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Abstract  

PURPOSE 

The purpose of this study is to investigate the impact varying the limbal clearance 

(LC) has on the clinical performance of scleral lenses and the levels of inflammatory 

mediators in the tear film of keratoconic patients. The specific aims of each chapter 

are outlined. 

In Chapter, 3 a group of keratoconic patients were fitted with a scleral lens of both 

high and low LC, with a constant CCC. 

In Chapter 4, the subjective response, ocular response and clinical performance of 

scleral lenses having varying LC were investigated. 

In Chapter 5, the changes in the level of inflammatory mediators in the tear film of 

keratoconic patients with scleral lenses wear with varying LC were determined. 

In Chapter 6, the association between clinical performance and tear cytokine 

changes that varied with scleral lens wear with low and high LC was discussed. 

METHODS 

For Chapter 3: based on the corneal sagittal depth at a chord of 15.0mm, 

participants were fitted with two sets of scleral lenses with the same central sagittal 

depth and varying limbal clearances (LC) which differed by 50µm. Lenses were worn 

in a randomly assigned order for a two-week period. Lens fitting parameters including 

central and limbal clearances were measured with the Visante™ OCT and compared. 
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In Chapter 4: visual analog scales were completed concerning vision, comfort, 

burning and dryness. Corneal and conjunctival responses to lens wear, such as limbal 

and bulbar hyperemia, corneal swelling based on pachymetric values, and corneal 

staining as seen on biomicroscopy were observed and compared. 

In Chapter 5: tear samples were collected from both the inferior tear meniscus using 

the flush tear method, and from the pool of tears in the bowl of the inverted scleral 

lens using a microcapillary tube. Subsequently, tear cytokine analysis was performed 

using a multiplex electro-chemi-luminescent array (Meso Scale Discovery, Rockville, 

MD) instrument. Levels of IL-1, -6, -8, TNF-α, MMP-1 and -9 were compared using a 

Student t-test statistical analysis. 

In Chapter 6: correlations between cytokine levels and clinical parameters using the 

Pearson correlation coefficient (r) were performed. P values of less than 0.05 and p 

less than 0.10 for tear data were considered to be statistically different. 

RESULTS 

In Chapter 3, 11 subjects (22 eyes) were fitted with scleral lenses of a sagittal depth 

of 4.539±0.240mm for low LC and 4.550±0.243mm for high LC (p=0.877). There 

was no difference in CCC between low and high LC (p=0.671 for initial CCC, and 

p=0.475 for final CCC). The initial limbal clearances, before lens settling were 159.9 

±45.02µm for low the low LC lenses, and 194.07±66.10µm for high LC lenses 

(p<0.05). The final limbal clearances, after lens settling, were123.74±56.68µm and 

167.31±69.75µm for the low LC and high LC lenses, respectively (p=0.006). There 
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were significant differences between the nasal and temporal limbal clearances, with 

more clearance found temporally (p<0.001).  

In Chapter 4, compared to baseline, both low and high LC lenses resulted in 

improved subjective responses (p=0.07 low LC, p<0.01 high LC for overall comfort). 

Greater comfort was reported with scleral lenses with high LC (p=0.013 for comfort, 

p<0.01 for dryness, p=0.08 for burning) compared to low LC. There was no difference 

in limbal and bulbar hyperemia between high and low LC lenses. Corneal swelling 

was noted in all corneal locations and especially at the 6mm zone where there were 

significant differences for both low and high LC lenses compared to baseline 

(p=0.004, and p=0.039, respectively). Corneal response to scleral lens wear with 

either low or high LC appears to result in either peri-limbal staining or negative 

corneal staining. 

In Chapter 5 the median volume of tears collected from the flush tear collection was 

1.0 µL (Range 0.2 to 6.0 µL). The median volume of tears collected from the post-

lens tear film was 5.0 µL (Range 0.2 to 10.0 µL). A statistically significant difference 

was noted between sample volumes from either collection method (both, p<0.05).  

Significant differences at the p<0.10 levels were found comparing low and high LC 

with - TNF-α, MMP-1 and MMP-9 (all p<0.10) from the samples taken from the lens 

bowl. Scleral lenses with high LC were associated with increased levels of IL-1β, TNF-

α, and MMP-1 and decreased levels of MMP-9. 
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In Chapter 6, there was a statistically significant correlation between changes in LC 

and peripheral corneal thickness in the inferior quadrants. With high LC, a correlation 

was noted between IL-6 and IL-8 levels.  

CONCLUSIONS 

This study illustrated how low and high LC can vary the clinical performance of scleral 

lenses and physiological responses of the ocular surface in a keratoconic population. 

The clinical changes, such as hyperemia, corneal thickness, and corneal staining, and 

subclinical responses in tear cytokine levels are associated with hypoxic and 

mechanical etiologies. Eye care practitioners must take into consideration individual 

patients’ ocular condition when determining the ideal limbal zone fitting parameter.  
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Chapter 1 

Literature Review on Keratoconus and Scleral Lens 

1.1 Keratoconus 

The term, keratoconus (KC), is derived from two Greek words, kerato as in cornea 

and konos as in cone, which describe the cornea taking on a conical shape.
1

 This 

condition has been reported to affect 2 to 5.4 people in every 10,000.
2–4

 However, 

with new understanding and redefined diagnostic thresholds, the prevalence and 

incidence might be significantly greater.
5

 Clinically, KC is recognized as a bilateral, 

but asymmetric, non-inflammatory corneal ectatic disease.
1,3,6–9

 

1.1.1 Signs and Symptoms  

Abnormal corneal thickness distribution is a key criterion in the diagnosis of KC.
9

 As 

the cornea thins irreversibly, the biomechanical stability of the cornea is challenged 

and both the anterior and posterior corneal surfaces steepen in curvature (i.e. the 

radius of curvature reduces), taking on a conical shape.
4

 This altered corneal 

thickness profile and abnormal corneal topography are detectable, particularly in 

early stages, by corneal tomography
10–12

 and placido-ring-based topography. 
4

 

Topographic elevation maps may reveal changes in the posterior cornea prior to that 

in the anterior cornea in early KC, as seen in Figure 1-1.
9

 The pattern of corneal 

thinning also allows for the differential diagnosis of KC with other corneal ectatic 

diseases.
9

 

In refractive terms, the corneal protrusion or ectasia results in an increase in myopia 

and the development of corneal astigmatism. The astigmatism is typically with-the-

rule or oblique, and is non-orthogonal or irregular.
2,9

 Due to the bilateral, but 
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asymmetric, nature of the condition, the change in the refractive astigmatism, both 

in axis orientation and amount, will be different between right eye and left eye, with 

one eye leading and the other lagging behind in progression. Changes in the corneal 

thickness and curvature profile of the tissue produce higher order aberrations, 

resulting in a reduced best-corrected visual acuity, and symptoms of glare, haloes, 

monocular diplopia, and photophobia.
9,13

 

 

Figure 1-1: Topography of a Keratoconic Cornea. In the top two maps, elevation of 

anterior (top left) and posterior (top right) corneae are shown where red and warmer colors 

represent increased elevation compared to a best-fit sphere. In the bottom left map, a 

tangential curve reveals an inferior oval cone where steepened curvature is represented by 

red and warmer colors. 

 

The presence of clinical signs may be observable through slit-lamp biomicroscopy. 

KC results in tissue changes at all levels of the cornea,
14

 and will vary depending on 
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the severity of the condition. With increasing severity, the following are the changes 

that are observed: 

1. In the earliest stages of KC, mild asymptotic tissue and topographical changes 

will present, such as a shift in the corneal apex and slight corneal steepening 

with a change in astigmatism.
15,16

 This subclinical stage of the ectatic disease 

is known as forme fruste KC.   

2. As the cornea begins to steepen and take on the shape of a cone, iron (or 

hemosiderin) deposits from the tear film will accumulate in the corneal 

epithelium at the base of the cone (that is at the junction of the thinned and 

thicker cornea) to form the diagnostic feature known as a Fleischer’s Ring, as 

seen in Figure 1-2A.
4,17–19

 

3. Vogt’s striae (Figure 1-2B) is indicative of KC of moderate severity. This occurs 

in 8.3% of KC cases due to stromal thinning caused by a significant loss of 

collagen fibrils, an increase in extracellular matrix (proteoglycans), and a 

decrease in keratocytes in the anterior stroma.
14,19–21

 This causes vertical 

creases, or wrinkling, of Descemet’s membrane as the layer collapses on 

itself.
22,23

 This clinical sign is observed to occur in an orientation which is 

parallel to the axis of the cone.
4

 Furthermore, loss in collagen fibrils occurs 

also at the level of Bowman’s layer resulting in breaks.
19

 At this moderate stage 

of KC, corneal hysteresis (the ability of the tissue to absorb and dissipate force 

applied onto it), decreases as the condition advances.
19,24

 

4. In later stages, when the KC is more obvious due to the cornea is protruding, 

corneal apical scarring occurs at the sub-epithelial level as a result of 
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biomechanical stress in the stromal layer, as seen in Figure 1-2C.
4

  The scarring 

presents as a wispy, fibrous appearance is noted mostly at the apex of cone.
14,20

  

5. As the cone advances some researchers have also reported the presence of 

Charleux oil droplet
4

 sign in the tissue. This phenomenon is more easily 

observed on retro illumination with biomicroscopy and mydriatic pupils.  

6. In advanced cases of KC, Munson’s sign describes the V-shaped deformation 

of the lower eyelid margin which develops on downgaze when the corneal 

protrusion distorts the lower eyelid.
14

 

7. In 3% of severe keratoconic cases, as the cornea continues to thin and weaken, 

Descemet’s layer may rupture, resulting in a breakdown of the 

stroma/aqueous barrier, leading to corneal hydrops.
4,14,25,26

  The break in the 

barrier between the aqueous chamber and the stromal tissue allows for the 

leakage of aqueous fluid into the posterior corneal layers, resulting in edema 

and, in severe cases, bullous keratopathy. Symptoms of corneal hydrops 

include a sudden onset of vision loss and a high level of pain.
27

 As the hydrops 

resolve, the swelling subsides, but the disruption in the tissue may result in 

vision-compromising scarring of stromal tissue.  

Figure 1-2A-C: Biomicroscopic signs of KC. These include Fleischer’s Ring (Left), Vogt’s 

Striae (Center), and apical scarring at the apex of the cone (Right). 
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1.1.2 Pathophysiology 

Currently, the pathogenesis of KC is still not completely understood. Gomes et al. 

have categorized the multitude of pathogenic factors in KC into four major 

components: genetics, biochemical, biomechanical, and environmental.
9

  

1.1.2.1. Genetics and Biochemistry 

A positive family history is considered a relative risk factor for KC.
4,28

 The prevalence 

of KC in first-degree relatives is 3.34%, which increases the risk by  15-67 fold.
29

 Kriszt 

et al.
30

, have indicated that KC is a non-Mendelian disease while Hauser et al.
31

 have 

suggested the inheritance pattern of KC may resemble that of autosomal dominant.  

KC has been linked to a range of genetic loci developing from single-nucleotide 

polymorphisms and mutations in chromosomes 13 through 18.
23,32–34

 Most of these 

genetic changes alter the formation and function of components in the cytoskeleton 

and extracellular matrix, as well as the signaling necessary for cell-cell and/or cell-

matrix interactions.
33

 For example, altered expression of Lysyl oxidase (LOX), a 

necessary enzyme in the natural cross-linking of collagen and elastin, contributes to 

the weakening of the bio-stability of the stromal tissue.
35

 Down-regulation of 

aquaporin-5(APQ5)
36

 affects the water-channels at the level of the corneal epithelium 

and can impact corneal wound healing. This was the first molecular defect identified 

in KC and suggests that water transport and wound healing in the human corneal 

epithelium are defective.
36

  

Contrary to clinical categorization as a non-inflammatory disorder
1

, recent tear 

analysis studies have provided a better insight on the involvement of inflammatory 
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mediators in keratoconic subjects. For example, in 1996, Pouliquen et al.
37

 suggested 

the involvement of inflammatory cytokines in the degradation of extracellular matrix. 

Contrary to clinical categorization as a non-inflammatory disorder
1

, recent tear 

analysis studies have provided a better insight on the involvement of inflammatory 

mediators in keratoconic subjects. For example, in 1996, Pouliquen et al.
37

 suggested 

the involvement of inflammatory cytokines in the degradation of extracellular matrix. 

These developments have led to the current understanding of the pathogenesis of 

KC: an abnormal expressions of cytokines and proteolytic enzymes resulting in an 

imbalance of  the formation and removal collagen in the extracellular matrix and 

increased apoptotic activity in corneal stroma.
38

 This suppressed ability for wound 

healing against reactive oxygen species and reactive nitrogen species leads to 

cytotoxicity, cell damage, and damage to mitochondrial DNA.
38,39

 The inflammatory 

cascade has been identified as an upregulation (by nearly two-fold) in proteolytic 

activity in keratoconic eyes and a decrease in the inhibition of their proteolytic 

activity.
40

  In addition, some researchers have tied the increased presence of 

inflammatory mediators with the symptoms associated with dry eye reported by 

patients with KC.
41

  

1.1.2.1.1. Cytokines 

Cytokines are glycoprotein molecules that are secreted by inflammatory cells that 

modulate the downstream inflammatory response of the tissue either directly or by 

modulating other cytokines activity.
42

 In normal corneal physiology, cytokines are 

responsible for regulating activation, differentiation and proliferation of 

inflammatory cells and mediators.
43,44

 Tear and corneal cytokines, as seen in Figure 
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1-3, change to adapt and protect tissues against exogenous factors.
4546

 However, 

prolonged inflammatory activity that deviates from homeostasis, such as in the event 

of chronic oxidative stress, tissue damage and pathology will occur.
47

 As such, tear 

film analysis of changes in levels of proteases and cytokines have helped researchers 

gain a better understanding of the pathophysiology of corneal diseases.
48

  

 

Figure 1-3: Adapted by Wisse et al
49

, an illustrated representation of cytokines in tear 

fluid, cornea tissue, and aqueous humor of those with KC. 

 

In KC, cytokine changes have been reported as the pathogenesis of KC.
41,50–53

 Some 

cytokines that have been associated with KC are listed in Table 1-1. Higher presence 

of inflammatory markers and cell adhesion molecules (e.g. ICAM-1, VCAM-1) has also 

been reported in those with KC.
50
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Table 1-1: Cytokines associated with KC. 

Cytokines 

 

Implicated Processes 

IL-1 IL-1 exists in two pro-inflammatory forms, IL-1 α and β.
54

 It is 

a potent inducer for other cytokines, IL-6, IL-8, and TNF-α55,56

, 

and stimulates production of MMP enzymes by epithelial and 

inflammatory cells.
57

 In addition, IL-1β plays a role in corneal 

wound healing by regulating of keratocyte apoptosis and 

corneal tissue organization.
58

 On the ocular surface, IL-1β can 

normally be found in its inactive form, until activated by 

proteolytic activity, such as that by MMP-9.
59

 IL-1 has been 

reported to trigger apoptosis of keratocytes.
 86, 151, 152, 160

 

Elevated IL-1 levels have been found in those with dry eye
54

, 

and has also been implicated in the pathogenesis of ocular 

surface disease, bullous keratopathy 
60

, KC
61

, and sterile 

corneal ulcer.  

IL-6 IL-6 is a pro-inflammatory mediator that is produced by 

corneal epithelial cells.
62

 IL-6 is upregulated during corneal 

injury that might occur with dry eye
63–66

, ocular allergy
62,67

, 

contact lens wear
68

, and KC
52,69–71

. IL-6 plays an important role 

in the natural defense mechanism against microbial 

infection
62

 and corneal healing, including the stimulation of 

migration of corneal epithelial cells
72,73

 and angiogenesis
74

. 

IL-8 IL-8 is a pro-inflammatory chemokine which has been 

associated with angiogenic activities by attracting 

neutrophils along the vascular wall.
56,75

 Mechanical 

stimulation by rigid corneal contact lenses has been linked 

with increased tear levels of IL-8.
76

 Il-8 is, also, involved in 

proteolytic cascade that results in breakdown of ECM in KC.
37

 

Over-expression of IL-8 has been linked with 

neovascularization, corneal ulcer formations, and formation 

of diffuse lamellar keratitis (DLK) status-post-refractive 

surgery.
 5

  

TNF-α Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory 

mediator that has been reported at elevated levels in patients 

with KC
50–52,65,70

 and dry eye disease
64,66

. Produced by corneal 

epithelial cells, TNF-α acts on vascular endothelium to 

promoting vasodilation, edema, and leukocyte recruitment.
77

 

Along with IL-6, TNF-α has hemangiogenic and 

lymphangiogenic functions and is involved in the 

inflammatory process that leads to corneal 

neovascularization.
77,78

 Finally, TNF-α is associated with 

decreased collagen synthesis, increased corneal 

degeneration, and increased apoptosis of keratocytes in 

KC.
37,79
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1.1.2.1.2. Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are a family of collagen degrading enzymes that 

play an important role in normal corneal physiology.
80

 In the cornea, MMPs are 

released by epithelial cells, stromal keratocytes, and neutrophils
81

 and they function 

to regulate cell differentiation, apoptosis, wound healing, and host defense.
82,83

 For 

example, regulation of MMP by another protein, called tissue inhibitor of MMP (TIMP-

1), is needed for biostability of the corneal epithelial basement membrane,
84–87

 and a 

normal cornea will exhibit complete inhibition of MMP-9 by TIMP-1 during an open-

eye environment.
86

 Interestingly, Fini et al.
88

 and Kenney et al.
89

 have reported no 

changes in MMP-2 and MMP-9 concentration in normal and KC corneae, but found 

decreased levels of TIMP-1 and their inhibitory regulation of MMP can explain the 

increased proteolytic activities.
40,88

 Some MMPs that have been associated with KC are 

listed in Table 1-2. In particular, higher concentrations of MMP-1
90

 and MMP-9
51,87

 have 

been found in KC. 

Table 1-2: MMPs associated with KC. 

 

MMPs 

 

Implicated Processes 

MMP-1 (Collagnase)  

 

Upregulation of MMP-1 in the corneal stroma has been 

linked with corneal wound healing
91

 and KC
90,92

. It is also 

reported to be involved in the degradation of, collagen 

types I, II, and III.
57,93

  

MMP-9 (Gelatinase B) MMP-9 is the primary, extracellular matrix-degrading 

enzyme produced by basal corneal epithelial cells and 

neutrophils.
86

 MMP-9 plays an important role in corneal 

wound healing.
94

 Moreover, it is involved in the initiation 

of the neutrophil-associated inflammatory cascade. In 

the turnover of extracellular matrix, MMP-9 is 

responsible for the degradation of collagen Type VII, a 

major component of the epithelial basement 

membrane.
80

 Up-regulation of MMP-9 has been linked 

with recurrent corneal erosion.
86
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1.1.2.2. Biomechanics 

Biomechanically, KC leads to ectatic effects in all layers of the cornea, as seen in 

Figure 1-4.
14

 Ectasia at the most superficial layer of the cornea, the epithelium, occurs 

as a result of apoptosis, as well as the degeneration of the basal cells of the 

epithelium.
4,95,96

 This oxidative stress also leads to mechanical instability which 

further leads to abnormal regulation of healing, excessive inflammation, and, in later 

stages, stromal haze.
97

 While the overall thinning is correlated to some extent with 

the severity of the condition,
98,99

 small areas of the epithelium thicken, due to 

hyperplasia, as a compensatory mechanism against the overall thinning of the 

stromal tissue. Furthermore, there is a loss of anchoring fibrils at Bowman’s layer, 

leading to breaks in the basement membrane and epithelial hyperplasia and/or 

thickening.
14,100

 At the anterior stroma, corneal nerve fibres have been observed to 

thicken.
14

 An impaired corneal sensory nerve activity may lead to dry eye symptoms 

that can present with KC.
101
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Figure 1-4: Morphological changes in all corneal layers by Sherwin et al.
14

 

 

Stromal thinning accounts for most of the thinning in KC. The stroma, which 

comprises of approximately 85% of the corneal thickness, is primarily comprises 

collagen type I. The mechanism behind the thinning is attributed to a reduction in 

keratocytes secondary to increased degradation and structural alteration in collagen 

lamellae
4,102–104

, as a result of upregulation of proteases mentioned in  Table 1-2, and 

increased keratocyte apoptosis.
4,14,58,95

 Furthermore, the formation of constituents in 

the extracellular matrix is also defective.
4

 

Vogt’s striae, or folds in Descemet’s membrane, also occur due to biomechanical 

instability.
22

 The structural changes at Descemet’s membrane have been linked to 

pleomorphism and/or polymegathism of endothelial cells.
22

 In advanced KC, 
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Descemet’s membrane may weaken and eventually rupture, causing corneal 

hydrops.
4,14,25,26

 The influx of aqueous humor into the posterior corneal layers may 

further the separation between the corneal layers.
4

 

There have been controversial reports on the effects of KC on the corneal 

endothelium. While some have noted there is a decrease in cell count due to 

apoptosis,
14,41

 others have noted an increase in cell density.
22,105

 Altered endothelial 

layer including pleomorphism and polymegathism have also been observed.
22

 

 

1.1.2.3. Environmental 

Many environmental factors that may exacerbate the pathophysiology of KC have 

been identified, in particular an increased exposure to ultraviolet radiation associated 

with an increase in oxidative stress.
38,106

 KC has also been linked to ocular allergy and 

atopic diseases, which commonly present with a habit of vigorous eye rubbing.
14

  

Although genetics play a major role in the pathogenesis of the disease, eye rubbing 

may contribute to the expression of the disease and contributes to the biomechanical 

instability of the KC cornea. The mechanical trauma to the cornea, as a result of eye 

rubbing, has been known to contribute to the expression of rep. The association has 

been attributed to increases in hydrostatic tissue pressure, corneal temperature, and 

protease activity
71

 in the corneal tissue, although the habit, alone, is not the major 

etiological cause of the condition.  

Furthermore, keratoconic patients often display dry eye symptoms and signs, 

including reduced tear quality and corneal staining.
107

 Carracedo et al have reported 

on the association between the inflammatory nature of dry eye diseases and chronic 
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corneal insult and pro-inflammatory molecules that exacerbate the pathophysiology 

of KC, such as matrix-metalloproteinase 9 (MMP-9).
50,108

 Cumulatively, these 

environmental factors may induce chronic epithelial injury that can activate a cascade 

of events involving apoptotic cytokines.
58,95,96

  

1.1.3. Management 

In the management of KC, the first line of action is to minimize the progression of 

the condition. This includes extensive patient education on how eye rubbing is 

detrimental to their condition.
9

 Younger patients may also be candidates for corneal 

cross-linking (CXL).
109

 CXL involves the photo-sensitization of riboflavin with 

ultraviolet A (UVA) light to induce the polymerization of collagen fibers found in the 

anterior 200 to 300 microns of the corneal stroma.
109–113

 CXL effectively increases the 

corneal rigidity and the biomechanical strength by three-fold.
113–115

 CXL also results in 

the simultaneous flattening of the steepest area and steepening of adjacent flatter 

areas around the cone, which decreases corneal asymmetry and spherical 

aberration.
115

   

Visual rehabilitation is a major focus in the management of KC. Since there is a 

significant degree of higher order aberrations with KC, most patients will not be able 

to obtain satisfactory vision with spectacles and regular soft contact lenses. Corneal 

rigid gas permeable (RGP) lenses are the main mode of visual correction in 

keratoconic patients.
116

 These lenses provide excellent vision correction as the fitting 

of the lens traps a tear film layer between the front surface of the cornea and the 

back surface of the lens to form a post-lens tear film. It allows the masking of higher-

order aberrations arising from the irregular corneal surface. There are several fitting 
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challenges in the use of corneal RGP lenses in the management of KC. Firstly, not all 

patients are successful in wearing corneal RGP lenses as the interaction between the 

lens and the palpebral conjunctiva of the eyelid and the eyelid margin causes 

significant lens awareness and discomfort. Secondly, the irregular corneal surface 

may increase the likelihood of the lenses becoming decentred or dislodged. Other 

modalities, including hybrid contact lenses, which a central RGP surrounded by 

peripheral skirt made of soft lens material skirt, and piggy-back systems with a 

corneal RGP lens fitted over a soft contact lens, may be able to overcome some of 

these fitting challenges. However, they present other challenges such as a difficult 

contact lens handling experience and more complex storage and care routine. In 

recent years, the use of scleral contact lenses has become a more popular non-

surgical management for corneal ectasia and ocular surface disease.
117–126

 

In 20-25% of keratoconic cases, functional vision is not attainable by means of vision 

correction. A significant reduction in best corrected visual acuities due to corneal 

scarring is the primary cause for consideration of surgical management, namely 

penetrating keratoplasty or deep anterior lamellar keratoplasty.
127

 Intra-corneal rings 

segments have also been used in the management of KC.
127,128

 These segments of 

polymethylmethacrylate plastic are inserted into stromal tunnels with the intention 

to reshape and flatten the corneal surface and improve visual acuity. 

Management of KC is summarized in Figure 1-5.  
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Figure 1-5: Management of KC summarized by by Gomes et al.
9
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1.2 Scleral Lenses 

Modern scleral contact lenses are RGP lenses with an overall diameter that is 

approximately 6mm larger than the horizontal visible iris diameter.
118,126,129

 These 

lenses are designed to rest on the sclera while vaulting over the cornea and create a 

fluid reservoir.
120,126

 The use of scleral contact lenses is becoming a more popular non-

surgical management technique for corneal ectasia, as well as, other ocular surface 

diseases.
117–126

 The post-lens fluid reservoir can provide patients with irregular 

corneae and a likely history of poor tolerance to soft contact lenses and corneal RGP 

lenses), with visual rehabilitation, corneal protection and tear conservation.
118,130

 In 

practice, these lenses may also be indicated in the correction of refractive error for 

healthy corneae.
129

 Compared to corneal RGP lenses that have a diameter of 10mm 

or smaller; scleral lenses can provide increased comfort by minimizing lid interaction 

on blinks with lens diameters from 14.3 to 18.2mm. Scleral lenses also provide 

similar or superior optics, with reduced higher order aberrations, more stable vision, 

and minimal mechanical impact on the central cornea.
120,124,126,131–133

 

1.2.1 Anatomy of a Scleral Lens 

The overall shape and anatomy of a scleral lens is divided into three zones: the central 

optic zone, the mid-peripheral or intermediate zone (that typically aligns with the 

limbal area), and the scleral landing zone. (Figure 1-6)   
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Figure 1-6: Anatomy of Scleral lens zones. 

The central optic zone maintains its position over the pupil with an underlying layer 

of fluid reservoir, also referred to as the post-lens tear film. This post-lens tear film 

is key in the clinical performance of scleral lenses. It masks the irregularities of the 

ocular surface, found with KC and other irregular corneae, allowing for superior visual 

rehabilitation for patients wearing scleral lenses.
121,122,133,134

 The post-lens tear film also 

provides protective and therapeutic benefits to those patients with severe ocular 

surface disease over other contact lens modalities, since it continuously bathes the 

compromised ocular surface with fluid.
135–137

 Finally, this post-lens tear film enables 

the scleral lenses to maintain its apposition relative to the ocular surface with a 

balance between the hydrostatic pressure to support the weight of the lens and 

negative pressure within the reservoir for lens stability.
120

  

An ideal post-lens tear film thickness is the primary goal when fitting a scleral lens. 

According to theoretical models, based on the oxygen tension of the post-lens tear 

film, excessive central corneal clearance may result in reduced oxygen 

transmissibility despite the use of highly oxygen permeable (Dk) materials and, 

thereby, induce corneal hypoxia.
138–140

 On the other hand, inadequate central corneal 

clearance may result in mechanical insult to the central corneal epithelium, as has 

been shown with flat fitting corneal RGP lenses.
141–143

 Minimal central corneal 
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clearance is necessary to provide sufficient hydrostatic pressure to maintain the 

position of the lens relative to the cornea during lens wear.
120

  

Between the central optic zone and the peripheral scleral landing zone, the limbal 

zone of the scleral lens is intended to align with and vault over the limbal area. This 

is an important area of the cornea as it houses the limbal vasculature, responsible 

for supplying oxygen and nutrients to the avascular peripheral limbal cornea and the 

limbal stem cells necessary for corneal epithelial regeneration.
144–146

 There is currently 

a lack of consensus amongst eye care practitioners as to what the ideal fitting 

relationship should be for the limbal curvature.  

Finally, the scleral landing zone is the most peripheral zone. The purpose of this zone 

is to rest on the conjunctival tissue over the sclera for support of the other lens zones. 

It should conform to the overall scleral shape for an optimal fit of perfect scleral 

alignment.  

 

Figure 1-7: A scleral lens observed with fluorescein using slit-lamp biomicroscopy. 

Central optic zone connected to the limbal clearance zone (LCC) with a “Smart Curve” and 

scleral landing zone (APS) outlined. (Photo credit: Alden Optical.)  
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1.2.2 Scleral Lenses and Indications 

The primary indication for scleral lenses is to offer an optical correction for an 

irregular cornea.
120,123,147,148

 Management with scleral lenses for irregular corneae is on 

an upward trajectory.
148

 While the scleral lens and GP lens are similar in having a post-

lens tear reservoir between the lens and the corneal surface that is able to neutralize 

irregular astigmatism and mask optical aberrations that present with distorted 

corneal topography,
121,122,133,134

 Unlike corneal RGP lenses that rests entirely on the 

cornea, scleral lens rests on the scleral conjunctiva. Thus, the apposition and 

centration of a scleral lens are not affected by a displaced corneal apex in cases of 

irregular corneae. For this reason, scleral lenses provide keratoconic patients, who 

are intolerant of other contact lens modalities, with an alternative optical solution to 

surgical interventions.
122

 For example, the number of corneal transplants performed 

in Norway for the management of KC reduced by 25% over a 3 year span following 

the adoption of scleral lens fitting.
149

 In addition, scleral lenses are utilized in the 

management of secondary corneal ectasia which includes, but is not limited to, 

corneae that have undergone penetrating keratoplasty and refractive surgery such 

as, radial keratotomy, photorefractive keratectomy, laser-assisted in situ 

keratomileusis (LASIK), and cases of corneal scarring secondary to trauma or 

infectious keratitis, provided that the endothelia of these conditions are sound.
117,119,148

  

The management of ocular surface diseases is another common indication for the 

use of scleral lenses.
117,134,147,148,150–152

 During scleral lens wear, the post-lens tear film 

provides continuous hydration for the corneal surface and is able to facilitate the 

rehabilitation of the ocular surface and protect the ocular surface from desiccation.
135–
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137,152

 As a result, these lenses are effective in therapy for conditions such as keratitis 

sicca and exposure keratopathy, cicatrizing conjunctivitis (e.g. Stevens-Johnson 

syndrome), and ocular cicatrical pemphigoid.
121,148

 Furthermore, the lens surface is 

able to provide protection for the ocular surface against mechanical irritationcaused 

by the shear force applied to the corneal surface by the upper eyelid during blinking. 

Scleral lenses have proven to be effective in the management of exposure 

keratopathy and promote corneal re-epithelization in cases of persistent corneal 

epithelial defects
150,152

 secondary to trauma or corneal dystrophies (epithelial 

basement membrane dystrophy) 
152,153

  

Scleral lenses may also be used in sports vision and for cosmetic purposes.
129

 Finally, 

prosthetic scleral lens have been used in the management of a disfigured ocular 

surface, such as aniridia and albinism.
154

 

1.2.3 Scleral Lenses and Complications 

Similar to other contact lens modalities, a good scleral lens fit must not have a 

negative impact on the ocular surface. Walker et al.
119

 categorized complications 

associated with scleral lens wear into 1) physiological responses and 2) complications 

resulting from fitting challenges. Physiological responses include infection-related, 

inflammatory, and hypoxic issues. Injection in the limbal and bulbar conjunctival 

areas are two of the most common complications associated with scleral lens 

wear.
119,126

 Injection is indicative of the presence of distress to the ocular surface.
155

 It 

has been suggested that poor central lens-cornea and lens-limbus fitting 

relationships, combined with the greater thickness of these scleral lenses, may result 

in a negative impact on the corneal and limbal physiology.
117–119

 Others have 
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suggested the presence of sub-clinical corneal hypoxia as a result of scleral lens wear, 

despite the use of lens materials with high oxygen transmissibility.
139,156,157

 On the 

other hand, mechanical etiologies of complications may arise from poor lens-ocular 

surface fitting relationships. These include conjunctival prolapse, limbal staining, 

conjunctival staining, and lens edge awareness.
119

 In all, continual efforts must be 

devoted to better understand the effect of scleral lenses on the corneal physiology, 

with the aim of developing the ideal scleral lens fitting characteristics that provide 

good comfort, good vision, and good fit. 
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Chapter 2 

Study Rationale 

2.1 Study Background 

All lines of treatment must be analyzed and assessed for their effectiveness, safety, 

and tolerability before they are utilized and recommended by medical 

professionals.
158

  

The effectiveness of scleral lenses in the management of KC is well documented. 

Scleral lenses can provide superior optics with reduced glare by creating a post-lens 

tear reservoir that masks the irregular astigmatism and higher order optical 

aberrations that present with distorted corneal topography.
121,122,133,134

 As this post-lens 

tear film continuously bathes the corneal epithelium during scleral lens wear, this 

contact lens modality is also able to provide relief from some of the dry eye symptoms 

associated with KC.
41,101,135–137

 Furthermore, scleral lens are associated with reduced 

lens awareness and greater lens comfort as they are fitted to result in minimal lid 

interaction on blink  and minimal mechanical impact on the central cornea.
120,124,131–133

 

Extensive research has focused on determining the ideal lens-corneal relationship for 

the central optic zone. The central zone must be fitted to ensure there is adequate 

post-lens tear film thickness, taking into consideration lens settling, to avoid 

mechanical insult by the posterior lens surface on the central corneal epithelial 

surface.
141–143159–161

 On the other hand, an excessive post-lens tear film thickness, 

combined with the lens thickness, may result in reduced oxygen transmission to the 

anterior cornea despite the use of highly oxygen permeable (Dk) materials, and 

thereby induce corneal hypoxia.
138–140
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Despite a suitable central fitting relationship, adverse events and ocular surface 

changes are still noted with scleral lens wear. Cases of scleral lens wearers exhibiting 

adverse limbal findings and conjunctival injection have been reported 

anecdotally.
119,126,162

 These ocular findings, as seen in Figure 2-1, include limbal 

epithelial hypertrophy, which appears as negative corneal staining in the mid-

peripheral cornea, limbal injection, and corneal edema, suggesting ocular sequelae 

of hypoxic or mechanical etiologies. This suggests that other fitting parameters, 

namely the limbal zone, may play a role in how scleral lenses interact with the ocular 

surface.  

 

Figure 2-1A-F: Fluorescein images highlight conjunctival staining (A, top left) 

diffuse epithelial irregularity (B, top right), negative staining at limbus (bottom 

left), and limbal injection (bottom right).  
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The limbal zone of the scleral lens is intended to align with and vault over the limbal 

area, an important area of the cornea which houses all the corneal stem cells 

necessary for the re-population of epithelial cells within the cornea.
146

 A poor-fitting 

relationship in the limbal zone can result in mechanical and hypoxic effects to the 

ocular environment. At this time, however, there is a lack of literature focusing on 

how the limbal zone should be fitted to provide optimal lens performance while 

minimizing the ocular sequelae.  

2.2 Scleral Lens Prescribing Trends and Complications  

To gain a better understanding on of the impact the scleral lens may have on the 

corneal physiology. A 2016 survey investigated scleral lens parameter prescribing 

trends and the frequency of various ocular health findings associated with scleral 

lens wear.
163

 The results were presented at the 2017 Global Specialty Lens 

Symposium. The following is a summary of the survey.  

2.2.1 Scleral Lenses Prescribing Trends and Complications Survey 

2.2.1.1 Purpose 

The purpose of this study was to survey scleral contact lens fitters on their 

prescribing habits and to sample the frequency of various ocular health findings 

associated with scleral lens wear in their patient population.  

2.2.1.2 Methods 

The web-based survey was self-administered electronically. Participants were asked 

about their scleral contact lens prescribing preference for overall diameter, ideal CCC 

post lens-settling and fitting goals for limbal clearance post-settling. In addition, 
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participants were asked about the proportions of their scleral lens wearing 

population encountering six corneal and conjunctival complications: midday fogging, 

conjunctival staining, limbal hyperemia, limbal staining, corneal staining and corneal 

edema, on a scale of never, then approximately 25%, 50%, 75%, or 100% of the time. 

The survey provided options for which participants had to respond based on forced 

choice.  

2.2.1.3 Results 

Nearly 200 scleral lens practitioners across North America were invited to participate 

in a web-based survey with a response rate of 47.2% (93/197). Of the respondents, 

thirteen participants did not complete the survey; and results from one respondent 

was excluded due to inadequate scleral lens fitting experience.  Of the seventy-nine 

participants with a minimum of five scleral lens fitting experiences who responded, 

the following data were compiled and summarized in Figures 2-2 A-C and Table 2-1. 

  

Figure 2-2A-C: Percentage of scleral lens practitioners prescribing trends for overall 

diameter (A), ideal CCC (B) and, ideal limbal clearance (C) 
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Table 2-1: Respondent reports of percentage of patient population exhibiting various 

ocular findings subsequent to scleral lens wear. 

Ocular Findings Mean  

Midday Fogging 26.8%  

Conjunctival Staining 26.7% 

Limbal Hyperemia 23.7% 

Limbal Staining 18.9% 

Corneal Staining 13.3% 

  

2.2.1.4 Discussion 

For the scleral lens practitioners surveyed, 15.1mm to 18mm was the most commonly 

prescribed scleral lens overall diameter. There also appears to be a good agreement 

between the scleral lens fitters on the ideal central lens-corneal fitting relationship, 

where the most common fitting goal was to achieve between 150µm and 250µm 

centrally and between 50µm to 75µm post-lens settling in the limbal zone. 

Similar to the findings in this survey, midday fogging has been reported in 20-33% of 

scleral lens wearers.
119

 This accumulation of debris in the post-lens tear film may or 

may not be visually significant. It has been attributed to excessive lift at the scleral 

landing zone.
119

  

2.2.2 Study Interpretation 

Overall, there is a good consensus amongst scleral lens fitters on ideal fitting 

characteristics for scleral lens of 15.1mm to 18mm in diameter in diameter and the 

ideal fitting characteristic for the limbal zone. The survey indicates that in both the 

central corneal zone and the limbal clearance zone, the scleral lens system should 

have a post-lens tear film to allow the posterior surface of the lens to clear over the 

ocular tissue. Despite a similar lens-ocular surface fitting relationship, limbal 
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hyperemia and staining is more commonly noted as a result of scleral lens wear than 

corneal findings.  

2.3 Protease and Cytokine Analysis  

Tear cytokines change in response to biological, pathogenic, or environmental 

factors.
48

 As such, they are biomarkers for subclinical inflammatory changes.
43,48

 

Analysis of inflammatory mediators present in the tear film has helped scientists gain 

a better understanding of the pathophysiology of complications in soft contact lens 

wearers,
164,165

 dry eye,
166

 and KC.
41,87

 Understanding how specific tear proteins change 

with scleral contact lens wear can provide a more in depth insight on its impact on 

corneal physiology.  

Prior to this thesis study, a pilot study was performed at the lab of Dr. Maria Markoulli 

at the University of New South Wales. This collaboration aimed to replicate and 

optimise a method of tear collection verified by Dr. Markoulli in earlier papers, the 

flush tear method
167

, for scleral lens wearers. The pilot study focused on those with 

normal corneae. From the tears collected, the concentration of MMP-9 and TIMP-1 

was determined using an enzyme linked immunosorbent assay (ELISA), as they are 

important in normal corneal re-epithelialization. An increase in MMP-9 has been 

linked with recurrent corneal erosions and mechanical trauma secondary to eye-

rubbing and contact lens wear.
80,84,87

  

2.4 Study Aims 

As eye care practitioners continue to fit more patients in scleral lenses, it is becoming 

increasingly important to gain a more in-depth understanding of the impact of scleral 



 

 28 

lens wear has on the physiology of the cornea. This thesis study aims to elucidate 

how varying the limbal clearances of a scleral lens may impact ocular health, both 

clinically and sub-clinically. The goal of the study is to simulate a scleral lens system 

with an overall lens diameter (between 15.1mm and 18mm) and central corneal 

clearance (between 150µm and 250µm) consistent with that preferred by most eye 

care practitioners, while isolating the limbal zone as the only changing variable. The 

clinical trial aims to evaluate how varying limbal clearance can affect the clinical 

performance subjectively and objectively; focusing on comfort, vision, hyperemia, 

and mechanical and hypoxic related complications. In addition, using the flush tear 

methods for tear collection mentioned in Section 2.3, tear cytokine analysis can 

reveal subclinical inflammatory changes in association with scleral lens wear 

designed with high and low limbal clearance.  Ultimately, results from this study will 

help clinicians determine the safety profile of scleral lens wear for keratoconic 

patients. 
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Chapter 3 

Scleral lens Fitting Procedures and Parameters 

3.1 Overview 

Purpose: To fit a group of keratoconic patients with a scleral lens of both high and 

low limbal clearance, with a constant central corneal clearance. A secondary purpose 

is to observe the impact of lens settling on limbal clearance.  

Methods: A group of keratoconic participants were enrolled according to the Tenets 

of Helsinki and with written consent. Corneal sagittal height was measured using the 

Visante OCT at a 15mm chord. The sagittal depth of the custom scleral lens used for 

each subject (Zenlens, Alden, NY) was determined by adding 0.35mm to the sagittal 

height measured. From the central sagittal depth, two sets of study lenses were 

designed with varying limbal clearances (LC) which differed by 50µm. Lenses were 

worn in a randomly assigned order for a two-week period. Lens fitting parameters 

including central and limbal clearances were measured with the Visante OCT and 

compared. 

Results: 11 subjects (22 eyes) were enrolled in the study and all were male 

participants. The sagittal height for the subjects was 3.71± 0.25mm. This produced 

a sagittal depth of 4.539±0.240mm in scleral lenses with low LC and 

4.550±0.243mm in scleral lenses with high LC (p=0.877). There was no difference in 

central corneal clearance between low and high LC (p=0.671) for initial central 

corneal clearance, and p=0.475 for final central corneal clearance). The initial limbal 

clearances, before lens settling, were 159.9 ±45.02µm for low LC lenses, and 
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194.07±66.10µm for high LC lenses (p<0.05). The final limbal clearance, after lens 

settling, were 123.74±56.68µm and 167.31±69.75µm for the low and high LC lenses, 

respectively (p=0.006). A significant change in initial and final LC was expected and 

found in both group of study lenses due to lens settling (p<0.001, both). Finally, 

there were significant differences between the nasal and temporal LC, with more LC 

found temporally (p<0.001). 

Discussion: The use of an anterior segment OCT, such as the Visante, was 

instrumental in scleral lens fitting. This aided the fitting of scleral lenses with varying 

limbal zone designs. Limbal clearance ranges from 106.40µm (low LC) to 185.78 µm 

(high LC) at the final visit using two lens designs that had with a 50µm difference in 

the LC parameter of the scleral lens designs.  
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3.2 Introduction 

The use of scleral lenses in the management of KC is well-documented.
120–123,131,147,168–

171

 This mode of vision correction can facilitate visual rehabilitation for individuals 

with KC.
121,122,130,131

 Similar to corneal GPs, scleral lenses are fitted with a post-lens tear 

film which masks the optical aberrations caused by an irregular corneal surface. It 

has been shown that for those who are intolerant of corneal GPs, scleral lenses are 

successful in deferring the need for keratoplasty.
122

 In comparison to corneal GPs, 

Schornack and Patel
122

 noted an ease of fitting scleral lenses, with their success less 

dependent on the severity of changes in topographic corneal curvature and irregular 

astigmatism. With scleral lenses, greater centration and stability can be achieved even 

in severe KC.  

Scleral lenses are supported by the conjunctival tissue over the sclera.
120,126,172

 The 

eccentricity and rate of change in curvature drastically changes in the peripheral 

cornea towards the sclera in an aspheric and rotationally non-symmetric fashion.
173,174

 

Current corneal topographers have a limited ability to accurately acquire data on the 

topographic shape of the sclera. As the correlation between corneal topographic data 

with scleral back optic zone radius is poor
175

, the use of diagnostic lenses in 

conjunction with sagittal height information is the preferred fitting method.
118,122,176,177

  

The sagittal depth of the scleral lens is defined as the distance from the central back 

surface of the lens to the plane of the peripheral edges of the scleral lens. In an ideal 

scleral lens fitting, the sagittal depth is the sum of the sagittal height of the eye at 

the chord diameter of the overall diameter of the scleral lens plus the central 

thickness of the post-lens tear film or central corneal clearance (CCC). Figure 3-1 
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shows an OCT image of the sagittal height of the cornea at a chord of 15.79 mm. 

The scleral lens has a greater sagittal depth compared to the anterior eye as indicated 

by the clearance of the lens from the cornea.  

 

Figure 3-1 The apposition of a scleral lens relative to the ocular surface with corneal 

sagittal height and scleral lens sagittal depth demarcated. 

 

Compared to corneal RGPs, in which the primary fitting parameter is determined 

based on the central  corneal curvature, Schornack and Patel
122

 discussed that an 

appropriate sagittal depth, in scleral lens fitting, is a more important fitting criterion 

than aligning the back radius curve of the scleral lens to the curvature of central 

cornea. In this chapter of the thesis, the fitting process used to determine an 

appropriate scleral lens for the keratoconic participants having the sagittal depth as 

the primary fitting parameter will be discussed. 
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A secondary purpose of this chapter is to demonstrate the impact of lens settling has 

on limbal clearance in two sets of scleral lens design that varies in the limbal zone 

while keeping the central lens-ocular surface fitting relationship the same.  

3.3 Methods and Materials 

3.3.1 Participant Recruitment  

The protocol for this study was approved by the Office of Research Ethics of 

University of Waterloo (ORE#21364) and followed the Tenets of Helsinki. Participants 

were recruited from the University of Waterloo, Contact Lens Clinic (UW-CLC), by their 

attending doctor. Informed consent was obtained from all participants. 

3.3.1.1 Inclusion and Exclusion Criteria  

The requirements for participation was that the participants had been previously 

diagnosed with KC in at least one eye. In addition, the participants must be male, 

over 18 years of age and able to provide consent. Individuals with any ocular 

pathology or severe insufficiency of lacrimal secretion or had undergone any corneal 

surgery were excluded from the study.  

3.3.2 Study Materials 

3.3.2.1 Study Lenses 

The ZenLens™ semi-scleral lenses used in this study are approved by Health Canada, 

with Health Canada license #96602, and are commercially available. They are 

manufactured using the Boston XO material (Health Canada license #71386) by Alden 

Optical (Lancaster, NY, USA). This study lens was chosen because the sagittal depth 

and limbal curve can be adjusted independently from one another. Lenses were fitted 



 

 34 

according to the manufacturer’s fitting guidelines, and participants proceeded into 

the study only if a suitable fit with the lenses could be obtained. 

3.3.2.2 Anterior Segment Optical Coherence Tomography 

The Visante™ OCT (Carl Zeiss Meditec, Dublin, CA) is a time-domain, anterior 

segment optical coherence tomographer.
178

 (Figure 3-2) The instrument uses a 

1,310nm super-luminescent light source to acquire single images of the anterior 

segment of the eye. Using the high-resolution mode (10mm wide beam
179

), images 

can be obtained across a chord up to 16mm in diameter, and to a 6mm depth within 

the eye, without contact.
178

 Optical tissues are detected and imaged based on the 

strength of reflectance of the return signal from that tissue.
179

 By combining several 

A scans, the Visante™ software is able to construct a 2-dimensional cross-sectional 

model with an axial resolution of up to 18μm and a transverse resolution of up to 

60μm.
178

 Furthermore, the Visante™ software allows analysis using built-in calipers, 

angle tools, and a flap tool in its high resolution mode. With these functions, manual 

measurements of any distance of interest along the axial or tangential direction of 

ocular surface can be obtained. For example, the anterior segment OCT allows for 

measurement of sagittal heights and chord values, which is helpful in the fitting of 

contact lenses.  
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Figure 3-2 The Visante™ Anterior Segment OCT.  

 

3.3.2.3 Corneal Tomography 

The Oculus Pentacam HR® (Wetzlar, Germany) is a corneal tomographer which can 

provide keratometric and pachymetric measurements of the cornea. (Figure 3-3) It 

uses a Scheimpflug (1.45 megapixel) camera, which rotates through 360 degrees to 

collect up to 50 slit images of the anterior segment. This takes approximately two 

seconds to complete.
10,12

 The light source of this instrument is a custom-designed, 

ultraviolet radiation free, cobalt-blue, LED with a wavelength of 475nm. The Pentacam 

HR® software stitches together the slit images to construct a 3D model of the cornea 

with 25,000 true elevation points and up to 138,000 data points. Unlike other corneal 

topographers, the Oculus Pentacam HR® primarily measures height or elevation 

points of the corneal surfaces and other optical tissues with respect to a best-fit 

sphere. From the elevation data, simulated keratometric values or curvature values 

of the anterior and posterior cornea is calculated by the Pentacam HR® software.  

Furthermore, corneal pachymetric data can be determined as the difference between 

the front and back surface elevation measurements of the cornea. Other parameters 
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that can be calculated include the estimated corneal diameter, corneal wavefront 

aberrations, densitometry and anterior chamber volume. 

 

Figure 3-3 The Oculus Pentacam HR® Corneal Tomographer.  

 

3.3.3 Study Procedure 

A total of five study visits were required to complete the study. At the initial screening 

and lens fitting appointment, eligibility based on inclusion and exclusion criteria 

(Section 3.3.1.1.) was determined. If informed consent was received, baseline 

measurements were obtained. For each participant, simulated keratometric values 

and estimated corneal diameter were obtained with the Oculus Pentacam HR®; 

sagittal height at a chord of 15.0mm was determined using the Visante™ OCT.  

The fitting protocol first decides on an approximate lens diameter based on the size 

of the cornea. Larger lens diameters are chosen for larger eyes.
180

 Subsequent to 

choosing the appropriate lens diameter, sagittal depth of the lens is chosen based 

on the sagittal height of the eye by adding 0.35mm, to account for the CCC, to the 

sagittal height measured at 15.0mm.
161,177,181

 During the lens fitting process, a 
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ZenLens™ scleral lens diagnostic, prolate design (Alden Optics, Lancaster, NY, USA) 

would be chosen with the appropriate sagittal depth in accordance with the 

manufacturer’s fitting guide. (Figure 3-4) The diagnostic lens was inserted with the 

bowl of the lens filled with non-preserved saline solution (0.9% Sodium Chloride 

injection solution, Addipak (3mL), Stevens Inc.). Once the lens was inserted, the 

scleral lens-to-cornea fitting relationship was evaluated using the Visante™ OCT. The 

fitting goals included adequate central corneal clearance of 250-300µm based on the 

fitting guide and published literature
161

, complete limbal clearance, and alignment in 

the scleral landing zone. An alternative diagnostic lens was chosen if these fitting 

goals were not met. Once the appropriate diagnostic lens was chosen, an over-

refraction was performed to determine the contact lens power for each eye.  

 

Figure 3-4 The Zenlens® Trial Set by Alden Optics, Lancaster, NY, USA.  

 

For every eye, two sets of lenses were ordered. The central sagittal depth and contact 

lens power was determined based on the diagnostic fitting. The limbal zone of one 

set of study lenses has its limbal zone was adjusted to provide adequate clearance 

of approximately 25-30µm in accordance to the fitting guide, and was labeled as low 

LC. For the second set of study lenses labeled as high LC, the limbal zone was 
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adjusted to increase the LC by 50µm. Each set of study lenses were to be delivered 

to the participants in a randomized order and double-masked to the participant and 

researcher. Participants were asked to wear each scleral lens design for a duration of 

two weeks between a delivery appointment and a follow-up appointment, based on a 

daily wear schedule of a minimum of six hours. A wash-out period of minimum of 

seventy-two hours was required between the first follow-up visit and the second lens 

delivery visit.  

At each study visit, visual acuities were measured. In addition, clearance was 

observed and measured in three zones, central corneal clearance (CCC), LC in nasal 

and temporal quadrant, using the caliper function in the Visante™ OCT. The 

measurements were categorized as initial clearance, measured approximately twenty 

minutes after lens application at the lens delivery appointment, and final clearance, 

measured after minimum of two-hour wear time at the follow-up appointment. 

The summary of the five study visits is illustrated in Figure 3-5. 
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Figure 3-5:  Flow chart of study visits. 

3.4 Results 

3.4.1 Participant Demographics 

Fourteen male individuals (27 eyes, 1 participant was monocular; mean age: 

38.5±13.5 years; range: 24 to 67 years) were recruited. Eleven patients (22 eyes; 

mean age: 39.2±12.8 years; range: 24 to 67 years) completed the study. Of the three 

participants who discontinued, reasons included poor adaptation compared to their 

habitual corneal GP, difficulty handling lens application and removal (habitual 

correction was also corneal GP), and one was lost to follow-up (habitual correction = 

spectacles). Only data for the twenty-two eyes that completed the study were included 

in the analysis.  

The habitual correction for the twenty-two eyes were as follows: 11 (50.0%) were in 

corneal GPs, 6 (27.3%) of whom were wearing a piggyback system, 4 (18.2%) were in 
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other scleral lens designs, and 4 (18.2%) were wearing silicone hydrogel toric lenses. 

Baseline measurements for simulated keratometry, sagittal height at 15mm chord 

diameter, and estimated corneal diameter for all twenty-two eyes are listed in Table 

3-1 The mean sagittal height at a chord diameter of 15.0mm was measured to be 

3.71± 0.23mm.  
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Table 3-1: Participant details and baseline measurements. 

 

PATIENT 

ID 

AGE EYE HABITUAL CORRECTION SIMULATED KERATOMETRY SAGITTAL 

HEIGHT AT 

15MM 

ESTIMATED 

CORNEAL 

DIAMETER 

1 24.0 OD Soft Lens (SiHy) 50.3D @ 41.0°/ 53.6D 3.76mm 11.8mm 

  OS Soft Lens (SiHy) 45.5D @ 142.0°/ 48.3D 3.48mm 11.9mm 

2 24.9 OD Soft Lens (SiHy) 45.8D @ 59.9°/ 47.6D 3.71mm 11.7mm 

  OS Soft Lens (SiHy) 48.5D @ 112.6°/ 52.3D 3.88mm 11.9mm 

3 28.1 OD Corneal GP 44.7D @ 145.7°/ 47.3D 4.18mm 11.8mm 

  OS Corneal GP 44.7 @ 137.5°/ 48.0D 4.14mm 11.7mm 

4 29.2 OD Corneal GP 47.1D @ 18.8°/ 50.0D 3.55mm 11.9mm 

  OS Corneal GP 49.2D @ 171.1°/ 54.8D 3.78mm 12.0mm 

5 35.4 OD Corneal GP 42.5D @ 180.0°/ 44.5D 3.49mm 12.1mm 

  OS Corneal GP 42.7D @ 161.6°/ 47.3D 3.47mm 12.2mm 

6 38.4 OD Piggyback System 44.2D @ 35.9°/ 46.9D 3.62mm 11.8mm 

  OS Piggyback System 43.3D @ 142.1°/ 46.4D 3.73mm 12.0mm 

7 39.4 OD Corneal GP 44.9D @ 66.1°/ 47.2D 3.16mm 11.8mm 

  OS Corneal GP 47.2D @ 121.6°/ 48.2D  3.55mm 11.8mm 

8 42.2 OD Scleral Lens 47.6D @ 46.3°/ 48.7D 3.61mm 11.9mm 

  OS Scleral Lens 46.3D @ 141.8°/ 47.7D 3.80mm 11.9mm 

9 42.8 OD Scleral Lens 43.4D @ 43.1°/ 47.2D 3.71mm 12.5mm 

  OS Scleral Lens 56.7 @ 180.0°/ 60.0D 3.88mm 12.9mm 

10 52.7 OD Piggyback System 49.1D @ 22.4°/ 52.1D 3.61mm 10.9mm 

  OS Piggyback System 42.9D @ 141.1°/ 46.5D 3.61mm 11.0mm 

11 67.0 OD Piggyback System 48.2D @ 42.3°/ 48.6D 3.94mm 11.4mm 

  OS Piggyback System 55.9D @ 164.7°/ 58.1D 4.00mm 11.4mm 
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3.4.2 Study Lens Parameters and Fitting Characteristics 

The final lens parameters for all scleral lens fittings are listed in Tables 3-2 and 3-3, 

along with the best corrected visual acuities found with the study lenses. It is noted 

that, based on the average corneal diameter of 11.83±0.43mm, a 16.0mm overall 

diameter was chosen for all study lenses in accordance to the fitting guide. The 

median visual acuity was 6/7.5 for both low and high LC.  A mean initial central 

corneal clearance, measured at approximately 20 minutes post-lens application at 

the lens delivery study visit, was 273.77±91.44µm and 262.07±74.20µm (p=0.671) 

for the study lenses with low and high LC, respectively. These can be compared to a 

CCC of 196.95±75.84µm and 216.90±101.55µm (p=0.475) for fittings with low and 

high LC measured at the follow-up study visit, after a minimum of two hours wear 

time. There was a significant change in CCC, as would be expected, due to lens 

settling between baseline to the final visit for both the low and high LC lenses 

(p<0.001, both). Finally, the mean sagittal depths for study lenses with low and high 

LC were 4.539±0.240mm and 4.550±0.243mm (p=0.877).  

  



 

 43 

Table 3-2: Lens parameters and Visual acuities for all study lenses with low LC. 

 

 LOW LIMBAL CLEARANCE 

PATIENT 

ID 

Sagittal 

Depth 

Base Curve Limbal 

Clearance  

Periphery CL power VA 

1 4.50mm 8.2mm Std Std +2.75D 6/7.5 

 4.35mm 8.2mm Std Standard H/ 

Steep 2 V 

+1.5D 6/7.5 

2 4.5mm 7.6mm -50 Std H/ Steep 

#5 V 

+0.50D 6/6 

 4.50mm 7.6mm -50 Std H/ Steep 

#5V 

+1.25D+ 6/7.5 

3 5.00mm 6.7mm -50 Std H/ Steep 

#3 V 

-11.75D 6/7.5 

 4.90mm 7.1mm -50 Std H/ Steep 

#5V 

-9.00D 6/7.5 

4 4.80mm 8.0mm -125 Std -1.25D 6/6 

 5.15mm 7.10mm -125 Flat #3 H/ 

Std V 

-7.62D 6/7.5 

5 4.30mm 8.20mm Standard Steep #1 H/ 

Standard V 

-1.75D 6/6 

 4.30mm 8.20mm Standard Steep #1 -1.00D 6/6 

6 4.50mm 7.60mm Standard Standard -4.75D 6/7.5 

 4.50mm 8.40mm Standard Standard -1.00D 6/7.5 

7 4.95mm 7.80mm +25 Standard -2.00D 6/6 

 5.10mm 7.30mm Standard Standard -6.00D 6/6 

8 4.40mm 8.20mm -50 Standard H/ 

Steep #2 V 

+2.00D 6/7.5 

 4.40mm 8.20mm -50 Standard H/ 

Steep #3 V 

+3.00D 6/7.5 

9 4.40mm 7.60mm Standard Standard H/ 

Flat #3 V 

-5.50D 6/7.5 

 4.55mm 7.10mm Standard Standard H/ 

Flat #2 V 

-9.25D 6/6 

10 4.35mm 8.20mm -50 Steep #1 -1.75D 6/7.5 

 4.30mm 8.20mm -50 Flat #2 H/ 

Steep #2 V 

-2.25D 6/6 

11 4.45mm 7.60mm -50 Steep #1 -0.75D 6/6 

 4.45mm 7.60mm -50 Steep #2 H/ 

Standard V 

+0.50D 6/7.5 
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Table 3-3: Lens parameters and Visual acuities for all study lenses with high LC. 

 

 HIGH LIMBAL CLEARANCE 

PATIENT 

ID 

Sagittal 

Depth 

Base 

Curve 

Limbal 

Clearance  

Periphery CL power VA 

1 4.50mm 8.2mm +50  Std +2.50 6/7.5 

 4.40mm 8.2mm +50 Std H/ Flat #3 

V 

+1.25 6/7.5 

2 4.50mm 7.6mm Std Std H/ Steep 

#7 V 

+0.75D 6/7.5 

 4.50mm 7.6mm Std Steep #1 H/ 

Steep #6V 

+2.00D 6/7.5 

3 5.0mm 6.7mm Std Std H/ Steep 

#3 V 

-

11.75D 

6/7.5 

 4.90mm 7.1mm Std Std H/ Steep 

#5V 

-9.00D 6/7.5 

4 4.80mm 8.0mm -75 Standard -1.25D 6/6 

 5.20mm 7.10mm -75 Flat #3 H/ Std 

V 

-7.62D 6/7.5 

5 4.30mm 8.20mm +50 Steep #1 H/ 

Standard V 

-1.50D 6/6 

 4.30mm 8.20mm +50 Steep #1 -0.75D 6/6 

6 4.55mm 7.60mm +50 Standard -4.75D 6/7.5 

 4.55mm 8.40mm +50 Standard -1.00D 6/7.5 

7 4.95mm 7.80mm +75 Flat #2 -2.00D 6/6 

 5.10mm 7.30mm +50 Flat #2 -6.00D 6/6 

8 4.40mm 8.20mm Standard Standard H/ 

Steep #2 V 

+2.50D 6/7.5 

 4.40mm 8.20mm Standard Standard H/ 

Steep #3 V 

+3.00D 6/7.5 

9 4.40mm 7.60mm +50 Standard H/ 

Flat #3 V 

-4.25D 6/7.5 

 4.55mm 7.10mm +50 Standard H/ 

Flat #2 V 

-9.25D 6/6 

10 4.35mm 8.20mm Standard Steep #1 -1.75D 6/7.5 

 4.30mm 8.20mm Standard Flat #2 H/ 

Steep #2 V 

-2.25D 6/6 

11 4.50mm 7.60mm Standard Steep #1 plano 6/7.5 

 4.55mm 7.60mm Standard Steep #2 H/ 

Standard V 

+1.00D 6/9 
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The initial limbal clearance was measured, before lens settling at the delivery 

appointment, to be 159.93±68.32µm for low LC lenses and 186.83±58.08µm for 

high LC lenses with the Visante™ OCT (p<0.001). This is compared to the final limbal 

clearance measured after minimum of 2 hours of wear time (i.e. after lens settling) 

at the follow-up appointment, which were 123.74±62.42µm for low LC lenses and 

167.31±57.31µm for high LC lenses (p=0.006). There was also a significant change 

in low and high LC, as would be expected, due to lens settling comparing baseline to 

the final visit (p<0.001, both). The limbal clearances in nasal and temporal quadrants 

are reported in Table 3-3 and Figures 3-6 and 3-7. Across all 22 lens fittings with low 

and high LCs, there is a significant difference for the LC between the temporal and 

nasal quadrants by +78.09±67.98µm (low LC) and +82.33±61.96µm (high LC) 

(greater in the temporal quadrants) (p<0.001) at the initial fitting. This difference was 

still found at the 2 week visit but had reduced to +34.67±55.41µm (low LC) and 

+36.94±50.60µm (high LC) (greater in the temporal quadrants) (p<0.001). 

Furthermore, Figures 3-7A and 3-7B illustrates how the study lenses with low and 

high LC designs fit on one study participant. Note that the CCC remained constant.  

Table 3-4: Quadrant specific limbal clearance for all study lenses. 

 Low LC High LC 

 Nasal Temporal Nasal Temporal 

Initial LC 120.89 ± 37.87 198.98 ± 70.21 145.67 ± 51.12 252.43 ± 104.71 

Final LC 106.40 ± 35.09 141.08 ± 83.01 148.83 ± 50.59  185.78 ± 69.75 
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Figure 3-6:  Comparison of Nasal and Temporal Limbal Clearance at lens 

delivery and follow-up visit, that is, before and after lens settling. 

 

 

 

Figure 3-7:  Visante™ Anterior segment OCT of Scleral Lens with low LC 
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Figure 3-8:  Visante™ Anterior segment OCT of Scleral Lens with high LC 

 

3.5 Discussion 

Of the fourteen participants enrolled in the study, eleven participants were 

successfully fitted bilaterally with scleral lenses. Three individuals discontinued citing 

issues with difficulty with insertion or removal and poor adaptation as the primary 

reasons. Other studies have also reported handling and lens care, as well as irritation 

from lens awareness as common reasons for unsuccessful scleral lens fits.
124,133,152

 

For the twenty-two eyes that completed the study, a median visual acuity of greater 

than 6/9 were achieved with all the study lenses. The visual outcome is comparable 

to those Segal et al.
121

, Schornack and Patel
122

, and Severinsky and Millodot
131

 reported 

with 91%, 87%, and 84%, respectively, of scleral lens wearers achieving 6/12 or better 

visual acuities. It was noted that the visual acuities could theoretically be further 

improved by incorporating a front surface toric contact lens power to the fitted scleral 

lens to correct any residual cylinder. This modification was eliminated from the fitting 

protocol in this thesis project as vision was not one of the primary outcomes of this 
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study and the change in lens thickness would vary according to the amount of 

cylinder resulting in a non-constant center thickness.  

In this study, the overall diameter used across all study lenses was 16.0mm. This 

falls within the range of  lens diameter of 15.0 to 17.0mm that was shown to be 

preferred by the majority of scleral lens practitioners.
163,180

 The sagittal height in the 

twenty-two eyes in this study is similar to that reported by Sorbara et al.
178

 and 

Otchere et al.
177

 Furthermore, the mean sagittal depth of all study lenses exceeded 

the sum of mean initial CCC and mean sagittal height. This is likely due to the sagittal 

height differential at a 15.0 mm chord diameter being under-estimated compared to 

a 16.0 mm lens diameter.  

Central corneal clearance is a primary focus when assessing scleral lens fits. 

Clinically, the anterior segment OCT is a preferred method to observe the central 

corneal-lens fitting relationship since observation with the slit lamp can grossly over-

estimate the central corneal clearance due to the oblique orientation of the slit 

lamp.
182

 In this study, mean central corneal clearance measured with the OCT at the 

follow-up visit was 194.00 ± 67.54 µm. This is comparable to the results from a 2016 

survey where 89% of scleral lens practitioners surveyed indicated the ideal central 

corneal clearance after lens settling should be between 150 to 250 µm.
163

 Schornack 

et al.
175

 also indicated that the ideal central corneal clearance should range between 

125 and 250 µm. The mean change in central corneal clearance measured at lens 

delivery appointment and that at the follow-up visit of an average of 64.56 ± 

155.17µm can be attributed to lens settling. This is consistent with a mean lens 

settling of 146 µm over a span of 1 month of lens wear that Mountford
183

 reported. 
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The amount of limbal clearance that was found cannot be easily compared to 

standard values as this measurement is rarely reported on. It is noted that there is a 

trend for the temporal limbal clearance to be greater than that in the nasal quadrant. 

This is likely due to the decentration of the scleral lens, typically in the infero-

temporal direction. Visser et al.
130

 report on ensuring adequate limbal clearance but 

did not give a number to aim for. The role limbal clearance plays in the overall clinical 

performance of the scleral lens fit will be further analyzed and discussed in the 

subsequent chapters.  

In the scleral landing zone designs, 26 of the 44 study lenses (59.1%) used had a 

toric back surface landing zone to achieve scleral alignment. Visser et al.
130

 was the 

first group to start using toric back surface scleral landing zones to achieve better fit 

and comfort for wearers. Toric and quadrant specific modifications allows a more 

even weight distribution circumferentially.
173

 Scleral alignment is key in stability of 

the lens as it can allow for improved rotational stabilization
173

 and to mitigate other 

complications such as midday fogging.
126,184

  

Consistent with the community of contact lens practitioners
121–123,133,180

, this study 

found great overall success fitting individuals with KC with scleral lenses using the 

lens sagittal depth as the primary fitting parameter. Using an anterior segment OCT, 

an appropriate sagittal depth was determined based on the sagittal height of the 

individual eye and an aim of central corneal clearance of 250-300µm.
161,178

 The 

instrument further allows for detailed and accurate monitoring of fitting 

characteristics, such as post-lens tear film thickness at central and limbal zone of the 
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scleral lens.
182

 Overall, this chapter summarized a systematic scleral lens fitting 

protocol that was straightforward and accurate.  

3.6 Conclusion 

The use of an OCT such as the Visante™ has again proven to give a good estimate of 

the central sagittal depth of the scleral lens that results in an adequate amount of 

central clearance. A final limbal clearance of 123.74µm (low LC) to 167.31µm (high 

LC) was achieved after lens settling with scleral lens sets designed with a 50µm 

difference in the LC parameter. 
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Chapter 4 

 Objective and Subjective Evaluation of Clinical Performance 

of Scleral Lenses with Varying Limbal Clearance in KC  

4.1 Overview  

Purpose: To investigate the clinical performance, ocular response and subjective 

responses to the wear of scleral lenses having varying limbal clearance.  

Methods: Lenses with varying limbal clearances, one with low limbal clearance (LC) 

and one with high LC were fitted on a group of keratoconic participants. The lenses 

were worn over a two-week period and the ocular response to lens wear was 

examined. Visual analog scales were completed concerning vision, comfort, burning 

and dryness. Corneal and conjunctival responses to lens wear such as were observed 

and compared. These included: limbal and bulbar hyperemia, as seen on the Oculus 

Keratograph 5®; corneal swelling, based on pachymetric values measured by the 

Oculus Pentacam HR®; and corneal staining, as seen with biomicroscopy. 

Results: Compared to baseline both low and high LC lenses resulted in improved 

subjective responses (p=0.07 low LC, p<0.01 high LC for overall comfort). 

Participants reported greater comfort with scleral lenses with high LC (p=0.013 for 

comfort, p<0.01 for dryness, p=0.08 for burning). There was a slight decrease in 

limbal and bulbar hyperemia with low LC lenses compared to baseline but no 

difference between high and low LC lenses was found (p=0.733). Corneal swelling 

was noted in all corneal locations and especially at the 6mm zone where there were 

significant differences for both low and high LC lenses compared to baseline 

(p=0.004, and p=0.039, respectively). Quadrant specific analysis indicated that 
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peripheral corneal thickness in four quadrants, at both 6 and 8 mm, increased with 

scleral lens wear with low LC (all p<0.05) and only the temporal region was 

significantly increased for the high LC lenses (p=0.018). Corneal response to scleral 

lens wears with either low or high LC appears to result in similar peri-limbal staining 

and negative corneal staining. 

Conclusions: Limbal clearance may play an important role in subjective performance 

in scleral lenses, but does not impact the degree of hyperemia in either the limbal 

and bulbar regions measured objectively. A significant increase in peripheral corneal 

thickness was found with low LC lens wear likely due to mechanical irritation. The 

increase in corneal thickness with scleral lens wear of approximately 4% is consistent 

with the literature.  
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4.2 Introduction 

The limbal zone of a scleral lens connects the central corneal/back optic zone of the 

lens to the peripheral scleral landing zone. In an ideal scleral lens fit, the limbal zone 

should clear, or vault, over the peripheral cornea and limbus. The limbal area plays 

an important role in maintaining healthy corneal physiology. Firstly, it houses the 

limbal vasculature, which supplies oxygen and nutrients to the avascular cornea. It 

contains the minor arterial circle of the iris. Insults to the cornea and ocular surface 

can result in inflammatory responses through the limbal vasculature.
144

 Secondly, 

limbal stem cells, necessary for corneal epithelial regeneration also reside in the 

limbal area.
145,146

 Located in the palisades of Vogt, limbal stem cells have a high 

proliferative potential (least differentiated) which is necessary for corneal cell 

proliferation, turnover, and wound healing ability in the central corneal tissue.
146,185

 

This population of cells also plays a role in preventing conjunctivalization of the 

cornea.
186

  

Limbal clearance (LC) refers to the amount of clearance or the thickness of the post-

lens tear film between the lens and the ocular surface over the limbus. In Chapter 2, 

we reviewed a case series of  scleral lens wearers exhibiting adverse corneal findings 

and conjunctival injection despite having an ideal central lens-cornea fitting 

relationship.
119,126,162

 As such, it can be argued that limbal clearance plays an important 

role in the clinical performance of a scleral lens fit.  

Similar to central lens-cornea fitting relationship, excessive or inadequate clearance 

in the limbal zone can result in a negative impact on the ocular health. In cases of 

excessive clearance, it is hypothesized that the post-lens tear film reduces the 
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amount of oxygen delivery to the cornea, resulting in peripheral corneal edema. 

Inadequate clearance over the limbal area will result in the lens mechanically rubbing 

on the ocular surface, which can present as superficial punctate keratopathy or 

negative staining. Most fitting guides recommend an initial peripheral corneal/ limbal 

clearance of 50 – 100 microns. However, there are inconsistencies in the 

recommended limbal clearance depending on lens design and overall lens diameters 

and how much of a change in LC should be make once it is determined that it is either 

excessive or insufficient. In a 2016 survey, 93 scleral lens fitters reported an ideal 

limbal clearance after lens settling ranging from less than 25 microns (6%) to 

somewhere between 50 and 75 microns (82%) to over 80 microns (12%).
163

 While there 

are numerous reports on the effect of the lens settling on central corneal 

clearance
120,138–140

, little has been reported on that of limbal clearance.  

The clinical performance of a contact lens fit is determined by a summation of 

comfort, vision, and physiological response. Comfort is generally assessed 

subjectively from the patient’s standpoint, with improvement in quality of life as a 

key factor in the subjective satisfaction.
117,133,187

 On the other hand, visual satisfaction 

can be determined both subjectively and objectively. Data on visual acuity has been 

reported in Chapter 3. Finally, an appropriate corneal-scleral lens fitting relationship 

is necessary to ensure that scleral lens wear does not negatively impact the health of 

the ocular surface. In this chapter, the impact of limbal clearance on the clinical 

performance of scleral lens fit will be investigated, based on comfort, vision, 

hyperemia, mechanical and hypoxia-related complications.  
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4.3 Methods and Materials 

4.3.1 Participants 

This study was a continuation of the study presented in Chapter 3. As with Chapter 

3, this study was approved by the Office of Research Ethics of University of Waterloo 

(ORE#21364) and performed under the Tenets of Helsinki. Informed consent was 

obtained from the same participants as in Chapter 3.  

4.3.1.1 Inclusion and Exclusion Criteria  

The same inclusion and exclusion criteria were followed in Chapter 3, Section 3.3.1.1.  

4.3.2 Study Materials 

4.3.2.1 Study Lenses 

The study lenses were the same as described in Chapter 3. The final lens parameters 

for the pair of lenses with low and high LC are listed in Tables 3-2A and 3-2B and the 

lenses were worn for 2±1weeks. 

4.3.2.2 Corneal Tomography 

Description of the Oculus Pentacam HR® (Wetzlar, Germany) can be found in Chapter 

3, Section 3.3.2.3. This instrument was used to measure pachymetric changes (CT) 

in the cornea. 

4.3.2.3 Corneal Topography 

The Oculus Keratograph® 5 is a non-contact, placido-ring based corneal 

topographer.24 (Figure 4-1) The placido-disc or concentric ring pattern is projected 

onto the tear film anterior to the cornea. Keratometric measurements of the anterior 
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cornea can be determined by Keratograph® software based on the distance between 

the concentric ring. In addition, it is equipped with an on-board camera that can 

capture both video and still images.  

 

 Figure 4-1:  The Oculus Keratograph 5® Corneal Topographer.  

 

By instilling sodium fluorescein, the tear film can be highlighted and imaged. This 

feature is helpful in the photo-documentation in dry eye assessment and contact lens 

fitting. This instrument was used to photograph any corneal staining responses to 

the scleral lenses. 

In addition, the Oculus Keratograph 5® has a built-in R-Scan function (Figure 4-2). 

The feature determine the bulbar and limbal redness based on the analysis of surface 

area occupied by sclera-to-blood vessel and sclera-to-thin blood vessel ratios, 

respectively.
188

 Limbal and bulbar injection is graded in accordance the validated 

JENVIS classification (Figure 4-3) The R-Scan was preferred over subjective grading 

scales as the latter method are tiered with uneven spacing between each level.
189
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Figure 4-2:  The R-Scan Function by the The Oculus Keratograph 5® Corneal 

Topographer.  

 

 

Figure 4-3:  The JENVIS Classification for bulbar and limbal redness.  

4.3.3 Study Procedure  

As a continuation of the study from Chapter 3, the schedule and protocol for study 

visits was the same in that described in Section 3.3.3. Each participant was fitted with 

the two scleral lens designs bilaterally with high and low limbal clearance differing 
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by 50µm. A wash-out period of a minimum of 72 hours was required between wearing 

the first and the second set of study lenses. The order of which lenses were worn was 

randomized and double masked to the participants and researcher. At each lens 

delivery and follow-up appointment, comfort, vision, hyperemia, mechanical and 

hypoxic related complications were assessed subjectively and objectively (Figure 4-

4).  

 

Figure 4-4:  Flow chart of study visits. 

 

4.3.3.1 Subjective Comfort  

All participants completed a questionnaire on lens comfort, presence of dryness 

symptoms, and presence of burning sensation, and clarity of vision with their study 

lenses at each of the lens delivery and follow-up visits. Scores were obtained on a 
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visual analog scale (VAS); the scores ranged from 0 (unacceptable performance) to 

100 (excellent performance). A copy of questionnaire is included in Appendix A.  

4.3.3.2 Hyperemia 

Biomicroscopy was performed at each lens delivery and follow-up appointment. The 

bulbar and limbal injection in each nasal and temporal quadrants were recorded 

according to the Validated Bulbar Redness (VBR) scales. The subjective assessments 

were compared against the Bulbar Redness (BR) and Limbal Redness (LR) scores 

generated by the Oculus Keratograph 5®, which generated a hyperemia grading score 

based on the analysis of surface area occupied by sclera-to-blood vessel and sclera-

to-thin blood vessel ratios on a linear scale according to the JENVIS classification 

system. 

4.3.3.3 Corneal Swelling 

Biomicroscopy was performed at each lens delivery and follow-up appointment. The 

researcher noted and graded the presence of any corneal microcystic edema, stromal 

haze, and/or corneal striae. In addition, corneal pachymetry maps were obtained 

using Scheimpflug imaging (the Oculus Pentacam HR®), before and after each set of 

study lenses were worn. Pachymetric values at central and peripheral cornea 

(transverse section chords at 6mm and 8mm; that is, at the 3mm ring and 4mm ring 

from the central point) in four quadrants: superior, nasal, inferior and temporal, were 

compared and analyzed by lens design. 
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4.3.3.4 Corneal Staining  

Biomicroscopy was performed at each lens delivery and follow-up appointment. The 

researcher noted the location and the severity of positive and/or negative fluorescein 

staining in the limbal area.  

4.4 Results 

As reported in Chapter 3, the mean initial LC for the nasal and temporal LC’s were 

159.93±68.32µm for low LC lenses and 186.83±58.08µm for high LC lenses 

(p<0.001). The mean final limbal clearance were 123.74±62.42µm for low LC lenses 

and 167.31±57.31µm for high LC lenses. LC was measured to be greater in high LC 

lenses than low LC lenses by 26.90±57.72µm initially, and 43.57±45.63µm after lens 

settling (p<0.001). Finally, the lens settling in the limbal zone was measured as the 

difference between the initial and final LC, which were noted to be 36.19±63.52µm 

for low LC lenses and 19.52±65.43µm for the high LC lenses (p<0.001). Table 3-4 

reports the differences between the nasal and temporal LC’s. Consistently, more LC 

found temporally compared to nasally (p<0.001).  

4.4.1 Subjective Comfort  

In this study, 81.8% (9 of 11) participants reported greater comfort with study lenses 

with either low or high LC than their habitual contact lenses. Lens awareness and 

poor adaptation were the main reasons the two participants cited less-than-ideal 

subjective performance with scleral lenses. 

By lens design, the subjective reports for comfort, absence of dryness, absence of 

burning sensation and subjective vision are represented in Table 4-1 and Figures 4-

5A to 4-5D. The median VAS outcomes for the lenses with low LC were: 80 for 
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comfort, 82.5 for dryness, 85 for burning and 84 for vision; while that with high LC 

were: 90 for comfort, 90 for dryness, 95 for burning and 89 for vision. Compared to 

the participants’ habitual lenses (27.3% in corneal GPs, 50.0% in a piggyback system, 

18.2% in other scleral lens designs, and 18.2% in soft silicone hydrogel toric lenses), 

there was statistically significant change in subjective assessment in comfort and 

vision for high LC, and dryness for both low and high LC (all p<0.05). Scleral lenses 

with higher LC was generally graded with higher scores compared to low LC for 

subjective assessment (77.8% of 22 eyes for comfort, 44.4% for no dryness, 66.7% 

for no burning and 59.1% for vision) (p<0.01, p=0.181, p=0.232, p=0.028). 

Table 4-1: Mean and range of subjective response reported with habitual optical 

correction (Baseline), and with study scleral lenses with low and high LC. 

 Comfort Dryness Burning Vision 

Baseline  80 

(55-98) 

 61.25 

(41.7-80) 

 90 

(50-100) 

 83 

(65-90) 

 

≥2 

weeks 

After 

Low LC 

80 

(55-95) 

p=0.491 82.5 

(50-100) 

p<0.01 85 

(65-100) 

p=0.439 90 

(60-100) 

p=0.29 

≥2 

weeks 

After 

High LC 

90 

(70-100) 

p=0.013 90 

(60-100) 

p<0.01 95 

(70-100) 

p=0.08 92.5 

(70-100) 

p=0.026 
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Figure 4-5A-D: Subjective overall comfort (A, top left), dryness sensation (B, bottom 

left), burning sensation (C, top right), and subjective vision (D, bottom left) reported 

with scleral lenses fitted for low and high LC. 

 

4.4.2 Hyperemia 

Results from conjunctival hyperemia are represented in Table 4-2 and Figures 4-6A 

and 4-6B according to JENVIS scale. Although there was an increase in nasal redness 

with the high LC lenses, it was not significant compared to baseline and to the low 

LC lenses (p>0.05, both). There was a significant statistical decrease comparing 

baseline to the temporal limbal redness (p=0.012) and bulbar redness (p=0.009) with 

the low LC. Overall, there was no statistically significant difference in hyperemia in 

the limbal and bulbar regions observed subsequent to scleral lens wear, comparing 

low and high LC. There was a significant difference comparing nasal and temporal 
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bulbar redness for both the low and high LC lenses (p=0.013 and p=0.004, 

respectively) where there was more nasal redness. 

Table 4-2: Mean and range of hyperemia with habitual optical correction (Baseline), and 

with study scleral lenses with low and high LC. 

 Limbal Nasal Limbal Temporal Bulbar Nasal Bulbar Temporal 

Baseline 

Median 

(Range) 

0.93±0.37  

(0.17-2.00) 

 1.03±0.39 

(0.36-1.90) 

 1.51±0.39 

(0.91-2.43) 

 1.50±0.48 

(0.75-2.93) 

 

≥2 

weeks 

After 

Low LC 

0.92±0.62 

(0.17-2.57) 

p=0.91 0.77±0.34 

(0.20-1.30) 

p=0.012 1.60±0.52 

(0.77-2.63) 

p=0.51 1.30±0.34 

(0.73-2.17) 

p=0.009 

≥2 

weeks 

After 

High LC 

1.03±0.83 

(0.13-3.2) 

p=0.57 0.95±0.52 

(0.13-2.33) 

p=0.49 1.63±0.57 

(0.60-2.83) 

p=0.38 1.40±0.46 

(0.70-2.63) 

p=0.33 

 

 

  

Figure 4-6A and B: Bulbar hyperemia (A, left) and limbal hyperemia (B, right) in nasal 

and temporal quadrant associated with scleral lens wear with low and high LC.  

 

4.4.3 Corneal Swelling 

Examination of the eyes with biomicroscopy revealed no striae and no stromal haze 

at any visit for all twenty-two eyes.  
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Pachymetric results are reported in Table 4-3. Comparison of corneal thickness from 

baseline to post-low and high LC lens wear showed an increase, which was not 

statistically significant centrally (p>0.10), for low LC, but significantly different 

centrally for the high LC lenses (p=0.002). There were significant differences at the 

6mm chord across the cornea for both the low and high LC lenses (p=0.004 and 

p=0.039, respectively) compared to baseline. After ≥2 weeks of lens wear, CT 

increased centrally by +3.97±3.29% and +4.09±3.78% for low and high LC, 

respectively (p=0.0004). CT increased by +4.92±3.17% at 6mm and +4.87±3.23% at 

8mm for low LC (p=0.004 and p>0.05, respectively); and +3.05±4.78% at 6mm and 

+3.23±4.86% at 8mm for high LC (p=0.039 and p>0.05, respectively), when all 

meridians were averaged together. Comparing the 6mm and 8mm changes for low 

and high LC there was no significant differences at either the 6 or the 8mm chord 

(both p>0.05) when all quadrants were averaged together.  

Table 4-3: Mean and range of corneal pachymetry in central and peripheral cornea with 

habitual optical correction (Baseline), and with study scleral lenses with low and high 

LC. 

 

Centre 6mm chord 8mm chord 

Baseline 458.9±42.0µm 

(382-554µm) 

 

571.8±46.5µm 

(406-661µm) 

 

635.8±51.3µm 

(502-749µm) 

 

≥2 

weeks 

After 

Low LC 

469.7±37.7µm 

(400-540µm) 

p>0.10 590.3±42.7µm 

(490-670µm) 

p=0.004 650.7±56.7µm 

(530-843µm) 

p=0.065 

≥2 

weeks 

After 

High LC 

485.6±32.7µm 

(434-557µm) 

p=0.002 578.9±51.3µm 

(465-660µm) 

p=0.039 651.9±54.7µm 

(531-816µm) 

p=0.060 
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Quadrant specific analysis of peripheral corneal pachymetry values can be seen in 

Figure 4-7. The peripheral corneal thickness is also represented as a percent change 

compared to baseline, which is illustrated in Figure 4-8A for low LC and Figure 4-8B 

for high LC. A significant increase in thickness was noted in CT in all quadrants at 

both the 6mm and 8mm for low LC from baseline (all p<0.05). For the high LC, a 

significant change was found only in the temporal quadrant at 8mm chord 

(p=0.0179), where a non-significant decrease, compared to the low LC lens, was also 

found (p=0.469). Comparing peripheral corneal thickness associated with low and 

high LC, only the superior quadrant demonstrated a significant (p=0.042 at 6mm and 

p=0.0003 at 8mm), and an overall trend of higher pachymetry values was noted with 

high LC.  

 

 

Figure 4-7: Peripheral Corneal Thickness (microns) in each quadrant associated with 

habitual optical correction (Baseline), and with study scleral lenses with low and high 

LC.  
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Figure 4-8A and B: Percentage change in corneal thickness after 2 weeks wear of 

scleral lens with low LC (A, blue, top) and high LC (B, green, bottom).  
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4.4.4 Corneal Staining 

In biomicroscopic exams, 4 (18.2%) cases of limbal staining were noted after two 

weeks of wearing lenses with low LC, 3 of which were graded as trace (0.5) on a 0 to 

4 scale and 1 case was graded 1. In high LC cases, 5 (22.7%) eyes were noted with 

limbal staining, all were graded 1 or less. Negative staining or limbal imprint was 

noted in 5 (22.7%) cases after wearing low LC, and 6 (27.3%) cases after wearing high 

LC. All cases of negative staining was graded 1 or less. No statistical significance was 

found between severity of positive and negative staining in low and high LC cases 

(p=0.351 and p=0.841, respectively). Examples of limbal staining and negative 

staining are shown in Figures 4-9 and 4-10. 

 

Figure 4-9: Fluorescein imaging of positive limbal staining. Fluorescein pools at the 

center of the superficial epithelial defects, highlight the entire surface area. 
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Figure 4-10: Fluorescein imaging of negative limbal staining. Fluorescein pools at the 

edge of epithelial defects, highlight the border of the lesion. 

4.5 Discussion 

The clinical performance of scleral lenses with low and high limbal clearance was 

examined in this chapter. The ZenLens™ semi-scleral lenses was chosen for the 

purpose of this study because it allowed for adjustment in the limbal zone 

independently from the sagittal depth in the optical zone. The two sets of study 

lenses were designed to differ in limbal clearance by 50µm. The final difference in 

limbal clearance between low and high LC was 43.6 microns close to the intended 

difference of 50 µm. Similar to the central optic zone fitting parameters, adjustments 

in sagittal depth may not always be reflected in changes in central corneal clearance; 
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as this study found that there was a difference in lens settling in the limbal zone 

between low and high LC. This reinforces the importance for eye care practitioners 

to re-examine the scleral lens fits at progress check visits after lens settling.  

Similar to other reports
117,133

, scleral lenses with both low and high LC in this study 

yielded a higher subjective performance score for most questions asked.  Only the 

high LC lenses were significantly rated better than baseline for comfort, dryness and 

vision. The low LC was significantly less dry than baseline. One of the reasons scleral 

lenses are considered more comfortable compared to corneal GPs is the overall 

diameter of scleral lenses ranges between 14.3 to 18.2mm, which place the lens edge 

outside the limbus. As a result, it is expected to reduce lens awareness by minimizing 

lid interaction
122

. In addition, scleral lenses can achieve greater lens stability, 

therefore, greater comfort, compared to other modes of contact lenses.
122

 This is 

made possible by the alignment of the lens over the regular scleral topography 

allowing for greater centration; as well as the hydrostatic forces that minimize lens 

movement on blinking.
120

 Visser et al. indicated that a daily wear time of greater than 

six to eight hours is a good indication of high subjective performance of the scleral 

lenses.
133

 In this study, 81.8% (9 of 11) participants reported great comfort with both 

study lens design based on a full-time wear schedule of daily wear time exceeding 

six hours per day. For the two participants who reported less than ideal subjective 

performance due to lens awareness and poor adaptation, their habitual mode of 

vision correction was soft toric silicone hydrogel lenses. Furthermore, these two 

participants exhibited only mild keratoconic signs. Wu et al recommended that 

contact lens fitters must take into consideration the severity of KC when prescribing 
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appropriate contact lens modality.
190

 In cases where patient is able to achieve 

adequate functional vision with habitual soft toric silicone hydrogel and/or 

spectacles, they may not find scleral lenses with either low or high LC to be 

significantly more comfortable. Comparing low and high LC, scleral lens fits with 

higher LC were reported to provide greater comfort for keratoconic scleral lens 

wearers. This may be due to the association between low LC and tight lens syndrome, 

and a greater negative pressure in post-lens tear film, which can result in 

photophobia, epiphora, or ocular irritation.
130,191

 

Hyperemia in the limbal and bulbar conjunctival areas are persistently two of the 

most common complications associated with scleral lens wear.
119,126

  Injection is 

indicative of the presence of distress to the ocular surface.
155

 In the presence of a 

foreign object causing mechanical irritation, the limbal capillaries dilate to allow 

increased blood flow pulsing through arterioles of the limbal loop.
155

 Bulbar and 

limbal hyperemia has also been reported in contact lens wearers using soft lenses 

with low oxygen transmissibility lenses.
192

 In this study, scleral fittings with high LC 

were associated with greater degree of limbal and bulbar hyperemia. High LC creates 

a thicker tear meniscus over the limbal area, which may be associated with hypoxia 

or hypercapnia. Papas et al. have found a strong relationship between peripheral lens 

oxygen transmissibility and induced limbal redness, as graded using a decimalized 

scale.
193

 When assessing scleral lenses, the eye care practitioner must pay close 

attention to any limbal or bulbar injection and identify the source. Diffuse injection 

might indicate hypersensitivity to a foreign object, while localized injection might 
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indicate specific mechanical irritation, such as an ill-fitting quadrant within the scleral 

landing zone.  

Oxygen permeability of a contact lens plays a key role maintaining healthy corneal 

physiology. Corneal swelling and an increase in corneal thickness has been studied 

extensively as the primary measurement to indicate the presence of corneal 

hypoxia.
194

 In other studies investigating short-term scleral lens wears, Pullum and 

Stapleton reported less than 3% of corneal thickness change in scleral lens wearers 

with normal cornea using material of Dk=115.
156

 Compan et al. reported, in normal 

corneae, that there was corneal swelling of 1.6% and 3.9% for thinner and thicker 

fluid reservoirs, respectively, ranging from central clearance of 150-350 after 3 hours 

of wear time and using material of Dk=100.
139

 Vincent et al has reported an average 

of less than 2% of corneal swelling after 8 hours of scleral lens wear fabricated with  

lens material of Dk=90 in young individuals with normal corneae.
157

  

From theoretical and practical studies, it has been demonstrated consistently that 

key fitting goals with scleral lenses is to minimize lens thickness and the fluid 

reservoir.
138,140

 To our knowledge, this is the first study to evaluate corneal swelling 

in keratoconic subjects and to investigate how limbal clearance impacts hypoxia with 

scleral lens wear. Consistent with other reports of scleral lens wear, the increase in 

central and peripheral corneal thickness with more than two weeks of scleral lens 

wear for both low and high LC was approximately 4%.
139,195

 This compares to 

physiological range of corneal swelling of 4.5% to 5.5% that occurs overnight with the 

eyelid limiting oxygen delivery.
196,197

  The greatest quadrant changes in both 6mm and 

8mm chord diameters occurred in the inferior and temporal quadrants. This may be 
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associated with the typical inferior-temporal decentration of scleral lenses, resulting 

in an uneven post-lens tear film thickness circumferentially that is greater in the 

inferior-temporal area. There was a small difference, but a trend of greater increase 

in peripheral corneal thickness with high LC. The association between peripheral 

corneal swelling and low LC suggests an alternate etiology contributing to the corneal 

change other than corneal hypoxia. Finally, no corneal striae were noted in this study, 

which has been reported to occur with mean 6.89% of corneal edema in normal 

eyes.
198

 

Inadequate clearance between the scleral lens and cornea may result in mechanical 

insult to the corneal epithelium, as has been shown with flat-fitting corneal GP.
141–143

 

This is particularly important as the thickness of the post-lens tear film reduces as 

the lens settles.
159

 Limbal bearing might be observed as localized corneal staining or 

fluorescein pooling in areas of corneal epithelial defects.
199

 It is important to 

distinguish corneal staining caused by localized inappropriate contact between lens 

and ocular surface from that of diffuse corneal staining, which might be associated 

with inappropriate use of solution to insert lenses.
180

 The number of cases with 

persistent corneal staining post-scleral lens wear is similar to that reported in the 

SCOPE study, a multi-center, cross-sectional study observing scleral lens practice and 

associated physiological outcomes.
200

 Mechanical irritation may also present as 

epithelial bogging, which has been described as raised lesions in the corneal 

epithelium with a waterlogged appearance.
119

  Walker et al hypothesized that this 

phenomenon occurs with limbal bearing, resulting in the breakdown of the 

epithelium, and accumulation of non-vital epithelial cells that have accumulated 



 

 73 

inappropriately due to the compression by the scleral lens.
119

 Some of these findings 

have a similar appearance to that of limbal stem cell deficiency (LSCD) and recurrent 

corneal erosion where there is altered structural integrity (adhesion to basement 

membrane), reduced cell proliferation, and delayed cell turnover.
201

  

In this study, corneal staining, and epithelial bogging or indentation were 

differentiated and identified as positive and negative corneal/limbal staining, 

respectively. There were no statistical differences between the number of cases 

presenting with both positive and negative staining in low and high LC. The lack of 

statistical significance may be associated with a small sample size. Based on the 

findings, we hypothesize two possible mechanisms relating to the staining; one 

related to a hypoxic effect and the other a mechanical effect. Lin et al. describes an 

altered corneal epithelial barrier function due to mechanical insult with extended 

wear of soft contact lens wear, which is exacerbated by lens-induced hypoxia.
202

  

Similarly, Madigan et al.
203

 reported a reduction of hemidesmosomes in corneal 

epithelium associated with soft contact lens with low oxygen transmissibility. These 

reports demonstrate the increased relative risk of corneal erosion in cases of long-

term hypoxia. Similarly, while a lower LC may be associated with a greater negative 

pressure over the limbal area to create chronic mechanical pressure, a higher LC may 

create a more significant barrier to reduce oxygen permeability, the combined 

sources of stress imposed by scleral lens wear result in the irregular corneal surface 

integrity. On other hand, peri-limbal edema was observed in this study for both low 

and high LC lenses, which is consistent with results on localized limbal edema 

reported by Visser et al.
130

 In their study, Visser et al. proposed that this was due to 
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mechanical stress – induced by lens adhesion or insufficient limbal clearance.
130

 On 

the other hand, peripheral edema with high LC also appears to be consistent with the 

mathematical models of corneal edema published by Michaud et al.
138

  

4.6 Conclusion 

In summary, subjective responses improved for both low and high LC lenses likely 

due to the overriding effect of increased comfort with scleral lenses in general and 

that perhaps the 50µm difference in LC may not have been sufficient enough to elicit 

a statistical difference. Vision, comfort and dryness was improved over baseline with 

the high LC lenses. There was a slight decrease in limbal and bulbar hyperemia with 

low LC lenses compared to baseline but no difference between high and low LC lenses 

was found. Corneal swelling was noted in all corneal locations and especially at the 

6mm zone, where there were significant differences for both low and high LC lenses 

compared to baseline. Quadrant specific analysis revealed greater degree of change 

in inferior-temporal quadrants, likely associated with lens decentration. Corneal 

response to scleral lens wears with either low or high LC appears to result in either 

peri-limbal staining likely a hypoxic response or negative staining possibly due to 

mechanical irritation or bogging.  
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Chapter 5 

Comparative Analysis of Tear Protein in Keratoconic Scleral 

Lens Wearers with Varying Limbal Clearance 

5.1 Overview 

Purpose: The purpose of this study is to investigate changes in the level of 

inflammatory mediators in the tear film of keratoconic patients with scleral contact 

lenses wear with varying LC. 

Methods: 11 keratoconic subjects, experienced in scleral lens wear, were recruited 

(all male, mean age: 38.5 ± 13.5 years, range 24-67; Stage 1 KC: 54.5%, Stage 2: 

36.4%, Stage 3: 9.1%). Subjects attended two study visits on two separate days, and 

sample collection was attempted from both eyes (min. 0.2µl required). At each visit, 

immediately after lens removal, tears were collected with a microcapillary tube (10µL, 

0.5mm in diameter), firstly from inferior tear meniscus using the flush tear method, 

and secondly from the pool of tears in the bowl of the inverted scleral lens. 50µm of 

non-preserved 0.9% sodium chloride solution was instilled into the inferior cul-de-sac 

via a micro-pipette. The subject was then asked to roll their eyes twice with the eyelid 

closed and the tear sample was collected between blinks for a sixty-second period. 

Tear cytokine and protease analysis was performed using a multiplex electro-chemi-

luminescent array (Meso Scale Discovery, Rockville, MD) instrument. Levels of IL-1, -

6, -8, TNF-α, MMP-1 and -9 were compared using a Student t-test statistical analysis. 

Results:  The median volume collected from the flush tear collection was 1.0 µL 

(Range 0.2 to 6.0 µL). The median volume collected from the post-lens tear film were 

5.0 µL (Range 0.2 to 10.0 µL). A statistically significant difference was noted between 
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sample volumes from either collection method (p<0.05).  Significant differences at 

the p<0.10 levels were found comparing low and high LC with IL-1β, TNF-α, MMP-1 

and MMP-9 (all p<0.10) from the samples taken from the lens bowl. Scleral lens with 

high LC were associated with increased levels of IL-1β, TNF-α, and MMP-1 and 

decreased levels of MMP-9. 

Discussion: For scleral lens studies with tear analysis it appears that collecting the 

sample from the bowl of the lens yields valuable results. Changes in the cytokine 

levels were found comparing low and high limbal clearance indicating that mid-

peripheral lens fit is an important feature in regulating the inflammatory response of 

the keratoconic eye.    
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5.2 Introduction 

KC is a corneal ectatic disorder whereby the cornea thins and changes 

biomechanically, ultimately causing irregular changes in optical and demonstrating 

characteristic keratoconic features.
1,4,9

 As the condition progresses, the ectactic 

activity occurs primarily in the extracellular matrix, which is made up of 70% collagen, 

and is carried out by collagenases and gelatinases.
51,87

 Kao et al
204

 and Rehany et al
205

 

first reported higher than normal collagenolytic and gelatinolytic activity in a KC 

corneal culture in 1982.
204

 In 1982, Kenney et al., similarly, reported increased 

gelatinolytic activity in keratoconic corneae.
206

 These results paved the way for 

subsequent reports in identifying specific matrix metalloproteases (MMPs) involved 

in the pathogenesis of KC, such as MMP-1
90,92

, MMP-2
206

 and MMP-9.
51,87

 MMPs are a 

family of zinc-dependent endopeptidases
87

 synthesized by corneal epithelial cells, 

stromal keratocytes, and neutrophils normally necessary in normal corneal 

physiology and wound healing. The over-expression of MMPs ultimately results in the 

degradation of the basement membrane and stromal tissue in KC.
87

 

In 1991, Fabre et al reported 4 fold increase in binding sites of IL-1 in cultured KC 

stromal sites.
61

 Wilson et al.
58

 has also proposed the presence of IL-1 as the cause of 

KC. Up-regulation of IL-1 is associated with cell apoptosis in the corneal stroma, 

which alters the biomechanical stability in keratoconic stromal tissue
58

 and may occur 

as a response to mechanical trauma and/or oxidative stress secondary to vigorous 

eye rubbing. In addition, other pro-inflammatory cytokines, such as IL-6
52,69,70

, IL-8
51,76

, 

and TNF-α51,65,70

, have also been found to be up-regulated in this corneal ectatic 

disease. These cytokines are involved in the proteolysis within the stromal 
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tissue
57,207,208

, corneal neovascularization
74,77,78

, and other changes in corneal tissue. 

The involvement of cytokines in the pathogenesis of KC challenges the historic 

classification of KC as a non-inflammatory disease that presents with the absence of 

infiltrates. 

The delicate balance and regulation of cytokines is important in corneal physiology. 

Any ocular stress, such as the introduction of a contact lens, can influence the levels 

of inflammatory mediators which have an impact on corneal physiology and may 

further play a role in exacerbating the progression of KC.
58,209

 For instance, IL-6 levels 

have been reported to increase with contact lens wear.
68,210,211

 Kallinikos et al. have 

also reported an increase in IL-8 with continuous wear of soft silicone hydrogel 

lenses.
210

 Changes in IL-8 levels can also present with complications associated with 

contact lens wear, such as contact lens acute red eye (CLARE).
165

 Different lens 

modalities will also have an impact on the varying degrees of change in IL-6 and IL-8 

levels.
212

 In the keratoconic population, an increase of IL-6, TNF-α, and MMP-9 have 

been found with soft contact lens and corneal RGP wear.
50,213

 In addition, higher than 

normal levels of MMP-9 have been found subsequent to contact lens removal which 

can play a role in the integrity of the corneal epithelium.
214

  

Understanding factors that influence tear film composition may aid in a better 

understanding of the impact of scleral lenses on the health of the cornea, specifically, 

the mechanism of complications commonly associated with scleral lens wear. In 

Chapter 5, we investigate changes in the level of various inflammatory mediators in 

the tear film of scleral lens wearers that may be associated with varying LC by 50µm. 
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Ultimately, results from this study aims to help clinicians determine the subclinical 

impact of varying scleral lens wear design has on keratoconic individuals.  

5.3 Methods and Materials 

5.3.1 Participants 

This study was a continuation of the study presented in Chapters 3 and 4. As with 

Chapter 3, this study was approved by the Office of Research Ethics of University of 

Waterloo (ORE#21364) and performed under the Tenets of Helsinki. Informed 

consent was obtained from the same participants as in Chapter 3.  

5.3.1.1 Inclusion and Exclusion Criteria  

The same inclusion and exclusion criteria were followed in Chapter 3, Section 3.3.1.1.  

5.3.2 Study Materials 

5.3.2.1 Study Lenses 

The study lenses were the same as described in Chapter 3. The final lens parameters 

for the pair of lenses with low and high LC are listed in Tables 3-2A and 3-2B and the 

lenses were worn for 2±1weeks. 

5.3.3 Study Procedures  

5.3.3.1 Study Visits 

The same schedule for study visits was followed as in Chapter 3 and Chapter 4. As 

described in Section 4.3.3, each participant was fitted with two scleral lens designs 

bilaterally of high and low LC differing by 50µm. A wash-out period of a minimum of 

72 hours was required between wearing the first and the second set of study lenses. 



 

 80 

The order of which lenses were worn was randomized and double-masked to the 

participant and researcher.  

At each delivery appointment visit, tears were collected from the ocular surface for 

baseline analysis. At each follow-up visit, tears were collected, after lens wear of 

minimum of 4-6 hours, from two sites; directly from the posterior surface of the 

scleral lens and from the ocular surface (lower conjunctival fornix). Figure 5-1 

describes the study visits schedule.   

 

Figure 5-1:  Flow chart of study visits.  

5.3.3.2 Tear Collection from Scleral Lens 

Participants were asked to remove their study lenses by holding the lens horizontally 

while positioning their chin and face downward. The post-lens tear film was, then, 

collected directly from the contact lens bowl using a microcapillary tube (10µL, 

0.5mm in diameter), as illustrated in Figure 5-2. The maximum volume of tears that 
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would be collected was 10µl. The collected samples were subsequently transferred 

into a small vial for centrifugation at 4,000 rpm, for 20 minutes at 4°C.  The 

supernatants of each sample were then stored in an ­80º C freezer, awaiting analysis.   

 

 Figure 5-2:  Microcapillary tube collecting tear sample from scleral lens bowl.  

 

5.3.3.3 Tear Collection from Ocular Surface 

Tears were collected using the flush tear technique before and after scleral lens wear, 

as depicted in Figure 5-2.
167

 A volume of 60µL of sterile unit-dose saline was instilled 

into the inferior palpebral fold with a pipette.  Tear collection was then performed 

utilizing a single use microcapillary tube.  The tube was held at the outer canthus of 

the participant's eye.  The tears were collected in between blinks for the duration of 

one minute.  The collected samples were subsequently transferred into a small vial 

for centrifugation at 4,000 rpm, for 20 minutes at 4°C.  The supernatants of each 

sample were then stored in a ­80º C freezer, awaiting analysis.   
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Figure 5-3:  Flush Tear Method. (Photo Credit: Shane Parker).  

 

5.3.3.4 Tear Protein Analysis 

Tear cytokine analysis was performed using the Meso Scale Discovery platform (MSD-

ECL), as shown in Figure 5-4. This is an electrochemiluminescence detection 

system.
215,216

  Preparation of the samples includes dilution and incubation with 

analyte-specific antibodies.  These antibodies are tagged with ruthenium. Upon 

electrochemical stimulation, the ruthenium label will emit light as a result of a REDOX 

reaction.
215

  The concentration of specific proteases and cytokines can be determined 

based on the amount of light emission.  Preparation and analysis of samples are as 

per instructions supplied by manufacturers.  In comparison to traditional methods of 

tear protein analysis, particularly enzyme-linked immunosorbent assay (ELISA), MSD-

ECL allows for multiplex analysis and requires a significantly reduced test sample 

volume. The pro-inflammatory multiplex panel (human-1) was used to determine the 

levels of IL-1β, IL-6, IL-8, and TNF-α. This kit was validated according to published 
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material by Lee et al.
217

 The calibration curves and subsequent concentrations using 

signal detection were derived using MSD DISCOVERY WORKBENCH® software by the 

manufacturers of the MSD Multi-Plex Assay System. They were done to show that 

each individual assay was independent of each other using individual detection 

antibodies and to determine the analyte concentrations (Figure 5-5).  

 

Figure 5-4:  Meso-Scale Discovery Multiplex electro-chemiluminescent detection 

system and its set up for Pro-inflammatory 10-plex panel.  

 

 

Figure 5-5:  Calibration Curves for Human Pro-Inflammatory Panel 1 utilized by 

the MSD DISCOVERY WORKBENCH® software.   
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In addition, levels of MMP-1 and MMP-9 were measured using the human MMP 3-Plex 

Ultrasensitive kit, as shown in Figure 5-6. Standardized and validated calibration 

curves used by the MSD DISCOVERY WORKBENCH® are shown in Figure 5-7.  

 

Figure 5-6:  Meso-Scale Discovery Multiplex electro-chemiluminescent detection 

system and its MMP 3-Plex Ultrasensitive kit.  

 

 

Figure 5-7:  Calibration Curves for MMP 3-Plex Ultrasensitive Kit utilized by the 

MSD DISCOVERY WORKBENCH® software.   
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5.3.4 Statistical Analysis  

Data were analyzed using Statistica 10 (Statsoft Inc., Tulsa, TX).  Mean, standard 

deviations, medians and quartiles for each sample were determined and compiled for 

analysis.  Outliers over 2 standard deviation were excluded. Student t-tests assuming 

unequal variance were used to determine statistical significance between samples 

and varying LC.  P values of less than 0.05 were considered to be statistically different 

and in some cases (as with the cytokines) <0.10 due to large spread and variation in 

the measurements of these markers.  

5.4 Results 

5.4.1 Tear Sample Volume  

A total of twenty-two sample pairs, from both the posterior surface of scleral lens 

bowl and from the ocular surface, were collected and compared. The median volume 

collected from the flush tear collection was 1.0µL (Range 0.2 to 6.0µL). The median 

volume collected from the post-lens tear film was 5.0µL (Range 0.2 to 10.0µL). A 

statistically significant difference was noted between sample volumes from either 

collection method (p<0.05). 

5.4.2 Tear Cytokine Analysis 

Levels of molecular markers of inflammation based on tear analysis collected from 

the ocular surface before and after wearing the study scleral lenses with low and high 

LC are listed in Table 5-1. No cytokine data was producible for eleven tear samples 

for reasons of inadequate tear volume necessary for analysis. For the samples that 
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were analyzed, no statistical significance was noted in levels of cytokine changes with 

varying LC.  

Results from tear cytokine analysis, based on samples collected from the scleral lens 

bowl, are listed in Table 5-2, and depicted in Figures 5-8A-F. Significant differences 

at the p<0.10 levels were found comparing low and high LC with IL-1 (Figure 5-8A), 

TNF-α (Figure 5-8D), MMP-1(Figure 5-8E) and MMP-9 (Figure 5.8F) (all p<0.10).  

Table 5-1: Median and range of cytokine levels in tear samples from ocular surface. 

Levels are represented for habitual optical correction (Baseline), and with study scleral 

lenses with low and high LC. 

Cytokine Baseline Low LC High LC 

Median Range Median Range Median Range 

IL-1β 

(pg/mL) 

5.24 1.89-57.28 6.02 2.02-145.72 12.64 1.26-259.54 

IL-6  

(pg/mL 

16.94 4.10-78.52 8.18 2.39-66.66 22.00 3.54-114.28 

IL-8 

(ng/mL) 

0.54 0.87-1.94 0.97 0.13-5.96 0.64 0.13-12.86 

TNF-α 

(ng/mL) 

0.20 0.08-0.53 0.53 0.38-0.68 1.86 0.34-2.30 

MMP-1 

(ng/mL) 

n/a n/a n/a n/a n/a n/a 

MMP-9 

(ng/mL) 

n/a n/a n/a n/a n/a n/a 
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Table 5-2: Median and range of cytokine levels in tear samples from scleral lens post-

lens tear film. Levels are represented for study scleral lenses with low and high LC. 

Cytokine Low LC High LC 

Median Range Median Range  

IL-1β 

(pg/mL) 

7.35 0.09-

77.23 

8.39 0.24-

177.33 

p=0.117 

IL-6  

(pg/mL 

12.97 0.02-

622.58 

10.02 0.43-

589.75 

p=0.734 

IL-8 

(ng/mL) 

0.47 0.006-

31.33 

0.42 0.02-12.88 p=0.952 

TNF-α 

(ng/mL) 

1.15 0.090-

1.35 

1.11 0.07-8.09 p=0.006 

MMP-1 

(ng/mL) 

1.00 0.19-5.09 2.69 0.12-4.07 p=0.023 

MMP-9 

(ng/mL) 

32.17 4.74-

357.90 

26.37 6.31-

177.85 

p=0.095 
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Figure 8A. IL-1β levels, post-scleral 

lens wear, for low and high LC, p=0.117 

 

 

Figure 5-8B. IL-6 levels, post-scleral 

lens wear, for low and high LC, p=0.734. 

 

 

Figure 58C. IL-8 levels, post-scleral 

lens wear, for low and high LC, p=0.952.  

Figure 5-8D. TNF-α levels, post-scleral 

lens wear, for low and high LC, p=0.006. 

 

 

Figure 5-8E. MMP-1 levels, post-scleral 

lens wear, for low and high LC, p=0.023. 

 

 

Figure 5-8F. MMP-9 levels, post-scleral 

lens wear, for low and high LC, p=0.095. 
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5.5 Discussion 

The composition and concentration of proteins present in the tear film will vary in 

response to biological, pathogenic, or environmental factors. Tear protein analysis 

has helped us understand the pathophysiology and effect on the corneal integrity 

caused by KC, diabetes, and dry eye.
48

 Corneal RGP and short term scleral lens wear 

have been shown to have an effect on the tear film chemistry in individuals with 

normal corneae and KC.
50,108,218

 However, the influence of the fitting relationship and 

interaction between the scleral lens and the corneal, limbal and conjunctival surfaces 

on these markers is not well understood. This is particularly important for the limbal 

area as limbal stem cell deficiencies has been reported in contact lens wearers.
219,220

 

To better understand how scleral lens wear might influence the limbal area, where 

the corneal epithelial stem cells are located, this thesis chapter examines and 

compares specific tear composition before and after standardized fitting of scleral 

lenses with varying LC. 

An effective means of collecting the tear sample is essential for tear composition 

analysis. Tear collection can be done in various ways, including Schirmer strips
221,222

, 

microcapillary tube collection from fornices
43

, and impression cytology using a 

cellulose acetate filter.
223

 The main challenges are to ensure there is adequate volume 

for analysis and an ability to truly represent the status of the tear film.
221,224

 Mechanical 

irritation of the ocular surface during tear collection can stimulate reflex tearing, and 

alter the tear protein composition from the pure basal state, obscuring the results.
225

 

Markoulli et al. first reported on a flush tear method as a means for a faster, more 

comfortable and therefore easier collection.
167
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In this study, tear collection was taken from the ocular surface using the flush tear 

method. While this method was able to avoid volumetric, and therefore 

concentration, errors due to reflex tearing, the primary challenge that was faced was 

to maintain and generate an adequate volume for analysis. In several cases, the 

minimum volume collected over the one-minute tear collection period was as little as 

0.2µL from the ocular surface. This is less than the 0.5µL volume necessary for 

analysis through the MSD system. This is significantly less than volumes collected 

with the flush tear method in normal corneae reported in a pilot project in preparation 

for this thesis study.
226

 Difficulties in recovering adequate sample sizes have been 

reported to be associated with lower tear volume
107

, higher tear osmolarity
227,228

 and 

surface tension.
229

 These features can often be found in those with ocular surface 

diseases
230

 and can present as a co-morbidity in keratoconic eyes.
107

  

On the other hand, collection of tear samples from the posterior scleral lens bowl 

was able to recover a greater tear volume up to 10µL. These samples originated from 

the post-lens tear film between the scleral lens and the anterior corneal plane during 

lens wear, and are theoretically continuous with the tear film from the ocular surface.  

The 0.2µL to 10.0µL range in tear volume was then compared to a mathematical 

model to calculate the volume of the post-lens tear film (Figure 5-9). Assuming the 

scleral lens bowl and the anterior chamber of tear fluid are spherical caps, the 

volumes can be calculated from the lens parameters (Chapter 3, Section 3.4.2.) and 

corneal data (Chapter 3, Section 3.4.1). The formula in Figure 5-9 calculates the 

volume using the sagittal depth and sagittal height compared to the back-surface 

optic zone radius of the lens and anterior corneal keratometric values. Across the 
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scleral lens fits in this study, the mean theoretical post-lens tear film, with a mean 

central corneal clearance of approximately 200µm, was averaged to be 155.37µL. 

While the post-lens tear film cannot be recovered in its entirety during the removal 

of scleral lens, the sample volume collected from posterior bowl of the scleral lens 

still far exceeds reports from flush tear methods collected from ocular surface of 

27.2±11.7µL
167

. One shortcoming of this mathematical model is that the calculated 

volumes, based on the assumption that the scleral lenses are spherical caps, are 

exaggerated because the asphericity (positive eccentricity) of the back surface of the 

scleral lens and cornea will reduce the volumes relative to a curvature with zero 

eccentricity (that is, a sphere). 

 

Figure 5-9:  Volume and calculation for theoretical volumes of post-lens tear 

film assuming scleral lens and anterior cornea are spherical caps.  
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In this study, the limited tear volume collected from the ocular surface presented as 

a limitation. While the MSD facilitated tear analysis with a small sample volume, each 

multiplex requires a minimum of 0.5µL of sample. In more than one instance of tear 

collection from the ocular surface, only 0.2µL were collected. As such, not all tear 

film cytokines of interest in the study could be analyzed, namely the MMPs analysis. 

On the other hand, the post-lens tear film can act as an easier source of adequate 

tear volume and facilitates in tear protein analysis. One shortcoming of this method 

is that this method does not provide any baseline data on tear proteins.  

Further analysis of tear cytokines focused on tear samples from the post-lens tear 

film, which is assumed to be continuous with the tear film on the ocular surface. 

Despite greater recovery of tear sample volume by means of collection from the post-

lens tear film, the various cytokines examined in this study exhibited large ranges, 

which can present as a challenge in the statistical analysis. This is likely due to the 

influence of a large age range in the participants that present with various stages of 

the KC. As such, the basal levels of inflammatory mediator may be inconsistent 

depending on the stage of their of corneal ectasis.
70

 It is for this same reason that 

tear samples from the right and left eyes cannot be pooled together as the severity 

of ectactic disease is asymmetrical.
3,6–9

 While unable to control the age range, the 

study had only recruited males to minimize the impact hormones, such as estrogen, 

has on the cytokine levels and MMP activities.
231,232

 As opposed to absolute 

concentrations, the relative cytokine level is still valuable in providing an insight into 

how varying the LC may affect the local inflammatory response.
233–235
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In this study, IL-1β levels were noted to increase with the increase of LC in the scleral 

lens design which was not statistically significant likely due to a small sample size. 

IL-1β is a potent inducer for other cytokines, such as IL-6 and -8 and TNF-α.
55,56

 

Therefore, changes in levels of this cytokine may implicate changes in the latter tear 

proteins. Martín-Montañez et al.
236

 showed a higher level of IL-1β associated with 

omafilcon A (Dk/t at -3.00D = 44, lower Dk) relative to that associated with comfilcon 

A (Dk/t at -3.00D = 160), which has a higher oxygen permeability. On the other hand, 

Yüksel Elgin et al.
212

 reported elevated IL-1β associated with contact lens wear using 

silicone hydrogels, compared to corneal GPs. Corneal GPs permit greater tear 

exchange and can reduce the hypoxic response. Furthermore, IL-1β has been cited to 

be involved in the regulation of keratocyte apoptosis and corneal tissue 

organization.
58

 An increases in IL-1β, which was found to be associated with scleral 

lens wear with high LC in this study, can have an implication to promote disease 

progression in KC.  

A general trend of increase in levels of IL-6 in this study was also seen with increasing 

the LC. Elevated IL-6 has been linked to soft contact lens wear.
68,218,237

 While all the 

studies differ in methodologies, Schultz and Kunert
68

 reported increased levels of IL-

6 with soft lens wear of 43.8±5.3pg/5µL (8.76ng/mL); Thakur and Wilcox
218

 reported 

elevated levels of IL-6 of 2.505±0.951ng/mL with soft contact lens wear especially 

when worn overnight, while Poyraz et al.
237

 reported IL-6 levels of 33.1±15.0pg/mL 

with 6 months of soft lens wear and 34.4±17.5pg/mL with the same duration of 

corneal RGP wear.  Furthermore, an IL-6 increase with corneal injury as a result of 
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ocular desiccation in cases of ocular surface disease
63–66

, and eye rubbing in cases of 

KC has been reported.
71

  

In this study, varying the LC resulted in no change in IL-8. IL-8 is a pro-inflammatory 

chemokine that plays a role in neutrophil chemotaxis.
56,237

 It has been associated with 

angiogenic activities by attracting neutrophils along the vascular wall.
56,75,238

 A lack of 

change in the proangiogenic cytokine indicates there is no difference in 

neovascularization activities with varying the LC, which were not observable within 

the two weeks of study lens wear. IL-8 is up-regulated in response to the mechanical 

trauma on the corneal epithelium normally from eye rubbing.
71,210

 IL-8 levels have also 

been reported to increase with corneal RGP wear, likely due to some mechanical 

stimulation over a two hour period.
76

 In association with scleral lens wear with low 

and high LC, the presence of some limbal clearance should result in no mechanical 

insult on the ocular surface at the corneal and limbal area.  

TNF-α is a pro-inflammatory cytokine with pro-lymphangiogenic and pro-angiogenic 

effects. This mediator is produced by corneal epithelial cells to promote vasodilation, 

edema, and leukocyte recruitment.
77

 In the keratoconic population, TNF-α has been 

reported to approximately increase five-fold with contact lens wear.
50

 In this study, 

scleral lens wear with high LC resulted in statistically significant higher levels of TNF-

α. TNF-α is known to contribute to IL-6 production in cytokines
239

 and may increase 

with IL-6 levels in cases with high LC.  

MMP-1 and MMP-9 is part of a family of collagen-degrading enzymes that play an 

important role in normal corneal physiology. MMP-1 was significantly increased with 

increased LC. Mckay et al.
240

 has reported corneal tissue response of increased MMP-
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1 in acute hypoxic conditions. It is important to note that healthy corneal tissue 

should have no MMP-1.
92

 Conversely, there was a general trend (at p=0.1) of a 

decrease in the level of MMP-9 with higher LC. MMP-9 is critical in the proteolysis of 

collagen type VII and other components of the extracellular matrix of the corneal 

epithelial basement membrane.
84–86

 Elevated MMP-9 levels in the tear film is indicative 

of an inflammatory response to stress or injury to the corneal epithelium
94

 and has 

been linked to recurrent corneal erosions
86

, dry eye
54,241–244

, KC,
87

 and scleral lens wear 

in keratoconic  and normal corneae.
108,226

 Up-regulation of MMP-9 is regulated and 

promoted by IL-1 and TNF-α.
49,80

, and is inhibited by the tissue inhibitor of MMP-1 

(TIMP-1)
84–86

. In this study, the inversely-related changes in IL-1 and TNF-α may be 

related to the down-regulation of MMP-9 by TIMP-1.  

In scleral lens wear, a  thicker post-lens tear film placed over the limbal area can pose 

a barrier to oxygen transmissibility, resulting in a pro-inflammatory environment and 

corneal hypoxia.
138

 On the other hand, inadequate limbal clearance can induce 

mechanical insult to the ocular limbal surface. With scleral lens wear, increases in IL-

1 and MMP-1 levels are indicative on how higher LC can result in hypoxia in the limbal 

zone. Conversely, an increased level of MMP-9 with decreased LC is suggestive of the 

presence of mechanical insult on the limbal tissue as a result of low LC. The limbal 

zone must be carefully considered to minimize its impact on the ocular health as it 

is an important area of the cornea which houses the corneal stem cells necessary for 

the re-population of mainly epithelial cells within the cornea.
146

. Higher LC is 

associated with greater increases in various cytokine levels over a two-week period, 
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creating a more pro-inflammatory condition. This change may be sufficient to cause 

a slow progression of corneal ectasia.
50,245

 

5.6 Conclusion 

Tear collection directly from the post-scleral lens tear film after lens removal allows 

for a better recovery of cytokines compared to the flush tear method. It may be a 

preferred method for tear film analysis for scleral lens research, particularly with 

subjects with low tear volume. The objective of this study was to identify changes in 

tear cytokines with scleral lenses that varied in LC by 50µm. Higher LC was associated 

with higher levels IL-1β, IL-6, TNF-α and MMP-1 levels and lower levels of MMP-9. 

There was no change in IL-8 levels with varying LC. The limbal zone of the scleral 

lens can have an impact on the corneal physiology of the limbus. As such, the limbal 

zone has a significant impact on the clinical performance of a scleral lens. 
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Chapter 6 

Tear Cytokine Changes and Relationship to Clinical 

Performance of Scleral Lenses with Varying Limbal Clearance 

and Discussion 

6.1 Introduction 

This thesis study was a prospective cross-over, dispensing study that fitted twenty-

two keratoconic eyes with two pairs of scleral lenses with a low and a high limbal 

clearance. Following a two-week, full-time, lens wear duration, clinical performance 

and tear cytokines analysis was performed to better understand how varying LC 

impacts the ocular health. All data regarding fitting characteristics, clinical 

performance, and associated tear cytokines changes are summarized in Table 6-1. 
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Table 6-1: Summary of limbal zone fitting characteristic clinical performance, tear 

cytokine associated with scleral lenses with low and high LC. 

 

 Low LC High LC 

 Nasal Temporal Nasal Temporal 

Initial LC 120.89 ± 37.87 198.98 ± 70.21 145.67 ± 

51.12 

252.43 ± 104.71 

Final LC 106.40 ± 35.09 141.08 ± 83.01 148.83 ± 

50.59  

185.78 ± 69.75 

     

Subjective 

Assessment 

    

Comfort 80 (55-95) 90 (70-100) 

Dryness 82.5 (50-100) 90 (60-100) 

Burning 85 (65-100) 95 (70-100) 

Vision 90 (60-100) 92.5 (70-100) 

   

Hyperemia Nasal Temporal Nasal Temporal 

Limbal 0.92±0.62 0.77±0.34 1.03±0.83 0.95±0.52 

Bulbar 1.60±0.52 1.30±0.34 1.63±0.57 1.40±0.46 

   

Pachymetry   

Centre 

cornea 

469.7±37.7µm 485.6±32.7µm 

 

Periphery 

at 6mm 

590.3±42.7µm 

 

578.9±51.3µm 

Periphery 

at 8mm 

650.7±56.7µm 

 

651.9±54.7µm 

 

   

Cytokines   

IL-1 β 

(pg/mL) 

7.35 (0.09-77.23) 8.39 (0.24-177.33) 

IL-6 

(pg/mL 

 12.97 (0.02-622.58) 10.02 (0.43-589.75) 

IL-8 

(ng/mL) 

0.47 (0.006-31.33) 0.42 (0.02-12.88) 

TNF-α 

(ng/mL) 

1.15 (0.090-1.35) 1.11 (0.07-8.09) 

MMP-1 

(ng/mL) 

1.00 (0.19-5.09) 2.69 (0.12-4.07) 

MMP-9 

(ng/mL) 

32.17 (4.74-357.90) 26.37 (6.31-177.85) 
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6.2 Correlations Among Results 

The limbal zone of a scleral lens plays an important role in the overall fitting success.   

Various ocular sequelae were reported in a case series of scleral lens fittings that had 

an appropriate central ocular surface-to-lens fitting relationship. This study wanted 

to identify possible relationships between low and high LC with potential mechanical 

or hypoxic side effects. Comparing ocular health findings, subjective comfort, and 

tear cytokine analysis can help clinicians and researchers better understand how 

varying LC can impact the ocular health, clinically and sub-clinically.  

6.2.1 Statistical Analysis  

Statistics were analyzed using Statistica 10 (Statsoft Inc., Tulsa, TX). To quantify 

correlations between cytokine levels and clinical parameters, the Pearson correlation 

coefficient (r) was determined along with its statistical significance. P values of less 

than 0.10 for tear data were considered to be statistically different.  

6.2.2 Correlation Results  

Only statistically significant correlations are reported.  

6.2.2.1 Correlation between Limbal Clearance and Clinical Parameters 

Low LC in nasal quadrant  

- Negatively correlated with peripheral corneal pachymetry in the inferior 

quadrant at 8mm. (r=-0.6603, p=0.038) 

High LC in temporal quadrant 

- Correlated with peripheral corneal pachymetry in the inferior quadrant at 

6mm. (r=0.6656, p=0.036) 
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- Correlated with peripheral corneal pachymetry in the inferior quadrant at 

8mm. (r=0.6322, p=0.050) 

6.2.2.2 Correlation between Tear Cytokines and Clinical Parameters  

IL-1 

- Overall subjective comfort was correlated with IL-1 levels with low LC 

(r=0.6341, p=0.049)  

- Bulbar hyperemia in nasal quadrant with high LC is negatively correlated 

with IL-6 levels with low LC (r=-0.6596, p=0.038) 

 

IL-6 

- Bulbar hyperemia in nasal quadrant with high LC is negatively correlated 

with IL-6 levels with low LC (r=-0.6596, p=0.038) 

- Peripheral pachymetry in Superior quadrant at 6mm with Low LC is 

negatively correlated with IL-6 levels with high LC (r=-0.7882, p=0.007) 

- Peripheral pachymetry in superior quadrant at 6mm with Low LC is 

negatively correlated with IL-8 levels with high LC (r=-0.8517, p=0.002) 

- Peripheral pachymetry in Inferior quadrant at 8mm with High LC is 

correlated with IL-6 with high LC (r=0.6606, p=0.038) 

 

TNF-α 

- Peripheral pachymetry with low and high LC inferior quadrant at 6mm is 

correlated with TNF-α levels with low LC (r=0.6747, p=0.032 and r=-

0.6537, p=0.040) 

- Peripheral pachymetry in temporal quadrant at 6mm with high LC is 

negatively correlated with TNF-α levels with low LC (r=-0.5449, p=0.10) 
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- Peripheral pachymetry at temporal quadrant at 6mm and 8mm with high 

LC are correlated with TNF-α levels with high LC (r=0.6886, p=0.028 and 

r=0.6908, p=0.027, respectively) 

- Peripheral pachymetry with low LC nasal and temporal quadrants at 6mm 

are correlated with TNF-α levels with high LC (r=0.6979, p=0.025 and 

r=0.7703, p=0.009, respectively) 

MMP-1 

- Limbal hyperemia in nasal quadrant with high LC is negatively correlated 

with MMP-1 levels with low LC (r=-0.7410, p=0.014) 

- Bulbar hyperemia in nasal hyperemia with high LC is negatively correlated 

with MMP-1 levels with low LC (r=-0.7410, p=0.014) 

- Peripheral pachymetry with High LC in Superior quadrant at 6mm is 

negatively correlated with MMP-1 levels with low LC (r=-0.6459, p=0.044) 

MMP-9 

- High rating regarding no burning sensation was correlated to MMP-9 levels 

with high LC (r=0.7760, p-0.008) 

- Limbal hyperemia in temporal quadrant with low LC is negatively correlated 

with MMP-9 levels with high LC (r=-0.6766, p=0.032) 

- Bulbar hyperemia in temporal quadrant with low LC is negatively correlated 

with MMP-9 levels with high LC (r=-0.6766, p=0.032) 

- Peripheral pachymetry with Low LC in Temporal quadrant at 6mm is 

negatively correlated with MMP-9 levels with high LC (r=-0.7991, p=0.006) 
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- Peripheral pachymetry with Low LC in Temporal quadrant at 8mm is 

negatively associated with MMP-9 with high LC (r=-0.8425, p=0.002) 

 

 

6.2.2.3 Correlation between Tear Cytokines and Limbal Clearance 

A strong correlation between IL-6 levels from high LC and IL-8 levels from high LC 

was noted (r=0.9291, p=0.000). A similarly strong correlation was found between 

MMP-9 levels with low LC and IL-8 levels with low LC (r=0.9938, p=0.000). MMP-9 

with low LC was negatively correlated with TNF-α levels with low LC (r=-0.6072, 

p=0.063).  IL-6 with high LC was negatively correlated with TNF-α levels with low LC 

(r=-0.9928, p=0.0001).  

6.3 Discussion 

Introduction of any foreign object, such as a scleral lens, is a sustained environmental 

change which can result in a chronic state of altered ocular homeostasis.
45,47

 If the 

immune system is not able to rectify the change, the ocular inflammatory response 

can result in tissue damage.
45

 In early stages of ocular inflammation, only biochemical 

changes occur, which is commonly asymptomatic. Cytokines are markers for 

subclinical inflammatory changes.
43,48

 Through the vasculature system, the impact of 

cytokines are amplified through a cascade to impact adjacent tissues.
144

 Ultimately, 

these changes become observable through biomicroscopy as classical signs 

inflammation of rubor which presents as limbal and bulbar injection, tumor as 

corneal edema, and dolor as reports of pain or discomfort. The main purpose of this 

study is to examine the various subclinical changes and clinical ocular findings 
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associated with scleral lens wear with varying limbal clearance in keratoconic 

patients. 

6.3.1 Hyperemic Complications 

Injection in the limbal and bulbar conjunctival areas are persistently two of the most 

common complications associated with scleral lens wear.
119,126

 Injection is indicative 

of the presence of distress to the ocular surface.
155

  In the case of scleral lens wear, 

inflammatory response originate in the limbal vasculature.
144

 Hyperemia is a result of 

vasodilation of limbal and bulbar conjunctival vasculature can be detected by 

biomicroscopy, as well as by Oculus Keratograph 5® R Scan (Section 4.3.2.3).  

Vasodilation in the limbus and bulbar conjunctiva occur as a result of increased level 

TNF-α produced by corneal epithelial cells.
77

 In this study, while no difference in 

hyperemia in the limbal and bulbar regions was observed subsequent to scleral lens 

wear comparing low and high LC, high LC was associated with higher levels of TNF-α 

in the post-lens tear film. 

Papas
246

 has reported an association between limbal redness and contact lens-

induced hypoxia. Similarly, Maldonado-Codina et al.
247

 have noted greater contact 

lens-induced limbal and bulbar redness associated with low oxygen transmissible 

hydrogel lens wear compared to high oxygen transmissible silicon hydrogel lens 

wear.  

6.3.2 Hypoxic Complications 

Despite the use of lens materials with high oxygen transmissibility, corneal hypoxia 

has been reported in scleral lens wear and has been theoretically associated with a 
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thicker post-lens tear film.
139,156,157

 Hypoxia causes the cornea to shift into anaerobic 

metabolism
248

, which results in corneal swelling
194

. Hypoxic changes in the corneal 

tissue may be observed through biomicroscopy as striae and loss of transparency 

when corneal thickness has increased by  6.89%
198

 and greater than 15%
249

, 

respectively. Sub-clinically, corneal pachymetry using the Scheimpflug imaging (as 

described in Section 3.3.1.1) can provide a method for close monitoring of corneal 

hypoxic changes.
250

 On the other hand, tear analysis may allow a closer examination 

of the impact of hypoxia which was found to be associated with greater clearance at 

the limbal zone of the scleral lens in this study. Up-regulation of  IL-1β has been 

reported to be associated with contact lens wear of lower oxygen permeability.
212,236

  

A scleral lens wear system must provide peripheral oxygen transmissibility of no less 

than 32.6 x 10
-9

 cm
2

.mlO2/s.ml.mmHg to avoid corneal swelling.
251

 According to a 

theoretical study used to analyze CCC by Fatt
252

 and Michaud et al.
138

 (Figure 6-1), the 

limbal clearance must be no greater than 5.40µm in order to avoid inducing corneal 

hypoxia in the peripheral cornea, assuming oxygen transmission through the lens 

and post-lens film thickness is the only source of oxygen. This is certainly consistent 

with the concept that thinner clearance allows for better oxygen delivery
138–140

 In 

practice, oxygen to the limbal tissue might be supplied by limbal vessels.
126

 For this 

reason, it can be argued that LC is not the sole cause of limbal edema. Furthermore, 

Bergmanson et al. argues that perhaps the minute degree of tear exchange that 

occurs in scleral lens systems might be an alternate source of oxygen delivery to the 

corneal and limbal epithelium.
253
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Figure 6-1:  Fatt Formula to calculate theoretical oxygen delivery in scleral lens 

system.
138,252

 

 

In this study, pachymetry analysis was focused on the peripheral cornea to investigate 

the influence varying LC has on corneal hypoxia. A central corneal edema of 

approximately 4% was noted in the central corneal thickness for all scleral lens fits 

of both low and high LC. A significant increase in peripheral corneal thickness with 

all scleral lens wear since all LC exceeded 5.40µm in this study. The change was 

smaller with the low LC lenses compared to high LC (Figures 4-7A and 4-7B). This is 

consistent with the tear cytokines analysis which showed a relative lower level of IL-

1β with low LC, which provides higher oxygen transmissibility.  

6.3.3 Mechanical Complications 

Dolor is observable as symptoms of pain or discomfort which may result from 

mechanical insult to the ocular surface. In this study, no pain was reported in 

association with scleral lens wear. In addition, both low and high LC lenses were able 
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to provide the same level of comfort to the keratoconic subjects. Previous reports 

have found little association between change in tear cytokines to ocular comfort 

associated with lens wear.
254

 This is with the exception of IL-1β, which have shown 

positive correlation with severity of dry eye syndrome.
66

  

Limbal bearing may be observed in instances of inadequate LC, where the lens is 

inappropriately resting on the ocular surface.
199

 This may cause the breakdown of the 

limbal epithelium and can be seen as localized corneal staining. When examining the 

corneal surface, similar incidences of positive corneal staining were found with both 

low and high LC lenses. On a biochemical level, levels of MMP-9 were inversely related 

to magnitude of LC. In addition, MMP-9 levels demonstrated a statistically significant 

negatively correlation with clearance in the limbal zone. Elevated MMP-9 levels in the 

tear film are indicative of an inflammatory response to stress or injury and have been 

linked with the presence of inflammation in a disrupted corneal epithelium, such as 

recurrent corneal erosion
86

, dry eye
54,241–244

, KC,
87

 and complications secondary to 

contact lens wear.
50,214,255

  It can be deduced that a higher LC may be protective against 

mechanical insult on the limbal tissue. 

6.3.4 Limbal Complications 

The limbus is an important area of the cornea as it houses the limbal vasculature 

which is supplies oxygen to the limbal stem cells and contributes to the avascular 

cornea and,.
144–146,256

 Damage to the limbal epithelium, the preferential site for corneal 

epithelial stem cells can result in defective tissue remodeling and corneal 

epithelization, resulting in the conjunctivalization of the limbus.
257–261

 This condition 

is referred to as Limbal Stem Cell Deficiency (LSCD). Iatrogenic causes for acquired 
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LSCD include poor-fitting contact lens wear which compromises the health of the 

limbal stem cells.
220

 Clinical finding associated with LSCD include chronic stromal 

inflammation, corneal neovascularization, conjunctival epithelial ingrowth.
261

 In 

LSCD, upregulation of IL-6 and IL-8, in addition to other cytokines in its signaling 

pathway including IL-1β and TNF-α, has been reported to result in angiogenesis and 

corneal neovascularization.
75

 In addition, excessive extra cellular matrix breakdown 

in cases of LSCD is associated with upregulation of both MMPs-1 and -9.
259

  

In this study, increasing the LC in scleral lens design trended towards a positive 

correlation with levels of in IL-1β, IL-6, TNF-α, MMP-1 and a negative correlation with 

MMP-9. There was inadequate data in tear cytokine analysis from the ocular surface, 

by means of the flush tear method (Section 5.3.3.2) to demonstrate how scleral lens 

wear with varying LC can change levels of the inflammatory markers from baseline.  

A clinical finding observed with scleral lenses with both low and high LC is negative 

corneal/limbal staining.  Walker et al. has described it as epithelial bogging.
119

 The 

presence of epithelial disruption has a similar presentation to the negative corneal 

staining finding in cases of limbal stem cell deficiency. Hypoxia can retard the limbal 

stem cell growth and differentiation.
262

 In scleral lens wear, it is hypothesized that 

the combined hypoxic and mechanical effect posed by the scleral lens and the post-

lens tear film, regardless of high and low LC, may be disruptive to the limbal stem 

cells’ health. Lin et al. describes altered corneal epithelial barrier function due to 

mechanical insult with extended wear of soft contact lens wear, which is exacerbated 

by lens-induced hypoxia.
202

  Chronic hypoxia can result in a reduction of 

hemidesmosomes in the corneal epithelium, which ultimately increases the relative 
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risk of erosion.
203

 Similarly, Visser et al
130

 has also associated peri-limbal edema with 

mechanical stress imposed by insufficient limbal clearance.
130

 This study also 

demonstrated changes on the ocular surface associated with hypoxia and mechanical 

irritation with both low and high LC. 
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Chapter 7 

Study Summary 

7.1 Study Summary 

The study aimed to answer some questions about the overall safety profile of scleral 

lenses. Anecdotally, there has been reports of ocular sequelae associated with scleral 

lens wear despite achieving an ideal central lens-corneal fitting relationship and use 

of high oxygen permeable material.
162

 This suggests that the limbal zone of the 

scleral lens also plays a key role that can impact the ocular health, both clinically and 

sub-clinically.  This is particularly important in keratoconic cornea, where even a 

small change in the regulation of cytokines can have a profound impact on the 

pathophysiology of corneal ectasia.
58,209

 

Excessive or inadequate post-lens tear film over the limbal stem cell tissue can result 

in a disturbance to the ocular health. Despite oxygen supply through the limbal 

vasculature and tear exchange,
126,253

  oxygen delivery is challenged by a post-lens tear 

film.
138–140

 According to a theoretical model, a limbal clearance of 5.40µm or less can 

reduce hypoxic concern, but inadequate limbal clearance can result in mechanical 

insult of the ocular surface. The disruption to the corneal epithelium can result in 

superficial punctate keratopathy, identifiable as positive corneal staining.
141–143

 The 

mean settling in the limbal zone in this study, or the difference between initial and 

final limbal clearance, was 16.27µm. This means that the appropriate LC could be a 

minimum of 25 µm to prevent corneal epithelial damage. This suggests that the ideal 

LC may be different depending on the individual scleral lens wearers. For instance, 
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in individuals who have an endothelial deficiency, LC should be kept at the minimum 

suggested.  

Overall, this study was able to demonstrate the high clinical performance in comfort 

and vision that scleral lenses can bring to keratoconic subjects. At the same time, it 

highlights some physiological changes that present with an ideal central lens-cornea 

fitting relationship and low and high LC, differing by approximately 50µm. Tear 

cytokine analysis confirms that scleral lens wear can have an impact on the 

inflammatory response from the ocular surface, and will change in accordance to 

varying LC.  

7.2 Study Limitations and Future Research 

There were several limitations in this study. The primary short-coming was a small 

sample size of eleven participants. This created a subsequent challenge faced during 

subject recruitment which was a lack of control over the age of the participants. The 

wide range of age and stage of KC may have had an influence on the  levels of 

inflammatory mediator found.
71

 Further study with an expanded sample size would 

better illustrate scleral lens changes in different age groups and at different stages 

of KC. Another limitation of this study included the challenge to remain double-

masked. The researcher running the protocol was likely able to observe the LC during 

the image scan and may have been biased during subsequent testing in the study 

protocol, such as biomicroscopy. Improvement to the study protocol includes 

including more researchers to delegate different component of the study protocol. In 

addition, the study duration (2±1 weeks) may not have been reflective of long-term 

impact of scleral lens wear. Despite a full-time wear schedule of daily wear exceeding 



 

 111 

the normal corneal epi cell lifespan of 7 to 10 days
264

, cytokine levels induced by 

varying LC may not demonstrate changes until beyond one month of lens wear.
237

 

The long term impact on lens performance and tear cytokine levels beyond this 

period of time needs to be studied further. Finally, the small tear volumes that were 

collected from the ocular surface and lens bowl, due to low tear volume
107

, high tear 

osmolarity
227,228

, and surface tension
229

, posed a challenge for examining a larger array 

of inflammatory mediators. To overcome the challenges posed by inadequate 

recovery of tear volume, an alternative tear collection methods that allow for closer 

proximity to the ocular surface might be a superior method, such as impression 

cytology with the use of a cellulose acetate filter.
223
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Appendix A 

Subjective Ratings of Ocular Symptoms 

Date __________ Study __Limbal Clearance Study Investigator ________ ID ______ Lens 1 

and 2   

The following questions relate to a number of symptoms which you may or may not be 

experiencing with the contact lenses you are wearing in the study.  Please select a value 

between 0 and 100 which most adequately describes how you feel about your study lenses 

and enter this in the box next to each question’s scale, R=right eye; L=left eye 

 

1. How would you rate your comfort with your study lenses? 

0 100 

 

Very poor comfort excellent comfort 

2. How would you rate your dryness with your study lenses? 

0 100 

 

Very dry not dry at all 

 

R 

L 

 

R 

L 

3. How would you rate burning with your study lenses? 

0 100 

 

Severe burning no burning 

 

R 

L 

4. How would you rate your clarity of vision with respect to cloudy/filminess  

             (blinking to clear) with your study lenses? 

0 100 

 

Very poor                                                                         excellent 

(constantly having to blink to clear)        (never having to blink to clear) 

R 

L 

  

 


