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A crucial structure in the motility of flagellated bacteria is the hook, which connects
the flagellum filament to the motor in the cell body. Early mathematical models of
swimming bacteria assume that the helically shaped flagellum rotates rigidly about
its axis, which coincides with the axis of the cell body. Motivated by evidence that
the hook is much more flexible than the rest of the flagellum, we develop a new
model that allows a naturally straight hook to bend. Hook dynamics are based on
the Kirchhoff rod model, which is combined with a boundary element method for
solving viscous interactions between the bacterium and the surrounding fluid. For
swimming in unbounded fluid, we find good support for using a rigid model since the
hook reaches an equilibrium configuration within several revolutions of the motor.
However, for effective swimming, there are constraints on the hook stiffness relative
to the scale set by the product of the motor torque with the hook length. When
the hook is too flexible, its shape cannot be maintained and large deformations and
stresses build up. When the hook is too rigid, the flagellum does not align with the cell
body axis and the cell “wobbles” with little net forward motion. We also examine the
attraction of swimmers to no-slip surfaces and find that the tendency to swim steadily
close to a surface can be very sensitive to the combination of the hook rigidity and
the precise shape of the cell and flagellum. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4721416]

I. INTRODUCTION

Propulsion of flagellated micro-organisms has been the subject of mathematical analysis for
over half a century. The earliest work of Taylor1 described swimming due to waves propagating
along an infinite two-dimensional sheet but this quickly developed into new approaches for solving
the fluid mechanical problem of long filaments moving in viscous media, namely, resistive force
theory (RFT) (Ref. 2) and slender body theory (SBT).3 Resistive force theory is a lower order
approximation compared with slender body theory but can be valid for describing isolated flagella
as long as the drag from the attached cell body is not substantial.4 It is widely used for modeling
the dynamics of spermatozoa, which tend to have relatively small cell bodies and long flagella, and
results have been shown to be consistent with experiments.5 The simplicity of RFT has also been
exploited in capturing the qualitative effects of fluid interactions where greater emphasis is placed
on solving the elastic dynamics of the flagellum,6, 7 though it is also feasible to use SBT formulations
for simulating flexible filaments in a fluid.8

Bacterial cell bodies tend to be much larger in relation to their flagella compared with sper-
matozoa. Since RFT does not accommodate long range hydrodynamic interactions, such as those
between the cell body and flagellum, it is less suitable for models of bacterial propulsion. The
canonical monotrichous bacterium, with a spherical or ellipsoidal cell body and rigidly rotating
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helical flagellum, has been extensively studied with slender body theory9, 10 and boundary element
methods (BEM),11–13 which are based on the exact solution to the fluid flow problem given by
the boundary integral equation. The immersed boundary method has also been effectively used
to model fluid flows around single and multiple bacteria.14 To justify the intensive computations,
BEMs are best used in situations where the fluid boundary conditions must be treated with high
precision, such as swimming very near a solid surface or another swimming cell. The former was
described by Shum et al.13 and Giacché et al.,15 while the latter was considered by Ramia et al.12

and Ishikawa et al.16 Both of these situations are biologically relevant for swimming in microfluidic
channels or porous media, and in biofilm initiation, where hydrodynamics can explain much of
the phenomenon of boundary accumulation, which has important consequences for the impact of
micro-organisms.

Mathematical predictions of bacteria swimming speeds in bulk fluid have been shown to agree
reasonably well with experiment.17, 18 However, previous models do not take into account the
mechanical properties of the flagellar filament and hook, which connects the filament to the motor
embedded in the cell body. The hook is usually not modeled as a distinct structure, while the
flagellum is generally treated either as a rigid structure or as a flexible string of particles using a
bead–spring approach.

The hook and flagellum have differing mechanical properties due to the differences in composi-
tion. Qualitatively, observations of monotrichous bacteria indicate that the flagellum is stiff enough to
maintain a stable helical structure during its rotation associated with steady swimming. For example,
Armitage and Macnab19 found through microscopy observations that the flagellum of Rhodobacter
sphaeroides formed a linear helix of constant length for any given cell during its rotation. Flexu-
ral rigidity has been estimated for filaments of several bacterial species, such as Escherichia coli,
based on balancing thermal and mechanical energy.20 The flexural rigidity of filaments from Vibrio
alginolyticus, a monotrichous species, was estimated at 10 pN μm2 by comparison of a theoretical
Kirchhoff rod model with experiment.21 This is similar to the figure of 3.5 pN μm2 suggested in
Ref. 22 for the peritrichous Salmonella typhimurium and estimates of filament stiffness across all
species are within a range of one or two orders of magnitude.

Calculations show that hooks are several orders of magnitude more flexible than filaments.
In peritrichous bacteria, hook flexibility is necessary to allow the flagella to bend around the cell
body and form a bundle for effective propulsion.23 Although monotrichous bacteria do not need
this flexibility to form flagellar bundles, a comparison shows that their hooks are a mere 2–3 times
stiffer than those of peritrichous bacteria.24 Hence, hook flexibility may still be influential in the
dynamics of bacteria with a single, polar flagellum. This is evident from work on mutants that grow
exceptionally long hooks, which consequently have lower flexural rigidity and diminished motility.25

Further investigation is required as we currently do not fully understand the mechanical role that the
hook plays in bacterial swimming.

Given the importance of bacterial motility and surface accumulation, for example, in biofilm
initiation and motility in microdevices and porous media, we wish to explore the function and
influence of the hook during swimming. We consider elastic dynamics based on naturally straight
flagellar hooks, as found in R. sphaeroides and V. alginolyticus. Based on available data, flagellar
filaments are much stiffer than hooks so most of the bending observed can be associated with
deformations of the hook rather than the filament. We therefore incorporate elastic hook behaviour
into our mathematical model while treating the filament as a rigid body as before.

Many theoretical studies of cilia and eukaryotic flagellar motion have given considerable atten-
tion to the elastic behaviour of the filament,26, 27 since active bending is the mechanism by which
motion arises. In contrast, the bacterial flagellar filament and hook are passive and driven by a single
proximal torque motor; hence, there is less need for elastodynamic considerations. Certain situations,
such as flagellar bundling in peritrichous bacteria, do require flexibility and some authors have used
bead–spring models to model this.28, 29 There is also much interest in helical and naturally straight
elastic rods both in terms of static configurations and dynamics in a viscous environment.30–32 We
use a simple model based on Kirchhoff rod theory for the dynamics of the hook, which will be
described in more detail in Sec. II. We then look at the motion of a bacterium with a flexible hook
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FIG. 1. Geometrical model of bacterial cell body and flagellum.

in bulk fluid and examine how accumulation near no-slip plane boundaries is affected by the hook
dynamics. Results are followed by a discussion of biological implications.

II. METHODS

A. Geometrical modeling

The geometry of the bacterium influences the distribution of viscous stress and therefore its
dynamics. The model is illustrated in Fig. 1. We represent the cell body with a prolate spheroid,
as this resembles rod-shaped bacteria such as R. sphaeroides. The flagellum is a helical structure
behind the cell body. The bacterial hook is a flexible coupling that transmits torque from the motor
to the filament. In wild-type R. sphaeroides, the hook is roughly a cylindrical rod 100 nm long and
20 nm in diameter.33 Hydrodynamically, it can be thought of as a small extension of the microns-long
filament. Hence, we expect the hook to have limited hydrodynamic influence and we do not model
the interaction of the hook with the fluid.

A very similar model was employed in the work of Shum et al.,13 which we refer to as the rigid
hook model. The difference is that previously the helical amplitude decayed smoothly to zero near
the flagellum–cell body junction. This was effectively approximating the hook as a rigid, curved
segment connecting the helical filament to the motor in the cell body. In the current work, the hook
is allowed to bend, which means that the alignment between the flagellum and cell body is not
necessarily constant. The two models are visually compared in Fig. 2. An important comment to
make here is that we only consider naturally straight hooks, i.e., the hook is straight in its stress-
free state. This is consistent with our understanding of the hook in the commonly investigated
R. sphaeroides but many other species have naturally curved hooks, which could potentially affect
swimming dynamics in those organisms.

B. Equations of motion

At the microscopic scale of a swimming bacterium, the surrounding fluid satisfies the Stokes flow
equations given the constitutive relation for an incompressible, viscous, Newtonian medium. Driven
by a fixed motor torque, the swimmer moves with a translational velocity UB and rotational velocity
�B about the cell body–hook junction, xB. The flagellum shares this motion but has additional

(a)

eB = eT

(b)

eT

eB

ψ

FIG. 2. Comparison between (a) the rigid hook model and (b) the current, flexible hook. The alignment angle between the
body axis, eB, and the flagellum axis, eT, is denoted ψ . Since the shapes of the flagella differ near the cell body, the rigid
model is not simply the limiting case where stiffness is taken to be very large in the flexible hook model.
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degrees of freedom that govern its dynamics relative to the cell body: a translational velocity UT and
a rotational velocity �T. In order to determine these velocities, we use a boundary element method to
compute the flow satisfying the required boundary conditions within the accuracy of the numerical
scheme. The boundary integral equation for Stokes flow34 reads

− 1

8πμ

∫
B∪T

G(x0, x)f(x) dS(x) = u(x0)

=
{

UB + �B ∧ x̃, x0 ∈ B

(UB + UT) + (�B + �T) ∧ x̃, x0 ∈ T
, (1)

where μ is the viscosity of the medium, G is the second-rank Green’s function tensor for Stokes
flow in a three-dimensional domain, f is the stress distribution on the surface of the bacterium, B is
the surface of the body, T is the surface of the tail, and x̃ = (x0 − xB) is the position of a point on the
bacterium relative to the body–hook junction. The Green’s function is chosen either for an infinite
fluid domain (free space) or for a fluid bounded by a no-slip plane wall (half space). Expressions for
these forms are given by Blake.35

By considering the cell body and the flagellum as separate bodies in the fluid, we have the force
and moment balance equations:∫

B

f dS + FB = 0,

∫
B

x̃ ∧ f dS + τB = 0,

∫
T

f dS + FT = 0,

∫
T

x̃ ∧ f dS + τT = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)

where FB and τB are the forces and moments exerted on the cell body by the hook and FT and τT

are the forces and moments exerted on the flagellum by the hook.
We now describe a method for determining the mechanical body–hook and tail–hook interac-

tions, FB, τB, FT, and τT, based on the elastic response of the connecting hook.

C. The Kirchhoff hook model

The main model development described in this work is the inclusion of a flexible hook connecting
the cell body to the rigid flagellar filament. The observed mechanical responses of the flagellum
and hook are typically observed to be linear, excluding cases with the induction of large torsional
deformations and the onset of polymorphic conformational changes, which are not considered
here.22, 36 As we show in Appendix A, hook extension is unimportant. We therefore use the simplest
inextensible, linearly elastic theory of rods with small strains but finite, three-dimensional centerline
deformations. This is widely known as Kirchhoff rod theory,37–40 which further assumes that the rod
is unshearable. Based on physiological estimates of hook stiffness, it can be shown that a quasi-static
description of the rod is appropriate at timescales comparable with the motor frequency. Furthermore,
viscous stresses acting on the surface of the hook may be neglected. These two simplifications are
also justified in Appendix A.

We now briefly summarize a general kinematic description of a directed curve, which will
represent the centerline of a rod, and the constitutive relations for the Kirchhoff model.

The undeformed, or reference, curve is defined by a vector-valued function x0(s), where the
spatial parameter s can be taken as the arc length. For a finite curve of length L, we have the bounds
0 ≤ s ≤ L. We define a set of right-handed, orthonormal local director vectors {d0

i (s), i = 1, 2, 3}.
It is assumed that x0 and d0

i vary smoothly with s but no additional specifications are necessary at
this stage. At time t, the (possibly deformed) curve is given by x(s, t), where s is the arc length in
the undeformed curve corresponding to the same material point, and the local directors are {di(s, t),
i = 1, 2, 3}. We require that these directors are twice differentiable functions of arc length and time
and again form a right-handed, orthonormal basis.
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For each s and t we can define a twist vector κ(s, t) = κi (s, t)di (s, t) and a spin vector ω(s, t)
such that the kinematics of the curve are described by

d′
i = κ ∧ di , ḋi = ω ∧ di , i = 1, 2, 3. (3)

Throughout this article we will use the convention of summation over indices i = 1, 2, 3 where they
appear twice in the same term. We also use primes to signify derivatives with respect to arc length
and dots to signify time derivatives.

A rod can be defined as a curve with finite thickness. We identify d1(s, t) and d2(s, t) with
orthogonal orientations in the material cross section of the rod at arc length s and define the
remaining director by d3 := d1 ∧ d2. The directors in the reference configuration are similarly
defined. It is assumed that no two cross sections of the rod intersect one another whether in the
reference or deformed configurations. The material point described by

X0(s, x1, x2) = x0(s) + x1d0
1(s) + x2d0

2(s) (4)

in the reference configuration deforms to the position

X(s, x1, x2, t) = x(s, t) + r(s, x1, x2, t), (5)

where r is a displacement from the centerline that depends on the original material position and the
current deformation.

In the Kirchhoff model, it is assumed that the rod is inextensible and unshearable and that the
cross sections of the undeformed rod are only rotated and translated upon deformation of the rod.
The tangent vector is then given by v = d3 and the deformed directors track the deformation of the
material lines marked by the directors in the reference configuration with the displacement vector
of a material point from the centerline taking the simple form r(s, x1, x2, t) = x1d1(s, t) + x2d2(s,
t). In fact, we will not make direct use of the last assumption except at the two ends of the rod,
where we will assume that the cross sections at the two ends attach tangentially to the cell body
and to the proximal tip of the flagellar filament, respectively. In other words, the hook protrudes
perpendicularly from the cell body and joins with the flagellar filament with a continuous tangent
along the centerline.

The stresses acting across each cross section of the rod lead to a net contact force n = nidi and
net contact moment m = midi. We use the convention that these quantities are exerted by the side
with greater s on the side with smaller s. Neglecting inertia and viscous stresses, force and moment
balance considerations on a vanishingly short section of the rod lead to the equations (see Antman40

for more details)

n′ = 0,

m′ + d3 ∧ n = 0.

}
(6)

We use a linear constitutive relation between the strain and the elastic moment in the rod.
Assuming the rod is uniform and of circular cross section and has no finite preferred curvature or
torsion, the moment can be expressed as

m = E I (κ1d1 + κ2d2 + �κ3d3), (7)

where E is the Young’s modulus of the material, I is the moment of inertia of the cross section, and
� = GJ/EI is the ratio of twisting stiffness GJ to bending stiffness EI. Using this formula for the
moment in (6), we find

κ ′
1 = 1

E I
(n · d2) − κ2κ3(� − 1),

κ ′
2 = − 1

E I
(n · d1) + κ1κ3(� − 1),

κ ′
3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8)
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Treating the time t as a parameter, (8) and the equations for d′
i in (3) yield a system of ordinary

differential equations (ODEs) for κ(s, t), and di(s, t), i = 1, 2, 3. This system can be solved as
an initial value problem in s. From (6), we see that the shear force does not vary with arc length,
allowing us to write n(s, t) = nB(t), where we have defined the parameter nB(t) := n(0, t). We also
require dB

i (t) := di (0, t) and κB
i (t) := κi (0, t), which we use as the initial values to determine di(s, t)

and κ i(s, t) for 0 ≤ s ≤ L. The system of ODEs is solved with the fourth-order Runge-Kutta method
in our work. The rod shape is then constructed by integrating the tangent vector, x′ = d3. In Sec. II D,
we will discuss a method of tracking the evolution of dB

i (t), nB(t), and mB(t) := m(0, t), which is
related to κB(t) by formula (7).

These elastic rod equations will be applied to the bacterial hook, which is of length LH. Since
we will mainly be concerned with the end points xB and xT, where the hook meets the cell body and
flagellum, respectively, we summarize the solution to the rod equations symbolically as

xT = xB + X(dB
1 , dB

2 , dB
3 , nB, mB),

dT
1 = D1(dB

1 , dB
2 , dB

3 , nB, mB),

dT
2 = D2(dB

1 , dB
2 , dB

3 , nB, mB),

dT
3 = D3(dB

1 , dB
2 , dB

3 , nB, mB),

mT = M(dB
1 , dB

2 , dB
3 , nB, mB),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where we have shortened notation by defining dT
i := di (LH, t) and mT := m(LH, t). We set dB

3 ≡ eB

(see Fig. 2) while the initial choice of dB
1 and dB

2 is arbitrary within the constraints of orthonormality
of the basis. The response functions X, Di, and M depend on two intrinsic properties of the rod: the
bend/twist ratio � and the relative hook rigidity,

kH := E I

τMLH
, (10)

which we also refer to as the relative hook stiffness. We will see that the relative hook stiffness
significantly influences the dynamics for the swimmer and it is worth bearing in mind that this ratio
need not be constant. A bacterium with varying motor torque, either through regulation or as a result
of environmental conditions, will have a time dependent relative hook stiffness.

D. Bacterial dynamics with hook response

The motion of the flagellum relative to the cell body is dictated by the changes in shape and
orientation of the hook. If we write a point on the flagellum as

x0 = xT + yi dT
i , (11)

then, noting that ẏi = 0 by the assumed rigid body behaviour of the flagellar filament, the instanta-
neous velocity at x0 is given by

u(x0) = ẋT + yi ḋT
i

=
(

ẋB + ωB ∧ X + ∂X
∂nB

× ṅB + ∂X
∂mB

× ṁB

)
+ yiω

T ∧ dT
i , (12)

where ωB = ω(0, t) is the spin vector at the body end of the hook. This is the sum of the cell
body rotation vector and a spin rate around the motor axis, i.e., ωB = �B + ωMeB. We also write
ωT = ωB + �H, where �H is the spin vector of the flagellum end of the hook relative to the cell
body end due to ṅB and ṁB satisfying

∂Di

∂nB
× ṅB + ∂Di

∂mB
× ṁB = �H ∧ Di , i = 1, 2, 3. (13)
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Comparing (12) with the general form of the velocity on the flagellum in (1), we see that

UT = ∂X
∂nB

× ṅB + ∂X
∂mB

× ṁB + �T ∧ (xB − xT),

�T = ωMeB + �H.

⎫⎪⎬
⎪⎭ (14)

The partial derivatives, ∂X/∂nB, ∂X/∂mB, ∂Di/∂nB, and ∂Di/∂mB, can be computed using finite
difference formulae. Noting (13), we can write UT and �T as linear functions of the unknown
velocities ṅB, ṁB, and ωM.

Contact between the Kirchhoff hook and the cell body and between the hook and flagellar fila-
ment determines the relevant boundary conditions for all three structures. Relating the hydrodynamic
force and torque constraints (2) to the boundary conditions on the hook, we find

FB = nB, τB = mB,

FT = −nB, τT = −mT − (xT − xB) ∧ nB = −mB.

}
(15)

To enforce a prescribed motor torque, we use the condition eB · τB = −τM, which is equivalent
to the rod condition mB

3 = −τM. The other components of torque and force are obtained by time
stepping. At a given time t, we have the values of xB, dB

i , nB, and mB. From these we can compute
the configuration of the hook and hence also of the flagellum.

For a BEM mesh with N collocation nodes, we have a system of 3N boundary integral equations
(1) and 12 balance considerations (2) at a given instant in time. We solve this to determine the
unknowns: 3N traction components on the surface mesh, 6 body velocities UB and �B, 5 rates of
change of hook force and moment ṅB, ṁB

1 , and ṁB
2 , and the motor frequency ωM. In total we have 3N

+ 12 unknowns and an equal number of equations, which we solve using the lower triangular-upper
triangular decomposition technique with the LAPACK driver routine, DGESV. The meshes used in
this study had about N = 550 nodes, requiring ∼2 s to set up and solve the linear equations on a
desktop personal computer. Simulating the dynamics over one motor revolution required 3–5 min.

E. Steady states of the hook

We first restrict attention to swimming in unbounded fluid with an axisymmetric cell body so
that the velocities in the reference frame of the hook are independent of the rotational phase of the
body relative to the hook. In this reference frame, the velocities depend only on the instantaneous
shape of the hook, i.e., we can write

v = F(nB, mB), (16)

where v can describe any of the velocities in the hook basis, such as the translational velocity of the
swimmer, and F is a function that we are able to numerically evaluate by solving the BEM problem.
Consider the case where v is the vector of time derivatives of the hook contact forces and moments.
Then the roots of the function F are the steady states of the hook, nB* and mB*. When the hook is
in such a steady state, the flagellum simply rotates about the body axis. The stability of this state
is given by the eigenvalues of the matrix of partial derivatives of F . We denote the real part of the
eigenvalue with the greatest real part by 	. The steady state is stable if 	 < 0 and unstable if 	 > 0.

We use Newton’s method to find steady states. Convergence using this method usually requires
a good initial estimate of nB* and mB*, which may be a known steady state of a similar swimmer
or an estimate obtained by simulating the transient dynamics of the hook until an equilibrium is
reached.

Once we have obtained a steady state for the hook, we can define the steady alignment angle, ψ*,
which is the constant angle between the body and flagellum axes at the steady hook configuration.
We can also define the steady swimming speed, U*, which is the mean speed of the swimmer on
timescales much longer than a motor revolution. If the cell body is axisymmetric, the hook shape
is steady and the swimmer is in free space, then the velocities are constant in the reference frame
of the flagellum and the mean speed is given in terms of the instantaneous quantities, UB, �B, and
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�T ≡ ωMeB, by the formula11

U ∗ = UB · �B + �T

‖�B + �T‖ . (17)

F. Tracking

The instantaneous configuration of the swimmer is described by xB, eB, e⊥, nB, mB, and φH,
where e⊥ is a cell body orientation vector perpendicular to eB, φH is the phase of the hook director
basis relative to the body orientation, and the other quantities are as previously defined. Solving the
boundary integral equation with the constraints described above yields the instantaneous velocities,
UB, �B, ṅB, ṁB

1 , ṁB
2 , and ωM (we have ṁB

3 = 0 since we prescribe a constant motor torque). These
velocities are determined by the configuration and in turn determine the rate of change of the
configuration, which therefore evolves as a system of ODEs.

In principle, the time stepping of the model bacterium configuration could be performed using
the predictor–corrector method of Shum et al.13 for rigid hook swimmers. However, the elastic
dynamics of the hook introduces a very short timescale, making the system of equations stiff. In
order to avoid using prohibitively short time steps, an implicit rule must be used for time stepping.
For better stability, the backward Euler scheme is used to update nB(t), while the second-order
trapezoidal rule is used for the other variables. For a general variable x and velocity ẋ , these rules
are given by

x(t + δt) = x(t) + δt × ẋ(t + δt) (Backward Euler), (18)

x(t + δt) = x(t) + δt × (ẋ(t) + ẋ(t + δt))/2 (Trapezoidal). (19)

The orientation vectors are analogously transformed according to

eγ (t + δt) = R[δt × (�B(t) + �B(t + δt))/2] × eγ (t), γ = B,⊥, (20)

where R[u] is the rotation matrix for a rotation through the angle ‖u‖ in the direction u/‖u‖. Newton’s
method is used to solve these implicit equations for the evolution of the swimmer configuration
variables.

The first issue we will explore is the general behaviour of the hook while swimming in an
unbounded fluid. We will then consider the problem of swimming near a plane boundary. Previous
models with a rigid hook connection showed that many bacterial shapes lead to trapping of the
swimmer at constant distances near the boundary. In this study, we examine how flexibility of the
bacterial hook influences this boundary accumulation.

III. RESULTS

Two bacterial shapes are used in the results we present here. One of these shapes, B, is based on
parameters estimated for R. sphaeroides.41 Parameter values and a visual comparison are given in
Appendix B. When applied to swimmers using the rigid hook model, both of these shapes give rise
to boundary accumulating behaviour near a no-slip plane boundary. Unless otherwise stated, results
are based on simulations with shape A.

A. Bend/twist ratio

The bend/twist ratio � determines the relative tendency for a structure to bend or twist. This
ratio is also related to the Poisson ratio ν by the formula � = 1/(1 + ν). In particular, � = 2/3
corresponds to an incompressible material and � = 1 means that there is no transverse strain when
the material is stretched in one direction. Most familiar materials are characterized by bend/twist
ratios between these values. However, simulations42 of the hook structure have given an estimated
value of � ≈ 20. Our simulations showed negligible variations (no more than 0.002%) in the steady
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FIG. 3. Evolution of alignment angle ψ showing transient hook behaviour at different levels of relative stiffness. The steady
state alignment angles are plotted as dashed lines (see Fig. 5). (a) kH = 0.5, (b) kH = 0.6, and (c) kH = 1. Time is non-
dimensionalized by the timescale t̄ = 16π2ā3μ/τM, where ā is the body’s volumetric radius, μ is the dynamic viscosity of
the fluid, and τM is the magnitude of the motor torque. The timescale corresponds to the period of revolution of a sphere of
radius ā in the viscous fluid under the action of a torque of magnitude τM.

state alignment angle and swimming speed while varying � from 0.5 to 32 for a constant relative
hook stiffness kH = 1. The insensitivity to � is to be expected since this parameter only affects the
rate of twisting of the transverse hook directors about the centerline without altering the geometrical
curvature. We use the value � = 1 in all of the results presented.

B. Hook rigidity

One of the outcomes observed in simulations in unbounded fluid is that the hook approaches a
steady state, which is independent of the initial hook conditions. This corresponds to a hook of stable
shape rotating with constant angular velocity about the motor axis, which leads to steady swimming.
With a change in parameters, the alignment angle between the cell body and flagellum can oscillate
and grow until the hook curvature becomes too large and beyond the scope of the current model.
These two outcomes are illustrated in Fig. 3 and corresponding swimmers are shown at various times
during a run in Fig. 4.

Using the method described above, we locate steady states and tracked the cell body–flagellum
alignment angle, the mean swimming speed, and the stability of the steady state as the relative hook
stiffness is gradually varied (Fig. 5). We find that below a critical value of relative hook stiffness
kH ≈ 0.5, the steady state is unstable since 	 > 0 (Fig. 5(b)). Diverging hook forces and torques
lead to large deformations of the hook and the present Kirchhoff model can no longer be applied.
In an intermediate range of relative hook stiffness, the flagellum is well aligned with the axis of the
body and the swimming speed is close to that calculated for the corresponding bacterium in the rigid
hook model.

For high values of relative stiffness, the hook is nearly straight. Since the hook joins tangentially
to the helical flagellar filament and this tangent is not aligned with the axis of the helix, the flagellum
rotates about an axis that is not close to its natural axis, causing significant oscillatory, lateral motion,
and low net propulsion. A bifurcation is evidenced by a sharp jump in the stability measure, 	, at
kH ≈ 2, which coincides with the transition from the strong to the poor swimming regime. It should
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(a)

(b)

FIG. 4. Exemplar swimmers (a) with a stable hook state and (b) with an unstable steady hook state. The initial configurations
(right) are out of equilibrium but a steady state is soon reached in the stable case. The curves between the two instances shown
in each case trace the paths of the junction point xB. The trajectories correspond to cases (c) and (a), respectively, from Fig. 3
(enhanced online) [URL: http://dx.doi.org/10.1063/1.4721416.1] [URL: http://dx.doi.org/10.1063/1.4721416.2].

be emphasized that the limit of high relative stiffness does not correspond to the rigid hook model,
which assumed an infinitely stiff but curved hook, allowing the helical axis to be aligned with the
cell body axis.

Movies of swimming in the unstable (kH = 0.5), stable (kH = 0.6), and stable but inefficient (kH

= 2) regimes are provided as videos to Figs. 4 and 5.
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FIG. 5. Variations with relative hook stiffness of the steady state (a) alignment angle, (b) stability, and (c) swimming speed.
Solid curves indicate data for bacterial shape A while dashed curves correspond to shape B. Swimming speeds in (c) are
normalized by UR, the speed computed using the rigid hook model with the equivalent geometrical parameters (enhanced
online) [URL: http://dx.doi.org/10.1063/1.4721416.3].
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FIG. 6. Variations in steady state alignment angle (solid curve) and swimming speed (dashed curve) with hook length LH/ā.
The quantities are normalized by ψ0 and U0, respectively, the values for the standard swimmer shape A, which has hook
length LH/ā = 0.2.

C. Hook length

Increasing the hook length while maintaining a constant relative hook stiffness leads to gradual,
but non-monotonic, changes in swimming speed and alignment angle (Fig. 6). Typical hook lengths
range from about 50 nm in E. coli43 to about 100 nm in R. sphaeroides.33 We varied the simulated
hook length from the equivalent of 35 nm to 700 nm and found that the free space swimming
speed and cell body–flagellum alignment angle varied by no more than 10%. However, this does
not imply that hook length regulation is unnecessary in bacteria since the hook relative rigidity, kH

:= EI/τMLH, is inversely proportional to its length and we have shown that swimming motion is
sensitive to relative hook rigidity.

D. Boundary accumulation

Previous numerical studies have demonstrated the tendency for flagellated bacteria to swim in
circular orbits near no-slip plane boundaries,13, 15 which we refer to as boundary accumulation. The
path curvature is a result of the asymmetry in the vertical direction due to the horizontal wall. Both
the stable swimming height and path curvature depend on the shape of the model swimmer and it
was shown that not all swimmers achieve steady boundary swimming; some have a strong tendency
to collide into the boundary and others are deflected away.

We now explore the effect of hook flexibility on near-surface swimming. In the presence of
a plane boundary, the instantaneous swimmer dynamics depend on the distance and orientation
relative to the wall as well as the hook forces and torques. Simulating over long timescales for
particular values of relative hook stiffness, we observe a transient phase relaxing to periodic motion
at a constant average distance from the wall, the defining feature of boundary accumulation (Fig. 7).
In free space, the hook would approach a steady state, but the plane boundary breaks the invariance
with respect to motor phase and we now find small oscillations in the hook shape on the timescale
of the motor revolution.

However, other outcomes can be observed when the relative hook stiffness is varied. The
boundary behaviour for bacterial shape A is summarized in Fig. 8. At an intermediate value of
relative stiffness, kH = 1, the flagellum is well aligned with the body, giving rise to behaviour very
similar to that of an equivalent swimmer with the rigid hook model in both free space and half space
fluid domains. Increasing the relative hook stiffness decreases the accumulation height slightly until
we reach the critical point observed in free space at which the alignment angle becomes large and
the swimmer begins to “wobble” significantly. This causes a much larger fluctuation in the junction
position, which can be seen in Fig. 8, as well as a slightly increased average height above the wall.

Decreasing the relative hook stiffness from the intermediate value kH = 1, we find that the stable
accumulation height increases gradually before dropping suddenly at around kH = 0.65. By kH

= 0.6 we could no longer find a stable boundary accumulating trajectory as the swimmer had a
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FIG. 7. Time series of (a) the swimmer’s height above the wall, h, and (b) the hook alignment angle, ψ , as a bacterium with
relative hook stiffness kH = 1 approaches a stable orbit above a plane boundary. The equivalent swimmer using the rigid hook
model has a stable accumulation height h∗/ā ≈ 0.94, indicated by a horizontal dashed line in (a) and the stable alignment
angle ψ* ≈ 0.13 in free space is marked by a horizontal dashed line in (b).

strong tendency to collide into the wall. Close to this critical relative stiffness, we note an increase
in the alignment angle relative to the free space stable alignment. This is reminiscent of the loss
of stability of the steady hook configuration seen in free space at around kH = 0.5 (Fig. 5). The
wall appears to destabilize the hook by exerting additional stresses on the flagellum, causing the
alignment angle to grow at relative hook stiffnesses slightly higher than the free space critical point.
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kH

FIG. 8. Near-surface swimming behaviour after transience for bacterial shape A with varying relative hook stiffness. (a)
Curves marked with dots indicate the minimum and maximum alignment angles attained over a cycle of periodic motion
compared with the free space stable angle shown by the unmarked, thick curve. (b) The minimum and maximum swimming
heights during stable boundary swimming (curves marked with dots) and the minimum separation distance between the wall
and the swimmer (curve marked with crosses). Using the rigid hook model, this swimmer would have a stable swimming
height of h∗/ā ≈ 0.94. The dashed lines on the left hand side mark the relative stiffness value for which the swimmer was
found to collide with the wall and no boundary accumulating trajectory could be obtained.
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FIG. 9. Near-surface swimming behaviour after transience for bacterial shape B with varying relative hook stiffness. (a)
Curves marked with dots indicate the minimum and maximum alignment angles attained over a cycle of periodic motion
compared with the free space stable angle shown by the unmarked, thick curve. (b) The minimum and maximum swimming
heights during stable boundary swimming (curves marked with dots) and the minimum separation distance between the wall
and the swimmer (curve marked with crosses). Using the rigid hook model, this swimmer would have a stable swimming
height of h∗/ā ≈ 0.92. The dashed lines on the left and right hand sides mark relative stiffness values for which the swimmer
was found to escape from the wall and no boundary accumulating trajectory could be obtained.

The trends described above as the relative hook stiffness is altered do not apply to swimmers
of all shapes. Using bacterial shape B, stable orbits were found, though for a much narrower range
in relative stiffness (Fig. 9). Throughout the intermediate range of relative stiffness, a similar trend
to that with shape A was observed: the stable height increased with decreasing relative stiffness.
However, the variation was very abrupt near kH = 1 and trajectories failed to remain close to the
wall when values kH ≤ 0.975 were applied. Similarly, trajectories consistently deflected away from
the boundary when values kH ≥ 2.5 were tested. In other words, the swimmer transitioned from a
boundary accumulator at intermediate values of relative hook stiffness to a boundary escaper when
the relative stiffness was either too low or too high. This contrasts with shape A, which collided
with the boundary when the hook was too flexible and maintained stable near-surface orbits at
intermediate and high values of relative hook stiffness within the investigated range.

Two examples of boundary accumulating trajectories for bacterial shape A are shown in Fig. 10.
One swimmer has relative hook stiffness kH = 0.7, which is close to the lower limit for stable
boundary accumulation, and the other has relative stiffness kH = 2, just at the onset of “wobbling”
motion. In addition to the difference in accumulation height, we note significantly different curvatures
of the circular paths resulting purely from the change in relative hook stiffness.

IV. DISCUSSION

A. Free space

While hook flexibility is clearly necessary in peritrichous bacteria, where many filaments must
wrap around the cell body to join a flagellar bundle, it is not understood what role hook flexibility
has in monotrichous species. Analysis of several species revealed that hooks from monotrichous
and peritrichous bacteria have similar stiffnesses.24 From the results we have shown, there may be a
bounded range of relative hook stiffness relative to the product of the hook length and motor torque
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(i)

(ii)

FIG. 10. Trajectories of two geometrically identical swimmers near plane boundaries. Swimmer (i) has relative hook stiffness
kH = 0.7 and swimmer (ii) has relative hook stiffness kH = 2. The 3D trajectories are shown in thick curves while projections
of the trajectories onto the x–y plane are shown in thin curves. The heights of the swimmers above the wall are also indicated
at regular time intervals by vertical lines from the x–y plane. The bacteria are shown at their respective starting positions.
Note the much smaller radius of curvature of swimmer (ii) once the steady circular orbit is reached.

for good swimming performance. Using available empirical data, the physiological relative stiffness
can be estimated at kH ∼ 0.1−1, the upper portion of which matches well with our computed
regime of effective swimmers. However, comparisons must be made with care as comprehensive
experimental data has not been collected for R. sphaeroides or any other suitable species. Since
R. sphaeroides is known to have a number of distinct characteristics, including a naturally straight
hook that our model assumes, it is possible that the elastic modulus and other important properties
are significantly different from those of other species.

Using a modification of the method described in this article, one could examine the dynamics of
bacteria with naturally curved hooks. Depending on the preferred curvature, there could be a much
less restrictive upper bound on relative hook stiffness since body–flagellum alignment would require
less deformation of the hook.

It has previously been noted that the motility of flagellated bacteria is sensitive to hook length.
Mutants that grow abnormally long hooks have an impaired ability to swim.25 We found only a
modest variation in swimming behaviour with hook length for a fixed relative stiffness. However,
relative hook stiffness is inversely proportional to hook length for a given material and our simulations
indicated that stiffness has an important effect on flagellar motion. Lowering the relative stiffness was
found to result in slightly higher swimming speeds, which seems to contradict empirical evidence.
However, the dynamical instabilities that occur below a certain relative stiffness threshold provide a
possible mechanical explanation for the need to regulate the hook length.

In an intermediate range of relative hook rigidity, there is little qualitative difference between
the rigid hook model and the current model in unbounded fluid, where we find that the hook quickly
enters a steady state and therefore becomes indistinguishable from rigid to an observer. The equations
for the elastic rod determine the shape of the connecting hook so that the assumption of the growing
helical amplitude of the filament in the rigid hook model is no longer required. Another difference
is that the tail axis is not perfectly aligned with the body axis. This causes a slight “wobble” in the
swimming motion of the bacterium, often also observed under a microscope, which is present to a
much smaller degree in the rigid hook model.
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B. Accumulation at plane boundaries

Although the presence of a no-slip plane boundary does not appear to significantly perturb the
hook state, we find that boundary accumulation is very sensitive to hook flexibility. Changes in rela-
tive hook rigidity can lead to abrupt transitions between colliding, stable boundary accumulating, and
boundary escaping behaviour. Over the relative stiffness range that permits boundary accumulation,
the stable swimming height varied between about h∗/ā = 1 and h∗/ā = 1.5 for shape A and from
h∗/ā = 1 to h∗/ā = 2.5 for shape B.

Since h* is measured from the wall to the cell body–hook junction, these variations in stable
swimming height translate to minimum separations that vary from 0.07 ā to 1.6 ā as the relative
stiffness is altered (Fig. 9). The lower figure amounts to about 50 nm, which, depending on the
substrate, could make the bacterium susceptible to close range surface interactions. At the other end
of the range, 1.6 ā is over 1 μm for a bacterium like R. sphaeroides; the cell will be kept well beyond
the reach of likely surface forces.

Thus, hook flexibility could alter the likelihood of close range surface interactions as well
as the tendency to accumulate near surfaces at all. The changes in preferred separation also have
a significant impact on the strength of hydrodynamic wall interactions and hence the radius of
curvature of the circular orbit. This is evident in Fig. 10.

It has previously been shown that the cell body aspect ratio, flagellum length, and other pa-
rameters defining the bacterium’s shape are important factors determining the swimming behaviour
near boundaries. We now find that the relative hook stiffness can also affect the types of trajectories
near boundaries. Indeed, it appears that the effects of varying the relative hook stiffness depend on
the swimmer shape. Further investigation may shed light on the most important factors and general
trends as shape and hook stiffness are altered.

C. Adjusting the relative hook stiffness

We have discussed the influence of the relative hook stiffness on free space swimming and
boundary accumulation. Such effects can be realized, at least theoretically, by changing the hook
length or motor torque as well as the flexural rigidity. The motor torque can therefore potentially be
controlled by changing the viscosity of the medium since this would affect the viscous load on the
flagellum, leading to a different motor frequency and torque.44

It may also be possible to dynamically control the relative hook stiffness, and consequently
boundary accumulation, by modulating the motor activity in a fixed medium. Most bacteria lack
sufficient motor control to regulate boundary accumulation in this way but R. sphaeroides is known
to have a variable-speed motor45 so this effect may be physiologically relevant as well as being of
possible interest to engineers of artificial flagellated micro-swimmers. Furthermore, the modulation
of motor torque could result in substantial changes in the hook shape and dynamics, with the
possibility of not only inducing boundary escape but also unpredictable reorientation, or tumbling,
resulting from the elastic instability seen when the relative stiffness is sufficiently low. This would
be an interesting area of further investigation.

V. CONCLUSION

We have shown that within a limited range of hook rigidities relative to the product of the motor
torque and hook length, a model bacterium with a single flagellum and naturally straight, elastic
hook behaves in a manner that closely resembles the motion of model swimmers with curved, rigid
hooks in unbounded fluid and near a plane boundary. This gives support for the use of simpler
models that neglect hook dynamics as long as the hook stiffness of the modeled organism is in this
regime and additional constraints, such as obstacles in the fluid, would not appreciably perturb the
hook from its free space state.

At moderate relative hook rigidities in free space, the hook relaxes to a steady shape with the
helical flagellum closely aligned with the body axis, resulting in effective propulsion. When the
relative hook rigidity is increased beyond a critical level, there is a sudden misalignment between
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the motor and flagellum axes, causing the swimmer to “wobble” inefficiently. Below a threshold
relative stiffness, we found that the hook force and torque would suddenly undergo rapid changes
characteristic of dynamical instabilities. The buckling of beams and rods has been extensively
studied in other contexts30, 32, 46 but is beyond the scope of the current study. However, it is likely
that buckling and unsteady behaviour of the hook would be detrimental to effective swimming. We
therefore conclude that monotrichous bacteria are unable to swim well if the hook is either too
flexible or too rigid. Equivalently, our model predicts that effective swimming can only be achieved
within a specific range of applied motor torques given a particular bacterium.

Although the boundary accumulation observed with rigid hook models can be reproduced with
our Kirchhoff hook model, the behaviour that emerges is very sensitive to the relative stiffness of
the hook. We have demonstrated that collisions, accumulation, and escape from boundaries can be
induced by altering the relative hook stiffness, which has the implication that the behaviour of a
bacterium near a plane boundary can be modulated by adjusting the motor activity.

Using the model we have developed, it would be interesting to address the problem of reverse
swimming. Some species of marine bacteria, such as V. alginolyticus, frequently switch between
backward and forward swimming.47 Instead of simply retracing its path, it has been observed that
the swimming direction changes by about 90◦ during the transitions from backward to forward
swimming.48 This process is not fully understood and may involve conformational changes of the
flagellar filament itself. However, with the current model, we can examine the stability properties of
the hook shape during backward swimming and simulate the orientation changes that occur when the
motor torque is abruptly changed, assuming the filament does not deform. This also has relevance
to the reorientation of R. sphaeroides as the motor stops and restarts.41

Another possible future application of our model is the investigation of tethered bacterium
cells. Many past experiments involved rotating cells that are bound to a substrate by their flagellum
filaments in order to determine mechanical properties of the flagellum.49–51 Hashimoto et al.52

recognized that complicated dynamics may arise from boundary interactions as the cells rotate.
Although we have so far neglected short range cell–surface interactions, the boundary element
method is well suited for simulating tethered cells and could be used to verify or propose corrections
required for estimates of forces and torques in such systems.

ACKNOWLEDGMENTS

We are grateful to Dr. George Wadhams and Professor Judy Armitage for insightful comments
concerning the motility of R. sphaeroides.

APPENDIX A: ROD APPROXIMATIONS

1. Inextensible

To show that hook extensibility is negligible, we estimate the deformation of an elastic rod
supporting the compressive force required to push a bacterium-sized sphere of radius R = 1 μm
through water at a physiological swimming speed U = 100 μm s−1. The magnitude of the force is
given by the Stokes drag formula,

F = 6πμRU ≈ 2 pN. (A1)

Based on bacterial hook properties, we suppose the rod has radius r = 10 nm, length LH = 100 nm,

and Young’s modulus E = 105 N m−2, with this last quantity estimated by simulation studies.42

Powers53 showed that the ratio of relaxation timescales for stretching and bending scaled with the
square of the aspect ratio, that is,

Tstretch/Tbend ∼ (r/LH)2 = 1/100 � 1. (A2)

We can therefore consider the equilibrium state of compression, where the strain is given by

�L

LH
= F

Eπr2
≈ 0.06. (A3)
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This translates to a displacement of the flagellar filament of the order of 6 nm, which is negligible
on the scale of the whole bacterium. The dominant influence of hook deformation on the swimmer
is through the change in orientation of the flagellar filament relative to the cell body resulting from
bending motion of the hook.

2. Quasi-static

For small, inextensible, planar deformations of the hook, we describe the dynamics with the
Euler-Bernoulli beam equation,

∂2

∂x2

(
E I

∂2 y

∂x2

)
+ ρ A

∂2 y

∂t2
= f (x, t), (A4)

where x is the axis of the undeformed beam, y is the transverse deflection, E is the Young’s modulus
of the beam, I is the second moment of area, ρ is the mass density, A is the cross-sectional area, and
f is the shear load per unit length along the beam.

For a cylinder of radius r = 10 nm, the second moment of area is I = πr4/4 ≈ 10−32 m4.
Assuming that both the deflection and the lengthscale of variations are of the order of the hook
length, the elastic term in (A4) is of the magnitude

E I
∂4 y

∂x4
∼ E I (1/LH)3 ≈ 10−6 N m−1. (A5)

Assuming that the hook is of the same density as water, we have ρ = 1000 kg m−3. The inertial
term in (A4) is given by

ρ A
∂2 y

∂t2
∼ ρπr2LH/T 2 ≈ 3 × 10−20/T 2 N m−1, (A6)

where T is the characteristic timescale of fluctuations. Bacteria typically swim with motor frequencies
of 100–1000 Hz, giving a timescale of T ∼ 10−3−10−2 s. This results in an inertial contribution of
the order of 10−16–10−14 N m−1. Comparing this with the elastic bending term, we conclude that
inertia may be neglected.

3. No drag on hook

The shape of the hook is found by repeated integration of the quasi-static Euler-Bernoulli beam
equation. On integrating once, we find the elastic bending force in terms of the contact and applied
forces:

F(x) = E I
∂3 y

∂x3
= F0 +

∫ x

0
f (s) ds. (A7)

Here, F0 is the contact force applied at the x = 0 boundary of the hook, which we define to be the
end attached to the flagellar filament, and the distributed load per unit length on the hook, f, is due
to the action of viscous drag. In particular, noting the forces for the hook and flagellar filament will
scale with their respective lengths and velocities, and given that the velocities are broadly the same,
we anticipate the ratio

∫ LH

0 f (s) ds

F0
∼ LH

Lfilament
� 1. (A8)

Therefore, we can neglect the influence of the viscous drag on the hook, f, and determine the shape
of the hook by considering quasi-static elastic equations with no distributed load.
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APPENDIX B: BACTERIAL GEOMETRY PARAMETERS

The two sets of parameters for bacterial geometry used in the presented results are given in
Table I. Shape B is based on parameters estimated for R. sphaeroides.41

TABLE I. Key parameters determining geometry of the model bacteria used in this article. The lengthscale ā is the volumetric
radius of the spheroidal cell body.

Shape A B

Body:
Length/width 2.000 1.625

Hook:
Length/ā 0.200 0.213

Flagellum:
Length/ā 10.000 7.434
Radius/ā 0.050 0.021
Pitch/ā 2.000 1.770
Amplitude/ā 0.318 0.276
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33 B. González-Pedrajo, T. Ballado, A. Campos, R. E. Sockett, L. Camarena, and G. Dreyfus, “Structural and genetic analysis
of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control,” J. Bacteriol. 179, 6581–6588 (1997).

34 C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, New
York, 1992).

35 J. R. Blake, “A note on the image system for a stokeslet in a no-slip boundary,” Proc. Cambridge Philos. Soc. 70, 303–310
(1971).

36 S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial polyhooks measured with optical tweezers,” Cytometry
12, 492–496 (1991).
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