
Accepted Manuscript

Simulation of Induced Acoustic Emission in Fractured Porous Media

M. Komijani, R. Gracie, E. Sarvaramini

PII: S0013-7944(18)30519-8
DOI: https://doi.org/10.1016/j.engfracmech.2018.07.028
Reference: EFM 6094

To appear in: Engineering Fracture Mechanics

Received Date: 17 May 2018
Revised Date: 18 July 2018
Accepted Date: 19 July 2018

Please cite this article as: Komijani, M., Gracie, R., Sarvaramini, E., Simulation of Induced Acoustic Emission in
Fractured Porous Media, Engineering Fracture Mechanics (2018), doi: https://doi.org/10.1016/j.engfracmech.
2018.07.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The final publication is available at Elsevier via https://doi.org/10.1016/j.engfracmech.2018.07.028  
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.engfracmech.2018.07.028
https://doi.org/10.1016/j.engfracmech.2018.07.028
https://doi.org/10.1016/j.engfracmech.2018.07.028


  

Simulation of Induced Acoustic Emission in Fractured Porous Media

M. Komijani, R. Gracie∗, E. Sarvaramini

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Acoustic/microseismic Emissions (AE) in naturally fractured porous media are the result of local insta-

bility along internal interfaces and the sudden release of strain energy stored in the rock matrix. This rapid

release of energy, stimulates high-frequency components of the dynamic response of the rock mass, inducing

mechanical wave propagation. In this article an enriched finite element model is employed to concurrently

simulate the interface instability and the induced wave propagation processes in a fractured porous media.

Harmonic enrichment functions are used in the context of the Generalized Finite Element Method (GFEM)

to suppress the spurious oscillations that can appear in wave propagation/dynamic modelings using regular

finite elements. To model the fractures, the Phantom Node Method (PNM) is employed with the GFEM.

The frictional contact condition at material interfaces is modeled using a stable augmented Lagrange multi-

plier approach. Through various parametric studies it’s shown that i) decreasing the permeability leads to

an increase in the frequency and a decrease in the amplitude of the acoustic signal; ii) increasing viscous

damping leads to narrower frequency spectrum and decreased magnitude of the emitted acoustic signal;

iii) increasing damping leads to a transition from transient wave propagation to diffusion-dominated AE

response; iv) increasing interface friction leads to more pronounced stick-slip behavior and higher amplitude

AE-without interface friction there is no AE. Lastly, the numerical illustrations demonstrate the superior ca-

pability of the enriched model (in comparison with regular finite element models) in suppressing the spurious

oscillations in AE solutions.
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1. Introduction

The process of elastic wave propagation induced by an abrupt local release of stored strain energy is

known as Acoustic Emission (AE) [1]. Acoustic emissions are generated by bifurcation-instabilities such

as fault reactivation, pore collapse, and fracture, i.e., localization phenomena. As a result, AE monitoring
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and analysis are often used to probe the behaviour of solid materials in engineering applications such as,

concrete structures [2, 3] and masonry bridges [4], and also geological formations, particularly in mining and

hydraulic fracturing applications [5, 6]. For example, during hydraulic fracturing, microseismic monitoring

is often conducted to determine the extent and orientation of the fracture network created [7]. A series of

experimental and numerical investigations have been conducted by Carpinteri and his coworkers on analysis

of damage and fracturing behaviour in solids and the associated induced acoustic emissions [8, 9, 10, 11].

These work demonstrate a correlation between acoustic events observed in experiments and microscale frac-

turing and damage processes. Analysis of acoustic emissions induced by localization is full of uncertainties

and researchers have not yet focused on both explicitly modeling the fracturing/damage process and the

simulation of associated induced acoustic wave propagation (specially in shear failure type). In this article,

a specially designed enriched mixed-finite element model is employed to study both fracture reactivation

due to hydraulic perturbations in a porous media and the resulting AEs. Using this model, the key sys-

tem characteristics (e.g., friction, permeability, etc.) governing the nature of the emitted AEs are elucidated.

Recent attempts to correlate fracturing/slip and microseismic emission do not explicitly simulate tran-

sient acoustic wave propagation through the media following the release of elastic energy, e.g., Tang et al.

[12, 13] used a quasi-static approach to relate the energy released by damage to the magnitude of acoustic

events. Such approaches do not account for the propagation and interactions of emitted waves with discon-

tinuities, attenuation, nor other wave reflection and coalescence phenomena.

Another class of acoustic emission simulation methods make use of the particle-based Discrete Element

Method (DEM), in which the rock mass is represented as a collection of particles/blocks connected together

by contact/cohesive forces. Localization and nucleation of fractures is modeled by breakage of the cohesive

bonds between particles. Based on this methodology, Hazzard and Young [14] proposed a technique for

the simulation of acoustic emission under nucleation (i.e., bond breakage) in rock. The radiated acoustic

energy from the source was estimated by measuring the change in kinetic energy upon failure of the bond;

however, wave emission and propagation were not directly simulated. In a similar fashion, Lisjak et al. [15]

investigated acoustic emissions using DEM with non-porous deformable blocks, where AEs were related to

an energy release through cohesive tension (not shear) tractions between blocks; while an explicitly time in-

tegrated dynamic model was used, the accuracy of the wave forms and wave propagation was not the focus of

the study. It is important to note that most microseismicity induced in applications like hydraulic fracturing

is due to shear failure and sliding along pre-existing discontinuities [16]. Other versions of DEM have also

been proposed for studying acoustic emission signals induced by damage. For instance, Carpinteri and his
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coworkers [17, 18] employed three-dimensional lattice models based on truss-like Discrete Element Method

to study AEs in a prismatic concrete specimen subjected to compressional loads. They demonstrated good

correlations between numerical results and AE data obtained from experimental tests.

There is a limited number of semi-analytical elastodynamics solution of AEs induced by sudden fracture

nucleation, for example the models of Andreykiv et al. [19, 20, 21] for the AE due to the nucleation of

penny-shaped fractures under modes I and III. None of the available analytical or semi-analytical solutions

specifically address AE due to failure in shear (mode II) (i.e., microseismicity) under compression, where

contact forces and frictional behaviour influence the AEs. Furthermore, there is a lack of solutions for AE

in porous media due to reactivation of fracture or fracture nucleation.

Analysis of porous media spans applications from the geomechanics of reservoirs [22] to biomechanical

analysis of tissues and cells [23, 24]. It is common in such models to assume that the fluid flow is transient

but the solid evolves quasi-statically. There has been less emphasis on dynamic simulation of fracture in

porous media; the focus to date has been on the modeling of fracture propagation rather than the simulation

of the waves emitted from the cracks. For example, recently Cao et al. [25] simulated the stepwise process

of fracturing in porous media and the associated fluid pressure oscillations using the standard FEM and

Rethore et al. [26] modeled the dynamic propagation of shear bands in saturated porous media. However,

these earlier works did not address the topic of simulation of wave propagation nor acoustic emission.

Accurate simulation of wave propagation using standard finite element approaches is problematic, as the

polynomial basis functions used have been shown to be insufficient in some dynamic simulations [27]. Con-

ventional finite element solutions of wave phenomena are well-known to contain spurious wave forms, which

often cannot be efficiently eliminated using mesh refinement in transient and time-harmonic waves with short

wave lengths [28]. Furthermore, numerical dispersions can significantly affect wave propagation velocity. En-

riched Generalized Finite Element Methods (GFEM) have been developed to inhibit the spurious oscillations

[29, 28]. Recently, Komijani and Gracie [30] extended these models to wave propagation in fractured media

by combining the GFEM approach with the initial discretization-independent fracture/discontinuity mod-

eling ability of the Phantom Node Method (PNM) of [31]. The enriched model (PNM-GFEM) combines

the benefits of the two methods and minimizes the non-physical oscillations observed in regular dynamics

simulations of fractures.

It is noted that in addition to the weak form-based finite element methods, a new class of numerical
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methods, i.e., Extended Particle Difference Method (EPDM) [32, 33, 34], has been developed recently to

model strong/weak discontinuities independently of the initial discretization, which may be used as an alter-

native for the finite element methods. The EPDM is a strong form-based numerical solution of the governing

equations with the particle derivative approximation. In addition to the increase of computational efficiency

that is achieved by avoiding numerical integration of the weak form, one of the notable features of the EPDM

is that, unlike the weak form-based methods there is no need for employing an additional boundary track-

ing scheme such as the level set method. This makes the method very suitable for moving boundary problems.

This article presents the application of an extension of the PNM-GFEM method to acoustic wave emission

simulation in fractured porous media. The media is modeled using mixture theory of poroelasticity [35, 36].

The solution of the governing system of equations is approximated using a mixed enriched finite element

method (PNM-GFEM-M). The frictional contact at the interface of the fractures is simulated using an aug-

mented Lagrange multiplier technique. Fracture instability is initiated via a perturbation source like fluid

injection near the discontinuity, causing a stick to slip transition and leading to a sudden release of energy.

Acoustic emissions, triggered through a sudden release of strain energy at the discontinuity interface due to

shear failure, are simulated. It is shown that the PNM-GFEM-M results in more spurious-oscillation-free

AEs compared to standard finite element approaches because it suppresses numerical dispersions of acoustic

signals in both velocity and pore pressure fields. Using this simulation tool, the role of permeability, viscous

damping, and contact friction on AEs is more clearly illustrated.

2. Mathematical Formulation

The differential equations governing the interaction of solid and fluid phases in porous media are obtained

from Biot’s mixture theory based on the concept of volume fractions for each phase.

2.1. Governing Equations

A two-dimensional poroelastic medium, Ω in Cartesian coordinate Oxy is considered. Let u(x, y, t) denote

the displacement vector of the total mixture. For the sake of completeness, the well-established formulation

of mixture theory of poroelasticity is given below.

The linear strain-displacement relation in infinitesimal deformation is

ε =
1

2
(Ou+ (Ou)T ) (1)
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The constitutive equation for the solid matrix is given by:

σ′ = C : ε (2)

in which σ′ is the effective stress tensor acting on the solid skeleton, and C is the elastic stiffness tensor.

The relative motion of the fluid phase with respect to the total mixture is denoted by wi(x, t). To arrive

at a two-field model, it is assumed that the relative acceleration of the fluid phase with respect to the total

mixture is negligible, i.e., ẅi = 0. This assumption has been shown to be appropriate for loading conditions

up to earthquake frequencies for the saturated porous media [37, 41]. The momentum balance of the total

mixture is:

O · σ − ρü+ ρb = 0 (3)

in which ü denotes the acceleration of the mixture, σ is the total stress, ρ is the average mixture density,

and b is the body force acting on the mixture.

The average density of the mixture is defined as a weighted summation of solid and fluid phases densities

ρ = n′ρf + (1− n′)ρs (4)

in which ρf and ρs are the density of fluid phase and solid skeleton, respectively, and n′ is the porosity of

the media.

The total stress of the mixture is defined as a combination of the stress acting on the solid phase and the

pore pressure:

σ = σ′ − αppI (5)

where p is the fluid pore pressure, I is the identity tensor, σ′ denotes the effective stress acting on the solid

skeleton, and αp is Biot’s coefficient.

Neglecting the relative acceleration of the pore fluid with respect to the mixture, the generalized Darcy

relation can be obtained from conservation of momentum of the fluid phase:
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−Op−R− ρf ü+ ρfb = 0 (6)

in which R is the averaged viscous drag force acting on the fluid defined by the Darcy seepage law:

ẇ = kfR (7)

where kf is the permeability tensor of the porous media.

The Eulerian continuity equation of the fluid phase can be written as:

O · ẇ + αO · u̇+
ṗ

Q
= 0 (8)

in which 1/Q = (α− n′)/Ks + n′/Kf , and Ks and Kf are the bulk moduli of solid and fluid phases, respec-

tively.

The relative velocity of the fluid phase with respect to the mixture (i.e., w) may be eliminated from (8)

using (6) and (7) resulting in

O · kf [−Op− ρf ü+ ρfb] + αO · u̇+
ṗ

Q
= 0 (9)

Equations (3) and (9) are the governing differential equations of the problem for the unknown displacement

and pore pressure fields[37].

2.2. Weak Formulation of the Governing Differential Equations

Consider a porous media Ω with boundary Γ. Boundary Γ comprises of Γu, Γt, Γp, and Γw, which

represent the boundary surfaces for prescribed displacement, traction, pore pressure, and out-flow flux of

fluid, respectively. Domain Ω contains internal interfaces denoted by Γd.

A weak formulation of the coupled system of equations (3) and (9) may be developed using appropriate

test functions, δu and δp. The problem to be solved is to find u(x, y, t) ∈ U and p(x, y, t) ∈W such that

∫
Ω

σ : δε dΩ +

∫
Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ +

∫
Γd

t̄d · δ[[u]] dΓ = 0,∀δu ∈ U0 (10)
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Figure 1: Decomposition of a cracked element into two superimposed paired elements with original real and
additional phantom nodes in the PNM. Original real nodes and additional phantom nodes are shown by
solid and hollow circles, respectively. The shaded region of each superimposed element represents the active
portion of those elements.

∫
Ω

Oδp · kfOp dΩ +

∫
Ω

Oδpkf · ρf ü dΩ +

∫
Ω

δp αp O · u̇ dΩ +

∫
Ω

δp 1/Q ṗ dΩ−

∫
Ω

Oδpkf · ρfb dΩ +

∫
Γw

δp(ẇ · nΓ) dΓ−
∫

Γd

δp[[ẇ]] · nΓd
dΓ = 0,∀δp ∈W0 (11)

in which U ,W , U0, and W0 are appropriate function spaces. The jump in the displacement field across the

discontinuity surface is denoted by [[u]], and [[ẇ]] is the discontinuity of fluid flux into the crack interface from

either crack face. t̄d denotes the internal applied traction (e.g., contact force) on the internal discontinuity Γd.

3. Finite Element Formulation

3.1. Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-M)

To model a discontinuity in the displacement and pore pressure fields within a fractured element, the

Phantom Node Method (PNM) [31] is employed to achieve a discontinuous interpolation of the fields. This is

accomplished using two superimposed paired elements with original real and additional fictitious/phantom

nodes. In this framework, each element cut by a crack is replaced by two superimposed continuous elements

with real and additional phantom nodes, as shown schematically in Figure 1. Despite their name, phantom

nodes, are real nodes of the finite element mesh and as such have their own displacement and pressure

degrees of freedom. Each of the superimposed elements are divide by the fracture into active and inactive

parts. The active part of each superimposed element models a different side of the fracture. Also, based

on the general idea of PNM-GFEM method [30], trigonometric enrichment basis functions [28] are used to

enrich the approximation functions to suppress the non-physical numerical dispersions that can appear in

dynamic response of regular FEM solutions.
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3.1.1. Displacement field discretization

For a cracked element in a porous media, the PNM-GFEM [30] interpolation is employed to approximate

the displacement in the x and y directions, i.e.,

ux(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ1
I(x, y)uIx(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ1
I(x, y)uIx(t)

)
(12)

uy(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ2
I(x, y)uIy(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ2
I(x, y)uIy(t)

)
(13)

in which H(·) is the step function and S1 and S2 are the sets of nodes corresponding to each of the two

superimposed elements. Each of the two superimposed elements contains original real nodes and additional

phantom nodes. The location of the discontinuity inside an element is defined by a level set function such

that f(x, y) = 0 specifies the discontinuous surface. ψ1
I and ψ2

I are the arrays of conventional and enriched

basis functions of node I for the displacement components in x and y directions, respectively. Vectors of

corresponding conventional and enriched displacement degrees of freedom for node I in the x and y directions

are respectively denoted by uIx and uIy, as shown below.

ψ1,2
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(14)

u>Ix = [uIx(0,0), u
Cx

Ix(1,0), ..., u
S−
Ix(n,m)] (15)

u>Iy = [uIy(0,0), u
Cx

Iy(1,0), ..., u
S−
Iy(n,m)] (16)

In the above formulation ψI(0,0) = NI denote regular Lagrangian interpolation functions and ψγI(kx,ky) =

NIφ
γ
(kx,ky) are the GFEM interpolation functions in which φγ(kx,ky) with the corresponding superscript denotes

the following trigonometric basis functions:

φCx

(kx,0) = cos(
2πkxx

Λx
), φSx

(kx,0) = sin(
2πkxx

Λx
),

φ
Cy

(0,ky) = cos(
2πkyy

Λy
), φ

Sy

(0,ky) = sin(
2πkyy

Λy
)

φC+
(kx,ky) = cos(

2πkxx

Λx
+

2πkyy

Λy
), φS+

(kx,ky) = sin(
2πkxx

Λx
+

2πkyy

Λy
)
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φC−(kx,ky) = cos(
2πkxx

Λx
− 2πkyy

Λy
), φS−(kx,ky) = sin(

2πkxx

Λx
− 2πkyy

Λy
)

where kx and ky are the wave numbers varying from 1 to n and 1 to m, respectively. n and m are the integer

cutoff numbers for enrichments in x and y directions, respectively.

3.1.2. Pore pressure field discretization

Following the general idea of the PNM-GFEM, in the case of impervious crack faces (i.e., discontinuous

pore pressure field), the pore pressure approximation in fractured elements is

p(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ3
I(x, y)pI(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ3
I(x, y)pI(t)

)
(17)

in which ψ3
I denotes the set of conventional and enriched interpolation functions for the pore pressure

variable, and pI is the vector of corresponding regular and enriched, phantom or real pore pressure degrees

of freedom for node I.

ψ3
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(18)

3.2. Discretized mixed finite element equations

Semi-discretized system of equations can be developed by substitution of the specified displacement

interpolation functions (12)- (13) and pore pressure field (17) in the weak form (10)-(11):

nnode∑
J=1

(
[Me]11

IJ üeJx + [Ke]11
IJueJx + [Ke]12

IJueJy + [Ke]13
IJpeJ

)
= FeIux

, (I = 1, ..., nnode) (19)

nnode∑
J=1

(
[Me]22

IJ üeJy + [Ke]21
IJueJx + [Ke]22

IJueJy + [Ke]23
IJpeJ

)
= FeIuy

, (I = 1, ..., nnode) (20)

nnode∑
J=1

(
[Me]31

IJ üeJx + [Me]32
IJ üeJy + [Ce]31

IJ u̇eJx + [Ce]32
IJ u̇eJy+

[Ce]33
IJ ṗeJ + [Ke]33

IJpeJ

)
= FeIp, (I = 1, ..., nnode) (21)

in which nnode is the number of nodes in each of the two superposed elements 1 and 2, and includes both

original real and fictitious/phantom nodes. In an element crossed by a crack, the definitions of [Me]IJ ,

[Ce]IJ , [Ke]IJ , FeIux
, FeIuy

, and FeIp in (19), (20), and (21) for each of the superimposed elements, i.e., e=

1 or 2, are given in the Appendix.
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The semi-discretized coupled hydro-mechanical poro-elastic finite element equations (19), (20), and (21)

can be rewritten in a more compact form as:

[M ]
{

∆̈
}

+ [C]
{

∆̇
}

+ [K] {∆} = {F} (22)

where {∆} = {ux uy p}> is the vector of unknown nodal values for displacement and pore pressure degrees

of freedom in the porous media, and {F} =
{
Fux

Fuy
Fp
}>

is the vector of mechanical forces and flow

fluxes.

The G22 and G11 generalized Newmark implicit schemes are employed for time integration of displace-

ment and pore pressure degrees of freedom, respectively. To this end, the values of the first- and second-order

time derivatives of the variables at time step (i+ 1) are represented in terms of the corresponding values of

the variables at the current time step (i) and unknown values of the variables at time step (i + 1) through

the following relationships:

ṗi+1 =
1

θ∆t
(pi+1 − pi)− (

1

θ
− 1)ṗi (23)

u̇i+1 =
γ

β∆t
(ui+1 − ui)− (

γ

β
− 1)u̇i −∆t(

γ

2β
− 1)üi (24)

üi+1 =
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi (25)

where γ, β, and θ are the integration parameters that are set to be 0.7 in the numerical examples of the

present work to preserve the unconditional stability condition of the time integration [41]. However, due

to the transient nature of wave propagation, sufficiently small time steps need to be considered to obtain

converged results.

4. Interface simulation

Geomechanical formations experience huge amounts of overburden and horizontal in-situ stresses leading

to significant normal and frictional contact forces acting along natural and induced fractures and faults. In

the context of the partition-of-unity finite element a noticeable amount of research has been dedicated to the

imposition of inter-facial constraints [38, 39, 40, 41]. In this work, a stable augmented Lagrange multiplier

approach is adopted to enforce the frictional contact via an iterative method.
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Accounting for the contact force contributions, the weak form (10) is transformed as:

∫
Ω

σ : δε dΩ +

∫
Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ−
∫

Γd

λ̄NgNdΓ−

∫
Γd

λ̄T gT dΓ = 0 (26)

Normal contact traction, normal inter-penetration, tangential contact frictional traction, and tangential slip

across the interface are denoted by λ̄N , gN , λ̄T , and gT , respectively.

One-dimensional elements are used along the interface to interpolate the contact force/Lagrange multi-

plier fields:

λ̄N = Ñλ̄N and λ̄T = Ñλ̄T (27)

Here, Ñ denotes linear one-dimensional Lagrangian shape functions, and
(
λ̄N , λ̄T

)
are the vectors of La-

grange multiplier degrees of freedom for normal and friction contact forces. To ensure the stability of the

interface contact solution, the nodes of the Lagrange multiplier mesh are chosen using the Vital Vertex

Method [39, 40].

At each time step, ∆n+1 and
(
λ̄N , λ̄T

)
n+1

are sought using an iterative procedure. The iterative process

starts (k = 0) with an initial guess for the vector of Lagrange multipliers
(
λ̄N , λ̄T

)k=0

n+1
=
(
λ̄N , λ̄T

)
n
. Given(

λ̄N , λ̄T
)k
n+1

at iteration k, the linear fully-discretized system of equations is solved for ∆k
n+1, from which

the normal interpenetration gkN and tangential slip gkT of the crack at each node of the Lagrange multiplier

mesh are calculated. The Lagrange multiplier nodal vectors are updated if the gap norms surpass a defined

tolerance. In the case of frictional contact, interface slippage occurs, gT > 0, if the tangential frictional

contact force, λ̄T , required to prevent slip exceeds the limit λ̄maxT = λ̄Nµf (µf is the friction coefficient).

Otherwise the interface is in the stick state.

5. Results and discussion

In this section, the simulation of acoustic wave emission due to sudden release of strain energy (in shear

mode) at interface location is carried out. The domain of analysis is assumed to be a two-dimensional

isotropic-homogeneous poroelastic media with hydro-mechanical properties given in Table 1, unless stated

11



  

Table 1: Material properties of the porous media.

E(Pa) ν ρs(kg/m
3) ρf (kg/m3) n′ kf (m3s/kg) Kf (Pa) Ks(Pa)

14.516× 106 0.3 2000 1000 0.3 1.0194× 10−6 2.1× 109 1× 1020

otherwise. Based on the magnitudes considered for the bulk moduli of solid skeleton and pore fluid, the ma-

terial is compressible. It is worth mentioning that the numerical model developed in this paper is a general

computational scheme for simulation of acoustic emissions induced by shear slip on material interfaces and

can be employed for different types of materials with different inhomogeneity and anisotropy conditions and

randomness in material and geometry characteristics (e.g., randomly distributed cracks). A unit thickness is

assumed in the out-of-plane direction. It is noted that proportional damping in the form of µ1[M ] + µ2[K]

is assumed to describe the physical attenuation of waves in the solid phase of the media, in which µ1 and

µ2 are the damping coefficients corresponding to the mass and stiffness matrices of the solid phase, respec-

tively. It is important to mention that, to the best of the authors’ knowledge there is no analytic models

in the literature on acoustic emissions induced by shear failure under frictional contact condition. However,

a study is carried out below showing that the AE wave forms obtained using the developed computational

model with frictional contact at interface converge with mesh refinement. It is also noted that the numerical

method in this work (i.e., PNM-GFEM) has been well-established in a couple of recent papers (see [30, 42]).

5.1. Acoustic emission simulation due to shear failure of an interface

5.1.1. Simulation of acoustic signal

To have a better intuition about how local release of strain energy can trigger acoustic emission in a

medium, a two-dimensional domain of 1m by 0.5m is considered. A sloping crack of length 0.36m orientated

at the angle θ = 560 with respect to the horizontal direction is embedded in the medium and frictional

contact state is considered at the interface. The friction coefficient is assumed to be µf = 0.6 along the

embedded interface. The domain is discretized using 30 × 10 rectangular elements. The porous medium is

subjected to a bilateral confining stress, imposed by compressive tractions of t̄ = 10kN/m2 acting of the left

and top edges of the domain.

The geometry of the medium and the fracture, boundary conditions and the imposed loads are shown in

Figure 2. All the edges are assumed to be hydraulically drained. The simulation starts by the release of

the friction/tangential contact constraint at the interface to induce an acoustic response through the release

of energy stored in the system due to the initial in-situ stresses. Damping coefficients of the solid phase

are assumed to be µ1 = 0.01, µ2 = 0.01. The time steps size for the implicit time integration scheme is
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Figure 2: A schematic figure of fractured porous media of section 5.1.

∆T = 2× 10−4s. To investigate the dynamic response of the system, time histories of the problem variables

at point (x = 0.9667, y = 0.25) are recorded. Figure 3 shows the x-velocity signal due to the release of

friction at the interface using regular PNM and enriched PNM-GFEM. The enriched model gives a more

oscillation-free acoustic signal. As seen in Figure 3b, the non-physical oscillations that appear in regular

PNM simulation of the velocity signal are effectively inhibited using the enriched model (i.e., PNM-GFEM-M

model).

The pore pressure time signal of the acoustic emission is shown in Figure 4 for regular and enriched finite

element simulations. It is clear in this figure that using the enriched FE model results in acoustic data which

is free of high-frequency oscillations at the signal’s peak.

Figure 5 illustrates the effect of damping coefficients on the acoustic response of the system. The results

are obtained by changing the damping coefficients of the solid phase. Enriched models are used with (n = 1).

As seen in this figure, the high-frequency components of the signal are dissipated very quickly by increasing

the physical damping of the solid skeleton.

To have a better understanding about the spectral/frequency contents, a Fast Fourier Transform (FFT)

is employed to acquire the frequency spectrum of the signal, as shown in Figure 6. The high-frequency com-

ponents of the signal are dissipated by increasing the damping coefficients. However, unlike the magnitude

spectrum, the peak frequencies of the spectrum (i.e., frequencies associated with peak magnitudes) do not
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Figure 3: Time history of x-velocity at point (x = 0.9667, y = 0.25) using regular and enriched PNM models.

Figure 4: Time history of pore pressure signal at point (x = 0.9667, y = 0.25) using regular and enriched
models.
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Figure 5: Effect of the damping values on the time history of acoustic signal at point (x = 0.9667, y = 0.25).

seem to be significantly affected by the damping magnitudes of the solid skeleton.

Effect of permeability on the acoustic signal

To assess the effect of the permeability of porous media on acoustic response, the case study shown

schematically in Figure 2 is considered. Figures 7 and 8a show, respectively, plots of x-displacement and

x-velocity versus time at point (x = 0.9667, y = 0.25) for various values of permeability. As seen in these

figures, the lower the permeability the smaller the peak amplitudes of the acoustic signal. This behaviour

can be attributed to the inversely proportional correlation between permeability and viscous damping in

porous media which results in more energy dissipation in low-permeability materials. Also, as seen in the

figures, the dynamic behaviour of lowest permeable domain cases exhibits the highest frequencies in the

induced signal. This can be explained by the fact that the behaviour of the lower permeable domain is

more undrained. Figure 8b gives a close-up of the time history presented in Figure 8a. By decreasing the

amount of permeability (i.e., getting close to material incompressibility condition) the time signal (mixed

finite element solutions in general) gets more vulnerable to numerical dispersions and prone to showing

spurious oscillations. As observed in Figure 8b, the non-physical oscillations that are stimulated in regular

finite element simulation of the low-permeable case can be eliminated through the enriched finite element
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Figure 6: Frequency domain response of the acoustic signal of figure 5.

model (i.e., PNM-GEFM-M) with (n = 1).

5.1.2. Acoustic wave pattern

To visualize the pattern of an acoustic wave propagation under shear failure, a porous domain of size

3m × 3m is considered. A single fracture is embedded at the center of the domain which is 0.1m in length

and is orientated at the angle of 45o with respect to the horizontal direction. The friction coefficient of the

interface is assumed to be µf = 0.6 and the damping coefficients of the solid phase are µ1 = µ2 = 0.001.

Confining tractions of t̄ = 10kN/m2 and t̄ = 5kN/m2 are imposed at the left and top surfaces, respectively.

The domain is discretized using 90 × 90 rectangular elements. Simulation starts at t = 0.0s by releasing

the friction condition at the interface. Figure 9 demonstrates consecutive snapshots of x-velocity contours

at some time steps. Transient propagation pattern of the acoustic wave emission due to the induced abrupt

slip at the interface (which is followed by a sudden release of accumulated-strain-energy) is transparent in

the figures.

To have a better visual intuition about the wave propagation pattern, Figure 10 shows the absolute

velocity (i.e.,
√

(u̇x)2 + (u̇y)2) contours of the same problem at several time steps after the acoustic emission

is triggered, using a 180 × 180 mesh resolution. Symmetric pattern of the wave propagation with respect

to the shear failure (fracture) direction is apparent in the snapshots. Due to the attenuation of the porous
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Figure 8: Time history of x-velocity acoustic signal for various values of permeability.
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  (a) t = 0.0008s (b) t = 0.0023s

(c) t = 0.0030s (d) t = 0.0038s

(e) t = 0.0045s (f) t = 0.0053s

(g) t = 0.0060s (h) t = 0.0068s

Figure 9: x-velocity contour of acoustic wave propagation under shear failure.
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media (in both phases), the velocity magnitude decays as the wave travels in the medium. Figure 11 shows

the wave pattern at time t = 0.0047s in a three-dimensional perspective from a different (angled) view.

Role of material damping

To investigate the effect of material viscous damping on the microseismic response in porous media,

Figure 12 illustrates acoustic wave propagation pattern in a 6m× 6m domain with a fracture of length 0.2m

located at the center of the domain and with an orientation of 45o from the horizontal direction. Confining

tractions of t̄ = 10kN/m2 and t̄ = 5kN/m2 are applied at the left and top surfaces, respectively. In this

case, lower damping coefficients (µ1 = µ2 = 0.00005) are considered for the analysis compared to those

assumed in the previous example. Comparing the results obtained for µ1 = µ2 = 0.001 in Figure 10 and

µ1 = µ2 = 0.00005 in Figure 12 shows that in the case with higher viscous damping the wave contours are

overly-diffusive with very smoothly varying front. Unlike the case with high attenuation, the wave impulse

in the low viscosity domain has a highly-transient pattern with a sharp wave front due to the high-frequency

components of the dynamic response. It is noted that the high-frequency contents get dissipated by increasing

the physical damping of the system which contributes to more diffusive wave patterns and results in losing

the highly-transient behaviour and the sharp wave front.

Microseismic emission from multiple cracks and coalescence of waves

We consider the domain that was assumed in the previous example with the same loading condition and

characteristics. In this case two identical sloping cracks (with the same length and direction as the previous

example) are embedded in the medium as shown in Figure 13. The process of concurrent acoustic emissions

from the fractures, and interaction of the emitted waves are illustrated in Figure 13 through snapshots of

the velocity contours in some time steps.

To show the versatility of the method in modeling multiple randomly-distributed cracks, Figure 14

illustrates the AE patterns induced by shear slip on three discontinuities at t = 0.005s. The same in-situ

stress and boundary conditions as the previous example are considered. The poroelastic domain is assumed

to be 3m× 3m.

Discretization sensitivity

In this part the sensitivity of the discretization of the developed model in the simulation of induced AEs

is assessed. To this end, a porous media of size 3m× 3m is considered with a single fracture of length 0.2m

located in the center of the domain and oriented at the angle of 45o with respect to the horizontal direction.

The same in-situ stresses, boundary conditions, and material properties as the previous example are assumed.
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  (a) t = 0.0015s (b) t = 0.0022s

(c) t = 0.0030s (d) t = 0.0037s

(e) t = 0.0045s (f) t = 0.0052s

(g) t = 0.0060s (h) t = 0.0067s

Figure 10: Absolute velocity contours of acoustic wave propagation under shear failure with viscous damping
coefficients µ1 = µ2 = 0.001 .
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Figure 11: Absolute velocity wave pattern of acoustic emission at t = 0.0047s.

Figure 15 illustrates AE wave patterns at t = 0.01s for different meshes. As seen, the amplitude of the wave

pulse converges with mesh refinement.

5.2. Acoustic emission due to injection-induced slip instability

A 1m by 0.5m porous medium discretized by 30 × 10 rectangular elements is considered. The domain

is assumed to be under the effect of a bilateral confining tractions of 2kN/m2 on the left and top edges. A

0.36m long inclined crack is embedded at the angle of θ = 560 with respect to the horizontal direction. The

friction coefficient is assumed to be µf = 0.8. Damping coefficients of the solid skeleton are considered as

µ1 = 0.1, µ2 = 0.1. The domain, the fracture, and applied loads are depicted in Figure 16. A PNM-GFEM-M

model with n = 1 is used with time step size of ∆t = 1ms.

The simulation commences by applying a constant fluid flux injection of q = 0.1m3/s at the center of the

domain at t = 0.0s. Prior to applying the injection, strain energy is stored in the system due to the initial

stress caused by confining tractions and the frictional contact at the interface of the fracture.

Due to injection of the fluid, a sudden slip between fracture faces occurs along the interface. This

abrupt transition from a stick condition to a slip situation induces an AE response- the rapid release of

strain energy results in the stimulation of inertia effects. Figure 17 depicts the acoustic signal at point

(x = 0.9667, y = 0.25) induced by the injection perturbation. As seen in this figure, in the case in which

there is no frictional resistance/contact at the fracture interface (i.e., when µf = 0.0), no acoustic behaviour

is observed in the dynamic response of the system, which is quite rational and expected. In the case of
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  (a) t = 0.0050s (b) t = 0.0100s

(c) t = 0.0200s (d) t = 0.0300s

(e) t = 0.03500s (f) t = 0.0400s

(g) t = 0.0450s (h) t = 0.0500s

Figure 12: Absolute velocity contours of acoustic wave propagation under shear failure with viscous damping
coefficients µ1 = µ2 = 0.00005 .
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(a) t = 0.0050s (b) t = 0.0100s

(c) t = 0.0150s (d) t = 0.0200s

(e) t = 0.0250s (f) t = 0.0300s

Figure 13: Absolute velocity contours of acoustic wave propagation due to double shear failures and inter-
action of emitted waves.
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Figure 14: Absolute velocity contour of AE wave pattern induced by shear slip instability of multiple
randomly-distributed fractures at t = 0.005s.

µf = 0 (no friction and therefore no stick condition under the in-situ stresses), unlike the frictional contact

case, there is no sudden transition from a stick to a slip state. This is why no acoustic response is seen in

the case of frictionless interface.
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(a) 80× 80 elements (b) 135× 135 elements

(c) 180× 180 elements (d) 200× 200 elements

Figure 15: Mesh-sensitivity study of an AE wave pattern obtained using the enriched model with n = m = 1.
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Figure 16: A schematic figure of fractured porous media under confining tractions and point injection at the
middle, considered in section 5.2.
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Figure 17: Acoustic signal at point (x = 0.9667, y = 0.25), induced due to a sharp switch from stick to slip
condition at the fracture interface under injection.
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6. Conclusion

Acoustic emission (AE) induced by shear failure and slip along fractures in porous media is simulated and

the role of permeability, interface friction and other system characteristics on the AE are studied. To model

interface (e.g., fracture or fault) in continua, Phantom Node Method (PNM) is used in conjunction with

global Generalized Finite Element Method (GFEM) harmonic enrichment functions to solve dynamic/wave

propagation problem. A seismic emission is triggered by the sudden release of strain energy, which occurs

due to an abrupt switch from a stick to a slip condition (localization) in the form of interface snap-through

instability/bifurcation. The required perturbation for instability stimulation at the interface is provided

through an external excitation such as fluid injection in the vicinity of the fracture under confining stresses

and frictional contact conditions.

Effects of hydro-mechanical characteristics such as viscous damping parameters of the solid phase, per-

meability of porous media, and interface friction on AE are assessed based on the numerical simulations

performed using the proposed computational model. It should be noted that there was no available data

in the literature to use for conducting comparison studies on shear slip-induced AE results of this work.

Therefore, further research studies (numerical and experimental) should be carried out as scientific supports

for the conclusions of this paper. Based upon the simulation results of the method introduced in this paper,

it is found that the acoustic response in lower permeability cases shows higher frequency and lower amplitude

signals. Increasing the damping magnitude significantly affects the spectral contents of the acoustic signal

by attenuating the high-frequency components and decreasing the corresponding magnitudes. By increasing

damping, the acoustic emission pattern changes from the state of very transient wave propagation to overly-

diffusive (diffusion-dominated) response. Also, it is shown that the magnitude of induced acoustic signal is

directly dependent on the friction coefficient at the interface. The superiority of the enriched mixed finite

element model in simulation of acoustic waves and suppressing the spurious oscillations in pore pressure

and velocity time signals that appear in acoustic simulations using regular finite element approach is also

demonstrated.

As shown throughout the article, the proposed PNM-GFEM-M numerical model is a very promising

computational approach for simulation of localization-induced acoustic/seismic waves in fractured porous

media. However, many items need to be tackled in future studies to move towards more practical acoustic

emission simulations. In this study we mostly focused on showing the capability of the numerical scheme

in simulation of acoustic waves induced by local abrupt release of energy in porous media and did not
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concentrate on interface constitutive modeling of failure and weakening. This article does not focus on the

effectiveness of the methodology in terms of computational costs for large-scale problems. Hence, future

research works should focus on solving large scale problems in practical applications like earthquakes and

microseismic monitoring in hydraulic fracturing. These work demonstrate a corolation between acoustic

events observed in experiments and microscale fracturing and damage processes. Lastly, since in many

practical applications AEs are triggered and propagated in three-dimensional spaces, the extension of the

current two-dimensional model to three-dimensional would be of great value.
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FeIux
=

∫
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in which e is either 1 or 2 for the superimposed elements one and two, respectively, and ste, s
d
e , and swe are

the portions of superimposed element e on the traction boundary Γt, discontinuity surface Γd, and fluid

flux boundary Γw, respectively. t̄dx and t̄dy are the components of contact tractions in x and y directions,

respectively.
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• Presentation of improved methods for the simulation of acoustic emission in fracture porous media. 

 

• Presentation of the first application of the combination of the Phantom Node Method (PNM) and 

Generalized Finite Element Method (GFEM) to model instability induced wave propagation in fractured 

porous media. 

 

• Illustration that GFEM enrichment with suitable trigonometric functions can significantly reduce 

the spurious oscillations which appear in FEM simulations of acoustic emission. 

 

• Presentation of an Augmented Lagrangian Method to implement contact and stick-slip friction 

between fracture surfaces, in the context of the PNM and the PNM-GFEM-M for simulation of fracture 

reactivation. 


