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Abstract

Seasonal snow cover, the second-largest component of the cryosphere, is crucial in con-
trolling the climate system, through its important role in modifying Earth’s albedo. The
temporal variability of snow extent and its physical properties in the seasonal cycle also
make up a significant element to the cryospheric energy balance. Thus, seasonal snow
cover should be monitored not only for its climatological impacts but also for its role
in the surface-water supply, ground-water recharge, and its insolation properties at local
scales. Snowpack physical properties strongly influence the emissions from the substratum,
making feasible snow property retrieval by means of the surface brightness temperature
observed by passive microwave sensors. Depending on the observing spatial resolution,
the time series records of daily snow coverage and a snowpacks most-critical properties
such as the snow depth and snow water equivalent (SWE) could be helpful in applications
ranging from modeling snow variations in a small catchment to global climatologic studies.
However, the challenge of including spaceborne snow water equivalent (SWE) products in
operational hydrological and hydroclimate modeling applications is very demanding with
limited uptake by these systems. Various causes have been attributed to this lack of up-
take but most stem from insufficient SWE accuracy. The root causes of this challenge
includes the coarse spatial resolution of passive microwave (PM) observations that observe
highly aggregated snowpack properties at the spaceborne scale, and inadequacies during
the retrieval process that are caused by uncertainties with the forward emission modeling
of snow and challenges to find robust parameterizations of the models. While the spatial
resolution problem is largely in the realm of engineering design and constrained by physi-
cal restrictions, a better understanding of the whole range of retrieval methodologies can
provide the clarity needed to move the thinking forward in this important field.

Following a review on snow depth and SWE retrieval methods using passive microwave
remote sensing observations, this research employs a forward emission model to simulate
snowpacks emission and compare the results to the PM airborne observations. Airborne
radiometer observations coordinated with ground-based in situ snow measurements were
acquired in the Canadian high Arctic near Eureka, N'T, in April 2011. The observed bright-
ness temperatures (7,) at 37 GHz from typical moderate density dry snow in mid-latitudes
decreases with increasing snow water equivalent (SWE) due to the volume scattering of the
ground emissions by the overlying snow. At a certain point, however, as SWE increases,
the emission from the snowpack offsets the scattering of the sub-nivean emission. In tun-
dra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been
postulated that the inflection point in the seasonal time series of observed Th V 37 GHz of
tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this
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effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory for
Multi Layered (DMRT-ML) snowpack is used to predict the passive microwave response
from airborne observations over shallow, dense, slab-layered tundra snow. The DMRT-ML
was parameterized with the in situ snow measurements using a two-layer snowpack and
run in two configurations: a depth hoar and a wind slab dominated pack.

Snow depth retrieval from passive microwave observations without a prior: information
is a highly underdetermined system. An accurate estimate of snow depth necessitates a
priori information of snowpack properties, such as grain size, density, physical temperature
and stratigraphy, and, very importantly, a minimization of this a prior information require-
ment. In previous studies, a Bayesian Algorithm for Snow Water Equivalent (SWE) Esti-
mation (BASE) have been developed, which uses the Monte Carlo Markov Chain (MCMC)
method to estimate SWE for taiga and alpine snow from 4-frequency ground-based ra-
diometer Tp. In our study, BASE is used in tundra snow for datasets of 464 footprints in
the Eureka region coupled with airborne passive microwave observations—the same field
study that forward modelling was evaluated. The algorithm searches optimum posterior
probability distribution of snow properties using a cost function between physically based
emission simulations and 7T; observations. A two-layer snowpack based on local snow cover
knowledge is assumed to simulate emission using the Dense Media Radiative Transfer-Multi
Layered (DMRT-ML) model.

Overall, the results of this thesis reinforce the applicability of a physics-based emission
model in SWE retrievals. This research highlights the necessity to consider the two-part
emission characteristics of a slab-dominated tundra snowpack and suggests performing
inversion in a Bayesian framework.
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Chapter 1

General Introduction

1.1 Motivation

Snow cover affects the climate system through its important role in modifying the Earth’s
albedo. In addition, modeling a hydrological system at local to regional scales for vari-
ous applications such as snow runoff models requires accurate snow cover extent (SCE)
and snow depth (SD) as controlling geophysical variables. Seasonal snow cover dynamics
necessitates the mapping and measuring of snow properties in short time-steps so as to
obtain accurate modeling and conclusively address the importance of the physical property
retrieval of seasonal snow cover.

Remote sensing provides frequent observations at small scales, allowing modeling of the
snowpack variability at these scales [54], whereas this variability cannot be captured by re-
lying only on ground-based measurements. Among various available sensors and platforms
for earth surface monitoring, Passive Microwave (PM) radiometry has been known as a
powerful tool for snow mass retrieval for more than four decades. Extensive ground-based
radiometry of a snowpack in different conditions (e.g., [139, 171, 155]) has resulted in cur-
rent physical properties emission models for snowpack. Furthermore, the availability of
in situ measurements helps to evaluate emission models’” accuracy and sensitivity to each
parameter. Despite the extensive efforts of researchers to provide accurate SWE retrieval
using PM, current SWE products still do not meet the minimum operational accuracy
requirement for hydrological applications (£15%)[11].

Emission models of snowpacks have been employed in various ground-based experi-
ments; however, only a limited number of studies focus on retrievals using remote sensing



observations through physical emission models. The scaling process is another challenge
that impacts the accuracy of retrievals. Generalizing in situ measurements for snowpack
emission modeling and for the evaluation of retrievals is a very important analysis that is
mostly undermined. Several studies have confirmed that grain size is the most-influential
component of the microwave signature in emission modeling. Using an appropriate grain
size and growth rate to represent snowpack evolution leads to improved simulations. In
addition, a snowpack is not a homogeneous medium, and its microstructural properties
vary from layer to layer. This heterogeneity should be considered in a remote sensing ob-
servation footprint. On the other hand, adding unnecessary details of the stratigraphy to
the model should be avoided as it leads to a high correlated simulations and observations,
with no real justification.

The complexities of applicable theories in physical emission models are barriers for
hydrologists to couple their knowledge of snow hydrology to electromagnetic modeling.
The same issue has arisen with Machine Learning (ML) techniques applied as inversion
methods to observations. To date, a tractable and reproducible retrieval framework that
integrates in situ measurements, a snowpack microstructure using climatology information
or field measurements, and PM observations has not been proposed. This work delivers a
thorough and critical review of retrievals, then, using extensive datasets it focuses on the
applicability of a forward emission model and an innovative inversion approach to support
the present need for snow property retrieval.

1.2 Research questions

The research questions that have formed the foundation and direction of this research, and
that individually are the focus of three research papers are as follows:

1. Building on the literature devoted to estimating SD and SWE using spaceborne
observations, how passive microwave observations are used to estimate SWE in terrestrial
snow-covered landscapes? This inquiry highlights existing explanations of microwave and
ice particles interactions, and addresses limitations of available retrieval methodologies.

2. In a case study having airborne/spaceborne observations of snowpacks coinciding
with intensive in situ measurements, under what circumstances can we effectively simulate
emissions using a forward emission model. How can field knowledge be integrated into the
emission modeling, and how can the in situ measurements be generalized to suit the scale
of observations?



3. How can we estimate snowpack properties using PM remote sensing observations and
a probabilistic retrieval approach based on generalized prior information of a snowpack?

1.3 Research Scope

Various methods are available for mapping snow properties. The approaches to character-
izing terrestrial seasonal snow accumulation, SCE and SWE, been developed largely using
in situ measurements, numerical models, and remote sensing observations. Among re-
mote sensing methods, several numerical models, including empirical, semi-empirical and
physically-based models have been developed to estimate SWE from passive microwave
remote sensing instruments. This current research focuses on developing an approach for
snow properties retrieval using spaceborne radiometry as the main source of observations.

1.4 Objectives

A primary goal has been set to develop an approach for using a physical emission model
for snow properties retrieval, specifically in tundra snow, with spaceborne radiometry as
the main source of observations. This approach involves understanding the generalization
process of snowpack key parameters in the physical emission model and the application of
inverse modeling to retrieve snowpack physical properties such as snow water equivalent
(SWE). The three core elements of this SWE retrieval are:

1. Through an extensive literature review, to study available methodologies for retriev-
ing snow mass from PM observations, while critically reviewing and discussing re-
search gaps in SWE retrieval frameworks;

2. Evaluating applicability of forward emission modeling at airborne radiometry scales.

3. To employ a Bayesian inversion method to derive SWE from PM observations.

1.5 Thesis structure

This manuscript-based thesis is structured as seven chapters. This current (first) chapter
presents the general introduction, with the rational and defined objectives of the work.



Chapter 2 provides an understanding of seasonal snow physical properties as a require-
ment to understand and develop methods to retrieve snowpack properties using passive
microwave remote sensing observations. Chapter 3 delivers the fundamental of PM remote
sensing as well as reviewing basics of emission modeling of snowpack. These background
chapters provide fundamentals of the work while connecting the remaining chapters.

The forth chapter describes and discusses SWE retrieval methods using passive mi-
crowave remote sensing. This chapter has been submitted to International Journal of
Remote Sensing.

Chapter 5 addresses the second objective of this thesis, with an explanation of the
ground-based datasets in the Eureka region that are used to model the passive microwave
response of shallow, dense, slab-layered tundra snow. PM airborne and spaceborne obser-
vations are employed to evaluate the modeling accuracy. This work has been published in
the peer-reviewed Journal Remote Sensing: Saberi, N., Kelly, R., Toose, P., Roy, A., &
Derksen, C. (2017). Modeling the Observed Microwave Emission from Shallow Multi-Layer
Tundra Snow Using DMRT-ML. Remote Sensing, 9(12), 1327.

Chapter 6 addresses the third objective of this thesis with the application of an inversion
method of Monte Carlo Markov Chain (MCMC) to employ the generalized microstructure
of snowpack in the same study area in the form of prior information. This paper has been
submitted to IEEE Transactions on Geoscience and Remote Sensing journal.

The final chapter (chapter 7) summarises the research, and discusses its limitations as
well as future directions for applied research. It should be noted that all three papers are
presented in their original published or submitted format, which leads to some repetition
of fundamental introductory material and common methodological discussions.



Chapter 2

Seasonal terrestrial snowpacks

Understanding the processes controlling a snowpack and its physical stages during the ac-
cumulation and melt seasons provides knowledge for emission modeling of the snowpack
in snow-affected watersheds. Modeling microwave and snow grains interactions in a given
snowpack allows retrieving snowpack properties using remote sensing (RS) observations at
frequency channels that are sensitive to changes in snowpack properties. This chapter pro-
vides a general understanding of seasonal snow physical microstructure and its evolution.
This knowledge can help in better understanding and therefore developing better methods
to retrieve snowpack properties using PM observations.

2.1 Snow crystal morphology - in the atmosphere

Snow crystals in the atmosphere emerge in different structures. A general classification of
snow crystals includes dendrites, plates, needles and columns. These different structures
are mainly controlled by temperature and humidity. Pioneer scientists in snow crystal
morphology studies, Nakaya and Marshall [117], presented a comprehensive morphology
diagram of different crystalline structures’ formation, gained using laboratory experiment.
They concluded that this morphology is a function of the temperature and excess vapor
density that is required to keep snow crystals in an equilibrium condition. Figure 2.1 shows
the cloud temperature and supersaturation conditions required for different snow crystals
formations in the atmosphere.



Figure 2.1: Morphology of snow crystals in the air as a function of temperature and
supersaturation [125]



2.2 Snow grain morphology - on the ground

A snowpack is a porous medium consisting of ice particles and air at a temperature below
the melting point of ice. As the season progresses, at the melting point, the snowpack prop-
erties alter to a state containing water in the spaces among granules [11]. A dry snowpack
is not a homogeneous medium, and a stratigraphy exists in its structure. Precipitated
snowflakes’ physical characteristics are more or less similar, but grain shapes and sizes
change rapidly after accumulation and settling due to gravity, wind and metamorphism.
Each layer contains different grain shapes and sizes, densities, temperatures, cohesions,
hardnesses and liquid water content (LWC). Studying snowpack-microwave interactions
requires knowledge of the snow properties in each layer to model wave interactions during
transformations.

The need for a united language for snow measurements and classification of grain shapes
has resulted in the international classification for seasonal terrestrial snow [31, 235]. Mor-
phological classification shapes with three to five subclasses [235]!, included rounded grains,
faceted crystals, depth hoar, surface hoar, melt forms and ice formations. Snow grains are
subclassified as precipitation particles, decomposing and fragmented precipitation particles,
rounded grains, faceted crystals, cup-shaped crystals and depth hoar, feathery crystals, ice
masses, surface deposited and crusts, and wet grains. Almost all of these crystal shapes
are formed by metamorphic processes.

Snowpack metamorphism imposes changes in the microstructural properties of the
snowpack. Coupling a priori knowledge of a multi-layered snowpack and its evolution
to PM remote sensing observations increases the accuracy of retrievals. The main char-
acteristics and physical processes involved in the formation of snow layers are explained
next.

2.2.1 Evolution of terrestrial seasonal snowpack

The accumulation of precipitated snowflakes, the resulting snowpack densification and
snow flake arm breakoffs due to gravity and then redistribution by wind, are accompanied
by rapid transitions of the snowpack hydrological and microstructural properties. This
transition changes the snowpack structure, grain shape, size, cohesion and liquid water
content dynamically [31, |. Thermodynamic processes with key controllers of thermal
conductivity and heat capacity in a snowpack determine snow evolution throughout a

nternational classification of snow was updated later by Fierz et al. [62].



Figure 2.2: (a) Dry snow in equilibrium state. (b) Dry snow in kinetic growth condition.
(c) Tightly packed snow crystals in wet snow low LWC. (d) Wet snow with high LWC
containing rounded ice particles [30, 31]

season. Furthermore, in a snowpack whose temperature is generally close to the triple
point—where all three phases exist in the snowpack, the temperature is 0.01, and vapor
pressure is 6.1112 hPa—there is a dynamic mass exchange among the ice, air and water [7].
This evolution is explained by metamorphism in three types: destructive, constructive and
melt [31]. Considering a snowpack as dry or wet depending on whether it is in a melting
condition, dry snow undergoes the first two, but wet snow only undergoes the metamorphic
process of melt. Rounded and faceted grains as a result of metamorphic processes can be
seen in a dry snowpack, while wet snow contains either packed clusters of grains with lower
LWC or rounded independent particles with high LWC of the snowpack [30, 31]. These
four states are shown in Figure 2.2.

As a result of limitations in brightness temperature sensitivity to the physical properties
of wet snow [155, 154], this document considers only dry snowpack in emission modeling
and SWE retrieval techniques. Therefore, only the processes during destructive and con-
structive metamorphism are reviewed.



Destructive metamorphism

In an equilibrium state between ice and air in a dry snowpack, when there is a quasi-
uniform temperature in the snowpack, mass exchange between ice and air is facilitated
by the presence of vapor saturation [7, ]. This vapor pressure in a dry snowpack is
present as a result of a large specific area of ice and air interfaces. Due to higher vapor
pressure around convex grains than concave ones, a local pressure gradient is created.
Vapor diffusion towards concave areas is generated as a result of this pressure gradient.
This vapor diffusion is compensated for by sublimation in convex regions and deposition
in concave ones, which together maintain the equilibrium condition [7, 32, 44, 157].

Destructive metamorphism is initiated approximately four days after snowpack accu-
mulation, under a small temperature gradient, where the substratum’s temperature minus
air temperature at a one-centimeter depth is less than -0.25°/cm [31, 69]. The formation
of round, well-bonded grains and grain growth at a slow rate (~0.008 mm per day) are
processes in this phase that result in snowpack densification [31].

Constructive metamorphism

Under a large temperature gradient condition, higher than -0.25° /cm, constructive (kinetic
growth) metamorphism takes place [11, ]. In this process, a fast growth rate forms
faceted crystals and depth hoar. This grain growth results from a high temperature and
vapor pressure gradient. Vapor diffusion toward colder crystals is partially compensated
for by sublimation from warmer and recrystallization in colder regions at the base or top
layers of the snowpack (while the top layer of snow is cold, surface hoar is formed) [7]. As a
result of this kinetic growth condition, the specific area decreases. Spherical representation
of grains is not valid for faceted and depth hoar layers, and these grain types cause more
ambiguity if spherical grains are assumed in an emission model. Specific surface area as a
grain representation can partially solve this problem [155].

Transformations between the six main classes from international snow classification
[62]—in the presence of temperature gradient and liquid water content—are summarized by
Armstrong and Brun [7] and presented in Figure 2.3. Fresh snow with more convex surfaces
under a low temperature gradient (~-0.05°/cm) metamorphoses to rounded, decomposed
and fragmented particles. A sustained low-temperature gradient condition forms rounded
grains. Under a high temperature gradient (higher than -0.15°/cm), faceted crystals and
then depth hoar are formed. The cup-shaped crystals classified in melt forms by Fierz et al.
[62] are transformed from rounded grains or depth hoar as a result of a high temperature
gradient.
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2.3 Tundra snow

The microstructure properties of layers in a settled seasonal snowpack are spatially variable.
Precipitated snow, depending on wind distribution pattern, topography and land cover,
accumulates in different depths and stratigraphy. This spatial heterogeneity is controlled by
large-scale environmental factors such as wind and topography, and factors that influence
internal snowpack evolution such as temperature gradients [195]. Sturm et al. [199] made
a thorough study of seasonal snowpack classification based on physical properties of snow,
including textural and stratigraphic characteristics, and also three climate variables—wind,
precipitation and air temperature—as the most significant factors that control snowpack
properties. Figure 2.4 shows an updated version of snow classes by Sturm et al. [200] in
North America that is provided in an improved spatial resolution of 1 km compared to the
25 km grid cells in the previous version.

In the current research, snow properties retrieval is employed in a field study of arctic
tundra snow. Based on Dichotomous key used by Liston [126], tundra snow places in a
category of snowpacks in regions with low air temperature, low topographic variability and
high wind speed. In terms of spatial variations, the peak of spatial variability in seasonal

tundra snow—studied by Liston [120]—is reported as 100 m that is explained by wind
drift structures at the same scale, whereas in a 10 m scale, uniform patterns are observed.
Sturm and Benson [195] observed the stratigraphy of tundra snow using long profiles of

snowpits and mapped these transects of multi-layered snowpacks to study heterogeneity
of arctic snow layers. Using the 100 m long, stratigraphic profile generalized the arctic
tundra as three layers of recent, wind lab, and depth hoar. Their analysis of stratified
layers at 100 m to 100,000 m scales showed that: 1) heterogeneity of stratigraphy do not
vary significantly at this range of scale, 2) landscape and weather interactions impact the
stratigraphy at these scales, and 3) the method of cross correlating sparse snowpit data to
represent stratigraphy, influences the accuracy of analysis at theses scales.

2.4 Summary

The microstructural properties of seasonal terrestrial snow as well as its evolution through
the season have been reviewed. The snowpack evolution and transition to melt form is
mostly controlled by temperature and the pressure gradient that is induced by the low
conductivity of the snow medium. Positive values of net radiation and heat flux from the
substratum (towards the snowpack surface) are the most important contributors to the
temperature gradient between snow and the substratum. Understanding the snowpack

11
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properties and metamorphic processes helps to improve our knowledge in modeling snow
grains and microwave interactions. Furthermore, remote sensing observations provided by
prior information such as grain size and density are significant data sources for snowpack
physical properties retrieval. These prior information on grain growth and densification
approximations are based on statistical analysis of extensive field measurements provided
by historical climatologic variables. Further details on the importance of integrating prior
information in the retrieval process is discussed in chapter 6.

Next chapter discusses fundamentals of emission processes through a snowpack, avail-
able emission models and their key elements, as well as introducing a few spaceborne
radiometers.

13



Chapter 3

Passive microwave radiometry of
SNOW

Almost a century after the first use of remote sensing technology in aerial photography,
microwave remote sensing was implemented in the 1960s [2158]. Penetration through clouds
and observation during the night are two major benefits of using the microwave spectrum,
which falls between ~0.3-40 GHz (0.75-100 cm) for active systems and 1-200 GHz (15 mm-
30 c¢cm) for passive sensing techniques. In active systems, energy is transmitted and the
backscattered energy from the earth is received; in the radiometry, emitted energy from
the earth is observed.

Channel frequencies used in PM sensors are selected with respect to atmospheric win-
dows that allow the wave to transmit and be observed by the sensor. On the other hand, for
atmosphere related applications, the frequencies are used where atmospheric transmission
is less. For instance, oxygen absorption is high at 60 GHz and 118.8 GHz [51] and fre-
quencies in the 50-60 GHz range are useful for retrieving atmospheric temperatures [218].
In addition, using frequencies at ~22 GHz and ~180 GHz allows obtaining information
about water vapor absorption due to the high amount of absorption in these frequencies

[218, 54].

PM radiometry allows collecting information from the subsurface. Wave penetration in
the medium or bulk material rises with wavelength increase, and the amount of penetration
varies for different materials. Moisture decreases the penetration depth. For instance, 10
GHz penetration in sand or clay with a moisture level higher than 0.2 g/cm? is less than
1 cm; however, in dry sand or clay, penetration reaches to layers at 10 m depth. In longer
waves of 1.3 GHz, the penetration depth in dry sand or clay is higher than 50 m [2158]. Wave

14



penetration in a snowpack follows the same principal. Figure 3.1, taken from Matzler [139],
shows penetration in a dry (upper figure) and a wet (lower figure) snowpack, respectively.
Penetration depths are estimated using a microwave emission model of a multi-layered
snowpack (MEMLS). The presented graphs show penetration depths of 1-10 m in dry
snow and less than 10 cm in wet snow in frequency range of 10-37 GHz (the most sensitive
range for surface properties retrieval using PM remote sensing).

Penetration depth shows the sensitivity of a frequency channel to a snowpack medium
as a volume scatterer or its substratum as a surface scatterer. For properties retrieval of a
deep snowpack, 10 & 37 GHz and 10 & 19 GHz are appropriate pair frequencies, while 19
& 37 GHz can be used for a shallower snowpack [100, 35].

This chapter discusses physical processes involved in PM remote sensing as well as
observation systems with a focus on land brightness temperature estimation. Microwave
interactions within a medium and the concept of radiative transfer theory are explained as
an introduction for emission modeling, which is discussed accordingly.

3.1 Brightness temperature characteristics of a scene

Incident sun radiation absorbed by the Earth’s surface is transformed into thermal energy
and then emitted in the form of electromagnetic waves into the atmosphere. The theory
of radiative transfer (RT) explains the aforementioned processes. This section discusses
equations related to the brightness temperature observed by PM sensors, and electromag-
netic interactions within the material (based on equations presented by [218]). It should be
noted that brightness (K) in microwave terminology is the equivalent term for the radiance
in optical remote sensing applications. This term defines the radiated power per unit of
solid angle and unit of area (W sr—'m™2).

Assuming a radiometer with a receiving aperture and an emitting surface, the power
P (Watt) intercepted by a receiver would be the product of the power’s density by the
aperture area. Considering an antenna’s radiation-receiving pattern from all directions
and a predefined frequency range, we have:

A, f+Af
p_ ?/f //47r B; (0, ) Fy (0, )d2df (3.1)

where By (W m~2sr *Hz"') is the spectral brightness from emitting sources; F), is the
normalized emission pattern of the antenna, in both the 6 and ¢ directions; df? is a differen-
tial solid angle in the direction of # and ¢. Therefore, the integral of the source brightness
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multiplied by the radiation-receiving pattern by the antenna from all 411 stradian directions
and a predefined frequency range produces the power received by the antenna. Radiation
can be explained either in waveform or by the quantum theory of radiation. In the latter
concept, By for a blackbody, a perfect absorber and emitter, has been explained by Plank’s
radiation law [218]:

20,13 1
By == <€thT_1> (3.2)

where h is the Plank’s constant (6.63x1073* J); f (Hz) is frequency; c is speed of
light (3x108ms™'); T (K) is the blackbody equivalent radiometric temperature; and K
is the Boltzmann’s constant (1.38x1072Jk~!). A useful approximation of Plank’s law
for the microwave region with 1-3% deviation from Plank’s formula is the Rayleigh-Jeans
approximation !, where hf/kT << 1, spectral brightness is driven by 2

_2f2KT  2KT

By 2 \2

(3.3)

If By from equation 3.2 is inserted in 3.1, we can obtain the relation between the
blackbody temperature and the power received by the antenna. The simplified formula
results in a relation between the effective temperature observed by a receiver, which can
be written as in Elachi and Van Zyl [51]:

P = KT, Af (3.4)

where T, is the effective temperature observed by the receiver. Assuming a lossless
antenna and a blackbody, both inside a chamber, T, is the constant temperature of the
blackbody and P is the power received by the lossless antenna [218]). For a natural ma-
terial, an equivalent radiometric temperature for a blackbody T}, brightness temperature,
and a parameter to quantify the material’s capability in emitting emissivity, € is considered.
Then, assuming an antenna with a gain pattern and a natural medium, T, is a function of
surface temperature, normalized surface emissivity and normalized antenna gain [541]. The
relation between surface physical temperature, surface emissivity, observed temperature,

'For short wavelengths where hf/kT >> 1, Wien radiation law is obtained: B = % f3ehf/kT

2Computing the integral of By over all frequencies, Stephan-Boltzmann law is obtained by B =
where ¢ is the Stephan-Boltzmann constant and equals 5.673x 10~ 8W.m=2.K~*.sr~1. This law explains
that blackbody brightness is dependent to the fourth power of temperature.

oT*

)
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and antenna gain pattern results in obtaining the emission properties of the surface. How-
ever, an observed temperature contains energy emitted from multiple sources. Modeling
the contribution of other sources to obtain the surface emission component is discussed
next.

3.2 Brightness temperature observations

For all materials, there is a direct relationship between the physical temperature and
the brightness temperature radiation, which can be explained by the higher resonance
in molecules at higher temperatures leading to more radiation. The emission quantity
also depends on the geometric and dielectric properties (roughness and composition) of
the medium or surface [218]. In PM remote sensing, the observed T, sensitivity to the
surface kinetic temperature is much less than its sensitivity to the surface composition or
roughness [51]. This high sensitivity allows the modeling of surface physical properties
using PM observations.

To model surface emissions using PM observations, assume a lossless sensor, an emit-
ting surface, and the atmosphere between them. There are three observation sources:
atmospheric self-emission (Typ), terrain self-emission (Tg,rr), and scattered downward
atmospheric contribution (Tsc). The terrain self-emission and downwelling atmospheric
contribution are attenuated by atmospheric loss, explained either by a loss factor (L,) or
atmospheric transmissivity (e~7)?. Other contributors such as cosmic emission and emis-
sion by the background (to the target and then incident to the senor) can be disregarded
according to relative magnitude assessment of the components [186]. Thus, the apparent
temperature observed at the spaceborne PM radiometer is modeled as

TAP = (R X TSC + (1 — R)Tsuff) e’ + Tup (35)

where R is the surface reflectivity, assuming that there is no transmissivity into the sur-
face (¢ + R = 1). The appropriate frequency channels located in microwave atmospheric
windows (where atmospheric transmissivity 7 is ~1) are employed in surface-properties-
retrieval methods using PM observations. Peaks of atmospheric absorption caused by water
vapor and oxygen occur at 22.4 GHz & ~180 GHz and 60 GHz & 118.8 GHz, respectively.
At a temperature of 273 K and pressure of 0.1 bar, water vapor with a density of 1 gr m=3
has ~0.001 dB km~! absorption rate at ~36 GHz, while at the higher pressure of 1 bar

3There is also cosmic emission contribution that is relatively very small.
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(sea level), this absorption rises to ~0.01 dB km—1 [51]. However, the atmospheric trans-
mission at the frequency channels of interest (at 10 GHz, 19 GHz and 36 GHz) is higher
than 95% [218]; in the distance between spaceborne sensors and earth, the atmosphere’s
impact should be considered.

Atmospheric contribution is estimated by temperature sounding, classified into three
major groups: occultation, scattering, and emission, with respect to appropriate techniques
for modeling atmosphere constituents’ interactions with microwaves [51]. Atmospheric ra-
diosound profiles at local scales can be used to calibrate surface properties retrieval by
emission models. For instance, in experiments conducted by Picard et al. [155], satellite
and ground based brightness temperature were compared using temperature and moisture
radiosound profiles. This experiment was set up to evaluate an atmospheric model (self-
emission and transmissivity of atmosphere) used in the Helsinki University of Technology
(HUT) snow emission model. Atmospheric effect as an emitter and absorber in land ob-
servation frequencies was measured by Qiu et al. [163]. In this experiment, HUTRAD
radiometry data, balloon sonde atmospheric data, and AMSR-E observation were used to
obtain atmospheric contributions in snow emission modeling. The results show differences
of ~20 K for 36.5 GHz and ~8 K for 19 GHz between HUTRAD and AMSR2 observations,
which reflects the aggregated contribution of atmospheric upwelling emission and atten-
uation. Furthermore, variations of atmospheric contribution highlight the importance of
atmospheric modeling at local scales.

An emission in a granular medium such as a snowpack is either absorbed or scattered
by grains. Reflection, refraction and transmission are other wave interactions between
distinct layers. The dielectric properties of a medium as well as its composition define its
emissivity.

3.2.1 Emissivity

The emissivity of an object describes how close its radiation potential is to a blackbody
radiation. It is obtained by

e(d,¢) = = (3.6)

where (0,¢) is the direction; B is the brightness of a natural material; Ty,,¢ is its
radiometric brightness temperature; By, is blackbody brightness; and T is its physical
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temperature?. Using brightness values of the same polarization, emissivity can be computed
in that polarization. Due to emissivity’s independency of physical temperature, using
emissivity rather than brightness temperature to obtain a medium physical properties is
highly preferable.

Considering downwelling sky radiation, Tsc from ground based measurements®, for
surface emissivity we have [139]:
o Tsurf - Tsc

Tphys - Tsc

where Tpp,s is the surface physical temperature. For a non-isothermal medium such as
snow, dividing brightness temperature into physical temperature cannot derive emissiv-
ity. Snowpack emissivity is derived by using one minus the reflected fraction of sky in a
downward direction under two different conditions, e.g. 100 K and 0 K [230]:

(3.7)

Ty (Tse = 100K) — Tj (Ty. = 0K)
100K

es =1— (3.8)
Next, the dielectric properties of snow, the most important parameter in defining emissivity
and wave interactions within the snowpack, are discussed.

Dielectric properties of snow

Microwave interactions in a medium are relevant to its geometrical structure and elec-
tromagnetic properties. The relative permittivity of a medium or its effective complex
dielectric constant (often used in RS literature) is the ratio of polarization capability in
the electric field to the response of a vacuum or free space to polarization in the same
condition (vacuum complex dielectric constant equals 8.85x107!? Farad.m™'). In other
words, relative permittivity explains the response of the medium to the electric charge by
dipole reorientation of its positive poles aligned with the electric field direction and neg-
ative poles in the opposite direction. It also describes the flux amount after interactions
with the medium by

D=¢xFE (3.9)

4From the above equation, it is concluded that the emissivity of the ideal blackbody equals one, and a
non-emitting material has zero emissivity.

SPAMIR and RASAM instruments have been used in extensive experiments, resulting in a data cata-
logue for modeling emissivity applications. It can be found in [139]- Appendix A: Surface emissivity data
from microwave experiments at the University of Bern.
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where E(Vm™!) is the electric field and D is displacement field or out flux (C'm™2)
from a material with a permittivity of e,(Fm™"). ¢, is defined in a complex form

e = el + jel (3.10)

where £’ is the real part of permittivity, the polarization ability of a material to respond
to an electromagnetic field, which describes the radiation scattering; j> = —1; and €’ is the
imaginary part of the dielectric constant—the dielectric loss factor that quantifies energy
attenuation.

Assuming a layer of snowpack containing air, ice crystals, and liquid water, each particle
has a special dielectric characteristic. Air/atmosphere has a permittivity that is close to
one (1 < e, < 1.001) [133]. Water is a dielectric material due to its asymmetric negative
and positive formation (oxygen and hydrogen, respectively) in an electric field (e, ~ 40
in 0°C" at 10 GHZ). Ice has a very low dielectric loss and a permittivity of ~3.1 that is
independent of frequency.

In a simplified model where snowpack is considered as a homogenous medium, the
snowpack dielectric constant is estimated by a weighted average of the air, ice, and water
particles dielectric properties. Under a heterogeneous medium assumption, internal scat-
tering is also considered [133]. In the case of dry snow, ice particles in the air as background
are assumed, resulting in a simpler solution.

Empirical relations supported by different theories and derived by experiments [133,
, | relate real and imaginary parts of ice and water permittivity to wave frequency
and physical properties such as porosity, density and temperature. Dry snow experimental
results by Hallikainen [85] have shown that permittivity in the range of 3-37 GHz is inde-
pendent from temperature and has a linear relation with snow density (/. = 1+ 1.83p).
Similar empirical relations between dry snow permittivity and its density have been derived
from different experimental studies (e.g., Matzler [133] equation®). In terms of dielectric
loss, dry snow can be considered transparent, as loss factor has been reported by Métzler
[133] to have very small impact (~0.001), in the range of 3-37 GHz.

Next, is an introduction to radiative transfer theory, which supports the basis of emis-
sion modeling.

6.1 __ 1.6p
& =1+ 15535,
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3.2.2 Radiative Transfer Theory

Radiative transfer theory relates incident radiation to the sensor and transferred emitted
radiation from the surface after it interacts with the medium. Using the radiative transfer
equations to obtain the radiance at a certain location is under the assumption of incoher-
ent interactions between wave and matter. Interactions between radiation and the matter
include emission, extinction (scattering and absorption) and transmission [218]. A differ-
ential equation 3.11 that relates brightness increment dB to extinct and emitted brightness
increments through a cylindrical object defines the radiation transfer. Then expansion of
this equation with the introduction of other parameters such as source functions and an
optical length results in deriving the equation of transfer.

dB

—+B=J 3.11

dt ( )
In equation 3.11, J equals (1 — a)J, + aJs (a = K/K, a ratio of scattering coefficient
K to extinction coefficient K., .J,: absorbtion source function and .J;: scattering source
function), dr is an increment of optical depth and equals k.dr (d, is an increment of
distance in dB direction) [215].

The extinction coefficient (nepers.m™!), also known as the power attenuation coefficient,
defines energy loss through the medium, which can be in the form of scattering (Ks) or
absorption (K, = K. — K,) [218]. For a snowpack, these parameters, as well as the phase
function” can be derived using different empirical, semi-empirical and theoretical models
such as SFT (strong fluctuation theory), MEMLS (microwave emission of multi layered
snowpack), DMRT (dense media radiative transfer), etc. The radiative transfer solution
has also been included in these models. Depending on the model and background theories,
different requirements are needed to compute the extinction and scattering coefficients;
e.g., in DMRT theory, the dielectric properties of the snow are required.

Using the explained replacements and integration by distance, the solution for the scalar
equation of transfer will be [215]:

B(r) = B(O)e_T(O’T) + / K. (r")J () e ) dy! (3.12)
0

where B(r) is the brightness in a distance of r from defined zero coordinates in 7 direction;
B(0) is the brightness in the boundary; K (r')J(r")dr’ is the emission increment at r’
in 7 direction; e """ is the medium extinction between 7’ in the medium and # at the

"The phase function explains the angular distribution of a bodys radiation.
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observation point, and 7(r/, r) is the optical depth between 7’ and r. This equation explains
that radiation from a layer of material consists of two terms: the first is substratum
brightness multiplied by the extinction effect of the layer (e=7(®™)), and the second is
scattered emission within the material.

To simulate the emission of a snowpack, one of the main steps is solving the equation
of radiative transfer from the substratum up to the air and snow interface. Different
radiative transfer models are available, based on assumptions and theories being used
for computation of the equation unknowns such as the extinction, the scattering, phase
functions, and transmission in each layer of the snowpack. Snowpack emission models are
discussed in 3.3.

3.3 Radiative transfer modelling of a snowpack

Electromagnetic radiation passing through a dry snowpack medium can be modeled by
scattering, absorption, reflection, refraction and transmission. Three different groups, em-
pirical, semi-empirical and physical emission models, have been developed to estimate
snowpack physical parameters. These models are selected due to being extensively applied
in current studies, and the reasonable fit between emission simulations and the snowpack
properties measurements using these models coupled with either spaceborne or ground-
based radiometry observations (e.g. [176, 120, 204, 182]). This section reviews three snow-
pack emission models: the emission model of Helsinki University of Technology (HUT), the
microwave emission model of layered snowpacks (MEMLS), and the dense media radiative
transfer theory for a multi-layered snowpack (DMRT-ML). The first two can be classified
as semi-empirical emission models as they employ empirical relations for some required
inputs, while DMRT-ML is considered as a physical model [205]. A retrieval methodol-
ogy using HUT model is explained to elaborate on an example for SWE retrieval method.
Retrievals are discussed in the next chapter in more details.

Chosen emission models have been comparatively reviewed. In addition, snowpack grain
modeling, as the most challenging component of an emission model, is studied to consider
the influence of different representations for snowpack grains used in the discussed emission
models.
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3.3.1 HUT

The Helsinki University of Technology (HUT) snow emission model was developed by Pul-
liainen et al. [162]. This semi-physical two flux-model is coupled to a Bayesian approach
to obtain the maximum likelihood estimate of SWE and grain size, using modeled and
observed T, at 19 and 37 GHz frequencies, as well as a priori SWE information [160].
Atmospheric, forest cover and substratum contributions to the observed brightness tem-
perature are also considered using empirical formulas [9, , ].

In HUT model, a radiative transfer equation is defined with an assumption that scat-
tering is propagated mostly in the forward direction. For a snowpack with a depth of d, at
an incidence angle of #, the emission right below the snow-air surface is [162]:

kaTs

T, (di, 9) = Tbgs +Tgs =1, (0+, (9) ef(kequs)seced + m

(1 . ef(kequs)seced) (313)
where Tj4, is the ground microwave emission affected by snowpack; Tj, is the snowpack
self emission; Tj, (01, 6) is soil emission just above the soil-snow interface; k., ks, and k,
are extinction, scattering, and absorption coefficients, respectively; and ¢ is the fraction
of scattered intensity towards the antenna and equals 0.96 in all frequencies according to
experiments by Hallikainen et al. [37] and Métzler [133]. k. is estimated as a function
of snow grain size (D,,q,: maximum length (Diameter) of dominant particles) based on
formulas presented in Hallikainen et al. [37]’s study. Using snow’s dielectric properties
derived by Matzler [133], k, is calculated. A semi-empirical soil reflectivity model presented
by Wegmuller and Matzler [220] is used to derive T}, (07, 6). This soil reflectivity model
requires the dielectric properties of soil.

HUT models atmospheric transmissivity, upwelling and downwelling atmospheric bright-
ness temperature components, and land cover effects in mixed pixels. In so doing, it
uses a simple model that assumes pixels are covered by forest and/or snow, and each
land cover (snow/forest) has an emission contribution of coverage fraction multiplied
by the emitted radiation. Forest canopy emission and consequently ground emissivity
are empirically modeled considering the coverage fractions and forest canopy loss fac-
tor Lean(1/teancanopyattenuation). The empirical formulas derived from experiments by

Kruopis et al. [108] are used in HUT for ¢, calculation. Consequently, T} is derived by
1
be - 1 - LTFSg Tphys (314)
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where I'y, is the snow cover reflectivity (1 — egnow), and Tpuys is the surface physical tem-
perature®. Then, ground emissivity eg,q is obtained by:

i = [1= T fr+ 1= T) 1= 1) (3.15)

can

where f; is the forest fraction in a pixel. Consequently, the observed Tj is modeled by

Ty =t[fi Ty + (1= f1) Tos] + Tatm T 4+t (1 = €gna) - [Tatm 4 +12.7K] (3.16)

where t is the atmospheric transmissivity, Toim T and [Ty, 4 are upwelling and down-
welling atmospheric brightness temperatures, respectively. For SWE retrieval, snow grain
size and SWE are optimized by minimizing a cost function of modeled and simulated
Tp. A Maximum Likelihood (ML) estimate of snow grain size and SWE is obtained in
an iterative process when the cost function is minimized. In an experiment conducted
by Pulliainen and Hallikainen [160], the predefined information for snow and substratum
properties included a density of 250 kgm 3, a snow grain size of 1200 , depth of 1.2 m and
effective soil roughness of 3.0 mm. Pulliainen and Hallikainen [160] stated that the root
mean squared error (RMSE) of 30 mm in the SWE estimate using SSM/I and the HUT
model was obtained without using any ground observations to train the model. Pulliainen
[159] developed the HUT model by the assimilation of daily snow depth data obtained by
weather stations as well as assimilation of interpolated SWE for all other snow pixels as a
priori SWE into the HUT model. This methodology is employed in the GlobSnow SWE
product [201].

HUT has also been adapted for a multi-layered snowpack by Lemmetyinen et al. [117].
This model assumes smooth snow layer interfaces and lambertian scattering in up and
down directions (2-flux).

3.3.2 MEMLS

MEMLS is a microwave emission model in the 5-100 GHz range, based on radiative transfer
for a multi-layered snowpack. It was developed by Mitzler and Wiesmann [140] and
Wiesmann and Métzler [230] based on the field experiments of Métzler [138] (which updated
his 1996 experiments). The first version of MEMLS modelled emission from different
types of snow grains with a correlation length of 0.05 to 0.3 mm. This model was then

8An angular correction of cosf/cos® should be applied to the coefficients that are derived in the
incidence angle of 8 (6’ is the incidence angle in the second experiment).
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Figure 3.2: MEMLS n-layer snowpack and modeled components [230]

modified for bigger snow grains with a correlation length up to 0.6 mm. This semi-physical
model simulates emission from a layered snowpack and its substratum. The substratum is
presented by its temperature and reflectivity, and its roughness properties are disregarded
[226]. Figure 3.2 presents MEMLS components in an n-layer snowpack. For each layer,
the thickness, d, the temperature, T', the transmissivity ¢, the internal reflectivity, r, the
emissivity, e, and the interface reflectivity, s, are entered into a 6-flux radiative transfer
model [230].

A soil layer is considered as the substratum in MEMLS. Reflection coefficients are
modeled as functions of soil temperature and its dielectric properties [226]. Using reflection
coefficients, the upwelling emission from a soil layer after interaction with the first layer
of the snowpack equals ¢;(1 — r1)Ty, where ¢; is the transmissivity of the first layer of
the snowpack; r; is the interface reflectivity between the first layer of the snowpack and
the soil, and Tj is the soil temperature. The sky contribution is also treated the same
way; it is added to the last layer emission after multiplication by the last layer’s reflection
coeflicients. Therefore, the sky contribution equals r, (1 — S;,)Tsky + SnTsky, Where 7, is
the internal reflectivity in the nth layer of the snowpack, S,, is the interface reflectivity of
layer n'", and Ty, is the sky temperature.
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MEMLS simplifies wave fluxes in the snowpack in six directions. In this six-flux method,
scattering and absorption coefficients are computed in six directions, four in the XY plane
and two in Z. Reflectivity between layers and to the sensor is described by the effective
propagation path from a modified equation of Snell’s law”. This modification accounts for
diffuse scattering (volume) and polarization mixing [230]. A critical angle of arcsin(1/n’)
is defined to discriminate trapped fluxes in a layer (incidence angles larger than the critical
angle) and escaped fluxes (incidence angles smaller than the critical angle).

In MEMLS, the coherent superposition of wave interactions within interfaces of snow
layers is ignored if the layer is thicker than a quarter of a wavelength; otherwise, coherent
interactions are considered while defining the phase function of scattering for each layer.
Wiesmann and Matzler [230] explained that ignoring coherent interactions in the transition
of waves between layers is attributed to cancelling interference effects by natural variability
within a layer, the local incidence angle, and different frequencies applied in a radiometer
bandwidth.

The phase function for each layer is computed as a function of layer thickness, the real
part of the refractive index, propagation angle, and vacuum wavelength. Reflectivity is
then modeled by an equation that includes phase function (cos(2P), where P is the phase
function). For the phases below 37/4, a coherent layer is assumed. For a phase function
higher than 37 /4, the layer is treated as an incoherent layer. A coherent layer is presented
by its surface reflectively as its volume scattering and absorption contribution is negligible.
Also, if a thin coherent layer (thinner than half of a wavelength) is located between two
incoherent layers, due to the small volume scattering and absorption in the thin layer, the
thin layer’s emission contribution is ignored.

In this emission model, the dielectric properties of dry snow as a function of snow
density are derived by empirical formulas according to [135] and [130] for permittivity
and loss factor, respectively. An absorption coefficient of 47n” /A (n”:imaginary part of
refractive index, A: vacuum wavelength) and a scattering coefficient presented by [229] as
a function of frequency and the exponential correlation length of snowpack grains are used.

MEMLS code is written in Matlab and is free and available for all users . The primary
input variables to simulate emission for a layered snowpack include density, temperature,
LWC, correlation length, and the thickness of each layer, as well as the ground temperature
(soil) and snow-ground reflectivity coefficients.

9sin(#1) /nk = sin(62)/n}, refractive index is related to dielectric properties of a slab by:
er = el 4 jell = (n/ +in")?
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3.3.3 DMRT-ML

Tsang et al. [214] developed an emission model, dense media radiative transfer (DMRT), for
a layered snowpack based on Quasi Crystalline Approximation (QCA) and previous studies
on scattering behavior of particles in a dense medium!®. Several implementations of DMRT
based on different theories for deriving the equations have been developed [205]. Here, the
DMRT developed by Picard et al. [155] is explained. Picard et al. [155] employed Quasi
Crystalline Approximation-Coherent Potential (QCA- CP) to model emission for a multi-
layered snowpack in the range of 1-200 GHz. QCA and QCA-CP approximations allow
modelling particle positions’ pair distribution functions while coherent wave interactions
are assumed. In so doing, these approximations allow wave interactions to be modeled
in a dense media [211]. In the DMRT-ML, snow scattering and extinction coefficients
and the form of the phase function are computed based on DMRT theory whereby the
radiative transfer equation is solved using the Discrete Ordinate Radiative Transfer method
(DISORT).

The DMRT-ML employed by Picard et al. [155] discusses two approaches based on
underlying assumptions in different versions of DMRT theory. The first approach is a
mono-disperse assumption in the grain size distribution within a layer. This approach
employs a ”"short range” stickiness and Grody’s empirical method for large particles. The
second approach is a poly-disperse assumption in a Rayleigh distributed grain sizes. A
Rayleigh phase function is implied in the second approach, and no stickiness and no large
particles can be assumed due to involved complexities[!55].

In the DMRT-ML, to obtain brightness (the temperature emitted from a snowpack),
a modified vector radiative transfer equation for each layer is defined based on Jin [94]’s
formulas. In this radiative transfer equation, the emission transfer is modelled by including
Rayleigh phase function and extinction and absorption coefficients. The effective dielectric
properties of a medium with mono disperse small snow grains are estimated as a function of
the fractional volume of scatterers, dielectric properties of ice and air, and the snow-grain
spheres’ radii (and stickiness in the case of assuming clusters of grains) [191]. Extinction
and absorption coefficients are estimated as a function of the effective dielectric constant.
For bigger snow grains Mie scattering takes place and the extinction and absorption coeffi-
cients in this medium can be calculated either assuming a Percus-Yevick pair distribution
of grains and under QCA assumptions, or by Grody [32]’s empirical approach that defines
these coefficients as a function of grain size and effective dielectric constant.

The substratum’s contribution as a soil or ice layer with or without roughness is added

10When the particles occupy more than 20% of the fractional volume [155]
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to the multi-layered snowpack. Reflection coefficients'! in vertical and horizontal polar-
izations are calculated based on the assumption of a flat or rough surface, using Fresnel
coefficients. For a rough surface, a standard deviation of the surface height is considered
in the reflection coefficients calculation. Depending on the soil model employed (an ice
layer or a semi-infinife configuration are other possible options for the sub-stratum), dif-
ferent physical and geometric properties such as dielectric properties, moisture, roughness
and texture are required [155]. The assumption of no interface at the sub stratum is also
modeled for a semi-infinite snowpack when wave penetration is less than snow depth [155].

The DMRT-ML code is written in Fortran90 and Python, both available for all users.
Recently, a new version of DMRT-ML, has been adapted for active microwave as well is
distributed in a Python package by Picard et al. [156]. The DMRT-ML requirements for the
emission simulation from a layered snowpack at the surface includes the snowpack physical
temperature, density, grain size, stickiness, and liquid water content; the properties of the
substratum; and the downwelling atmospheric brightness temperature. These inputs can
be provided by snowpack physical models that predict snowpack microstructure and would
result in more realistic emission modeling [150].

3.3.4 Snowpack emission modeling: comparison and discussion

Semi-empirical and physical models for snow properties retrieval help to improve our un-
derstanding of microwave, snow grains and interfaces interactions. Theoretical modeling
lets us analyze the sensitivity of emissions to the microstructure parameters such as a snow
grain size, depth, and density. This sensitivity analysis become possible through theoretical
relations that explain electromagnetic propagation in a snowpack, for instance, modeling
the effective propagation constant for a dense dielectric medium in a radiative transfer
equation [155, , 94]. The sensitivity is also traceable using field measurements. Roy
et al. [171] rank the sensitivity of parameters modeled in HUT to the observed emission
signature of the snowpack, using the correlation between measured and modeled T} at 18
GHz and 37 GHz in horizontal polarization. Snow grain size, ground temperature, snow
temperature, vegetation temperature, depth and density of snow are found to have the
highest to lowest effects in a HUT simulation of 37 GHz [174]. Durand et al. [19] compared
the measured and simulated T, using MEMLS at 18.7, 36.5 and 89 GHz, and ranked the
sensitivity by the density of the ice layer (if an ice layer is present), uncertainties resulting
from relations between grain size and correlation length, snow density, Dmax (observed

HDiffuse reflection from substratum is not included in DMRT-ML, and the reflections are based on
coherent wave interactions [155].
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grain size in the field), snow temperature and snow depth. In their study, soil and sky
were found to have a negligible effect on the simulations. Picard et al. [155] considered the
ice dielectric constant, grain size, density and stickiness as the most important inputs of
DMRT-ML and explained the sensitivity of the model to these parameters, using simulated
results.

The differences in the snowpack emission models can be explained by differences in
their underlying assumptions and theories. Key differences between HUT, MEMLS and
DMRT-ML can be explained as follows:

1. In DMRT and DMRT-ML, required parameters for radiative transfer equations, such
as extinction and scattering coefficients, are estimated based on theoretical equations.
In HUT and MEMLS, these parameters are defined by experimental data and em-
pirical solutions [162, , 230].

2. Wave propagation within the snowpack layer is modeled as a 2-flux model upward
and downward in HUT, a 6-flux in perpendicular planes in MEMLS, and many fluxes
(up to 64 [155]) in DMRT-ML [16].

3. HUT uses scalar radiative transfer assuming single polarization. In contrast, MEMLS
and DMRT use vector radiative transfer equation (VRT) . The scalar radiative trans-
fer in HUT simplifies the equations; however, it is not a valid assumption for a dense
medium such as a snowpack. Jin [91] explains that in a medium with dense volume
scatterers, an independent scattering assumption in vector radiative transfer is not
valid, and coherent scattering should be modeled. In DMRT-ML and MEMLS, phase
dependent coherent scattering of particles is modeled.

4. Modelling substratum in HUT and MEMLS are the same [220]; a substratum of
a rough soil whose dielectric properties are used to define the reflectivity. Using
this soil model, coherent ground scatterer is not considered. In contrast, DMRT-
ML considers only coherent scatter from ground, and neglects diffuse scatter [155].
Different substratum models (including ice surface) can be employed as a sub-model
coupled with emission from a snowpack (e.g., in DMRT-ML by Picard et al. [155]).

5. Disparate representations of grains in snowpack emission models make it difficult
to compare results from different emission models. Snowpack grains are presented
by the maximum diameter of dominant particles, the correlation length and optical
diameter in HUT, MEMLS and DMRT-ML, respectively.
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6. In DMRT-ML, a stickiness factor explains the natural tendency among snow grains
to make clusters, which are modeled while deriving an effective propagation constant
[155]. The stickiness factor is not modeled in HUT or MEMLS.

Emission models are highly sensitive to grain size parameterization. This impact em-
powers implementation of an effective grain size for calibration of emission models. The
following subsection discusses different representations of snowpack grains and how an
equivalent effective grain size can represent the snowpack. Due to the significant impact
of grain size, and the other parameters being estimable and conservative in nature, just
grain size effect is explained in detail.

3.3.5 Grain size definition

The best representative of the snowpack grains geometric structure is considered the most
challenging issue for modeling microwave properties of snow. There are different types of
representatives presented in related studies, although the general idea is using spherical
particles with the same scattering and absorbing behavior compared to the assumed natural
snowpack. The maximum length (Diameter) of dominant particles that has been defined
from a snow hydrologist perspective, introduced by Colbeck [33] and known as Dya.. It
has been argued that this assumption causes large amounts of overestimations in average
grain size [137]. Roy et al. [171] explain that wide range of snow grain shapes and complex
structures cause low accuracy in D,,,, measurement.

Grenfell and Warren [81] suggested representing the granular snowpack medium with
spheres having equal volume to the surface area ratio (¢ = V/A). This representation is
explained by assuming the equal volume spheres and equal area spheres in snowpack grains.
The scattering is less in the former case, and the absorption is higher in the latter condition
compared to the original medium scattering and absorption. Therefore, spherical particles
with the same volume and also the same area as chosen snowpack particles would simulate
same scattering and absorption properties. The radius and diameter of these spheres 7,
and D,, respectively, were obtained by Grenfell and Warren [%1], thus:

A 47rr§ 3 6

(3.17)

where V' is the volume and A is the surface area of representative spheres. It should be
noted that the idea of considering an equal V/A ratio radius stems from the equivalent
optical grain-size D, assigned to particles with optical properties similar to those of natural
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snowpack [137, 78]. Moreover, it has been noted by Métzler [137] that D, is equal to D,.
Matzler [137] described D, as:

Dy = — (3.18)

where M is the mass of representative spheres and p is the density of those spheres. We can
also estimate D, from equation 3.17; D, = 6q. As mentioned, ¢ equals the volume divided
by the surface area. It is also related to the Specific Surface (s = V/A) and the volume
fraction of ice (v = p/pice) by ¢ = s/v., where s, ¢ and v are measured by laboratory
experiments [137].

The Specific Surface Area (SSA) is another parameter defined by surface area per unit
mass (SSA = A/M = A/(i.V')), which describes the geometric and physical properties
of the snowpack [ 15]. SSA can be measured using methods such as IR techniques, X-ray
imaging or methane absorption measurements [115, 8]. Experiments conducted by Legag-
neux et al. [115] have shown that SSA values decrease during constructive metamorphism,
and highest measured values were related to settled fresh dendritic snow. Using equation
3.18, D,, a function of SSA, is defined by

6

D =
e pieeSSA

(3.19)

Matzler [137] proposed correlation length as a complementary factor for D,,.,. This
parameter is defined as a characteristic grain size, based on the Grenfell and Warren
[31] definition (spheres that have an equal volume to surface area ratio). Mitzler [137]
explained methods for estimating the correlation length using theoretical procedures such
as the spatial auto correlation slope (p. is calculated), and the exponential correlation
function (pe, is calculated'?[229]), and intercept length experiments (p. is computed). In
the latter, the correlation length is measured by stereology of the snow medium referred
to as spatial interpretation of snow planar sections, and is computed from the intercept
length of air and ice. Noteworthy that all the aforementioned methods are similar in
their computation of correlation length components in granular materials that contain two
components [137].

The relationships obtained between p.., p., D and D, are summarized based on both

12pe:1: = 075pc
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theory and experiment:

Pex = 016D0

Pex = 025DO

Pew = 0.75p, (3.20)
Pex = 0.5D

(D < D,)

To date, only a few studies have compared known snowpack emission models, to explain
the adaptability of inputs and analyze the differences. Significant examples were studies
by Foster et al. [71], Royer et al. [176], Pan et al. [150] , and Sandells et al. [I80]. On the
other hand, grain size parameters, the key component of emission models are discussed in
multiple studies, most agreeing on prioritizing the measurement of the SSA in the field to
represent sphere grains, using the optical equivalent diameter [75, , , 119]. In addi-
tion, a micro-computed tomography technique for measuring the correlation length of snow
grains, which is a parameter used in MEMLS, has been presented by Proksch et al. [158],
and Krol and Lowe [107]. However, it has been augured that SSA and correlation length
alone cannot characterize snowpack medium properly, and a better representation of the
natural microstructure of snowpack is achieved by assuming clusters of grains randomly
positioned in large vacant spaces, which can be represented by assuming and applying a
stickiness factor. Tsang et al. [215] introduced a stickiness factor for enhancing the scat-
tering properties of grains by calculating scattering and extinction coefficients. Lowe and
Picard [128] stressed that applying a stickiness factor is essential, as it can represent the
relative positioning of spherical particles with a fixed diameter; however, it is an unmea-
surable factor. Detailed discussion on this subject as well as descriptions of an effective
grain size can be found in chapter 4.

Next, is a brief description of technical aspects of spaceborne PM radiometers and three
well-known examples of PM sensors.

3.4 Spaceborne radiometry

Spaceborne radiometry originated from radio astronomy ground-based techniques, which
then underwent dramatic changes in being adapted for surface-observations requirements
[190]. In spaceborne and ground-based PM radiometers, incident radiance is observed by
an antenna and converted to a voltage, which is then amplified and registered as the bright-
ness temperature observation. Due to the low energy of microwave channels operating in
radiometers (5 GHz-100 GHz), spaceborne sensors should be designed either to observe for
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longer or gather enough energy detectable by larger footprints. As the former solution is
not applicable, the latter is applied in radiometers’ design [218]. It should be noted that
spatial resolution is relevant to the diffraction limit, and its angular Full Width to Half
Height(FWHH) is in the order of 1/D (wavelength / diameter of dish) [166]. In other words,
a higher wavelength causes lower spatial resolution, and the bigger the dish antenna, the
better the spatial resolution. In order to minimize surface reflection, the sensor incident
angle is designed to be close to Brewster’s angle (however, this angle differs for different
mediums and polarizations).

Current passive microwave sensor platforms are located in near-polar sun-synchronous
orbits'®, with approximate altitudes of 800 km. The advantage of these orbits for earth
observation is that they cover most areas of the planet twice daily. In addition, most
coverage is gained in near polar areas. Most passive sensors have a conical observing
geometry with a fix incidence angle scanning in a forward direction. These systems have
less swath width compared to cross track scanning observation geometry. However, one
of the weaknesses in the cross-track scanning systems is the footprint size variation from
nadir to the extent of swath (highest to lowest resolution, respectively), resulting different
viewing angles in the observation geometry [51].

3.4.1 Special Sensor Microwave Imager (SSM /I) and the Special
Sensor Microwave Imager Sounder (SSMIS)

Defense Meteorological Satellite Program (DMSP) satellites carried multiple radiometers
of SSM/I and successive SSMIS since 1987 with three active radiometers of F16 SSMIS,
F17 SSMIS, and F18 SSMIS. These near polar orbiting satellites are sun-synchronous with
an inclination of 98.8° at an average altitude of 833 km with a swath width of 1400 km
and an orbit period of 102 min [89]. SSM/I and SSMIS have seven-port horn antenna at
19.35, 23.2, 37, and 85.5 GHz, where all frequency channels are dual-polarization except
23.2 GHz that is measured at Vertical polarization only.

NASA’s MEaSUREs Program produces SSM/I and SSMIS data products to support
monitoring cryospheric and hydrologic time series, in two processing levels of "rt” and " v7”
as well as daily, 3-day, weekly, and monthly average. Further processes lead to high level
products such as surface wind speed, atmospheric water vapor, cloud liquid water, and
rain rate.

13Platforms in sun-synchronous orbits meet an observing point in the same local time, which is during
night and day time with twelve hours difference.
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3.4.2 Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E)

The Aqua satellite containing the AMSR-E launched May 2002. The system operated until
October 2012. Aging lubricants led to its discontinuation; however, that lifetime was longer
than planned. AMSR-E was a modified version of AMSR carried by the Advanced Earth
Observing Satellite-I1I (ADEOS-IT) launched December 2002 and was a joint project of the
National Space Development Agency of Japan (NASDA) and the National Aeronautics
and Space Administration (NASA) for the EOS Aqua satellite mission [97]. As a six-
frequency dual polarized radiometer, AMSR-E’s main mission was to estimate geophysical
parameters in water cycle such as of water vapor, precipitation, sea surface temperature
(SST), and soil moisture [97]. Two key elements of AMSR-E were the 1.6 m main reflector
diameter (AMSR and AMSR2,the successor to AMSR-E, have the largest dish antennas
among current instruments, both at 2m diameter) and the added 6.925 GHz channel, which
can be used for SST and soil moisture retrieval [118, 225].

Aqua operates in a sun-synchronous, near-polar, low-earth orbit (705 km) that ob-
serves the earth at approximate local times of 1:30 am and 1:30 pm, with a 55° incidence
angle. The coverage swath width of AMSR-E was 1450 km. The sensor spin rate is 40
r/min, so each scan took 1.5 s. Measurements at different frequencies were made by feed
horn antennas, and for the data calibration in each scan, high temperature noise source
(HTS)—blackbody reference load—and Cold Sky Mirror (CSM) data were used in two

point linear extrapolation to obtain the effective observed temperature [97].

3.4.3 Advanced Microwave Scanning Radiometer 2 (AMSR2)

The AMSR2 onboard Global Change Observation Mission 1st-Water Satellite (GCOM-W1)
launched in 2012 and was placed in low earth orbit A-train satellite constellation orbit (the
same as the AMSR-E orbit onboard Aqua). GCOMW-1 is in collaboration with Suomi
NPP to provide Environmental Data Records (EDRs). As a result of being a successor,
AMSR2 inherited most of AMSR-E’s sensor characteristics; however, some improvements in
AMSR2 sensor and viewing geometry have been made. The modifications include added 7.3
GHz channels for radio frequency interference (RFI) detection, better spatial resolution and
extended effective swath width (1450 Km to 1600 Km) due to increased antenna size (1.6m
to 2m), a redundant momentum wheel and an improved calibration system [91]. In AMSR-
E sensor, fluctuation of temperature in the HTS microwave absorber caused difficulties in
calibration. Improvement for less variation in the AMSR2 HST unit is performed by a
different thermal design and modified sun intrusion shielding [92].
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3.5 Summary

This chapter has reviewed equations explaining the brightness temperature, emissivity and
relation between an observed T, and the emission properties of a medium, and radiative
transfer. In terms of spaceborne PM remote sensing, the relation between observed 7;, and
terrain self-emission was explained, following a review on the observing geometry and main
characteristics of AMSR-E (as we have used AMSR-E observations in chapter 5).

Semi-empirical and physical models for snow properties retrieval help to improve our
understanding of microwave, snow grains and interfaces interactions. Theoretical modeling
lets us analyze the sensitivity of emissions to microstructure parameters such as a snow
grain size, depth, and density. Emission modeling of a snowpack using HUT, MEMLS
and DMRT-ML has been explained, following a review of specific differences between these
emission models caused by employed different theories and assumptions. Lastly, different
representations of snow grains were discussed.

The next chapter reviews snow depth and SWE retrieval methods using passive mi-
crowave remote sensing observations. While the spatial resolution problem is largely in the
realm of engineering design and constrained by physical restrictions, a better understand-
ing of the whole range of retrieval methodologies can provide the clarity needed to move
the thinking forward in this important field. Moving forward to a real case study, Chapter
5 elaborates on parameterization of the DMRT-ML with the n situ snow measurements
of tundra snow in the Eureka region using a two-layer snowpack in two configurations: a
depth hoar and a wind slab dominated pack. Conclusively, emission modeling predictions
were compared to airborne observations. Using these parameterizations, Chapter 6 ex-
plains employing the Bayesian Algorithm for Snow Water Equivalent Estimation (BASE)
to retrieve snow depth for the same case study.
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Chapter 4

Review of SWE retrieval methods
using spaceborne passive microwave
radiometry

4.1 Introduction

Over the history of passive microwave (PM) remote sensing (RS) of the Earth from space,
numerous studies have focused on Earth’s surface monitoring using observations from the
microwave part of the spectrum at 6-90 GHz. PM observations of surface and subsurface
targets provide all-weather and day and night observations that remote sensing using other
parts of the spectrum does not provide. Atmospheric windows in the PM spectrum are
sufficiently wide that all but the thickest of clouds do not interfere with observations of
surface and subsurface emissions. This robust remote sensing technique is particularly
useful for monitoring snow water equivalent (SWE) and snow depth (SD) which influence
climate at local and global scales [11] and represent a valuable water resource in many
regions of the world. There are many studies that reinforce the importance of PM in
snow properties retrievals and its significant contribution in accurate retrievals specifically
in cases where in situ measurements have limited spatial and temporal coverage or these
datasets are not available at all. Two significant instances are studies by Goodison and

Walker [79] and Vuyovich and Jacobs [223].

Fundamental studies of microwave properties and emission modeling of snowpacks (e.g.,
[140, , , 180]) and significant works on hydrology of snowpacks (e.g., [192, 11, :
]) have been published that support substantial efforts in the field of snow detection

37



and SD retrieval using remote sensing techniques (e.g.,[33, , ]). Rees [166] gives
a good overview of cryospheric monitoring by means of remote sensing observations and
explained available methods while presenting related applications for each component of
the cryosphere. In a more-recent review, Tedesco [203] comprehensively discussed different
remote sensing and field measurement tools and techniques for observing the cryosphere in
bringing examples of employed methodologies. Significant review papers on remote sensing

for SD estimation have been published in the last ten years. Frei et al. [71] examined global
products of snow extent and SWE created using optical and passive microwave data, using
both satellite and additional data sources. Dietz et al. [13]’s review paper elucidated the

physical processes of a snowpack that controlled the observed response from snow in the
visible, infra-red and microwave part of the spectrum, followed by SCE and SD retrieval
methodologies, and an overview of available products. In the forward emission modelling
field, a few inter-comparison studies exist, such as those by Tedesco and Kim [205], Royer
et al. [170], and Sandells et al. [180].

Despite the extensive efforts of researchers to provide accurate SWE retrieval using PM,
current SWE products still do not meet the minimum operational accuracy requirement for
hydrological applications (£15%) [11]. One reason is the inherited low spatial resolution of
PM observations. Another reason is knowledge gaps in coupling precise physical emission
models of snowpack to airborne/spaceborne remote sensing observations. Emission models
of snowpacks have been employed in various ground-based experiments; however, only a
limited number of studies focus on retrievals using remote sensing observations through
physical emission models. The scaling process is another challenge that impacts the ac-
curacy of retrievals; generalizing in situ measurements for snowpack emission modeling
and for the evaluation of retrievals is a very important analysis has largely been ignored.
Another source of uncertainty is associated with snow properties retrieval of footprints
with subpixel coverage of other landcovers such as bare soil, vegetation and waterbodies.
Findings have shown that PM SWE retrievals tends to underestimate SWE in forested
areas, areas in close proximity to open bodies of water or when temperatures are above -2
°C [71, 45, 36]. SWE retrieval in complex relief terrain is another challenging process that
has been investigated in a few studies (e.g., [121, 211]). Although extensive research has
been carried out on aforementioned areas, to our knowledge, no single study exists which
provides a methodology for global snow properties retrieval in stated cases. In contrast,
vegetation as one of the prevailing landscapes in snow-affected regions impact on snow
retrieval in mixed pixels can be calibrated [162, ], however the focus of this paper is
critically evaluating snow properties retrieval approaches and therefore studies on suppixel
mapping are not addressed here.

Given the lack of uptake of passive microwave remote sensing estimates of SWE in hy-
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drometeorology and hydroclimatology applications, and the probable causes being coarse
spatial resolution and retrieval methodology uncertainty, there is a need to assess the future
potential of passive microwave remote sensing of snow. While instrument spatial resolution
is bound to the physical restrictions on engineering, improvements in retrieval approaches
can be addressed and it is with this scope that this paper focuses its attention. A retrieval
methodology in remote sensing problems provides a framework for estimating variables
that cannot be directly observed [183]. PM SWE retrievals are traditionally performed
by empirical modeling using regressions and are calibrated by in situ measurements (e.g.,
[36, 70, 98, 204]. Substantial progress made in the emission modeling of multi-layered snow-
packs, based on semi-empirical and physical emission models conducted by ground-based
and /or laboratory experiments, created the foundations of SWE retrievals by PM remote
sensing through emission modeling. Using simulated brightness temperatures (7,s) from
the radiative transfer (RT) solution of a snowpack, and PM remote sensing observations in
an inverse modeling scenario, snowpack properties can be retrieved. In situ measurements
can be employed to increase the accuracy of snowpack property estimation by: 1) charac-
terizing and confining the snowpack variables via physical snowpack models (e.g., [111]);
2) calibrating empirical modeling and/or providing input variables for emission modeling
if they cannot be measured or where measuring is not feasible, such as grain sizes (e.g.,
[201, 204]); and 3) being integrated into the inversion process by radiance assimilation
techniques [122].

This review, unlike previous review papers, focuses on the methodologies for snow
property retrievals using radiometric observations of snowpacks at 10-37 GHz. First, it
briefly reviews retrievable key parameters that have significant impacts on hydrological
and climate models, then explores how these key parameters change throughout the snow
season. Various methods of retrievals along with notable products are presented afterwards.
Stand-alone snow products that are retrieved globally using passive microwave observations
are the main focus, but other products that include additional data sources are also briefly
touched on. Finally, the issue of accuracy assessment is discussed since it determines the
uptake potential of the SWE estimates.
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4.2 Snowpack properties and the characterization of
a snowpack for emission modelling

4.2.1 Emission properties of a snowpack

Microwave emission through a granular medium such as snow is subjected to absorption,
scattering by snow grains (ice crystals) or transmission through the pack, depending on
snowpack state and wavelength. For dry snow, scattering dominates the signal when the
wavelength of the electromagnetic radiation is smaller than or comparable in size to the
snow grains (wavelength of 0.8 cm-1.6 cm equivalent to 37-19 GHz). At longer wavelengths
(3 cm and above, equivalent to 10 GHz or less) complete transmission leads to a zero
sensitivity of the emission to the snow, regardless of snow depth [230]. Therefore, wave
penetration through a dry snowpack increases with a wavelength increase. However, once
snow starts to melt, or contains liquid water, the wave penetration decreases and the pack
absorbs radiation. Penetration depth, which ranges from 1-10 m in a dry snowpack, is
less than 10 cm in a wet snowpack for frequencies within the 10-37 GHz range, the most
sensitive range for surface properties retrieval using PM. The spatially variable occurrence
of wetness events on Tjs at different frequencies therefore adds ambiguity to SWE retrievals
and so this paper takes only dry snow retrieval processes into consideration, ignoring studies
that focus on wet snow retrievals (e.g., [209, 224]).

To model the surface emission form a snowpack as observed by a PM radiometer, a
lossless sensor, an emitting surface, and the atmosphere between them are assumed. The
three microwave sources observed by the radiometer are: atmospheric self-emission (Typ),
terrain self-emission (7, r), and scattered downward atmospheric contribution (7s¢). The
terrain self-emission and downwelling atmospheric contribution are attenuated by atmo-
spheric loss, explained either by a loss factor (L,) or atmospheric transmissivity (e(=7)).
Other contributors such as cosmic emission and emission from the background (to the tar-
get and then incident to the sensor) can be disregarded according to the relatively small
magnitude of these components [186]. Thus, the apparent temperature (T4p) observed at
the spaceborne PM radiometer is modeled as

Tap = (R X Tso + (1 — R)Tsurf) e T+ Tup (41)

where R is the surface reflectivity, assuming that there is no transmissivity into the
surface. For completeness, the emissivity (¢) equals 1 — R. The atmospheric transmission
at the commonly used frequency channels of interest (10, 19 and 37 GHz) is greater than
95% [218] and so if the simulation seeks to estimate observed emission at the spacecraft,
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the atmospheric contribution needs to be included. If the emission is to be predicted close
to the snowpack, this term can likely be deemed negligible.

Close to the snowpack, the landcover emissivity given a downwelling sky radiation
measured by ground based measurements is [139]:

Tsurf - Tsc
Tphys - Tsc ( )

where T,y is the surface physical temperature. The dielectric properties of a medium
as well as its composition define its emissivity and so the microwave interactions in a
medium (including snow) are controlled by its geometrical structure and electromagnetic
properties. Therefore, before discussing the forward emission modeling of snowpack, it
is necessary to review snowpack hydrological properties and its evolution throughout the
season with respect to its geometrical structure.

4.2.2 Hydrological properties of snowpack and its seasonal evo-
lution

A comprehensive explanation of the seasonal metamorphism of snow was published by
Colbeck [31]. The main physical hydrological properties used to characterize snow include
SD, bulk density and SWE. SWE is the height (cm) of liquid water contained in a vertical
column of snow with a cross section area of 1 cm?. Information about density complemented
by grain size control the snowpacks scattering response to electromagnetic field emission
and radiation. These two variables also characterize a snowpack’s stratigraphy which
evolves during the winter season in response to variations in mass and energy fluxes that
act on the snowpack [7]. Therefore, seasonal snowpack evolution should also be considered
in a robust retrieval approaches, with metamorphic processes accounted for in regional-
scale applications [112].

Snowpack stratigraphic evolution and transition to melt form are mostly controlled by
the thermal gradient induced by the low thermal conductivity of the snow [132]. The posi-
tive values of net radiation and heat flux coming from the substratum (toward the snowpack
surface) are the most important contributors to the temperature gradient between snow
and the underlying ground. During seasonal snow evolution, constructive and destructive
metamorphic processes modify grain size and density in a snowpack. The characterization
of snow grain size, density and temperature for emission models requires grain-growth,
densification and thermal models that should be calibrated using observations and in situ

41



measurements [130]. It should be noted that there has been a significant debate regard-
ing the determination of how snow grains are represented in emission models. While it
is beyond the scope of this paper, it should be recognized that the term “grain size” is
imprecise, therefore hereafter we use the general term of “snow grain metrics” to avoid this
misrepresentation.

Snowpack evolution has been formulated either by empirical relations based on clima-
tology or by physical or semi-physical models. Sturm and Benson [196] proposed a grain
trajectory model that uses photogrammetric measurements of grains. In their research, an
exponential decrease in the number of grains per unit mass through a season was fitted to
grain measurements by sieving different layers of a snowpack. Kelly et al. [99] used this
grain growth to provide grain metrics input values in a physical emission model coupled
with passive microwave observations. In this growth model, a temperature gradient large
enough for kinetic growth (0.1-0.2 °/cm) is assumed. At lower temperature gradients, Kelly
et al. [99] proposed 0.008 mm/d based on Colbeck [31]’s study.

Regarding snow climate classes densities and densification throughout the season, Sturm

et al. [200] developed a statistics-based approach for the density estimation of a seasonal
snowpack using snow depth data. In this method, the snow climate classes from Sturm
et al. [199] are used to derive separate coefficients for each class. Additionally, they em-

ployed a deviance information criterion (DIC) method to find the best predictor variables
(such as snow depth, day of year and snow class) that impact the bulk density by means
of the highest coefficient of determination, R?, and least DIC scores (model fit factor). In
a similar approach, Tedesco and Jeyaratnam [204] derived a densification formula using
Bayesian statistics for SWE estimations of PM observations based on in situ snow depth,
density, and SWE for each snow climate class.

With the major advances in scientific understanding of snow metamorphism, snowpack
evolution can be relatively accurately predicted using physical land surface models that
leverage meteorological mass and energy measurements as inputs for an accurate emission
modeling Métzler [139]. SNOWPACK by Lehning et al. [116] and Crocus by Vionnet et al.
[222] are two well-known one-dimensional energy and mass evolution models for snowpack
state prediction.

4.2.3 Forward emission modeling of a snowpack
In a simplified emission model where snow is considered as a single homogenous medium,

the snowpack’s dielectric constant is estimated by a weighted average of the dielectric
properties of air, ice particles, and water. In a heterogeneous layer, internal scattering is
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also considered. In the case of dry snow (liquid water content is zero), a mix of air and ice-
particles is assumed, and results in a simpler solution than if water is present. To simulate
the emission of a snowpack, a robust solution to the RT equation is needed that accounts
for emission from the substratum through the pack to the air-snow interface. Different RT
model representations are available and are based on different assumptions and theories
for computation of the equation unknowns such as the extinction, the scattering, phase
functions, and transmission in each layer of the snowpack.

The emission model of Helsinki University of Technology (HUT) [162], the microwave
emission model of layered snowpacks (MEMLS) [110, 230, 229], and the dense media radia-
tive transfer theory for a multi-layered snowpack (DMRT) [214, 155, 27], are three distinct

emission models for a multi-layered snowpack. The HUT model is an empirical represen-
tation of physics-based model while the MEMLS and DMRT models are more physically
based. Emission models’ accuracies and sensitives have been extensively evaluated using
ground-based experiment PM observations [230, 19, , , 176]. However, fewer studies
have evaluated the use of physically-based emission models at airborne/spaceborne scales
[66, 169, 16, 143, 112, 177, 178]. Interestingly, while HUT is considered an empirical model,
it is an exception compared with the other two modes since it is in operational use with the
GlobSnow product [201] providing near global land surface estimates of SWE. The HUT
model achieves this by empirically representing the extinction and scattering coefficients
and by simplifying the wave propagation as a 2-flux, which is rather less complex than the
MEMLS and DMRT approaches. Moreover, the RT solution is considered a scalar thereby
assuming a single polarization.

Intercomparison studies of snowpack emission models are relatively few but those that
have been conducted have provided insights into the performance of different snowpack
microwave representations and how they differ in requirements and functioning. Tedesco
and Kim [205] highlighted the discrepancies found from using different emission models,
whereas none of applied emission models could reproduce the observed emission within
a reasonable accuracy and therefore authors recommended more experimental analysis to
improve the performance of available emission models. A decade later, Royer et al. [170]
and Sandells et al. [180] presented the use of different emission models and inferred a need
for a better microstructure representation of snowpack in emission models as well as a
need for the interchangeability of snowpack microstructure metrics into different emission
models to avoid errors incorporated to different grain metrics in comparison studies.

A key recent advancement from modeling experiments is how snow grain metrics is
treated by the models. Grain metrics are key input variables for the emission models and
only recently has there been convergence in how grain metrics should be quantitatively
prescribed for use in the models. Most models agree on prioritizing the measurement of
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Specific surface area (SSA) or correlation length in the field to represent spherical snow
grains using the optical equivalent diameter [I15, , , 75].  SSA and correlation
length measurements, however, are challenging without sophisticated equipment. SSA
measurements can be achieved using an integrating sphere approach [75] while a micro-
computed tomography technique for measuring the correlation length of snow grains, which
is a parameter used in MEMLS, has been presented by Proksch et al. [158] and Krol
and Lowe [107]. While SSA and correlation length characterize a snowpack’s discrete
grain geometry, they are unable to represent grain assemblages (aggregates of snow grains)
well. A different representation of the natural microstructure of snowpack assemblages
has been demonstrated by assuming clusters of grains randomly positioned in large vacant
spaces, which can be represented by assuming and applying a stickiness factor. A so-called

“stickiness factor” was introduced by Tsang et al. [215] to represent the enhanced scattering
properties of grains that are aggregated to varying degrees thereby affecting the scattering
and extinction coefficients. Lowe and Picard [128] stress that applying a stickiness factor is

essential since represents the relative positioning of spherical particles with fixed diameter,
it is an unmeasurable parameter. Therefore, another way of representing a snowpack
microstructure for microwave modelling is to assume a size distribution of grains within
a discrete snow layer. This makes the application of a stickiness factor unnecessary [155].
Furthermore, building on this concept, Roy et al. [171] proposed applying a scaling factor on
SSA grain sizes by minimizing the RMSEs of simulated and observed Tys. They explained
that this scaling is required in emission modeling because a grain metrics distribution and
stickiness between grains cannot fully represent the emission signature.

4.3 Snow detection and SD or SWE retrieval tech-
niques
Current retrieval methods are discussed by elaborating on how emission modeling knowl-

edge is integrated in numerical inversions. First, snow detection is explained as a preprocess
that is applied in global retrieval methods to minimize retrieval uncertainties.

4.3.1 Snow detection

To decrease the uncertainties involved in snow cover detection using passive microwave
remote sensing observations at global scales, land ice, water bodies, and grid cells where
snow presence is climatologically impossible are masked out using Dewey and Heim [12]
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snow climatology dataset [9%, ]. For places where snow accumulation is possible, snow
cover can be detected if , values (7,19- T,37) are greater than a pre-determined threshold
[180]. Kelly [98] defines this differential value as 0 K but notes that it is applicable for
shallow to moderate snow depths. For deeper snow, scattering at 19 GHz can occur causing
a depression in the Tj 19 GHz channel and a lower “background frequency” T} is preferable
such as at 10 GHz. If snow cover is deemed to be present then snow depth retrievals can
be applied.

4.3.2 Retrievals using traditional regression-based methods

The discussion in the section 2 indicates that the microwave emission from snow is con-
trolled by both the quantity of snow (SWE) and the quality of snow accumulation (snow
microstructure). Retrieval approaches, therefore, should be sensitive to both elements in
order to minimize estimation uncertainties. A simple linear empirical approach typically
creates a functional relationship between observed Tjs and the snowpack physical property
of interest (i.e. SWE). Early studies based this relationship on observational data [109]
or from theoretical model data developed by Chang et al. [26]. In either case, a derived
regression model connects the observed Tps with the combined emission from snow and
substrate reflected as the snowpack SWE. The relation is usually based on the difference
or ratio between a short wavelength observation at 37 GHz, and a longer wavelength one
at 10 or 19 GHz. Typically, at 37 GHz, the T}, observation decreases with increasing dry
snow accumulation (depth) whilst the Tps at 10 or 19 GHz are unaffected by the snow
and respond more to the substratum emission. Using a j, such as T, 19 GHz - 1,37 GHz,
mitigates the effect of the snowpack physical temperature and variations in soil dielectric
permittivity that impact the emitted radiation from the SWE. In doing so, the , value is
related to the bulk snow mass via the degree of scattering in the snowpack; the thicker
the dry snow, the more the microwave scattering occurs (expressed as a depression in the
T, at 37 GHz) and the greater the , response since the T, at 19 GHz is generally unaf-
fected. Recent studies, however, have demonstrated that while these empirical approaches
are attractive on account of their simplicity, they do not adequately mitigate the effects
of physical temperature, snowpack microstructural controls, especially grain metrics, or
soil dielectric permittivity [100, 65, |. Despite effectiveness and applicability of ap-
plied methods in global retrievals [100, , ], more sophisticated representation of the
microwave interactions with the snow are necessary to achieve robust estimates of snow
accumulation and account for these confounding variables.

Figure 4.1 illustrates the decrease and reflection in the T}, signature at 36 GHz (vertical
and horizontal polarization) and , as a function of measured SWE from an investigation
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conducted by Matzler et al. [111]. Considering a dry snowpack with less than a meter depth,
when SWE increases, 73,37 decreases exponentially [217]. After a point of 150 mm or 200
mm of SWE (the thresholds suggested by Takala et al. [201] and Schanda et al. [131],
respectively), T}, increases, and an ambiguity in 7, and SWE relationship-interpretation
emerges. In our recent study, it has been shown that this threshold is as low as 21 c¢m
depth in tundra snowpacks, where dense wind slab is developed on top of a thin depth
hoar layer in late winter [178]. A simple physical explanation is that in a deep snowpack
(deeper than a meter), 37 GHz frequency is not a volume scattering frequency; therefore,
it does not decrease as SWE increases. Furthermore, 19 GHz microwave, which has been
considered a sensitive frequency to the substratum, will play a volume scatterer role in
this medium. The penetration depth limit of a microwave at 37 GHz in a dry snowpack
and the ambiguity in the T, and SWE relationship limit the application of an empirical
equation for a snowpack with more than a meter depth. An empirical solution for SWE
retrieval in snowpacks with higher than 120 mm SWE would be using 7} differences at
longer wavelengths (7,19V - T,10V) [35, 98, 206].

4.3.3 Retrievals by the inversion of physically based models

Empirical retrievals aim to estimate variables of interest without providing understandings
of the physical processes involved, whereas snow properties retrieval relies on our avail-
able knowledge of source of emission and the RT within the dense medium and how it
quantitatively interprets snowpack properties. Therefore, better understanding of physi-
cal processes that control the emission facilitate making assumptions and simplifications in
emission models, as well as constraining and parametrizing the model inputs for operational
applications [221].

Due to the complex nature of emissions in a snowpack, no analytical solution has yet
be found to invert physical emission models and derive the variables of interest, such as
SD = f~Y(T;). The reason is the nature of this inversion problem, whereas many unknown
parameters (compared to a few observations) are controlling the emissions signature and
therefore we encounter a rank-deficient problem. To have an overdetermined system of
equations or in other words to make the system of equations reliably invertible, we can
either obtain multiple set of observations over a snowpack or constrain model parame-
ters [202]. In PM remote sensing of snowpacks, assuming the steady state of snowpacks
considering available temporal resolutions of observations is not applicable and therefore,
we cannot increase the number of T}, observations in the system of equations. Instead,
to make inversions reliable we have to either constrain the physical model parameters by
parameterizations or simplify the physical process which both decrease the free parameters
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of physical-based models. Having an overdetermined system of equations, one numerical
solution is the estimation of cost functions. Using cost functions, we seek for an optimum
solution rather than a unique solution. We can either search for a global minimum of the
cost function or evaluate the posterior probability of the state variables. The former refers
to a deterministic answer to an iterative search (e.g. [100, |, whereas the latter refers
to a probabilistic response of the inversion system (e.g. [10, ].

Machine learning (ML) techniques can be used to retrieve snowpack properties by
performing an explicit inversion and finding non-linear relationships between observations
and measurements iteratively or non-iteratively (e.g., [21, , , 65, , , ].
Although non-linear relationships can be made using ML, the concept of inversion is similar
to application of a cost function minimization. On the other hand, the tractability of ML
methods such as Neural Networks and Support Vector Machines as the most popular ones
in this field is still questionable. Inversion methods should be reproduceable, simple, and
yet within an effective framework that include uncertainty analysis. A good example for
a simple yet effective inversion is the use of a Bayesian retrieval probabilistically that
allows the integration of a priori knowledge of snowpacks into a retrieval framework while
making uncertainty analysis of retrievals feasible (e.g. [16, 151]). Unlike ML algorithms,
understanding and building on employed Bayesian-based inversions is tractable, however
until recently, there has been little interest in this field.

Employing data assimilation in SD retrieval

Having discussed uncertainties caused by the availability of a few independent PM ob-
servations through inversion algorithms, in this section, data assimilation as a technique
that addresses this problem by integrating different data sources for accurate SD retrievals
is explained. Data assimilation that was first used in atmospheric modeling—specifically
weather prediction—has been employed to improve the estimation accuracy using other
information sources as well as models and then gradually attracted interest for other ap-
plications. To estimate state variables the term used in data assimilation context in lieu
of snowpack properties of a snowpack from PM observations, an RT model should be used
either as an observation operator (in forward modeling of variables) or in a retrieval algo-
rithm (as an inverse observation operator). If radiance assimilation is used, there is the
advantage of having consistency among datasets from RT and geophysical models, as they
are both used in the same data assimilation system [167]. However, assimilated retrievals
are based on external estimates of desired variables that are inconsistent with geophysi-
cal models within an assimilation system. Relevant studies based on assimilated retrivals
suggest using Land Surface Models (LSM) to provide information on snowpack, as they
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found that with minimal information on snow grain metrics and layering, retrievals from
deep snow will be errorneous [19, 50, , 46].

In a radiance assimilation scheme, a snow model such as LSM, SNOWPACK [116]
or CROCUS [18, 19] is used to predict the state variable of a snowpack, including its
multi-layer thickness, density, temperature, and liquid water content, plus the ground
temperature. Grain metrics can be estimated using grain growth parameterizations and
then integrated it into the snowpack model. Grain growth formulas such as one suggested
by Flanner and Zender [63] as a function of snow temperature and temperature gradient
and density employed by Durand et al. [50] and Durand and Margulis [18], or the grain
growth model of Jordan [95] employed by Durand and Margulis [17]. Grain growth models
are disregarded in a few data assimilation frameworks such as works by Toure et al. [213]
and Durand and Liu [10]. In the former research, grain metrics parameters and growth were
randomly selected, whereas in the latter, a snowpack’s probability distributtion function
(PDF), including its grain metrics PDF is utilized to explore the feasibility of using minimal
prior information in a Bayesian inversion framework.

One limitation of a radiance and more generally data assimilation is that snow state
variables used in an assimilation are needed to be accurate enough to improve the analysis.
For instance, in order to improve the analysis by assimilation, Durand et al. [19] specified
a criterion for the snow model of £0.045 mm for simulated optical grain size accuracy
and +kgm =3 for the density of melt-refreeze layers. Another challenge in data assimilation
methods is the inclusion of detailed snowpack properties such as stratigraphy, grain metrics,
and density in each layer, and the variance associated with these variables in the state
variables. In a case in which cost function does not include the aforementioned variables,
then an updating step would result in error accumulation. For example, the impact of
modeling stratigraphy has been explored in a few studies, such those of Durand and Liu
[16] and Richardson et al. [168] , who stressed that ignoring layering details causes a bias in
T}, simulation due to not considering the emission reflection at boundaries and subsequently
disregarding the impacts of diverse snow grain metrics and densities.

4.4 Global operational SD and SWE products

To date, various SWE and SD products have been created, employing different datasets
and methodologies at different scales and extents, at diverse spatial and temporal reso-
lutions. Among all available SD/SWE maps from PM remote sensing observations, we
reviewed specific characteristics of three global operational SD/SWE products in Table
4.1. These products are created using spaceborne PM observations, where auxiliary data
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sources are minimal and the main purpose of limiting integration of other data sources is
minimizing the error propagation in the SD estimations as well as considering that in situ
observations are not globally available. In terms of data processing steps, global SD and
SWE estimations generally include two major steps of snow detection and SD retrieval.
Forest cover correction, masking water bodies, urban areas and complex terrains are other
common processes [98, ]. Another important step is a post-process for testing the accu-
racy with quality controlled in situ measurements, which provide an error analysis of final
SD/SWE products.

In addition to the listed global SD and SWE products of PM observations in Table
4.1, there are other significant non-global significant SD products such as passive mi-
crowave SWE data for the Canadian Prairies by Canadian Cryospheric Information Net-
work (CCIN)[2] and the SD product of Pulliainen and Hallikainen [160]. The latter was
a baseline for Globsnow version2; employing SSM /I Tys, SD is derived from kriged syn-
optic weather station and grain sizes are estimated by minimizing observed and simulated
Tys from HUT model. SDs are then estimated using 7, observation and HUT simula-
tions. A recent algorithm for SD and SWE retrieval using AMSR-E (NASA) observations
is developed by [204] who employed a non-linear relationship between SD and Tps using
coefficients from trained Neural-Networks of simulated emissions using HUT and T} ob-
servations. Sturm’s snowpack densities are then used for SWE estimations. SD products
of this algorithm are not available online yet. Another global SD product—which is not
available to public yet—is SMSA?[101], which uses Tjs of AMSR2 onboard GCOM-W1.
The methodology is built on Kelly et al. [100]’s prototype product, whereas snow depth
is retrieved using DMRT-ML simulations using a cost-function minimization inversion ap-
proach while considering densification and grain growth trajectory which is adapted based
on persistent presence of snow.

There are other noteworthy SD and SWE products that are based on synergistic ap-
proaches such as blending active and passive observations (e.g., [38]). Active microwave
is an efficient tool for wet snow detection [175]; however, to employ active microwave ob-
servations in synergistic approaches, temporal resolution discrepancy between active and
passive observations is a challenge that seems to be the primary reason why to date, no
long-term global SD or SWE product has been retrieved via a synergistic active/passive
microwave approach.

!Special Sensor Microwave/Imager
2Satellite-based Microwave Snow Algorithm
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4.5 FError and Uncertainty Estimation of Retrieval
Products

Passive microwave sensors are advantageous in retrieving SWE estimates, however, sources
of error must be examined, and uncertainties need to be quantified to fully understand the
applicability of PM snow depth and SWE estimates. It is understood that variables such
as forest cover, grain metrics parameterization, snowpack stratigraphy and metamorphism,
vegetation cover and proximity to large bodies of water directly influence the uncertainty of
PM snow depth retrievals and numerous studies have focused on quantifying these sources
of error and developing methods to assess the accuracy of PM snow property retrievals
[36, 45, 71, , 11]. Common accuracy assessment methods include comparing PM space-
borne snow depth or SWE retrievals to true values obtained from in situ measurements
from extensive snow surveys or permanent snow stations, airborne PM observations and
statistical algorithms. Given that permanent weather stations are usually situated in open
clearings, snow depth and density are not directly measured at most stations, and at coarse
spatial resolution of PM, in situ SWE observations can be misrepresentative of the PM
footprint. It is suggested that only PM footprints with multiple in situ observations be
used for validation purposes, since the accuracy of in situ observations within a footprint
increases as the number of in situ sites increases [15, 23].

Extensive season-long in situ field and airborne campaigns can be more robust for
accuracy assessments to minimize the misrepresentation errors as well as uncertainties
related to microstructural changes. The best efforts to evaluate passive microwave-derived
snow accumulation products are field catchment sites typically managed by government
research laboratories and are high expense facilities which minimizes the spatial coverage.
However, sites in Finland (Sodankyl), Canada (e.g. Trail Valley Creek NWT, Churchill
MB), USA (e.g. Fraser CO, Kaparuk Basin AK, Reynolds Creek ID), Russia (Yakusk
Siberia) serve this purpose well and have been used to evaluate satellite-based observations
of snow accumulation [197, 24, , b5, , 118].

Collaborative projects and field campaigns such as the Boreal Ecosystem-Atmosphere
Study (BOREAS) [185] in 1994 winter field campaign and the Satellite Snow Product In-
tercomparison and Evaluation Exercise (SnowPEX) [39] have been initiated to gain further
insight into the uncertainty involved with snow retrievals using spaceborne PM observa-
tions. BOREAS involved the acquisition of both in situ and airborne snow depth measure-
ments that were compared to spaceborne PM snow depth retrievals and was one of the first
accuracy assessment studies to be performed [22]. SnowPEX is an ongoing project, funded
by the European Space Agency (ESA), which is focused on quantifying the uncertainty
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of satellite derived PM SWE products in the Northern Hemisphere by combining in situ
datasets from around the world [1441, 116, 39]. Other field campaigns such as the Cold Land
Processes Field Experiment (CLPX) and the SnowEx Campaign, although not specifically
designed for quantifying uncertainty of spaceborne PM snow depth retrievals, have been
used to validate some snow depth and SWE products, and have continuing potential in
future uncertainty studies [220, 17].

Given the lack of large scale in situ or airborne snow depth and density measurements,
validation studies have typically been carried out on a local scale. Additional datasets avail-
able for quantifying retrievals uncertainties include the Snow Survey Network Program for
the BC River Forecast Centre, Environment Canada snow stations, the Finnish Environ-
ment Institute snow surveys, the Federal Service for Hydrometeorology and Environmental
Monitoring of Russia (RosHydroMet), snow surveys and Snow Telemetry (SNOTEL) [139],
and Snow Course Data in the United States [116]. Assimilated global SD of the Canadian
Meteorological Center (CMC) by Brasnett [12] and Brown et al. [15] is another data source
that is often used for accuracy assessments. Not a global project, but nevertheless note-
worthy, is the SNOw Data Assimilation System (SNODAS) for the United States [10] that
can be used for evaluation of SD products with coarser resolutions. Snow maps created by
synergistic approaches, with integrated observations from PM and visible/infrared sensors,
such as SD have been created by the US Air Force Weather Agency (AFWA)/NASA Snow
Algorithm (ANSA) and can be used as a reference for uncertainty assessments [200, 73].
These datasets provide extended temporal in situ snow depth measurements that can be
compared to PM snow depth retrievals to assess uncertainties in varying regions to assist
in gaining a full understanding of the spatial and quantitative distribution of uncertainties.

4.6 Discussion and conclusions

PM remote sensing observations along with additional information such as snow grain
metrics and density are significant data sources for snowpack physical properties retrieval.
These additional datasets can be provided by ground-based measurements, other local-scale
remotely sensed data, or model data [208, ]. Grain growth and densification approx-
imations, based on statistical analysis of the extensive field measurements provided by
historical climatologic variables are examples of such prior information [199]. In addition,
coupling snowpack emission models and physical models of snowpacks has been performed
in different studies, such as those by Andreadis et al. [5], Langlois et al. [112], and Kontu
et al. [106]. An experimental demonstration of snowpack models is presented by Essery
et al. [58], providing a framework for using 1701 snowpack evolution models coupled to
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three different emission models. The accuracy of these coupled emission models was tested
in Sandells et al. [180]’s work, which suggested that particular combinations of snowpack
models and emission models should be considered in the design of retrieval processes. RA
is another approach to address this problem by coupling snowpack physical models and
emission models, however, until recently, there has been little interest in this technique.
Broadly speaking, studies that use a prior: information or assimilated in situ observations
claim greater estimation accuracy than that is possible with stand-alone retrievals and find
this approach crucial as it addresses the ill-posed nature of inversion problem [0, ].

As previously mentioned, any accurate retrieval of land covers properties using PM
observations requires employing an emission model or an empirical relationship based on
physical explanations as well as data sources such as other remotely sensed observations,
ground-based measurements, and climatology datasets. Point-based measurement net-
works can constrain coupled snowpack to emission models, leading to potentially increased
accuracy of estimates by PM observations [11]. Relying on climatology information while
using a physical emission model transforms the retrieval into an empirical treatment and
snowpack physical properties are highly variable even at large scales, so specific care should
be taken when different data sources are integrated as prior information in the retrieval
process. Inclusion of a error covariance matrix in the inversion process or simply defining
cost functions that include variances of key components in the retrieval let us control the
reliance on the prior information.

Integrated frameworks that employ emission modeling and ground-based network data
using assimilation techniques or the frameworks that couple emission and land surface
models can be the solution to compensate for the low spatial resolutions of PM remote
sensing. In terms of a retrieval problem, a systematic approach that can be applied on
a global scale and allows quantifying the associated errors is the implementation of a
probabilistic Bayesian framework. Such an approach brings the benefit of simplicity and
tractability that is essential for global snow products and leads to the realization of the
physically-based inversion in a probabilistic process.

To conclude, existing physical emission models have been increasingly developed and in-
vestigated for modeling microwave interactions with ice particles in a snowpack. However,
this is a complex effort relying on spaceborne observations coupled with a sophisticated
emission model and does not always result in an accurate retrieval. ML techniques are pow-
erful tools in creating non-linear relations between sensitive Tys and snowpack properties
to leverage retrieval methods. However, lack of computational tractability of ML methods
and a lack of simple deployment in their applicability to operational retrievals are barriers
to their use. Emission modeling requires many input parameters to be measured, which
is not feasible globally at appropriate spatial scales. Therefore, an open question persists
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regarding the way that detailed stratigraphic variables of a snowpack impact the Tjs at
airborne/spaceborne scales. The ongoing long-term field experiments alluded to in this
paper provide opportunities to evaluate this question. The real issue, then, becomes how
these details should be generalized from small-scales and what is the characteristic nature
of uncertainties that are tolerable for accurate (or acceptable) retrievals using PM Obser-
vations. This is now the fundamental issue that has to be resolved for effective progress to
be made in passive microwave SWE retrievals.
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Chapter 5

Modeling the Observed Microwave

Emission from Shallow Multi-Layer
Tundra Snow Using DMRT-ML

5.1 Introduction

Tundra snow cover is a key variable in the cryosphere that can significantly control local
to regional scale surface water balances, energy fluxes, as well as ecosystem functioning
and permafrost dynamics [165]. At regional and global scales, snow cover affects atmo-
spheric circulation through variations in radiative forcing and the snow-albedo feedback
effect [28, 61]. While satellite-based mapping of snow cover extent is routine, satellite
based mapping of snow water equivalent (SWE) is less mature and it is still challenging
to estimate snow accumulation regionally and globally to the desired accuracy that can
inform climate change or catchment-based hydrology applications. Significant progress has
been made in this area [201, 98, , |, yet there is still uncertainty in the retrievals,
primarily because the spatial resolution of the observation, most notably from passive mi-
crowave (SWE) instruments (regional-scale), does not match the spatial resolution of SWE
variability (local-scale). Furthermore, there are uncertainties in the retrieval process likely
linked to the unique snow properties found in certain environments, such as the tundra
snow, which accounts for 16% of the total northern hemisphere land surface [199, 200].

Snow micro-physical structure (depth, grain size, density and temperature profile)
evolves during the winter season. In situ measurements of tundra snow properties reported
in previous studies[165, 37, 10] provide a reference for tundra specific emission modeling
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with studies showing that one layer of early season snowpack develops to two predominant
layer types of slab and hoar, as a result of kinetic grain metamorphism due strong vertical
temperature gradients [199]. A fresh or recent snow at the surface of the pack is subject
to wind redistribution [38]. The slab fraction increases even with increased overall pack
depth, and as a multi-layer medium, the discrete layers in the snow add complexity to
the bulk microwave emission from the pack since each snow layer evolves differently as the
season progresses and from year to year.

In terms of the general microwave emission from a typical low to moderate density
dry snowpack, an increased snowpack thickness from progressive snow accumulation man-
ifests itself as a decrease in microwave emission at shorter wavelengths (>25 GHz), as
measured by the brightness temperature (7,). This is because the microwave scattering
coefficient dominates the emission process. However, beyond a threshold of SWE, the T,
increase as emission from the snowpack increases the T, and overrides the scattering sig-
nature. In shallow tundra snow, unique layering characteristics coupled with high density,
slab-dominated snowpacks produce an increase in the T, response, as the winter season
progresses, at shallower snow depths relative to other environments such as the boreal
forest or alpine regions.

The slope reversal from decreasing to increasing T;, at 37 GHz with increasing snow
accumulation has been observed in a limited number of studies. Rosenfeld and Grody
[169] discussed the inflection behavior observed by the Special Sensor Microwave/Image
(SSMI) as an anomaly in microwave spectra and simulated the inverted 7, applying Dense
Media Theory (DMT) radiative transfer approach successfully for a two-layer snowpack
of crust and aged snow. This work provided limited details on the in situ measurements.
Derksen et al. [10] explored the seasonal 37 GHz T, slope reversal in an empirical fashion
for spaceborne SWE retrievals based on cumulative absolute difference of Tps. Using a
physically-based approach, Liang et al. [124] applied the Dense Media Radiative Transfer
approach based on the quasi-crystalline approximation (QCA) with stickiness to simulate
Tps from multilayered stratified medium depth to deep snow (~4080 cm). They demon-
strated the T, inflection behavior, which was driven by ground based snow microstructure
measurements of a multi-layer pack with larger grains at depth and smaller ones above
with lower densities. However, Liang et al. [121] used a multilayer simulation (>6 layers)
with exact input variables for each layer from In situ measurements. While the approach
yielded good results, physical stratification of the snow adds significant complexity to the
model implementation and may lead to overfitting in the process of finding the best cor-
relation between simulations and observations. Therefore, model applicability to airborne
or spaceborne observations for snow depth retrieval is not straightforward. Moreover, the
representation of slab on depth-hoar that is frequently seen in tundra environments, is less
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well tested by these models.

Determining the stratigraphic and microstructure layering of snow, at least in general
form, is an operational prerequisite if physical modeling approaches are to be used in

SWE retrievals. While the study by Derksen et al. [10] explores the empirical evidence
of the Ty reversal at 37 GHz, it does not attempt to explain the 7}, response from a
physical perspective while the Rosenfeld and Grody [169] study does not provide any

direct experimental evidence of the existence of a dense layer, except through inference
from T}, variations observed from satellite T;,, measurements. Therefore, this study develops
the ideas of Rosenfeld and Grody [169], Derksen et al. [10] by parameterizing and testing a
physically-based model that predicts the T} response, including the T; slope reversal from
an Arctic tundra snowpack using DMRT-ML and In situ snow pit observations. The model
results are compared and validated against coincident multi-resolution airborne microwave
T, observations. The goal of this research is to be able to apply this model in a manner
requiring only a minimal parameterization scheme that is independent of ground-based
data for satellite SWE retrievals.

5.2 Methodology

5.2.1 Description of the DMRT-ML snow emission model

Electromagnetic radiation passing through a multi-layered dry snowpack medium can be
modeled by scattering, absorption, reflection, refraction and transmission considering di-
electric properties of the medium. Three different groups of empirical, semi-empirical and
physical emission models have been developed to derive estimates of a snowpack’s physical
parameters using radiometry. Empirical models typically do not account for snowpack
microstructure metamorphism, which significantly impacts the microwave signature of a
snowpack. Semi-empirical and physical models of the microwave emission from snow have
evolved as our understanding from experiments of snow microwave emission has improved
and has been fed back to model design. The Dense Media Radiative Transfer Model-Multi-
Layer (DMRT-ML) is a physically-based model that couples the microstructural properties
of a snowpack to its emission signature. DMRT-ML has been employed in several studies

using ground-based radiometers and in situ snow measurements [155, . The Dense
Media Radiative Transfer (DMRT) model [211] and DMRT-ML have also been employed
and evaluated for SWE retrievals using spaceborne radiometry (e.g.,[100, 16]). However,

using DMRT-ML to retrieve snow depth globally needs parameterization of the dynamic
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state of the snowpack. Observations from airborne radiometry together with in situ mea-
surements on the ground makes it possible to constrain the DMRT-ML for inversion and
snow depth retrieval.

DMRT theory was developed by Tsang et al. [214] for a layered snowpack, and was
originally based on the Quasi Crystalline Approximation (QCA) of scattering behavior of
particles in a dense medium, where the particles occupy more than 20% of the fractional
volume [227, 941]. Picard et al. [155] employed Quasi Crystalline Approximation-Coherent
Potential (QCA-CP) to model emission for a multi-layered snowpack in a range of 1200
GHz. QCA and QCA-CP approximations let us model particle positions pair distribution
functions while coherent wave interactions are assumed. In so doing, these approximations
allow wave interactions to be modeled in a dense medium [214]. For DMRT-ML, snow
scattering and extinction coefficients and the form of the phase function are computed
based on DMRT theory, whereby the radiative transfer equation, based on the work of Jin
[94], is solved using the Discrete Ordinate method (DISORT) [20]. Our implementation
follows the approach of a mono-disperse assumption in a grain size distribution within a
layer with the empirical method for large particles [32].

The DMRT-ML model is implemented by providing snowpack inputs including grain
size, density, physical temperature, and thickness of each layer. For ground-based radiome-
ter studies this is straightforward because the radiometer typically senses an instantaneous
field of view (IFOV) of the order of a few meters at most, depending on the target-sensor
separation. However, at the spatial scale of airborne observations (with typical IFOVs at
the 100 s of meters) the spatial and temporal variability of snowpack physical properties
can make it challenging to constrain the DMRT-ML model parameter set. This might also
be exacerbated by spatial miss-match between flight lines and ground measurements. By
characterizing the spatial variability of snowpack properties from field data using informa-
tion given by a semivariogram, the spatial mismatch between observations on the ground
and from air can be rendered acceptable by establishing geographical limits in the analysis
beyond which ground and air observations should no longer be compared directly because
they are too far apart and no longer spatially autocorrelated.

Accurate DMRT-ML model parameterization is of the utmost importance. Ground-
based measurements of snowpack properties do not always match model input require-
ments. For example, one of the most commonly measured snow grain metrics observed
by snow surveyors in the field is the maximum physical dimension(s) of the snow grain.
Unfortunately, this metric cannot be directly input into the DMRT-ML model which rep-
resents the snow grains as spheres. Current research in this area is attempting to resolve
differences between different snow grain size representations and how these differences in-
fluence model results [176]. Standard snow grain size measurements protocols need to be
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established because: (a) the models require a more sophisticated representation of snow
grains (optical grain size, correlation length, specific surface area (SSA); and (b) the tra-
ditional observed measurement of the maximum dimension of the snow grain is inherently
subjective depending on the surveyor and can vary between different surveyors using the
same sampling equipment [71, 19]. A simple scaling factor has been developed by Roy
et al. [I71] to convert measured SSA [75] to effective grain size into DMRT-ML. While
it is recognized that this scaling factor is optimized to produce the best results with the
given snow survey data and may not be applicable to other snow survey data collected in
different regions, it provides a starting point for defining snow microstructure inputs to
DMRT-ML.

5.2.2 Data Analysis Workflow

This study investigates the DMRT-ML model performance over a high Arctic tundra snow-
pack by comparing simulated 7,V 37 GHz results with airborne 7js measured at moderate
resolutions and spaceborne T}, observations at coarse resolutions. The objective is to char-
acterize and predict the observed T; slope reversal in emission behavior at 37 GHz for
tundra snow using the DMRT-ML model. The methodology workflow includes: (1) the
pre-processing of airborne observations to match with snow surveys; (2) the generalizing of
snowpack characteristics for emission modeling; (3) DMRT-ML parametrization; (4) ana-
lyzing the emission behavior of tundra snow in the study area using airborne observations;
(5) implementing the DMRT-ML model in selected sites and then in all footprints with
significant number of snow depth measurements; and (6) analysis of the AMSR-E T, V 37
GHz signature of the study area through the same snow accumulation season.

5.3 Data and Data Processing

5.3.1 Study Area

Snow survey and passive microwave airborne brightness temperature measurements were
made across the Fosheim Peninsula, near the Eureka weather station on Ellesmere Island (~
800 N; 840 W) between 13 and 22 April 2011 (Figure 5.1). The region is cold and dry with
an average annual air temperature at the Eureka weather station of 18.8°C and total yearly
precipitation of 79 mm (19812010), with almost 60% falling as snow. The snow survey study
area centered on a previously studied inland drainage basin, Hot Weather Creek (HWC),
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approximately 30 km inland from the weather station [10, , , 52]. The HWC study
area has been described as a polar oasis within the High Arctic polar desert because of its
unique geography of being protected by surrounding mountain ranges resulting in less cloud
cover and warmer temperatures and subsequent abundance of vegetation compared to the
surrounding High Arctic environments [52, |. However, despite the greater presence and
variety of tundra vegetation in this region relative to other regions of the High Arctic, the
main controlling influence on the depth and distribution of snow across this region is local
scale topography, as existing vegetation is extremely sparse (bare ground), or is very low-
lying [234]. The terrain of the study area is generally flat land consisting of upper plateaus,
gently rolling hills and long slopes of varying aspects, accounting for approximately 90%
of the study area, with the remain 10% made up narrow incised river/stream drainage
channels draining into flat wetlands, lakes and valley bottoms [233]. The Fosheim Peninsula
is only approximately 75 km wide, but the extent of the generally flat terrain is large and
far enough away from the coast to minimize the influence of the sea ice and surrounding
mountain ranges on satellite-scale passive microwave swath data [232], and includes the
coverage of multiple re-sampled 25 km Equal-Area Scalable Earth Grids (EASE-Grids)

[13].

5.3.2 Airborne Data

Airborne Tj, data were acquired from dual-polarized 19, 37 and 89 GHz microwave radiome-
ters mounted on the Alfred Wegener Institute Polar-5 research aircraft. The radiometers
were aft-viewing at a 53° degrees incidence angle to simulate the earth-viewing characteris-
tics of the satellite-based SSM/T and AMSR-E passive microwave sensors. The 19, 37 and
89 GHz radiometers all have the same 6° degrees half-power beamwidth. After instrument
calibration using warm and cold targets, the calibrated brightness accuracy was reported
as <1 K for the 37 GHz and 89 GHz and <2 K for 19 GHz radiometers. The aircraft
was based out of the Eureka weather station from 19 to 23 April 2011. Aircraft positional
information was recorded using an AIMMS-20 system recording GPS data and platform
attitude information which were used to precisely calculate the passive microwave radiome-
ter footprint locations on the ground. All positional information was collected using the
WGS 84 datum.

Three flight plans were devised to record multi-scale measurements of high Arctic tun-
dra snow using passive microwave airborne radiometers. These multi-scale measurements
include the following flights:

1. Local-scale grid (33 km x6km)lowaltitude flight(~350 m above ground level [a.g.1]),
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Figure 5.1: (a) Snow survey locations, snow pits and MagnaProbe transects, and EASE-
Grid pixel boundaries; and (b,c) The location of the study area in North America and
Nunavut, respectively
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flown on 20 April
2. Local-scale grid (33 km x6km)highaltitude flight(~2900 m a.g.l.), flown on 21 April.

3. Regional-scale grid 48 km x48kmhighaltitude flight(~2700 m a.g.l), flown on 21
April.

Flights 1 and 2 constitute the local scale analysis data set while Flight 3 constitutes the
regional scale analysis. Observations taken from a KT-19 infrared surface temperature
sensor mounted on the aircraft with the same incidence angle and orientation as the high
frequency radiometer were used in the regional scale modeling analysis to estimate the
snow surface temperature. Figure 5.1 shows airborne flight lines, snow survey locations,
HWC location as well as EASE grid pixel boundaries.

The approach used in this analysis to spatially link ground snow depth measurements
to airborne passive microwave footprints is similar to that used by [37], where the IFOV
of the airborne radiometer is calculated, and measured snow that falls within and around
the bounds of this IFOV are linked to particular airborne measurement. The airborne
radiometer’s IFOV dimension is dependent on the aircraft’s ground speed, altitude, roll,
pitch and yaw, as well as the radiometer beamwidth, view angle, and integration time. The
radiometer variables remain constant during data acquisition: beamwidth = 6°; view angle
= 53°; and integration time = 1 s. The aircraft’s altitude above sea level remained stable
along each flight line, however due to changes in terrain height, the height above ground
varied, but on average was approximately 350 m above ground for the low altitude flights,
and 2700 m (regional grid) to 2900 m (local grid) above ground for the high altitude
flights. Variables such as aircraft heading and speed varied slightly during each flight,
but overall was quite consistent at approximately 155 nautical miles per hour (~80 m/s).
The aircraft’s roll, pitch and yaw varied substantially during turns, with the radiometer’s
IFOV often pointed towards the horizon, rather than at the surface, and therefore these
airborne measurements were removed from the analysis. If the airborne radiometer system
was mounted on a stationary platform, the typical ground-projected IFOV for the low
altitude flights would be approximately 100 m deep by 60 m wide. However, because the
aircraft is moving, and the radiometer’s have a 1-s integration time, the IFOV between two
observations is elongated in the along-track axis, producing a “smeared footprint” [38]. The
(smeared) footprint dimensions at low altitude were calculated as 120 m x102m(along —
track x across — track).

The size of the footprints produced during the high altitude flights at ~ 2900 m above
ground was approximately 850 m x510m.Figure5.2shows footprintsinthe Eurekalowaltitude flightgrid.
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from the airborne to the satellite scale and ensure complete coverage at different spatial
resolutions of T}, products.

The lengthening of the radiometer footprint in the along-track axis is an important
consideration when analyzing the high resolution, local-scale airborne data because the to-
tal number of snow measurements that fall within the radiometer’s IFOV varies depending
on the size of the IFOV. This effect becomes less important when working with coarser
resolution airborne data because the extent of the IFOV becomes larger than the distance
traveled during the one second integration time and therefore adjacent Tys are heavily over-
lapped, leading to an over-sampled dataset. To reduce computational time when working
with the oversampled high altitude airborne data, the data were thinned by taking the
average of every 10 airborne observations. Consequently, the dimensions of footprints for
these filtered observations were based on the average flight height for all 10 measurements
(Figure 5.2b).

5.3.3 Satellite Data

AMSR-E/Aqua Daily EASE-Grid Tjs from 1 December to 30 April were downloaded from
the National Snow and Ice Data Center (NSIDC; [105]) to produce seasonal time series of
brightness temperatures. The AMSR-E/Aqua Daily EASE-Grid T,s were produced from
the interpolation method of Inverse Distance Square, using AMSR-E/Aqua L2A Global
Swath Spatially-Resampled Brightness Temperatures (AE-L2A), projected into EASE-
Grid (north and south Lambert azimuthal and global cylindrical) at 25 km resolution

[105].

5.3.4 Ground-based 2n situ Data

Between 12 and 22 April, two types of snow surveys were conducted along the airborne
radiometer flight lines. A regional-scale snow survey covering much of the Fosheim Penin-
sula was conducted via helicopter, with the purpose of evaluating the variability in snow
properties at the 25 km EASE-Grid scale. The regional snow surveys involved snow depth
transects and snow pits measuring snow properties including layering, density, temperature
and mean geometrical maximum (D,,,,) grain size using a field microscope and a 2 mm
comparator card, for 22 regional sites (these sites are presented by red crosses in the Figure
5.1). The regional snow conditions were relatively homogeneous; there was minimal terrain
influence (generally flat), and no emergent vegetation above the snowpack was visible [10].
Snow depth was measured using a GPS enabled, self-recording snow depth probe [197],
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Table 5.1: Summary statistics of the combined local and regional scale snow depth, density,
and SWE measurements.

Statistics Depth (cm) Density (kgm™>) SWE (mm)
Number of samples 15,251 276 276
Mean 26.9 246 67.0
Standard deviation 23.9 82 63.1
Coefficient of variation 89% 33% 94%

called a MagnaProbe. Depth measurements were made at 5 to 10 m intervals along a 100m
sided-square centered on a snow pit. Total number of snow depth measurements made at
each site ranged from 133 to 176 (average of 150) for a total of 2656 snow depths at all
22 sites. These measurements were used to determine the statistical distribution of snow
depth at each site. An ESC-30 snow corer with a cross-sectional area of 30 cm? [59] was
also used to record bulk SWE and density measurements at each site three times, for a
total of 66 times.

The second type of in situ snow survey was conducted to characterize local-scale snow
properties. The local-scale survey involved using a snowmobile to mark and set multi-
kilometer snow depth/bulk SWE transects across the HWC study area, along the local
grid airborne radiometer flight lines. A total of ten snow depth transects were surveyed,
ranging in length from 2 to 15 km, with snow surveyors walking these lines and recording
snow depths every 58 m and bulk ESC-30 SWE every 150180 m. Eight of these lines were
parallel, spaced approximately 900 m apart, creating a multi-kilometer snow survey grid.
A total of 12,595 snow depths and 510 bulk SWE measurements were recorded within
and around this grid. A total of 27 snow pits were measured along the local scale survey
transects, following the same survey protocol used during the regional helicopter surveys
[10]. A summary of snowpack physical properties from the snow surveys is provided in Table
5.1. The high coefficient of variation (CoV) of snow depth measurements confirms high
spatial variability in the region that will contribute to higher uncertainties in evaluating
the microwave emission modeling results in this region.

The data summarized in the Table 5.1 differ from the data presented by [10] which
reported exclusively on the regional-scale transects and snow pits. Table 5.1. gives
the total summary statistics for all snow depth, snow density and SWE measurements
from the Eureka field campaign used in this analysis. The measurements from the lo-
cal scale transects were recorded mostly within a 33 km x6kmgridwhiletheregional —
scalemeasurementswererecordedacrossalargerd8kmx48kmgrid. Anadditional fivesnowpitswereusedir
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The average number of layers identified in all 49 snow pits was five but there was a
variety of different snow types that were observed; including: recent, fine-grained (F.G.),
medium-grained (M.G.), crust, soft slab (S.S.), medium slab (M.S.), hard slab (H.S.), slab-
to-hoar (Slab-Hoar), chains of hoar (indurated) (CoHI), chains of hoar, depth hoar and
icy hoar. Typically, the upper snow layers (recent, fine and medium grained and crusts)
are the thinnest while the mid-pack slab layers have largest densities and the middle and
lower layers have the largest grain sizes.

To undertake the DMRT-ML modeling, the snowpack characterization had to be gen-
eralized. An unsupervised K-means clustering [129] of average grain size and snow density
was conducted for 10 of the snow layer type classes (fine grained and icy hoar were excluded
from the clustering because of the small sample size). The cluster analysis calculated five
cluster means; this number of classes was set based on the average number of layers found
in all pits. The hoar classes have cluster means that are low in density but have the largest
grain sizes (and grain size range) while the recent and crust layers have the smallest grains
and moderate density. The slab layers have the largest densities and the largest range of
density values. Cluster 1 has very small layers with small grain sizes (top layer), while
Clusters 2 and 3 have the largest densities (wind slabs) and Clusters 4 and 5 have the
largest grain sizes (depth hoar).

For the DMRT-ML modeling, the upper cluster contained radiometrically insignificant
layers since the layer thicknesses were small ( 7% of total thickness) and the grains were also
very small. Therefore, this class was removed from the analysis for further generalization.
The effect of a layer with small scatterers on top of thick layers with medium-sized grains
is simulated by [124] where the 37 GHz T}, slope reversal was seen. They show that, when a
snowpack is thick (~ 70 cm), a thin layer of new snow decreases attenuation of the ground
emission, thus 37 GHz T, increases, and, when a snowpack is shallow and composed of
new snow, the emission (and T}) decreases. It is noteworthy that, in all investigated cases
discussed by Liang et al. [124], a topmost layer of new snow, at least 10 cm in thickness,
was present showing consistency with our study.

The remaining four classes are further combined into two layers: slab (Clusters 2 and 3)
and hoar layers (Clusters 4 and 5). The combined statistics for the slab and hoar layers are
shown in the layer temperatures and densities for both structures, were relatively consistent
with low coefficient of variations while layer thickness and the grain sizes had high standard
deviations. The summary of generalized statistics is presented in table 5.2.

For the model inputs, it is necessary to use in situ forcing data (snow depth and snow
pit) that are spatially coincident with the T} observations. T}, observations represent snow
emission from distributed areas across the radiometer’s IFOV whilst in situ ground mea-
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Table 5.2: Summary statistics of pits classified to two major layers merged from K-Means
clustering results.

Layer Number 2 4
3 5 (base)
Soft Slab, Chains of Hoar
Slab to Hoar, Indurated,
Lager type Medium Grained, Hard Slab, Depth Hoar, Bulk Total
Moderate Slab Chains of Hoar
Statistic (M,S,C) M S C% M S C%
layer thickness (cm) 42 35 84 6.2 2.7 43 24
layer temperature (C) -27.2 1.7 0.69 -26.7 16 0.6 -27.0
grain size long (mm) 0.9 0.6 62 56 24 43 24
grain size short (mm) 0.4 0.3 72 2 11 56 0.9
Density (kgm™2) 324 88 27 215.6 41 19 300.1

surements are made at the point scale. To evaluate the spatial variability of the in situ data
(and determine the spatial representativeness of each in situ measurement) semivariograms
of the MagnaProbe snow depths were calculated. Semivariograms provide an unbiased de-
scription of the scale and pattern of spatial variation of snow depth, determining what the
threshold distance (range) is beyond which snow depths are no longer spatially autocorre-
lated. Figure 5.3 shows the semivariogram fitted with a spherical model highlighting the
range to be at ~58 m (range is identified where the variogram model line levels out). Snow
depth (and snow structure from snow pits) separated by distances greater than the range
value (58 m) are no longer spatially autocorrelated. To ensure a strong assumption of cor-
relation between the in situ snow survey data and the airborne radiometer measurements
the 58 m range value was used as an inclusion/exclusion threshold, where snow survey data
within 58 m of the calculated radiometer IFOV were likely to be spatially autocorrelated
to the snow found within the IFOV and therefore were used in this analysis. For snow
depth data from MagnaProbe measurements, the CoV (%) of snow depth measured within
each individual footprint varied from 22% to 100%, suggesting the presence of high spatial
variability within a single footprint. Therefore, only snow depth within IFOVs were used.
After screening, 38 out of the total 49 snow pits and 12,671 MagnaProbe measurements
were used in the DMRT-ML model analysis.
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5.4 Results

5.4.1 Airborne Microwave 7, Observations of Snow Airborne

Airborne observations were used first to analyze the emission behavior of tundra snow in
the study area. Figure 5.4 presents T,s matched with coincident snow depth measurements
sampled along the intensive flight paths for low and high altitude flights. In this study,
only the vertical polarization at T, 37 GHz response were studied due to less sensitivity
to layering and ice lens structures in the snowpack than horizontal polarization [40,41]. In
Figure 5.4a, each data point shows an average value of minimum 10 MagnaProbe snow
depth measurements inside the footprint for a total of 601 T,s with 6628 coincident depth
measurements. When snow depth increases to about 20 cm, the T, V 37 GHz signal de-
creases rapidly as scattering dominates the emission signal. Above this depth Tjs increase.
To define this inflection point, a simple iterative regression equation search was applied
to locate the depth at which the 7T, was minimal based on the highest correlation coef-
ficient (R). The best R correlation was -0.4 with a snow depth of 21 c¢cm observed which
equals SWE of 65 mm with an average density of 310 kgm 3. At depths exceeding this
threshold, Tjs increased, albeit with a relatively weak R coefficient (+0.1), in response to
contributions of microwave emission from the snow itself. Both correlation coefficients are
significant at the 95% confidence level.

This weak positive relationship between Tj, and snow depth greater than 21 c¢m in this
study area can be explained by wind slab formation, where emission is the main contributor
rather than scattering. The high average value of measured slab fraction from the snow
pit observations (50% from 26 sites) confirms this explanation. In a layer of wind-slab,
mechanical processes of compaction dominate the upper layer metamorphism and snow
is no longer an efficient insulating medium. The temperature gradient is very small and,
therefore, thermal processes promoting snow crystal growth is minimized. While depth
hoar is expected to continue to contribute to the signal, its effect is moderated by the
overlying slab layer emission.

In Figure 5.4b, each point shows an average value containing MagnaProbe snow depth
measurements inside the footprint in a total of 160 high altitude sample T}’s with 7,829
coincident SWE measurements. Footprints are much larger for high altitude IFOVs than
the low altitude observations (by 700 times). In situ snow depth measurements are less
representative of the IFOV’s snow depth variability and, therefore, a higher level of uncer-
tainty in characterizing the IFOV snow depth is likely. The R correlation between spatially
correlated high and low altitude 7, V 37 GHz was 0.66. A 20 K standard deviation was
calculated for low altitude Tj,s found within the IFOV of high altitude footprints. The
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linear correlation coefficient of high altitude T,s and snow depth is -0.25 over snow depth
range of 0-20 cm and 0.12 for the depth of 20-90 cm (both significant at 95%).

5.4.2 Parameterization of the DMRT-ML

In the implementation of DMRT-ML, theoretical simulations of extinction and scattering
coefficients are calculated based on the QCA-CP theory that can only solve small particle
interactions with electromagnetic radiation with respect to Rayleigh scattering [155]. For
larger grains (>1.6 mm) where QCA-CP is not applicable for Mie scattering, an empiri-
cal approach [32] is implemented in DMRT-ML imposing a limit for scattering efficiency.
However, using simulated characteristics in this study, QCA-CP is valid for non-sticky
grains assumption (Fig.6 Range of grain sizes for which the DMRT QCA-CP non-sticky
is reasonably valid in [155]. In our simulations, it is assumed that soil layer’s contribu-
tion in 37 GHz emission is minimal and snow extinction is dominant which occurs when
there are numerous snow grains through emission (thick or very dense snowpack) and/or
snow grains are quite large. In the tundra snowpack of the late snow season with depth
hoar and slab layers, the aforementioned assumption is valid. Also, this assumption was
evaluated using sensitivity analysis of the model to soil configurations (interface model,
prescribed or modeled dielectric constant, and soil material), and the minimal effect of soil
layer was verified. Here, in the DMRT-ML implementation, the snowpack is represented
as a semi-infinite layer of high density snow slab over a layer of depth hoar. The combined
pack is equivalent to the weighted average of the measured variables from the field site
with different proportions based on different in situ measurements.

Having explored the airborne T}, observations, the DMRT-ML was used to simulate the
T, V 37 GHz response to replicate airborne and AMSR-E tendencies. The model was set up
to be run for three broad scenarios, hereafter termed cases. Setup parameters for each case
are summarized in Table 5.3. Density values were acquired from snow pit measurements
based on Table 5.2. A range of grain size was used in all cases based on previous modeling
studies to represent grain size parameterization [171, 177]. DMRT-ML requires the optical
diameter (D,,;) of grain size as an input. However, human-observed in situ grain size
measurements are typically recorded as a geometrical maximum (D,,,,) and minimum
(Dpmin) dimension. There is currently no established methodology widely accepted to adjust
Doz O Dy to values of D,y [170]; and in situ data from this experiment were not
extensive enough to optimize grain size using observations and simulations. Uncertainties
in the representation of grain size, particularly when converting D,,q, to Dy, are likely to
be compounded when upscaling to the airborne footprint observations. Therefore, in this
research, effective grain size (D.sf) that is a scaled value of D, justified for snowpack’s
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microwave emission models is used. The physical temperature range measured in all snow
pits was a maximum of 2 K. Therefore, for the DMRT-ML model simulations the average
temperature for all 49 snow pits over the nine days was calculated (247.0 K) and used for
the parameterization experiments.

In case 1, depth hoar development and subsequent 37 GHz volume scatter was simulated
in a single homogenous layer model by running the model with increasing grain sizes, using
a constant density of 300 kgm 3. Snow depth was increased from 10 to 50 cm and the grain
size was increased from 400 to 1000, resulting in a decrease in T, V 37 GHz (Figure 5.6a).
In case 2, the same grain size and snow depth inputs as case 1 were used, but this time a
two-layer model that maintained a 2:1 ratio of wind-slab to depth hoar as depth increased
was run to simulate early season snowpack evolution as a more realistic simulation (Figure
5.6b). For case 2, the slope of Ty-snow depth relation using relatively large grain sizes
of 800-1000 [171], which should be employed for DMRT-ML modeling of a snowpack that
contains depth hoar, is less than for case 1 which better matches the observations in Figure
5.5. In case 3, a simulation representing the mid-to-late season snowpack evolution where
the wind slab layer grows, while the depth hoar layer thickness remains stable was modeled
by running a two-layer snowpack with a fixed depth of the underlying depth hoar layer
(7 cm) and a progressively increasing wind slab layer thickness (Figure 5.6¢). To simulate
the rise of T;, with depth increase in a two-layer snowpack, based on our simulation runs,
the minimum depth for the depth hoar layer is calculated as 7 cm which is measured as
6.2 cm for the average depth of base layer (Table 2). The progressively growing wind
slab increased the absorption coefficient and decreased the scattering coefficient with a net
effect of decreasing the extinction coefficient. It should be noted that while formal DMRT
theory related to highly compacted snow with densities in the range of 300-500 kgm =2 is
imprecise, however, the model formulation uses a technique to approximate the coefficients
at this range following the methods of Picard et al. [155].

The simulation approach for cases 2 and 3, when taken together illustrate a tendency
that agrees with field observations showing the drop and rise in T}, with increased snow
accumulation, as demonstrated documented in previous studies such as [165, 28, 64, ,

, , , , , 37, 40], and as illustrated by the field measurements presented in
Figure 5.6. Simulation case 2 and 3 form the basis for the comparison between simulated
and observed Tps at the regional and local scales in section 5.4.3.
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Figure 5.5: DMRT-ML simulations of the three experiment cases: (a) depth hoar formation
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Table 5.3: Three cases input parameters for DMRT-ML.

Case 1: Case 2: Case 3:

One layer: Two layers: Two layers:

Depth hoar Static wind slab Static 7 cm depth hoar

development to depth hoar ratio 2:1 with a thickening wind slab
Effective 400 m- 1000 m Wind slab: 400 m- 700 m; Wind slab: 400 m- 700 m;
Grain size Depth hoar: 900 m- 1200 m Depth hoar: 900 m- 1200 m

: _ Wind slab: 324 kgm=3; Wind slab: 324 kgm~=3;
Density 300 kgm™ Depth hoar: 215 kgm ™3 Depth hoar: 215 kgm™3
Wind slab: 3.3-16.6 cm; Wind slab: 3-43 cm;

Snow depth  10cm - 50 cm Depth hoar: 6.6 -33.3 cm Depth hoar: 7cm
Temperature Constant at 247.0 K
Substratum Soil model= None; Semi-infinite snowpack

5.4.3 Comparison of DMRT-ML Modeled T;, with Observations
Snowpack

Snowpack data from 38 pits coincident with airborne Tys (see Section 3.4) were used to
simulate the T, V 37 responses that coincided with the high and low altitude airborne
radiometer observations. To reflect small variations in snowpack physical temperatures
over the study domain, the average physical temperatures of 246.6 K and 247.4 K were used
for the local and regional scale model simulations respectively. Depth hoar and wind slab
layer influences on emission were simulated using two-layer snow packs as demonstrated
in section 4.2 via case 2 (depth hoar formation) and case 3 (wind slab development).
Based on in situ measurements and a cluster analysis (Table 4), the average snow density
of 215 kgm ™3 and 324 kg3 were used for depth hoar and wind slab layers respectively.
Effective grain size (D, sf) values are used based on previous studies with similar snowpack
characteristics. Representative grain size values were used for a wind slab layer and depth
hoar layer characteristics defined by [171]; the optical grain size (Do) was set to 330 m
for a depth hoar and 170 m for a wind slab layer. These values were scaled by a factor of
3.3 [171] to achieve the effective grain size (D.ss) of 561 and 1089 respectively.

Figure 5.6 presents a scatterplot of simulated vs. observed Tj of depth hoar formation
and wind slab development for both case 2 and 3. The correlation of 0.83 at a signifi-
cance level of p-value=4x10"!! was found; with a 0.88 correlation value for case 2 and
0.61 for case 3 simulations. Footprints with data from snow pits at local scale observations
(high and low altitudes) were simulated in case 3 since the snowpack was determined to be
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deeper and denser locally, while footprints with data from snow pits from the regional scale
observations (high altitude) were simulated in case 2, due to the presence of snow depths
less than 21 c¢cm (the previously calculated inflection depth). Data points in the scatter-
plot are shown in two groups of depth hoar (case 2) and wind slab (case 3) simulations.
Lower correlation of case 3 simulations is mainly due to the coarser spatial resolution of
observations.

Figure 5.7 is a repeat of Figure 5.4a with the T, V 37 GHz simulations from Figure
5.6 overlain to show how the depth hoar and wind slab dominated snowpacks control
the T, V 37 GHz emission behavior measured by the airborne radiometer. The plot also
includes, the model simulations for each airborne radiometer 7, IFOV with a minimum of
10 MagnaProbe snow depth measurements inside. Depth hoar development and wind slab
formation were simulated using a two-layer snowpack as presented earlier. KT-19 infrared
surface temperature measurements recorded coincidently with each airborne T}, were used
as model inputs for snowpack temperatures. The simulation results using the airborne
KT-19 snow temperatures inputs produced parallel patterns of simulated Tjs that can be
seen in (specifically in the case 3 wind slab growth simulations). These parallel patterns
of Tys are a result of small variations in KT-19 snow surface temperatures between areas
along the flight lines, highlighting the model sensitivity to this input variable. Overall, the
model simulations of 7}, have a smaller variance compared to observed airborne Tys due to
a smaller range of snow density, and grain size used as model inputs which arises from the
generalization process of the in situ snow survey data.

The non-parametric test of Kolmogrov-Smirnov (KS test) was run to compare simulated
and observed T, V 37 GHz with the null hypothesis, HO, that observations and simulations
come from populations with the same distribution, and an alternative hypothesis that
the cumulative distribution function (CDF) of observations is larger than the CDF of the
simulations. The test returned value of HO = 1 which indicates KS test rejects the null
hypothesis, in favor of the alternative hypothesis that the CDF of the observation is larger
than the CDF of the simulations, at the default 5% significance level. The rejection of the
null hypothesis can likely be explained by the presence of random errors as well as simplified
snow properties/variability that are not represented by the generalized DMRT-ML model
forcing data.

5.4.4 Application to AMSR-E Time Series Data Satellite

Satellite AMSR-E T, V 37 GHz observations (AMSR-E 36.5 GHz frequency is rounded
up and reported as 37 GHz for convenience) covering the study area were obtained to
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illustrate the T, trend throughout the whole snow season (December-May) (5.9). Error
bars represent the standard deviation of the four AMSR-E footprints covering the study
area. Air temperatures measured by Eureka weather station are also added to the right
hand axis. Figure 5.8 shows a gradual decrease in early to mid-season, and an increase
afterwards. The high correlation of 0.84 between air temperature and 7, V 37 GHz indicates
that Tys are dominated by surface temperature and interpretations using these T; values
about snowpack’s metamorphism are spurious. The error bars increase in size from March
through to the end of the season likely as a result of high variation in two of the four
pixels; one has a moderate topographic heterogeneity (900 m variability) and the other
has the greatest adjacency to waterbodies. The regional airborne T} observations covering
these pixels also had the highest standard deviation compared with the other regions in
the study areas.

To characterize the impact of background emission on Figure 5.8, differences between
T, V 37 GHz and T, V 19 GHz (abbreviated to A T}) are used and shown in Figure
5.9. This difference is typically used to represent emissivity processes in the snow. In
Figure 5.9, snow survey data recorded by the Eureka weather station on the 1st and 15th
of every month are added to the right-hand axis for comparison. Error bars show the
standard deviation of the 10 snow depth measurements made on each day and indicate
that heteroscedacity is present. After an increase in snow accumulation during December,
the record is characterized as a period of gradual snow depth increase until the end of the
record on April 30. Through the same period, A T;, shows gradual decrease in A T; until
middle to end of February. This decrease is interpreted as being the result of the combined
effect of snow accumulation and snow grain metamorphism of the depth hoar layer which
enhances the scattering of subnivean soil emissions. From mid to later February, the A T,
signal increases likely, as the wind slab layer increases in depth, relative to the depth hoar
layer. The increasing thickness of the wind slab reduces the penetration depth of the 37
GHz V signal, and the scattering effect of the depth hoar is suppressed by the emission
component of the high density, small grained wind slab. The snow survey data at the
Eureka weather station verifies that on February 1 the average snow depth exceeded 23
cm which is very close to the defined threshold of 21 cm found in the airborne data (see
Section 5.4.1). Although the A T} in Figure 5.9 has physical temperature effects reduced,
residual variability can be explained by the variations in physical air/snow temperature,
snowfall events, and local snow redistribution processes.

An interesting interpretation of Figure 5.9 is that the increased emission of wind slab
can be explained by spatial processes observed through a field experiment and a temporal
process from consistent satellite observations. The temporal process of increasing T, V
37 GHz and A T, during the late accumulation season was shown by [169] from SSM/I
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observations. In their study, the accumulation of fresh snow was presumed to increase
scattering, followed by metamorphic changes in crystalline structure that decrease the
single-scattering albedo. They explained the T, reversal, by presence of consolidated ice
layers developed from subsurface melt-refreeze and overlaid on top of coarse-grained snow.
While similar processes are present in Figures 5.7 and 5.9, the analysis of airborne mea-
surements in the late season strongly indicates that a sharp decrease and a mild increase
in emissivity can be explained first by the thickening of a depth hoar layer in the earlier
(December mid-February) followed by the continued thickening of the wind slab layer after
mid-February as the depth hoar layer remains relatively constant.

The A Tys in Figure 5.9 are likely affected by the snowpack and or soil physical tem-
perature. The use of emissivities (vertical and horizontal polarizations at 37 GHz) would
help clarify this issue. To calculate the emissivities, the effective temperature of the snow-
pack and the brightness temperature of the sky are required but are not available for the
complete AMSR-E record. The polarization ratio (PR) H-pol / V-pol at 37 GHz (the
emissivity ratio of horizontal to vertical polarization at 37 GHz) could be calculated in lieu
of emissivities to characterize snowpack microstructure properties and conclusively investi-
gate the snowpack’s self-emission. In a previous study [190], it was suggested that the PR
can be used for density retrievals as its decrease and increase can verify the development
of depth hoar and wind slab layers, respectively. However, due to the coarse resolution of
AMSR-E observations and the high variability of snow properties in a footprint, PR values
ranged from 0.90 to 0.95 with a low CoV(%) of 1 were not reliable enough for further
analysis and interpretation.

5.5 Discussion

The DMRT-ML model was run using in situ measurements surveyed between April 13th
and 22nd, 2011., and compared against airborne T}, observations measured on April 20th
and 21st. Model and observation comparisons were made at 37 GHz frequency which
is the most sensitive frequency channel to characterize moderate snow depth. Only the
vertical polarization response were investigated since the microwave response from snow
at Ty, 37 GHz in vertical polarization is known to be less sensitive to ice lens structures in
the pack than horizontal polarization Tps [119, |. The DMRT-ML model successfully
simulated the seasonal T, V 37 GHz response from high Arctic tundra snow by separately
modeling the depth hoar growth (case 2 simulations) and the wind slab development (case
3 simulations). The case 2 simulations modeled a two-layer slab and depth hoar snowpack
with a fixed depth ratio of 2:1. Comparisons with observed airborne Tys indicate that
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DMRT-ML can be used to simulate the T, V 37 GHz decrease with increasing snow depth
up to 21 cm, whilst a two-layer slab and depth hoar with fixed depth hoar thickness (7 cm)
and increasing wind slab thickness can successfully simulate T}, increases as the snowpack
thickens beyond 21 c¢m which occurs more commonly later in the season. Finally, the
AMSR-E time series response of A Tys in the region, shows a declining in the early season
followed by an inflection on mid-February after which the emission begins to increase in
magnitude, which may presumably be in response to the continued wind slab growth as
the season progresses.

The high spatial variability of snow properties observed in our study area is averaged
across the footprint scale in the airborne Tys observations. Inevitably, this causes the sen-
sitivity of observed Tys to be lower than the model estimates, when the model is driven by
point-scale in situ snow pit measurements that have a high degree of spatial variability.
Furthermore, even different footprint sizes acquired from the same location from different
altitudes with the same sensor produce different Tys because the underlying natural emis-
sion signal is variable. The calibration of a physical emission model using in situ snow pits
will likely lead to uncertainties for larger scale applications. Therefore, it is necessary to
develop robust schemes such as the unsupervised K-means cluster analysis to generalize
snowpack structural elements that can be adopted for snowpack emission modelling and
snow retrievals.

5.6 Conclusions

The obtained 21 cm threshold in the Tp-snow depth inflection is lower but comparable
to other findings elsewhere. For example, Roy et al. [173] observed a 110 mm SWE (31
cm snow depth) threshold using ground-based observations. Rosenfeld and Grody [169]
showed threshold minima of 20 cm and 45 cm using spaceborne observations in different
case studies while explaining this phenomena as an anomalous signature and modeling it
using a two-stream Dense Media Theory. However, no comprehensive in situ snow pit data
with snow structural information were available to conclusively support these findings. In
the study by Derksen et al. [10], a threshold of 130 mm of SWE was observed but neither
averaged density nor equivalent snow depth were reported at the airborne observation
scale (70 x 120 m). The range of differences is likely attributed to the differences between
the sampling of high spatially variable snow properties at different scales: point ground
measurements [200, 124] and area airborne measurements [37]. The presence of dominant
wind slab layers with high snow densities in our study area likely resulted in a lower
threshold for the observed 37 GHz T, V inflection point, explaining why the inflection
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point of 68 mm of SWE (21 c¢cm snow depth) was lower than those values reported in
previous studies. The measured airborne 7,s and the DMRT-ML simulated slope reversal
of Ty at 37 GHz, documented in this study suggests that this threshold, and the modeling
approach taken, is generalizable to other Arctic tundra snow environments.

In this research, airborne observations and field data measurements were made over
a ten-day period through almost consistent air temperature with likely negligible snow
structural changes. Therefore, it is assumed that no metamorphism occurred during the
field campaign period. However, in the presence of seasonal snow evolution, emission
models of snow should account for snowpack seasonal metamorphosis. Various methods
can provide estimates of snowpack structure (grain size, density) to couple with microwave
emission models: the empirical densification approach of [200] and the grain growth model
of Langlois et al. [112]; land surface models such as the Canadian land surface scheme [100]
or snow microstructure models such as SNOWPACK snow microstructure model [96]; and
seasonal / event densification and grain crystal development through using the snowpack’s
recent thermal history [100]. Each of these approaches can improve estimates of the state
of the snow whereas there are limitations in large scale applications. Knowledge about this
inflection point can inform these approaches and help constrain the retrieval process if a
physically-based emission model is used. Future work should continue to develop strategies
that improve the current explicit inverse solutions using generalizable models/methods for
parameterizing snowpack structure.

84



Chapter 6

The use of a Monte Carlo Markov
Chain method for snow water
equivalent retrievals based on
microwave emission modeling
experiments of tundra snow

6.1 Introduction

Passive microwave remote sensing observations of winter landscapes have been used since
1979 to estimate snow accumulation. Regression-based techniques to estimate terrestrial
snow water equivalent (SWE) have used empirical coefficients relating snow depth or SWE
to brightness temperatures at 19 and 37 GHz frequencies [26, 99, 98],

These approaches have their limitations not least because they generally treat the snow-
pack as a single layer and do not account for complex metamorphic processes known to
control the microwave emission from snow [124, |. Physically-based Radiative Transfer
(RT) models are capable of modeling snowpack microwave emission accurately at point
scales when provided with consistent state variables of a multi-layer snowpack. With in-
creased fidelity in the application of these forward RT models, the successful estimation
of passive microwave brightness temperature (7}) responses from multi-layered snowpacks
is deepening our understanding of the emission process. However, the application of for-
ward RT models for explicit retrievals requires fully prescribed parameters of key emission
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parameters of snowpack such as grain size, density, physical temperature and thickness of
each layer.

In the absence of complete spatial knowledge of these variables, while having T} obser-
vations in only two or three frequencies sensitive to snowpack properties, retrievals must
include estimates of all snowpack properties except one or two of those to be known to
have a problem that is numerically solvable. One way to achieve this is to constrain RT
inversion approaches for snow property retrievals from passive microwave observations by
estimation of all snowpack properties except one or two unknowns such as snow depth and
grain size (key emission parameters), then applying statistical methods and/or techniques
that use iterative searches or machine learning optimization (e.g.[21, , 181]). In both
methods, a cost function (a function of the difference between observed and modeled data)
is minimized using linear or non-linear optimization approaches. Explicit inversions mini-
mize the differences between observed and simulated emissions, by means of models such
as a linear regression using least square methods. Key emission parameters are typically
an unknown quantity and so can be estimated in the cost function minimizing process.

Additional information, empirical relationships or information from snowpack physical
models can also be incorporated into the parameterization process of snow properties, which
is imported into the inversion models as a prior: knowledge. A priori knowledge can also
be imported as a first guess to obtain the best fit in an iterative approach. This general
retrieval approach is based on Bayesian probability theory which was first used for passive
microwave estimation of snow by Pulliainen and Hallikainen [160] and then utilized in the
Globsnow product [159, | that employs an emission model of Helsinki University of
Technology (HUT). Radiance Assimilation (RA) is another technique that facilitates the
integration of external data sources for SWE estimation by coupling snowpack physical
models and emission models [17, 122].

Among the available inversion approaches for retrievals, methods that include prior
information in a probabilistic framework rather than constraining variables using estima-
tions are preferable as they can generate probability distributions of observable states. The
result generates a probability distribution based on an iterative search of the full or subset
of the full parameter range as well as retrieval uncertainty. Such approaches can employ
multi-layer snowpack representations whilst more empirical retrieval methodologies such as
one developed by Kelly et al. [I00] or iterative inverse solutions such as one by Pulliainen
and Hallikainen [160] simplify the snowpack to a one-layer model. Inaccuracies caused by
this simplification can be minimized by a multi-layer emission model. Several studies have
demonstrated the use of a multi-layer snowpack in SWE retrievals and have shown the
significance of the multi-layer snowpack stratigraphy in comparison with one-layer snow-
packs [19, 117, 168]. Durand et al. [51] have shown that the estimated root mean squared
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error (RMSE) of estimated SWE when neglecting layering is about 50% in different types
of snow classes retrievals. To address this challenge, Durand and Liu [10] let the inversion
algorithm choose the number of layers by iteration in a Bayesian Markov Chain Monte
Carlo (MCMC) scheme. They proposed the inclusion of posterior probability iteratively
using a Bayesian approach. The applicability of the method was then evaluated by Pan
et al. [I151] using in situ measurements and ground-based radiometry.

The main purpose of this research is to evaluate a Bayesian MCMC snow depth retrieval
approach applied in a tundra snow context. The method employs snowpack properties
and their probability distributions based on forward modeling simulations. What remains
unknown is whether minimal snow and soil property priors taken from in situ measurements
produce acceptable retrievals without any need for additional calibration of the physical
emission model involved. This study, therefore, builds on the work by Durand and Liu [10]
in the application of MCMC for snow depth retrieval from airborne T; observations and
ground-based snowpack measurements acquired in Eureka in 2011, an RT model, and site-
specific parametrization of the RT model based on our previous work [178]. This research
is unique as it incorporates previously applied methods using priors taken from a broad
study with the application of same physical emission model and T} observed by airborne
radiometer [178].

In the following sections, an explanation of the methodology is provided including the
MCMC theory followed by a detailed explanation of the experiments. Then, we discuss
the results before making future suggestions for the application of this method.

6.2 Methodology

In this study, we use the forward emission model of Dense Media Radiative Transfer Multi
Layer (DMRT-ML) by Picard et al. [155] to simulate the emission at an airborne footprint
scale and then conduct retrievals using the MCMC approach to estimate snow depth. The
MCMC method is chosen as it allows us to integrate probability distributions of snowpack
properties based on the acquired knowledge of the study area. Snowpack profile charac-
teristics and layering are determined using known distributions (or priors) of measured
snowpack properties based on in situ measurements conducted at the study area. The
acquisition of observations from airborne radiometry together with in situ measurements
on the ground makes it possible to constrain the DMRT-ML for inversion and snow depth
retrieval. The retrieval algorithm performance in this study is tested by two experiments
explained in 6.3.3.
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6.2.1 The inversion problem: the MCMC theory

The process of Bayesian data analysis begins with a probability model setup during which
the conditional probability of the unknown parameters is constrained by the observations
(brightness temperature in our study) [77]. Next is evaluating the posterior snow estimates
to independent observations as a way to evaluate accuracy and precision. In this study, for
probabilistic retrievals we use the MCMC method that is based on Bayesian statistical the-
ory. Monte Carlo analysis allows adding randomness to a deterministic physical problem.
Monte Carlo Markov chains of snowpack properties are created based on random draws
of snowpack properties. Conditional probabilities of snowpack properties given specific Tj,
observations defines whether this random draw should be added to the Markov Chain. In
this application it can be formulated as:

p(X‘Lobs> X f (Lobs’X) W(X) (61)

where f(Lys|X) is the likelihood of an observation, given a particular set of X state
variables (unknowns) and 7(X) the corresponding prior distributions of the unknowns.
MCMC searches for the snow and soil properties that result in the highest posterior prob-
ability of the observed Ty, p(X|Leps). The posterior probability is calculated based on the
difference between distributions of simulated and observed Tys as well as the difference be-
tween distributions of retrieved snow properties and given priors. As mentioned previously,
the current study is a continuation of the work by Durand and Liu [10], whose inversion
approach used an MCMC algorithm and MEMLS with no surface model and minimal prior
information to run an RT model. In our study, MCMC uses the Metropolis algorithm to
generate random chains (state variables), and then attempts to maximize f(Lys|X) by
considering prior distributions of state variables and likelihood functions in each run. The
likelihood is calculated as in [10]:

f (Lol X) = (27) 7% |5, |72

exp [~4 (Laws = V(X)) ST, (Lops = Y(X))]

(6.2)

where n. is the dimensional identity matrix, > L., is the error covariance matrix for
the observation and model, whose diagonal terms are /o2 + 02, with o, being variance of
the microwave measurements and o,, being the model error and the remaining arguments
representing the covariance between channels (assumed to be zero), Y(X) the 7}, from the
model, L is the observed T,. Diagonal elements of ¥ (L) is set to 3 K and 2 K for 37
GHz and 19 GHz, respectively. Radiometer calibration accuracy (o,) that was reported as
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~1 K for 37 GHz and ~2 K for 19 GHz, assessed by recording the brightness temperatures
of targets with known temperatures (black body absorbers and sky observations) [212].
We assigned 1 K and 1.5 K for o, at 37 GHz and 19 GHz, respectively. A nominal value
of 2.8 K and 1.3 K was assumed for ¢,,; due to the inherent imprecision of measuring
key model inputs, estimates of the true model uncertainty are not available. The prior
distribution of variables, including layer thickness, grain size, density, and snow and ground
temperature for a given number of layers, are generally calculated using gamma, or log-
normal distribution. The prior distribution for all state variables, assuming conditional
independency among them, is the product of all probabilities.

After changing the variables and computing the likelihood function in each run, the
next step is to find the optimum values for state variables in the iterations. To move se-
quentially between iterations in a Markov Chain, the Metropolis algorithm is implemented
as a random walk algorithm utilizing a so-called “jump distribution” [77]. Conceptually,
we apply the Metropolis algorithm to estimate a vector of unknown snowpack and soil state
variables. Transition between iterations in a Markov chain is governed by the likelihood
function and the prior distribution of the snowpack state variables. A likelihood ratio, 7,
is defined by Gelman et al. [77]:

_ p(Xi|Lobs) _ 7T (Xz) f (Lobs|Xi)
p(Xi—ﬂLobs) W(Xz‘—1) f(Lobs|Xi—1)

(6.3)

where X(;_q) is the vector of snowpack variables before the random walk/step, and X;
is the vector after the jump step. A flowchart of the process of optimal variable selection
is presented in Figure 6.1. A jump step size is first set as a ratio of the variable’s prior
variance and then is adjusted based on a defined criterion. If the likelihood ratio is greater
than a certain probabilistic value, r., then the probability that X; would occur is higher,
and X; will be used in the i-th iteration. If not, X(;_;) does not change until the next
iteration. Jump steps are adjusted in each 100 runs during the burn-in period and after
this period, jump step size is adjusted every 1000 runs, this adjustment is made to maintain
an acceptance rate (the rate of accepted variables in an iteration set), which is about 0.25-
0.3 in this study. A burn-in period of 2000 iterations is where the chains start from the
initial state variable values and gradually approach the posterior distribution. These burn-
in iterations are still influenced by the initial values. Snowpack and soil variables are
estimated from the Markov chain after the burn-in period, from the 2000th to the 8,000th
iterations—where output variables are converged.
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Figure 6.1: The flowchart of the variable (snowpack and soil) selection using MCMC
sampler
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6.2.2 Study area and datasets

Snow survey and airborne passive microwave brightness temperature measurements were
made across the Fosheim Peninsula, near the Eureka weather station on Ellesmere Island
(~80°N; 84°W) between April 13th and 22nd, 2011. The region is cold and dry with an
average annual air temperature at the Eureka weather station of -18.8 °C and total an-
nual precipitation of 79 mm (1981-2010), with almost 60% falling as snow [56]. Airborne
T, observation data were acquired from dual-polarized 19, 37, and 89 GHz microwave
radiometers mounted on the Alfred Wegener Institute Polar-5 research aircraft. The ra-
diometers observed the ground aft-viewing at a 53° incidence angle, similar to the observing
angles of the satellitebased Special Sensor Microwave Imager (SSM/I) and Advanced Mi-
crowave Scanning RadiometerEOS (AMSR-E) passive microwave sensors. The antennas
at all bands have the same 6° half-power beamwidth.

The aircraft was based at the Fureka weather station and flew the study area where
this study focuses from April 19th to the 23rd, 2011. Aircraft positional information was
recorded using an Aircraft Integrated Meteorological Measuring System (20 Hz) system
recording GPS data and platform attitude information which were used to precisely cal-
culate the passive microwave radiometer footprint locations on the ground. All positional
information was collected using the WGS 84 datum. In this research we use 7T} observa-
tions from local-scale grid (33 km x 6 km coverage, collected during low altitude flight of
~350 m above ground level [a.g.]]), flown on April 20th. Only 7}, at 19 and 37 GHz were
used for snow depth retrieval. In the previous study, model inputs could not be found
that reproduce the observed Tys at 89 GHz [178]. Thus, we omit them from this retrieval
study. Figure 6.2 shows T}, observation footprint locations and corresponding in situ mea-
surements in the study area. The airborne radiometer’s IFOV dimension is dependent
on the aircraft’s ground speed, altitude, roll, pitch and yaw, as well as the radiometer
beamwidth, view angle, and integration time. The radiometer variables remain constant
during data acquisition: beamwidth = 6°; view angle = 53°; and integration time = 1s.
A radiometer mounted on a stationary platform with the same low altitude flight height
would create a ground-projected IFOV of 100 m by 60 m. However, because the aircraft
is moving, a 1-s integration time would elongate the IFOV and produce a “smeared foot-
print” [38]. Dimensions of a (smeared) footprint at low altitude were calculated as 120 m
x 102 m (along-track across-track). More technical information about the study area and
preprocessing of the T}, footprints can be found in Saberi et al. [178].

91



80"100"N

80°00°N

79°50'0'N

“+ Snow pit | - A
+ Snow pit and Magna Probe - [
T bl | ;
« MagnaProbe Survey N T T— — P A
g Tb V 37 GHz (K) | R |
2 © 159-181 | f
181191 I s
191-201 ‘ |
- 201-212 |
. 212-238 { f =z -
. | 25 Km EASEgrid 0 7.5 15 225 31' § e e
s L Lo o 0 3 i Gy
4 86°00°W a 84°00"W 83°00°W c
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pixel boundaries [178].
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6.2.3 The approach to applying MCMC theory to the Eureka
experiment data

Implementation of the MCMC theory within a Bayesian inversion framework is developed
to retrieve snow depth using airborne passive microwave observations and the DMRT-ML
model. The MCMC code, developed in MATLAB, calls the simulation runs of DMRT-ML
using a wrapper that runs the code in its original written language, Fortran 90. Since the
domain of MCMC application is tundra snow, which typically consists of a two- or three-
layer snowpack, we use a two-layer snowpack DMRT-ML representation that consists of a
depth hoar and wind slab layer as developed in Saberi et al. [178]. The model approach is
parameterized with a two-layer snowpack with explicit definition of depth hoar and wind
slab in each layer initialized based on field data collected during the 2011 Eureka field
study. The probability density functions of snow depth, grain size, density, and physical
temperature in a two-layer snowpack obtained from snow pits in the Eureka region are
used to setup the MCMC priors. Brightness temperatures at 19 and 37 GHz, vertical
polarization are used as the observations to conduct snow depth retrieval in the MCMC
algorithm. Sensitivity of 7}, at horizontal polarization is similar to the vertical polarization,
and thus is also not included in the observations used for the snow depth retrieval. In the
following sections, the preparation of MCMC priors and the retrieval experiment design is
elaborated.

6.3 Experimental implementation of the MCMC

The MCMC algorithm for SWE inversion searches for the best match between simulated
Tys using DMRT-ML model estimates and airborne-observed Tps. MCMC searches for
snowpack variables with emissions close to observations based on the priors. In this section,
for a complete understanding, the MCMC algorithm setup for priors is explained. Local
priors of snowpack variables are presented first, and then the experiment design of the
inversion is explained in two steps of applying MCMC on footprint data, and applying
MCMC in a generalized approach.

6.3.1 Priors of snowpacks’ variables
The data used to calculate the priors of the snow variables for the inversion is from 12,594

Magna Probe (GPS-tagged) snow depth measurements in the region with a range of 5-
90 cm, an average of 26.9 cm and a standard deviation of 23.9 c¢m, along with physical
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temperature and density values measured in 49 snow pits. Priors are estimated using all in
situ measurements in the study area, whereas averaged MagnaProbe data in each footprint

is used for the evaluation of the snow depth retrieval accuracy in each footprint (explained
in 4.1).

First, because we have only Tys at 19 and 37 in vertical polarizations with high sen-
sitivity to soil and snowpack properties, and also because we aim to do the inversion
with minimal data inputs and prior information, it is very important to characterize the
snowpack layering. Based on the snowpit measurements, snowpack characterization is gen-
eralized using an unsupervised K-means clustering of average grain size and snow density
for variety of snow layer type classes including: recent, fine-grained, medium-grained, crust,
soft slab, medium slab, hard slab, slab-to-hoar, chains of hoar (indurated), chains of hoar,
depth hoar and icy hoar. Two major layers of wind slab and depth hoar were general-
ized from merging four K-Means’ clusters. These two layers with small scatterers on top
and medium-sized grains in the bottom can replicate the slope reversal of Tj observations
with the snowpack increase [178]. Therefore, the retrieval was conducted with a two-layer
snowpack configuration, which is composed of a wind slab layer over a depth hoar layer.

Average snow density and snow temperature were calculated from all the wind slab
layers classified based on K-means clustering of nine snow layers from the snowpit mea-
surements, and used as the corresponding priors for the wind slab layer; the same was
done for the snow density and temperature priors for the depth hoar layer. The average
and the standard deviation of the thickness of wind slab and depth hoar layers can also be
calculated from the snowpit measurements. However, the absolute values of the thickness
cannot be used directly, because they are too accurate. Therefore, using in situ measure-
ments coupled to forward modelling tests, we derived another conditional constraint for
the snow layer thickness, based on a relative thickness ratio of the wind slab and the depth
hoar layers. This constraint is based on the observed inflection point for T, as discussed
earlier and demonstrated in Saberi et al. [I78]. The forward modeling obtained a reason-
able fit using a 1:2 depth hoar to wind slab ratio for shallow snow (hereafter we call it as
a depth hoar formation phase) and a developing wind slab using a fixed 7 cm depth hoar
for deep snow (hereafter we call it as the wind slab development phase).

For the grain size, DMRT-ML requires the optical diameter (D,,) of grain size as
an input. However, geometrical maximum (D,,,,) and minimum (D,,;,) dimensions of
grains were measured in the field and there is currently no established methodology widely
accepted to adjust Di,ay OF Dy to values of D, [1706]. On the other hand, uncertainties
in the measurement and the representation of grain size and the conversion from D,,,, to
D, are likely to mix when upscaling to the airborne footprint observations. Therefore, in
this research, effective grain size (D.rs) that is a scaled value of D,,; adapted for snowpack
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microwave emission models, is used. The grain size priors for wind slab and depth hoar
layers are adapted based on experiments reported by Roy et al. [171]. This information is
used to provide first candidates for the grain size priors. Based on forward modeling and
comparisons with observed airborne Tjs, we evaluated these grain size priors. We found
that within the defined range of grain size prior and a stickiness factor of 0.2, proposed
by Matzler [136], combined with the snow layering, T, at 37 GHz vertical polarization
can be simulated to replicate a decease with the increasing snow depth up to 21 ¢m and
an increase as the snowpack thickens beyond 21 ¢cm. The inclusion of a stickiness factor
has been proposed in other studies to represent snowpack microstructure in microwave
modelling [215, |. Tt is recognized that stickiness is an unmeasurable parameter and
therefore, in order to avoid spurious explanation, we considered this parameter as a model
constant.

6.3.2 Setting the priors for MCMC

Table 6.1 presents ranges of priors used in MCMC algorithm. We used gamma distributions
as it fit the best for physical temperature, snow depth, and density. Grain size priors are
adapted from previous studies based on observed stratigraphy and generalization technique
that has been applied [171, |. We constrain the microstructure of the snowpack, and
then MCMC computes probabilities of the posteriors. The optimum microstructure is
defined based on forward modeling and comparisons with observed airborne Tys, which
indicate that DMRT-ML can be used to simulate the T, V 37 GHz decrease with increasing
snow depth up to 21 cm, whilst a two-layer slab and depth hoar with fixed depth hoar
thickness (6.5-7.5 c¢m) and increasing wind slab thickness can successfully simulate T,
increases as the snowpack thickens beyond 21 cm which occurs more commonly later in
the season.

We use the soil layer reflectivity model of Wegmuller and Matzler [226] for a rough
surface, using a prescribed dielectric constant. Assuming a frozen substratum—according
to the average soil temperature in the study area—with a permittivity between 4+0i and
6-+0.51, a root mean square (RMS) of roughness in a 0.001-0.1 m range was found to be
acceptable. Soil temperature is the only soil variable that Durand and Liu [16] considered
in the MCMC inversion algorithm. They set it to be the same as the prior used for the
temperature of the bottom-most snow layer. Pan et al. [151] added soil moisture and
roughness in the parameterization of emission modeling, using priors fixed at 8+8% and
141 em for soil moisture and roughness, respectively.
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Table 6.1: Snowpack and soil input priors parameters from snow pits measurements for
emission

2-layered snowpack .
and soil model Snowpack variables Ranges
. . 2/3 of total snow depth for snow depth < 21 cm;
Wind slab layer Thickness and 15.5-82.5 cm for snow depth > 21 cm
Density 300-440 kg/m?
Grain size 300- 500 pm
Temperature 242-248 K
. ) 1/3 of total snow depth for snow depth < 21 cm;
Depth hoar layer Thickness and fixed to 5.5-7.5 cm for snow depth > 21 cm
Density 150-300 kg/m?>
Grain size 900 - 1300 pm
Temperature 242-248 K
Substratum: Soil model | Dielectric properties-Permittivity 4-6
Dielectric properties-Loss 0-0.5
Sigma 0.001-0.1 m
Temperature 240-247 K

6.3.3 The application of MCMC

Because the T, footprint is large, one T, measurement can be related to a number of
MagnaProbe snow depth measurements on the ground. To evaluate the way multiple
magna probe snow depth measurements can represent Tj inside one footprint, an analysis
was conducted: 1) simulating Tys for each MagnaProbe snow depth within a footprint
and then averaging the simulated T}s, 2) averaging all snow depths within a footprint and
then simulating the emission for an averaged snow depth. This comparison of multiple
instances (footprints with snow depth standard deviations of 30-50 ¢cm) shows a maximum
T, difference of 0.1% between these two cases, at T, 19 and 37 GHz in both polarizations.
Thus, Tj, values are not significantly different whether we run the emission model on an
averaged snow depth (as a representative of a footprint snow depth), or we run it for
each snow depth and then average the simulated T,s. So, we choose the second option
of averaging snow depths within each footprint, as this process is less computationally
intensive.

Although a 2-layered snowpack that develops depth hoar and eventually forms wind
slab can depict the trend of observations, discrepancies between observations and simula-
tions may still be found. Error can arise from emission model errors, and from uncertainty
in T, measurements (e.g., antenna gain consistency and geo-registration accuracy) and the
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representative of the MagnaProbe depths to the footprint 7, that is the mean value of
measured depths. The sensor measurements are averaged over time, space, and spectral
bandwidth. This averaging is done by convolving the inputs using a response function.
The upwelling emission from a surface is the portion of the total emissions coming from
a ground instantaneous field of view (footprint). While the measured natural emission is
transformed radiometrically through the instrument system [187], we simulate the emis-
sion of a snowpack without considering any of these transformations, assuming that the
frequency-dependent uncertainties are contained within the specified measurement error
budgets. Unlike the analysis from the last paragraph, the uncertainty here is not from the
averaging process, but is from the sampling protocol as well as available methods for gen-
eralizing collected data, i.e., the way to represent a large-area footprint by 1 or 2 transects
of depth measurements.

To test how these uncertainties may influence the retrieval, we designed two sets of
retrieval experiments. In the first, a footprint-based experiment, T} values from footprints
were used for retrieval and retrieved snow depths compared with the measured snow depth
(average values from the MagnaProbe were used) inside a footprint. The other experiment
is a synthetic approach that is based on the averaged Tjs for the same snow depth (+
2.5 cm range) from all footprints. This approach is acceptable because the retrieval was
conducted using airborne experiments for a small area within four days of constant weather.
In addition, the main controlling influence on the snow depth and distribution of snow
in this region is local-scale topography, as existing vegetation is extremely sparse (bare
ground), or very low-lying [178]. In our study area (one AMSR-E grid), we assume that
the microstructure and the layering of snowpacks have properties in common. Therefore,
the way that T} is sensitive to the snow properties is similar, and the T} for the same snow
depth can be aggregated to reduce the uncertainty. The two experiments’ details are as
follows.

MCMC'’s application on filtered data

In the first experimental approach, the MCMC was run on filtered T}s applying the real-
ization of depth hoar development in snow depths up to 21 cm and then the slab formation
for deeper snow greater than 21 cm as discussed in our previous study [178]. Figure 6.3
and Figure 6.4 show T, V 37 GHz and T, V 19 GHz footprints as a function of measured
snow depth. In each Ty-snow depth group within the range of 9 cm, quantiles of T,s with
cumulative probabilities of 0.25 and 0.75 (QL and QU) are calculated and Tjs with values
greater than QU+1.5x(QU-QL) or less than QL-1.5x(QU-QL) are assumed to be outliers.
Filled triangles represent the interquartile range (IQR) of the T,s and the crosses are the
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Figure 6.3: T, V 37 GHz observations as a function of measured snow depth for the IQR

(shown as triangles) and 95% coverage of T}, distribution (shown as crosses) within each 9

cm snow depth range bin. The boxplots shown are for the 9 cm snow depth ranges.

remaining 95 percent of Tys outside the IQR, but within the +2¢ of the data from the
mean in each 9 cm snow depth class. We used IQR Ths as filtered

MCMC’s application in a synthetic approach

In the second experimental approach, median Tys representing emissions for snow depths
values from 5 to 90 cm with a 5 cm interval were used. The reason we called this analysis
a synthetic approach is that we used T, values that are not actually observed but they
are representatives of the observations in each 5 cm interval. Decrease and rise trends of
selected Tj,s were predictable by the inversion of simulations and assumed to be minimally
affected by random errors caused by measurements and uncertainties inherited by the high
variability of snow depth in an airborne scale footprint.
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Figure 6.4: T, V 19 GHz observations as a function of measured snow depth for the IQR
(shown as triangles) and 95% coverage of T, distribution (shown as crosses) within each 9
cm snow depth range bin. The boxplots shown are for the 9 cm snow depth ranges.
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6.4 Results

MCMCs application on filtered data

The inversion algorithm is applied on 464 T}, footprints within the IQR of 5 cm snow depth
intervals. T;, footprints outside of this interquartile range are not used in the inversion
analysis, so as to increase consistency and focus more on less erroneous data. A signifi-
cant although weak Pearson correlation of 0.27 was observed between the estimated and
measured snow depths in the 6-21 cm depth range which represents the initial depth hoar
dominating layer. A weak, but significant, Pearson correlation of 0.21 between estimated
and measured snow depths of 22-90 cm characterized the wind slab layer development
phase, where wind slab layer dominates the snowpack. The scatterplots for the depth hoar
development and wind slab development phases are shown in Figure 6.5-a and Figure 6.5-b,
respectively. The RMSEs for the whole 6-90 cm range of estimated snow depth is 21.8 cm
(for 5-21 e¢m and for 22-90 cm), while the RMSEs of 7}, V in 37 and 19 GHz are 3.5 K and
1.3 K, respectively. The RMSEs are 13.7 ¢m for the 6-21 ¢m snow depth range and 58
cm for the 22-90 cm snow depth range. Mean bias of snow depth (estimated-measured) is
13.5 c¢m for the 5-21 cm range and 55.6 cm for 22-90 cm range, respectively. Mean value of
MCMC retrievals uncertainties for 75% of the retrievals in 6-21 cm range is 25.8 cm while
this uncertainty is as large as 151 cm for 21-90 cm range of snow depths. Noteworthy, snow
depth measurements STD is 1.5-57.7 cm in the whole region. Considering 7}, observations
plotted in Figure 6.3 and Figure 6.4, given the spread of data, there are many footprint
instances where a range of Tys is observed for a single snow depth or a single T}, value is
observed for a range of depths. Therefore, we would expect less accurate estimates of snow
depths. In both scatterplots of Figure 6.5, we can see that there is less agreement in the
15 to 30 cm range. Additionally, in the wind slab development case (Figure 6.5-b), lower
correlation between estimated and measured snow depths is as a result of less sensitivity of
T, 37 V as a function of snow depth. In short, the sensitivity of Tjs at 37 V in snow depths
over the 22 cm to 90 cm range (wind slab dominated) is only 5.8 K, compared with the 15
K decrease of Tjs in snow depths ranging 6 cm to 21 (depth hoar dominated). This means
that with a higher sensitivity of T,s to snow depth (depth hoar dominated snowpacks), the
probability of inversion accuracy will likely increase. To better understand the inversion
process and uncertainties, the estimated chains of two footprints, #1 and #2, with and
average snow depth of 13 cm and 56 c¢m respectively are examined. Markov chains of Tjs
and histograms of snowpack’s properties in these footprints are plotted in Figure 6.6 and
Figure 6.7. Snowpit EK16 and snowpit 021 are located within footprints #1 and #2, and
represent the stratigraphy of shallow and deeper snow in the footprints, respectively. No
numerical comparisons are made between snowpit measurements and estimated variables
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Figure 6.5: Scatterplots of measured vs. estimated snow depth in all IQR footprints for
cases of (a) depth hoar formation and (b) wind slab development.

within a footprint using MCMC inversion, as evaluations based on point-scale measure-
ments for footprint scales are not verifiable. Therefore, measured variables in each snow
pit are not shown in the chains histograms of Figure 6 and Figure 7, as the snow pit
measurements do not represent the estimates in a footprint scale.

Footprint #1 represents a shallow snowpack with microwave emission simulated via a
2:1 wind slab to depth hoar ratio. Markov chains of Tys and observed T,s are shown in
the Figure 6.6-a. Estimated T,s are quite close to the observations with a 0.9 K and 0.2
K absolute difference between observed and estimated T,s at 37 V GHz and 19 V GHz,
respectively. The snowpit EK16 within this footprint is a five-layer snowpack consisting
of recent snow, hard slab, moderate slab, slab-to-hoar, and chains of hoar. Disregarding
the recent layer as it constitutes only 2% of the whole snowpack, we have two merged
layers of a 9 cm wind slab and a 4 cm depth hoar. The mean and STD of 12 snow depth
MagnaProbe measurements in the inclusive footprint is 13.2 ¢cm and 16 c¢m, respectively.
Figure 6.6-b shows histograms of Markov chains for each layer thickness to simply display
the posterior probability of this variable. The modal value after burn-in period is 8.7 cm
with a STD of 2.5 cm for the wind slab layer and 2.5 cm with a STD of 0.6 cm for the
depth hoar layer. The average densities at the field in snow pit EK16, are 370 kg/m? for
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the wind slab layers and 230 kg/m? for the depth hoar layers. Figure 6-c shows histograms
of Markov chains for each layer’s density. The modal values after burn-in period are 335
kg/m? and 259 kg/m?, for the wind slab and depth hoar layers, respectively.

Snow grain metrics observed by snow surveyors in the field are geometrical maximum
(Dinaz) and minimum (D,,;,) dimensions. Unfortunately, these metrics cannot be directly
input into the DMRT-ML model, which represents the snow grains as spheres with an
optical diameter, D,,. Therefore, assumed priors of grain sizes in our analysis are based
on previous modeling studies to represent grain size parameterizations [171]. Figure 6-
d shows histograms of Markov chains for each layer grain size. The modal value after
burn-in period are 650 pum and 1080 pm for the wind slab and the depth hoar layers,
respectively. The snow layer temperature at the site were measured as 244.3 K in the
depth hoar layer and 245.5 K in the wind slab layer. The substratum layer’s temperature
was measured as 244.8 K. Figure 6-e shows histograms of Markov chains for each layer’s
temperature. Estimated physical temperatures for wind slab, depth hoar, and sub-stratum
layers are 246.2 K, 245.2 K, and 243.6 K, respectively. Higher variance in estimations is
as a result of large variances applied to the temperature priors which itself inferred from
the statistical analysis of the measurements in the study area. Footprint #2 represents a
deeper snowpack situation with wind slab developed over a constant depth hoar layer that
is simulated via a progressive wind slab thickening to a fixed depth hoar layer. Markov
chains of Tys and observed Tjs are shown in the Figure 6.7-a. Estimated Tjs are quite close
to the observations with a 0.8 K and 0.1 K difference between observed and estimated Tjs
at 37 V GHz and 19 V GHz, respectively. Site 021 is a snowpit with 56 cm containing
four layers of snow each characterized as recent snow, hard slab, moderate slab, and depth
hoar. The topmost layer is less than 0.5 cm, and slab layers constitute 85% of the total
thickness equal to 48.5 cm. The depth hoar is 7.5 cm. A small variance for the thickness
of the depth hoar layer is applied through a priori information which was confirmed in
the forward modeling step as well. The average value of 13 MagnaProbe measurements in
the inclusive footprint is 51.6 cm along with a large STD of 45.4 cm. Figure 6.7-b shows
histograms of Markov chains for each layer thickness. The modal value after burn-in period
is 43.5 cm with a STD of 9.1 cm for the wind slab layer and 7 cm with a STD of 0.2 cm for
the depth hoar layer. Average densities of the wind slab and depth hoar layers measured
at the snow pit are 410 kg/m? and 260 kg/m3, respectively. In Figure 6.7-c, there is a skew
to higher densities in both layers, which when it coincides with smaller grains in wind slab,
simulates the snowpack’s self-emission. The modal value of densities after burn-in period
is 418 kg/m? and 285 kg/m3 for wind slab and depth hoar, respectively.

Figure 6.7-d shows histograms of Markov chains for each layer grain size that estimated
grain sizes of 570 ym and 1110 pum for wind slab and depth hoar, respectively. The snow
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layers’ temperatures at the site were measured as 244.3 K in the depth hoar layer and
245.4 K in the wind slab. The substratum layers temperature was measured as 245.7 K.
Figure 6.7-e shows histograms of Markov chains for each layer temperature with estimations
of 246.1 K, 245.2 K, and 244.9 K for wind slab, depth hoar, and sub-stratum layers,
respectively. Observed difference among measured and estimated temperature gradients
can be explained by local controllers of the temperature.

Calculated MCMC chains contain 8,000 array arguments, where the modal value of
chains after the burn-in period is considered to be the converged value. The burn-in period
is defined by a solid black line in Figure 6.7-a. The reason to choose a modal value rather
than an averaged value is the exclusion of extreme values. The jump size for a snowpack
variables selection significantly impacts the convergence rate in MCMC chains. The soil
properties posteriors are not shown as they construct a uniform range with little variation,
due to the small range of dielectric properties of frozen soil [36]. Moreover, our limited
information about soil properties such as roughness in the region confine these properties
by the pre-processing step explained previously.

We applied the MCMC algorithm on 464 footprints, whereas only two out of 38 foot-
prints having inclusive snow pits were chosen to explain the results in detail. These two
sites were chosen because the measured snow pit depths were very close to the average
MagnaProbe measurements within the whole footprint (less than 10% difference).

One noteworthy element in employing MCMC in all 464 footprints and using averaged
MagnaProbe data to compare estimated snow depths was that we found several instances
with extreme underestimations and overestimation of snow depths (more than 100% of
snow depth) mainly caused by uncertainties linked to airborne T} observations (Figure 6.3
and Figure 6.4) and possible shortcomings of the model implementation. This is because
the MCMC retrieval here assumes a fully snow-covered land with uniform depth inside
the footprint. No effects of fine-scale topographical variation and the variations of dis-
tributed snow depth and snow microstructure within footprints were considered, which
would also challenge the representation of the MagnaProbe measured snow depth. On the
other hand, due to the low sensitivity of brightness temperature to snow depth, even at 37
GHz, the MCMC algorithm has to constrain the retrieval to meet the observed T} tightly,
in order to make use of this sensitivity. However, in this case, errors in the 7, measure-
ments will transfer into errors in the estimated snow depth, and possibly result in extreme
underestimations or overestimations. Because the T, and the snow depth are noisier at
footprint scales, the MCMC inversion with current available ground-based measurements
at footprint scales is of limited accuracy, especially for deep snowpacks where the wind
slab is dominating the snowpack. Therefore, we employed another approach to minimize
uncertainties in a synthetic approach, explained in the following section.
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MCMUC’s application in a synthetic approach

Given the high degree of variability of snow depth within and at the individual footprint
scale as well as the high degree of emission variability, the MCMC was applied in a syn-
thetic approach. By replicating general emission behaviour of snowpacks, the forward
emission model was run using mean values of priors for snow depth intervals of 5 cm rang-
ing 5-90 cm. This simulated Tys correlated to aggregated Tys—with a linear correlation
coefficient=0.9—shown as asterisks in Figure 6.8. This analysis shows how the retrieval
works under perfect conditions (zero noise level in observations, perfect emission model
and no spatial variability of SWE at footprint scales).

The estimated and measured snow depth scatterplot and the scatterplot of estimated
and measured T, V 37 GHz and T, V 19 GHz are presented in Figure 6.9 and Figure
6.10, respectively. A significant and high Pearson correlation of 0.94 was observed among
estimated and measured snow depth, which the scatterplot is presented in Figure 6.8.
RMSE of snow estimated depth is 0.07 cm and RMSE of T, V in 37 and 19 GHz are
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Figure 6.9: Estimated and measured snow depth scatterplot in sampled footprints based
on synthetic approach

2.7 K and 0.14 K, respectively. Although higher accuracies were obtained, this experiment
cannot be employed to retrieve snow depths in this study area as it took all observations and
measurements in the region to represent a typical emission signature. This analysis helps to
present a case where observations are ideally predictable using an emission model, whereas
in an experiment with high spatial variability of SWE and high emission variabilities, we
should expect high retrieval uncertainties.

6.5 Discussion

The results show how a Bayesian inversion, specifically in a retrieval problem with high
uncertain variables, can be applied but with some care. The approaches taken for the
application of MCMC that was conducted in the two steps of 4.1 and 4.2, underline the
importance of methods that deal with uncertainties related to T;, observations. The T} ob-
servations in our study area have a high standard deviation (STD) in shallow to medium
depth snowpack, for instance in footprints with average snow depth values of 18-27 c¢m
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Figure 6.10: Estimated and measured 7}, V scatterplot at 19 GHz (a) and 37 GHz (b) in
sampled footprints based on synthetic approach

range, the STD of T}, 37 GHz is 11.1 and the STD of T, 19 V GHz is 2.8. This variability
confirms the high level of uncertainties and expected snow properties retrieval error. On
the other hand, based on KolmogrovSmirnov statistical testing in our previous work, 7}
observations at 19 V GHz and 37 V GHz have different distribution functions compared
to simulated Tys at the same frequencies [178]. One solution to control these uncertain-
ties is adding extra information to each T; footprint, such as remotely sensed observations
or intensive ground-based measurements. Intensive ground-based measurements at the
airborne scales are not feasible in many small-scale projects. Moreover, quantifying prop-
agation of associated errors with all data sources that are included the retrieval process,
will not be a straightforward process if errors from different sources are correlated [71].
Another solution to deal with 7} uncertainties is to minimize the errors at the expense of
losing footprint scale Tps. Taking this approach, we evaluated MCMC retrievals through a
synthetic approach using forward emission modeling that correlates well with averaged Tys
of binned snow depths, where T} footprints are mapped as a function of snow depths. The
success of synthetic approach is a hint for consideration of these limitations in the design
of field observations framework as well as details of tools and variables to measure.

In the absence of intensive ground-based snow stratigraphy measurements and unac-
counted for physical processes, priors play a significant role in calibration of the forward
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model. Furthermore, in the inversion process, priors confine the search space of unknowns
effectively and therefore should reduce uncertainties in retrieval. In this research, priors
are defined based on local measurements and they are adapted by forward emission mod-
eling. This process minimizes the impact of unaccounted variables in the emission process.
The novelty of this research is in the labeling the data using a simple snow depth criterion
to determine whether the inversion is related to a snowpack that is scattering dominant
(depth hoar) or it is the one that is a self-emitting medium (wind slab). Furthermore,
using this method, statistical distributions of snow layer physical temperature, density,
and depth were all unimodal. Unimodality is an advantage of forcing the prior information
about a snowpacks stratigraphy based on forward modellings using in situ measurements.
By using a Bayesian framework, the inversion process allows statistical distribution infor-
mation in the form of priors to be included. Although a challenging approach, this method
is preferable to the commonly-taken approach of point (in situ data) to area (footprint
remote sensing observation) calibration and validation. Applying a deterministic inversion
approach is generally achieved through a minimization of differences between simulated
and observed Tys through the varying of one or two key parameters such as snow depth or
grain size to seek for an optimum snow depth value. The beauty of adopting an MCMC
framework approach, is that the uncertainty in both 7T, and in situ snow depth measure-
ments can be represented through the priors and that the final converged solution typically
represents the uncertainty in the data. In essence, this framework solution is one realization
of a distribution of solutions but is perhaps more defensible given the statistical uncertainty
in the in situ and T, measurement data.

6.6 Future suggestions

The spatial variability of the a prior: data make retrieval of SWE at spaceborne PM scales
challenging. When the high variability of individual footprint 7}, observations are coupled
with a detailed physical model forced with a priori data that reflect the highly variable
nature of snow properties, disagreements between modeled and observed Tys are almost
inevitable. This study illustrates such a situation. Model calibration in its traditional form,
known as fitting the model outputs to observations by adjusting the model parameters, is
not reliable as it forces the model to match observations by tuning model parameters. The
Bayesian model calibration approach proposed by Kennedy and O’Hagan [102] represents
a potential solution to the problem.

Sacks et al. [179] discuss the deterministic nature of most physical models that result
in identical outputs for the same inputs after running the model. Being deterministic
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differentiates models from physical experiments, which tend to be plagued by random
errors-both human and instrument. Sacks et al. [179] assume that a model is a realization
of a stochastic process carried out through adding random functions. This assumption
allows us to analyze the predictor in a statistical framework and quantify the associated
uncertainty of the model. We can modify the model response using a Gaussian process
with a covariance term involving snow depths. Snow depth should be chosen as it drives the
emission response. The DMRT-ML is also very sensitive to the grain size and in the same
time it contains highest uncertainty compared to other variables. Future studies should
add a discrepancy term to capture the uncertainty in the hope to reduce the sensitivity
that is not observable at airborne scale.

6.7 Conclusion

This current work is a retrieval approach through the incorporation of the emission mod-
elling of the tundra snow in the region of interest that is known to the authors [178]. An
iterative approach to retrieving snow depth has been applied on an airborne radiometry
dataset. We consider the inversion process, only as a mathematical/statistical approach to
deriving the controlling parameters, using the physical foundations of the forward model.
Priors are based on in situ measurements, and are adapted by comparing forward model
with the observed emissions. A two-layer snowpack with a developing depth hoar and a
developing wind slab on top of a fixed depth hoar layer after a certain snow depth was
imposed to the inversion model, whereas the validity of this assumption was determined
in our previous research [175].

The inversion process is applied in two steps. First, Tj, footprints within the interquartile
range of snow depth intervals were used for our inversion algorithm with limited success.
Then, we applied the inversion in a synthetic approach. Expectedly, the results significantly
improved with a snow depth RMSE of 0.07 cm, compared to former analysis with an RMSE
of 21.8 ecm. This improvement is due to the averaging process that minimizes random
errors related to T}, observations and snow depth variability in the footprint scale. The
approaches used in the MCMC simulation approach underlines three major findings that
satisfy the objectives: 1) informative priors leads to a successful retrieval, 2) we need
to dictate a tractable and robust snow structure in the inversion process for an accurate
inversion, and 3) the impact of observation scale (both remote sensing observation and in
situ field measurement) is significant for the retrieval accuracy. In this study, the shallow
snowpacks (depth hoar forming phase) and the deep snowpacks (wind slab development
phase) were retrieved separately. Further improvement requires probabilistic classification
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prior. By applying a probability of snow structure or snow history, a snowpacks likelihood
of a depth hoar forming phase or wind slab development phase can be determined before
the retrieval. This application coupled with the Bayesian approach allows us to realize the
physically-based inversion of a stochastic process.
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Chapter 7

General Conclusions

7.1 Summary

This thesis has demonstrated a Bayesian approach for SWE retrieval in Tundra regions,
using airborne PM observations, in situ measurements are generalized for a better pa-
rameterization of the emission model. The analysis is supported by an explanation of
snowpack physical properties impacts on the upcoming emission based on physical de-
scriptions in empirical approaches and forward emission models. Introductory chapters
[1-3], presented the main research questions and objectives, followed by descriptions of
snowpack microstructure and evolution, the physics of microwave emissions in a snowpack,
and the interpretation of observed brightness temperatures to retrieve snowpack physical
properties.

The background chapters explained the impacts of effective components in controlling
microwave emission. Chapter 4 describes in greater detail current retrieval approaches in
PM remote sensing of snow. Spaceborne SWE products are not commonly employed in op-
erational hydrological and hydroclimate modeling applications even at regional scales. Var-
ious causes have been suggested for their insufficient accuracy, the coarse spatial resolution
of PM observations that observe highly aggregated snowpack properties at the spaceborne
scale, and inadequacies during the retrieval process that are caused by uncertainties with
the forward emission modeling of snow and challenges to find robust parameterizations of
the models. In this chapter, snow depth and SWE retrieval methods using PM remote
sensing observations have been reviewed and concluded that snowpack parameterization is
key to accurate retrieval.
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Chapter 5 presented the application of Dense Media Radiative Transfer Theory for
Multi Layered (DMRT-ML) snowpack to predict the passive microwave response from air-
borne observations over shallow, dense, slab-layered tundra snow. Airborne radiometer
observations coordinated with ground-based in situ snow measurements were acquired in
the Canadian high Arctic near Eureka, NT, in April 2011. The DMRT-ML was param-
eterized with the in situ snow measurements using a two-layer snowpack and executed
in two configurations: a depth hoar and a wind slab dominated pack. With these two
configurations, the calibrated DMRT-ML successfully predicted the T, V 37 GHz response
(R correlation of 0.83) when compared with the observed airborne 7T}, footprints containing
snowpits measurements. Using this calibrated model, the DMRT-ML was applied to the
whole study region. At the satellite observation scale, observations from the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) over the study area
reflected seasonal differences between T, V 37 GHz and T, V 19 GHz that supports the
hypothesis of the development of an early season volume scattering depth hoar layer, fol-
lowed by the growth of the late season emission-dominated wind slab layer. This research
highlighted the necessity of considering the two-part emission characteristics of a slab-
dominated tundra snowpack at T}, 37 GHz.

Chapter 6 explained the development of a Bayesian Algorithm for Snow Water Equiv-
alent (SWE) Estimation (BASE), which uses the Monte Carlo Markov Chain (MCMC)
method to estimate SWE for tundra snow from airborne radiometer 7j. In this experi-
ment, datasets of 464 footprints in the Eureka region were coupled with airborne passive
microwave observations from a wide area flight conducted in 2011. T}, at 18.7 and 36.5 GHz
was available. The algorithm searches optimum posterior probability distribution of snow
properties using a cost function between physically based emission simulations and bright-
ness temperature (7,) observations. A two-layer snowpack is assumed to simulate emission
using the Dense Media Radiative Transfer-Multi Layered (DMRT-ML) model. The two-
layer wind slab and depth hoar assumption is based on local snow cover knowledge from
previous research in the study area. The inversion was also applied in a semi-synthetic
approach, and results significantly improved with a snow depth RMSE of 0.07 ¢cm, com-
pared to the former analysis with a snow depth RMSE of 21.8 cm. Our work verifies the
feasibility and applicability of the proposed methodology regionally for airborne retrieval.
This framework reinforces the tractable applicability of a physics-based radiative transfer
model in SWE retrievals. We suggest re-evaluation of the computation costs, examining
the use of faster search methods, and inclusion of a Gaussian function in the emission
model as potential future works.

Overall, this research contributes to retrieval frameworks and methodologies that will
facilitate the development of a Bayesian PM based snow property retrieval using space-
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borne observations. Contributions of this work and the significance of this research can be
discussed in three aspects:

1. While the spatial resolution problem of spaceborne PM observations is largely in
the realm of engineering design and constrained by physical restrictions, a better
understanding of the range of retrieval methodologies developed and adopted can
provide the clarity needed to move the thinking forward in this important field.

2. A framework for forward emission modelling using generalized stratigraphy of snow-
packs is presented and the results are compared with coordinated PM airborne obser-
vations after employing required pre-processes. This analysis shows the significance
of integrating modified climatology of snowpacks based on our field knowledge to
improve parameterizing emisssion models.

3. A representative emission model can be employed in a retrieval system to estimate
snowpack physical properties. A Bayesian Algorithm for Snow Water Equivalent
Estimation (BASE) inversion is proposed for the retrieval that is based on parame-
terizing snowpack stratigraphy. This retrieval algorithm is developed by taking prior
information into account, while minimizing dependence upon it, as accurate ancillary
datasets are not globally available.

The challenge of using SWE products derived from spaceborne PM in operational hy-
drological and hydroclimate modeling applications is very demanding with limited uptake
by these systems. The last two contributions of this thesis can be extended to employ
retrievals at regional scales using spaceborne applications, which can provide valuable
datasets for applications ranging from modeling snow variations in a small catchment to
global climatologic studies.

7.2 Limitations

A comprehensive dataset of multi-scale observations is needed for full understanding of
the spatial and quantitative distribution of uncertainties. Addressing uncertainties caused
by generalization and aggregation of in situ measurements requires simultaneous T} obser-
vations of ground-based and airborne scales. Unfortunately, our dataset did not include
ground-based Tj observations, and no significant conclusions could be made by comparing
airborne Tys at different high and low altitudes with footprints of 850 m —510 m and 120
m —102 m, respectively. A high standard deviation of 20 K was calculated for low altitude
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Tys found within the IFOV of high altitude footprints, showing a high uncertainty level of
observations. On the other hand, the flight lines were designed in a pattern to assist in
the scaling up of Tjs from the airborne to the satellite scale and to ensure complete cov-
erage at different spatial resolutions of Tj products. A time series spaceborne observation
facilitated the interpretation of the observed signature, but no statistical comparison was
possible with the limited airborne observations that covered the study area in four days.

In our study, grain sizes were measured by average maximum and minimum diameters,
which could not be used directly as DMRT-ML’s inputs. In addition, there was no empirical
transformation function from D,,., or D, to optical diameter (D,,:) to be inputted in
DMRT-ML. Grain size values, measured in the field, were used in the generalization of
snowpack stratigraphy. We then employed effective grain sizes (D.sr), based on previous
research in the emission model. This research could have benefited from the use of another
metric for grain measurements such as SSA that could have been employed in an emission
model after applying a scaling factor.

7.3 Future Work

Hydrologically-important snowpack properties such as snow depth, SWE and snow state
can be retrieved as a result of the sensitivity of a microwave’s signature to snowpack
properties. A microwave emission signature is also affected by seasonal snowpack evolution,
through changes in key parameters of the snowpack that control the emission. Consistent
time series of passive microwave observations in a heritage record of almost 40 years provide
a good source for times series analysis and inter-seasonal variability detection. A daily near-
real time snow depth/SWE product with improved spatial resolution can provide required
information for operational hydrological, climatological and agricultural applications in
local to global scales. It can also be used to develop operational forecast models such as
weather forecasts, water supply prediction, and flood and avalanche forecasts that require
near-real time observations to update the state variables in the model.

By improving retrieval algorithm architectures that better capture dynamic snowpack
evolution processes, SWE estimates are likely to improve. Physical modeling facilitates
controlling the emission signature with key components of the model such as grain size in
a realistic approach. This physical control opens up the possibility to parameterize some of
snowpack properties such as number of layers or grain size in an inverse iterative approach,
which helps to improve our understanding of seasonal snow cover and leads to the creation
of climatology stratigraphy maps including the microstructural properties of snowpack
that are required for emission modeling. Available knowledge of snowpack properties in
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regional scales can help to build such maps. For instance, Sturm’s snow classes can be
used as a baseline (climatology density maps are available), and more details on snowpack
stratigraphy can modify these snow classes. In addition, snowpack emission is highly
sensitive to grain size, so estimation of a climatologic grain size seems essential in the field
of radiometric observation of snow, and conclusively is a unique topic of research.

Due to low spatial resolution of PM remote sensing observations, specifically in pas-
sive microwave observations, distinct materials occupying a single pixel produce mixed
signatures [103]. Accurate estimation of surface geophysical properties and enhancement
of spatial resolution in passive microwave observations requires modeling of the mixed sig-
natures of land covers in a footprint/grid cell [I10]. To date, different techniques for the
decomposition of signature and subpixel mapping of endmembers in multi-spectral and
hyperspectral images have been developed. In optical remote sensing (multi or hyperspec-
tral), spectral unmixing provides spatially detailed information by decomposing a mixed
spectral signature into its endmembers fractional abundance [103]. Optical remote sens-
ing observations have multiple spectral bands that allow employing linear and unlinear
unmixing techniques to derive endmembers and their abundances. However, in PM ob-
servations, spectral resolution is not sufficient to solve the unmixing by similar proposed
methods in multi- and hyperspectral images. For instance, the limited number of sensitive
frequencies to snowpack properties in PM remote sensing does not let us employ developed
approaches for endmember detection. To date, the disaggregation of passive radiometry-
derived products has been employed in soil moisture products, including satellite-based,
geoinformation-based, and model-based methods [153]; however, little interest has been
found in the disaggregation of PM-derived SWE products. Investigations of the applica-
tion of disaggregation methods for PM SWE retrieval while coupling emission knowledge
would be a remarkable research topic.

Spatial resolution enhancement [3] can be also achieved by geostatistical solutions that
have been proposed for carrying out subpixel mapping of land cover and so increasing
the estimation accuracy in a pixel; however, as mentioned earlier, sub-pixel mapping of
retrieved SWE is still a big challenge and there is only limited research on this topic, es-
pecially in regional applications. Successful implementations of geostatistical downscaling
methods, such as adaptive area to point regression kriging (AATPRK) by Wang et al.
[225], originally designed as a pan-sharpening tool, and geographically weighted area to
point regression kriging (GWATPRK) by Jin et al. [93], which builds on the AATPRK
method by employing geographically weighted regression (GWR), can be tested on SWE
products to investigate their suitability.
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