampling
oracle. Each time we query the oracle, it randomly generates and returns a scenario A ∈ A,
according to the distribution p. (Note that querying the oracle simply means requesting
a scenario; we do not need to convey any information to the oracle.) When measuring
the running time of an algorithm in this model, sampling from the oracle is considered an
elementary operation. Note that the black-box model encompasses a much broader class
of distributions, since, unlike the independent-activation model, it can account for corre-
lations among the activation of the various elements of U . Moreover, note that algorithms
for the black-box model can also be used for problems in the explicit-distribution model
and in the independent-activation model, since if we are given a problem in those two
models, it is straightforward to simulate a sampling oracle for the underlying distribution.

In the explicit-distribution model, approximation algorithms are known for two-stage
stochastic versions of various problems, such as the service-provision problem considered
in [36], maximum-weight matching [82], minimum-cost bipartite matching [79], shortest
path [74, 98], set cover [98], vertex cover [74, 98], bin packing [74, 98], facility location [98],
minimum-cost flow [74], Steiner tree [64, 65, 74], single-sink network design [64], minimum
spanning tree [34], and scheduling problems [25, 113].

In the independent-activation model, approximation results are known for two-stage
stochastic versions of shortest path [74], vertex cover [62, 74], bin packing [74], minimum-
cost flow [74], Steiner tree [62, 74], Steiner forest [48, 62], facility location [62], traveling-
salesman problem [116], and minimum-cost bipartite matching [79].

In the remainder of this section, we focus on the black-box model, which is the most
relevant for this thesis. From a theoretical viewpoint, a question that has attracted con-
siderable attention is that of computing a near-optimal solution for a two-stage stochastic
problem with a black-box distribution using a polynomially bounded number of samples.

Gupta, Pál, Ravi, and Sinha [62] give sample-complexity bounds under the constant-
inflation assumption: every first-stage action has a corresponding second-stage action that
is exactly λ times more costly, where λ ≥ 1 is a given constant. In this setting, they

13

obtained approximation algorithms using only poly(λ) samples for two-stage stochastic
rooted Steiner tree, vertex cover, and facility location. These results are obtained via
the boosted-sampling framework, which yields combinatorial approximation algorithms for
two-stage stochastic problems utilizing approximation algorithms of a certain type for
the deterministic version of the underlying problem. Fleischer, Könemann, Leonardi, and
Schäfer [48] and Gupta and Pál [61] give approximation algorithms for two-stage stochastic
unrooted Steiner tree with constant inflation using the boosted-sampling framework.

Shmoys and Swamy [114] give a framework for computing near-optimal solutions for a
broad class of two-stage stochastic linear programs under the bounded-inflation assumption:
we are given a factor λ ≥ 1 such that every first-stage action has a corresponding second-
stage action that is at most λ times more costly in every scenario. Note that the inflation of
the cost of a first-stage action is now allowed to depend on the action and on the scenario.
In this setting, the authors provide a fully polynomial randomized approximation scheme:
given any ε > 0 one can compute a (1 + ε)-approximate solution for the stochastic LP
using poly

(
input size, λ, 1

ε

)
samples. This result is obtained via a variant of the ellipsoid

method based on approximate subgradients (which we discuss in Section 3.4.1). Combining
this result with a suitable rounding scheme that rounds a fractional first-stage decision to
an integer one while increasing the cost incurred in the first stage and in each scenario
by at most a bounded factor, the authors obtain approximation algorithms for two-stage
stochastic versions of a variety of combinatorial-optimization problems including set cover,
vertex cover, and facility location. The authors also show that the dependence of the
number of samples on the inflation factor λ is unavoidable for two-stage stochastic set
cover in the black-box model. We note that our framework for discrete DRS optimization
utilizes the same type of rounding algorithms as [114].

A common approach for solving two-stage stochastic problems in the black-box model
is the sample-average-approximation (SAA) method: sample some number of scenarios
from the distribution p, use them to compute an empirical estimate p̂ of p, and solve
the stochastic problem with p̂ as the underlying distribution instead of p. We refer to the
stochastic problems with distributions p and p̂ as the original problem and the SAA problem
respectively. Earlier works show that optimal solutions to the SAA problem converge to
optimal solutions of the original problem as the number of samples increases (see Shapiro
[108]). Various works provide numerical experiments demonstrating the effectiveness of
the SAA method in practice [84, 102, 105, 127].

A first result regarding the theoretical effectiveness of the SAA method was obtained
by Kleywegt, Shapiro, and Homem-de-Mello [81]. For a two-stage stochastic problem with
a finite first-stage decision set X, they show the following result under mild assumptions:

14

given η > 0, if we construct p̂ using poly
(

log |X| , 1
η
, σ
)

independent samples, then with
high probability any optimal solution for the SAA problem is a near-optimal solution for
the original problem (within an η term). The term σ that appears in the sample size is a
quantity that bounds the variance of a certain random variable that depends on the second-
stage costs, and may be exponentially large even for well-structured stochastic problems
(see Shmoys and Swamy [114]). Shapiro and Nemirovski [111] show that this bound is tight
for general two-stage stochastic problems, and give SAA results for two-stage stochastic
problems wherein the set of first-stage decisions is a continuous set P ⊆ Rm, by applying
the result of Kleywegt, Shapiro, and Homem-de-Mello [81] to a gridding of P .

Swamy and Shmoys [124] show that their approximate-subgradient machinery from [114]
can also be used to obtain an SAA result for the class of two-stage LPs considered
therein: given any ε > 0, any optimal solution for an SAA problem constructed using
poly

(
input size, λ, 1

ε

)
samples is a (1 + ε)-approximate solution for the original problem.

Nemirovski and Shapiro [92] provide an alternative proof for a special case of the
SAA result by Swamy and Shmoys [124], namely two-stage stochastic fractional set cover.
Charikar, Chekuri, and Pál [24] give additional SAA results for two-stage stochastic prob-
lems with bounded inflation, based on the framework by Kleywegt, Shapiro, and Homem-
de-Mello [81] and Shapiro [108]. They show that for a broad class of two-stage stochastic
problems with a finite first-stage decision set X, any optimal solution of an SAA problem
constructed using poly

(
log |X| , λ, 1

ε

)
samples is a (1+ε)-approximate solution for the orig-

inal problem. Whereas for the class of problems considered by Swamy and Shmoys [124]
the SAA problem can be solved exactly (since it is an LP), it is not always possible to
efficiently solve the SAA version of a problem in the class considered by Charikar, Chekuri,
and Pál [24]. To circumvent this difficulty, [24] also developed techniques for converting ap-
proximate (rather than optimal) solutions for SAA problem(s) into approximate solutions
for the original problem.

Other two-stage stochastic problems for which approximation algorithms have been
developed in the black-box model include stochastic minimum-spanning tree [34], Steiner
forest [58], traveling-salesman problem [104], and scheduling problems [25, 113]. Approxi-
mation results are also known formultistage stochastic versions of various covering problems
(see, e.g., Byrka and Srinivasan [20], Gupta, Pál, Ravi, and Sinha [63], and Swamy and
Shmoys [123]).

15

2.3 Distributionally robust stochastic optimization

In this section, we give an overview of previous work on the distributionally robust stochas-
tic (DRS) model, which we introduced in Section 1.1. The DRS model was introduced
by Scarf [103] in the context of an inventory-control problem, as an alternative to the
classical stochastic model, to address the issue that in practice one typically does not have
a probability distribution that precisely describes the behavior of the uncertain parame-
ters. When adopting the classical stochastic model, one typically optimizes decisions with
respect to a distribution that is inferred from historical data, which may lead to decisions
that perform poorly with respect to the actual underlying distribution. This phenomenon,
referred to as “overfitting”, “optimizer’s curse”, “postdecision surprise”, or “error maximiza-
tion effect”, is discussed for example by Brown [19], Harrison and March [69], Michaud [90],
and Smith and Winkler [118]. The DRS model circumvents this issue by hedging against
the worst-possible probability distribution in a collection of distributions; this collection
typically consists of distributions that are statistically consistent with some historical data.
As noted before, the DRS model also allows to interpolate between robust optimization
and stochastic optimization, avoiding the risks of overconservatism and overfitting that are
present in these two models.

The DRS model (re)gained interest recently in the Operations-Research literature,
where it is sometimes called data-driven or ambiguous stochastic optimization, and has
been used in a variety of areas and applications such as inventory control [96, 103, 131,
133], portfolio selection [30, 32, 40, 54], healthcare [89], vehicle routing [22], the traveling-
salesman problem [21], facility location [130], and machine learning [50, 106, 107].

Most of the DRS optimization literature, including the seminal work of Scarf [103],
considers moment-based ambiguity sets (see, e.g., [17, 30, 32, 35, 53, 88, 109, 128]). In this
setting, the ambiguity set consists of all distributions whose (typically first and second)
moments have a specified value, or are constrained to being in a specified convex set.

Another popular family of ambiguity sets is that of distance-based ambiguity sets; our
work falls in this category. In this setting, the ambiguity set is defined as a ball around a
central distribution, with respect to some notion of distance among distributions. Various
notions of distance have been considered, such as Wasserstein metrics [21, 43, 50, 51, 52,
132], φ-divergence [3, 6, 72], and the Prohorov metric [42].

A third category of ambiguity sets is that of hypothesis-test based ambiguity sets. In this
setting, the ambiguity set consists of all distributions that pass a certain type of hypothesis
test, when given a certain historical data (see, e.g., Bertsimas, Gupta, and Kallus [12, 13]
and Chen, Lin, and Xu [26]).

16

Various works give non-polynomial time algorithms for DRS optimization problems [86,
87] and tractable approximate reformulations for special cases [52, 53, 67, 128]. Another
research direction is obtaining tractable exact reformulations for certain classes of DRS
problems, under various {linearity, convexity, concavity} assumptions on the objective
function (see, e.g., Delage and Ye [32], Esfahani and Kuhn [43], Gao and Kleywegt [52],
Mehrotra and Zhang [88], and Wiesemann, Kuhn, and Sim [128]). However, in most
cases these results apply only to continuous scenario spaces. Moreover, to the best of
our knowledge, with the exception of Agrawal, Ding, Saberi, and Ye [2], which we discuss
below, there are no prior approximation algorithms for discrete two-stage DRS optimization
problems when the number |A| of possible scenarios is finite, but exponentially large (even
if the ambiguity set is defined as a ball centered at a distribution with polynomial-size
support).

Various works propose and analyze (theoretically and/or experimentally) algorithms for
constructing a suitable ambiguity set given historical data (see, e.g., [12, 32, 43, 106]). In
addition to the tractability of the resulting DRS problem, one typically wants the ambiguity
set to be “small” and contain the true underlying probability with high probability, so as to
avoid the overconservatism that typically arises in the classical robust model, and ensure
that the DRS problem gives guarantees on the quality of the solutions with respect to
the true underlying distribution. Various works have advocated the use of a Wasserstein
ball around an empirical distribution for this purpose (see, e.g., Esfahani and Kuhn [43],
Gao and Kleywegt [52], Van Parys, Esfahani, and Kuhn [126], and Zhao and Guan [132]),
but there are no results proving polynomial bounds on the number of samples needed in
order to produce provably good results. Note that these works, by definition, consider the
setting where the central distribution has polynomial-size support. The distributionally
robust setting has also been considered for chance-constrained problems; see, e.g., Erdoğan
and Iyengar [42] and the references therein.

The work of Agrawal, Ding, Saberi, and Ye [2] in the CS literature on correlation gap
can be interpreted as studying DRS discrete-optimization problems, but in the moment-
based setting, where the ambiguity set is the collection of distributions that agree with
some given expected values; the correlation gap quantifies the worst-case ratio of the DRS
objective when one chooses the optimal decisions with respect to the distribution in the
ambiguity set that treats all random variables as independent, versus the optimum of
the DRS problem. The authors prove various O(1) bounds on the correlation gap for
submodular functions and subadditive functions admitting suitable cost shares.

17

2.4 Other models interpolating between robust and stochas-
tic optimization

Finally, we discuss a few other models that are more peripherally related to the topic of
this thesis, but of a somewhat similar spirit in that they pursue goals that are intermediate
between the robust and stochastic settings. Byrka and Srinivasan [20], So, Zhang, and Ye
[119], and Swamy [121] consider extensions of the classical stochastic model that incorpo-
rate risk aversion. In the context of online algorithms, Esfandiari, Korula, and Mirrokni
[44] and Mirrokni, Gharan, and Zadimoghaddam [91] give online algorithms for allocation
problems that are simultaneously competitive both in a random input model and in an
adversarial input model. Finally, we note that our distributionally robust setting can be
seen to be in a similar spirit as a recent focus in algorithmic mechanism design, where one
does not assume precise knowledge of the underlying distribution; rather one (implicitly)
has a collection of distributions, and one seeks to design mechanisms that work for every
distribution in this collection (see, e.g., Huang, Mansour, and Roughgarden [73]).

2.5 Some classical inequalities

Some of the classical inequalities used in this thesis admit multiple non-equivalent state-
ments. In the interest of precision, we state below which versions we use.

Theorem 2.1 (Markov’s inequality). Let X be a nonnegative random variable. Then for
every t > 0 we have

Pr[X ≥ t] ≤ E[X]

t
.

Theorem 2.2 (Jensen’s inequality [77]). Let X ∈ Rn be a random variable, and let
f : Rn → R be a concave function. Then

E[f(X)] ≤ f(E[X]) .

Theorem 2.3 (Hoeffding’s inequality [71]). Let X1, . . . , XN be independent real-valued
random variables in the range [a, b], where a < b, and let X := 1

N

∑
i∈[N] Xi. For every

η ≥ 0, we have

Pr
[∣∣X − E

[
X
]∣∣ > η

]
≤ 2 exp

(
− 2Nη2

(b− a)2

)
.

The following result follows easily from Hoeffding’s inequality.

18

Corollary 2.4. Let X be a real-valued random variable in the range [a, b]. Given any
η > 0 and δ ∈ (0, 1], there exists N0 = poly

(
b−a
η
, log 1

δ

)
such that the following holds. Let

X be an empirical estimate of X computed using N ≥ N0 independent samples. Then with
probability at least 1− δ we have

∣∣X − E[X]
∣∣ ≤ η .

Proof. Let X1, . . . , XN be independent samples of X, and let X = 1
N

∑
i∈[N] Xi be the

empirical estimate of X computed using those samples. Note that E
[
X
]

= E[X]. Using
Hoeffding’s inequality (Theorem 2.3), we obtain

Pr
[∣∣X − E[X]

∣∣ > η
]

= Pr
[∣∣X − E

[
X
]∣∣ > η

]
≤ 2 exp

(
− 2Nη2

(b− a)2

)
.

Therefore we have
∣∣X − E[X]

∣∣ ≤ η with probability at least 1 − δ as long as the number

of samples N satisfies 2 exp
(
− 2Nη2

(b−a)2

)
≤ δ. Solving this inequality for N yields

N ≥ (b− a)2

2η2
ln

2

δ
= poly

(
b− a
η

, log
1

δ

)
.

19

Chapter 3

Two-stage distributionally robust
stochastic optimization

In this chapter, we lay down the foundations for our study of two-stage distributionally
robust optimization. In Section 3.1, we formally define the model that we study. In
Section 3.2, we define the broad class of problems to which our frameworks apply. In
Section 3.3, we give an overview of the main results we obtain for DRS optimization under
a Wasserstein ball or an L∞ ball, including tables showing the approximation factors we
obtain for various applications. In Section 3.4, we prove some preliminary results regarding
the optimization of functions over the set of (integer or fractional) first-stage decisions, and
techniques for converting fractional solutions into integer ones (while incurring a bounded
increase in the objective value).

3.1 Formal model description

We study the following two-stage distributionally robust stochastic (DRS) optimization
model. We are given an underlying finite set A of scenarios, and a collection D of proba-
bility distributions over A, called the ambiguity set. Decisions are taken in two stages. In
the first stage, before a scenario is realized, we have at our disposal a finite set X ⊆ Rm

+ of
possible decisions. Selecting a first-stage decision x ∈ X incurs a cost cᵀx, where c ∈ Rm

+ is
a given cost vector. In the second stage, after a scenario A ∈ A is realized, we have at our
disposal a finite set Z ⊆ Rn

+ of possible decisions. Selecting a second-stage decision zA ∈ Z
incurs a nonnegative cost denoted by (cost of zA). For every scenario A ∈ A, there is a

20

corresponding set F (A) ⊆ X × Z of feasible solutions; the combination of the first-stage
decision and the second-stage decision must satisfy

(
x, zA

)
∈ F (A). Our goal is to solve

the problem

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p∈D
EA∼p

[
cost of zA

]}
. (DRSO)

One natural setting to consider is the one where the ambiguity set is a ball D =
{p : L(p̊, p) ≤ r} of probability distributions over A around a central distribution p̊. Here,
L denotes a metric over probability distributions, and r > 0 is the radius of the ball.
While the choice of the metric L is an application-dependent modeling decision, we would
like D to contain distributions that are “reasonably similar” to p̊, and exclude completely
unrelated distributions, as the latter could lead to overly conservative decisions, à la robust
optimization.

Two natural choices for L are the L∞ metric, defined by L∞(p, q) := maxA∈A |pA − qA|,
and the 1

2
L1 metric, defined by 1

2
L1(p, q) := 1

2

∑
A∈A |pA − qA|, which is also known as the

total-variation distance. A significantly more refined way of comparing probability distri-
butions is to see if they spread their probability mass on “similar” scenarios. Wasserstein
distances capture this viewpoint crisply, and lift an underlying scenario metric to a metric
over distributions.

Definition 3.1 (Wasserstein (a.k.a. transportation or earth-mover) distance).
The Wasserstein distance between two probability distributions p and q over A is defined
with respect to an underlying scenario metric ` : A × A → R+. A flow or transportation
plan from p to q is a vector γ ∈ RA×A+ such that: (i)

∑
A′∈A γA,A′ = pA for every scenario

A ∈ A; and (ii)
∑

A∈A γA,A′ = qA′ for every scenario A′ ∈ A. The Wasserstein distance
between p and q, denoted by LW(p, q), is the minimum value of

∑
A,A′ γA,A′`(A,A

′) over
all flows from p to q.

Note that if ` is a {symmetric, asymmetric, pseudo}-metric,1 then so is LW. Also, note
that 1

2
L1 is the Wasserstein metric with respect to the discrete scenario metric `disc, defined

by `disc(A,A′) = 1 if A 6= A′, and 0 otherwise. As we show in Chapters 4–6, our results
hold even when ` is not a metric, but only satisfies nonnegativity, and `(A,A) = 0 for all
A ∈ A.

1The distance function ` is a pseudometric if it satisfies the triangle inequality and `(A,A) = 0 for
every A ∈ A, but `(A,A′) is allowed to be 0 for A 6= A′.

21

Settings where the ambiguity set D is a ball with respect to some metric over distri-
butions arise naturally when one tries to infer a scenario distribution from observed data
(see, e.g., [42, 43, 132])—hence, the moniker data-driven optimization—and it has been
argued that defining D using the Wasserstein distance has various benefits (see, e.g., [43,
52, 126, 132]).

We would like to be able to handle settings where the number of scenarios in the
collection A is extremely large, possibly even exponential in the size of the underlying
combinatorial-optimization problem. In such settings, it is impractical and wasteful to
assume that scenario-specific information (e.g., scenario probabilities, pairwise scenario
distances in the Wasserstein case, and the feasibility conditions for each scenario) is explic-
itly specified in the input and/or output. Instead, we will assume a suitable oracle model
for specifying portions of the input (or output) that involve scenario-dependent data, and
we use the term input size to denote the encoding size of the data that does not depend
on A. That is, the input size, denoted by I, measures the encoding size of the underlying
deterministic problem, along with the first-stage and second-stage costs and the radius r
of the ball D. We adopt the black-box model (already discussed in the context of two-stage
stochastic optimization in Section 2.2), wherein the central distribution p̊ is specified via a
sampling oracle that allows one to sample a scenario A from the underlying distribution;
when we sample a scenario A, we get to know any scenario-specific data.2

Moreover, as is typically the case when specifying a combinatorial-optimization prob-
lem, the first-stage and second-stage decision sets are not explicitly specified, but are
implicit from the semantic description of the problem. Similarly, in the Wasserstein set-
ting, the pairwise scenario distances {`(A,A′)}A,A′∈A are not specified explicitly; instead,
we assume that given any pair of scenarios (A,A′), we can compute `(A,A′) in poly(I)
time.

An example: two-stage distributionally robust stochastic facility location (DRSFL).
As an illustrative example, consider the following distributionally robust facility location
problem (DRSFL).3 We have a metric space

(
F ∪ C, {wij}i,j∈F∪C

)
, where F is a set of

facilities, and C is a set of clients. A scenario is a subset of C indicating the set of clients
2An important stepping stone used to obtain results in the black-box setting is the setting where the

central distribution p̊ has moderate-size support and is represented explicitly by the collection of pairs
{(A, p̊A)}A∈supp(p̊). In this setting, the input size also includes the encoding size of this collection of pairs
(this is in contrast with the black-box model, wherein the central distribution p̊ does not contribute to the
input size).

3More examples can be found in Chapter 6.

22

that need to be served in that scenario. (Note that we can model integer demands by cre-
ating colocated clients.) Two common choices for the scenario collection are A = 2C (the
unrestricted setting) and A = {A ⊆ C : |A| ≤ k} (the k-bounded setting). We may open
facilities of F in either stage. The first-stage and second-stage opening costs are given by
vectors f I, f II ∈ RF+ respectively. In scenario A ⊆ C, we need to assign every client j ∈ A
to a facility iA(j) that has been opened either in the first stage or in the second stage (in
scenario A). The goal is to minimize

∑

i opened in stage I

f I
i + sup

p∈D
EA∼p

[∑

i opened in scenario A

f II
i +

∑

j∈A

wiA(j)j

]
.

Here the input size I is the encoding size of
(
F , C, w, f I, f II, r

)
. In addition to L be-

ing the L∞ or 1
2
L1 metrics, we can consider various ways of defining a scenario metric

` in terms of the underlying assignment-cost metric w to capture that two scenarios in-
volving demand locations in the same vicinity are deemed similar; lifting these scenario
metrics to Wasserstein metrics over distributions yields a rich class of two-stage DRS
facility-location models. For instance, we can define the asymmetric metric `asym∞ (A,A′) :=
maxj′∈A′ w(j′, A), where w(j′, A) := minj∈Awj′j, which measures the maximum separa-
tion between clients in A′ and locations in A (the resulting Wasserstein metric LW will
now be an asymmetric metric over distributions). Other natural scenario metrics include
the asymmetric metric `asym1 (A,A′) :=

∑
j′∈A′ w(j′, A), and the symmetrizations of these

asymmetric metrics: `sym
∞ (A,A′) := max {`asym∞ (A,A′), `asym∞ (A′, A)}, and `sym

1 (A,A′) :=
max {`asym1 (A,A′), `asym1 (A′, A)}.

We refer the reader to Section 6.7 for a formal explanation of how an instance of DRSFL
can be modeled by the generic DRS problem (DRSO). We remark that our framework is
not restricted to the choices of scenario collections and scenario metrics mentioned above;
instead, it applies more generally to any scenario collection and any scenario metric, pro-
vided we have access to approximation algorithms for suitable problems (see Theorems 3.6
and 3.9).

Recall that a solution for problem (DRSO) consists of a first-stage decision x ∈ X,
along with a second-stage decision zA ∈ Z for each scenario A ∈ A. Since the scenario
collection A may have exponential size, returning the output in an explicit fashion is not
viable. To bypass this issue, we will focus on obtaining two-stage algorithms.

Definition 3.2. A two-stage algorithm for problem (DRSO) is a pair of algorithms Alg :=(
AlgI,AlgII

)
such that:

23

• AlgI computes a first-stage decision x ∈ X; and

• AlgII receives as input a scenario A ∈ A, and computes a second-stage decision zA ∈ Z
such that

(
x, zA

)
∈ F (A).

Since AlgII needs to know the first-stage decision x, we assume that it is only called after
AlgI. We allow AlgII to utilize not only the first-stage decision x, but also other data
computed by AlgI. We define the running time of Alg as the sum of the running times of
AlgI and AlgII.

For example, for DRSFL, AlgI specifies which facilities are opened in the first stage.
After a scenario A is realized, AlgII specifies which facilities are opened in the second stage,
as well as the assignments of clients in A to facilities that have been opened in either stage.

3.2 A general class of two-stage DRS problems

Abstracting away the key properties of the applications that we consider in Chapter 6, we
now define a generic two-stage DRS problem to which our frameworks apply. We remark
that these assumptions hold for all the applications we consider in Chapter 6, and for
various other two-stage problems considered in the CS literature (see, e.g., [33, 46, 60, 80,
114]).

To get a better handle on the problem, it will be convenient to consider fractional
relaxations of the DRS problem obtained by enlarging the first-stage and second-stage
decision sets to suitable polytopes. We expand X and Z to polytopes P ⊇ X and Z ⊇ Z
respectively. We assume that P is specified either explicitly by a set of poly(I) linear
constraints, or implicitly by a poly(I)-time separation oracle, which is an algorithm that,
given a point x, either decides that x ∈ P , or returns a hyperplane separating x from P .
In the remainder of the thesis, we refer to elements of X and Z as integer first-stage and
second-stage decisions respectively; we refer to elements of P and Z as fractional first-stage
and second-stage decisions respectively. (This is simply for the sake of exposition, since in
most applications we have X = P ∩Zm and Z = Z ∩Zn. Our framework does not require
the elements of X and Z to be integer points.) For every scenario A ∈ A, we enlarge the set
of integer feasible solutions F (A) to a polytope F(A) such that F (A) = F(A) ∩ (X × Z).

Since we are interested in obtaining two-stage algorithms, it will be convenient to
reformulate problem (DRSO) as a problem that seeks only an optimal first-stage decision,
and incorporates the second-stage decisions in an implicit manner. We denote by g(x,A)

24

the second-stage cost incurred if we choose the best possible fractional second-stage solution
for scenario A ∈ A, given the fractional first-stage decision x ∈ P ; that is, we define

g(x,A) := min
{
cost of zA :

(
x, zA

)
∈ F(A)

}
.

To ensure that g(x,A) is well defined, we assume that there is always a fractional
second-stage decision zA such that

(
x, zA

)
∈ F(A); this is a standard assumption in

the study of two-stage optimization problems. Since (fractional or integer) second-stage
decisions have nonnegative costs, we have g(x,A) ≥ 0. Given a first-stage decision
x ∈ P , let z(p̊ ;x) := supp:L(p̊,p)≤r EA∼p[g(x,A)] be the expected cost incurred in the sec-
ond stage when the worst possible distribution in the ambiguity set D is realized, and
let h(p̊ ;x) := cᵀx+ z(p̊ ;x) denote the total cost incurred if we choose x as a first-stage
decision, along with optimal fractional decisions in the second stage. We consider the re-
laxation of (DRSO) with integer first-stage decisions and (implicit) fractional second-stage
decisions,

min
x∈X

h(p̊ ;x) , (Q(p̊))

and its further relaxation wherein first-stage decisions are also fractional,

min
x∈P

h(p̊ ;x) . (Qfr(p̊))

One benefit of moving from (DRSO) to the relaxations (Q(p̊)) and (Qfr(p̊)) is that, in
the applications we consider in Chapter 6, for every scenario A, the function x 7→ g(x,A)
is convex over P , and we can efficiently compute its value, as well as a subgradient, at
any given point. Furthermore, as we discuss in Section 3.4.2, one can convert approximate
solutions for the fractional relaxations into approximate solutions for the original (discrete)
problem via LP-rounding algorithms.

We now state the assumptions that we make. Assumption (A1) sets a generous limit
on the size of the first-stage decision set. Note that without this assumption, we would
not be able to represent integer first-stage decisions using poly(I) bits (since the number
of distinct binary strings using at most N bits is O

(
2N
)
).

(A1) log |X| = poly(I).

Assumptions (A2) and (A3) are lifted from Charikar, Chekuri, and Pál [24], who use
them to prove an SAA result for two-stage stochastic problems. Informally, (A2) says that

25

the empty first-stage decision (i.e., x = 0) is allowed, and is the first-stage decision that
helps the least in the second stage; (A3) says that, if we choose the empty decision in the
first stage, then the “regret” we face in the second stage, relative to any other fractional
first-stage decision x, is no larger than λ times the cost of x.

(A2) We have 0 ∈ X and g(0, A) ≥ g(x,A) for every x ∈ P and A ∈ A.

(A3) We know an inflation factor λ ≥ 1 such that g(0, A) ≤ g(x,A)+λcᵀx for every x ∈ P
and A ∈ A.

A common characteristic of all the frameworks we develop in Chapters 4–7 for design-
ing approximation algorithms for two-stage DRS problems is that they involve obtaining
approximate solutions for one of the relaxations {(Q(p̊)), (Qfr(p̊))}, typically using an
ellipsoid-based method (either the classical ellipsoid method for convex optimization, or
one of its variants discussed in Section 3.4.1). Determining the number of iterations of
these methods requires bounds on the polytope P in terms of enclosed and enclosing balls;
this is captured by (A4), which is directly lifted from Shmoys and Swamy [114]. Note that
the vast majority of two-stage problems involve {0, 1} decisions, so we have X = {0, 1}m
and P = [0, 1]m, and assumption (A4) is readily satisfied. As in [114], for any given sce-
nario A ∈ A, we need a value oracle and a subgradient oracle for the function x 7→ g(x,A),
which is a benign requirement since g(x,A) is the optimal value of a polytime-solvable LP
in all our applications, and subgradients can be obtained from optimal solutions to the
dual of this LP. Whereas Shmoys and Swamy [114] define a syntactic class of two-stage
stochastic LPs and show (implicitly) that they satisfy this requirement, we explicitly isolate
this requirement in assumption (A5).

(A4) We have positive bounds Rsmall ≤ 1 and Rlarge such that:

• P contains a Euclidean ball of radius Rsmall;

• P is contained in the Euclidean ball of radius Rlarge centered at the origin; and

• log
Rlarge
Rsmall

= poly(I).

(A5) For every scenario A ∈ A, the function x 7→ g(x,A) is convex over P . Furthermore,
given any point x ∈ P , we can compute in poly(I) time the value of this function at x
and a subgradient d at x such that ‖d‖ ≤ K, where logK = poly(I). By Lemma 1.1,
this also implies that the function x 7→ g(x,A) is K-Lipschitz continuous.

26

Assumption (A6) is also lifted from Shmoys and Swamy [114], and allows us to express
our main results in a more convenient form, with purely multiplicative guarantees. We
say a scenario A ∈ A is a null scenario if we have g(x,A) = g(0, A) for every fractional
first-stage decision x ∈ P . (For example, for DRS facility location, A = ∅ is a null scenario.)

(A6) For every fractional first-stage decision x ∈ P and every non-null scenario A ∈ A we
have cᵀx+ g(x,A) ≥ 1.

In the Wasserstein setting, where L is defined with respect to a scenario metric `, we
make the following additional assumption, which relates ` to the second-stage costs g(·, ·).
This is a rather mild assumption and holds for all the applications we consider in Chapter 6
(see the discussion in the introduction of that chapter).

(A7) We have a number τ ≥ 1 with log τ = poly(I) such that g(x,A′)−g(x,A) ≤ τ ·`(A,A′)
for every fractional first-stage decision x ∈ P and every pair of scenarios (A,A′) with
`(A,A′) > 0.

We also suppose that `(A,A) = 0 for all A ∈ A, and that we are given an upper
bound `max > 0 on the pairwise scenario distances {`(A,A′)}, with log `max = poly(I). We
assume without loss of generality that r ≤ `max (note that for r ≥ `max, every distribution
p satisfies LW(p̊, p) ≤ r).

3.3 Overview of results and techniques

In this section, we give an overview of our results for two-stage DRS optimization under a
Wasserstein ball and an L∞ ball, and of the techniques used to obtain them.

As mentioned before, our frameworks involve relaxations of the discrete problem (DRSO)
with fractional second-stage (and possibly first-stage) decisions. We now define two types
of algorithms that we utilize to convert fractional solutions into integer ones.

When we work with the relaxation (Q(p̊)), we often obtain only an integer first-stage
decision x̂ ∈ X, and a bound on the quality of the solution formed by x̂ coupled with
optimal fractional second-stage decisions. To obtain a solution for (DRSO), we also need
integer second-stage decisions.

27

Definition 3.3. A second-stage α-approximation algorithm is an algorithm that, given
an integer first-stage decision x̂ ∈ X and a scenario A ∈ A, computes in poly(I) time
an integer second-stage decision ẑA ∈ Z such that

(
x̂, ẑA

)
is feasible for scenario A and

(cost of ẑA) ≤ α · g(x̂, A).

Typically, the problem of computing suitable second-stage actions for a scenario A boils
down to solving an instance of the deterministic version of the underlying problem. For
example, for DRSFL, this boils down to (approximately) solving an instance with client
set A, where each facility i has opening cost 0 if it has already been opened in the first
stage, and f II

i otherwise. So an LP-based α-approximation algorithm for the deterministic
problem yields a second-stage α-approximation algorithm.

When we work with the relaxation (Qfr(p̊)), we obtain a fractional first-stage decision
x ∈ P , and a guarantee on the quality of the solution formed by x coupled with optimal
fractional second-stage decisions. To obtain a solution for (DRSO), we need to compute
both integer first-stage and second-stage decisions; we do so using a suitable two-stage
algorithm. (Recall from Definition 3.2 that two-stage algorithms compute second-stage
decisions in an implicit manner.)

Definition 3.4. A local ρ-approximation algorithm is a two-stage algorithm that, given
a fractional first-stage decision x ∈ P , computes in poly(I) time a feasible (integer)
solution

(
x̂,
{
ẑA
}
A∈A

)
for (DRSO) with the following guarantees: cᵀx̂ ≤ ρ · cᵀx and

(cost of ẑA) ≤ ρ · g(x,A) for every scenario A ∈ A.

Local approximation algorithms exist for various two-stage combinatorial-optimization
problems such as set cover, edge cover, vertex cover, and facility location with approxima-
tion factors that are comparable to the approximation factors known for their deterministic
counterparts (see Shmoys and Swamy [114]).

3.3.1 DRS optimization under a Wasserstein ball

In Chapters 4–6 we consider the discrete DRS problem

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p:LW(p̊,p)≤r
EA∼p

[
cost of zA

]
}

, (DRSOW)

28

where LW is a Wasserstein metric defined with respect to a scenario metric `. We consider
two choices for the scenario collection: the unrestricted setting (i.e., A = 2U) and the k-
bounded setting (i.e., A = A≤k := {A ⊆ U : |A| ≤ k}), for some ground set U . We consider
Wasserstein metrics defined relative to the following scenario metrics: the discrete metric,
defined by `disc(A,A′) = 1 if A 6= A′, and 0 otherwise (so LW is the 1

2
L1 metric); and the

asymmetric metric `asym∞ with respect to an underlying distance function w over U , defined
by `asym∞ (A,A′) := maxj′∈A′ w(j′, A), where w(j′, A) := minj∈Awj′j. Table 3.1 summarizes
the results we obtain for the DRS versions of various discrete-optimization problems under
a Wasserstein ball.

Problem `disc `asym∞ General A, `
β=approx. for (Π)A = 2U A≤k A = 2U A≤k

Facility location 21.96 196 21.96 196 O(β)
Vertex cover 16 101.3 – – O(β)
Edge cover 12 36 – – O(β)
Set cover O(log |U |) O

(
log2 |U |

)
– – O(β log |U |)

Steiner tree 160 * 160 * *

Table 3.1: A summary of the approximation factors we obtain for various applications in
the Wasserstein setting. We have omitted the O(ε) terms that appear in the approximation
factors. The `asym∞ setting does not apply to vertex cover, edge cover, and set cover. The
approximation factor β for (Π) is the factor β1β2 in Theorem 3.6. The * entries are open
questions.

We relate the approximability of the discrete DRS problem (DRSOW) to that of the
following deterministic problem.

Given an integer first-stage decision x ∈ X, y ≥ 0, and a scenario A ∈ A, solve(Π)

g(x, y, A) := max
A′∈A
{g(x,A′)− y · `(A,A′)} .

Note that problem (Π) ties together three distinct sources of complexity in the two-
stage DRS problem: the combinatorial complexity of the underlying optimization problem,
captured by g(x,A′); the complexity of the scenario collection A; and the complexity of
the scenario metric `, captured by the y · `(A,A′) term.

Under the standard notion of approximation, it is impossible to obtain any approxi-
mation guarantee for problem (Π) due to its mixed-sign objective (see Theorem 5.9-(b)).
To evade this difficulty, we consider the following non-standard notion of approximation.

29

Note that a (1, 1)-approximation algorithm for (Π) corresponds to an exact algorithm.

Definition 3.5. Let β1, β2 ≥ 1. A (β1, β2)-approximation algorithm for problem (Π) is
an algorithm that, given an instance (x, y, A) ∈ X × R+ ×A, computes in poly(I) time a
scenario A ∈ A such that

g
(
x,A

)
− y · `

(
A,A

)
≥ max

A′∈A

{
1

β1

g(x,A′)− β2y · `(A,A′)
}
.

Our main result for DRS optimization under a Wasserstein-ball ambiguity set is the
following. See Definitions 3.2–3.5 for terminology.

Theorem 3.6 (see proof in Section 6.1).
Suppose that assumptions (A1)–(A7) hold, and that we have:

(1) a second-stage α-approximation algorithm;
(2) a (β1, β2)-approximation algorithm for problem (Π), with log β1 = poly(I); and
(3) a local ρ-approximation algorithm.

Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a
4αβ1β2ρ(1 + ε)-approximate solution for (DRSOW) with probability at least 1 − δ in
time poly

(
I, λ, 1

ε
, log 1

δ

)
.

Ingredients (1) and (3) can often be obtained using known results for deterministic
and two-stage-stochastic optimization respectively; ingredient (2) is the new component
we need to supply to instantiate Theorem 3.6 and obtain results for specific two-stage DRS
problems. In various settings, we show that an approximation algorithm for (Π) (in the
sense of Definition 3.5) can be obtained via an approximation algorithm for the constrained
problem maxA′∈A:`(A,A′)≤µ g(x,A′), given (x, µ,A) ∈ X × R+ × A (see Lemma 6.2). For
all the applications that we consider in Chapter 6, this reduces to the simpler max-min
problem maxA′∈A g(x,A′), encountered in two-stage robust optimization. Note that this
can be seen as the special case of problem (Π) wherein y = 0. In the k-bounded setting (i.e.,
A = A≤k), by setting x = 0 we recover the k-max-min problem that has been studied in the
literature for various applications (see Section 2.1). In particular, this reduction from (Π)
to the max-min problem maxA′∈A g(x,A′) problem applies to the 1

2
L1-metric. Theorem 3.6

thus provides a novel, useful reduction from two-stage DRS optimization to deterministic
and two-stage {stochastic, robust} optimization. (For instance, Gupta, Nagarajan, and
Ravi [59] devise approximations for the max-min problem for various applications, with
scenario collection A defined by matroid-independence and/or knapsack constraints; we

30

are able to export these guarantees to the corresponding two-stage DRS problem under a
1
2
L1-ball.)

In Chapter 6, we utilize Theorem 3.6 to obtain approximation algorithms for two-stage
DRS versions of various combinatorial-optimization problems. We also discuss variants of
Theorem 3.6 that lead to improved approximation factors for specific applications. Our
strongest results are for set cover, vertex cover, edge cover, and facility location. For
Steiner tree, we are not able to directly apply Theorem 3.6 because we do not have a local
approximation algorithm, but we are still able to obtain approximation algorithms in the
unrestricted setting (A = 2U), using a weaker type of rounding algorithm (see Section 6.8).

Technical contributions. The reduction in Theorem 3.6 is obtained by supplementing
tools from two-stage {stochastic, robust} optimization with various additional ideas. Its
proof consists of two main components, both of which are of independent interest.

• Sample average approximation (SAA) for DRS problems. In Chapter 4, we prove
that a simple and appealing approach in stochastic optimization called the sample-average-
approximation (SAA) method can be applied to reduce the relaxed DRS problem (Q(p̊))
to the setting where the central distribution p̊ has a moderate-size support and is repre-
sented explicitly. In the SAA method, we draw some N samples to construct an empirical
estimate p̂ of p̊, and solve the DRS problem obtained by replacing p̊ with p̂. (See Sec-
tion 2.2 for a discussion of the use of this method in two-stage stochastic optimization.)
Roughly speaking, we show that by taking N = poly(I, λ) samples, we can ensure that an
approximation algorithm for the SAA problem, in conjunction with an approximate value
oracle for the SAA objective function, can be used to obtain an approximate solution for
the original problem with high probability (see Theorem 4.1). It is well known that Ω(λ)
samples are needed even for (standard) two-stage stochastic problems in the black-box
model (see Shmoys and Swamy [114]). Our SAA result substantially expands the scope of
problems for which the SAA method is known to be effective with poly(I, λ) sample size.
Previously, as discussed in Section 2.2, such results were known for the special case of two-
stage stochastic problems, and multi-stage stochastic problems with a constant number of
stages, given an exact algorithm for the SAA problem and an exact evaluation oracle for
its objective function.

• Solving the explicit central-distribution case. Complementing the above SAA
result, we show in Chapter 5 how to approximately solve a two-stage DRS problem with
a central distribution p̂ that is represented explicitly. It is natural to move to a fractional
relaxation of the problem, by enlarging the first-stage and second-stage decision sets to

31

suitable polytopes. In stark contrast with two-stage {stochastic, robust} optimization,
where the fractional relaxation of a problem with an explicit list of scenarios immediately
gives a polynomial-size LP and therefore can be solved exactly in polynomial time, it is sub-
stantially more challenging to even approximately solve the fractional DRS problem with
an explicit central distribution. In fact, this is perhaps the technically more-challenging
part of obtaining an approximation algorithm for DRS problems. The crux of the problem
is that, while p̂ has moderate-size support, there are (numerous) distributions p in the
ambiguity set D that have exponential-size support, and one needs to optimize over such
distributions. In particular, if we reformulate minx∈P

{
cᵀx+ maxp:LW(p̂,p)≤r EA∼p[g(x,A)]

}

as a minimization LP (by taking the dual of the LPs defining g(x,A), and then the dual
of the inner maximization problem), we obtain an LP with an exponential number of both
constraints and variables. (See the discussion in Chapter 5.) Thus, while we started with
a central distribution of moderate-size support, we have ended up in a situation similar
to that in two-stage stochastic or robust optimization with an exponential number of sce-
narios. To surmount these obstacles, we work with the problem minx∈X h(p̂ ;x), whose
fractional relaxation minx∈P h(p̂ ;x) is a convex program, and solve this approximately by
leveraging the ellipsoid-based algorithm from Theorem 3.14 (see Theorem 5.1). Not sur-
prisingly, this poses various fresh difficulties, which are discussed in detail in Chapter 5.

Remark 3.7. As noted earlier, we would like to be able to handle settings with an ex-
ponential number of scenarios, which arise naturally in a variety of discrete-optimization
problems; hence our focus is on the black-box model. However, we remark that if (i) the
number of scenarios is polynomial (i.e., |A| is poly(I)) and (ii) the central distribution p̊
is represented explicitly, then it becomes much simpler to solve a fractional relaxation of
the DRS problem (where we allow fractional first-stage and second-stage decisions) since
one can then leverage LP duality to cast this relaxation as a compact LP. A more general
result along these lines is discussed in Section 5.3.

Remark 3.8. We choose to work with the relaxation (Q(p̊)) (with integer first-stage de-
cisions) instead of the relaxation (Qfr(p̊)) (with fractional first-stage decisions) for two
reasons. First, it is slightly easier to prove an SAA result for (Q(p̊)) (see Chapter 4),
showing that approximate solutions for the SAA version (Q(p̂)) of the relaxed problem
translate into approximate solutions for the original relaxed problem (Q(p̊)). Second, to
solve the SAA problem (Q(p̂)) in Chapter 5, we utilize the ellipsoid method with a gen-
eralized first-order oracle (see Theorem 3.14). In order to use the (β1, β2)-approximation
for problem (Π), the generalized first-order oracle needs to round a fractional first-stage
decision to an integer point. Thus, the rounding is embedded inside the ellipsoid-based
method, and the algorithm directly returns an integer first-stage solution.

32

3.3.2 DRS optimization under an L∞ ball

In Chapter 7 we consider the problem

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p:L∞(p̊,p)≤r
EA∼p

[
cost of zA

]
}

. (DRSO∞)

Table 3.2 summarizes the results we obtain for the DRS versions of various discrete-
optimization problems under an L∞ ball.

Problem A = 2U

Facility location 11
Vertex cover 8
Edge cover 6
Set cover O(log |U |)

Table 3.2: A summary of the approximation factors we obtain for DRS optimization under
an L∞ ball. We have omitted the O(ε) terms that appear in the approximation factors.

Recall from Section 3.2 that g(x,A) denotes the optimal second-stage cost of scenario
A given x as the first-stage decision, when we allow fractional second-stage actions. We
assume the following stronger version of assumption (A5).

(A5’) For every scenario A ∈ A, the function x 7→ g(x,A) is convex over P . Furthermore,
given a point x ∈ P , we can compute in poly(I) time the value of this function at x
and a subgradient d at x such that −λc ≤ d ≤ 0. By Lemma 1.1, this also implies
that the function x 7→ g(x,A) is λ ‖c‖-Lipschitz continuous.

Shmoys and Swamy [114] define a broad class of two-stage problems for which assump-
tion (A5’) holds, which includes set cover, facility location, and Steiner tree.

Our main result for DRS optimization under an L∞-ball ambiguity set is that we
can obtain an approximation algorithm for problem (DRSO∞) via an algorithm for the
following problem.

Given a fractional first-stage decision x ∈ P and 1 ≤ t ≤ min

{
|A| , 1

r

}
,(Υ)

find the t scenarios A ∈ A with largest g(x,A) value.

33

Theorem 3.9 (combination of Theorem 7.1 and Lemma 3.16).
Suppose that assumptions (A1)–(A4), (A5’), and (A6) hold, and that we have:

(1) an algorithm for problem (Υ) with poly(I, t) running time; and
(2) a local ρ-approximation algorithm.

Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes
a (2 + ε)ρ-approximate solution for (DRSO∞) with probability at least 1 − δ in time
poly

(
I, λ, 1

r
, 1
ε
, log 1

δ

)
.

As mentioned before, ingredient (2) can often be obtained using known results for two-
stage stochastic optimization. Ingredient (1) is the new component we need to supply to
instantiate Theorem 3.9 and obtain results for specific two-stage DRS problems. We show
that this can be obtained in the unrestricted setting (A = 2U) when we have g(x,A) ≤
g(x,A′) for every fractional first-stage decision x ∈ P and for every pair of scenarios
(A,A′) with A ⊆ A′, a condition that holds for covering problems, and in particular for the
applications we consider in Chapter 6. We utilize Theorem 3.9 to obtain approximation
results for two-stage DRS versions of set cover, edge cover, vertex cover, and facility location
in the unrestricted setting.

Instead of using an SAA approach to first move to an empirical estimate p̂ of the central
distribution p̊, we directly consider the fractional relaxation (Qfr(p̊)) of (DRSO∞) with
fractional first-stage decisions and (implicit) fractional second-stage decisions. As in the
Wasserstein setting, even for a central distribution with polynomial-size support, solving
this relaxation is quite challenging since it again leads to an LP with exponentially many
variables and constraints. We move to a proxy objective function that is pointwise close to
the true objective, and show that approximate subgradients of the proxy objective function
can be computed efficiently at any point (for a certain notion of approximate subgradients
introduced by Shmoys and Swamy [114], and presented in Section 3.4.1). This enables to
use the algorithm of [114] to find an approximate minimizer of the proxy function; rounding
this solution using a local approximation algorithm yields an approximate solution for the
discrete DRS problem (DRSO∞).

3.4 Some preliminary results and definitions

This section contains some preliminary results that are used by our frameworks. In
Section 3.4.1, we discuss different approaches for minimizing functions over the set of

34

{fractional, integer} first-stage decisions. In Section 3.4.2, we discuss how rounding al-
gorithms can be used to translate approximate solutions for the relaxed DRS problems
{(Q(p̊)), (Qfr(p̊))} into approximate solutions for the discrete DRS problem (DRSO).

3.4.1 Optimizing over P or X via ellipsoid-based methods

Throughout this thesis, we encounter multiple times the task of solving a problem of the
type

min
x∈X

H(x) ,

for a certain function H : P → R, where X is either the polytope P of fractional first-stage
decisions, or the set X of integer first-stage decisions.

Let us recall the assumptions that we stated for the polytope P in Section 3.2, on which
the results stated in this section rely. We assume that we have a poly(I)-time separation
oracle for the polytope P . By assumption (A4), we have that P contains a Euclidean
ball of radius Rsmall and is contained in the Euclidean ball of radius Rlarge centered at the
origin, where log

Rlarge
Rsmall

= poly(I). Furthermore, we have 0 ∈ X (and hence 0 ∈ P) by
assumption (A2).

When H is a convex function and X = P (or, more generally, X is a convex set), a
classical tool that could be used for solving this problem is the ellipsoid method introduced
by Nemirovski and Yudin [93] and Shor [117]. The algorithm accesses the objective function
H via a first-order oracle, which, given any point x ∈ P , computes a tuple (x,H(x), d)
where d is a subgradient of H at x.4

Theorem 3.10 (Nemirovski and Yudin [93]). Suppose that the function H : P → R
is convex and K̃-Lipschitz continuous, and that we have a first-order oracle for H with
running time Toracle. Then, given η > 0, we can compute in poly

(
I, log K̃, Toracle, log 1

η

)

time a solution x̃ ∈ P such that

H(x̃) ≤ min
x∈P

H(x) + η .

The algorithm from Theorem 3.10 has two phases. In the first phase, starting with an
ellipsoid that contains the entire feasible region, at each step, we add a cut (i.e., a linear

4We are following the nomenclature used e.g. by Nesterov [94] and Ben-Tal and Nemirovski [7]. Note
that in other contexts, the term first-order oracle is used for an algorithm that computes only a subgradient
at any given point (and not the value of the function).

35

inequality) passing through the center x̃ of the current ellipsoid to chop off a half-ellipsoid
that does not contain points of interest. If x̃ is infeasible, we use the separation oracle
for P to obtain such a cut. Otherwise, we find a subgradient d of H at x̃ and use the
cut dᵀ(x− x̃) ≤ 0; the definition of subgradient ensures that any point x discarded by
this cut satisfies H(x) > H(x̃). We then replace the current ellipsoid with a smaller one,
and iterate this process until the volume of the current ellipsoid becomes sufficiently small,
which happens after a suitably small number of iterations. In the second phase, we select
the best solution among the feasible solutions produced in the first phase.

In various two-stage stochastic-optimization settings, as well as distributionally robust
optimization, evaluating the objective function, even approximately, is an intractable (#P-
hard) problem since the expectation is computed over an exponential number of scenarios
(see Dyer and Stougie [37, 38] and Hanasusanto, Kuhn, and Wiesemann [68]). Similarly,
computing subgradients exactly is also difficult. To deal with these issues, Shmoys and
Swamy [114] give an algorithm for minimizing a convex function over a convex set utilizing
the following notion of approximate subgradients.

Definition 3.11. Consider a function H : P → R, and let ω ≥ 0. A vector d̂ ∈ Rm is an
ω-subgradient of H at a point x ∈ P if for every x′ ∈ P we have

H(x′)−H(x) ≥ d̂ · (x′ − x)− ωH(x) .

Note that (exact) subgradients correspond to ω-subgradients with ω = 0. Using a
variant of the ellipsoid method, Shmoys and Swamy [114] showed the following result.

Theorem 3.12 (see Theorem 4.7 and Lemma 4.14 in Shmoys and Swamy [114]). Sup-
pose that the function H : P → R is convex and K̃-Lipschitz continuous. Let ε > 0,

η > 0, and δ ∈ (0, 1). Define Ñ :=

⌈
2m2 ln

(
16K̃R2

large
Rsmall·η

)⌉
, ñ := Ñ · ln

(
8ÑK̃Rlarge

η

)
, and

ω := min{ε,1}
4ñ

. Suppose that given any point x ∈ P we can compute a vector that is an
ω-subgradient of H at x with probability at least 1 − δ in time T (ω, δ).5 Then we can
compute in poly

(
I, log K̃, T

(
ω, δ

Ñ+ñ

)
, log 1

η

)
time a solution x̃ ∈ P that with probability at

least 1− δ satisfies
H(x̃) ≤ (1 + ε) ·min

x∈P
H(x) + η .

Theorem 3.12, in addition to relaxing the requirement of being able to compute ex-
act subgradients, completely dispenses with the requirement of an (even approximate)

5We need not be able to certify the correctness of the output of this algorithm.

36

objective-value oracle (the second phase of the ellipsoid method is replaced with an it-
erative binary-search based on approximate subgradients). We will utilize the algorithm
from Theorem 3.12 for DRS optimization under an L∞ ball (see Chapter 7). However,
for DRS optimization under a Wasserstein ball, we will not even be able to compute an
ω-subgradient of the objective function for as small an ω as required by Theorem 3.12. To
deal with such cases, we develop another variant of the ellipsoid method, which involves
the following generalized notion of first-order oracles.

Definition 3.13. Consider a function H : P → R, and let ψ ≥ 1 and X ⊆ P . A(
ψ,X

)
-first-order oracle for H is an algorithm that, given a point x̃ ∈ P , computes a

tuple (x, f, d) ∈ X ×R×Rm such that (i) H(x) ≤ f ; and (ii) H(y) ≥ 1
ψ
f for every y ∈ X

such that dᵀ(y − x̃) ≥ 0.

Note that classical first-order oracles correspond to (1,P)-first-order oracles that al-
ways return x = x̃. The intuition behind this definition is that, given any x̃ ∈ P , a(
ψ,X

)
-first-order oracle yields an estimate of the objective value at a related point x ∈ X

and a hyperplane passing through x̃ such that the points chopped off by this hyperplane
are better off by at most a factor ψ compared to x. This suggests that running a modified
ellipsoid method that uses d in lieu of a subgradient at each iteration in the first phase,
and uses the estimates {f} to select a solution in the second phase, yields an approximate
minimizer of H over X. We now prove that this is indeed the case. Note that the function
H is not required to be convex.

Theorem 3.14. Let H : P → R be a K̃-Lipschitz continuous function, and suppose that
we have a

(
ψ,X

)
-first-order oracle for H with running time Toracle, where ψ ≥ 1 and

X ⊆ P. Then, given η > 0, we can compute in poly
(
I, K̃, Toracle, log 1

η

)
time a solution

x ∈ X and an estimate f such that

H(x) ≤ f ≤ ψ ·
(

min
x∈X

H(x) + η

)
.

Proof. We state below the algorithm used to obtain the theorem.

37

1. Set k ← 0, x̃0 ← 0, µ← min
{

1, η

2K̃Rlarge

}
, N ←

⌈
2m2 ln

2Rlarge
µRsmall

⌉
,

E0 ← {x ∈ Rm : ‖x‖ ≤ Rlarge}, and P0 ← P .
2. For i← 0, . . . , N − 1 do the following.

(We maintain that Ei is an ellipsoid centered at x̃i containing Pk.)
a) If x̃i 6∈ Pk, let aᵀx ≤ b be an inequality that is satisfied by all x ∈ Pk but violated

by x̃i. (This is obtained either from a separation oracle for P , or from inequalities
added in prior iterations.) Let S be the halfspace {x ∈ Rm : aᵀ(x− x̃i) ≤ 0}.

b) If x̃i ∈ Pk, let
(
xk, fk, dk

)
be the output of the

(
ψ,X

)
-first-order oracle, when

run with input x̃i. If dk = 0, then set k ← k+1 and go to step 3. Otherwise, let S
be the halfspace

{
x ∈ Rm : dk · (x− x̃i) ≤ 0

}
; set Pk+1 ← Pk∩S and k ← k+ 1.

c) Let Ei+1 be the ellipsoid of minimum volume containing the half-ellipsoid Ei∩S,
and let x̃i+1 be its center.

3. Let j ← argmini∈{0,1,...,k−1} f
i. Return

(
xj, f j

)
.

First, note that since x̃0 ∈ P0 by assumption (A2), we increment k in the first iter-
ation, and hence j is well defined when we reach step 3. Let (x, f) denote the output
of the algorithm. Note that H(x) ≤ f follows immediately from the properties of the(
ψ,X

)
-first-order oracle. To obtain an upper bound on f , we rework the arguments in

the proof of Lemma 4.5 from Shmoys and Swamy [114]. Since f = mini∈{0,1,...,k−1} f
i,

it suffices to show that for every x∗ ∈ X, there exists l ∈ {0, 1, . . . , k − 1} such that
f l ≤ ψ · (H(x∗) + η). We let x∗ ∈ X be arbitrary, and work toward showing that such an
index l exists. If dl ·

(
x∗ − x̃l

)
≥ 0 for some l (this includes the case when dl = 0), then

by the properties of the
(
ψ,X

)
-first-order oracle we have H(x∗) ≥ 1

ψ
f l. Along with η > 0,

this implies the upper bound on f l that we sought.

Now, suppose that there exists no index l such that dl ·
(
x∗ − x̃l

)
≥ 0, and note that

this implies that x∗ ∈ Pk. Let W ⊆ P be the image of P under the affine transformation
x 7→ x∗ + µ(x− x∗). So W is a shrunken version of P (by a factor µ), and we have
x∗ ∈ Pk ∩W .

We claim that W is not contained in Pk. Since W ⊆ P = P0, and since Pk is obtained
from P0 by adding the constraints dl ·

(
x− x̃l

)
≤ 0 (for l = 0, . . . , k − 1), this implies that

one of these constraints chops off a portion of W . Therefore there exists a point x′ on

38

the boundary of W such that dl ·
(
x′ − x̃l

)
= 0 for some index l. By the properties of the(

ψ,X
)
-first-order oracle, this implies that H(x′) ≥ 1

ψ
f l. Let x ∈ P be the point that is

mapped to x′ by the affine transformation mentioned above. We have

‖x′ − x∗‖ = µ ‖x− x∗‖ ≤ η

2K̃Rlarge
(2Rlarge) =

η

K̃
,

where the inequality follows from the definition of µ and the fact that P is contained in a
ball of radiusRlarge. SinceH is K̃-Lipschitz continuous, this implies thatH(x′) ≤ H(x∗)+η,
and so we obtain f l ≤ ψ ·H(x′) ≤ ψ · (H(x∗) + η).

We now proceed to prove the claim that W is not fully contained in Pk, which we do
by showing that the volume of Pk is smaller than that of W . For Q ⊆ Rm, let vol(Q)
denote the volume of Q. Let volm denote the volume of an m-dimensional Euclidean unit
ball. We have

vol(Pk) ≤ vol(EN)

≤ e−N/(2m) · vol(E0)

≤ e
−m ln

2Rlarge
µRsmall · vol(E0)

=

(
µRsmall

2Rlarge

)
m · vol(E0)

=

(
µRsmall

2

)
m · volm

< µmvol(P)

= vol(W) .

The first step follows because Pk ⊆ EN , which holds due to the invariant maintained by
the for loop. The second step follows from the way in which the volume of the ellipsoid
decreases from one iteration of the algorithm to the following one: it is well known that
vol(Ei+1)
vol(Ei)

≤ e−1/2m for every i ≥ 0 (see, e.g., Grötschel, Lovász, and Schrijver [57]). The third
step follows from the definition of N . The fifth step follows because vol(E0) = Rm

largevolm.
The sixth step uses vol(P) ≥ Rm

smallvolm, which holds because P contains a ball of radius
Rsmall. The final step follows because W is obtained by shrinking P by a factor of µ.

A final point that needs to be addressed is how to implement step 2c). It is well
known that there is an explicit formula that can be used to compute the centers {x̃i} of
the ellipsoids {Ei}. However the formula involves square roots and hence may lead to
irrational numbers. It is well known that this difficulty can be circumvented by carrying

39

out the computations within a suitably small accuracy and adjusting the algorithm to
account for rounding errors (see, e.g., Grötschel, Lovász, and Schrijver [57]).

3.4.2 Rounding fractional solutions

As previously mentioned, our frameworks work with the fractional relaxations (Q(p̊))
and (Qfr(p̊)) of the discrete problem (DRSO). In order to obtain integer solutions to (DRSO),
we rely on second-stage approximation algorithms, which produce an integer second-stage
decision for a given scenario, and a given integer first-stage decision; and local-rounding
approximation algorithms, which round a fractional first-stage decision to obtain integer
first-stage and second-stage decisions (see Definitions 3.3 and 3.4). (For DRS Steiner tree,
we utilize a third type of algorithm, which we discuss in Section 6.8.) In this section,
we show that these two types of algorithms allow converting approximate solutions for
the relaxations (Q(p̊)) and (Qfr(p̊)) into approximate solutions for the discrete DRS prob-
lem (DRSO).

Lemma 3.15. Let x̂ ∈ X be a ψ-approximate solution for the relaxed DRS problem (Q(p̊)).
For each scenario A ∈ A, let ẑA be the output of a second-stage α-approximation algorithm
when given x̂ and A as input. Then

(
x̂,
{
ẑA
}
A∈A

)
is an αψ-approximate solution for the

discrete DRS problem (DRSO).

Proof. The solution obtained for problem (DRSO) attains objective value

cᵀx̂+ sup
p∈D

EA∼p
[
cost of ẑA

]
≤ cᵀx̂+ α · sup

p∈D
EA∼p[g(x,A)]

≤ α ·
(
cᵀx̂+ sup

p∈D
EA∼p[g(x,A)]

)

≤ αψ ·OPT(Q(p̊))
≤ αψ ·OPT(DRSO) .

The first step uses the guarantees of the second-stage approximation algorithm. The second
step follows because α ≥ 1. The third step uses the fact that x̂ is a ψ-approximate solution
for (Q(p̊)). The final step follows since (Q(p̊)) is a relaxation of (DRSO).

Lemma 3.16. Let x ∈ P be a ψ-approximate solution for the relaxed DRS problem (Qfr(p̊)).
Let

(
x̂,
{
ẑA
}
A∈A

)
be the output of a local ρ-approximation algorithm when given x as input.

Then
(
x̂,
{
ẑA
}
A∈A

)
is a ψρ-approximate solution for the discrete DRS problem (DRSO).

40

Proof. The solution obtained for problem (DRSO) attains objective value

cᵀx̂+ sup
p∈D

EA∼p
[
cost of ẑA

]
≤ ρ ·

(
cᵀx+ sup

p∈D
EA∼p[g(x,A)]

)

≤ ψρ ·OPT(Qfr(p̊))
≤ ψρ ·OPT(DRSO) .

The first step uses the guarantees of the local approximation algorithm. The second
one uses the fact that x is a ψ-approximate solution for (Qfr(p̊)). The final one follows
since (Qfr(p̊)) is a relaxation of (DRSO).

41

Chapter 4

DRS optimization under a Wasserstein
ball: sample average approximation

In this chapter, we consider the discrete DRS problem under a Wasserstein ball

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p:LW(p̊,p)≤r
EA∼p

[
cost of zA

]
}

, (DRSOW)

where LW is a Wasserstein metric defined relative to a scenario metric `, and the central
distribution p̊ is given by a sampling oracle. Recall that for a fractional first-stage decision
x ∈ P , we denote by z(p̊ ;x) := supp:LW(p̊,p)≤r EA∼p[g(x,A)] the expected cost incurred in
the second stage, if we choose x in the first stage, and optimal fractional decisions in the
second stage (and if the scenario A is drawn according to the worst possible distribution in
the ambiguity set). We focus on obtaining an SAA result for the relaxation of (DRSOW)
with integer first-stage decisions and (implicit) fractional second-stage decisions,

min
x∈X
{h(p̊ ; x̂) := cᵀx+ z(p̊ ;x)} . (Q(p̊))

The sample average approximation (SAA) approach is the following simple, intuitive
idea: draw some number N of samples from the central probability distribution p̊ and solve
the DRS problem obtained by replacing p̊ with the empirical distribution p̂ induced by those
samples. (The empirical distribution p̂ induced by samples A1, . . . , AN ∈ A is defined by

42

p̂A := 1
N
|{i ∈ [N] : Ai = A}| for every A ∈ A.) That is, we consider the problem

min
x∈X
{h(p̂ ;x) := cᵀx+ z(p̂ ;x)} . (Q(p̂))

We refer to (Q(p̊)) as the original problem, and to (Q(p̂)) as the SAA problem.

We now state the main result of this chapter, which shows that, using a moderate
number of samples, we can translate approximate solutions for a collection of SAA problems
into an approximate solution for the original problem, as long as we have an approximate
objective-value oracle for the SAA problems.

Theorem 4.1 (see proof in Section 4.4).
Given ε > 0, η > 0, and δ ∈ (0, 1), there exist numbers k = poly

(
1
ε
, log 1

δ

)
and

N = poly
(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
such that the following holds. Let p̂1, . . . , p̂k be empirical

estimates of p̊, each constructed using N independent samples. Suppose that for each
i ∈ [k] we have an integer first-stage decision x̂i ∈ X and an estimate f i such that

h
(
p̂i ; x̂i

)
≤ f i ≤ ψ ·min

x∈X
h
(
p̂i ;x

)
,

where ψ ≥ 1. Let j := argmini∈[k] f
i. Then with probability at least 1− δ we have

h
(
p̊ ; x̂j

)
≤ 4ψ(1 + ε) ·min

x∈X
h(p̊ ;x) + ψη .

Organization of this chapter. In Section 4.1, we provide an overview of the techniques
used in the proof of Theorem 4.1; we present the proof in detail in Sections 4.2–4.5.

4.1 Overview of the techniques

Our starting point is the work of Charikar, Chekuri, and Pál [24], who proved the following
result for a two-stage stochastic problem with bounded inflation factor. Part (i) shows that
we can translate optimal solutions of an SAA problem constructed using a certain number of
samples into near-optimal solutions of the original problem, whereas part (ii) shows that we
can translate approximate solutions for a collection of SAA problems into an approximate
solution for the original problem, as long as we also have a suitable approximate objective-
value oracle for the SAA problems. Note that conditions (1) and (2) in the statement of
the theorem below are analogous to assumptions (A2) and (A3).

43

Theorem 4.2 (see Theorems 1 and 2 in Charikar, Chekuri, and Pál [24]1). Consider a
two-stage stochastic problem

min
x∈X̃

{
h̃(p̃ ;x) := c̃ᵀx+ EA∼p̃[g̃(x,A)]

}
, (Stoc(p̃))

with scenario collection Ã. Suppose that: (1) X̃ ⊆ Rm
+ is a finite set with 0 ∈ X̃; and (2)

for every x ∈ X̃ and A ∈ Ã, we have 0 ≤ g̃(0, A)− g̃(x,A) ≤ Λ · c̃ᵀx, for a certain inflation
factor Λ ≥ 1. Given ε > 0 and δ ∈ (0, 1), we have the following two SAA results.

(i) There exists N = poly
(

log
∣∣∣X̃
∣∣∣ ,Λ, 1

ε
, log 1

δ

)
such that, if we construct an empirical

estimate p̂ of p̃ using N independent samples, then with probability at least 1− δ every
optimal solution of the SAA problem (Stoc(p̂)) is a (1 + ε)-approximate solution for
the original problem (Stoc(p̃)).

(ii) There exist k = poly
(

1
ε
, log 1

δ

)
and N = poly

(
log
∣∣∣X̃
∣∣∣ ,Λ, 1

ε
, log 1

δ

)
such that the fol-

lowing holds. Let p̂i, . . . , p̂k be empirical estimates of p̃, each constructed using N
independent samples. Suppose that for each i ∈ [k] we have a ψ1-approximate solution
x̃i ∈ X̃ for the SAA problem (Stoc(p̂i)) and an estimate f̃ i such that h̃(p̂i ; x̃i) ≤ f̃ i ≤
ψ2 · h̃(p̂i ; x̃i). Let j := argmini∈[k] f̃

i. Then with probability at least 1− δ, we have that
x̃j is an O((1 + ε)ψ1ψ2)-approximate solution for the original problem (Stoc(p̃)).

Plugging in the definition of LW, we obtain the following equivalent definition for the
expected second-stage cost incurred under a first-stage decision x ∈ P :

z(p̊ ;x) = max
∑

A,A′

γA,A′g(x,A′) (T(p̊, x))

s.t.
∑

A′

γA,A′ ≤ p̊A ∀A ∈ A (4.1)

∑

A,A′

`(A,A′)γA,A′ ≤ r (4.2)

γ ≥ 0 . (4.3)

1Part (ii) follows from a small modification in the proof of Theorem 2 of Charikar, Chekuri, and Pál
[24], which corresponds to the special case where ψ2 = 1. It suffices to modify inequalities (7) and (10) by
noting that, instead of f̂ i

(
xi
)
≤ f̂ j

(
xj
)
, we only have f̂ i

(
xi
)
≤ ψ2f̂

j
(
xj
)
.

44

Note that although we have not enforced equality in (4.1), in an optimal solution this family
of constraints can always be assumed to be tight since increasing γA,A for any A ∈ A does
not violate constraints (4.2) and (4.3) (recall that `(A,A) = 0 for every A ∈ A), and does
not decrease the objective value.

The DRS problem (Q(p̊)) is not a standard two-stage stochastic problem because con-
straint (4.2) couples the various scenarios, which prevents us from directly applying The-
orem 4.2 to (Q(p̊)).

The SAA result of Swamy and Shmoys [123] applies to two-stage stochastic problems
with fractional first-stage and second-stage decisions, and works whenever the objective
functions of the original and the SAA problems satisfy a certain “closeness-in-subgradients”
property. A subgradient of h(p̊ ; ·) at a point x ∈ P can be obtained from an optimal
distribution p to the inner maximization problem in (Q(p̊)), which in turn can be obtained
via an optimal solution γ for the LP (T(p̊, x)). This is however an exponential-size object,
and utilizing this to prove closeness-in-subgradients seems quite daunting.

Our first insight, detailed in Section 4.2, is that we can decouple the scenarios by
Lagrangifying constraint (4.2) using a dual variable y ≥ 0; we obtain, with some additional
work, the following reformulation of (Q(p̊)):

min
x∈X,y∈[0,τ]

h(p̊ ;x, y) := cᵀx+ ry + EA∼p̊[g(x, y, A)] , (R(p̊))

where g(x, y, A) := maxA′∈A {g(x,A′)− y · `(A,A′)}; see Lemmas 4.5 and 4.6. Here, τ is
the parameter from assumption (A7).

We can view problem (R(p̊)) as a classical two-stage stochastic problem as follows: the
first-stage action-set is X × [0, τ], and the optimal second-stage cost of scenario A under
the first-stage decision (x, y) is given by g(x, y, A). However, as we show in Lemma 4.7, it
turns out that the inflation parameter Λ for (R(p̊)) can be as large as `max/r (recall that
`max is an upper bound on maxA,A′ `(A,A

′)), and so applying the SAA analysis in Charikar,
Chekuri, and Pál [24] and Swamy and Shmoys [123] does not yield the sample-complexity
bounds that we are aiming for.

A second crucial insight, detailed in Section 4.3, is that instead of considering the
true objective function h(p̊ ;x) (for the original and SAA problems), we can move to a
proxy objective function h(p̊ ;x) := cᵀx + zshort(p̊ ;x), where zshort(p̊ ;x) restricts the flow
γ in (T(p̊, x)) to only use (A,A′) edges with `(A,A′) ≤ λr. We show that: (a) for any
central distribution p̃, we have that h(p̃ ;x)+zlong(p̃ ; 0) is pointwise-close to h(p̃ ;x), where
zlong(p̃ ; 0) is a constant that bounds the contribution to z(p̃ ;x) from the remaining “long”
edges (see Lemma 4.10); and (b) after Lagrangifying constraint (4.2), the inflation factor

45

of the resulting two-stage stochastic problem is at most λ (see Lemma 4.12).

The “splitting” of z(p̊ ;x) into zshort(p̊ ;x) and zlong(p̊ ; 0) is similar in spirit to the sep-
aration into low and high (cost) scenarios in Charikar, Chekuri, and Pál [24], but there
are some technical differences, which lead to various complications in our setting that we
discuss in the remainder of this section. To prove part (ii) of Theorem 4.2, [24] use the
fact that the contribution from high-cost scenarios to the total expected cost is linear in p̊
to argue that with high probability the contribution from high scenarios in one of the SAA
problems is at most (1 + O(ε)) times the optimal value of the original problem. In our
case, the contribution zlong(p̊ ; 0) from long edges is not linear in p̊, but we are able to adapt
the arguments of [24], exploiting the fact that zlong(p̊ ; 0) is concave in p̊ (see Lemma 4.14).

The main lemma leading to the proof of Theorem 4.1 is Lemma 4.13, which shows
that we can translate approximate solutions for minx∈X h(p̂ ;x) + C(p̂) into approximate
solutions for minx∈X h(p̊ ;x) + C(p̊) for any nonnegative concave function C(·). We show
in Section 4.4 that Theorem 4.1 follows from Lemma 4.13, and we prove Lemma 4.13 in
Section 4.5.

One difficulty in proving the above SAA result is that we do not have much control
over the C(p̂) term: even in the specific case of interest to us, where C(p) = zlong(p ; 0),
the contribution C(p̂) could be as large as z(p̂ ;x), and so approximating the true-SAA
problem minx∈X h(p̂ ;x) need not yield approximate solutions to the proxy-SAA problem
minx∈X h(p̂ ;x). The subtle issue that arises is that we would like to apply the result
of [24] to the Lagrangified version of the proxy-SAA problem (since property (b) of the
proxy function stated above shows that this has a small inflation factor) and thereby trans-
fer approximation guarantees from the proxy-SAA problem to the original-proxy problem
minx∈X h(p̊ ;x). However, we do not have a starting point to apply this result, since (ap-
proximately) solving the true-SAA problem minx∈X h(p̂ ;x) does not yield an approximate
solution for the proxy-SAA problem minx∈X h(p̂ ;x). The way around this is to realize
that we seek an approximation guarantee for the original problem under the true objective
function h(p̊ ;x) and not the proxy objective function h(p̊ ;x). We adapt the arguments
of [24] to work toward this end.

A final impediment is that we do not have an approximate value oracle for the objec-
tive function h(p̂ ;x, y) of the Lagrangified true-SAA problem (or the objective function
h(p̂ ;x, y) of the Lagrangified proxy-SAA problem), as the underlying recourse problem
g(x, y, A) turns out to be an inapproximable mixed-sign optimization problem (see Theo-
rem 5.9-(b)). However, we show that an approximate value oracle for h(p̂ ;x) suffices. (In
Chapter 5, we show that such an oracle can be obtained using an algorithm for Problem (Π)
with the non-standard type of approximation guarantee introduced in Definition 3.5; see

46

Lemmas 5.3 and 5.5).

We remark that the proxy function is used only in the analysis. One takeaway here is
that we derive a substantially improved sample-complexity bound by taking a slight hit in the
approximation ratio when moving from the SAA problems to the original problem. This is
a novel, nuanced result regarding the effectiveness of the SAA method for two-stage DRS
problems. We do not know of any other setting where one obtains drastically improved
sample complexity by settling for a worse than (1 + ε)-factor (but still O(1)) loss when
moving from the SAA problems to the original problem. In particular, no such result is
known for standard two-stage stochastic optimization problems.

Remark 4.3. In this chapter we focus on the relaxation (Q(p̊)) and (approximate) refor-
mulations thereof that we will introduce, all of which deal with integer first-stage decisions.
However, we state several of the preliminary lemmas (that we eventually utilize to obtain
Theorem 4.1) relative to fractional first-stage decisions, which is more general than is
needed for proving Theorem 4.1. We do so because this greater level of generality is useful
in later chapters, and it does not complicate the proofs.

4.2 Reformulating (Q(p̊)) as a two-stage stochastic prob-
lem

We first reformulate the DRS problem (Q(p̊)) as a classical two-stage stochastic prob-
lem, thus making it more amenable to utilize the SAA machinery developed for two-stage
stochastic problems. Recall that for every (x, y, A) ∈ X × R+ × A we have g(x, y, A) :=
maxA′∈A {g(x,A′)− y · `(A,A′)}, and that `max is an upper bound on the pairwise scenario
distances {`(A,A′)}.

Lemma 4.4 (combination of Lemmas 4.6 and 4.7). The relaxed DRS problem (Q(p̊)) is
equivalent to the problem

min
x∈X,y∈[0,τ]

{h(p̊ ;x, y) := cᵀx+ ry + EA∼p̊[g(x, y, A)]} . (R(p̊))

Furthermore, for every (x, y, A) ∈ X × [0, τ]×A we have g(x, y, A) ≥ 0 and

0 ≤ g(0, 0, A)− g(x, y, A) ≤ max

{
λ,
`max

r

}
· (cᵀx+ ry) .

47

We can view problem (R(p̊)) as a classical two-stage stochastic problem as follows: the
first-stage action-set is X × [0, τ], and the optimal second-stage cost of scenario A under
the first-stage decision (x, y) is given by g(x, y, A).

In the remainder of this section, we explain how to obtain Lemma 4.4. We start by using
LP duality to obtain an alternative way of expressing the objective function of (Q(p̊)), thus
decoupling the scenarios.

Lemma 4.5. Let p̃ be a probability distribution over A, and let x ∈ P be a fractional
first-stage decision. Then

z(p̃ ;x) = min
y≥0
{ry + EA∼p̃[g(x, y, A)]} .

Proof. Note that the feasible region of the LP (T(p̃, x)) is bounded, since constraints (4.1)
and (4.3) imply that in a feasible solution all variables are in the range [0, 1]. Furthermore,
γ = 0 is a feasible solution. Therefore this LP has an optimal solution. Taking its dual,
using dual variables {µA}A∈A and y for constraints (4.1) and (4.2) respectively, we obtain

z(p̃ ;x) = min ry +
∑

A

p̃AµA

s.t. µA ≥ g(x,A′)− y · `(A,A′) ∀A,A′ ∈ A
y ≥ 0 .

Note that for a fixed value of y, the best choice of µ is obtained by setting

µA = max
A′∈A
{g(x,A′)− y · `(A,A′)} = g(x, y, A)

for every scenario A ∈ A. It follows that

z(p̃ ;x) = min
y≥0

{
ry +

∑

A∈A

p̃Ag(x, y, A)

}
= min

y≥0
{ry + EA∼p̃[g(x, y, A)]} .

Given Lemma 4.5, we can reformulate (Q(p̊)) as

min
x∈X,y≥0

{h(p̊ ;x, y) := cᵀx+ ry + EA∼p̊[g(x, y, A)]} .

We can exploit assumption (A7) to show that we may limit y to the range [0, τ], thus
obtaining the formulation (R(p̊)).

48

Lemma 4.6. Let p̃ be a probability distribution over A, and let x ∈ P be a fractional
first-stage decision. Then

h(p̃ ;x) = min
y∈[0,τ]

h(p̃ ;x, y) .

Proof. Let y ≥ τ , and consider a scenario A ∈ A. For every scenario A′ ∈ A such that
`(A,A′) > 0, we have

g(x,A)− y · `(A,A) = g(x,A)

≥ g(x,A′)− τ · `(A,A′)
≥ g(x,A′)− y · `(A,A′) ,

where the first inequality follows from assumption (A7). This implies that there is a maxi-
mizerA′ of g(x,A′)−y·`(A,A′) with `(A,A′) = 0, and so g(x, y, A) = maxA′∈A:`(A,A′)=0 g(x,A′).
Since this holds for every A ∈ A, we obtain EA∼p̊[g(x, y, A)] = EA∼p̊[g(x, τ, A)]. Since
ry ≥ rτ , we obtain h(p̃ ;x, y) ≥ h(p̃ ;x, τ). The result then follows from Lemma 4.5.

It is easy to see that the second-stage cost g(x, y, A) is nonnegative for every (x, y, A) ∈
P ×R+×A, since g(x, y, A) ≥ g(x,A)− y · `(A,A) = g(x,A) ≥ 0. To conclude, we bound
the inflation factor of the second-stage costs.

Lemma 4.7. Let x ∈ P, y ≥ 0, and A ∈ A. Then

0 ≤ g(0, 0, A)− g(x, y, A) ≤ max

{
λ,
`max

r

}
· (cᵀx+ ry) .

Proof. The first inequality follows because for every scenario A′ ∈ A we have

g(x,A′)− y · `(A,A′) ≤ g(0, A′)− 0 · `(A,A′) ,

since g(x,A′) ≤ g(0, A′) by assumption (A2) and since `(A,A′) ≥ 0.

We now prove the second inequality. Let A ∈ A such that g(0, 0, A) = g
(
0, A

)
(equiv-

alently, let A := argmaxA′∈A g(0, A′)). Then we have

g(0, 0, A)− g(x, y, A) ≤ g
(
0, A

)
−
(
g
(
x,A

)
− y · `

(
A,A

))

≤ λ · cᵀx+ y · `max

≤ max
{
λ, `max

r

}
· (cᵀx+ ry) ,

where the second step follows from assumption (A3) and the fact that `
(
A,A

)
≤ `max.

49

4.3 Reducing the inflation factor

Given Lemma 4.4, and by suitably discretizing the y-range [0, τ], one can use Theorem 4.2
(setting the parameter Λ to max

{
λ, `max

r

}
) to show that: if we construct SAA problems

minx∈X h(p̂ ;x) ≡ minx∈X,y∈[0,τ] h(p̂ ;x, y) using poly
(
I, λ, `max

r
, 1
ε

)
samples, and can ap-

proximately evaluate the SAA objective value h(p̂ ;x, y) at any given point, then we can
translate ψ-approximate solutions for the SAA problems into an O(ψ + ε)-approximate
solution for (Q(p̊)), with high probability.

But there are various issues due to which this result does not quite suit our purposes.
First, `max

r
could be rather large, and is not poly(I, λ).2 Second, it seems difficult to compute

the SAA objective value h(p̂ ;x, y) at any given point (x, y), or even approximate it. This
difficulty arises because problem (Π) (of computing g(x, y, A)) encompasses the k-max-min
problem in two-stage robust optimization, which is computationally for various underlying
combinatorial-optimization problems (see the discussion in Section 2.1). Moreover, the
mixed-sign objective in (Π) makes it hard to even approximate it (see Theorem 5.9-(b)).

We need various ideas to circumvent these issues. The main result in this section is an
approximate reformulation of (Q(p̊)) as a classical two-stage stochastic optimization prob-
lem with inflation factor bounded by λ. This shows that we can eliminate the dependence
on `max

r
altogether, at the expense of a slight deterioration in the approximation ratio when

moving from the SAA problems to the original problem.

Examining the proof of Lemma 4.7, we notice that the `max

r
term in the inflation factor

of (R(p̊)) arises because when considering the problem maxA′∈A {g(x,A′)− y · `(A,A′)}
for a given first-stage decision (x, y) ∈ P × [0, τ] and a given scenario A ∈ A, we may
encounter a scenario A′ such that `(A,A′) is as large as `max. To eliminate this possibility
and reduce the sample complexity to poly(I, λ), we define a distance threshold M := λr,
and work toward suitably modifying the objective function h(p̊ ;x, y) of (R(p̊)) to enforce
that we never encounter pairs of scenarios (A,A′) with `(A,A′) > M . We call such pairs
long edges, and the pairs with `(A,A′) ≤M short edges. For every (x, y, A) ∈ X×R+×A,
let

g(x, y, A) := max
A′∈A:`(A,A′)≤M

{g(x,A′)− y · `(A,A′)} .

Let zshort(p̊ ;x) be obtained from z(p̊ ;x) by restricting γ to only send flow on pairs (A,A′)
with `(A,A′) ≤M (see the precise definition in (4.4)).

2The problem persists even if we utilize the closeness-in-subgradients machinery by Swamy and
Shmoys [123] to the further relaxation of (R(p̊)) with fractional first-stage decisions. Computing suffi-
ciently accurate subgradients would involve estimating EA∼p̊[`(A, π(x, y,A))] to within an εr term, where
π(x, y,A) := argmaxA′∈A {g(x,A′)− y · `(A,A′)}, which requires Ω

(
`max

εr

)
samples.

50

Lemma 4.8 (combination of Lemmas 4.10 and 4.12). Consider the proxy problem

min
x∈X

{
h(p̊ ;x) := cᵀx+ zshort(p̊ ;x)

}
. (Q(p̊))

Its objective function serves as a proxy for the objective function of (Q(p̊)): there exists a
constant C(p̊) such that for every x ∈ X we have

h(p̊ ;x) ≤ h(p̊ ;x) + C(p̊) ≤ 2h(p̊ ;x) .

Furthermore, (Q(p̊)) is equivalent to the two-stage stochastic problem

min
x∈X,y∈[0,τ]

{
h(p̊ ;x, y) := cᵀx+ ry + EA∼p̊[g(x, y, A)]

}
. (R(p̊))

For every (x, y, A) ∈ X × [0, τ]×A we have g(x, y, A) ≥ 0 and

0 ≤ g(0, 0, A)− g(x, y, A) ≤ λ · (cᵀx+ ry) .

We now discuss how to obtain Lemma 4.8. The following lemma gives a bound on the
amount of flow that can be sent on long edges by a flow from the central distribution to
another distribution in the ambiguity set.

Lemma 4.9. Let p̃ be a probability distribution over A, x ∈ P be a fractional first-stage
decision, and γ be a feasible solution for the LP (T(p̃, x)). Then we have

∑

A,A′:`(A,A′)>M

γA,A′ ≤
r

M
=

1

λ
.

Proof. By constraint (4.2), we have

r ≥
∑

A,A′

γA,A′`(A,A
′) ≥M ·

∑

A,A′:`(A,A′)>M

γA,A′ .

Plugging in the definition of M yields the result.

Motivated by Lemma 4.9, we “decompose” z(p̊ ;x) into zshort(p̊ ;x) and zlong(p̊ ;x), which
are upper bounds on the contributions to z(p̊ ;x) from the short and long edges respectively.

51

We define zshort(p̊ ;x) and zlong(p̊ ;x) as follows:

zshort(p̊ ;x) := max

{ ∑

A,A′

γA,A′g(x,A′)

∣∣∣∣∣
γ is feasible for (T(p̊, x)),
γA,A′ = 0 if `(A,A′) > M

}
, (4.4)

zlong(p̊ ;x) := max

{ ∑

A,A′

γA,A′g(x,A′)

∣∣∣∣∣ γ is feasible for (T(p̊, x)),
∑

A,A′

γA,A′ ≤
1

λ

}
.

We show that decomposing z(p̊ ;x) into the maximum contributions from short and
long edges as discussed above and replacing the contribution from the long edges with
zlong(p̊ ; 0) yields a function that approximates the objective function of (Q(p̊)) to within
a factor of 2.

Lemma 4.10. Let p̃ be a probability distribution over A, and let x ∈ P be a fractional
first-stage decision. Then

h(p̃ ;x) ≤ cᵀx+ zshort(p̃ ;x) + zlong(p̃ ; 0) ≤ 2h(p̃ ;x) .

Proof. We claim that

z(p̃ ;x) ≤ zshort(p̃ ;x) + zlong(p̃ ;x) ≤ 2z(p̃ ;x) (4.5)

and

zlong(p̃ ;x) ≤ zlong(p̃ ; 0) ≤ zlong(p̃ ;x) + cᵀx . (4.6)

Recalling that h(p̃ ;x) = cᵀx+z(p̃ ;x), and using the first inequalities in (4.5) and (4.6),
we obtain

h(p̃ ;x) ≤ cᵀx+ zshort(p̃ ;x) + zlong(p̃ ;x) ≤ cᵀx+ zshort(p̃ ;x) + zlong(p̃ ; 0) ,

proving the first part of the lemma. Using the second inequalities in (4.6) and (4.5), we
obtain

cᵀx+ zshort(p̃ ;x) + zlong(p̃ ; 0) ≤ 2cᵀx+ zshort(p̊ ;x) + zlong(p̊ ;x) ≤ 2h(p̃ ;x) ,

proving the second part of the lemma.

52

It remains to prove the two claims. We start by proving (4.5). Note that the LP used in
the definition of z(p̃ ;x) is a relaxation of the LPs used in the definitions of zshort(p̃ ;x) and
zlong(p̃ ;x). It follows that zshort(p̃ ;x) ≤ z(p̃ ;x) and zlong(p̃ ;x) ≤ z(p̃ ;x); adding these two
inequalities yields the second inequality in (4.5). To prove the first inequality in (4.5), let
γ∗ be an optimal solution for the LP (T(p̃, x)). We decompose γ∗ into a flow supported on
short edges and one supported on long edges. That is, we write γ∗ = γshort + γlong, where
γshort only sends flow on short edges, and γlong only sends flow on long edges. Note that
γshort is feasible for the LP defining zshort(p̃ ;x), and γlong is feasible for the LP defining
zlong(p̃ ;x) (by Lemma 4.9). It follows that zshort(p̃ ;x) ≥

∑
A,A′:`(A,A′)≤M γ∗A,A′g(x,A′) and

zlong(p̃ ;x) ≥
∑

A,A′:`(A,A′)>M γ∗A,A′g(x,A′). Summing these two inequalities yields

zshort(p̃ ;x) + zlong(p̃ ;x) ≥
∑

A,A′

γ∗A,A′g(x,A′) = z(p̃ ;x) .

Finally, we prove claim (4.6). Note that zlong(p̃ ; 0) and zlong(p̃ ;x) are defined as the
optimal values of two LPs with the same feasible region. Let γ0 and γx be optimal solutions
for these two LPs respectively. We have

zlong(p̃ ; 0) ≥
∑

A,A′

γxA,A′g(0, A′) ≥
∑

A,A′

γxA,A′g(x,A′) = zlong(p̃ ;x) ,

where the second inequality follows from Assumption (A2). This proves the first part
of (4.6). Furthermore, we have

zlong(p̃ ;x) ≥
∑

A,A′

γ0
A,A′g(x,A′) ≥

∑

A,A′

γ0
A,A′(g(0, A′)− λcᵀx) ≥ zlong(p̃ ; 0)− cᵀx ,

where the second inequality follows from assumption (A3), and the third one follows from
the fact that

∑
A,A′ γ

0
A,A′ ≤ 1

λ
. This yields the second part of (4.6).

Remark 4.11. By increasing the threshold M that demarcates short and long edges to
λr/ε, one could strengthen (4.6) to zlong(p̃ ;x) ≤ zlong(p̃ ; 0) ≤ zlong(p̃ ;x) + εcᵀx, and so
the contribution zlong(p̃ ;x) from long edges would be within an εcᵀx term of the constant
zlong(p̃ ; 0). This is analogous to what happens with the decomposition of the scenario col-
lection into “low-cost” and “high-cost” scenarios in the proof of the SAA result of Charikar,
Chekuri, and Pál [24]. Note however that this change in the threshold M does not avoid
the factor-2 loss in Lemma 4.10.

53

Given Lemma 4.10, we focus on the proxy problem

min
x∈X

{
h(p̊ ;x) := cᵀx+ zshort(p̊ ;x)

}
. (Q(p̊))

Recall that g(x, y, A) := maxA′∈A:`(A,A′)≤M {g(x,A′)− y · `(A,A′)}. Using LP duality, fol-
lowing the same arguments as in Lemmas 4.5 and 4.6, we have

h(p̊ ;x) = cᵀx+ min
y∈[0,τ]

{ry + EA∼p̊[g(x, y, A)]} (4.7)

for every fractional first-stage decision x ∈ P , and so we can reformulate (Q(p̊)) as follows:

min
x∈X,y∈[0,τ]

{
h(p̊ ;x, y) := cᵀx+ ry + EA∼p̊[g(x, y, A)]

}
. (R(p̊))

Note that, as was the case for (R(p̊)), we can view (R(p̊)) as a two-stage stochastic problem,
with first-stage decision set X × [0, τ] and optimal second-stage costs g(x, y, A) for every
(x, y, A) ∈ X×[0, τ]×A. It is easy to see that the second-stage cost g(x, y, A) is nonnegative
for every (x, y, A) ∈ P × R+ ×A, since g(x, y, A) ≥ g(x,A)− y · `(A,A) = g(x,A) ≥ 0.

The chief advantage of, and reason for, moving from (R(p̊)) to (R(p̊)) is that, as we
now show, we reduce the inflation factor to λ, which is the inflation factor of the discrete
DRS problem we started with.

Lemma 4.12. Let x ∈ P, y ≥ 0, and A ∈ A. Then

0 ≤ g(0, 0, A)− g(x, y, A) ≤ λ · (cᵀx+ ry) .

Proof. We mimic the proof of Lemma 4.7. The first inequality follows because for every
scenario A′ ∈ A we have

g(x,A′)− y · `(A,A′) ≤ g(0, A′)− 0 · `(A,A′) ,

since g(x,A′) ≤ g(0, A′) by assumption (A2) and since `(A,A′) ≥ 0.
We now prove the second inequality. Let A := argmaxA′∈A:`(A,A′)≤M g(0, A′). Then

g(0, 0, A)− g(x, y, A) ≤ g
(
0, A

)
−
(
g
(
x,A

)
− y · `

(
A,A

))

≤ λ · cᵀx+ y ·M
= λ · (cᵀx+ ry) ,

where the second inequality follows from (A3) and the fact that `
(
A,A

)
≤M .

54

4.4 Main lemma and proof of the SAA theorem

After suitably discretizing the y-range [0, τ] and applying the SAA result from Charikar,
Chekuri, and Pál [24] (Theorem 4.2), we can show that approximate solutions for the
SAA problem (R(p̂)) can be translated into approximate solutions for (R(p̊)), with an
improved poly(I, λ) sample complexity. Given the equivalence between (R(p̂)) and (Q(p̂))
(and between (R(p̊)) and (Q(p̊))) shown by (4.7), we can use this to translate approximate
solutions for (Q(p̂)) into approximate solutions for (Q(p̊)). Since for every distribution
p̃ over A we have that h(p̃ ;x) (which is the objective function of (Q(p̃))) and h(p̃ ;x) +
zlong(p̃ ; 0) (which equals the objective function of (Q(p̃)) plus a constant) are pointwise close
by Lemma 4.10, this seems to indicate that we can also translate approximate solutions
for (Q(p̂)) into approximate solutions for (Q(p̊)).

However, two sources of difficulty remain. First, the fact that h(p̂ ;x) and h(p̂ ;x) +
zlong(p̂ ; 0) are pointwise close does not mean that approximate solutions for (Q(p̂)) trans-
late into approximate solutions for (Q(p̂)), since the term zlong(p̂ ; 0) could be significant
compared to h(p̂ ;x), as indicated by the factor-2 loss in Lemma 4.10.

Second, note that the SAA result for (R(p̊)) obtained via Theorem 4.2 involves using
estimates for the objective function h(p̂ ;x, y) of (R(p̂)), which we do not have. However,
we will show in Chapter 5 that if we have an approximation algorithm for problem (Π)
that gives the type of guarantee stated in Definition 3.5, then given an integer first-stage
decision x ∈ X one can obtain an approximate solution for (T(p̂, x)) (see Lemma 5.5),
which can be used to estimate h(p̂ ;x). While this is not the same as a value oracle for
h(p̂ ;x, y), we show that this nevertheless suffices.

We now state the main lemma that we use to prove Theorem 4.1.

Lemma 4.13 (see proof in Section 4.5). Let ε > 0, η > 0, and δ ∈ (0, 1). Let C(p) be a
nonnegative concave function defined over the set of probability distributions over A. There
exist k = poly

(
1
ε
, log 1

δ

)
and N = poly

(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
such that the following holds.

Let p̂1, . . . , p̂k be empirical estimates of p̊, each constructed using N independent samples.
Suppose that for each i ∈ [k] we have an integer first-stage decision x̂i ∈ X and an estimate
f i such that

h
(
p̂i ; x̂i

)
+ C

(
p̂i
)
≤ f i ≤ ψ ·min

x∈X

{
h
(
p̂i ;x

)
+ C

(
p̂i
)}

,

where ψ ≥ 1. Let j := argmini∈[k] f
i. Then with probability at least 1− δ we have

h
(
p̊ ; x̂j

)
+ C(p̊) ≤ ψ(1 + ε) ·min

x∈X

{
h(p̊ ;x) + C(p̊)

}
+ ψη .

55

We proceed to show that Theorem 4.1 follows from Lemma 4.13, but first we need the
following preliminary lemma.

Lemma 4.14. The function p 7→ zlong(p ; 0), defined over the probability distributions over
A, is nonnegative and concave.

Proof. Let p be a probability distribution over A. Note that all feasible solutions γ for the
LP defining zlong(p ; 0) are nonnegative by constraint (4.3), and that the coefficients of the
objective function are nonnegative. It follows that zlong(p ; 0) is nonnegative.

To prove that the function is concave, consider any two distributions p and q, and let
p̃ = θ · p + (1 − θ) · q, where θ ∈ [0, 1]. Let γp and γq be optimal solutions for the LPs
defining zlong(p ; 0) and zlong(q ; 0) respectively. Then γ p̃ := θ · γp + (1− θ) · γq is a feasible
solution for the LP defining zlong(p̃ ; 0), which implies that

zlong(p̃ ; 0) ≥
∑

A,A′

γ p̃A,A′g(0, A′)

= θ ·
∑

A,A′

γpA,A′g(0, A′) + (1− θ) ·
∑

A,A′

γqA,A′g(0, A′)

= θ · zlong(p ; 0) + (1− θ) · zlong(q ; 0) .

Proof of Theorem 4.1. Let the number k of SAA problems and the number N of samples
for each such problem be given by Lemma 4.13, with parameters

(
ε, η

2
, δ
)
. We show that

for every i ∈ [k], we have that (x̂i, 2f i) satisfies the conditions of Lemma 4.13 taking the
parameter ψ in the lemma statement to be 2ψ, and setting C(p) := zlong(p ; 0) (which is a
nonnegative concave function by Lemma 4.14). That is, we show that

h
(
p̂i ; x̂i

)
+ zlong(p̂i ; 0) ≤ 2f i ≤ 2ψ ·min

x∈X

{
h
(
p̂i ;x

)
+ zlong(p̂i ; 0)

}
.

To see this, note that

h
(
p̂i ; x̂i

)
+ zlong(p̂i ; 0) ≤ 2h

(
p̂i ; x̂i

)

≤ 2f i

≤ 2ψ ·min
x∈X

h
(
p̂i ;x

)

≤ 2ψ ·min
x∈X

{
h
(
p̂i ;x

)
+ zlong(p̂i ; 0)

}
.

The first and the last inequalities follow from Lemma 4.10. The second and the third
inequalities use the guarantee on (x̂i, f i) given in the theorem statement.

56

Furthermore, since j ∈ argmini∈[k] f
i, we also have j ∈ argmini∈[k] {2f i}. Applying

Lemma 4.13, we have that with probability 1− δ,

h
(
p̊ ; x̂j

)
+ zlong(p̊ ; 0) ≤ 2ψ(1 + ε) ·min

x∈X

{
h(p̊ ;x) + zlong(p̊ ; 0)

}
+ ψη .

Using Lemma 4.10 again, we obtain that the left side is greater than or equal to h(p̊ ; x̂j),
and the right side is less than or equal to 4ψ(1 + ε) ·minx∈X h(p̊ ;x) +ψη, and the theorem
follows.

Remark 4.15. Note that by applying Lemma 4.13 with C(p) := 0 for every p, we can also
convert approximate solutions for minx∈X h(p̂ ;x) (for p̂ = p̂1, . . . , p̂k) into an approximate
solution for minx∈X h(p̊ ;x). This can be used, along with Lemma 4.10, to obtain a variant
of Theorem 4.1 showing that ψ-approximate solutions for minx∈X h(p̂ ;x) translate into a
solution for minx∈X h(p̊ ;x) that is approximately optimal, within a 2ψ(1 + ε)-factor and a
ψη additive term. With some additional work, this can be used to halve the approximation
factor in our main result for DRS optimization under a Wasserstein ball (Theorem 3.6),
if we require an approximation algorithm for computing g(x, y, A) (rather than for the
problem (Π) of computing g(x, y, A)).

4.5 Proof of Lemma 4.13

4.5.1 Overview

We discretize the y-range [0, τ] suitably to obtain a set Y ⊆ [0, τ] such that for every integer
first-stage decision x ∈ X and any distribution p̃, there exists y ∈ Y such that h(p̃ ;x, y)
is close to h(p̃ ;x) (see Lemma 4.16). This allows translating approximate solutions for
minx∈X h(p̃ ;x) into approximate solutions for minx∈X,y∈Y h(p̃ ;x, y) and vice versa.

Let p̂ denote a generic empirical estimate of p̊ (which could be any of p̂1, . . . , p̂k).
The arguments in Charikar, Chekuri, and Pál [24] show that approximate solutions for
minx∈X,y∈Y h(p̂ ;x, y) (for p̂ = p̂1, . . . , p̂k) can be used to obtain an approximate solution for
minx∈X,y∈Y h(p̊ ;x, y) (given a suitable value oracle for h(p̂ ;x, y)). Recall that h(p ;x, y) :=
cᵀx+ry+EA∼p[g(x, y, A)]. The proof in [24] proceeds by decomposing EA∼p[g(x, y, A)] into
two terms, Elow

A∼p
[
g(x, y, A)

]
and Ehigh

A∼p
[
g(x, y, A)

]
, which are the contributions from “low-

cost” and “high-cost” scenarios respectively. For the low scenarios, Hoeffding’s inequality
(Theorem 2.3) implies that Elow

A∼p̂
[
g(·, ·, A)

]
and Elow

A∼p̊
[
g(·, ·, A)

]
are pointwise close (see

Lemma 4.17).

57

The contribution to h(p ;x, y) from high scenarios, however, could be quite different in
the SAA and original problems, although in both problems, this contribution is essentially
independent of (x, y) since the definition of high scenarios ensures that they occur with
small probability (see Lemmas 4.18 and 4.19).

Since Ehigh
A∼p
[
g(0, 0, A)

]
is linear in p, the expected value of Ehigh

A∼p̂
[
g(0, 0, A)

]
(over the

random selection of the scenarios used to construct p̂), is precisely Ehigh
A∼p̊[g(0, 0, A)]. Thus,

we can use Markov’s inequality (Theorem 2.1) to show that for at least one of our multiple
SAA problems (say, the one with empirical distribution p̂t), we have that Ehigh

A∼p̂t [g(0, 0, A)]

is not much larger than Ehigh
A∼p̊[g(0, 0, A)]. This can be used to show that a ψ-approximate

solution for this SAA problem is also a ψ(1 + O(ε))-approximate solution for the orig-
inal problem. But we do not a priori know this index t, and evaluating or estimating
EA∼p̊[g(x, y, A)] (and hence, h(p̊ ;x, y)) is challenging because (other than the difficulty of
evaluating g(x, y, A) for a specific scenario A) p̊ can have exponential support; in fact, this
is often #P-hard even for standard two-stage stochastic problems. In [24], it is shown that
if one can estimate the objective value h(p̂ ;x, y) for the SAA problem (which seems easier
since p̂ has small support), then choosing the solution corresponding to the SAA problem
with best SAA objective-value estimate works.

In our case, we actually want to evaluate the objective value h(p̊ ;x, y)+C(p̊) for the so-
lution returned by the SAA problem. While we can once again decompose EA∼p[g(x, y, A)]

into Elow
A∼p
[
g(x, y, A)

]
and Ehigh

A∼p
[
g(x, y, A)

]
, the term C(p) could have very different contri-

butions in the SAA and original problems (as is the case for the term Ehigh
A∼p
[
g(x, y, A)

]
), and

we need to reason about this separately. Moreover, a complicating factor is that this term
is not linear in p. But since it is concave in p, we are still able to use Markov’s inequality
as above. In the proof below, we consider the combined term Ehigh

A∼p̂
[
g(0, 0, A)

]
+C(p̂), and

apply Markov’s inequality to show that there is an index t ∈ [k] for which this term for
p̂ = p̂t is not much larger than Ehigh

A∼p̊[g(0, 0, A)] + C(p̊) (see Lemma 4.20).
Finally, we show that, although we do not know this index t, and we do not know how

to evaluate h(p̂ ;x, y) or h(p̂ ;x, y), the index j corresponding to the best estimate f i works
as well as t; this is captured by inequality (4.19).

4.5.2 Some preliminary lemmas

Throughout the proof, we assume that ε ≤ 7/3. Note that this can be done without loss
of generality: if this does not hold, we can set ε := min {ε, 7/3} and then reason as below.
Let ε′ := ε/14 ≤ 1/6. We set the number of SAA problems to k :=

⌈
2
ε′

ln 3
δ

⌉
(note that

k ≥ 1).

58

We introduce a discretization Y of the y-range [0, τ].3 Let η′ := η
4+4ε′

, and define

Y := {0, τ} ∪
{
integer multiples of

η′

λr
in (0, τ)

}
.

We now bound the error introduced by replacing y ∈ [0, τ] with y ∈ Y in (4.7).

Lemma 4.16. Let p̃ be a probability distribution over A and x ∈ X be an integer first-stage
decision. Then there exists y ∈ Y such that

0 ≤ h(p̃ ;x, y)− h(p̃ ;x) ≤ η′ .

Proof. The first inequality holds for every y ∈ Y by (4.7), so we focus on showing that
the second part holds for some choice of y. By (4.7), there exists y′ ∈ [0, τ] such that
h(p̃ ;x) = h(p̃ ;x, y′). Let y be the largest number in Y that is no larger than y′. Because
of the way in which we defined the discretization Y , we have y′ − η′

λr
≤ y ≤ y′.

Note that

h(p̃ ;x, y)− h(p̃ ;x) = h(p̃ ;x, y)− h(p̃ ;x, y′)

= (cᵀx+ ry + EA∼p̃[g(x, y, A)])

− (cᵀx+ ry′ + EA∼p̃[g(x, y′, A)])

≤ EA∼p̃[g(x, y, A)− g(x, y′, A)] .

(4.8)

Note that for every scenario A ∈ A, we have

g(x, y, A)− g(x, y′, A) ≤ (y′ − y) ·M . (4.9)

This follows because, if we let A := argmaxA′∈A:`(A,A′)≤M {g(x,A′)− y · `(A,A′)}, then we
have

g(x, y′, A) ≥ g
(
x,A

)
− y′ · `

(
A,A

)

=
(
g
(
x,A

)
− y · `

(
A,A

))
+ (y − y′) · `

(
A,A

)

= g(x, y, A) + (y − y′) · `
(
A,A

)

≥ g(x, y, A) + (y − y′) ·M ,

3The discretization considered in [24] is incorrect: it assumes implicitly that the search region of the
SAA problem is (or may be) restricted to points whose first-stage cost is within some factor of the optimum
of the original problem, but this need not hold. It also assumes that the grid points lie in the feasible
region, which again need not hold.

59

where the last inequality follows because y − y′ ≤ 0 and `
(
A,A

)
≤ M . Combining (4.8)

and (4.9), we obtain

h(p̃ ;x, y)− h(p̃ ;x) ≤ (y′ − y) ·M ≤ η′

λr
M = η′ .

We now introduce the classification of the scenario collection A into low-cost and high-
cost scenarios, and prove the key properties of this classification (Lemmas 4.17, 4.19,
and 4.20). We classify the scenarios according to the values g(0, 0, A), using the threshold
H := λ

ε′
· Õ, where Õ := minx∈X h(p̊ ;x) + C(p̊). We define the collections of low and

high scenarios as Alow := {A ∈ A : g(0, 0, A) ≤ H} and Ahigh := {A ∈ A : g(0, 0, A) > H}
respectively.

Before proving the key properties of the classification of the scenarios, we define some
notation for convenience. Let p be an arbitrary distribution. It will be cumbersome to carry
around the C(p) term, so we define h̃(p ;x) := h(p ;x) +C(p) and h̃(p ;x, y) := h(p ;x, y) +
C(p). We use Elow

A∼p[·] and Ehigh
A∼p[·] to denote the contribution to the expectation EA∼p[·]

from the low and the high scenarios respectively (so we have EA∼p[·] = Elow
A∼p[·] + Ehigh

A∼p[·]).

Let x∗ be an optimal solution for minx∈X h(p̊ ;x) (which is also an optimal solution for
minx∈X h̃(p̊ ;x)). By (4.7), there exists y∗ ∈ [0, τ] such that h(p̊ ;x∗) = h(p̊ ;x∗, y∗). Recall
that our goal is to bound the quality of the solution x̂j with respect to Õ. Note that since
C(p̊) ≥ 0, we have Õ = h̃(p̊ ;x∗, y∗) ≥ h(p̊ ;x∗, y∗).

Lemma 4.17. There exists N1 = poly
(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
such that the following holds

with probability at least 1− δ
3
as long as N ≥ N1:

∣∣Elow
A∼p̂i [g(x, y, A)]− Elow

A∼p̊[g(x, y, A)]
∣∣ ≤ ε′Õ ∀i ∈ [k], ∀(x, y) ∈ X × Y .

Proof. Let us fix i ∈ [k] and (x, y) ∈ X × Y . Consider the random variable

W :=

{
g(x, y, A) , if A ∈ Alow ;

0 , otherwise,

where A is a scenario sampled according to the central distribution p̊. Note that W is
in the range [0, H] =

[
0, λÕ

ε′

]
. Moreover, note that E[W] = Elow

A∼p̊[g(x, y, A)], and that

Elow
A∼p̂i [g(x, y, A)] can be seen as an empirical estimate of W computed using N samples.

60

By Hoeffding’s inequality (Corollary 2.4), there exists

N1 = poly

(
λÕ
ε′

ε′Õ
, log

1
δ

3k|X||Y |

)
= poly

(
I, λ, 1

ε
, log |Y | , log

1

δ

)

such that, as long as N ≥ N1, we have

Pr
[∣∣Elow

A∼p̂i [g(x, y, A)]− Elow
A∼p̊[g(x, y, A)]

∣∣ > ε′Õ
]
≤ δ

3k |X| |Y |
.

Taking the union bound over all tuples (i, x, y), we get that the inequality in the lemma
statement holds for all of them with probability at least 1− k |X| |Y | · δ

3k|X||Y | = 1− δ
3
.

To conclude, note that log |Y | = O

(
log

(
τ
η′
λr

))
= poly

(
I, log λ, log 1

η

)
.

Lemma 4.18. We have
∑

A∈Ahigh p̊A ≤ 2ε′

λ
.

Proof. First, consider the case where Õ = 0. We show that the support of p̊ only contains
low scenarios, which implies the result. Let A ∈ supp(p̊). Since we have h(p̊ ;x∗, y∗) ≤ Õ =
0, we obtain cᵀx∗ + ry∗ = 0 and g(x∗, y∗, A) = 0. Lemma 4.12 then yields g(0, 0, A) ≤
g(x∗, y∗, A) + λ · (cᵀx∗ + ry∗) = 0 = H, which implies that A ∈ Alow.

We now turn to the case where Õ > 0. We have

Õ ≥ h(p̊ ;x∗, y∗)

≥ Ehigh
A∼p̊[g(x∗, y∗, A)]

≥
∑

A∈Ahigh

p̊A · (g(0, 0, A)− λ · (cᵀx∗ + ry∗))

≥
∑

A∈Ahigh

p̊A ·
(
λ(1− ε′)

ε′

)
Õ ,

where the third inequality follows from Lemma 4.12, and the final inequality follows because
g(0, 0, A) > H = λ

ε′
Õ for every scenario A ∈ Ahigh and Õ ≥ h(p̊ ;x∗, y∗) ≥ cᵀx∗ + ry∗.

Solving for
∑

A∈Ahigh p̊A, and using the fact that ε′ ≤ 1
6
, we obtain

∑

A∈Ahigh

p̊A ≤
ε′

λ(1− ε′)
≤ 2ε′

λ
.

61

Lemma 4.19. There exists N2 = poly
(
λ, 1

ε
, log 1

δ

)
such that the following holds with prob-

ability at least 1− δ
3
as long as N ≥ N2:

Ehigh
A∼p̊[g(0, 0, A)]− Ehigh

A∼p̊[g(x, y, A)] ≤ 2ε′(cᵀx+ ry) ∀(x, y) ∈ X × Y ; (4.10)

Ehigh
A∼p̂i [g(0, 0, A)]− Ehigh

A∼p̂i [g(x, y, A)] ≤ 3ε′(cᵀx+ ry) ∀i ∈ [k],∀(x, y) ∈ X × Y . (4.11)

Proof. We start by showing that (4.10) holds with probability 1 (for every N ≥ 1). For
every (x, y) ∈ X × Y , we have

Ehigh
A∼p̊[g(0, 0, A)]− Ehigh

A∼p̊[g(x, y, A)] = Ehigh
A∼p̊[g(0, 0, A)− g(x, y, A)]

≤ Ehigh
A∼p̊[λ · (c

ᵀx+ ry)] ≤ 2ε′(cᵀx+ ry) .

The first inequality follows from Lemma 4.12, and the second inequality follows because∑
A∈Ahigh p̊A ≤ 2ε′

λ
by Lemma 4.18.

Now we focus on proving (4.11). Let A be a scenario sampled according to the central
distribution p̊, and consider the indicator random variable

W :=

{
1 , if A ∈ Ahigh ;

0 , otherwise.

Note that E[W] =
∑

A∈Ahigh p̊A, and that
∑

A∈Ahigh p̂iA can be seen as an empirical es-
timate of W computed using N samples, for every i ∈ [k]. By Hoeffding’s inequality
(Corollary 2.4), there exists

N2 = poly

(
1
ε′

λ

, log
1
δ

3k

)
= poly

(
λ,

1

ε
, log

1

δ

)

such that, as long as N ≥ N2, we have

Pr

[∣∣∣∣∣
∑

A∈Ahigh

p̂iA −
∑

A∈Ahigh

p̊A

∣∣∣∣∣ >
ε′

λ

]
≤ δ

3k

for every i ∈ [k]. By the union bound, with probability at least 1 − k δ
3k

= 1 − δ
3
we

have that for every i ∈ [k], the inequality
∣∣∑

A∈Ahigh p̂iA −
∑

A∈Ahigh p̊A
∣∣ ≤ ε′

λ
holds, and so∑

A∈Ahigh p̂iA ≤
∑

A∈Ahigh p̊A + ε′

λ
≤ 3ε′

λ
, where the last inequality follows from Lemma 4.18.

We can then prove that (4.11) holds by following the reasoning we used to prove (4.10):

62

for every i ∈ [k] and (x, y) ∈ X × Y , we have

Ehigh
A∼p̂i [g(0, 0, A)]− Ehigh

A∼p̂i [g(x, y, A)] = Ehigh
A∼p̂i [g(0, 0, A)− g(x, y, A)]

≤ Ehigh
A∼p̂i [λ · (c

ᵀx+ ry)] ≤ 3ε′(cᵀx+ ry) ,

where the last inequality follows because
∑

A∈Ahigh p̂iA ≤ 3 ε
′

λ
.

Lemma 4.20. With probability at least 1− δ
3
, there exists t ∈ [k] such that

(
Ehigh
A∼p̂t [g(0, 0, A)] + C

(
p̂t
))
−
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)
≤ ε′Õ . (4.12)

Proof. Let i ∈ [k]. The expected value (over the random selection of the scenarios used
to construct p̂i) of Ehigh

A∼p̂i [g(0, 0, A)] is Ehigh
A∼p̊[g(0, 0, A)]. Since C(·) is a concave function by

assumption, and since the expected value of p̂i is p̊, by Jensen’s inequality (Theorem 2.2)
the expected value of C(p̂i) is at most C(p̊). Using Markov’s inequality (Theorem 2.1), we
obtain that

Ehigh
A∼p̂i [g(0, 0, A)] + C

(
p̂i
)
> (1 + ε′)

(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)
(4.13)

holds with probability at most 1
1+ε′

. Since the samples used to construct the empirical
distributions are independent, the probability that this holds for every i ∈ [k] is at most

(
1

1 + ε′

)
k ≤

(
1− ε′

2

)
2
ε′ ln 3

δ ≤
(
e−

ε′
2

)
2
ε′ ln 3

δ =
δ

3
,

where the first inequality follows from 1
1+ε′
≤ 1 − ε′

2
, which holds for ε′ ∈ [0, 1], and from

the definition of k.
Therefore, with probability at least 1 − δ

3
, inequality (4.13) is violated for some index

i = t, and so we have
(
Ehigh
A∼p̂t [g(0, 0, A)] + C

(
p̂t
))
−
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)

≤ ε′ ·
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)

≤ ε′ ·
(
Ehigh
A∼p̊[g(x∗, y∗, A) + λ(cᵀx∗ + ry∗)] + C(p̊)

)

≤ ε′ ·
(
cᵀx∗ + ry∗ + Ehigh

A∼p̊[g(x∗, y∗, A)] + C(p̊)
)

≤ ε′Õ .

63

The second inequality follows from Lemma 4.12. The third inequality uses Lemma 4.18
and the fact that ε′ ≤ 1

6
: we have

∑
A∈Ahigh p̊A ≤ 2ε′

λ
≤ 1

λ
. The final inequality follows

because Õ = h̃(p̊ ;x∗, y∗) ≥ cᵀx∗ + ry∗ + Ehigh
A∼p̊[g(x∗, y∗, A)] + C(p̊).

4.5.3 Details of the proof

We setN := max {N1, N2}, whereN1 = poly
(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
andN2 = poly

(
λ, 1

ε
, log 1

δ

)

are given by Lemmas 4.17 and 4.19 respectively. Note that N = poly
(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
.

By Lemmas 4.17, 4.19, and 4.20, and using the union bound, we have all of the following
with probability at least 1− δ:

∣∣Elow
A∼p̂i [g(x, y, A)]− Elow

A∼p̊[g(x, y, A)]
∣∣ ≤ ε′Õ ∀i ∈ [k], ∀(x, y) ∈ X × Y ; (4.14)

Ehigh
A∼p̊[g(0, 0, A)]− Ehigh

A∼p̊[g(x, y, A)] ≤ 2ε′(cᵀx+ ry) ∀(x, y) ∈ X × Y ; (4.15)

Ehigh
A∼p̂i [g(0, 0, A)]− Ehigh

A∼p̂i [g(x, y, A)] ≤ 3ε′(cᵀx+ ry) ∀i ∈ [k],∀(x, y) ∈ X × Y ; (4.16)

(
Ehigh
A∼p̂t [g(0, 0, A)] + C

(
p̂t
))
−
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)
≤ ε′Õ, for some t ∈ [k] . (4.17)

In the sequel, we suppose that (4.14)–(4.17) hold. By Lemma 4.16, there exist y and
yj ∈ Y such that h(p̃ ;x∗, y) ≤ h(p̃ ;x∗, y∗) + η′ ≤ Õ + η′ and h(p̂j ; x̂j, yj) ≤ h(p̂j ; x̂j) + η′.
We first use the properties of the estimates {f i} and the choice of the index j to relate the
quality of (x̂j, yj) under the j-th SAA problem minx∈X,y∈[0,τ] h̃(p̂j ;x, y) to the quality of
(x∗, y) under any of the SAA problems minx∈X,y∈[0,τ] h̃(p̂i ;x, y) (where i ∈ [k]). We have

h̃
(
p̂j ; x̂j, yj

)
≤ h̃

(
p̂j ; x̂j

)
+ η′

≤ f j + η′

≤ f i + η′

≤ ψ ·min
x∈X

h̃
(
p̂i ;x

)
+ η′

= ψ · min
x∈X,y∈[0,τ]

h̃
(
p̂i ;x, y

)
+ η′

≤ ψ · h̃
(
p̂i ;x∗, y

)
+ η′ .

(4.18)

64

The first step follows from the definition of yj. The second step follows from the definition
of f j in the lemma statement. The third step follows because we chose j as the index
corresponding to the smallest estimate. The fourth step follows from the definition of f i
in the lemma statement. The fifth step follows from (4.7). The final step follows because
(x∗, y) is a feasible solution for the i-th SAA problem.

Applying (4.18) to i = j and i = t, we obtain

h̃
(
p̂j ; x̂j, yj

)
≤ ψ · h̃

(
p̂j ;x∗, y

)
+ η′ ,

h̃
(
p̂j ; x̂j, yj

)
≤ ψ · h̃

(
p̂t ;x∗, y

)
+ η′ .

Taking a convex combination of the two inequalities above with coefficients 1
ψ
and 1 − 1

ψ

respectively, we obtain

h̃
(
p̂j ; x̂j, yj

)
≤ h̃

(
p̂j ;x∗, y

)
+ (ψ − 1) · h̃

(
p̂t ;x∗, y

)
+ η′ . (4.19)

Next, we evaluate the quality of (x̂j, yj) in the original problem. We have

h̃
(
p̊ ; x̂j, yj

)
= cᵀx̂j + ryj + Elow

A∼p̊
[
g
(
x̂j, yj, A

)]
+ Ehigh

A∼p̊
[
g
(
x̂j, yj, A

)]
+ C(p̊) . (4.20)

To bound the contribution from low scenarios, we use (4.14), obtaining

Elow
A∼p̊
[
g
(
x̂j, yj, A

)]
≤ Elow

A∼p̂j
[
g
(
x̂j, yj, A

)]
+ ε′Õ . (4.21)

Next we bound the contribution from high scenarios. For any i ∈ [k], let

∆i :=
(
Ehigh
A∼p̂i [g(0, 0, A)] + C

(
p̂i
))
−
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)
.

We have

Ehigh
A∼p̊
[
g
(
x̂j, yj, A

)]
≤ Ehigh

A∼p̊[g(0, 0, A)]

= Ehigh
A∼p̂j [g(0, 0, A)]−∆j + C

(
p̂j
)
− C(p̊)

≤ Ehigh
A∼p̂j

[
g
(
x̂j, yj, A

)]
+ 3ε′

(
cᵀx̂j + ryj

)
−∆j + C

(
p̂j
)
− C(p̊) .

(4.22)

The first inequality follows from Lemma 4.12. The equality follows from the definition of
∆j. The final inequality follows from (4.16).

65

Substituting (4.21) and (4.22) in (4.20), and grouping terms by recalling that

h̃
(
p̂j ; x̂j, yj

)
= cᵀx̂j + ryj + Elow

A∼p̂j
[
g
(
x̂j, yj, A

)]
+ Ehigh

A∼p̂j
[
g
(
x̂j, yj, A

)]
+ C

(
p̂j
)
,

we obtain

h̃
(
p̊ ; x̂j, yj

)
≤ h̃

(
p̂j ; x̂j, yj

)
+ ε′Õ + 3ε′

(
cᵀx̂j + ryj

)
−∆j

≤
[
h̃
(
p̂j ;x∗, y

)
−∆j

]
+ (ψ − 1) · h̃

(
p̂t ;x∗, y

)

+ ε′Õ + 3ε′
(
cᵀx̂j + ryj

)
+ η′ ,

(4.23)

where the second inequality follows from (4.19).

We now proceed to bound h̃(p̂j ;x∗, y)−∆j and h̃(p̂t ;x∗, y). We have

h̃
(
p̂j ;x∗, y

)
−∆j = cᵀx∗ + ry + Elow

A∼p̂j [g(x∗, y, A)] + Ehigh
A∼p̂j [g(x∗, y, A)] + C

(
p̂j
)

−
(
Ehigh
A∼p̂j [g(0, 0, A)] + C

(
p̂j
))

+
(
Ehigh
A∼p̊[g(0, 0, A)] + C(p̊)

)

≤ cᵀx∗ + ry + Elow
A∼p̂j [g(x∗, y, A)] + Ehigh

A∼p̊[g(0, 0, A)] + C(p̊)

≤ (1 + 2ε′)(cᵀx∗ + ry) + Elow
A∼p̊[g(x∗, y, A)]

+ Ehigh
A∼p̊[g(x∗, y, A)] + C(p̊) + ε′Õ

≤ (1 + 2ε′)h̃(p̊ ;x∗, y) + ε′Õ

≤ (1 + 3ε′)Õ + (1 + 2ε′)η′ .

(4.24)

The first step only expands the definitions of h̃(p̂j ;x∗, y) and ∆j. The second step follows
because g(x∗, y, A) ≤ g(0, 0, A) for every A ∈ A by Lemma 4.12. The third step uses (4.14)
to bound the term involving low scenarios and (4.15) to bound the term involving high
scenarios. The fourth step follows because h̃(p̊ ;x∗, y) = cᵀx∗+ry+EA∼p̊[g(x∗, y, A)]+C(p̊).
The final step follows because h̃(p̊ ;x∗, y) ≤ Õ + η′.

Similarly, we have

h̃
(
p̂t ;x∗, y

)
≤ (1 + 3ε′)Õ + (1 + 2ε′)η′ + ∆t ≤ (1 + 4ε′)Õ + (1 + 2ε′)η′ . (4.25)

The first inequality is obtained by following the same steps used to derive (4.24) (but using
t instead of j). The second inequality follows from (4.17).

66

Substituting (4.24) and (4.25) in (4.23), we obtain

h̃
(
p̊ ; x̂j, yj

)
≤
[
(1 + 3ε′)Õ + (1 + 2ε′)η′

]
+ (ψ − 1)

[
(1 + 4ε′)Õ + (1 + 2ε′)η′

]

+ ε′Õ + 3ε′
(
cᵀx̂j + ryj

)
+ η′

= ψ(1 + 4ε′)Õ + (1 + ψ(1 + 2ε′))η′ + 3ε′
(
cᵀx̂j + ryj

)

≤ ψ(1 + 4ε′)Õ + ψ(2 + 2ε′)η′ + 3ε′h̃
(
p̊ ; x̂j, yj

)
,

(4.26)

where the last inequality follows because ψ ≥ 1 and cᵀx̂j + ryj ≤ h̃(p̊ ; x̂j, yj).

Therefore we obtain

h̃
(
p̊ ; x̂j

)
≤ h̃

(
p̊ ; x̂j, yj

)

≤ ψ
1 + 4ε′

1− 3ε′
Õ + ψ

2 + 2ε′

1− 3ε′
η′

≤ ψ(1 + ε)Õ + ψη .

The first inequality follows from (4.7). The second one follows from (4.26). The final
inequality follows because 1+4ε′

1−3ε′
= 1+ 7ε′

1−3ε′
≤ 1+14ε′ = 1+ε and 2+2ε′

1−3ε′
η′ ≤ (4 + 4ε′)η′ = η

(since 1− 3ε′ ≥ 1
2
).

67

Chapter 5

DRS optimization under a Wasserstein
ball: polynomial-size central
distribution

Recall that in Chapter 4, we proved an SAA result for a discrete DRS optimization problem
under a Wasserstein ball,

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p:LW(p̊,p)≤r
EA∼p

[
cost of zA

]
}

, (DRSOW)

where LW is a Wasserstein metric defined relative to a scenario metric `, and the central
distribution p̊ is given by a sampling oracle.

We moved from (DRSOW) to its relaxation with integer first-stage decisions and (im-
plicit) fractional second-stage decisions,

min
x∈X
{h(p̊ ;x) := cᵀx+ z(p̊ ;x)} . (Q(p̊))

Informally, we gave a reduction from (Q(p̊)) to a collection of DRS problems of the type

min
x∈X
{h(p̂ ;x) := cᵀx+ z(p̂ ;x)} , (Q(p̂))

where the central distribution p̂ has a polynomially-bounded support size (see Theorem 4.1
for the precise statement). Our goal in this chapter is to design a framework for computing

68

an approximate solution for (Q(p̂)), as well as an estimate of its objective value. Combined
with the SAA result (Theorem 4.1), this allows us to obtain an approximation algorithm
for the relaxed DRS problem (Q(p̊)) with a black-box central distribution, which can then
be converted into an approximate solution for the discrete DRS problem (DRSOW) via a
second-stage approximation algorithm.

The central distribution p̂ is represented explicitly, that is, we have a collection of pairs
{(A, p̂A)}A∈Asup specifying the probabilities of the scenarios in the support of p̂, which we
denote by Asup. The scenarios that do not appear in this collection of pairs have probability
zero under the distribution p̂. The input size of the SAA problem (Q(p̂)) is denoted by Î,
and is defined as the sum of the input size I of the original problem (DRSOW) and the
encoding size of the pairs {(A, p̂A)}A∈Asup used to specify the central distribution. Note
that |Asup| = poly

(
Î
)

by definition (and when p̂ is obtained via the SAA result from

Theorem 4.1 with parameters (ε, η, δ), we have |Asup| = poly
(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
).

We now state the main result in this chapter, which gives a reduction from (Q(p̂)) to
the following problem.

Given an integer first-stage decision x ∈ X, y ≥ 0, and a scenario A ∈ A, solve(Π)
g(x, y, A) := max

A′∈A
{g(x,A′)− y · `(A,A′)} .

Recall from Definition 3.5 that a (β1, β2)-approximation algorithm for (Π) returns a scenario
A ∈ A such that

g
(
x,A

)
− y · `

(
A,A

)
≥ max

A′∈A

{
1

β1

g(x,A′)− β2y · `(A,A′)
}
.

Theorem 5.1 (combination of Theorem 3.14 and Lemmas 5.2 and 5.6).
Suppose that we have (i) a (β1, β2)-approximation algorithm for problem (Π); and (ii) a
local ρ-approximation algorithm. Then, given η > 0, we can compute in poly

(
Î, log 1

η

)

time an integer first-stage decision x̂ ∈ X and an estimate f such that

h(p̂ ; x̂) ≤ f ≤ β1β2ρ

(
min
x∈X

h(p̂ ;x) + η

)
.

Organization of this chapter. In Section 5.1, we provide an overview of the techniques
used in the proof of Theorem 5.1; we present the proof in detail in Section 5.2. In Sec-

69

tion 5.3, we show that for certain choices of the scenario collection A and the scenario
metric `, we can solve the fractional SAA problem (Qfr(p̂)) (with fractional first-stage and
second-stage decisions) exactly, by reformulating it as a compact LP. In Section 5.4, we
present hardness results for some problems related to solving the DRS problem (Q(p̂)).

5.1 Overview of the techniques

Perhaps the most natural approach for obtaining an approximation algorithm for the DRS
problem (Q(p̂)) would be to move to its further relaxation with fractional first-stage deci-
sions,

min
x∈P
{h(p̂ ;x) := cᵀx+ z(p̂ ;x)} , (Qfr(p̂))

compute a (fractional) approximate solution for it, then round it via a local approximation
algorithm. Unlike the case with two-stage {stochastic, robust} optimization, where the
fractional relaxation of a problem with an explicit polynomial-size list of scenarios gives
a compact LP and can therefore be solved in polynomial time, it is substantially more
challenging to even approximately solve (Qfr(p̂)) with a polynomial-size central distribution.
As we now explain, reformulating (Qfr(p̂)) as an LP leads to an LP with exponentially
many variables and constraints. Recall from Section 4.1 that we can express z(p̂ ;x) as the
optimal value of the following LP:

z(p̂ ;x) = max
∑

A,A′

γA,A′g(x,A′) (T(p̂, x))

s.t.
∑

A′

γA,A′ ≤ p̂A ∀A ∈ A (5.1)

∑

A,A′

`(A,A′)γA,A′ ≤ r (5.2)

γ ≥ 0 . (5.3)

Note that, because of constraints (5.1) and (5.3), we can simplify the above LP so
that we only have variables γA,A′ for A ∈ Asup, and constraints (5.1) are only present for
A ∈ Asup. Taking the dual of this simplified LP, we obtain a reformulation of z(p̂ ;x) as a

70

minimization LP; this yields the following reformulation of (Qfr(p̂)):

min cᵀx+ ry +
∑

A∈Asup

p̂AµA

s.t. µA ≥ g(x,A′)− y · `(A,A′) ∀A ∈ Asup, A′ ∈ A
x ∈ P , µ ∈ RAsup

+ , y ≥ 0 .

Suppose that under each scenario A, the cost of a fractional second-stage decision zA is
given by sA · zA, where sA ∈ Rn

+. Substituting g(x,A′) = min
{
sA
′ · zA′ :

(
x, zA

′) ∈ F(A′)
}

in the reformulation above, we obtain the following reformulation of (Qfr(p̂)) as an LP:

min cᵀx+ ry +
∑

A∈Asup

p̂AµA

s.t. µA ≥ sA
′ · zA′ − y · `(A,A′) ∀A ∈ Asup, A′ ∈ A

(x,zA
′
) ∈ F(A′) ∀A′ ∈ A

x ∈ P , µ ∈ RAsup

+ , y ≥ 0 .

The numbers of variables and constraints are both Ω(|A|). Thus, even though the central
distribution p̂ has polynomial-size support, the LP-reformulation of (Qfr(p̂)) has exponen-
tially many variables and constraints, and we are unable to solve it efficiently.1

It seems therefore preferable to work directly with (Qfr(p̂)) as a convex program. One
can show that solving this convex program reduces to the following problem.

Given a fractional first-stage decision x ∈ P , y ≥ 0, and a scenario A ∈ A, solve(*)
g(x, y, A) := max

A′∈A
{g(x,A′)− y · `(A,A′)} .

(Note that problem (*) is more general than (Π), which is the problem for which we assume
the existence of a non-standard type of approximation algorithm.) Indeed, if we had an
efficient algorithm for (*), then given any point x ∈ P we would be able to efficiently
separate the (exponentially many) constraints of the dual of the simplified version of the
LP (T(p̂, x)). We would therefore be able to compute an optimal solution for this LP,

1An exception to this is the unrestricted setting (i.e., A = 2U for some ground set U) with the discrete
scenario metric `disc (so LW is the 1

2L1 metric), under the assumption that g(x,A) ≤ g(x,A′) for all x ∈ P,
A ⊆ A′, which holds for covering problems. Here, we can reformulate z(p̂ ;x) as an LP with polynomially
many variables {γA,A′} and hence, obtain a reformulation of (Qfr(p̂)) as a compact LP. Theorem 5.8 shows
a more general result along these lines.

71

which could be used to compute both the objective value h(p̂ ;x) and a subgradient of
h(p̂ ; ·) at x. We would therefore be able to approximately solve (Qfr(p̂)) via the classical
ellipsoid method (Theorem 3.10).

It turns out that (*) is generally a complicated problem that, as we show in Theorem 5.9-
(b), can capture the k-max-min problem maxA⊆U :|A|≤k g(0, A) encountered in two-stage
robust optimization, which is NP-hard in various settings (see Section 2.1). Moreover,
due to its mixed-sign objective, (*) is often inapproximable under the standard notion of
approximation (see Theorem 5.9-(b)).

We therefore consider the non-standard notion of approximation given by Definition 3.5.
If we have a (β1, β2)-approximation algorithm for (*), then we can compute a β-approximate
solution γ for (T(p̂, x)), given any fractional first-stage decision x ∈ P , where β = β1β2

(see Lemma 5.5). As shown in Lemma 5.3, this solution γ could then be used to compute
both (i) a β-approximate estimate of h(p̂ ;x) and (ii) a (1− 1/β)-subgradient of h(p̂ ; ·) at
x. This suggests that we try to utilize ellipsoid-based algorithms based on approximate
subgradients. We discussed two such algorithms in Section 3.4.1, namely, the algorithm
by Shmoys and Swamy [114] based on ω-subgradients (see Theorem 3.12) and the alternate
algorithm based on

(
ψ,X

)
-first-order oracles (see Theorem 3.14).

The algorithm by Shmoys and Swamy [114] requires the ability to compute ω-subgradients
for quite small values of ω, which amounts to obtaining a (β1, β2)-approximation algorithm
for (*) with β1β2 = 1 + ε. This is impossible for various problems, because, as mentioned
before, (*) can be used to encode the k-max-min problem maxA⊆U :|A|≤k g(0, A), which is
APX-hard in various settings.

Therefore, we move to the ellipsoid-based algorithm from Theorem 3.14. One can
show that an approximate evaluation oracle for h(p̂ ; ·) can be combined with an algorithm
for computing ω-subgradients to obtain a generalized first-order oracle in the sense of
Definition 3.13; this holds for any value of ω. However, one final difficulty remains: even
in cases where we know how to (approximately) solve the k-max-min problem, which as
noted earlier is a special case of (*), we only have an algorithm that works with integer
first-stage decisions. (This is also the reason why in Theorem 5.1, we only assume the
approximability of (Π), which involves computing g(x, y, A) for integer first-stage decisions
x.) However, in (*), x could be fractional. To remedy this, we utilize the flexibility of the
alternate first-order oracle from Definition 3.13, where we are allowed to move to a different
point. Here, when faced with a fractional point x ∈ P , we will first round x using a local
ρ-approximation algorithm to an integer point x̂ ∈ X, and then find a β-approximate
solution for (T(p̂, x̂)), using the (β1, β2)-approximation algorithm for (Π) (see Lemma 5.5).
We show in Lemma 5.4 that this indeed yields a (βρ,X)-first-order oracle, which we then

72

use in the ellipsoid-based algorithm from Theorem 3.14.

5.2 Proof of Theorem 5.1

We show in Lemma 5.2 that we can utilize a (β1, β2)-approximation algorithm for (Π),
in conjunction with a local ρ-approximation algorithm, to obtain a (β1β2ρ,X)-first-order
oracle for h(p̂ ; ·). Recall from Definition 3.13 that this oracle is an algorithm that, given
any fractional first-stage decision x ∈ P , computes a tuple (x̂, f, d) ∈ X × R × Rm such
that (i) h(p̂ ; x̂) ≤ f ; and (ii) h(p̂ ;x′) ≥ 1

ψ
f for every x′ ∈ X such that dᵀ(x′ − x) ≥ 0.

Equipped with this generalized first-order oracle and the bound on the Lipschitz constant
of h(p̂ ; ·) given by Lemma 5.6, we can then immediately obtain Theorem 5.1 by utilizing
the ellipsoid-based method from Theorem 3.14.

Lemma 5.2 (combination of Lemmas 5.4 and 5.5). Suppose that we have (i) a (β1, β2)-
approximation algorithm for problem (Π); and (ii) a local ρ-approximation algorithm. Then
we can obtain a poly

(
Î
)
-time (β1β2ρ,X)-first-order oracle for h(p̂ ; ·).

We now discuss how to obtain Lemma 5.2. First, we show in Lemma 5.3 that, given any
fractional first-stage decision x ∈ P , an approximate solution for (T(p̂, x)) can be utilized
to compute an approximate subgradient of h(p̂ ; ·) at x. Then, we show in Lemma 5.4 that
given any x ∈ P , if we round it to an integer first-stage decision x̂ ∈ X using a local
approximation algorithm, then an approximate solution for (T(p̂, x̂)) can be utilized to
compute a valid output for a generalized first-order oracle, when x is given as the input.
Finally, we show in Lemma 5.5 that one can compute an approximate solution for (T(p̂, x̂))
utilizing the approximation algorithm for problem (Π).

Recall from assumption (A5) that for any scenario A ∈ A, the function x 7→ g(x,A) is
convex over P , and at every x ∈ P , we can efficiently compute its value, and a subgradient
dx,A.

Lemma 5.3. Let p̃ be a probability distribution over A. Let x ∈ P be a fractional first-
stage decision, and let γ be a β-approximate solution for (T(p̃, x)). Define f := cᵀx +∑

A,A′ γA,A′g(x,A′) and d := c+
∑

A,A′ γA,A′d
x,A′. Then we have (i) f ≤ h(p̃ ;x) ≤ βf and

(ii) d is a (1− 1/β)-subgradient of h(p̃ ; ·) at x.

Proof. We start by proving (i). Since γ is feasible for (T(p̃, x)), we have

h(p̃ ;x) ≥ cᵀx+
∑

A,A′

γA,A′g(x,A′) = f ,

73

which proves the first part of (i). To prove the second part of (i), note that

h(p̃ ;x) = cᵀx+ z(p̃ ;x) ≤ cᵀx+ β
∑

A,A′

γA,A′g(x,A′) ≤ βf ,

where the first inequality holds because γ is a β-approximate solution for (T(p̃, x)).

Now we prove (ii). Let x′ ∈ P . Consider the function ζ : x 7→ cᵀx+
∑

A,A′ γA,A′g(x,A′).
We claim that d is a subgradient of ζ(·) at x. Assuming this, we obtain

h(p̃ ;x′)− ζ(x) ≥ ζ(x′)− ζ(x) ≥ dᵀ(x′ − x) ,

where the first inequality follows because γ is a feasible solution for (T(p̃, x′)), and the
second inequality follows because d is a subgradient of ζ(·) at x. It follows that

h(p̃ ;x′)− h(p̃ ;x) ≥ dᵀ(x′ − x) + ζ(x)− h(p̃ ;x) ≥ dᵀ(x′ − x)−
(

1− 1

β

)
h(p̃ ;x) ,

where the final inequality follows from part (i): we have ζ(x) = f ≥ 1
β
h(p̃ ;x). Since this

holds for every x′ ∈ P , it follows that d is a (1− 1/β)-subgradient of h(p̃ ; ·) at x.

It remains to prove the claim. For any x′ ∈ P , we have

ζ(x′)− ζ(x) = cᵀ(x′ − x) +
∑

A,A′

γA,A′(g(x′, A′)− g(x,A′))

≥ cᵀ(x′ − x) +
∑

A,A′

γA,A′d
x,A′ · (x′ − x)

= dᵀ(x′ − x) ,

where the second inequality follows because dx,A′ is a subgradient of g(·, A′) at x.

Lemma 5.4. Let x ∈ P be a fractional first-stage decision, and let x̂ be obtained by
rounding x via a local ρ-approximation algorithm. Let γ be a β-approximate solution for
(T(p̂, x̂)). Define f := β ·

(
cᵀx̂+

∑
A,A′ γA,A′g(x̂, A′)

)
and d := c +

∑
A,A′ γA,A′d

x,A. Then
we have (i) h(p̂ ; x̂) ≤ f and (ii) h(p̂ ;x′) ≥ 1

βρ
f for every x′ ∈ X such that dᵀ(x′ − x) ≥ 0.

Proof. Part (i) follows immediately from part (i) of Lemma 5.3, setting (p̃, x) to (p̂, x̂).

Now we prove (ii). Let x′ ∈ X such that dᵀ(x′ − x) ≥ 0. Consider the function
ζ : x 7→ cᵀx +

∑
A,A′ γA,A′g(x,A′). By repeating the arguments used in the proof of

74

Lemma 5.3, we obtain that h(p̂ ;x′) − ζ(x) ≥ dᵀ(x′ − x) ≥ 0. Since x̂ is obtained by
rounding x via a local ρ-approximation algorithm, we have ζ(x̂) ≤ ρζ(x), so we obtain
h(p̂ ;x′) ≥ ζ(x) ≥ 1

ρ
ζ(x̂) = 1

βρ
f .

Lemma 5.5. Suppose that we have a (β1, β2)-approximation algorithm for problem (Π).
Then, given an integer first-stage decision x̂ ∈ X, we can compute in poly

(
Î
)

time a
β1β2-approximate solution for (T(p̂, x̂)).

Proof. Recall that, as noted in Section 5.1, we can simplify the LP (T(p̂, x̂)) so that we
only have variables γA,A′ for A ∈ Asup, and constraints (5.1) are only present for A ∈ Asup.
The simplified LP, which has a polynomial number of constraints, is stated below.

max
∑

A∈Asup,A′∈A

γA,A′g(x̂, A′) (P)

s.t.
∑

A′∈A

γA,A′ ≤ p̂A ∀A ∈ Asup

∑

A∈Asup,A′∈A

`(A,A′)γA,A′ ≤ r

γ ∈ RAsup×A
+ .

The dual of the LP above is

min ry +
∑

A∈Asup

p̂AµA (D)

s.t. µA ≥ g(x̂, A′)− y · `(A,A′) ∀A ∈ Asup, A′ ∈ A (5.4)
µ ∈ RAsup

+ , y ≥ 0 . (5.5)

Notice that (D) is an LP (since x̂ is fixed) with only O(|Asup|) = poly
(
Î
)
variables, but

Θ(|Asup| |A|) constraints, which may be exponential in the input size. It is evident that
a (β1, β2)-approximation algorithm Alg for problem (Π) yields some type of approximate
separation oracle for (D). Using a standard technique in approximation algorithms, we
prove that (D), and the primal (P), can be solved approximately (see, e.g., [23, 47, 49, 70,
75, 76, 78]).

Let Q(ν) denote the set of feasible solutions of (D) with objective value at most ν,
that is, Q(ν) :=

{
(µ, y) : (5.4), (5.5), ry +

∑
A∈Asup p̂AµA ≤ ν

}
. Note that OPT(D) is the

smallest value of ν such that Q(ν) 6= ∅. We use Alg to obtain a poly
(
Î
)
-time approx-

75

imate separation oracle in the following sense. Given ν and (µ, y), we either show that
(β1µ, β1β2y) ∈ Q(β1β2ν), or we exhibit a hyperplane separating (µ, y) from Q(ν). Thus,
given ν, by running the ellipsoid method with this approximate separation oracle, we can in
poly

(
Î
)
time either certify that Q(ν) = ∅, or obtain (µ, y) with (β1µ, β1β2y) ∈ Q(β1β2ν).

We now describe the separation oracle. Given ν and (µ, y), we first check if (5.5) and
ry+

∑
A∈Asup p̂AµA ≤ ν hold, and if not, we use the appropriate inequality as the separating

hyperplane. Next, for every scenario A ∈ Asup, we run Alg for the input (x̂, y, A), thus
obtaining a scenario A ∈ A. Then we verify if µA ≥ g

(
x̂, A

)
−y · `

(
A,A

)
. If this constraint

is violated, then we use it as the separating hyperplane. Note that the running time of this
separation oracle is poly

(
Î
)
.

If no violated constraint is found by this approximate separation oracle, then for every
A ∈ Asup and A′ ∈ A, letting A denote the output of Alg when given input (x̂, y, A), we
have

µA ≥ g
(
x̂, A

)
− y · `

(
A,A

)
≥ 1

β1

g(x̂, A′)− β2y · `(A,A′) .

This implies that (β1µ, β1β2y) ∈ Q(β1β2ν).

We claim that by running the ellipsoid method as described above for different values
of ν, using binary search, we can compute an approximate solution for (D). To define
the range of ν on which to do binary search, we need to find lower and upper bounds
on OPT(D). First, note that OPT(D) ≥ 0, since every feasible solution (µ, y) of (D)
is nonnegative by (5.5). To obtain an upper bound, we run the ellipsoid method as de-
scribed above for ν = 20, 21, 22, 23, . . . , until we find ν = ν̄ such that the algorithm re-
turns a solution in Q(β1β2ν̄). Then UB := β1β2ν̄ is an upper bound on OPT(D). Note
that this takes poly

(
Î
)
time, since we consider O(logOPT(D)) different values of ν, and

OPT(D) = OPT(P) ≤ maxA′∈A g(x̂, A′), and we have log(maxA′∈A g(x̂, A′)) = poly(I) by
assumption (A5).

Let ε > 0. Since OPT(D) ∈ [0,UB], we have that Q(−β1β2ε) = ∅ and Q(UB) 6= ∅,
and so we can perform binary search on the interval [−ε,UB] to find a value ν∗ such
that the ellipsoid method, when run for ν = ν∗ (with the approximate separation oracle
introduced above), returns a solution (µ∗, y∗) with (β1µ

∗, β1β2y
∗) ∈ Q(β1β2ν

∗), and when
run with ν = ν∗ − ε, certifies that Q(ν∗ − ε) = ∅.2 Since Q(β1β2ν

∗) 6= ∅, we have
β1β2ν

∗ ≥ OPT(D) = OPT(T(p̂, x̂)). The ellipsoid method with ν = ν∗ − ε generates a
2Note that there does not necessarily exist a threshold ν separating the two different types of outcomes

for the ellipsoid method, namely: (i) certifying that Q(ν) = ∅; or (ii) producing a solution (µ, y) with
(β1µ, β1β2y) ∈ Q(β1β2ν). Indeed, while we can say that we have outcome (i) when ν < OPT(D)

β1β2
and

76

subset of poly
(
Î
)
constraints from the family of constraints (5.4). Consider the LP (D̃),

obtained from (D) by restricting the family of constraints (5.4) to this subset. Since the
constraints generated by the ellipsoid method certify that Q(ν∗ − ε) = ∅, it follows that
OPT(D̃) > ν∗ − ε. We can choose ε small enough with log 1

ε
= poly

(
Î
)
so that this also

implies OPT(D̃) ≥ ν∗. Note that this choice also guarantees that log UB
ε

= poly
(
Î
)
and

hence the binary search takes poly
(
Î
)
time.

Now, consider the dual (P̃) of (D̃). By strong duality, we obtain OPT(P̃) = OPT(D̃) ≥
ν∗. Note that (P̃) corresponds to the LP obtained from (P) by restricting γ to use only
the variables γA,A′ corresponding to constraints from the family (5.4) that were retained
in (D̃). Therefore, by computing an optimal solution for (P̃) (which we can do in poly

(
Î
)

time, as it has poly
(
Î
)

variables and constraints), we obtain a feasible solution for (P)
with objective value

OPT(P̃) ≥ ν∗ ≥ 1

β1β2

·OPT(T(p̂, x̂)) .

We now bound the Lipschitz constant of the objective function of (Qfr(p̂)). Note that
log(‖c‖+K) = poly(I) by assumption (A5).

Lemma 5.6. Let p̃ be a probability distribution over A. Then the function h(p̃ ; ·) is
(‖c‖+K)-Lipschitz continuous over P.

Proof. We show that for every fractional first-stage decision x ∈ P , there exists a sub-
gradient of h(p̃ ; ·) at x with Euclidean norm at most ‖c‖ + K. The result then follows
from Lemma 1.1. Indeed, let x ∈ P , and let γ be an optimal solution for (T(p̃, x)). Then
by Lemma 5.3 (setting β = 1), we have that d := c +

∑
A,A′ γA,A′d

x,A′ is a subgradient of
h(p̃ ; ·) at x. We have

‖d‖ =

∥∥∥∥∥c+
∑

A,A′

γA,A′d
x,A′

∥∥∥∥∥ ≤ ‖c‖+
∑

A,A′

γA,A′
∥∥∥dx,A′

∥∥∥ ≤ ‖c‖+K ,

where the first inequality follows from the triangle inequality, and the second one follows
because

∥∥dx,A′
∥∥ ≤ K for every A′ ∈ A by assumption (A5) and

∑
A,A′ γA,A′ ≤ 1.

outcome (ii) when ν ≥ OPT(D), both outcomes are possible for ν ∈
[

OPT(D)
β1β2

,OPT(D)
)
.

77

5.3 Solving (Qfr(p̂)) exactly in certain settings

In this section we show that, for certain choices of the scenario collectionA and the scenario
metric `, we can reformulate the fractional SAA problem (Qfr(p̂)) as a compact LP, and
hence solve it exactly.

Definition 5.7. We say that the scenario collection A is collapsible under the scenario
metric ` if given any scenario A ∈ A, we can compute in poly(I) time a collection of
scenarios φ(A) ⊆ A such that for every fractional first-stage decision x ∈ P and every
y ≥ 0, we have

g(x, y, A) = max
A′∈φ(A)

{g(x,A′)− y · `(A,A′)} .

Note that if we only have a polynomial number number of scenarios (i.e., if |A| is
poly(I)), then clearly A is collapsible under any scenario metric `, since we can simply
define φ(A) := A for every scenario A. Therefore the discussion in the sequel implies that
in this case, we can solve (Qfr(p̂)) efficiently by reformulating it as a compact LP.

Theorem 5.8. Suppose that the scenario collection A is collapsible under the scenario met-
ric `, and that the second-stage costs {g(x,A′)} are given by compact LPs, say, g(x,A′) =
min

{
sA
′ · zA′ :

(
x, zA

′) ∈ F(A′)
}
. Then we can compute an optimal solution for (Qfr(p̂)),

and its objective value, in poly
(
Î
)
time.

Proof. Recall from the discussion in Section 5.1 that we can reformulate (Qfr(p̂)) as the
following convex program:

min cᵀx+ ry +
∑

A∈Asup

p̂AµA

s.t. µA ≥ g(x,A′)− y · `(A,A′) ∀A ∈ Asup, A′ ∈ A (5.6)
x ∈ P , µ ∈ RAsup

+ , y ≥ 0 .

If A is collapsible under `, then the exponentially many constraints in (5.6) are equivalent
to

µA ≥ g(x,A′)− y · `(A,A′) ∀A ∈ Asup, A′ ∈ φ(A) . (5.7)

Substituting constraints (5.6) with (5.7) and replacing g(x,A′) with its LP formulation,

78

we obtain the compact LP

min cᵀx+ ry +
∑

A∈Asup

p̂AµA

s.t. µA ≥ sA
′ · zA′ − y · `(A,A′) ∀A ∈ Asup, A′ ∈ φ(A)

(x,zA
′
) ∈ F(A′) ∀A′ ∈ ∪A∈Asupφ(A)

x ∈ P , µ ∈ RAsup

+ , y ≥ 0 .

Solving this LP yields an optimal solution for (Qfr(p̂)).

5.4 Some hardness results

Recall the k-max-min problem
max
A∈A≤k

g(0, A) ,

whereA≤k := {A ⊆ U : |A| ≤ k} for some ground set U . For several underlying combinatorial-
optimization problems, this problem is APX-hard (see the discussion in Section 2.1). In
this section, we provide reductions that relate the difficulty of some of the tasks that we
encounter when developing our framework for DRS optimization under a Wasserstein ball
to that of the k-max-min problem. We focus on the explicit central-distribution setting,
wherein we have a DRS problem of the type

min
x∈X
{h(p̂ ;x) := cᵀx+ z(p̂ ;x)} , (Q(p̂))

and the central distribution p̂ is specified by the collection of pairs {(A, p̂A)}A∈supp(p̂).

We show that under some conditions, given this two-stage DRS problem, the following
tasks can capture the k-max-min problem (and hence are computationally hard if the latter
problem is hard): (a) evaluating the objective function h(p̂ ;x) of the DRS problem (Q(p̂));
(b) solving the problem (Π) of computing g(x, y, A) := maxA′∈A {g(x,A′)− y · `(A,A′)},
given (x, y, A) ∈ X × R+ × A; and (c) evaluating the objective function h(p̂ ;x, y) :=
cᵀx+ry+EA∼p̂[g(x, y, A)] of the reformulation (R(p̂)) of (Q(p̂)) (obtained via Lemma 4.4).

Note that (a) and (c) are in contrast with classical two-stage stochastic optimization,
where (using fractional second-stage decisions) evaluating the objective function of the
problem is computationally hard when the probability distribution is given by a sampling
oracle, but straightforward when it is given explicitly. For (b) and (c), we also show

79

impossibility of obtaining any multiplicative approximation guarantee. All the reductions
in this section hold for two-stage DRS problems both in the k-bounded setting and in
the unrestricted setting. Furthermore, the results for (a) and (c) hold even if the central
distribution p̂ is restricted to having constant support size, which shows that, as alluded to
above, these hardness results do not stem from the complexity of the central distribution
p̂. (Note that (b) does not involve the distribution p̂.)

Theorem 5.9.
Consider the two-stage DRS problem under a Wasserstein ball minx∈X h(p̂ ;x), where
the central distribution p̂ is given explicitly. Consider the following two settings:

(B1) the k-bounded setting (i.e., A = A≤k) with ` as the discrete scenario metric `disc;
and

(B2) the unrestricted setting (i.e., A = 2U) with ` given by: `(A,A) = 0 for all A ∈ A;
for A 6= A′ ∈ A, we have `(A,A′) = 1 if |A| , |A′| ≤ k, and 2Z otherwise, where
Z ≥ maxA∈A g

(
0, A

)
.

Assume that g(0, ∅) = 0, and that the k-max-min problem

max
A∈A≤k

g(0, A) (Ξ)

is NP-hard and has optimal value at least 1. We have the following hardness results in
both settings, assuming P6=NP.

(a) One can choose the central distribution p̂ and the radius r so that the problem of
computing z(p̂ ; 0) is equivalent to (Ξ) (and hence admits no polytime algorithm).

(b) No polytime multiplicative approximation is possible for computing g(0, y, ∅), given
y ≥ 0 in the input.

(c) By choosing the central distribution p̂ suitably, the hardness result in (b) carries
over to the problem of computing EA∼p̂[g(0, y, A)], given y ≥ 0 in the input.

Proof. Let A∗ ∈ A≤k be an optimal solution for (Ξ), and OPT(Ξ) := g(0, A∗) be its
objective value.

80

Part (a). For the setting (B1), it suffices to set r := `max (and p̂ may be arbitrary).
Then the ambiguity set D = {p : L(p̂, p) ≤ r} encompasses all the distributions over A≤k.
It follows that

z(p̂ ; 0) = max
p:L(p̂,p)≤r

EA∼p[g(0, A)] = max
A∈A≤k

g(0, A) .

For the setting (B2), we set r := 1, and take p̂ to be the distribution that puts weight
of 1 on ∅ (and 0 on the remaining scenarios). We claim that z(p̂ ; 0) is again equivalent to
the problem (Ξ). Recall that z(p̂ ; 0) is the optimal value of the LP

max
∑

A,A′

γA,A′g(0, A′) (T(p̂, 0))

s.t.
∑

A′

γA,A′ ≤ p̂A ∀A ∈ A

∑

A,A′

`(A,A′)γA,A′ ≤ r

γ ≥ 0 .

Setting γ∅,A∗ = 1, and setting the remaining variables to zero, yields a feasible solution
for (T(p̂, 0)) with objective value g(0, A∗) = OPT(Ξ). We now work toward showing that
no feasible solution γ attains a higher objective value. Let α denote the amount of flow
sent on the edges (∅, A′) with |A′| > k. Note that this flow contributes α · 2Z to the `-cost
of γ, and at most α · Z to its objective value. Let θ be the amount of flow on the edge
(∅, ∅). This does not contribute to the `-cost of γ, or to its objective value. The flow on
the remaining edges has volume 1 − α − θ; it contributes (1− α− θ) · 1 to the `-cost of
γ and at most (1− α− θ) · OPT(Ξ) to its objective value. Therefore, the `-cost of γ is
α · 2Z + (1− α− θ) · 1 = 2αZ + (1− α− θ); since γ is feasible for (T(p̂, 0)), we obtain
2αZ + (1− α− θ) ≤ 1. We can therefore bound the objective value of γ as follows:

∑

A,A′

γA,A′g(0, A′) ≤ α · Z + (1− α− θ) ·OPT(Ξ)

≤ α + θ

2
+ (1− α− θ) ·OPT(Ξ)

≤
(

1− α + θ

2

)
·OPT(Ξ)

≤ OPT(Ξ) ,

where the third inequality follows because OPT(Ξ) ≥ 1 by assumption.

81

Part (b). We consider the setting (B1) first. First, note that

g(0, 0, ∅) = max
A′∈A≤k

{g(0, A′)− 0 · `(∅, A′)} = max
A′∈A≤k

g(0, A) ,

and so for y = 0, computing g(0, y, ∅) is equivalent to (Ξ).

By exploiting the mixed-sign objective, we can argue that any multiplicative approxi-
mation for g(0, y, ∅) would allow us to solve the decision version of (Ξ): given ν ≥ 0, decide
whether OPT(Ξ) > ν. Suppose we have such an approximation algorithm, and run it with
input y = ν. If OPT(Ξ) > ν, then we have

g(0, y, ∅) ≥ g(0, A∗)− y · `(∅, A∗) > ν − ν · 1 = 0 ,

and so the approximation algorithm would return a solution with a positive objective value.
If on the contrary we have OPT(Ξ) ≤ ν, then for every scenario A′ ∈ A≤k with A′ 6= ∅ we
have

g(0, A′)− y · `(∅, A′) = g(0, A′)− ν ≤ 0 .

Since
g(0, ∅)− y · `(∅, ∅) = 0− ν · 0 = 0 ,

we conclude that g(0, y, ∅) = 0, and so the approximation algorithm must return a solution
with objective value 0. So we can distinguish between OPT(Ξ) > ν and OPT(Ξ) ≤ ν.

Now consider the setting (B2). Again, we suppose that we have an approximation
algorithm for computing g(0, y, ∅), and we show that given any ν ≥ 0, we can decide
whether OPT(Ξ) > ν. Since by assumption OPT(Ξ) ≥ 1, we may assume that ν ≥ 1, as
otherwise the answer is clearly yes. Suppose we run the algorithm with input y = ν. If
OPT(Ξ) > ν, then

g(0, y, ∅) ≥ g(0, A∗)− y · `(∅, A∗) > ν − ν · 1 = 0 ,

and so the approximation algorithm must return a solution with positive objective value.
If on the contrary we have OPT(Ξ) ≤ ν, then we claim that g(0, y, ∅) = 0, and so the
approximation algorithm must return a solution with objective value 0. Thus, we can
distinguish between OPT(Ξ) > ν and OPT(Ξ) ≤ ν. To prove the claim, we consider three
types of scenarios separately. For A′ = ∅, we have

g(0, A′)− y · `(∅, A′) = 0− ν · 0 = 0 ;

82

for A′ 6= ∅ with |A′| ≤ k, we have

g(0, A′)− y · `(∅, A′) ≤ ν − ν · 1 = 0 ;

finally, for scenarios A′ with |A′| > k, we have

g(0, A′)− y · `(∅, A′) ≤ Z − ν · 2Z = (1− 2ν)Z ≤ 0 ,

where the last inequality follows because ν ≥ 1.

Part (c). This follows from part (b) by simply taking p̂ to be the distribution that puts
a weight of 1 on the scenario ∅ (and 0 on the remaining scenarios); then for every y ≥ 0
we have EA∼p̂[g(0, y, A)] = g(0, y, ∅), so the hardness result in part (b) carries over.

83

Chapter 6

DRS optimization under a Wasserstein
ball: applications

In this chapter we demonstrate the versatility of our framework—i.e., Theorem 3.6 and
the two main components used in its proof, namely Theorems 4.1 and 5.1—for handling
general two-stage DRS problems under a Wasserstein ball by applying it to obtain the
first approximation guarantees for the DRS versions of various combinatorial-optimization
problems, namely set cover, vertex cover, edge cover, facility location, and Steiner tree.
Except for set cover, our approximation factors are within constant factors of the guarantees
known for the deterministic counterparts of these problems.

For convenience, we restate Theorem 3.6 below.

Theorem 3.6 (see proof in Section 6.1).
Suppose that assumptions (A1)–(A7) hold, and that we have:

(1) a second-stage α-approximation algorithm;
(2) a (β1, β2)-approximation algorithm for problem (Π), with log β1 = poly(I); and
(3) a local ρ-approximation algorithm.

Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a
4αβ1β2ρ(1 + ε)-approximate solution for (DRSOW) with probability at least 1 − δ in
time poly

(
I, λ, 1

ε
, log 1

δ

)
.

We also restate assumptions (A1)–(A7) below.

(A1) log |X| = poly(I).

84

(A2) We have 0 ∈ X and g(0, A) ≥ g(x,A) for every x ∈ P and A ∈ A.

(A3) We know an inflation factor λ ≥ 1 such that g(0, A) ≤ g(x,A)+λcᵀx for every x ∈ P
and A ∈ A.

(A4) We have positive bounds Rsmall ≤ 1 and Rlarge such that:

• P contains a Euclidean ball of radius Rsmall;

• P is contained in the Euclidean ball of radius Rlarge centered at the origin; and

• log
Rlarge
Rsmall

= poly(I).

(A5) For every scenario A ∈ A, the function x 7→ g(x,A) is convex over P . Furthermore,
given any point x ∈ P , we can compute in poly(I) time the value of this function at x
and a subgradient d at x such that ‖d‖ ≤ K, where logK = poly(I). By Lemma 1.1,
this also implies that the function x 7→ g(x,A) is K-Lipschitz continuous.

(A6) For every fractional first-stage decision x ∈ P and every non-null scenario A ∈ A we
have cᵀx+ g(x,A) ≥ 1.

(A7) We have a number τ ≥ 1 with log τ = poly(I) such that g(x,A′)−g(x,A) ≤ τ ·`(A,A′)
for every fractional first-stage decision x ∈ P and every pair of scenarios (A,A′) with
`(A,A′) > 0.

We defer the proof of Theorem 3.6 to Section 6.1, where we show that it can be obtained
by combining Theorems 4.1 and 5.1. Here, we discuss what is needed in order to apply
Theorem 3.6 and obtain results for our applications.

1. Verify that assumptions (A1)–(A7) hold. For the applications we consider, we have
X = {0, 1}m and P = [0, 1]m, so assumptions (A1) and (A4) are readily satisfied by
taking Rsmall = 1

2
and Rlarge =

√
m. Assumptions (A2) and (A3) follow because all

our applications are covering problems, and every first-stage action is associated with a
corresponding second-stage action that is more expensive by a bounded factor. Hence,
it is always possible to not take any first-stage action; taking more first-stage actions
can never hurt the recourse cost, and (A3) holds by taking λ to be the maximum factor
by which the cost of a first-stage action increases in the second stage. Assumption (A5)
follows from prior work of Shmoys and Swamy [114], as the underlying two-stage problem
falls into the class of two-stage LPs considered therein. Assumption (A6) typically
holds if first-stage and second-stage decisions have integer costs. Assumption (A7) can

85

usually be satisfied by setting τ := max {1,UB/∆}, where UB is a suitable upper bound
on maxA∈A g(0, A) and ∆ is a lower bound on minA,A′:`(A,A′)>0 `(A,A

′); for any tuple
(x,A,A′) fulfilling the conditions of (A7) we obtain g(x,A′) − g(x,A) ≤ g(x,A′) ≤
g(0, A′) ≤ UB ≤ τ · `(A,A′).

2. Furnish the following algorithms.

(a) A second-stage α-approximation algorithm: this typically reduces to obtaining an
LP-based approximation algorithm for the deterministic version of the problem, and
we can simply plug in known approximation results.

(b) A local ρ-approximation algorithm: we have ρ = 2α for set cover, vertex cover,
and edge cover, and ρ = O(1) for facility location (see Shmoys and Swamy [114]).
We do not have such an algorithm for Steiner tree, but we have a weaker type of
rounding algorithm for a monotone variant of the problem, which is sufficient in
some settings—see Section 6.8.

(c) A (β1, β2)-approximation algorithm for problem (Π), of computing g(x, y, A), given
(x, y, A) ∈ X × R+ × A. This is a new component that we need to devise, whose
design will depend on the scenario collection A and the scenario metric ` (and of
course the underlying combinatorial-optimization problem). For various problems,
we show how to obtain such an algorithm in the k-bounded setting by building upon
results known for k-max-min problems.

Theorem 3.6 then shows that, for any ε > 0, we can obtain a 4αρβ1β2(1 + ε)-approximate
solution for the discrete two-stage DRS problem (i.e., with integer first-stage and second-
stage decisions) in poly

(
I, λ, 1

ε

)
time (and hence, sample complexity).

We consider two choices for the scenario collection A: the k-bounded setting (A =
A≤k := {A ⊆ U : |A| ≤ k}), and the unrestricted setting (A = 2U). We consider two
choices for the underlying scenario metric `. For all applications, we consider the discrete
metric `disc, defined by `disc(A,A′) = 0 if A = A′, and `disc(A,A′) = 1 if A 6= A′. For
facility location and Steiner tree, we also consider the asymmetric metric `asym∞ . Recall
that for a distance function w over the ground set U , this asymmetric metric is defined by
`asym∞ (A,A′) := maxj′∈A′ w(j′, A), where w(j′, A) := minj∈Awj′j.

Table 6.1 summarizes the approximation factors that we obtain for DRS versions of a
variety of applications. For all the nonempty fields in the table, except for Steiner tree,
we are able to obtain approximation guarantees via our general framework (Theorem 3.6).
However, some of the guarantees stated in Table 6.1 are obtained by adapting the general
framework to obtain improved results by exploiting properties that hold in specific settings.

86

Also, for Steiner tree, we need to modify our approach somewhat because we do not have
a local approximation algorithm. Figure 6.1 shows the different approaches we utilize to
obtain our results.

Problem `disc `asym∞ General A, `
β=approx. for (Π)A = 2U A≤k A = 2U A≤k

Facility location 21.96 196 21.96 196 O(β)
Vertex cover 16 101.3 – – O(β)
Edge cover 12 36 – – O(β)
Set cover O(log |U |) O

(
log2 |U |

)
– – O(β log |U |)

Steiner tree 160 * 160 * *

Table 6.1: A summary of the approximation factors we obtain for various applications in
the Wasserstein setting. We have omitted the O(ε) terms that appear in the approximation
factors. The `asym∞ setting does not apply to vertex cover, edge cover, and set cover. The
approximation factor β for (Π) is the factor β1β2 in Theorem 3.6. The * entries are open
questions.

Organization of this chapter. In Section 6.1, we prove our main result for DRS opti-
mization under a Wasserstein ball (Theorem 3.6). In Section 6.2, we discuss how to obtain
an approximation algorithm for problem (Π), which is one of the ingredients required to ap-
ply our general framework. We show that this reduces to obtaining an approximation algo-
rithm for the constrained problem maxA′∈A:`(A,A′)≤µ g(x,A′), given (x, µ,A) ∈ X ×R+×A
(see Lemma 6.2). In Section 6.3, we present an alternative approach for solving DRS
problems under a Wasserstein ball in the unrestricted setting, which yields improved ap-
proximation factors. Then, each of the Sections 6.4–6.8 delves into a specific application.

6.1 Proof of Theorem 3.6

In this section, we show how Theorems 4.1 and 5.1 can be utilized to prove Theorem 3.6.
We need to do a little more work than directly combining Theorems 4.1 and 5.1, since
the latter theorems involve multiplicative + additive approximations, whereas Theorem 3.6
aims for a purely multiplicative approximation. To overcome this difficulty, we exploit
assumption (A6) to obtain a lower bound on the optimal value of minx∈P h(p̃ ;x) for every
distribution p̃, and then use this lower bound to convert the additive errors into multiplica-
tive errors.

87

discrete SAA
(Theorem 4.1)

<latexit sha1_base64="q7loOkOu9N0yWcVvBIylKcfk3ko=">AAACInicbVDLSgMxFM34rOOr6tJNsAh1U2aqoO5a3bis2Bd0SslkbtvQTGZIMkIZ+i1u/BU3LhR1Jfgxpg9BWw8EDuecy809fsyZ0o7zaS0tr6yurWc27M2t7Z3d7N5+XUWJpFCjEY9k0ycKOBNQ00xzaMYSSOhzaPiD67HfuAepWCSqehhDOyQ9wbqMEm2kTvbS86HHREpBaJAjO2CKStCA78pl7Hl2vtqHSEKIzwruie2BCH6inWzOKTgT4EXizkgOzVDpZN+9IKJJaMYpJ0q1XCfW7ZRIzSiHke0lCmJCB6QHLUMFCUG108mJI3xslAB3I2me0Hii/p5ISajUMPRNMiS6r+a9sfif10p096KdMhEnGgSdLuomHOsIj/vCAZNANR8aQqhk5q+Y9okk1HSgbFOCO3/yIqkXC+5pwbkt5kpXszoy6BAdoTxy0TkqoRtUQTVE0QN6Qi/o1Xq0nq0362MaXbJmMwfoD6yvb1OIouE=</latexit>

fractional SAA
(Theorem 6.6)

<latexit sha1_base64="J4Hua4Z/sl4OCqmINcpO8GyURGI=">AAACJHicbVDLSsNAFJ3Ud3xVXboZLELdlKSCCm58bFwq2gc0oUwmN+3gZBJmJkIJ/Rg3/oobFz5w4cZvcdJW0OqBgcM553LnniDlTGnH+bBKM7Nz8wuLS/byyuraenljs6mSTFJo0IQnsh0QBZwJaGimObRTCSQOOLSC2/PCb92BVCwRN3qQgh+TnmARo0QbqVs+9gLoMZFTEBrk0I4koYVDOL4+PcWeZ1dv+pBIiPFB7WDP9kCE3+FuueLUnBHwX+JOSAVNcNktv3phQrPYjFNOlOq4Tqr9nEjNKIeh7WUKUkJvSQ86hgoSg/Lz0ZFDvGuUEEeJNE9oPFJ/TuQkVmoQByYZE91X014h/ud1Mh0d+TkTaaZB0PGiKONYJ7hoDIdMAtV8YAihkpm/YtonRU+mV9uU4E6f/Jc06zV3v+Ze1SsnZ5M6FtE22kFV5KJDdIIu0CVqIIru0SN6Ri/Wg/VkvVnv42jJmsxsoV+wPr8AE4qjzQ==</latexit>

⇧
<latexit sha1_base64="mKEacOcoBfQtxEXa13QIk3H9X+Y=">AAAB6nicbZC7SgNBFIbPeo3rLWppMxgEq7CrhTZi0MYyorlAsoTZyUkyZHZ2mZkVwpJHsLFQxFLfxd5GfBsnl0ITfxj4+P9zmHNOmAiujed9OwuLS8srq7k1d31jc2s7v7Nb1XGqGFZYLGJVD6lGwSVWDDcC64lCGoUCa2H/apTX7lFpHss7M0gwiGhX8g5n1FjrtlnmrXzBK3pjkXnwp1C4+HDPk7cvt9zKfzbbMUsjlIYJqnXD9xITZFQZzgQO3WaqMaGsT7vYsChphDrIxqMOyaF12qQTK/ukIWP3d0dGI60HUWgrI2p6ejYbmf9ljdR0zoKMyyQ1KNnko04qiInJaG/S5gqZEQMLlCluZyWsRxVlxl7HtUfwZ1eeh+px0T8pejdeoXQJE+VgHw7gCHw4hRJcQxkqwKALD/AEz45wHp0X53VSuuBMe/bgj5z3H39OkOw=</latexit>

Lemma 3.15
(+ 2nd-stage apx. alg.)

<latexit sha1_base64="/ffeOMs8Jrsy3k3HnhZ3XVgGrfo=">AAACOXicbVDLShxBFK3WxJhO1IlZZlNkDChi0z0SzFLMJossRsioMD0ZblffGQurqpuq2+LQ9G+58S/cBbLJIiFkmx+wZpyAjxwoOJxzH3VPVirpKI6/BQuLT54uPVt+Hr54ubK61nq1fuSKygrsiUIV9iQDh0oa7JEkhSelRdCZwuPs7OPUPz5H62RhvtCkxIGGsZEjKYC8NGx10wzH0tQCDaFtws+oNfDdKHnP0zTc3Oadja91SnhBtcmbZmPHEYyRQ3kRcVDjaGtalqLJ/00YttpxFM/AH5NkTtpsju6wdZ3mhai0bxcKnOsncUmDGixJobAJ08phCeLMr+17akCjG9Szyxv+zis5HxXWP0N8pt7tqEE7N9GZr9RAp+6hNxX/5/UrGn0Y1NKUFaERt4tGleJU8GmMPJcWBamJJyCs9H/l4hQsCJ+BC30IycOTH5OjTpTsRp3DTnv/YB7HMnvD3rJNlrA9ts8+sS7rMcEu2Xf2k/0KroIfwe/gz23pQjDvec3uIfh7A5hqqwU=</latexit>

Lemma 3.16
(+ local apx. alg.)

<latexit sha1_base64="bRND7w5XkyNrxaQ+PpfvFQOcFw8=">AAACJnicbVDLSgMxFM34dnxVXboJFkERhpkW1I1QdOPChYJVoVPKnfS2BpPMkGTEMvRr3PgrblwoIu78FNNawdeBwOGcc7m5J8kENzYM37yx8YnJqemZWX9ufmFxqbS8cm7SXDOss1Sk+jIBg4IrrFtuBV5mGkEmAi+S68OBf3GD2vBUndlehk0JXcU7nIF1Uqu0HyfY5apgqCzqvn+MUgKtBtEOjWN/c5uKlIGgkN0GFEQ32PJjVO2veKtUDoNwCPqXRCNSJiOctEpPcTtluXTjTIAxjSjMbLMAbTkT2Pfj3GAG7Bq62HBUgUTTLIZn9umGU9q0k2r3lKVD9ftEAdKYnkxcUoK9Mr+9gfif18htZ69ZcJXlFhX7XNTJBbUpHXRG21wjs6LnCDDN3V8puwINzHVgfFdC9Pvkv+S8EkTVoHJaKdcORnXMkDWyTjZJRHZJjRyRE1InjNyRB/JEnr1779F78V4/o2PeaGaV/ID3/gHDBaN/</latexit>

Theorem 5.1
(+ local apx. alg.)

<latexit sha1_base64="wt4NheTg5ae2y5N4hCd8JVskoR8=">AAACJ3icbVDLSgMxFM34rOOr6tJNsAiKMMwooisR3bisYFXolHInvW2DmWRIMmIZ+jdu/BU3goro0j8xrRV8HQgczjmXm3uSTHBjw/DNGxufmJyaLs34s3PzC4vlpeVzo3LNsMaUUPoyAYOCS6xZbgVeZhohTQReJFfHA//iGrXhSp7ZXoaNFDqStzkD66Rm+SBOsMNlwVBa1H3/rItKY0p3g4jGsb+xRYViIChkNwEF0Qk2/Rhl6yvfLFfCIByC/iXRiFTICNVm+TFuKZanbpwJMKYehZltFKAtZwL7fpwbzIBdQQfrjkpI0TSK4Z19uu6UFm0r7Z60dKh+nyggNaaXJi6Zgu2a395A/M+r57a93yi4zHKLkn0uaueCWkUHpdEW18is6DkCTHP3V8q6oIG5DozvSoh+n/yXnG8H0U4Qnm5XDo9GdZTIKlkjGyQie+SQnJAqqRFGbsk9eSLP3p334L14r5/RMW80s0J+wHv/AB2IpDs=</latexit>

Theorem 6.11
set cover only

<latexit sha1_base64="pIrWeNB4aCMjVMoJ/zg+i7bwxVc=">AAACI3icbVDLSgMxFM3UVx1fVZdugkVwVWYqqLgqunFZoS/olJJJb9vQTDIkGaEM/Rc3/oobF0px48J/MW1H0NYDgcM5997ce8KYM20879PJra1vbG7lt92d3b39g8LhUUPLRFGoU8mlaoVEA2cC6oYZDq1YAYlCDs1wdDfzm4+gNJOiZsYxdCIyEKzPKDFW6hZughAGTKQUhAE1cWtDkAoifFnyfRwErgaDqbQTsBR87AYgej+13ULRK3lz4FXiZ6SIMlS7hWnQkzSJbDvlROu278WmkxJlGOUwcYNEQ0zoiAygbakgEehOOr9xgs+s0sN9qewTs52s+rsjJZHW4yi0lRExQ73szcT/vHZi+tedlIk4MSDo4qN+wrGReBYY7jEF1PCxJYQqZnfFdEgUoTYD7doQ/OWTV0mjXPIvSuWHcrFym8WRRyfoFJ0jH12hCrpHVVRHFD2hF/SG3p1n59WZOh+L0pyT9RyjP3C+vgEdcaP0</latexit>

set cover (k-bounded setting)
<latexit sha1_base64="cHDcn3Jme6yMOB57ZZ1e3YYYOww=">AAACCHicbVC7TgJBFJ3FF+ILtbRwIphgIdnFQkuijSUm8khgQ2ZnLzBhdmYzM2tCCKWNv2JjoTG2foKdf+MAWyh4kklOzjk3c+8JYs60cd1vJ7Oyura+kd3MbW3v7O7l9w8aWiaKQp1KLlUrIBo4E1A3zHBoxQpIFHBoBsObqd98AKWZFPdmFIMfkb5gPUaJsVI3f6zBYCptBJeKw+J5IBMRQoitbJjon3XzBbfszoCXiZeSAkpR6+a/OqGkSQTCUE60bntubPwxUYZRDpNcJ9EQEzokfWhbKkgE2h/PDpngU6uEuCeVfWK6l1V/T4xJpPUoCmwyImagF72p+J/XTkzvyh8zEScGBJ1/1Es4NhJPW8EhU0ANH1lCqGJ2V0wHRBFqbHc5W4K3ePIyaVTK3kXZvasUqtdpHVl0hE5QCXnoElXRLaqhOqLoET2jV/TmPDkvzrvzMY9mnHTmEP2B8/kDFhGYvA==</latexit>

Steiner tree (unrestricted setting)
<latexit sha1_base64="Vr6nRWrXZxmW87bJEjiOgArDtoI=">AAACDHicbVC7TgJBFJ3FF+ILtbSZSEywIbtYaEm0scQoYAIbMjtcYMLs7GbmrgnZ8AE2/oqNhcbY+gF2/o0DbKHgSSY5Oefc3LkniKUw6LrfTm5ldW19I79Z2Nre2d0r7h80TZRoDg0eyUjfB8yAFAoaKFDCfayBhYGEVjC6mvqtB9BGROoOxzH4IRso0RecoZW6xdItgh3VFDUALSdKg0EtOEKPGkAUanBqU27FnYEuEy8jJZKh3i1+dXoRT0JQyCUzpu25Mfop0yi4hEmhkxiIGR+xAbQtVSwE46ezYyb0xCo92o+0fQrpTP09kbLQmHEY2GTIcGgWvan4n9dOsH/hp0LFCYLi80X9RFKM6LQZ2hMaOMqxJYxrYf9K+ZBpZrvQpmBL8BZPXibNasU7q7g31VLtMqsjT47IMSkTj5yTGrkmddIgnDySZ/JK3pwn58V5dz7m0ZyTzRySP3A+fwCuQpte</latexit>

Lemma 6.32
(+ restricted local apx. alg.)

collapsible setting only
<latexit sha1_base64="PudYGyXYLgw3SY5Tjn/fMkcPCV0=">AAACTXicbVDLahRBFK0ezavzGnWZTeEgJASa7glEl0E3WbiIkEkC08Nwu/pOp0g9mqrb4tDMD7oR3PkXbrJQRKyZTEATDxQczrmvOkWtpKc0/RZ1njxdWV1b34g3t7Z3drvPnl942ziBA2GVdVcFeFTS4IAkKbyqHYIuFF4WN+/m/uVHdF5ac07TGkcaKiMnUgAFadwt8wIraVqBhtDN4veoNfDj5KjP8zzeP+QOPTkpCEuurADFof6UcFBVcjCvCBcoqL0M+7hHImkqbo2axjma8n7quNtLk3QB/phkS9JjS5yNu1/z0opGh3ahwPthltY0asGRFApncd54rEHcQIXDQA1o9KN2kcaMvwpKySfWhWeIL9S/O1rQ3k91ESo10LV/6M3F/3nDhiZvRq00dUNoxN2iSaM4WT6PlpfSoSA1DQSEk+FWLq7BQQjP+TiEkD388mNy0U+yo6T/od87ebuMY53tsZdsn2XsNTthp+yMDZhgn9l39oP9jL5Et9Gv6PddaSda9rxg/6Cz9gccQbLM</latexit>

original
distribution

<latexit sha1_base64="Q3+FqBHD6N7+R76NZaO58HHYWRA=">AAACHHicbVDLSsNAFJ3UV42vqEs3wSK4Kkm70GXRjcsK9gFNKJPJTTt0MgkzE6GEfogbf8WNC0XcuBD8GydtBG29MHDuuedw554gZVQqx/kyKmvrG5tb1W1zZ3dv/8A6POrKJBMEOiRhiegHWAKjHDqKKgb9VACOAwa9YHJdzHv3ICRN+J2apuDHeMRpRAlWmhpaTS+AEeU5Aa5AzMxEUN1i5nlmqLcLGmSF0PSAhz+ioVVz6s687FXglqCGymoPrQ8vTEgWazthWMqB66TKz7FQlDCYmV4mIcVkgkcw0JDjGKSfz4+b2WeaCe0oEfpxZc/Z344cx1JO40ArY6zGcnlWkP/NBpmKLv2c8jRTwMliUZQxWyV2kZQdUgFEsakGmAiq/2qTMRaY6AykqUNwl09eBd1G3W3WndtGrXVVxlFFJ+gUnSMXXaAWukFt1EEEPaAn9IJejUfj2Xgz3hfSilF6jtGfMj6/AXzqoto=</latexit>

empirical
distribution

<latexit sha1_base64="e6rfn//4sRs9FNhHeysL+xkc/Sk=">AAACHXicbVDLSsNAFJ3UV42vqEs3wSK4KkkVdFl047KCfUATymRy0w6dTMLMRCihP+LGX3HjQhEXbsS/cdJG0NYDA4dzzuXOPUHKqFSO82VUVlbX1jeqm+bW9s7unrV/0JFJJgi0ScIS0QuwBEY5tBVVDHqpABwHDLrB+Lrwu/cgJE34nZqk4Md4yGlECVZaGljnXgBDynMCXIGYmhCnVGiXeZ4Z6vWCBlmRND3g4U9qYNWcujODvUzcktRQidbA+vDChGSxHicMS9l3nVT5ORaKEgZT08skpJiM8RD6mnIcg/Tz2XVT+0QroR0lQj+u7Jn6eyLHsZSTONDJGKuRXPQK8T+vn6no0s8pTzMFnMwXRRmzVWIXVdkhFUAUm2iCiaD6rzYZYYGJ7kCaugR38eRl0mnU3bO6c9uoNa/KOqroCB2jU+SiC9REN6iF2oigB/SEXtCr8Wg8G2/G+zxaMcqZQ/QHxuc3SQijRQ==</latexit>

deterministic
optimization

<latexit sha1_base64="EYJcVpV7FxrrRf+xyJUvkfSEmbw=">AAACIXicbVDLSsNAFJ34rPEVdekmWARXJakLuyy6cVnBPqApZTK5aYfOTMLMRKihv+LGX3HjQpHuxJ9xmlbQ1gvDHM49h3vvCVNGlfa8T2ttfWNza7u0Y+/u7R8cOkfHLZVkkkCTJCyRnRArYFRAU1PNoJNKwDxk0A5HN7N++wGkoom41+MUehwPBI0pwdpQfacWhDCgIicgNMiJHYH5OBVmMiVBYCepppw+Fmo7ABH9KPtO2at4RbmrwF+AMlpUo+9MgyghGTd2wrBSXd9LdS/H0gxiMLGDTEGKyQgPoGugwBxULy8unLjnhoncOJHmCe0W7G9HjrlSYx4aJcd6qJZ7M/K/XjfTca2XU5FmGgSZD4oz5urEncXlRlQC0WxsACaSml1dMsQSE5OBsk0I/vLJq6BVrfiXFe+uWq5fL+IooVN0hi6Qj65QHd2iBmoigp7QC3pD79az9Wp9WNO5dM1aeE7Qn7K+vgHoOKUy</latexit>

DRSOW

(integer 1st- and 2nd-stage decisions)
<latexit sha1_base64="eVZ7uxa3oNk0sUm7uFSAJ0OqqFk=">AAACXnicbVDLTuMwFHXCO7wKsxmJjTXtSMyCKikLWCKYxeyGVylS06kc57a1cJzIvkFUUX6SHZrNfMo4bUC8rmTp+Jx7dOwTZVIY9P0nx11YXFpeWV3z1jc2t7YbO7s3Js01hy5PZapvI2ZACgVdFCjhNtPAkkhCL7o7q/TePWgjUnWN0wwGCRsrMRKcoaWGjTyMYCxUwUEh6NJrhQgPWPy8vPpdDov5pVeWrTD09oVdGYOmQetPrRi00gFlKqadF1LFFWmQjYHGwEWVbX54Iaj4OWbYaPptfzb0Iwhq0CT1nA8bj2Gc8jyxdi6ZMf3Az3BQMI2CSyi9MDeQMX5nM/sWKpaAGRSzekr63TIxHaXaHoV0xr52FCwxZppEdjNhODHvtYr8TOvnODoeFEJlOYLi86BRLimmtOqaxkIDRzm1gHEt7FspnzDNuO3AeLaE4P2XP4KbTjs4bAcXnebJaV3HKtkj38g+CcgROSG/yDnpEk7+Oo7jOevOP3fZ3XS356uuU3u+kDfjfv0PA5C2DA==</latexit>

integer 1st-stage
decisions<latexit sha1_base64="nMcrvX5O83DG2mYHSsv53XdWLow=">AAACL3icbVDLSgMxFM34dnxVXboJVsGNZaYudFkUxGUFq4VOLZnMbQ1mMkNyRyzD/JEbf8WNiCJu/QvTh6DWCyGHc+7JzT1hKoVBz3txpqZnZufmFxbdpeWV1bXS+salSTLNocETmehmyAxIoaCBAiU0Uw0sDiVchbcnA/3qDrQRibrAfgrtmPWU6ArO0FKd0mkQQk+onINC0IUr7NUDTXf86zxAuMfcYFHs7BtkPaBB4EbAxeA14wagom9fp1T2Kt6w6CTwx6BMxlXvlJ6CKOFZbO1cMmNavpdiO2caBZdQuEFmIGX81k5tWahYDKadD/ct6K5lItpNtD0K6ZD96chZbEw/Dm1nzPDG/NUG5H9aK8PuUTsXKs0QFB8N6maSYkIH4dFIaOAo+xYwroX9K+U3TDNuMzCuDcH/u/IkuKxW/IOKf14t147HcSyQLbJN9ohPDkmNnJE6aRBOHsgTeSVvzqPz7Lw7H6PWKWfs2SS/yvn8AtKRqiM=</latexit>

fractional 1st-stage
decisions<latexit sha1_base64="LoL6CD9jCilDRVYErznzH4RwRgQ=">AAACMnicbVBNS8QwEE39tn6tevQSXAUvLu160KPoRW8KrgrbdUnT6RpM05JMxaX0N3nxlwge9KCIV3+E6bqCXwOBx3vzZjIvzKQw6HmPzsjo2PjE5NS0OzM7N79QW1w6NWmuObR4KlN9HjIDUihooUAJ55kGloQSzsKr/Uo/uwZtRKpOsJ9BJ2E9JWLBGVqqWzsMQugJVXBQCLp0Y814pTBJ1/yLIkC4wcJgWa5tGmQ9oEHgRsBFNdC4Aajoy9qt1b2GNyj6F/hDUCfDOurW7oMo5Xli7VwyY9q+l2GnYBoFl1C6QW4gY/zKbm1bqFgCplMMTi7pumUiGqfaPoV0wH53FCwxpp+EtjNheGl+axX5n9bOMd7pFEJlOYLin4viXFJMaZUfjYQGjrJvAeNa2L9Sfsmq1GzKrg3B/33yX3DabPhbDf+4Wd/dG8YxRVbIKtkgPtkmu+SAHJEW4eSWPJBn8uLcOU/Oq/P22TriDD3L5Ec57x9tHqt2</latexit>

fractional 2nd-stage
decisions

<latexit sha1_base64="QL5/r5F1SJk2NqP6qg1Y6tfNWQ8=">AAACMnicbVBNS8QwEE39tn6tevQSXAUvLu160KPoRW8KrgrbdUnT6RpM05JMxaX0N3nxlwge9KCIV3+E6bqCXwOBx3vzZjIvzKQw6HmPzsjo2PjE5NS0OzM7N79QW1w6NWmuObR4KlN9HjIDUihooUAJ55kGloQSzsKr/Uo/uwZtRKpOsJ9BJ2E9JWLBGVqqWzsMQugJVXBQCLp0Y814pTBJ15oXRYBwg4WKynJt0yDrAQ0CNwIuqoHGDUBFX9Zure41vEHRv8AfgjoZ1lG3dh9EKc8Ta+eSGdP2vQw7BdMouITSDXIDGeNXdmvbQsUSMJ1icHJJ1y0T0TjV9imkA/a7o2CJMf0ktJ0Jw0vzW6vI/7R2jvFOpxAqyxEU/1wU55JiSqv8aCQ0cJR9CxjXwv6V8ktWpWZTdm0I/u+T/4LTZsPfavjHzfru3jCOKbJCVskG8ck22SUH5Ii0CCe35IE8kxfnznlyXp23z9YRZ+hZJj/Kef8ATBerYg==</latexit>

Q(p̊)
<latexit sha1_base64="btbrAzs34fppWRO95TnxVNb+mSs=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRahbkqigi6Lbly2YB/QhDKZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zPFjzhTY9rextLyyurZe2ihvbm3v7Jp7+20VJZLQFol4JLs+VpQzQVvAgNNuLCkOfU47/vgm9zv3VCoWiTuYxNQL8VCwgBEMWuqbhy7QB0ibWdUNMYwkE8M0zk77ZsWu2VNYi8QpSAUVaPTNL3cQkSSkAgjHSvUcOwYvxRIY4TQru4miMSZjPKQ9TQUOqfLSaf7MOtHKwAoiqZ8Aa6r+3khxqNQk9PVkHlLNe7n4n9dLILjyUibiBKggs0NBwi2IrLwMa8AkJcAnmmAimc5qkRGWmICurKxLcOa/vEjaZzXnvOY0Lyr166KOEjpCx6iKHHSJ6ugWNVALEfSIntErejOejBfj3fiYjS4Zxc4B+gPj8wd565Zj</latexit> Qfr(p̊)

<latexit sha1_base64="uptmzGO4LoEmBK88bs3zfYE3GLg=">AAACC3icbZDLSsNAFIYn9VbrLerSTWgR6qYkKuiy6MZlC/YCbSyT6aQdOpmEmROxhOzd+CpuXCji1hdw59s4abPQ1h8GPv5zDnPO70WcKbDtb6Owsrq2vlHcLG1t7+zumfsHbRXGktAWCXkoux5WlDNBW8CA024kKQ48Tjve5Dqrd+6pVCwUtzCNqBvgkWA+Ixi0NTDLfaAPkDTTu2ROvkzTaj/AMJZMjJIoPRmYFbtmz2Qtg5NDBeVqDMyv/jAkcUAFEI6V6jl2BG6CJTDCaVrqx4pGmEzwiPY0ChxQ5SazW1LrWDtDyw+lfgKsmft7IsGBUtPA053Zkmqxlpn/1Xox+JduwkQUAxVk/pEfcwtCKwvGGjJJCfCpBkwk07taZIwlJqDjK+kQnMWTl6F9WnPOak7zvFK/yuMooiNURlXkoAtURzeogVqIoEf0jF7Rm/FkvBjvxse8tWDkM4foj4zPH8ehnCI=</latexit>

Qfr(bp)
<latexit sha1_base64="N2dbjzvGZZjmI8S1GtaV/3MY/0Q=">AAACCnicbZC5TsNAEIbXnCFcBkoaQ4QUmsgGJCgjaCgTiRxSYqL1Zpyssj60OwYiyzUNr0JDAUK0PAEdb8PmKCDhl1b69M+MZuf3YsEV2va3sbC4tLyymlvLr29sbm2bO7t1FSWSQY1FIpJNjyoQPIQachTQjCXQwBPQ8AZXo3rjDqTiUXiDwxjcgPZC7nNGUVsd86CN8IBpNbtNJ+TLLCu273kX+hTTODvumAW7ZI9lzYMzhQKZqtIxv9rdiCUBhMgEVarl2DG6KZXImYAs304UxJQNaA9aGkMagHLT8SmZdaSdruVHUr8QrbH7eyKlgVLDwNOdAcW+mq2NzP9qrQT9CzflYZwghGyyyE+EhZE1ysXqcgkMxVADZZLrv1qsTyVlqNPL6xCc2ZPnoX5Sck5LTvWsUL6cxpEj++SQFIlDzkmZXJMKqRFGHskzeSVvxpPxYrwbH5PWBWM6s0f+yPj8AeSGm6Q=</latexit>

Q(bp)
<latexit sha1_base64="w/DO0g+we/Ssl1mji2p3U6Lfd1g=">AAAB/nicbVBNS8NAEN34WetXVDx5CRahXkqigh6LXjy2YD+gCWWzmbZLNx/sTtQSCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzz08EV2jb38bS8srq2npho7i5tb2za+7tN1WcSgYNFotYtn2qQPAIGshRQDuRQENfQMsf3kz81j1IxePoDkcJeCHtR7zHGUUtdc1DF+ERs/q47D7wAAYUs2R82jVLdsWewlokTk5KJEeta365QczSECJkgirVcewEvYxK5EzAuOimChLKhrQPHU0jGoLysun5Y+tEK4HVi6WuCK2p+nsio6FSo9DXnSHFgZr3JuJ/XifF3pWX8ShJESI2W9RLhYWxNcnCCrgEhmKkCWWS61stNqCSMtSJFXUIzvzLi6R5VnHOK079olS9zuMokCNyTMrEIZekSm5JjTQIIxl5Jq/kzXgyXox342PWumTkMwfkD4zPH5wvleU=</latexit>

general framework [Theorem 3.6]
<latexit sha1_base64="viziOaEYaejoHPmRke1WirWqoF0=">AAACCHicbVA9SwNBEN2LXzF+RS0tXAyCVbhLQC2DNpYR8gXnEfY2c8mSvd1jd08JIaWNf8XGQhFbf4Kd/8ZNcoUmPhh4vDfDzLww4Uwb1/12ciura+sb+c3C1vbO7l5x/6ClZaooNKnkUnVCooEzAU3DDIdOooDEIYd2OLye+u17UJpJ0TCjBIKY9AWLGCXGSt3icR8EKMJxpEgMD1INsd8YgFQQ42r5POgWS27ZnQEvEy8jJZSh3i1+3fUkTWMQhnKite+5iQnGRBlGOUwKd6mGhNAh6YNvqbBbdTCePTLBp1bp4UgqW8Lgmfp7YkxirUdxaDtjYgZ60ZuK/3l+aqLLYMxEkhoQdL4oSjk2Ek9TwT2mgBo+soRQxeytmA6IItTY7Ao2BG/x5WXSqpS9atm7rZRqV1kceXSETtAZ8tAFqqEbVEdNRNEjekav6M15cl6cd+dj3ppzsplD9AfO5w+nXJkR</latexit>

unrestricted setting [Theorem 6.5] (except Steiner tree)
<latexit sha1_base64="SFKRDzGd9MsQ0QvhvjbqGJL0shA=">AAACInicbVDJSgNBEO1xjXEb9eilMQjxEmYUt5voxWPEbJAMoadTSZr09AzdNWIIfosXf8WLB0U9CX6MneWgiQ8KHu9VUVUvTKQw6Hlfztz8wuLScmYlu7q2vrHpbm1XTJxqDmUey1jXQmZACgVlFCihlmhgUSihGvauhn71DrQRsSphP4EgYh0l2oIztFLTPU+VBoNacIQWNYAoVIfWS12INUT0pHAcUJqHew4J0lsEu0ZT1AAHTTfnFbwR6CzxJyRHJig23Y9GK+ZpBAq5ZMbUfS/BYMA0Ci7hIdtIDSSM91gH6pYqFoEJBqMXH+i+VVq0HWtbCulI/T0xYJEx/Si0nRHDrpn2huJ/Xj3F9lkwECpJERQfL2qnkmJMh3nRltDAUfYtYVwLeyvlXaaZzUubrA3Bn355llQOC/5Rwb85zF1cTuLIkF2yR/LEJ6fkglyTIikTTh7JM3klb86T8+K8O5/j1jlnMrND/sD5/gE5eqNp</latexit>

Figure 6.1: The collection of problem reductions utilized by our frameworks for DRS optimization
under a Wasserstein ball. A black arrow from a problem to another indicates that an approx-
imation algorithm for the first one can be used to obtain an approximation algorithm for the
second one; the label indicates the relevant result and any additional ingredients required by the
reduction. Solid black arrows indicate general reductions; dashed black arrows indicate reductions
that apply only to special cases. The red arrow indicates the sequence of reductions utilized by
our general framework; the remaining (green, blue, and yellow) arrows indicate alternative paths
used in some applications.

88

Lemma 6.1. Suppose that we have a (β1, β2)-approximation algorithm for problem (Π).
Then in poly(I) time we can either (i) determine that x = 0 is an optimal solution for
minx∈P h(p̃ ;x) for every distribution p̃; or (ii) obtain a lower bound LB on minx∈P h(p̃ ;x)
for every distribution p̃, where log 1

LB
= poly(I).

Proof. We first show that if A contains any non-null scenario, then minx∈P h(p̃ ;x) ≥ r
`max

for every distribution p̃; otherwise x = 0 is an optimal solution for minx∈P h(p̃ ;x) for every
p̃. Recall that a null scenario is a scenario A such that g(x,A) = g(0, A) for every fractional
first-stage decision x ∈ P .

Suppose that A∗ ∈ A is a non-null scenario. For any fractional first-stage decision
x ∈ P and any distribution p̃, there is a feasible solution γ for (T(p̃, x)) that sends at least
r

`max
flow to A∗, i.e.,

∑
A∈A γA,A∗ ≥

r
`max

. It follows that z(p̃ ;x) ≥ r
`max
· g(x,A∗), and so

h(p̃ ;x) ≥ cᵀx+
r

`max

g(x,A∗) ≥ r

`max

· (cᵀx+ g(x,A∗)) ≥ r

`max

.

The second inequality follows because r ≤ `max by assumption, and the third inequality fol-
lows from assumption (A6) as A∗ is a non-null scenario. This shows that minx∈P h(p̃ ;x) ≥
r

`max
for every distribution p̃.

Now, suppose that all scenarios in A are null scenarios. Then we have g(x,A) = g(0, A)
for every x ∈ P , A ∈ A, and so z(p̃ ;x) = z(p̃ ; 0) for every x ∈ P and for every distribution
p̃. It follows that x = 0 is an optimal solution for minx∈P h(p̃ ;x) for every distribution p̃.

While we will not quite be able to determine if A contains a non-null scenario, we
can do the following. We run the (β1, β2)-approximation algorithm for problem (Π) with
input (x, y, A) = (0, 0, A), for an arbitrary scenario A ∈ A. Let A be the output obtained.
If g

(
0, A

)
< 1

β1
, then we claim that (i) holds; otherwise, we claim that (ii) holds for

LB = r
β1`max

.

We now argue that the algorithm is correct. First, suppose that g
(
0, A

)
< 1

β1
. Because

of the guarantee of the approximation algorithm for (Π), we have

g
(
0, A

)
− 0 · `

(
A,A

)
≥ max

A′∈A

{
1

β1

g(0, A′)− β2 · 0 · `(A,A′)
}
,

which reduces to g
(
0, A

)
≥ 1

β1
maxA′∈A g(0, A′). It follows that g(0, A′) ≤ β1 · g

(
0, A

)
< 1

for every scenario A′ ∈ A. This implies that all the scenarios are null, since a non-null
scenario A must satisfy cᵀ0+g(0, A′) ≥ 1. As we have shown above, when all the scenarios
are null scenarios, (i) holds.

89

Now, consider the case where g
(
0, A

)
≥ 1

β1
. We have two subcases to consider. First,

suppose that there exists a non-null scenario. Then we have shown that r
`max

is a lower
bound on minx∈P h(p̃ ;x) for every distribution p̃. Since r

`max
≥ r

β1`max
as β1 ≥ 1, it follows

that (ii) holds as claimed. The second subcase is when all the scenarios are null. As we
have shown above, this implies that x = 0 is an optimal solution for minx∈P h(p̃ ;x) for
every distribution p̃. Note that there exists a feasible solution for (T(p̃, 0)) that sends at
least r

`max
flow to A, and so

min
x∈P

h(p̃ ;x) = h(p̃ ; 0) = z(p̃ ; 0) ≥ r

`max

g
(
0, A

)
≥ r

β1`max

,

which yields (ii).

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. We first run the algorithm from Lemma 6.1 to either (i) determine
that x = 0 is an optimal solution for minx∈P h(p̃ ;x) for every distribution p̃; or (ii) obtain
a lower bound LB on minx∈P h(p̃ ;x) for every distribution p̃, where log 1

LB
= poly(I).

We claim that in either case we can obtain a 4β1β2ρ(1 + ε)-approximate solution
for (Q(p̊)) with probability at least 1−δ. We then use the second-stage α-approximation al-
gorithm to obtain integer second-stage decisions, and the theorem follows from Lemma 3.15.

In case (i), we have that x = 0 is an optimal solution of minx∈P h(p̊ ;x); since this is
a relaxation of (Q(p̊)) (and since 0 ∈ X), it follows that x̂ = 0 is an optimal solution
for (Q(p̊)).

Now, suppose that we are in case (ii). Let ε′ := ε/5, and assume without loss of
generality that ε′ ≤ 1. We let k and N be given by Theorem 4.1, with parameters
(ε′, η := ε′ · LB, δ), and construct empirical distributions p̂1, . . . , p̂k, each using N indepen-
dent samples. For each empirical distribution p̂i, we run the algorithm from Theorem 5.1
to obtain an integer first-stage decision x̂i ∈ X and an estimate f i such that

h
(
p̂ ; x̂i

)
≤ f i ≤ β1β2ρ

(
min
x∈X

h
(
p̂i ;x

)
+ η

)
≤ β1β2ρ(1 + ε′) ·min

x∈X
h
(
p̂i ;x

)
,

where the final inequality follows because

η = ε′ · LB ≤ ε′ ·min
x∈P

h
(
p̂i ;x

)
≤ ε′ ·min

x∈X
h
(
p̂i ;x

)
. (6.1)

90

Let j := argmini∈[k] f
i. By Theorem 4.1 (setting ψ = β1β2ρ(1 + ε′)), it follows that with

probability at least 1− δ we have

h
(
p̊ ; x̂j

)
≤ 4β1β2ρ(1 + ε′)2 ·min

x∈X
h(p̊ ;x) + β1β2ρ(1 + ε′)η

≤ 4β1β2ρ

(
(1 + ε′)

(
1 +

5

4
ε′
))
·min
x∈X

h(p̊ ;x)

≤ 4β1β2ρ(1 + ε) ·min
x∈X

h(p̊ ;x) ,

which proves the claim. The second step follows from (6.1), and the final step uses the fact
that ε′ = ε

5
≤ 1.

Note that the running time is poly
(
I, λ, 1

ε
, log 1

δ

)
as claimed because we solve k =

poly
(

1
ε
, log 1

δ

)
SAA problems, each with input size Î = poly(I, N) = poly

(
I, λ, 1

ε
, log 1

η
, log 1

δ

)
.

Each call to the algorithm from Theorem 5.1 takes poly
(
Î, log 1

η

)
= poly

(
I, λ, 1

ε
, log 1

δ

)

time, since log 1
η

= poly
(
I, log 1

ε

)
.

6.2 Obtaining an approximation algorithm for (Π)

Recall that in order to apply Theorem 3.6 to a DRS problem, we need to furnish an
approximation algorithm for the following problem.

Given an integer first-stage decision x ∈ X, y ≥ 0, and a scenario A ∈ A, solve(Π)

g(x, y, A) := max
A′∈A
{g(x,A′)− y · `(A,A′)} .

In this section, we show that this can be obtained via an approximation algorithm for the
constrained problem

max
A′∈A:`(A,A′)≤µ

g(x,A′) , (Φ)

given (x, µ,A) ∈ X × R+ ×A.
Lemma 6.2. Let L ⊆ R+ be a finite set containing all the pairwise scenario distances
{`(A,A′)}A,A′∈A. Let (x, y, A) ∈ P × R+ × A. For each µ ∈ L, let Aµ be a β-approximate
solution for the instance (x, µ,A) of problem (Φ), and let

µ∗ := argmaxµ∈L {g(x,Aµ)− y · `(A,Aµ)} .

91

Then we have

g(x,Aµ∗)− y · `(A,Aµ∗) ≥ max
A′∈A

{
1

β
g(x,A′)− y · `(A,A′)

}
.

Proof. For every scenario A′ ∈ A, letting µ′ := `(A,A′), we have

g(x,Aµ∗)− y · `(A,Aµ∗) ≥ g(x,Aµ′)− y · `(A,Aµ′) ≥
1

β
g(x,A′)− y · `(A,A′) .

The first inequality follows from the definition of µ∗, and the second follows from the
definition of Aµ′ .

For all applications and choices of scenario metrics ` that we consider, we can con-
struct a set L as in Lemma 6.2 with |L| = poly(I). Lemma 6.2 shows that we can
utilize a β-approximation algorithm for (Φ) to obtain a (β, 1)-approximation algorithm
for problem (Π). We remark that this reduction can be generalized to yield a (β, 1 + ε)-
approximation algorithm for problem (Π) using O

(
log1+ε

`max

`min

)
calls to an approximation

algorithm for problem (Φ), where `max is an upper bound on maxA,A′ `(A,A
′), and `min is

a positive lower bound on minA,A′:`(A,A′)>0 `(A,A
′).

6.3 Improved results in the unrestricted setting: a re-
duction from (DRSOW) to the fractional SAA prob-
lem (Qfr(p̂))

In this section, we show that for covering problems in the unrestricted setting (i.e., A = 2U),
we can improve upon our general framework (i.e., Theorem 3.6), and obtain a 4ρ(1 + ε)-
approximation using a local ρ-approximation algorithm for the underlying combinatorial-
optimization problem.

The improvement comes from two sources. First, in the unrestricted setting and for
the scenario metrics of interest, we are able to solve the fractional SAA problem (Qfr(p̂))
exactly; this will follow from Theorem 5.8, since we show that A is collapsible for these
scenario metrics (see Lemma 6.4). Second, we give a better and more direct reduction
from (DRSOW) to the fractional SAA problem (see Theorem 6.3). Given optimal solu-
tions

{
xi
}
for (Qfr(p̂)) (for p̂ = p̂1, p̂2, . . .), instead of rounding these solutions to integer

92

first-stage decisions using a local approximation algorithm, then utilizing the SAA result
of Theorem 4.1, and finally obtaining integer second-stage actions using a second-stage
rounding algorithm, we proceed as follows. We prove an analogue of Theorem 4.1 for the
fractional SAA problem showing that we can use the solutions

{
xi
}
to obtain an approxi-

mate solution for (Qfr(p̊)) (see Theorem 6.6), and then use a local approximation algorithm
to round this solution and obtain integer first-stage and second-stage decisions.

Theorem 6.3. Suppose that we have:

(1) a local ρ-approximation algorithm; and
(2) a poly

(
Î
)
-time algorithm that computes a fractional first-stage decision x ∈ P and an

estimate f such that
h(p̂ ;x) ≤ f ≤ ψ ·min

x∈P
h(p̂ ;x) .

Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes
a 4ρψ(1 + ε)-approximate solution for (DRSOW) with probability at least 1 − δ in time
poly

(
I, λ, 1

ε
, log 1

δ

)
.

Lemma 6.4. Suppose that we are in the unrestricted setting (i.e., A = 2U), and that
for every fractional first-stage decision x ∈ P and every pair of scenarios A,A′ ∈ A with
A ⊆ A′ we have g(x,A) ≤ g(x,A′). Then the collection of scenarios A is collapsible under
the discrete metric `disc and the asymmetric metric `asym∞ .

Proof. Let A ∈ A be an arbitrary scenario. If ` is the discrete metric `disc, then we set
φ(A) := {A,U}. If ` is the asymmetric metric `asym∞ , defined with respect to the metric w
over the ground set U , then we set

φ(A) := {{j ∈ U : w(j, A) ≤ µ} : µ ∈ L} ,

where L := {wjj′ : j, j′ ∈ U} is the set of all the pairwise distances over the ground set.
Note that in both settings, if we choose an arbitrary pair (x, µ) ∈ P × R+, the collection
of scenarios φ(A) contains the (unique) maximal solution A′ for the instance (x, µ,A) of
the constrained problem (Φ). By the monotonicity property of the second-stage costs
g(·, ·) imposed in the lemma statement, A′ is optimal for this instance. By Lemma 6.2,
it follows that φ(A) contains an optimal solution for maxA′∈A {g(x,A′)− y · `(A,A′)} for
every (x, y) ∈ P × R+. It follows that A is collapsible under `.

We now show that combining Theorem 6.3 with Theorem 5.8 and Lemma 6.4, we obtain
an improved 4ρ(1 + ε) approximation factor for the discrete DRS problem (DRSOW) in
the unrestricted setting, for certain choices of the scenario metric `.

93

Theorem 6.5. Suppose that we are in the unrestricted setting (i.e., A = 2U), that
the scenario metric ` is either the discrete metric `disc or the asymmetric metric `asym∞ ,
and that the second-stage costs {g(x,A′)} are given by compact LPs, say, g(x,A′) =
min

{
sA
′ · zA′ :

(
x, zA

′) ∈ F(A′)
}
. Moreover, suppose that we have a local ρ-approximation

algorithm. Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), com-
putes a 4ρ(1 + ε)-approximate solution for (DRSOW) with probability at least 1− δ in time
poly

(
I, λ, 1

ε
, log 1

δ

)
.

Proof. By Lemma 6.4, we have that A is collapsible under `. Theorem 5.8 then implies
that we can compute an optimal solution for the fractional SAA problem (Qfr(p̂)), as well
as its objective value. The result then follows from Theorem 6.3, setting ψ = 1.

In the remainder of this section, we focus on proving Theorem 6.3. We use the following
variant of Theorem 4.1, which allows translating approximate solutions for SAA problems
minx∈P h(p̂i ;x) into an approximate solution for minx∈P h(p̊ ;x).

Theorem 6.6. Let ε > 0 and δ ∈ (0, 1), and let LB > 0 be a lower bound on minx∈P h(p̃ ;x)
for every distribution p̃, with log 1

LB
= poly(I). There exist numbers k = poly

(
1
ε
, log 1

δ

)
and

N = poly
(
I, λ, 1

ε
, log 1

δ

)
such that the following holds. Let p̂1, . . . , p̂k be empirical estimates

of p̊, each constructed using N independent samples. Suppose that for each i ∈ [k] we have
a fractional first-stage decision xi ∈ P and an estimate f

i
such that

h
(
p̂i ;xi

)
≤ f

i ≤ ψ ·min
x∈P

h
(
p̂i ;x

)
,

where ψ ≥ 1. Let j := argmini∈[k] f
i
. Then with probability at least 1− δ we have

h
(
p̊ ;xj

)
≤ 4ψ(1 + ε) ·min

x∈P
h(p̊ ;x) .

Proof. The result follows by applying Theorem 4.1 to a suitable discretization of the poly-
tope P . Let ε′ := ε/9, and assume without loss of generality that ε′ ≤ 1. By Lemma 5.6, we
have that h(p̃ ; ·) is K̃-Lipschitz continuous for every distribution p̃, where K̃ := ‖c‖+K.
Recall that by assumption (A4), P contains a ball of radius Rsmall ≤ 1 and is contained in
a ball of radius Rlarge centered at the origin, with log

Rlarge
Rsmall

= poly(I). We discretize P as
in Swamy and Shmoys [123]. Let ∆ = ε′·LB·Rsmall

8K̃Rlarge
√
m
, and consider the grid

G := {x ∈ P : xi = ni∆, ni ∈ Z+ for all i ∈ [m]} .

94

(Note that Rsmall needs to be a part of the specification of the grid step size; otherwise, a
“flat” polytope P could evade the grid across arbitrarily large distances.) As shown in [123],
we have: (i) |G| ≤

(
2Rlarge

∆

)
m, and so log |G| = poly

(
I, log 1

ε

)
(since m, log K̃, log 1

LB
, and

log
Rlarge
Rsmall

are all poly(I)); and (ii) for every x ∈ P , letting φ(x) denote the point in G closest
to x in Euclidean distance, we have ‖x− φ(x)‖ ≤ ε′LB

K̃
, and hence, |h(p̃ ;x)− h(p̃ ;φ(x))| ≤

ε′LB for every distribution p̃.

Consider the two-stage DRS problem minx∈G h(p̊ ;x), and note that it satisfies prop-
erties (A1)–(A7). Properties (A2)–(A7) are directly inherited from the DRS problem
minx∈X h(p̊ ;x), so it suffices to show property (A1). Let I ′ denote the size of the in-
put of the DRS problem over the grid G, which consists of the input of the original DRS
problem over X along with the parameters ε′ and LB (which are used for determining the
grid step size ∆). Since log |G| = poly

(
I, log 1

ε

)
, we have log |G| = poly(I ′).

Let the number k of SAA problems and the number N of samples used to construct
each empirical estimate p̂i be as given by Theorem 4.1, when we apply it to the two-stage
DRS problem minx∈G h(p̊ ;x) (i.e., we take X in the theorem statement to be the grid G),
with parameters (ε′, η := ε′LB, δ). To invoke the theorem, we need to supply the required
points {x̂i} and estimates {f i}. We set x̂i := φ

(
xi
)
and f i := f

i
+ε′LB for every i ∈ [k]. We

claim that these satisfy the precondition in the statement of Theorem 4.1, with ψ = ψ+ε′.
To see this, consider any i ∈ [k]. On the one hand, we have

h
(
p̂i ; x̂i

)
≤ h

(
p̂i ;xi

)
+ ε′LB ≤ f

i
+ ε′LB = f i .

On the other hand, we have

f i = f
i
+ ε′LB ≤ ψ ·min

x∈P
h
(
p̂i ;x

)
+ ε′LB ≤

(
ψ + ε′

)
·min
x∈P

h
(
p̂i ;x

)
≤ ψ ·min

x∈G
h
(
p̂i ;x

)
.

Moreover, the index j, which is a minimizer for the estimates
{
f
i
}
i∈[k]

, is also a min-

imizer for the new estimates {f i}i∈[k]. So applying Theorem 4.1, we obtain that with
probability at least 1− δ,

h
(
p̊ ; x̂j

)
≤ 4ψ(1 + ε′) ·min

x∈G
h(p̊ ;x) + ψη

= 4ψ(1 + ε′) ·min
x∈G

h(p̊ ;x) + ψε′LB .

95

Note that
min
x∈G

h(p̊ ;x) ≤ min
x∈P

h(p̊ ;φ(x)) ≤ min
x∈P

h(p̊ ;x) + ε′LB .

Therefore, we obtain

h
(
p̊ ; x̂j

)
≤ 4ψ(1 + ε′) ·min

x∈G
h(p̊ ;x) + ψε′LB

≤ 4ψ(1 + ε′) ·min
x∈P

h(p̊ ;x) + (ψε′ + 4ψ(1 + ε′)ε′)LB

≤ 4ψ(1 + ε) ·min
x∈P

h(p̊ ;x) .

The final step follows because LB ≤ minx∈P h(p̊ ;x), and also uses ψ = ψ + ε′ ≤ ψ(1 + ε′)
and ε′ = ε

9
≤ 1.

Proof of Theorem 6.3. The proof follows very closely the structure of the proof of Theo-
rem 3.6, so we omit some details. Using Lemma 6.1, we can either find an optimal solution
x for minx∈P h(p̊ ;x), or obtain a lower bound LB on minx∈P h(p̃ ;x) for every distribution
p̃. In the latter case, given that we have a ψ-approximation algorithm for the fractional
SAA problem minx∈P h(p̂ ;x), we invoke the SAA result from Theorem 6.6 (setting ψ = ψ)
to obtain a 4ψ(1 + ε)-approximate solution x for minx∈P h(p̊ ;x). Using the local approxi-
mation algorithm to round x, we obtain a 4ρψ(1 + ε)-approximate solution for (DRSOW)
by Lemma 3.16.

6.4 DRS set cover

In two-stage DRS set cover (DRSSC), we have a collection S of subsets of a ground set U .
A scenario is a subset of U , and specifies the set of elements to be covered in that scenario.
We may buy a set S ∈ S in either stage, incurring costs of cI

S ∈ Z+ and cII
S ∈ Z+ in the

first and in the second stage respectively. For each scenario A, the sets chosen in the first
stage and in scenario A (in the second stage) must together cover A. The goal is to choose
some first-stage sets SI ⊆ S and sets SA ⊆ S in each scenario A so as to minimize

∑

S∈SI
cI
S + sup

p:L(p̊,p)≤r
EA∼p

[∑

S∈SA
cII
S

]
.

The input size I is the encoding size of
(
U,S, cI, cII, r

)
. We may assume that

⋃
S∈S S = U ,

as otherwise the problem is infeasible.

96

It is easy to see that DRSSC can be cast as an instance of (DRSO): the first-stage
decision set X and the second-stage decision set Z are X = Z = {0, 1}U ; the corresponding
sets of fractional first-stage and second-stage decisions are given by the polytopes P = Z =
[0, 1]U . The polytope specifying the feasibility conditions for a scenario A is

F(A) :=

{
(
x, zA

)
∈ P × Z :

∑

S∈S:e∈S

(
xS + zAS

)
≥ 1 ∀e ∈ A

}
.

The inflation factor λ is defined as max
{

1,maxS∈S
cIIS
cIS

}
. Note that we may assume that

cII
S = 0 if cI

S = 0 since we can always buy S (for free) in the first stage; in the above
expression for λ, we adopt the convention that 0/0 = 0.

Different scenarios could be quite unrelated, so there does not seem to be a natural
choice for a (non-discrete) scenario metric `; we therefore consider the discrete scenario
metric `disc (and so L is the 1

2
L1 metric). We can take `max := 1.

Lemma 6.7. Assumptions (A1)–(A6) hold for DRSSC. Moreover, when ` is the discrete
metric `disc, assumption (A7) holds for τ = max

{
1,
∑

S∈S c
II
S

}
.

Proof. Properties (A1)–(A5) follow from the discussion in the introduction of this chapter.

We now prove that property (A6) holds. Note that if A ∈ A is a non-null scenario,
then A contains an element e such that every set S ∈ S containing e satisfies cII

S ≥ 1, and
hence cI

S ≥ 1. Therefore, any fractional feasible solution
(
x, zA

)
for scenario A has cost

∑

S∈S

(
cI
SxS + cII

S z
A
S

)
≥

∑

S∈S:e∈S

(
cI
SxS + cII

S z
A
S

)
≥

∑

S∈S:e∈S

(
xS + zAS

)
≥ 1 .

To see that property (A7) holds, note that minA,A′:`(A,A′)>0 `(A,A
′) ≥ 1, and that

maxA∈A g(0, A) ≤
∑

S∈S c
II
S . The latter inequality follows because, given any scenario

A ∈ A, setting zAS = 1 for every set S ∈ S yields a feasible solution for scenario A
under the first-stage decision x = 0, with cost

∑
S∈S c

II
S . The result then follows from the

discussion in the introduction of this chapter.

Shmoys and Swamy [114] give a local ρ-approximation algorithm for DRSSC with
ρ = O(log |U |). Applying Theorem 6.5 immediately yields the following result in the
unrestricted setting.

97

Theorem 6.8. Consider DRSSC under a Wasserstein ball in the unrestricted setting, with
` being the discrete metric `disc. There exists a two-stage algorithm that, given ε > 0 and
δ ∈ (0, 1), computes an O((1 + ε) log |U |)-approximate solution with probability at least
1− δ in poly

(
I, λ, 1

ε
, log 1

δ

)
time.

We now consider the k-bounded setting. To apply Theorem 3.6, we need to furnish
a second-stage α-approximation algorithm; a (β1, β2)-approximation for problem (Π); and
a local ρ-approximation algorithm. We can set α = O(log |U |) using the well-known LP-
based O(log |U |)-approximation algorithm for (deterministic) set cover (see Chvátal [27]),
and Shmoys and Swamy [114] show that we can set ρ = 2α = O(log |U |). We now show
that we can set (β1, β2) = (O(log |U |), 1).

Lemma 6.9. For DRSSC in the k-bounded setting with ` being the discrete metric `disc, we
can obtain an (O(log |U |), 1)-approximation algorithm for problem (Π).

Proof. By Lemma 6.2, it suffices to obtain O(log |U |)-approximation algorithm for the
constrained problem (Φ). Consider an instance (x, µ,A) ∈ X × R+ ×A of (Φ). If µ < 1,
then the only feasible scenario is A itself, so we can solve this instance exactly. Otherwise,
all the scenarios are feasible, so the problem reduces to maxA∈A≤k g(x,A). Note that this
is equivalent to a k-max-min fractional set cover problem (i.e., the problem of finding a
scenario A ∈ A≤k so as to maximize the cost of an optimal fractional set cover of A),
where the cost of buying a set S ∈ S is set to cII

S if xS = 0, and to 0 if xS = 1. Gupta,
Nagarajan, and Ravi [60] give an O(log |U |)-approximation algorithm for k-max-min integer
set cover, wherein the goal is to choose a scenario A ∈ A≤k so as to maximize the cost
of an optimal integral set cover for A. It is implicit in their analysis that this also yields
an O(log |U |)-approximation for k-max-min fractional set cover.1 We therefore obtain a
O(log |U |)-approximation algorithm for (Φ).

We can therefore use Theorem 3.6 to obtain an approximation factor O(αβ1β2ρ) =
O
(
log3 |U |

)
for DRSSC under a 1

2
L1-ball in the k-bounded setting. By incorporating a

decoupling idea of Shmoys and Swamy [114] in our ellipsoid-based algorithm (in a manner
similar to Feige, Jain, Mahdian, and Mirrokni [46] in their work on two-stage robust set
cover), we can avoid the use of a local approximation algorithm inside the ellipsoid method,
thus obtaining an improved approximation ratio.

1See Theorem 4.2 and Claim 4.3 in [60]; Theorem 4.2 proves that the optimal fractional cost of the
set-cover instance (S,F) is at most c(Φ∗) + 12T ∗.

98

Theorem 6.10. Consider DRSSC in the k-bounded setting, with ` being the discrete metric
`disc. There exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes an
O
(
(1 + ε) log2 |U |

)
-approximate solution with probability at least 1−δ in poly

(
I, λ, 1

ε
, log 1

δ

)

time.

The key ingredient for proving Theorem 6.10 is the following result, which can be seen
as a variant of Theorem 5.1. Whereas Theorem 5.1 shows that in general one can obtain an
approximation algorithm for an SAA problem minx∈X h(p̂ ;x) by using an approximation
algorithm for problem (Π) and a local approximation rounding algorithm, the result below
shows that, for set cover, we can obtain an approximation algorithm for the SAA problem
minx∈P h(p̂ ;x) (with fractional first-stage decisions) using only an approximation algorithm
for problem (Π).

Theorem 6.11. Consider a DRSSC problem minx∈P h(p̂ ;x), where the distribution p̂ is
given explicitly. Let Î denote the input size of this problem. Suppose that we have a
(β1, β2)-approximation algorithm for problem (Π). Then, given η > 0, we can compute in
poly

(
Î, log 1

η

)
time a fractional first-stage decision x ∈ P and an estimate f such that

h(p̂ ;x) ≤ f ≤ 2β1β2

(
min
x∈P

h(p̂ ;x) + η

)
.

We now show how Theorem 6.11 can be used to obtain Theorem 6.10.

Proof of Theorem 6.10. The proof follows very closely the structure of the proof of Theo-
rem 3.6, so we omit some details. Using Lemma 6.1, we can either find an optimal solution
x for minx∈P h(p̊ ;x), or obtain a lower bound LB on minx∈P h(p̃ ;x) for every distribu-
tion p̃. In the latter case, Theorem 6.11 (setting η = εLB and (β1, β2) = (O(log |U |), 1),
using Lemma 6.9) yields an O((1 + ε) log |U |)-approximation algorithm for the fractional
SAA problem minx∈P h(p̂ ;x). We can then invoke the SAA result from Theorem 6.6 to
obtain an O((1 + ε) log |U |)-approximate solution x for minx∈P h(p̊ ;x). Using the local
O(log |U |)-approximation algorithm from Shmoys and Swamy [114] to round x, we obtain
an O

(
(1 + ε) log2 |U |

)
-approximate solution for (DRSOW) by Lemma 3.16.

In the remainder of this section, we explain how to obtain Theorem 6.11. Let us
consider an instance

(
U,S, cI, cII, r

)
of DRSSC. The improvement comes from a better way

of generating a cut passing through the center x ∈ P of the current ellipsoid. Instead
of using a local ρ-approximation algorithm to round x to an integer first-stage decision

99

x̂ ∈ X, then using an approximation algorithm for (Π) at x̂ to generate a suitable cut
at x (as we did in Lemma 5.2 for the general framework), we do the following. Let
Sx :=

{
e ∈ U :

∑
S∈S:e∈S xS ≥ 1/2

}
be the set of elements covered to an extent of at least

1/2 by the sets (fractionally) bought in the first stage under the decision x. Since elements
in Sx are mostly covered by x, and the remaining elements are mostly uncovered, intuitively
only these remaining elements should matter. Indeed, we argue that approximate solutions
to

max
A′∈A
{g(0, A′ \ Sx)− y · `(A,A′)}

(for different values of y and A) can be used to obtain a suitable cut at x. Note that this
problem can be cast as g(0, y, A) for a modified instance where we add Sx to our set system
S, with costs cI

Sx
= cII

Sx
= 0. Thus, we avoid the ρ-factor loss that was incurred in the

ellipsoid-based method due to the use of the local approximation algorithm.

Consider the following LP:

max
∑

A,A′

γA,A′g(0, A′ \ Sx) (Wx)

s.t.
∑

A′

γA,A′ ≤ p̂A ∀A ∈ Asup

∑

A,A′

`(A,A′)γA,A′ ≤ r

γ ≥ 0 .

We prove an analogue of Lemma 5.5 showing that one can compute an approximate
solution γ for (Wx) using an approximation algorithm for (Π) (see Lemma 6.12). Then
we prove an analogue of Lemma 5.4, showing that we can use γ to both approximate
h(p̂ ; x̃) for a related point x̃ (Lemma 6.13 (i)), and obtain a suitable cut passing through
x (Lemma 6.13 (ii)).

Lemma 6.12. Suppose that we have a (β1, β2)-approximation algorithm for problem (Π).
Then, given any x ∈ P, we can compute a β1β2-approximate solution for (Wx) in poly

(
Î
)

time.

Proof. Consider the instance of DRSSC obtained from the original instance
(
U,S, cI, cII, r

)

by adding the set Sx to S, with costs cI
Sx

= cII
Sx

= 0. Let {gnew(x,A)}x∈P,A∈A denote the
second-stage costs for this new instance of DRSSC. Note that, for every scenario A ∈ A,
we have gnew(0, A) = g(0, A \ Sx). Therefore, if we were to write the LP (T(p̂, 0)) for
this modified instance of DRSSC (i.e., (T(p̂, 0)) with g substituted by gnew), we would

100

obtain (Wx). This means that we can obtain a β1β2-approximate solution γ to (Wx) by
applying Lemma 5.5 to the modified instance (using the (β1, β2)-approximation algorithm
for (Π) given to us, also applied to the modified instance).

Lemma 6.13. Let x ∈ P and x̃ := (min {2xS, 1})S∈S . Let γ be a β-approximate solution
for (Wx). Define f := β·

(
2cᵀx+

∑
A,A′ γA,A′g(0, A′ \ Sx)

)
and d := c+

∑
A,A′ γA,A′d

x,A′\Sx.
Then we have (i) h(p̂ ; x̃) ≤ f and (ii) h(p̂ ;x) ≥ 1

2β
f for every x ∈ P such that dᵀ(x− x) ≥ 0.

Proof.

Part (i). Let γ∗ be an optimal solution for (T(p̂, x̃)). We claim that for every scenario
A′ ∈ A, we have g(x̃, A′) ≤ g(0, A′ \ Sx). Assuming this, we obtain

h(p̂ ; x̃) = cᵀx̃+
∑

A,A′

γ∗A,A′g(x̃, A′)

≤ 2cᵀx+
∑

A,A′

γ∗A,A′g(0, A′ \ Sx)

≤ 2cᵀx+ β
∑

A,A′

γA,A′g(0, A′ \ Sx)

≤ β · f .

The first inequality follows from x̃ ≤ 2x and from the claim. The second inequality follows
because γ is a β-approximate solution for (Wx). The final inequality uses the fact that
β ≥ 1.

It remains to prove the claim. Consider a scenario A′ ∈ A, and let z∗ be an optimal
fractional second-stage decision for scenario A′ \ Sx given the first-stage decision x = 0.
Since z∗ fully covers all elements of A′ \ Sx and x̃ fully covers all the elements of Sx, we
have that x̃ + z∗ fully covers A′, and so z∗ is feasible for scenario A′ given the first-stage
decision x̃; this implies that g(x̃, A′) ≤ (cost of z∗) = g(0, A′ \ Sx).

Part (ii). Consider the function ζ : x 7→ cᵀx+
∑

A,A′ γA,A′g(x,A′ \ Sx). We claim that d
is a subgradient of ζ(·) at x. Assuming this, let x ∈ P such that dᵀ(x− x) ≥ 0. We obtain

h(p̂ ;x)− ζ(x) ≥ ζ(x)− ζ(x) ≥ dᵀ(x− x) ≥ 0 .

101

The first inequality follows because γ is a feasible solution for (T(p̂, x)). The second
inequality follows because d is a subgradient of ζ(·) at x. The final inequality follows from
the definition of x. It follows that h(p̂ ;x) ≥ ζ(x).

Now, note that for every scenario A′ ∈ A, we have g(x,A′ \ Sx) ≥ 1
2
g(0, A′ \ Sx). To

see this, let z∗ be an optimal fractional second-stage solution for scenario A′ \ Sx given x
as the first-stage decision. Then z∗ covers elements of A′ \ Sx to an extent of at least 1

2
,

and so (min {2z∗S, 1})S∈S is a feasible second-stage solution for scenario A′ \ Sx given 0 as
the first-stage decision. This implies that

g(0, A′ \ Sx) ≤ (cost of (min {2z∗S, 1})S∈S) ≤ 2(cost of z∗) = 2g(x,A′ \ Sx) .

So we obtain

h(p̂ ;x) ≥ ζ(x)

= cᵀx+
∑

A,A′

γA,A′g(x,A′ \ Sx)

≥ cᵀx+
1

2

∑

A,A′

γA,A′g(0, A′ \ Sx)

=
1

2β
f .

It remains to prove the claim. For any x ∈ P , we have

ζ(x)− ζ(x) = cᵀ(x− x) +
∑

A,A′

γA,A′(g(x,A′ \ Sx)− g(x,A′ \ Sx))

≥ cᵀ(x− x) +
∑

A,A′

γA,A′d
x,A′\Sx · (x− x)

= dᵀ(x− x) ,

where the second inequality follows because dx,A′\Sx is a subgradient of g(·, A′ \ Sx) at
x.

We are now ready to prove Theorem 6.11.

Proof of Theorem 6.11. Using Lemmas 6.12 and 6.13, along with the given approximation
algorithm for problem (Π), we obtain a (2β1β2,P)-first-order oracle for h(p̂ ; ·) with running

102

time Toracle = poly
(
Î
)
. Recall that h(p̂ ; ·) is (‖c‖+K)-Lipschitz continuous by Lemma 5.6.

We can therefore obtain (x, f) with the sought guarantees via the ellipsoid-based algorithm
from Theorem 3.14.

6.5 DRS vertex cover

In two-stage DRS vertex cover (DRSVC), we are given a graph G = (V,E). A scenario is
a collection of edges A ⊆ E. We may buy a vertex v ∈ V in either stage, incurring costs
cI
v ∈ Z+ and cII

v ∈ Z+ in the first and in the second stage respectively. For each scenario A,
the vertices bought in the first stage and in scenario A (in the second stage) must together
cover A (a collection of vertices is said to cover A if it contains at least one endpoint of each
edge in A). The goal is to choose some first-stage vertices V I ⊆ V and vertices V A ⊆ V in
each scenario A so as to minimize

∑

v∈V I

cI
v + sup

p:L(p̊,p)≤r
EA∼p

[∑

v∈V A
cII
v

]
.

The input size I is defined as the encoding size of
(
V,E, cI, cII, r

)
.

Note that DRSVC can be seen as a special case of DRSSC: an instance
(
V,E, cI, cII, r

)

of DRSVC is equivalent to an instance of DRSSC with ground set U := E, and with a
collection of sets S := {Sv : v ∈ V }, where for each vertex v ∈ V the set Sv consists
of the edges incident with v, and has costs cI

v and cII
v in the first and in the second stage

respectively. It is therefore clear that we can use (DRSO) to model DRSVC, while satisfying
assumptions (A1)–(A7) (see Lemma 6.7). We again consider ` to be the discrete scenario
metric `disc (and so L is the 1

2
L1 metric), and take `max := 1.

The following lemma gives the ingredients we use to obtain our results in the unre-
stricted and in the k-bounded setting.

Lemma 6.14. We have the following algorithms for DRSVC:

(i) a second-stage 2-approximation algorithm;

(ii) a
(

2e
e−1

, 1
)
-approximation for problem (Π) in the k-bounded setting, with ` being the

discrete scenario metric `disc; and

(iii) a local 4-approximation algorithm.

103

Proof.

Part (i). Consider an integer first-stage decision x̂ ∈ X and a scenario A ⊆ E. Note
that g(x̂, A) is the minimum cost of a fractional vertex cover of the graph G′ obtained from
(V,A) by deleting the edges that are covered by vertices v with x̂Sv = 1 (where the cost
of a vertex v is cII

v). We can therefore compute an integer vertex cover for G′ with cost
at most 2g(x̂, A) (see, e.g., Section 1.3 of Williamson and Shmoys [129]), which induces a
suitable integer second-stage decision ẑA.

Part (ii). We show how to obtain a 2e
e−1

-approximation algorithm for problem (Φ). The
result then follows from Lemma 6.2.

Consider an instance (x̂, µ, A) ∈ X × R+ × A of (Φ). If µ < 1, then A is the unique
feasible solution for (Φ), so we are done. Otherwise, (Φ) reduces to maxA∈A≤k g(x̂, A),
a problem for which Feige, Jain, Mahdian, and Mirrokni [46] give a 2e

e−1
-approximation

algorithm.

Part (iii). This follows from part (i) and Theorem 2.1 in Shmoys and Swamy [114],
which shows that one can convert a second-stage α-approximation algorithm into a local
2α-approximation algorithm for set cover (and in particular for vertex cover).

We obtain the following results for DRSVC.

Theorem 6.15. Consider DRSVC under a Wasserstein ball, with ` being the discrete metric
`disc. There exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a
ψ-approximate solution with probability at least 1 − δ in poly

(
I, λ, 1

ε
, log 1

δ

)
time, where

ψ = 16 + O(ε) in the unrestricted setting and ψ = 101.3 + O(ε) in the k-bounded setting.

Proof. The result for the unrestricted setting follows from Theorem 6.5, setting ρ = 4 (using
the local approximation algorithm from Lemma 6.14-(iii)). The result for the k-bounded
setting follows from Theorem 3.6, setting α = 2, (β1, β2) =

(
2e
e−1

, 1
)
, and ρ = 4 (using the

algorithms from Lemma 6.14-(i), Lemma 6.14-(ii), and Lemma 6.14-(iii) respectively).

6.6 DRS edge cover

In two-stage DRS edge cover (DRSEC), we are given a graph G = (V,E). A scenario is a
collection of vertices A ⊆ V . We may buy an edge e ∈ E in either stage, incurring costs

104

cI
e ∈ Z+ and cII

e ∈ Z+ in the first and in the second stage respectively. For each scenario A,
the edges bought in the first stage and in scenario A (in the second stage) must together
cover A (a collection of edges is said to cover A if it contains at least one edge incident
with each vertex in A). The goal is to choose some first-stage edges EI ⊆ E and edges
EA ⊆ E in each scenario A so as to minimize

∑

e∈EI

cI
e + sup

p:L(p̊,p)≤r
EA∼p

[∑

e∈EA
cII
e

]
.

The input size I is defined as the encoding size of
(
V,E, cI, cII, r

)
.

Note that DRSEC can be seen as a special case of DRSSC: an instance
(
V,E, cI, cII, r

)
of

DRSEC is equivalent to an instance of DRSSC with ground set U := V , and with a collection
of sets S := {Se := {u, v}}e=uv∈E; for each edge e ∈ E, the first-stage and second-stage cost
of the corresponding set are defined as cI

Se
:= cI

e and cII
Se

:= cII
e respectively. It is therefore

clear that we can use (DRSO) to model DRSEC, while satisfying assumptions (A1)–(A7)
(see Lemma 6.7). We again consider ` to be the discrete scenario metric `disc (and so L is
the 1

2
L1 metric), and take `max := 1.

The following lemma gives the ingredients we use to obtain our results in the unre-
stricted and in the k-bounded setting.

Lemma 6.16. We have the following algorithms for DRSEC:

(i) a second-stage 3
2
-approximation algorithm;

(ii) a (2, 1)-approximation for problem (Π) in the k-bounded setting, with ` being the
discrete scenario metric `disc; and

(iii) a local 3-approximation algorithm.

Proof.

Part (i). Consider an integer first-stage decision x̂ and a scenario A ⊆ V . Note that
g(x̂, A) is the minimum cost of a fractional edge cover of A if we set the cost of each edge
e ∈ E to cII

e if x̂e = 0, and to 0 if x̂e = 1. It is well known that we can compute an
edge cover of A of cost at most 3

2
g(x̂, A), which induces a suitable integer second-stage

decision ẑA (more generally, for an instance of set cover where each set contains at most f
elements, one can compute an integer set cover whose cost is at most 1 + 1

2
+ · · ·+ 1

f
times

the minimum cost of a fractional set cover—see Chvátal [27]).

105

Part (ii). We show how to obtain a 2-approximation algorithm for the constrained prob-
lem (Φ). The result then follows from Lemma 6.2.

Consider an instance (x̂, µ, A) ∈ X × R+ × A of (Φ). If µ < 1, then A is the unique
feasible solution for (Φ), so we are done. Otherwise, (Φ) reduces to maxA∈A≤k g(x̂, A), a
problem for which Feige, Jain, Mahdian, and Mirrokni [46] give a 2-approximation algo-
rithm.

Part (iii). This follows from part (i) and Theorem 2.1 in Shmoys and Swamy [114],
which shows that one can convert a second-stage α-approximation algorithm into a local
2α-approximation algorithm for set cover (and in particular for edge cover).

We obtain the following results for DRSEC.

Theorem 6.17. Consider DRSEC under a Wasserstein ball, with ` being the discrete metric
`disc. There exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a
ψ-approximate solution with probability at least 1 − δ in poly

(
I, λ, 1

ε
, log 1

δ

)
time, where

ψ = 12 + O(ε) in the unrestricted setting and ψ = 36 + O(ε) in the k-bounded setting.

Proof. The result for the unrestricted setting follows from Theorem 6.5, setting ρ = 3 (using
the local approximation algorithm from Lemma 6.16-(iii)). The result for the k-bounded
setting follows from Theorem 3.6, setting α = 3, (β1, β2) = (2, 1), and ρ = 3/2 (using the
algorithms from Lemma 6.16-(i), Lemma 6.16-(ii), and Lemma 6.16-(iii) respectively).

6.7 DRS facility location

In two-stage DRS facility location (DRSFL), we have a metric space
(
F ∪ C, {wij}i,j∈F∪C

)
,

where F is a set of facilities, and C is a set of clients. We assume that wij ∈ Z+ for every
i, j ∈ F ∪C. A scenario is a subset of C indicating the set of clients that need to be served
in that scenario. (We can model integer demands by creating colocated clients.)

We may open a facility i ∈ F in either stage, incurring costs of f I
i ∈ Z+ and f II

i ∈ Z+

respectively. In scenario A, we need to assign every client j ∈ A to a facility iA(j) opened
in the first stage or in scenario A (in the second stage). The goal is to minimize

∑

i opened in stage I

f I
i + max

p:L(p̊,p)≤r
EA∼p

[∑

i opened in scenario A

f II
i +

∑

j∈A

wiA(j)j

]
.

106

The input size I is defined as the encoding size of
(
F , C, w, f I, f II, r

)
.

It is easy to see that DRSFL can be cast as an instance of (DRSO): the first-stage
decision set X and the second-stage decision set Z are X = {0, 1}F and Z = {0, 1}F∪(F×C);
the corresponding sets of fractional first-stage and second-stage decisions are given by
the polytopes P = [0, 1]F and Z = [0, 1]F∪(F×C). The polytope specifying the feasibility
conditions for a scenario A is

F(A) :=

{
(
x, zA

)
∈ P × Z :

∑

i∈F

zAij ≥ 1 ∀j ∈ A, zAij ≤ xi + zAi ∀i ∈ F , j ∈ A

}
.

The inflation factor λ is defined as max
{

1,maxi∈F
f IIi
f Ii

}
. Note that we may assume that

f I
i = 0 if f II

i = 0 since we can always open facility i (for free) in the first stage; in the above
expression for λ, we adopt the convention that 0/0 = 0.

We consider two choices for the scenario metric `: the discrete metric `disc and the
asymmetric metric `asym∞ (defined with respect to the underlying metric w). We set `max := 1
and `max := maxi,i′∈C wi,i′ in these two settings respectively.

Lemma 6.18. Assumptions (A1)–(A6) hold for DRSFL. Moreover, assumption (A7) holds
for τ = max

{
1,
∑

i∈F f
II
i +

∑
i∈F ,j∈C wij

}
when ` is the discrete metric `disc or the asym-

metric metric `asym∞ ,

Proof. Properties (A1)–(A5) follow from the discussion in the introduction of this chapter.

We now prove that property (A6) holds. Note that if A ∈ A is a non-null scenario, then
A contains a client j′ ∈ C such that f II

i + wij′ ≥ 1 for every facility i ∈ F . Therefore, for
every facility i we have f II

i ≥ 1 (and hence f I
i ≥ 1) or wij′ ≥ 1, and so min

{
f I
i , f

II
i

}
+wij′ ≥

1. Therefore, any fractional feasible solution
(
x, zA

)
for scenario A has cost

∑

i∈F

f I
ixi +

∑

i∈F

f II
i z

A
i +

∑

i∈F,j∈C

wijz
A
ij ≥

∑

i∈F

(
f I
ixi + f II

i z
A
i + wij′z

A
ij′

)

≥
∑

i∈F

(
min

{
f I
i , f

II
i

} (
xi + zAi

)
+ wij′z

A
ij′

)

≥
∑

i∈F

(
min

{
f I
i , f

II
i

}
+ wij′

)
zAij′

≥
∑

i∈F

zAij′ ≥ 1 ,

107

where the third and the fifth steps follow from the assumption that
(
x, zA

)
is feasible for

A.

To see that property (A7) holds, note that minA,A′:`(A,A′)>0 `(A,A
′) ≥ 1, and that

maxA∈A g(0, A) ≤
∑

i∈F f
II
i +

∑
i∈F ,j∈C wij. The latter inequality follows because, given

any scenario A ∈ A, by opening an arbitrary facility i′ ∈ F in the second stage and
connecting all clients of A to it, we obtain a feasible second-stage solution for A, given
x = 0 as a first-stage decision, with cost f II

i′ +
∑

j∈Awi′j ≤
∑

i∈F f
II
i +

∑
i∈F ,j∈C wij. The

result then follows from the discussion in the introduction of this chapter.

Lemma 6.19 and Theorem 6.20 give the main ingredients we use to obtain our results
for DRSFL in the unrestricted and in the k-bounded setting.

Lemma 6.19. We have the following algorithms for DRSFL:

(i) a second-stage 1.488-approximation algorithm; and

(ii) a local 5.488-approximation algorithm.

Proof.

Part (i). Consider an integer first-stage decision x̂ and a scenario A ⊆ C. Note that
g(x̂, A) is the minimum cost of a fractional solution for the (deterministic) facility-location
instance defined as follows: the set of facilities is F , the set of clients is A, the distances
are {wij}i∈F ,j∈A, and the opening cost of each facility i ∈ F is 0 if x̂i = 1, and f II

i if x̂i = 0.
We can compute an integer solution for this instance of cost at most 1.488 · g(x̂, A) using
the algorithm by Li [83]; such a solution induces a suitable integer second-stage decision
ẑA.

Part (ii). Shmoys and Swamy [114] showed that an LP-relative %-approximation for
deterministic facility location having a certain “demand-obliviousness” property, combined
with a second-stage α-approximation algorithm, can be turned into a (%+ α)-approximation
algorithm for two-stage stochastic facility location. If the %-approximation algorithm
has the property that it returns a solution where every cost component of the rounded
solution—i.e., the facility cost, and each client’s assignment cost—is at most % times the cor-
responding cost component of the fractional solution, then the resulting algorithm is a local
approximation algorithm. Using the deterministic 4-approximation algorithm of Shmoys,
Tardos, and Aardal [115] and the algorithm from part (i) gives a local ρ-approximation
with ρ = 5.488.

108

Theorem 6.20 (see proof in Section 6.7.1). Consider DRSFL in the k-bounded setting (i.e.,
A = A≤k), and suppose that ` is either the discrete scenario metric `disc or the asymmetric
metric `asym∞ . Then we have a (6, 1)-approximation for problem (Π).

We obtain the following results for DRSFL.

Theorem 6.21. Consider DRSFL under a Wasserstein ball, where the underlying scenario
metric ` is either the discrete metric `disc or the asymmetric metric `asym∞ . There exists a
two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a (ψ + O(ε))-approximate
solution with probability at least 1 − δ in poly

(
I, λ, 1

ε
, log 1

δ

)
time, where ψ = 21.96 in the

unrestricted setting, and ψ = 196 in the k-bounded setting.

Proof. The result for the unrestricted setting follows from Theorem 6.5, setting ρ = 5.488
(using the local approximation algorithm from Lemma 6.19-(ii)).

The result for the k-bounded setting follows from Theorem 3.6, setting α = 1.488,
(β1, β2) = (6, 1), and ρ = 5.488 (see Lemma 6.19-(i), Theorem 6.20, and Lemma 6.19-(ii)
respectively).

6.7.1 Proof of Theorem 6.20

In this section, we prove Theorem 6.20. We give a 6-approximation algorithm for the
constrained problem (Φ). The result then follows immediately from Lemma 6.2. Consider
an instance (x̂, µ, A) ∈ X × R+ × A of (Φ). If ` is the discrete metric and µ < 1, then
we return A, which is the only feasible solution. In every other case, we claim that we
can compute a set of clients C̃ ⊆ C such that a scenario A′ ∈ A is feasible if and only if
A′ ⊆ C̃. If ` is the discrete metric and µ ≥ 1, then we set C̃ := C. If ` is the asymmetric
metric `asym∞ , then we set C̃ := {j ∈ C : w(j, A) ≤ µ}. It follows that approximately solving
this instance of (Φ) amounts to approximately solving the k-max-min fractional facility
location problem for an underlying facility-location instance

(
F , C̃, {wij}i,j∈F∪C̃ ,

{
f̃i

}
i∈F

)
,

where f̃i := 0 if x̂i = 1, and f̃i := f II
i otherwise. We now give a 6-approximation algorithm

for this problem.

Theorem 6.22. There exists a 6-approximation algorithm for the k-max-min facility lo-
cation problem: given an instance of DRSFL, compute maxA∈A≤k g(0, A).

Khandekar, Kortsarz, Mirrokni, and Salavatipour [80] give a 10-approximation for the
version of integral k-max-min facility location where a scenario may place an arbitrary

109

number of colocated clients at a location in C (and the global number of clients is con-
strained to be at most k).2 However, in our setting, we may place at most one client at any
location in C, so the algorithm in [80] does not work for our purposes. (Clearly, our setting
is more general, since we can encode the scenario setting of [80] by creating k colocated
copies at every j ∈ C.) As noted earlier, we can model more general settings, where clients
have (integer) demands, by creating a fixed number of colocated clients at locations in C;
but, here again, we have a constraint that limits the number of colocated clients at any
j ∈ C.

We therefore need to develop new techniques to devise an approximation algorithm
for fractional k-max-min facility location. The key tool that we exploit here is that of
cost-sharing schemes. We uncover a novel connection between cost-sharing schemes and
k-max-min problems by demonstrating that one can exploit a cost-sharing scheme for
facility location having certain properties to obtain an approximation algorithm for k-
max-min {integral, fractional} facility location. Previously, cost-sharing schemes have
been exploited in the boosted-sampling approach of Gupta, Pál, Ravi, and Sinha [62] for
two-stage stochastic optimization, however to our knowledge, they have not been used
previously to tackle k-max-min problems. Our result also improves the approximation
factor for integral k-max-min facility location from 10 to 6 (see Remark 6.24).

A cost-sharing method is a function ξ : 2C×C → R+, where ξ(S, j) for j ∈ S intuitively
gives the contribution of j toward the cost incurred in satisfying the client set S (i.e.,
the cost of opening facilities and assigning clients in S to these open facilities). For sets
S, T ⊆ C, define ξ(S, T) :=

∑
j∈T ξ(S, j). Pál and Tardos [95] devised a cost-sharing

method ξ satisfying the following properties.

• ξ(S, j) = 0 if j /∈ S.

• (Competitiveness) For every S ⊆ C, we have ξ(S, S) ≤ g(0, S).

• (Cost-recovery) For every S ⊆ C, we have ξ(S, S) ≥ g(0, S)/3.

• (Cross-monotonicity) For all S1 ⊆ S2 ⊆ C and every client j ∈ C, we have ξ(S2, j) ≤
ξ(S1, j).

We will prove an additional useful property about ξ, for which we very briefly describe
how ξ is computed. For every S ⊆ C and i ∈ F , we compute a certain time t(S, i) ≥ 0.

2Since the gap between the integral and fractional optimal values for facility location is at most
α = 1.488 (see Li [83]), a β-approximation for the integral (respectively fractional) version implies an
αβ-approximation for k-max-min fractional (respectively integral) facility location.

110

The cost-share of a client j ∈ S is then defined as ξ(S, j) := mini∈F max {t(S, i), wij}. The
function t(·, ·) satisfies the following property: for every set S ⊆ C, every client j 6∈ S, and
every facility i ∈ F , we have t(S + j, i) ≤ t(S, i). Furthermore, if this inequality is strict,
then t(S + j, i) ≥ wij.

Lemma 6.23. Consider S ⊆ C and two clients j1 ∈ S and j2 6∈ J . Then ξ(S + j2, j1) ≥
min {ξ(S, j1), ξ(S + j2, j2)}.

Proof. By cross-monotonicity, we have ξ(S + j2, j1) ≤ ξ(S, j1). If this holds at equality,
then the result follows immediately. So assume otherwise. By the way in which the cost-
shares are defined, ξ(S + j2, j1) < ξ(S, j1) implies that ξ(S + j2, j1) = t(S + j2, i) for some
facility i and t(S + j2, i) < t(S, i). This implies that t(S + j2, i) ≥ wij2 , and it follows that
ξ(S + j2, j2) ≤ max {t(S + j2, i), wij2} = t(S + j2, i) = ξ(S + j2, j1).

Proof of Theorem 6.22. We may assume that k ≤ |C| (otherwise, we simply set k = |C|).
Consider the following simple greedy algorithm. Initialize t ← 0 and S0 ← ∅. For t =
1, . . . , k, we find j ← argmaxj∈C\St−1

ξ(St−1 + j, j), and set St ← St−1 ∪
{
j
}
.

Let O∗ be an optimal solution for the k-max-min problem maxA∈A≤k g(0, A). We claim
that ξ(Sk, Sk) ≥ ξ(Sk ∪O∗, Sk ∪O∗)/2. This will complete the proof since this implies
that

g(0, Sk) ≥ ξ(Sk, Sk) ≥
ξ(Sk ∪O∗, Sk ∪O∗)

2
≥ g(0, Sk ∪O∗)

6
≥ g(0, O∗)

6
, (6.2)

where the first inequality uses the competitiveness property, and the third inequality uses
the cost-recovery property.

We now prove the above claim. Suppose that Sk 6= O∗ (otherwise, the claim immedi-
ately follows). For any t ∈ [k], we show that ξ(St, j) ≥ Mt := maxj′∈C\St−1 ξ(St−1 + j′, j′)
for all j ∈ St. We prove this by induction on t. Note that Mt ≥ Mt+1 due to cross-
monotonicity, and since C \St−1 ⊇ C \St. The statement is clearly true for t = 1. Suppose
that it is true for index t, and consider index t + 1. Let j be the element added to St in
iteration t+ 1. By definition of j, we have ξ

(
St+1, j

)
= Mt+1. For every j ∈ St, we have

ξ(St+1, j) ≥ min
{
ξ(St, j), ξ

(
St+1, j

)}
≥ min {Mt,Mt+1} = Mt+1 .

The first inequality follows from Lemma 6.23. The second inequality follows from the
induction hypothesis and the fact that ξ

(
St+1, j

)
= Mt+1. Thus, for every j ∈ St+1, we

have ξ(St+1, j) ≥Mt+1. This completes the induction step.

111

Therefore, we obtain

ξ(Sk, Sk) ≥ k ·Mk

≥ k · max
j∈O∗\Sk

ξ(Sk−1 + j, j)

≥ k · max
j∈O∗\Sk

ξ(Sk ∪O∗, j)

≥ k · ξ(Sk ∪O
∗, O∗ \ Sk)

|O∗ \ Sk|
≥ ξ(Sk ∪O∗, O∗ \ Sk)
= ξ(Sk ∪O∗, Sk ∪O∗)− ξ(Sk ∪O∗, Sk)
≥ ξ(Sk ∪O∗, Sk ∪O∗)− ξ(Sk, Sk) .

The first inequality follows from the statement proved in the previous paragraph. The
second one is simply because we restricted C \ Sk−1 to O∗ \ Sk. The third one follows from
cross-monotonicity. The fourth one is because we replaced max by an average and all cost
shares are nonnegative. The fifth one is because |O∗| ≤ k. The last inequality is again due
to cross-monotonicity. We obtain ξ(Sk, Sk) ≥ ξ(Sk ∪O∗, Sk ∪O∗)/2 as claimed.

Remark 6.24. In fact Pál and Tardos [95] show a stronger form of cost recovery, namely,
that for every scenario S ⊆ C there exists an integer solution ẑS feasible for scenario S
such that ξ(S, S) ≥

(
cost of ẑS

)
/3. Modifying the proof of Theorem 6.22 by using this

stronger property in the chain of inequalities (6.2), one can also obtain a 6-approximation
algorithms for integral k-max-min facility location.

6.8 DRS Steiner tree

In two-stage DRS Steiner tree (DRSST), we are given a complete graph G = (V,E) with
metric edge costs {ce}e∈E, a root vertex s ∈ V , and an inflation factor λ ≥ 1. A scenario is
a set of vertices A ⊆ V (called terminals) specifying the nodes that need to be connected
to the root s. We may buy an edge e ∈ E in either stage, incurring costs cI

e ∈ Z+ or
cII
e = λce in the first and in the second stage respectively.3 For each scenario A, the union

3With non-uniform inflation factors for different edges, even two-stage stochastic Steiner tree becomes
at least as hard to approximate as group Steiner tree (see Ravi and Sinha [98]), which is known not to
admit an O

(
log2−ε(number of groups)

)
-approximation unless NP ⊆ ZTIME

(
npolylog(n)

)
(see Halperin and

Krauthgamer [66]).

112

of the edges F ⊆ E bought in the first stage and FA ⊆ E bought in scenario A (in the
second stage) must connect all nodes in A to s, and we want to minimize

∑

e∈F

cI
e + max

p:L(p̊,p)≤r
EA∼p

[∑

e∈FA
cII
e

]
.

An impediment for obtaining an approximation for DRSST utilizing the results we
discussed so far is that we do not have a local approximation algorithm for DRSST. There
is however a weaker type of rounding algorithm for a monotone version of DRSST (which
we refer to as MDRSST), wherein we require that for every scenario A, the set of edges
F ∪FA contain a path from each node v ∈ A to the root s consisting of a segment starting
at v comprising edges from FA, followed by a segment ending at s comprising edges from
F . A path from v to s with this property is said to be monotone. This monotonicity
property was stipulated by Dhamdhere, Goyal, Ravi, and Singh [33] and Gupta, Ravi, and
Sinha [64] in the context of two-stage {stochastic, robust} Steiner tree respectively, where
they show that imposing this condition only incurs a factor-2 loss. We now state a result
used by Dhamdhere, Goyal, Ravi, and Singh [33] to show that approximation guarantees
for two-stage robust Steiner tree can be obtained via its monotone counterpart, then we
use it to show that the same holds in the DRS setting.

Lemma 6.25 (see Lemma 4.1 in Dhamdhere, Goyal, Ravi, and Singh [33]). Let A ⊆ 2V .
Consider edge sets

(
F,
{
FA
}
A∈A

)
such that F ∪ FA contains a path from v to s for every

A ∈ A and every v ∈ A. Then there exist edge sets
(
F̃ ,
{
F̃A
}
A∈A

)
such that:

(i) F̃ ∪ F̃A contains a monotone path from v to s for every A ∈ A and every v ∈ A;

(ii)
∑

e∈F̃ c
I
e ≤ 2 ·

∑
e∈F c

I
e; and

(iii)
∑

e∈F̃A c
II
e ≤ 2 ·

∑
e∈FA c

II
e for every set A ∈ A.

Lemma 6.26. Consider an instance I of DRSST, and let Imon be the corresponding in-
stance of MDRSST. Then every ψ-approximate solution for Imon is a 2ψ-approximate
solution for I.

Proof. By applying Lemma 6.25 to an optimal solution for I (and setting A := A), we
infer that OPT(Imon) ≤ 2 ·OPT(I). Therefore, given any ψ-approximate solution for Imon,
it is also feasible for I (since I is a relaxation of Imon) and attains objective value at most
ψ ·OPT(Imon) ≤ 2ψ ·OPT(I).

113

Given Lemma 6.26 (and the absence of a local approximation algorithm for DRSST, as
mentioned above), we focus on obtaining an approximation algorithm for MDRSST. The
input size I is defined as the encoding size of

(
G, cI, s, λ, r

)
. We now show that MDRSST

can be cast as an instance of (DRSO). The set of integer first-stage decisions is set to
X := {0, 1}E, and the polytope of fractional first-stage decisions is set to P := [0, 1]E.

The representation of second-stage decisions is based on the IP formulation used by Gupta,
Ravi, and Sinha [64]. We use a vector of binary variables qA ∈ {0, 1}E to indicate the edges
bought in scenario A. For notational simplicity, we assume that s 6∈ A; clearly, this can
always be ensured without changing the problem. To encode the requirement that there is
a monotone v-s path for every v ∈ A, we bidirect the edges to obtain the set of arcs

←→
E ,

and use two vectors of binary flow variables f I,A,v, f II,A,v ∈ {0, 1}
←→
E to specify the segments

of v’s path comprising first-stage and second-stage edges respectively. For a vertex v ∈ V ,
let δin(v) (respectively δout(v)) denote the arcs of

←→
E entering (respectively leaving) v. For

an arc e ∈
←→
E , we abuse notation and use xe to denote the component of x corresponding

to the undirected version of e. We can then express the cost incurred in scenario A if we
make optimal integer second-stage decisions, given the integer first-stage decision x ∈ X,
as the optimal value of the following IP.

min
∑

e∈E

cII
e q

A
e

s.t.
∑

e∈δout(v)

(f I,A,v
e + f II,A,v

e)−
∑

e∈δin(v)

(f I,A,v
e + f II,A,v

e) ≥ 1 ∀v ∈ A (6.3)

∑

e∈δout(u)

(f I,A,v
e + f II,A,v

e) =
∑

e∈δin(u)

(f I,A,v
e + f II,A,v

e) ∀v ∈ A, u ∈ V \ {s, v}

(6.4)

f I,A,v
e ≤ xe, f II,A,v

e ≤ qAe ∀v ∈ A,∀e ∈
←→
E (6.5)

∑

e∈δin(u)

f I,A,v
e ≤

∑

e∈δout(u)

f I,A,v
e ∀v ∈ A, u ∈ V \ {s, v}

(6.6)
qAe ∈ {0, 1} ∀e ∈ E (6.7)

f I,A,v
e , f II,A,v

e ∈ {0, 1} ∀v ∈ A, e ∈
←→
E . (6.8)

114

Constraints (6.3) and (6.4) enforce that f I,A,v+f II,A,v sends one unit of flow from v to s
for every terminal v ∈ A (so it dominates a directed v s path),4 and (6.5) enforces that
this flow is supported on edges bought in the first and second stages. Constraints (6.6)
encode the monotonicity requirement on the v-s path.

To incorporate the IP formulation above into (DRSO), we set the polytope specifying
the fractional second-stage decisions to Z := [0, 1]E×(

←→
E ×V)×(

←→
E ×V). For a scenario A ⊆ V ,

the polytope F(A) is composed of the tuples
(
x,
(
qA,
{
f I,A,·
·
}
,
{
f II,A,·
·

}))
∈ P × Z that

are feasible for the LP relaxation of the IP above (wherein we replace constraints (6.7)
and (6.8) with nonnegativity constraints).

We obtain results in the unrestricted setting, and leave the k-bounded setting for future
work. We consider two choices for the scenario metric `: the discrete metric `disc and the
asymmetric metric `asym∞ (defined with respect to the underlying metric cI). We set `max := 1
and `max := maxu,v∈V c

I
u,v in these two settings respectively.

Lemma 6.27. Assumptions (A1)–(A6) hold for MDRSST. Moreover, when ` is the
discrete metric `disc or the asymmetric metric `asym∞ , assumption (A7) holds with τ =
max

{
1,
∑

e∈E c
II
e

}
.

Proof. Properties (A1)–(A5) follow from the discussion in the introduction of this chapter.

We now prove that property (A6) holds. Note that if A ∈ A is a non-null scenario,
then A contains a vertex v such that every v s path has c-cost greater than or equal
to 1. Consider any fractional feasible solution

(
x,
(
qA,
{
f I,A,·
·
}
,
{
f II,A,·
·

}))
for scenario A.

Then f I,A,v + f II,A,v sends one unit of flow from v to s, and so x+ qA dominates a convex
combination of v s paths, which implies that the total cost of this solution for scenario
A is greater than or equal to 1.

To see that property (A7) holds, note that minA,A′:`(A,A′)>0 `(A,A
′) ≥ 1, and that

maxA∈A g(0, A) ≤
∑

e∈E c
II
e . The latter inequality follows because, given any scenario

A ∈ A, by buying every edge e ∈ E in the second stage, we can obtain a feasible second-
stage solution for A, given x = 0 as a first-stage decision, of cost

∑
e∈E c

II
e . The result then

follows from the discussion in the introduction of this chapter.

While we do not have a local approximation algorithm for MDRSST (or DRSST), we
have a weaker type of rounding algorithm that resembles a local approximation algorithm.

4Constraint (6.3) is slightly modified with respect to the formulation in [62], which instead of enforcing
that the net outgoing flow from any terminal is at least 1, only enforces that the outgoing flow is at least
1.

115

Definition 6.28. A restricted local ρ-approximation algorithm is an algorithm that takes as
input a fractional first-stage decision x ∈ P and a collection of scenarios A, and computes
in poly

(
I,
∣∣A
∣∣) time an integer first-stage decision x̂ ∈ X and integer second-stage decisions{

ẑA
}
A∈A such that:

(i)
(
x̂, ẑA

)
is feasible for scenario A, for every A ∈ A;

(ii) cᵀx̂ ≤ ρ · cᵀx; and

(iii) (cost of ẑA) ≤ ρ · g(x,A) for every scenario A ∈ A.

To see that this is indeed a weaker type of rounding algorithm, note that a local
ρ-approximation algorithm (AlgI,AlgII) immediately yields a restricted ρ-approximation
algorithm: given an instance

(
x,A

)
∈ P×2U , it suffices to run AlgI with input x, then run

AlgII for each of the scenarios in A. Gupta, Ravi, and Sinha [64] presented a restricted local
20-approximation algorithm for MDRSST, and Gupta [65] improved the approximation
factor to 10.

Recall from Definition 5.7 that we say that the scenario collection A is collapsible under
a scenario metric ` if given any scenario A ∈ A, we can compute in poly(I) time a collection
of scenarios φ(A) ⊆ A such that for every fractional first-stage decision x ∈ P and every
y ≥ 0, we have

g(x, y, A) = max
A′∈φ(A)

{g(x,A′)− y · `(A,A′)} .

We show that in the collapsible setting, a restricted local approximation algorithm and
a second-stage approximation suffice to obtain an approximation algorithm for the DRS
problem (DRSOW) (see Theorem 6.29). Instantiating this result for Steiner tree yields
approximation algorithms for DRSST in the unrestricted setting, when ` is the discrete
metric `disc or the asymmetric `asym∞ (see Theorem 6.31).

Theorem 6.29 (see proof in Section 6.8.1). Consider a generic DRS problem under a
Wasserstein ball (DRSOW) satisfying assumptions (A1)–(A7). Suppose that the scenario
collection A is collapsible under the scenario metric `, and that the second-stage costs
{g(x,A′)} are given by compact LPs, say, g(x,A′) = min

{
sA
′ · zA′ :

(
x, zA

′) ∈ F(A′)
}
.

Moreover, suppose that we have:

(1) a second-stage α-approximation algorithm; and
(2) a restricted local ρ-approximation algorithm.

116

Then there exists a two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes
a 4αρ(1 + ε)-approximate solution for (DRSOW) with probability at least 1 − δ in time
poly

(
I, λ, 1

ε
, log 1

δ

)
.

Before exploiting the theorem above to obtain our main result for DRSST, we show
that we have a second-stage approximation algorithm for MDRSST.

Lemma 6.30. We have a second-stage 2-approximation algorithm for MDRSST.

Proof. Consider an integer first-stage decision x̂ ∈ X and a scenario A. Our goal is to
show that we can compute an integer second-stage decision that is feasible for scenario A
(under the first-stage decision x̂) with cost at most 2g(x̂, A).

Let T denote the vertex set of the connected component of (V, {e ∈ E : x̂e = 1}) that
contains the root s, and let G be the graph obtained from G by contracting T to a single
vertex s. One can show that a vector qA coming from an optimal solution for the LP
defining g(x̂, A) yields a feasible fractional solution for an instance of Steiner tree on G,
with root s, terminals A \ T , and edge costs given by cII. Using the primal-dual algorithm
by Agrawal, Klein, and Ravi [1], we can obtain a solution for this Steiner tree problem of
cost at most 2

∑
e∈E c

II
e q

A
e = 2g(x̂, A); this solution induces a suitable integer second-stage

decision.

We are now ready to prove our results for DRSST.

Theorem 6.31. Consider DRSST under a Wasserstein ball in the unrestricted setting,
where the underlying scenario metric ` is either the discrete metric `disc or the asymmetric
metric `asym∞ , defined relative to the underlying metric c on the vertex set V . There exists a
two-stage algorithm that, given ε > 0 and δ ∈ (0, 1), computes a (160 + O(ε))-approximate
solution with probability at least 1− δ in time poly

(
I, λ, 1

ε
, log 1

δ

)
.

Proof. Note that the scenario collectionA is collapsible under ` by Lemma 6.4. Given an in-
stance I of DRSST, we apply Theorem 6.29 to the corresponding instance Imon ofMDRSST,
with α = 2 (using the second-stage approximation algorithm from Lemma 6.30) and
ρ = 10 (using the restricted local approximation algorithm from Gupta [65]). This yields
an (80 + O(ε))-approximate solution for Imon. By Lemma 6.26, this is a (160 + O(ε))-
approximate solution for I.

117

6.8.1 Proof of Theorem 6.29

The following preliminary lemma shows that for a distribution p̂ represented explicitly,
one can utilize a restricted local approximation algorithm to efficiently convert an approx-
imate solution for minx∈P h(p̂ ;x) into an approximate solution for minx∈X h(p̂ ;x). This
can be seen as a variant of Lemma 3.16; the difference is that the conversion algorithm
from Lemma 6.32 requires a weaker type of rounding algorithm (i.e., a restricted local
approximation instead of a local approximation), and can only be performed efficiently in
the explicit-distribution setting.

Lemma 6.32. Consider a two-stage DRS problem under a Wasserstein ball (DRSOW) in
the explicit central-distribution setting, with input size Î. Suppose that (i) the scenario
collection A is collapsible under the scenario metric `; and (ii) we have a restricted local
ρ-approximation algorithm. Then, given a ψ-approximate solution for minx∈P h(p̂ ;x), we
can compute in poly

(
Î
)
time a ρψ-approximate solution for minx∈X h(p̂ ;x).

Proof. Let Asup denote the support of p̂, and let A := ∪A∈Asupφ(A), where {φ(A)} are the
scenario collections given by Definition 5.7. Note that

∣∣A
∣∣ = poly(I, |Asup|) = poly

(
Î
)
.

Let x ∈ P be a ψ-approximate solution for minx∈P h(p̂ ;x), and let x̂ ∈ X be obtained
by running the restricted local ρ-approximation algorithm, giving as input the fractional
first-stage decision x and the scenario collection A; this can be computed in poly

(
I,
∣∣A
∣∣) =

poly
(
Î
)
time.5 We claim that h(p̂ ; x̂) ≤ ρ · h(p̂ ;x); this implies that

h(p̂ ; x̂) ≤ ρψ ·min
x∈P

h(p̂ ;x) ≤ ρψ ·min
x∈X

h(p̂ ;x)

as desired. By Lemma 4.5, and by the definition of the scenario collections {φ(A)}, we
have that

h(p̂ ;x) = cᵀx+ min
y≥0

{
ry +

∑

A∈Asup

p̂A · max
A′∈φ(A)

{g(x,A′)− y · `(A,A′)}

}

5Although the restricted local approximation algorithm also returns integer second-stage decisions{
ẑA
}
A∈A, we will not use them. We use however the fact that g(x̂, A) ≤ ρ · g(x,A) for every scenario

A ∈ A, which is implied by these decisions.

118

for every fractional first-stage decision x ∈ P . Using this, we obtain

h(p̂ ; x̂) = cᵀx̂+ min
y≥0

{
ry +

∑

A∈Asup

p̂A · max
A′∈φ(A)

{g(x̂, A′)− y · `(A,A′)}

}

≤ ρ · cᵀx+ min
y≥0

{
ry +

∑

A∈Asup

p̂A · max
A′∈φ(A)

{ρ · g(x,A′)− y · `(A,A′)}

}

≤ ρ

(
cᵀx+ min

y≥0

{
ry +

∑

A∈Asup

p̂A · max
A′∈φ(A)

{g(x,A′)− y · `(A,A′)}

})

= ρ · h(p̂ ;x) ,

where the first inequality follows from the guarantees of the restricted local approximation
algorithm (since by definition φ(A) ⊆ A for every A ∈ Asup).

Proof of Theorem 6.29. The proof follows very closely the structure of the proof of The-
orem 3.6, so we omit some details. Using Lemma 6.1, we either obtain that x = 0 is
an optimal solution for minx∈P h(p̊ ;x) (and hence for minx∈X h(p̊ ;x)), or obtain a lower
bound on minx∈P h(p̃ ;x) for every distribution p̃. In the latter case, Theorem 5.8 gives an
exact algorithm for the SAA problem minx∈P h(p̂ ;x). Combining this with Lemma 6.32,
we obtain a ρ-approximation algorithm for the SAA problem minx∈X h(p̂ ;x). We can then
invoke the SAA result from Theorem 4.1 to compute a 4ρ(1 + ε)-approximate solution x
for minx∈X h(p̊ ;x). (Note that we have an exact value oracle for the SAA objective func-
tion h(p̂ ; ·); this follows because we can write z(p̂ ;x) as a compact LP, mimicking the
proof of Theorem 5.8.) We then use the second-stage approximation algorithm to obtain
second-stage decisions; by Lemma 3.15, this yields an 4αρ(1 + ε)-approximate solution
for (DRSOW).

119

Chapter 7

DRS optimization under an L∞ ball

In this chapter, we consider the discrete DRS problem under an L∞ ball

min
x∈X,z∈ZA:

(x,zA)∈F (A) ∀A∈A

{
cᵀx+ sup

p:L∞(p̊,p)≤r
EA∼p

[
cost of zA

]
}

, (DRSO∞)

where the central distribution p̊ is given by a sampling oracle. Throughout this chapter,
we assume without loss of generality that r ≤ 1 (since L∞(p̊, p) ≤ 1 for every distribution
p).

Recall that z(p̊ ;x) := maxp∈D EA∼p[g(x,A)] denotes the expected cost incurred in the
second stage if we take the fractional first-stage decision x ∈ P , and if we allow fractional
second-stage decisions. We work with the relaxation with fractional first-stage and second-
stage decisions

min
x∈P
{h(p̊ ;x) := cᵀx+ z(p̊ ;x)} . (Qfr)

Our main result in this chapter is that we can obtain an approximation algorithm for
problem (Qfr) via an algorithm for the following problem:

Given a fractional first-stage decision x ∈ P and 1 ≤ t ≤ min

{
|A| , 1

r

}
,(Υ)

find the t scenarios A ∈ A with largest g(x,A) value.

120

Theorem 7.1 (see proof in Section 7.6).
Suppose that we have a poly(I, t)-time algorithm for problem (Υ). Given ε > 0 and
δ ∈ (0, 1), we can compute a fractional first-stage decision x ∈ P such that

h(p̊ ;x) ≤ (2 + ε) ·min
x∈P

h(p̊ ;x)

with probability at least 1− δ in poly
(
I, λ, 1

r
, 1
ε
, log 1

δ

)
time.

Combining this with a local ρ-approximation algorithm yields an approximation factor
(2 + ε)ρ for the discrete DRS problem (DRSO∞) (see Theorem 3.9).

Note that when |A| is poly(I), then problem (Υ) can be trivially solved in poly(I) time.
Indeed, as is the case for DRS optimization under a Wasserstein ball (see Remark 3.7 and
Section 5.3), if (i) |A| is poly(I) and (ii) the central distribution p̊ is represented explicitly,
then the fractional relaxation of the DRS problem, minx∈P h(p̊ ;x), can again be cast as a
compact LP, and hence solved easily in polynomial time.

Organization of this chapter. In Section 7.1 we give an overview of the techniques
used to prove the theorem above; the proof is presented in Sections 7.2–7.6. In Section 7.7
we utilize Theorem 3.9 to obtain approximation algorithms for various applications.

7.1 Overview of the techniques

At a high level, our approach is as follows. We first show how to obtain a suitable con-
vex proxy function hpr(p̊ ;x) that is pointwise close to the objective function h(p̊ ;x) (see
Lemma 7.2). Instead of utilizing an SAA approach to move to an SAA version of hpr(p̊ ;x)
with a central distribution of moderate support size, show that a near-optimal solution for
the SAA problem translates to a near-optimal solution for the original problem, and finally
show how to approximately solve the SAA problem (which is again challenging and requires
the ellipsoid method, since this does not reduce to a polynomial-size LP), it is simpler to di-
rectly solve the proxy problem, minx∈P h

pr(p̊ ;x), using the approximate-subgradient based
machinery in Shmoys and Swamy [114]. We show that, if we have an algorithm for the
problem (Υ) of computing the t worst scenarios for a given fractional first-stage decision
x ∈ P , then we can compute an ω-subgradient of hpr(p̊ ; ·) at x in poly

(
I, 1

r
, λ, 1

ω

)
time (see

Lemma 7.7), and hence can directly use the ellipsoid-based approach in [114] to obtain a

121

solution x ∈ P such that

hpr(p̊ ;x) ≤ (1 + O(ε)) min
x∈P

hpr(p̊ ;x) + η .

This in turn implies that

h(p̊ ;x) ≤ (2 + O(ε)) min
x∈P

h(p̊ ;x) + η .

The algorithm from [114] also requires a bound on the Lipschitz constant of the proxy
function; we show how this can be obtained in Section 7.5. We can fold the additive
error into a multiplicative error by computing a lower bound on minx∈P h

pr(p̊ ;x) (see
Lemma 7.12).

7.2 A proxy function for h(p̊ ;x)

In this section, we introduce a proxy function for the objective function h(p̊ ;x) of prob-
lem (Qfr), and show that these two functions are pointwise close. Let p be any distribution
in the ambiguity set D (that is, p satisfies L∞(p̊, p) ≤ r), and consider a scenario A ∈ A.
Note that we must have pA ≥ max {p̊A − r, 0}. We refer to the right side of this inequality
as the blocked mass in scenario A. The remainder of the probability mass p̊A (i.e., the dif-
ference between p̊A and the blocked massed) may be moved to other scenarios, and hence
we call it the free mass in scenario A.

Separating the free mass and the blocked mass of all the scenarios, we obtain a decom-
position p̊ = p̊free + p̊blocked, where p̊blocked

A := max {p̊A − r, 0} and p̊free
A := p̊A − p̊blocked

A =
min {p̊A, r} for every scenario A ∈ A. The definition of our proxy function is based on the
following (informal) interpretation of the ambiguity set D. A distribution p belongs to D if
it can be obtained from p̊ by redistributing the free mass p̊free among the different scenarios
(while keeping the blocked mass p̊blocked steady), and ensuring that this does not increase
the total mass of any scenario by more than r. It is not hard to see that, if p ∈ D, then
we can perform this redistribution in such a way that each scenario A ∈ A only receives
free mass from other scenarios, or sends free mass to other scenarios, but not both. With
this restriction, imposing that the total mass on each scenario increases by at most r is
equivalent to imposing that it receives a mass of at most r from other scenarios. Letting
P̊ free :=

∑
A∈A p̊

free
A denote the total free mass in p̊, this motivates “decomposing” z(p̊ ;x)

as
EA∼p̊[g(x,A)] + max

q∈R

∑

A∈A

qAg(x,A) , (7.1)

122

where

R :=

{
q ∈ RA+ :

∑

A∈A

qA ≤ P̊ free, qA ≤ r ∀A ∈ A

}
.

The first term in (7.1) can be seen as the maximum contribution to z(p̊ ;x) from mass
that remains in its original scenario, whereas the second term can be seen as the maximum
contribution from mass that is redistributed.

Note however that we cannot compute P̊ free exactly, since we only have access to p̊ via
a sampling oracle. Our main result in this section is that if we have a suitable estimate
P̂ free of P̊ free, then we can use a decomposition of z(p̊ ;x) as described above (but using
P̂ free instead of P̊ free) to obtain a proxy function that is pointwise close to h(p̊ ;x).

Lemma 7.2. Let ε > 0, and let P̂ free be an estimate of P̊ free such that

P̊ free ≤ P̂ free ≤ min
{

(1 + ε)P̊ free, 1
}
.

Consider the proxy function

hpr(p̊ ;x) := cᵀx+ EA∼p̊[g(x,A)] + max
q∈R̂

∑

A∈A

qAg(x,A)

︸ ︷︷ ︸
(Wx)

,

where R̂ :=
{
q ∈ RA+ :

∑
A∈A qA ≤ P̂ free, qA ≤ r ∀A ∈ A

}
. For every fractional first-

stage decision x ∈ P, we have

h(p̊ ;x) ≤ hpr(p̊ ;x) ≤ (2 + ε) · h(p̊ ;x) .

Before proving Lemma 7.2, we need the following preliminary lemma.

Lemma 7.3. For every fractional first-stage decision x ∈ P we have

OPT(Wx) ≤ (1 + ε) · z(p̊ ;x) .

Proof. Let q∗ be an optimal solution for (Wx). We prove that there exists a distribution
q̃ ∈ D such that q̃ ≥ 1

1+ε
q∗. Assuming this, the result follows, since we obtain

z(p̊ ;x) ≥ EA∼q̃[g(x,A)] ≥ 1

1 + ε

∑

A∈A

q∗Ag(x,A) =
1

1 + ε
OPT(Wx) .

123

We give a constructive proof of the existence of q̃, via an iterative algorithm. We start
by setting q̃ := p̊blocked + 1

1+ε
q∗. We claim that

(i) q̃ ≥ 1
1+ε

q∗;

(ii) q̃A ≥ max {p̊A − r, 0} for every scenario A ∈ A; and

(iii) q̃A ≤ min {p̊A + r, 1} for every scenario A ∈ A.

Note that (i) follows immediately from the definition of q̃, as does (ii) (since q̃ ≥ p̊blocked).
To show (iii), note that for every scenario A ∈ A we have

q̃A = max {p̊A − r, 0}+
1

1 + ε
q∗A ≤ max {p̊A, r} ≤ min {p̊A + r, 1} .

The first inequality follows because q∗ ∈ R̂ implies 1
1+ε

q∗A ≤ 1
1+ε

r ≤ r.

From now on, we iteratively modify q̃ to obtain
∑

A∈A q̃A = 1, while preserving the
invariants (i)–(iii). Note that if we achieve this, then we are done: (ii), (iii), and

∑
A∈A q̃A =

1 combined imply that q̃ is a probability distribution with L∞(p̊, q̃) ≤ r and hence q̃ ∈ D.

Note that

∑

A∈A

q̃A =
∑

A∈A

(
p̊blocked
A +

1

1 + ε
q∗A

)
≤
∑

A∈A

p̊blocked
A + P̊ free = 1 ,

where the inequality follows because q∗ ∈ R̂ implies
∑

A∈A q
∗
A ≤ P̂ free ≤ (1 + ε)P̊ free. If this

inequality is tight, then we are done. Otherwise, since
∑

A∈A p̊A = 1, there must exist a
scenario A ∈ A such that q̃A < p̊A. We increase the component q̃A until one of the following
stopping conditions is reached (whichever happens first):

∑
A∈A q̃A = 1 or q̃A = p̊A + r. If

we still have
∑

A∈A q̃A < 1, then we repeat the same step with a different scenario. As each
step (except possibly the final one) decreases the number of scenarios A such that q̃A < p̊A,
this process eventually stops, and so at this moment we have

∑
A∈A q̃A = 1. Note that

these operations preserve invariants (i) and (ii), since we are only increasing components
of q̃. Invariant (iii) is also preserved due to the second stopping condition used at each
iteration.

We are now ready to prove Lemma 7.2.

124

Proof of Lemma 7.2. Let x ∈ P be fixed throughout this proof. We start by showing
the first inequality. Let q∗ := argmaxq:L∞(p̊,q)≤r EA∼q[g(x,A)], so that h(p̊ ;x) = cᵀx +
EA∼q∗ [g(x,A)]. We decompose q∗ into two vectors as follows: we write q∗ = q1 + q2, where
q1
A := min{q∗A, p̊A} and q2

A := q∗A − q1
A for every scenario A ∈ A. Next we upper bound the

contribution of each of these two vectors to the objective value h(p̊ ;x). Since q1 ≤ p̊, we
have

∑
A∈A q

1
Ag(x,A) ≤ EA∼p̊[g(x,A)]. We claim that q2 ∈ R̂. Assuming this, we obtain

h(p̊ ;x) = cᵀx+
∑

A∈A

q1
Ag(x,A) +

∑

A∈A

q2
Ag(x,A)

≤ cᵀx+ EA∼p̊[g(x,A)] + max
q∈R̂

∑

A∈A

qAg(x,A)

= hpr(p̊ ;x) .

We now prove the claim that q2 ∈ R̂. First, note that for every scenario A ∈ A we
have 0 ≤ q2

A ≤ r: if q∗A ≤ p̊A, we have q2
A = 0; otherwise we have q2

A = q∗A − p̊A, and hence
0 ≤ q2

A ≤ r since L∞(p̊, q∗) ≤ r. Furthermore, we have
∑

A∈A

q2
A =

∑

A∈A

(q∗A −min {q∗A, p̊A})

=
∑

A∈A:q∗A>p̊A

(q∗A − p̊A)

=
∑

A∈A:q∗A<p̊A

(p̊A − q∗A)

≤
∑

A∈A:q∗A<p̊A

(p̊A −max {p̊A − r, 0})

=
∑

A∈A:q∗A<p̊A

p̊free
A

≤ P̊ free

≤ P̂ free .

The third equality holds because
∑

A∈A:q∗A>p̊A

(q∗A − p̊A)−
∑

A∈A:q∗A<p̊A

(p̊A − q∗A) =
∑

A∈A

(q∗A − p̊A) = 0 ,

125

where the last step uses the fact that q∗ and p̊ are probability distributions. The first
inequality follows because L∞(p̊, q∗) ≤ r. This concludes the proof of the claim.

Now we proceed to prove the second inequality in the lemma statement. Since p̊ ∈ D,
we have z(p̊ ;x) ≥ EA∼p̊[g(x,A)]. By Lemma 7.3, we have OPT(Wx) ≤ (1 + ε) · z(p̊ ;x).
Using these two inequalities, we obtain

hpr(p̊ ;x) = cᵀx+ EA∼p̊[g(x,A)] + OPT(Wx)
≤ cᵀx+ (2 + ε)z(p̊ ;x)

≤ (2 + ε) · h(p̊ ;x) .

7.3 Estimating P̊ free

Recall that the proxy function hpr(p̊ ; ·) introduced in Section 7.2 requires a suitable esti-
mate of the total free mass P̊ free :=

∑
A∈A p̊

free
A . In this section, we present an algorithm

for computing such an estimate.

Lemma 7.4. Given ε > 0 and δ ∈ (0, 1), we can compute in poly
(
I, 1

ε
, 1
r
, log 1

δ

)
time an

estimate P̂ free of P̊ free such that with probability at least 1− δ we have

P̊ free ≤ P̂ free ≤ min
{

(1 + ε)P̊ free, 1
}
.

Before proving Lemma 7.4, we need two preliminary lemmas. We start by obtaining a
lower bound on P̊ free.

Lemma 7.5. We have P̊ free ≥ r.

Proof. If there exists a scenario A ∈ A with p̊free
A ≥ r, then we have P̊ free ≥ p̊free

A ≥ r.
Otherwise, we have P̊ free =

∑
A∈A p̊

free
A =

∑
A∈A p̊A = 1 ≥ r.

We partition the scenario collection A into a collection of frequent scenarios Afreq :=
{A ∈ A : p̊A ≥ r} and a collection of rare scenarios Arare := {A ∈ A : p̊A < r}. The lemma
below shows that, in order to obtain a suitable estimate of P̊ free, it suffices to utilize an
empirical estimate of p̂ of p̊ that is accurate enough over a superset of the frequent scenarios.

Lemma 7.6. Consider a partition A = Âfreq ∪ Ârare of the scenario collection, with
Afreq ⊆ Âfreq (and hence Ârare ⊆ Arare). Let p̂ be a probability distribution such that

126

∑
A∈Âfreq |p̂A − p̊A| ≤ 1

4
εr. Let Qfree :=

∑
A∈Âfreq min {p̂A, r} +

∑
A∈Ârare p̂A and P̂ free :=

min
{
Qfree + 1

2
εr, 1

}
. Then we have

P̊ free ≤ P̂ free ≤ min
{

(1 + ε)P̊ free, 1
}
.

Proof. We first show that the first sum in the definition of Qfree is a good estimate of the
amount of free mass in Âfreq. We have

∣∣∣∣∣∣
∑

A∈Âfreq

min {p̂A, r} −
∑

A∈Âfreq

p̊free
A

∣∣∣∣∣∣
≤

∑

A∈Âfreq

∣∣min {p̂A, r} − p̊free
A

∣∣

=
∑

A∈Âfreq

|min {p̂A, r} −min {p̊A, r}|

≤
∑

A∈Âfreq

|p̂A − p̊A|

≤ 1

4
εr ,

(7.2)

where the first step uses the triangle inequality, and the final step is by assumption.

Next we show that the second sum in the definition of Qfree is a good estimate of the
amount of free mass in Ârare. We have

∣∣∣∣∣∣
∑

A∈Ârare

p̂A −
∑

A∈Ârare

p̊free
A

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

A∈Ârare

p̂A −
∑

A∈Ârare

p̊A

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

A∈Âfreq

p̂A −
∑

A∈Âfreq

p̊A

∣∣∣∣∣∣

≤
∑

A∈Âfreq

|p̂A − p̊A|

≤ 1

4
εr ,

(7.3)

The first step follows because Ârare ⊆ Arare and p̊free
A = p̊A for all A ∈ Arare. The second

step follows because p̊ and p̂ are probability distributions and
{
Âfreq, Ârare

}
is a partition of

A. The third step follows from the triangle inequality. The final step holds by assumption.

127

Combining (7.2) and (7.3) yields
∣∣∣Qfree − P̊ free

∣∣∣ ≤ 1
2
εr. We now show that this implies

that the estimate P̂ free has the claimed guarantees. If P̂ free = 1, then we clearly have
P̂ free ≥ P̊ free; otherwise we have P̂ free = Qfree + 1

2
εr ≥ P̊ free. On the other hand, we have

P̂ free = min

{
Qfree +

1

2
εr, 1

}
≤ min

{
P̊ free + εr, 1

}
≤
{

(1 + ε)P̊ free, 1
}
,

where last step follows from Lemma 7.5.

We are now ready to prove Lemma 7.4.

Proof of Lemma 7.4. We first work toward computing a superset Âfreq of Afreq. Note that∣∣Afreq
∣∣ ≤ 1

r
, since

1 =
∑

A∈A

p̊A ≥
∑

A∈Afreq

p̊A ≥
∣∣Afreq

∣∣ · r .

Let p̂ be an empirical estimate of p̊ constructed N1 samples (we will determine the value
of N1 later). For any frequent scenario A ∈ Afreq, we can see p̂A as an empirical estimate
(computed using N1 samples) of the indicator random variable

W :=

{
1 , if A′ = A ;

0 , otherwise,

where A′ is sampled according to the distribution p̊. Note that E[W] = p̊A. By Hoeffding’s
inequality (Corollary 2.4), we can choose N1 = poly

(
1
r
2
, log 1

δr
2

)
= poly

(
1
r
, log 1

δ

)
such that

for every A ∈ Afreq we have Pr
[
|p̂A − p̊A| > r

2

]
≤ δr

2
. By the union bound, we have

with probability at least 1 −
∣∣Afreq

∣∣ δr
2
≥ 1 − δ

2
that for every A ∈ Afreq the inequality

|p̂A − p̊A| ≤ r
2
holds, and so p̂A ≥ p̊A − r

2
≥ r

2
. We set Âfreq :=

{
A : p̂A ≥ r

2

}
, so we have

Afreq ⊆ Âfreq with probability at least 1− δ
2
.

Now that we have Âfreq, we work toward obtaining another empirical estimate p̂ of p̊
using N2 independent samples (where N2 will be defined later) that is sufficiently accurate
for the scenarios in Âfreq, so that we can compute an estimate of P̊ free as in Lemma 7.6.
First, note that

∣∣∣Âfreq
∣∣∣ ≤ 2

r
, since

1 =
∑

A∈A

p̂A ≥
∑

A∈Âfreq

p̂A ≥
∣∣∣Âfreq

∣∣∣ · r
2
.

128

Using Hoeffding’s inequality (Corollary 2.4) and the union bound as above, we can choose

N2 = poly


 1

εr

4|Âfreq|
, log

1
δ

2|Âfreq|


 = poly

(
1

ε
,
1

r
, log

1

δ

)

such that with probability at least 1 −
∣∣∣Âfreq

∣∣∣ δ

2|Âfreq| = 1 − δ
2
the inequality |p̂A − p̊A| ≤

εr

4|Âfreq| holds for every A ∈ Â
freq. Adding this inequality over all scenarios A ∈ Âfreq yields

∑
A∈Âfreq |p̂A − p̊A| ≤ 1

4
εr. We can then invoke Lemma 7.6 to compute the estimate P̂ free.

The success probability is at least
(
1− δ

2

)
2 ≥ 1− δ.

7.4 Computing approximate subgradients of the proxy
function

In this section, we discuss how to compute ω-subgradients of the proxy function hpr(p̊ ; ·),
utilizing an algorithm for problem (Υ).

Lemma 7.7. Let ω > 0 and δ > 0. Suppose that we have an algorithm for problem (Υ) with
running time poly(I, t). Given any fractional first-stage decision x ∈ P, we can compute
a vector d̂ that is an ω-subgradient of the proxy function hpr(p̊ ; ·) at x with probability at
least 1− δ in poly

(
I, 1

r
, λ, 1

ω
, log 1

δ

)
time.

Part (i) of Lemma 7.8 gives an exact expression for a subgradient of hpr(p̊ ; ·) at an
arbitrary point x ∈ P . Part (ii) shows that we can compute an ω-subgradient at x if we
have (a) a vector that is componentwise close to EA∼p̊

[
dx,A

]
; and (b) an optimal solution for

(Wx). (Recall that dx,A denotes a subgradient of g(·, A) at x with −λc ≤ dx,A ≤ 0, which
we can compute efficiently by assumption (A5’).) Complementing this, Lemma 7.9 shows
that we can obtain (a) by using an empirical estimate of p̊ constructed with a suitable
number of samples, and Lemma 7.10 shows that we can obtain (b) using the algorithm
for (Υ).

Lemma 7.8. The function hpr(p̊ ; ·) is convex. Furthermore, for any fractional first stage-
decision x ∈ P, letting q∗ denote an optimal solution to (Wx), we have:

(i) the vector d := c+ EA∼p̊
[
dx,A

]
+
∑

A∈A q
∗
Ad

x,A is a subgradient of hpr(p̊ ; ·) at x; and

129

(ii) if dest ∈ Rm is a vector such that −ωc ≤ dest − EA∼p̊
[
dx,A

]
≤ 0, then d̂ := c + dest +∑

A∈A q
∗
Ad

x,A is an ω-subgradient of hpr(p̊ ; ·) at x.

Proof. Convexity of hpr(p̊ ; ·) will follow from the fact that we have a subgradient of hpr(p̊ ; ·)
at every point x ∈ P (which follows from part (i)). Note that part (i) is a special case of
part (ii) with ω = 0, so we focus on proving part (ii). For any x′ ∈ P , we have

hpr(p̊ ;x′)− hpr(p̊ ;x) ≥ cᵀ(x′ − x) + EA∼p̊[g(x′, A)− g(x,A)] +
∑

A∈A

q∗A(g(x′, A)− g(x,A))

≥ cᵀ(x′ − x) + EA∼p̊
[
dx,A · (x′ − x)

]
+
∑

A∈A

q∗Ad
x,A · (x′ − x)

≥ cᵀ(x′ − x) + dest · (x′ − x)

+
∑

A∈A

q∗Ad
x,A · (x′ − x) +

∑

e:x′e<xe

(x′e − xe)ωce

≥ d̂ᵀ(x′ − x)− ω · cᵀx
≥ d̂ᵀ(x′ − x)− ω · hpr(p̊ ;x) .

The first inequality follows since q∗ is an optimal solution for (Wx) and a feasible solution
for (Wx′). The second inequality follows since dx,A is a subgradient of g(·, A) at x for
every A ∈ A. The third inequality follows from the componentwise closeness of dest and
EA∼p̊

[
dx,A

]
. The fourth inequality follows because

∑

e:x′e<xe

(x′e − xe)ωce ≥ −ω
∑

e:x′e<xe

cexe ≥ −ω · cᵀx .

The last inequality holds because hpr(p̊ ;x) ≥ cᵀx.

Lemma 7.9. Let ω > 0 and δ ∈ (0, 1). Given any x ∈ P, we can compute in poly
(
I, λ, 1

ω
, log 1

δ

)

time a vector dest ∈ Rm that with probability at least 1− δ satisfies

−ωc ≤ dest − EA∼p̊
[
dx,A

]
≤ 0 .

Proof. We sample scenarios A1, . . . , AN from the central distribution p̊, and set d̂ :=
1
N

∑
i∈[N] d

x,Ai , where N will be determined later. Note that for each e ∈ [m], we can
view d̂e as an empirical estimate of the random variable We := dx,Ae , where A is sampled
according to p̊. Note that We lies in the range [−λce, 0], and that E[We] = EA∼p̊

[
dx,Ae

]
. By

130

Hoeffding’s inequality (Corollary 2.4), we can choose

N = poly

(
λce
ωce
2

, log
1
δ
m

)
= poly

(
I, λ, 1

ω
, log

1

δ

)

such that
Pr
[∣∣∣d̂e − EA∼p̊

[
dx,Ae

]∣∣∣ > ωce
2

]
≤ δ

m

for every e ∈ [m]. By the union bound, it follows that with probability at least 1−m δ
m

=
1− δ we have

−1

2
ωc ≤ d̂− EA∼p̊

[
dx,A

]
≤ 1

2
ωc .

We can therefore take dest := d̂− 1
2
ωc.

Lemma 7.10. Suppose that we have a poly(I, t)-time algorithm for problem (Υ). Given
any fractional first-stage decision x ∈ P, we can compute an optimal solution for (Wx) in
poly

(
I, 1

r

)
time.

Proof. We start by setting t := min
{⌈

P̂ free

r

⌉
, |A|

}
and using the algorithm for problem (Υ)

to compute the t scenarios A with largest g(x,A) value. (Throughout this proof, suppose
for simplicity that there are no ties. If there are ties, they may be broken arbitrarily.) Note
that this takes poly(I, t) = poly

(
I, 1

r

)
time. We define q∗ as follows: we set q∗A := r for all

the scenarios returned, except for the one with smallest g(x,A) value; for this one, we set
q∗A := min

{
r, P̂ free − (t− 1)r

}
. For the remaining scenarios A, we set q∗A := 0.

We now argue that q∗ is an optimal solution for (Wx). Consider the polytope 1
r
R̂ :={

1
r
q : q ∈ R̂

}
. Note that (Wx) is equivalent to the problem maxq∈ 1

r
R̂
{∑

A∈A qAg(x,A)
}

(up to scaling of the solutions), which can be seen as a fractional knapsack problem: we
have an item of value g(x,A) and weight 1 for each scenario A ∈ A; the capacity of the
knapsack is set to P̂ free

r
. The result then follows by using the well-known fact that one

can compute an optimal solution for a fractional knapsack problem in a greedy fashion, by
repeatedly picking among the available items the one with the highest value/weight ratio,
until the knapsack is full or we run out of items (see, e.g., Dantzig [28]). Computing this
solution for the fractional knapsack problem, then scaling it back by an r factor, we obtain
q∗.

Lemma 7.7 now follows easily by combining the preliminary lemmas.

131

Proof of Lemma 7.7. We start by using Lemma 7.9 to compute a vector dest such that
−ωc ≤ dest − EA∼p̊

[
dx,A

]
≤ 0 with probability at least 1 − δ. Then, we use Lemma 7.10

to compute an optimal solution q∗ for (Wx). Finally, we compute and return c + dest +∑
A∈A q

∗
Ad

x,A. By Lemma 7.8, this is an ω-subgradient of hpr(p̊ ; ·) at x, as long as the call
to the algorithm from Lemma 7.9 to compute dest was successful.

7.5 Lipschitz-continuity of the proxy function

In this section, we show how to obtain a suitable upper bound on the Lipschitz constant
of the proxy function hpr(p̊ ; ·), which will be necessary when utilizing the ellipsoid-based
method of Shmoys and Swamy [114] (Theorem 3.12) to find an approximate solution for
minx∈P h

pr(p̊ ;x).

Lemma 7.11. The proxy function hpr(p̊ ; ·) is (2λ+ 1) ‖c‖-Lipschitz continuous.

Proof. By Lemma 1.1, it suffices to show that hpr(p̊ ; ·) has a subgradient of Euclidean
norm at most (2λ+ 1) ‖c‖ at every point. Let x ∈ P , and let q∗ be an optimal solution for
(Wx). By Lemma 7.8, we have that d := c + EA∼p̊

[
dx,A

]
+
∑

A∈A q
∗
Ad

x,A is a subgradient
of hpr(p̊ ; ·) at x. We have

‖d‖ =

∥∥∥∥∥c+ EA∼p̊
[
dx,A

]
+
∑

A∈A

q∗Ad
x,A

∥∥∥∥∥ ≤ ‖c‖+
∑

A∈A

p̊A
∥∥dx,A

∥∥+
∑

A∈A

q∗A
∥∥dx,A

∥∥ ≤ (2λ+ 1) ‖c‖ .

The second step follows from the triangle inequality, and the final step follows because∥∥dx,A
∥∥ ≤ λ ‖c‖ for every A ∈ A by assumption (A5’),

∑
A∈A p̊A = 1, and

∑
A∈A q

∗
A ≤

P̂ free ≤ 1.

7.6 Proof of Theorem 7.1

We now combine our results from Sections 7.2–7.5 to prove Theorem 7.1. First, we exploit
assumption (A6) to obtain a lower bound on minx∈P h

pr(p̊ ;x); this allows us to fold the
additive error incurred when applying the ellipsoid-based method by Shmoys and Swamy
[114] (Theorem 3.12).

132

Lemma 7.12. Suppose that P̊ free ≤ P̂ free ≤ min
{

(1 + ε)P̊ free, 1
}
, and that we have a

poly(I, t)-time algorithm for problem (Υ). Then we can determine in poly(I) time that
either (i) minx∈P h

pr(p̊ ;x) ≥ r; or (ii) x = 0 is an optimal solution for minx∈P h
pr(p̊ ;x).

Proof. We first show that if A only contains null scenarios, then x = 0 is an optimal
solution for minx∈P h

pr(p̊ ;x); otherwise, we have minx∈P h
pr(p̊ ;x) ≥ r. First, suppose that

A only contains null scenarios. Then the value of EA∼p̊[g(x,A)] + maxq∈R̂
∑

A∈A qAg(x,A)
is independent of x, and so x = 0 is a minimizer of hpr(p̊ ; ·). Now, suppose that there
exists a non-null scenario A∗ ∈ A. Let q ∈ RA be defined by qA∗ := r and qA = 0 for every
other scenario A. Note that q ∈ R̂, since by Lemma 7.5 we have P̂ free ≥ P̊ free ≥ r. It
follows that for every fractional first-stage decision x ∈ P we have

hpr(p̊ ;x) ≥ cᵀx+ rg(x,A∗) ≥ r(cᵀx+ g(x,A∗)) ≥ r ,

where the second inequality follows because r ≤ 1 by assumption, and the final inequal-
ity follows from assumption (A6) since A∗ is a non-null scenario. We conclude that
minx∈P h(p̊ ;x) ≥ r.

While we will not quite be able to determine if A contains a non-null scenario, we can
do the following. First we run the algorithm for problem (Υ) with input (x, t) = (0, 1) to
compute A := argmaxA∈A g(0, A). If g

(
0, A

)
≥ 1, then we claim that (i) holds; otherwise,

we claim that (ii) holds.

We now show that the algorithm is correct. First, suppose that g
(
0, A

)
< 1. Then

for every scenario A ∈ A we have cᵀ0 + g(0, A) ≤ cᵀ0 + g
(
0, A

)
< 1. This cannot hold

for a non-null scenario A by assumption (A6), and so we conclude that A only has null
scenarios. As shown above, it follows that (ii) holds.

Now, suppose that g
(
0, A

)
≥ 1. We have already shown that (i) holds if there exists a

non-null scenario. Now, suppose that A only has null scenarios. As explained above, this
implies that x = 0 is an optimal solution for minx∈P h

pr(p̊ ;x). Let q ∈ RA be defined by
qA := r and qA = 0 for every other scenario A. Note that q ∈ R̂, since by Lemma 7.5 we
have P̂ free ≥ P̊ free ≥ r. It follows that (i) holds, since we obtain

min
x∈P

hpr(p̊ ;x) = hpr(p̊ ; 0) ≥ rg
(
0, A

)
≥ r .

Proof of Theorem 7.1. We show how to obtain a solution x ∈ P such that

h(p̊ ;x) ≤ (2 + 7ε) ·min
x∈P

h(p̊ ;x)

133

with probability at least 1 − δ (the theorem then follows by applying this weaker result
with parameter ε

7
instead of ε). Let us assume without loss of generality that ε ≤ 1.

We start by using the algorithm from Lemma 7.4 to compute an estimate P̂ free of
P̊ free, setting the failure parameter to δ

2
. Let us assume in the sequel that P̊ free ≤ P̂ free ≤

min
{

(1 + ε)P̊ free, 1
}
; this happens with probability at least 1− δ

2
.

Next, we run the algorithm from Lemma 7.12 to determine that either (i) minx∈P h
pr(p̊ ;x) ≥

r; or (ii) x = 0 is an optimal solution for minx∈P h
pr(p̊ ;x). In case (ii), we set x := 0.

Now, suppose we are in case (i). We run the variant of the ellipsoid method by Shmoys
and Swamy [114] (Theorem 3.12) with parameters

(
ε, η := εr, δ

2

)
to find an approximate

solution for the problem minx∈P h
pr(p̊ ;x), using the algorithm from Lemma 7.7 to com-

pute approximate subgradients; the Lipschitz constant is set to K̃ := (2λ+ 1) ‖c‖ (see
Lemma 7.5). Let x be the solution returned. Then with probability at least 1− δ

2
we have

hpr(p̊ ;x) ≤ (1 + ε) ·min
x∈P

hpr(p̊ ;x) + εr ≤ (1 + 2ε) ·min
x∈P

hpr(p̊ ;x) ,

where the last inequality follows because minx∈P h
pr(p̊ ;x) ≥ r. Assuming that hpr(p̊ ;x) ≤

(1 + 2ε) ·minx∈P h
pr(p̊ ;x) (which holds with probability at least 1− δ

2
in case (i), and with

probability 1 in case (ii)), we obtain

h(p̊ ;x) ≤ hpr(p̊ ;x)

≤ (1 + 2ε) ·min
x∈P

hpr(p̊ ;x)

≤ (1 + 2ε)(2 + ε) ·min
x∈P

h(p̊ ;x)

≤ (2 + 7ε) ·min
x∈P

h(p̊ ;x) .

The first and the third inequality follow from Lemma 7.2; the final inequality follows
because (1 + 2ε)(2 + ε) ≤ 2 + 7ε holds for every ε ≤ 1.

The success probability is at least
(
1− δ

2

)
2 ≥ 1 − δ. It remains to bound the running

time. The call to the algorithm from Lemma 7.12 takes poly(I) time. The call to the
algorithm from Theorem 3.12 takes

poly


I, log K̃, poly


I, 1

r
, λ,

1

ω
, log




2
(
Ñ + ñ

)

δ




, log

1

η




134

time, where Ñ :=

⌈
2m2 ln

(
16K̃R2

large
Rsmall·η

)⌉
, ñ := Ñ · ln

(
8ÑK̃Rlarge

η

)
, and ω := min{ε,1}

4ñ
. (This

is obtained by plugging in the running time of the algorithm for computing approximate
subgradients from Lemma 7.7 in the bound given by Theorem 3.12.) We now give (loose)
bounds on the terms appearing above: we have

1. log K̃ = log((2λ+ 1) ‖c‖) = poly(I, λ);

2. log 1
η

= log 1
εr

= poly
(
I, 1

ε

)
;

3. Ñ = poly
(
I, λ, 1

ε

)
(using 1 and 2, along with assumption (A4));

4. ñ = poly
(
I, λ, 1

ε

)
(using 1–3, along with assumption (A4));

5. 1
ω

= poly
(
I, λ, 1

ε

)
(using 4); and

6. log

(
2(Ñ+ñ)

δ

)
= poly

(
I, λ, 1

ε
, log 1

δ

)
(using 3 and 4).

Combining all these bounds, we conclude that the call to the ellipsoid-based method takes
poly

(
I, λ, 1

r
, 1
ε
, log 1

δ

)
time.

7.7 Applications

Recall that the problem (Υ) asks for the t scenarios A with highest g(x,A) value, given
a fractional first-stage decision x ∈ P . In this section we show that, if the underlying
problem is a covering problem, then we can solve (Υ) efficiently in the unrestricted setting
(A = 2U); see Lemma 7.13. This, combined with Theorem 3.9, leads to approximation
algorithms for DRS optimization under an L∞ ball in the unrestricted setting for various
applications. See Table 7.1 for a summary of the results, and Theorem 7.14 for the precise
statement.

Lemma 7.13. Consider the unrestricted setting (i.e., A = 2U for some ground set U).
Suppose that g(x,A) ≤ g(x,A′) for every fractional first-stage decision x ∈ P and for every
pair of scenarios (A,A′) with A ⊆ A′. Then there is an algorithm for problem (Υ) with
running time poly(I, t).

135

Problem A = 2U

Facility location 11
Vertex cover 8
Edge cover 6
Set cover O(log |U |)

Table 7.1: A summary of the approximation factors we obtain for DRS optimization under
an L∞ ball. We have omitted the O(ε) terms that appear in the approximation factors.

Proof. Consider an instance (x, t) of problem (Υ). Our goal is to construct a sequence of
scenarios A1, . . . , At, where Ai is the i-th scenario with highest g(x,A) value.

By the monotonicity assumption of g(·, ·), the costliest scenario is U , so we start by
setting A1 := U . We then proceed as follows for i = 2, . . . , t. Suppose that we have already
computed A1, . . . , Ai−1. Computing Ai amounts to solving the problem

max {g(x,A) : A ∈ A \ {A1, . . . , Ai−1}} . (7.4)

We claim that (7.4) admits an optimal solution that is a maximal proper subset of Ai′ for
some 1 ≤ i′ < i. Indeed, let A∗ be an optimal solution of (7.4) with maximum cardinality,
and suppose for a contradiction that it is not a maximal proper subset of Ai′ for any
1 ≤ i′ < i. Note that since A1 = U , we have A∗ 6= U , so there is an element e ∈ U \ A∗.
Now, consider the scenario A := A∗∪{e}. Since by assumption A∗ is not a maximal subset
of Ai′ for any 1 ≤ i′ < i − 1, it follows that A is feasible for (7.4). By the monotonicity
assumption, since A∗ ⊆ A, we have g

(
x,A

)
≥ g(x,A∗), and so A is also an optimal solution

for (7.4). Since
∣∣A
∣∣ > |A∗|, this contradicts the definition of A∗.

We now utilize the observation above to show that given x and A1, . . . , Ai−1, we can
solve (7.4) in poly(I, i) time. This can be done by enumerating all maximal proper sub-
sets of A1, . . . , Ai−1. Since each set Ai′ has |Ai′ | maximal proper subsets, we enumerate∑i−1

i′=1 |Ai′| ≤ (i− 1) |U | = poly(I, i) scenarios. Since evaluating g(x,A) for a given scenario
A takes poly(I) time, the claim follows. We conclude that we can solve problem (Υ) by
solving (7.4) for i = 2, . . . , t, which takes

∑t
i=2 poly(I, i) = poly(I, t) time.

Theorem 7.14. Consider the two-stage DRS optimization problem (DRSO∞) in the unre-
stricted setting (i.e., A = 2U). Suppose that for every fractional first-stage decision x ∈ P
and every pair of scenarios A,A′ ∈ A with A ⊆ A′ we have g(x,A) ≤ g(x,A′). Moreover,
suppose that we have a local ρ-approximation algorithm. Then, given ε > 0 and δ ∈ (0, 1),
we can compute a (2 + ε)ρ-approximate solution for (DRSO∞) with probability at least 1−δ
in poly

(
I, λ, 1

r
, 1
ε
, log 1

δ

)
time. In particular, we have the following approximation factors

136

for specific applications: (a) O(log |U |+ ε) for set cover; (b) 8 + O(ε) for vertex cover; (c)
6 + O(ε) for edge cover; and (d) 10.98 + O(ε) for facility location.

Proof. The general result follows immediately by combining Theorem 3.9 and Lemma 7.13.

Now, let us consider the four applications mentioned. They all satisfy assumptions (A1)–
(A4), (A5’), and (A6). Recall that vertex cover and edge cover are special cases of set cover.
For assumptions (A1)–(A4) and (A6), see Chapter 6, specifically Lemma 6.7 for set cover
and Lemma 6.18 for facility location. Shmoys and Swamy [114] show that assumption (A5’)
holds for a broad class of two-stage problems that includes set cover and facility location.
These are all covering problems, so the monotonicity assumption on g(·, ·) is satisfied. We
have local ρ-approximation algorithms with ρ = O(log |U |) for set cover (see Shmoys and
Swamy [114]); ρ = 4 for vertex cover (see Lemma 6.14-(iii)); ρ = 3 for edge cover (see
Lemma 6.16-(iii)); and ρ = 5.488 for facility location (see Lemma 6.19-(ii)).

137

Chapter 8

Conclusions and open directions

In this thesis, we developed a framework to solve distributionally robust stochastic (DRS)
combinatorial-optimization problems when the ambiguity set of distributions arises as a
ball in the Wasserstein metric, or the L∞ metric, around a central distribution specified
only by a sampling oracle. We showed that our framework is versatile and utilized it
to obtain the first approximation guarantees for DRS versions of various combinatorial-
optimization problems such as set cover, vertex cover, edge cover, facility location, and
Steiner tree.

Our work opens up various directions for further research, and we conclude by listing
some of these directions. We list the open questions below, roughly speaking, in order
of more concrete questions that directly stem from our work and pertain to improving
the guarantees that we obtain and/or expanding the scope of our work, followed by more
open-ended questions related to distributionally robust stochastic optimization.

• Some of the approximation factors we obtained for specific applications (see Tables 3.1
and 3.2) can likely be improved by constant factors by utilizing stronger LP-relaxations
and/or improved rounding algorithms.

• In the Wasserstein setting, can one compute a (1 + ε)-approximate solution using only
poly(input size, λ) independent samples from the central distribution? Whereas this is
known to be achievable in the classical two-stage stochastic model under comparable
assumptions (see Charikar, Chekuri, and Pál [24] and Shmoys and Swamy [114]), our
framework incurs a factor-4 loss due to the use of the proxy function h(p̊ ; ·) that is (up
to a constant term) within a factor 2 of the true objective function of the DRS problem
(see Theorem 4.1 and Lemma 4.10). (As noted in Remark 4.15, this can be improved to

138

a factor-2 loss with some additional work.) In the L∞ setting, can the 1
r
-dependence of

the number of samples in Theorem 3.9 be avoided?

• In the Wasserstein setting, we obtained approximation algorithms for various applica-
tions with two choices of scenario metrics: the discrete metric `disc and the asymmetric
metric `asym∞ . Various other scenario metrics can be considered in future work, such as
the asymmetric metric `asym1 and the symmetric metrics `sym

∞ and `sym
1 mentioned in the

context of DRS facility location in Section 3.1.

• Is it possible to obtain constant-factor approximation algorithms for DRS Steiner tree
under a Wasserstein ball in the k-bounded setting? One way to obtain such a result would
be to provide a local O(1)-approximation algorithm for Steiner tree; it is also conceivable
that this can be achieved using only a restricted local approximation algorithm. The
lack of a local approximation algorithm for Steiner tree also prevented us from directly
applying our framework to obtain an approximation algorithm for DRS Steiner tree under
an L∞ ball in the unrestricted setting. It is unclear how to obtain such an algorithm
even in the polynomial-size central distribution setting.

• Another open question is whether we can apply or extend our framework for DRS opti-
mization under an L∞ ball to obtain approximation algorithms for specific applications
in the k-bounded setting. The obstacle encountered in directly applying our framework
is that, for the applications we considered, we do not have a suitable algorithm for prob-
lem (Υ) (which asks for the t most expensive scenarios under a given first-stage decision
x).

• As mentioned in Section 2.3, in addition to Wasserstein balls and L∞ balls, various other
types of ambiguity sets have been considered in the literature, and it would be inter-
esting to obtain approximation algorithms in those settings as well. We have obtained
preliminary results for ambiguity sets consisting of a finite number of distributions given
by sampling oracles.

• Another direction is obtaining approximation algorithms for the DRS versions of the
applications that we considered via combinatorial techniques.

139

References

[1] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An approximation
algorithm for the generalized Steiner problem on networks. STOC (1991), pp. 134–
144.

[2] Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Correlation Robust
Stochastic Optimization. arXiv.org (2009). arXiv: 0902.1792v3 [cs.DS].

[3] Güzin Bayraksan and David K. Love. Data-Driven Stochastic Programming Using
Phi-Divergences. The Operations Research Revolution. INFORMS, 2015, pp. 1–19.

[4] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization.
Princeton University Press, 2009.

[5] Aharon Ben-Tal, A. P. Goryashko, E. Guslitzer, and Arkadi Nemirovski. Adjustable
robust solutions of uncertain linear programs. Math. Program. 99.2 (2004), pp. 351–
376.

[6] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and
Gijs Rennen. Robust Solutions of Optimization Problems Affected by Uncertain
Probabilities. Management Science 59.2 (2013), pp. 341–357.

[7] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications. SIAM, 2001.

[8] Aharon Ben-Tal and Arkadi Nemirovski. Robust Convex Optimization. Math. Oper.
Res. 23.4 (1998), pp. 769–805.

[9] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of Linear Programming
problems contaminated with uncertain data. Math. Program. 88.3 (2000), pp. 411–
424.

[10] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear pro-
grams. Oper. Res. Lett. 25.1 (1999), pp. 1–13.

140

https://arxiv.org/abs/0902.1792v3

[11] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and Ap-
plications of Robust Optimization. SIAM Review 53.3 (2011), pp. 464–501.

[12] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust opti-
mization. Math. Program. 167.2 (2018), pp. 235–292.

[13] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Robust sample average ap-
proximation. Math. Program. 171.1-2 (2018), pp. 217–282.

[14] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network
flows. Math. Program. 98.1-3 (2003), pp. 49–71.

[15] Dimitris Bertsimas and Melvyn Sim. The Price of Robustness. Operations Research
52.1 (2004), pp. 35–53.

[16] Dimitris Bertsimas, Melvyn Sim, and Meilin Zhang. A practicable framework for
distributionally robust linear optimization. optimization-online.org (2013).

[17] Dimitris Bertsimas, Melvyn Sim, and Meilin Zhang. Adaptive Distributionally Ro-
bust Optimization. Management Science 65.2 (2018), pp. 604–618.

[18] John R. Birge and François Louveaux. Introduction to Stochastic Programming.
Springer Science & Business Media, 2011.

[19] Keith C. Brown. A note on the apparent bias of net revenue estimates for capital
investment projects. The Journal of Finance 29.4 (1974), pp. 1215–1216.

[20] Jaroslaw Byrka and Aravind Srinivasan. Approximation Algorithms for Stochastic
and Risk-Averse Optimization. SIAM J. Discrete Math. 32.1 (2018), pp. 44–63.

[21] John Gunnar Carlsson, Mehdi Behroozi, and Kresimir Mihic. Wasserstein Distance
and the Distributionally Robust TSP. Operations Research 66.6 (2018), pp. 1603–
1624.

[22] John Gunnar Carlsson and Erick Delage. Robust Partitioning for Stochastic Multi-
vehicle Routing. Operations Research 61.3 (2013), pp. 727–744.

[23] Robert Carr and Santosh Vempala. Randomized Metarounding. STOC (2000),
pp. 343–352.

[24] Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling Bounds for Stochastic
Optimization. APPROX-RANDOM (2005), pp. 257–269.

[25] Lin Chen, Nicole Megow, Roman Rischke, and Leen Stougie. Stochastic and Robust
Scheduling in the Cloud. APPROX-RANDOM (2015), pp. 175–186.

141

[26] Xi Chen, Qihang Lin, and Guanglin Xu. Distributionally Robust Optimization with
Confidence Bands for Probability Density Functions. arXiv.org (2019). arXiv: 1901.
02169v1 [math.OC].

[27] Vasek Chvátal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research 3 (1979), pp. 233–235.

[28] George B. Dantzig. Discrete-Variable Extremum Problems. Operations Research 5.2
(1957), pp. 266–288.

[29] George B. Dantzig. Linear Programming Under Uncertainty. Management Science
1 (1951), pp. 197–206.

[30] Erick Delage. Distributionally robust optimization in context of data-driven prob-
lems. PhD Thesis. 2009.

[31] Erick Delage and Dan A. Iancu. Robust Multistage Decision Making. The Opera-
tions Research Revolution. INFORMS, 2015, pp. 20–46.

[32] Erick Delage and Yinyu Ye. Distributionally Robust Optimization Under Moment
Uncertainty with Application to Data-Driven Problems. Operations Research 58.3
(2010), pp. 595–612.

[33] Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to Pay, Come
What May: Approximation Algorithms for Demand-Robust Covering Problems.
STOC (2005), pp. 367–378.

[34] Kedar Dhamdhere, R. Ravi, and Mohit Singh. On Two-Stage Stochastic Minimum
Spanning Trees. IPCO (2005), pp. 321–334.

[35] Jitka Dupačová. On minimax solutions of stochastic linear programming problems.
Časopis pro pěstováni matematiky 91.4 (1966), pp. 423–430.

[36] Shane Dye, Leen Stougie, and Asgeir Tomasgard. The Stochastic Single Resource
Service-Provision Problem. Naval Research Logistics 50.8 (2003), pp. 869–887.

[37] Martin Dyer and Leen Stougie. Computational complexity of stochastic program-
ming problems. Math. Program. 106.3 (2006), pp. 423–432.

[38] Martin Dyer and Leen Stougie. Erratum to: Computational complexity of stochastic
programming problems. Math. Program. 153.2 (2015), pp. 723–725.

[39] Laurent El Ghaoui and Hervé Lebret. Robust Solutions to Least-Squares Prob-
lems with Uncertain Data. SIAM Journal on Matrix Analysis and Applications
18.4 (1997), pp. 1035–1064.

142

https://arxiv.org/abs/1901.02169v1
https://arxiv.org/abs/1901.02169v1

[40] Laurent El Ghaoui, Maksim Oks, and François Oustry. Worst-Case Value-At-Risk
and Robust Portfolio Optimization: A Conic Programming Approach. Operations
Research 51.4 (2003), pp. 543–556.

[41] Laurent El Ghaoui, François Oustry, and Hervé Lebret. Robust Solutions to Un-
certain Semidefinite Programs. SIAM Journal on Optimization 9.1 (1998), pp. 33–
52.

[42] Emre Erdoğan and Garud Iyengar. Ambiguous chance constrained problems and
robust optimization. Math. Program. 107.1-2 (2005), pp. 37–61.

[43] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven Distributionally Robust
Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable
Reformulations. arXiv.org (2015). arXiv: 1505.05116v3 [math.OC].

[44] Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. Online Allocation with
Traffic Spikes: Mixing Adversarial and Stochastic Models. EC (2015), pp. 169–186.

[45] James E. Falk. Technical Note - Exact Solutions of Inexact Linear Programs. Op-
erations Research 24.4 (1976), pp. 783–787.

[46] Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mirrokni. Robust Com-
binatorial Optimization with Exponential Scenarios. IPCO (2007), pp. 439–453.

[47] Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved Approximation Algo-
rithms for Directed Steiner Forest. Electronic Colloquium on Computational Com-
plexity (2007), pp. 279–292.

[48] Lisa Fleischer, Jochen Könemann, Stefano Leonardi, and Guido Schäfer. Simple
Cost Sharing Schemes for Multicommodity Rent-or-Buy and Stochastic Steiner
Tree. STOC (2006), pp. 663–670.

[49] Zachary Friggstad and Chaitanya Swamy. Approximation algorithms for regret-
bounded vehicle routing and applications to distance-constrained vehicle routing.
STOC (2014), pp. 744–753.

[50] Rui Gao, Xi Chen, and Anton J. Kleywegt. Wasserstein Distributional Robustness
and Regularization in Statistical Learning. arXiv.org (2017). arXiv: 1712.06050v2
[cs.LG].

[51] Rui Gao and Anton J. Kleywegt. Distributionally Robust Stochastic Optimization
with Dependence Structure. arXiv.org (2017). arXiv: 1701.04200v1 [math.OC].

[52] Rui Gao and Anton J. Kleywegt. Distributionally Robust Stochastic Optimization
with Wasserstein Distance. arXiv.org (2016). arXiv: 1604.02199v2 [math.OC].

143

https://arxiv.org/abs/1505.05116v3
https://arxiv.org/abs/1712.06050v2
https://arxiv.org/abs/1712.06050v2
https://arxiv.org/abs/1701.04200v1
https://arxiv.org/abs/1604.02199v2

[53] Joel Goh and Melvyn Sim. Distributionally Robust Optimization and Its Tractable
Approximations. Operations Research 58.4-part-1 (2010), pp. 902–917.

[54] Donald Goldfarb and Garud Iyengar. Robust Portfolio Selection Problems. Math.
Oper. Res. 28.1 (2003), pp. 1–38.

[55] Daniel Golovin, Vineet Goyal, and R. Ravi. Pay Today for a Rainy Day: Improved
Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Prob-
lems. STACS (2006), pp. 206–217.

[56] Vineet Goyal. Optimization Under Uncertainty. PhD Thesis. 2008.

[57] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer-Verlag, 1988.

[58] Anupam Gupta and Amit Kumar. A Constant-Factor Approximation for Stochastic
Steiner Forest. STOC (2009), pp. 659–668.

[59] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Robust and MaxMin Opti-
mization under Matroid and Knapsack Uncertainty Sets. arXiv.org (2010). arXiv:
1012.4962v2 [cs.DS].

[60] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Thresholded Covering Algo-
rithms for Robust and Max-Min Optimization. ICALP (2010), pp. 262–274.

[61] Anupam Gupta and Martin Pál. Stochastic Steiner Trees Without a Root. ICALP
(2005), pp. 1051–1063.

[62] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted Sampling: Ap-
proximation Algorithms for Stochastic Optimization. STOC (2004), pp. 417–426.

[63] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Sampling and Cost-
Sharing: Approximation Algorithms for Stochastic Optimization Problems. SIAM
J. Comput. 40.5 (2011), pp. 1361–1401.

[64] Anupam Gupta, R. Ravi, and Amitabh Sinha. An Edge in Time Saves Nine: LP
Rounding Approximation Algorithms for Stochastic Network Design. STOC (2004),
pp. 218–227.

[65] Shubham Gupta. Building Networks in the Face of Uncertainty. MSc Thesis. 2011.

[66] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. STOC
(2003), pp. 585–594.

[67] Grani A. Hanasusanto and Daniel Kuhn. Conic Programming Reformulations of
Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls. Oper-
ations Research 66.3 (2018), pp. 849–869.

144

https://arxiv.org/abs/1012.4962v2

[68] Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. A comment on
"computational complexity of stochastic programming problems". Math. Program.
159.1-2 (2016), pp. 557–569.

[69] J. Richard Harrison and James G. March. Decision Making and Postdecision Sur-
prises. Administrative Science Quarterly 29.1 (1984), pp. 26–42.

[70] Lisa Hellerstein, Thomas Lidbetter, and Daniel Pirutinsky. Solving Zero-sum Games
using Best Response Oracles with Applications to Search Games. arXiv.org (2017).
arXiv: 1704.02657v4 [math.OC].

[71] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association 58.301 (1963), pp. 13–30.

[72] Zhaolin Hu and L. Jeff Hong. Kullback-Leibler Divergence Constrained Distribu-
tionally Robust Optimization. optimization-online.org (2013).

[73] Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the Most of Your
Samples. EC (2015), pp. 45–60.

[74] Nicole Immorlica, David Karger, Maria Minkoff, and Vahab Mirrokni. On the Costs
and Benefits of Procrastination: Approximation Algorithms for Stochastic Combi-
natorial Optimization Problems. SODA (2004), pp. 691–700.

[75] Kamal Jain, MohammadMahdian, and Mohammad R. Salavatipour. Packing Steiner
trees. SODA (2003), pp. 266–274.

[76] Klaus Jansen. Approximate Strong Separation with Application in Fractional Graph
Coloring and Preemptive Scheduling. STACS (2002), pp. 239–256.

[77] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica 30 (1906), pp. 175–193.

[78] Narendra Karmarkar and Richard M Karp. An Efficient Approximation Scheme for
the One-Dimensional Bin-Packing Problem. STOC (1982), pp. 312–320.

[79] Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. Commitment under uncertainty:
Two-stage stochastic matching problems. Theor. Comput. Sci. 408.2-3 (2008), pp. 213–
223.

[80] Rohit Khandekar, Guy Kortsarz, Vahab Mirrokni, and Mohammad R. Salavatipour.
Two-stage Robust Network Design with Exponential Scenarios. Algorithmica 65.2
(2013), pp. 391–408.

[81] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de-Mello. The Sample Av-
erage Approximation Method for Stochastic Discrete Optimization. SIAM Journal
on Optimization 12.2 (2002), pp. 479–502.

145

https://arxiv.org/abs/1704.02657v4

[82] Nan Kong and Andrew J. Schaefer. A factor 1/2 approximation algorithm for
two-stage stochastic matching problems. European Journal of Operational Research
172.3 (2006), pp. 740–746.

[83] Shi Li. A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. ICALP (2011), pp. 77–88.

[84] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior of
sampling methods for stochastic programming. Annals OR 142.1 (2006), pp. 215–
241.

[85] André Linhares and Chaitanya Swamy. Approximation Algorithms for Distribu-
tionally Robust Stochastic Optimization with Black-Box Distributions. To appear
in STOC 2019. Detailed version on the CS arXiv (2019). arXiv: 1904.07381v1
[cs.DS].

[86] Fengqiao Luo and Sanjay Mehrotra. Decomposition Algorithm for Distributionally
Robust Optimization using Wasserstein Metric. arXiv.org (2017). arXiv: 1704 .
03920v1 [math.OC].

[87] Sanjay Mehrotra and Dávid Papp. A Cutting Surface Algorithm for Semi-Infinite
Convex Programming with an Application to Moment Robust Optimization. SIAM
Journal on Optimization 24.4 (2014), pp. 1670–1697.

[88] Sanjay Mehrotra and He Zhang. Models and algorithms for distributionally robust
least squares problems. Math. Program. 146.1-2 (2014), pp. 123–141.

[89] Fanwen Meng, Jin Qi, Meilin Zhang, James Ang, Singfat Chu, and Melvyn Sim. A
Robust Optimization Model for Managing Elective Admission in a Public Hospital.
Operations Research 63.6 (2015), pp. 1452–1467.

[90] Richard O. Michaud. The Markowitz Optimization Enigma: Is ‘Optimized’ Opti-
mal? Financial Analysts Journal 45.1 (1989), pp. 31–42.

[91] Vahab Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. Simultane-
ous approximations for adversarial and stochastic online budgeted allocation. SODA
(2012), pp. 1690–1701.

[92] Arkadi Nemirovski and Alexander Shapiro. On complexity of Shmoys-Swamy class
of two-stage linear stochastic programming problems. optimization-online.org (2006).

[93] Arkadi Nemirovski and David Yudin. Informational complexity and effective meth-
ods of solution for convex extremal problems. Ekonomika i Matematicheskie Metody
12.1 (1976), pp. 357–379.

146

https://arxiv.org/abs/1904.07381v1
https://arxiv.org/abs/1904.07381v1
https://arxiv.org/abs/1704.03920v1
https://arxiv.org/abs/1704.03920v1

[94] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Springer Science & Business Media, 2013.

[95] Martin Pál and Éva Tardos. Group Strategyproof Mechanisms via Primal-Dual
Algorithms. STOC (2003), pp. 584–593.

[96] Ioana Popescu. Robust Mean-Covariance Solutions for Stochastic Optimization. Op-
erations Research 55.1 (2007), pp. 98–112.

[97] András Prékopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

[98] R. Ravi and Amitabh Sinha. Hedging Uncertainty: Approximation Algorithms for
Stochastic Optimization Problems. IPCO (2004), pp. 101–115.

[99] R. T. Rockafellar. Convex analysis. Princeton University Press. 1970.

[100] Ward Romeijnders, Leen Stougie, and Martin H. van der Vlerk. Approximation
in two-stage stochastic integer programming. Surveys in Operations Research and
Management Science 19 (2014), pp. 17–33.

[101] Andrzej Ruszczyński and Alexander Shapiro. Stochastic Programming. Handbook
in Operations Research and Management Science 10 (2003).

[102] Tjendera Santoso, Shabbir Ahmed, Marc Goetschalckx, and Alexander Shapiro. A
stochastic programming approach for supply chain network design under uncer-
tainty. European Journal of Operational Research 167.1 (2005), pp. 96–115.

[103] Herbert E. Scarf. A min-max solution of an inventory problem. Studies in The
Mathematical Theory of Inventory and Production (1958), pp. 201–209.

[104] Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori
TSP. Oper. Res. Lett. 36.1 (2008), pp. 1–3.

[105] Peter Schütz, Asgeir Tomasgard, and Shabbir Ahmed. Supply chain design under
uncertainty using sample average approximation and dual decomposition. European
Journal of Operational Research 199.2 (2009), pp. 409–419.

[106] Soroosh Shafieezadeh-Abadeh, Peyman Mohajerin Esfahani, and Daniel Kuhn. Dis-
tributionally Robust Logistic Regression. NIPS (2015), pp. 1576–1584.

[107] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani. Reg-
ularization via Mass Transportation. arXiv.org (2017). arXiv: 1710.10016v1 [math.OC].

[108] Alexander Shapiro. Monte Carlo Sampling Methods. Handbooks in Operations Re-
search and Management Science 10 (2003), pp. 353–425.

[109] Alexander Shapiro and Shabbir Ahmed. On a Class of Minimax Stochastic Pro-
grams. SIAM Journal on Optimization 14.4 (2004), pp. 1237–1249.

147

https://arxiv.org/abs/1710.10016v1

[110] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on Stochas-
tic Programming: Modeling and Theory.MOS-SIAM Series on Optimization (2014).

[111] Alexander Shapiro and Arkadi Nemirovski. On Complexity of Stochastic Program-
ming Problems. Continuous Optimization. Springer-Verlag, 2005, pp. 111–146.

[112] Cong Shi. Approximation Algorithms for Stochastic Optimization Problems in Op-
erations Management. Encyclopedia of Operations Research and Management Sci-
ence. Wiley, 2014.

[113] David B. Shmoys and Mauro Sozio. Approximation Algorithms for 2-Stage Stochas-
tic Scheduling Problems. IPCO (2007), pp. 145–157.

[114] David B. Shmoys and Chaitanya Swamy. An Approximation Scheme for Stochastic
Linear Programming and Its Application to Stochastic Integer Programs. J. ACM
53.6 (2006), pp. 978–1012.

[115] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation Algorithms for
Facility Location Problems. STOC (1997), pp. 265–274.

[116] David Shmoys and Kunal Talwar. A Constant Approximation Algorithm for the a
priori Traveling Salesman Problem. IPCO (2008), pp. 331–343.

[117] Naum Z. Shor. Utilization of the operation of space dilatation in the minimization
of convex functions. Kibernetika 6.1 (1970), pp. 6–12.

[118] James E. Smith and Robert L. Winkler. The Optimizer’s Curse: Skepticism and
Postdecision Surprise in Decision Analysis.Management Science 52.3 (2006), pp. 311–
322.

[119] Anthony Man-Cho So, Jiawei Zhang, and Yinyu Ye. Stochastic Combinatorial Op-
timization with Controllable Risk Aversion Level. Math. Oper. Res. 34.3 (2009),
pp. 522–537.

[120] A. L. Soyster. Technical Note - Convex Programming with Set-Inclusive Constraints
and Applications to Inexact Linear Programming. Operations Research 21.5 (1973),
pp. 1154–1157.

[121] Chaitanya Swamy. Risk-Averse Stochastic Optimization: Probabilistically-Constrained
Models and Algorithms for Black-Box Distributions. SODA (2011), pp. 1627–1646.

[122] Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage
stochastic optimization problems. ACM SIGACT News 37.1 (2006), pp. 33–46.

[123] Chaitanya Swamy and David B. Shmoys. Sampling-Based Approximation Algo-
rithms for Multistage Stochastic Optimization. SIAM J. Comput. 41.4 (2012), pp. 975–
1004.

148

[124] Chaitanya Swamy and David B. Shmoys. The Sample Average Approximation Method
for 2-stage Stochastic Optimization (unpublished manuscript). 2004.

[125] David J. Thuente. Technical Note - Duality Theory for Generalized Linear Programs
with Computational Methods. Operations Research 28.4 (1980), pp. 1005–1011.

[126] Bart P. G. Van Parys, Peyman Mohajerin Esfahani, and Daniel Kuhn. From Data
to Decisions: Distributionally Robust Optimization is Optimal. arXiv.org (2017).
arXiv: 1704.04118v1 [math.OC].

[127] Bram Verweij, Shabbir Ahmed, Anton J. Kleywegt, George Nemhauser, and Alexan-
der Shapiro. The Sample Average Approximation Method Applied to Stochastic
Routing Problems: A Computational Study. Computational Optimization and Ap-
plications 24.2-3 (2003), pp. 289–333.

[128] Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally Robust Con-
vex Optimization. Operations Research 62.6 (2014), pp. 1358–1376.

[129] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

[130] Chenchen Wu, Donglei Du, and Dachuan Xu. An Approximation Algorithm for the
Two-Stage Distributionally Robust Facility Location Problem. Advances in Global
Optimization. Springer International Publishing, 2014, pp. 99–107.

[131] Jinfeng Yue, Bintong Chen, and Min-Chiang Wang. Expected Value of Distribu-
tion Information for the Newsvendor Problem. Operations Research 54.6 (2006),
pp. 1128–1136.

[132] Chaoyue Zhao and Yongpei Guan. Data-driven risk-averse stochastic optimization
with Wasserstein metric. Oper. Res. Lett. 46.2 (2018), pp. 262–267.

[133] Zhisu Zhu, Jiawei Zhang, and Yinyu Ye. Newsvendor optimization with limited
distribution information. Optimization Methods and Software 28.3 (2013), pp. 640–
667.

149

https://arxiv.org/abs/1704.04118v1

	List of Figures
	List of Tables
	Introduction
	The distributionally robust stochastic optimization framework
	Our contributions
	Basic definitions, notation, and conventions
	Organization of the thesis

	Background
	Robust optimization
	Stochastic optimization
	Distributionally robust stochastic optimization
	Other models interpolating between robust and stochastic optimization
	Some classical inequalities

	Two-stage distributionally robust stochastic optimization
	Formal model description
	A general class of two-stage DRS problems
	Overview of results and techniques
	DRS optimization under a Wasserstein ball
	DRS optimization under an L-infinity ball

	Some preliminary results and definitions
	Optimizing over P or X via ellipsoid-based methods
	Rounding fractional solutions

	DRS optimization under a Wasserstein ball: sample average approximation
	Overview of the techniques
	Reformulating the DRS problem as a two-stage stochastic problem
	Reducing the inflation factor
	Main lemma and proof of the SAA theorem
	Proof of Lemma 4.13
	Overview
	Some preliminary lemmas
	Details of the proof

	DRS optimization under a Wasserstein ball: polynomial-size central distribution
	Overview of the techniques
	Proof of Theorem 5.1
	Solving the fractional SAA problem exactly in certain settings
	Some hardness results

	DRS optimization under a Wasserstein ball: applications
	Proof of Theorem 3.6
	Obtaining an approximation algorithm for (\Pi)
	Improved results in the unrestricted setting: a reduction from DRSO_W to the fractional SAA problem
	DRS set cover
	DRS vertex cover
	DRS edge cover
	DRS facility location
	Proof of Theorem 6.20

	DRS Steiner tree
	Proof of Theorem 6.29

	DRS optimization under an L-infinity ball
	Overview of the techniques
	A proxy function
	Estimating the free mass
	Computing approximate subgradients of the proxy function
	Lipschitz-continuity of the proxy function
	Proof of Theorem 7.1
	Applications

	Conclusions and open directions
	References

