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Abstract 

The present thesis develops several new full-field, fast Fourier transform (FFT)-based crystal 

plasticity modelling tools for microstructure engineering. These tools are used to explore elasto-

viscoplastic deformation, localized deformation, 3D grain morphology, microstructure evolution, 

dynamic recrystallization and their effects on formability of polycrystalline metals with particular 

attention paid to sheet alloys of aluminum and magnesium. The new FFT-based crystal plasticity 

models developed in this work overcome several inherent problems present in the well-known 

crystal plasticity finite element method (CP-FEM) and elasto-viscoplastic fast Fourier transform 

method (EVP-FFT) in solving representative volume element (RVE)-based problems. The new 

models have demonstrated significant fidelity in simulating various deformation phenomena in 

polycrystalline metals and prove to be faster and accurate alternatives for obtaining full-field 

solutions of micromechanical fields in aluminum and magnesium sheet alloys. 

In particular to the aluminum alloys, which are currently replacing heavier steel parts in the 

automotive industry, the sheet aluminum alloys have significantly improved corrosion resistance 

and strength-to-weight properties in comparison to steel. However, aluminum alloys are still 

outperformed by steel in terms of formability. To improve the formability of an aluminum sheet, 

one method is to develop physics-based predictive computational tools, which can accurately and 

efficiently predict the behavior of aluminum alloys and thus allow designing the microstructure 

with desired properties. 

Accordingly, in first part of this thesis, a novel numerical framework for modelling large 

deformation in aluminum alloys is developed. The developed framework incorporates the rate-

dependent crystal plasticity theory into the fast Fourier transform (FFT)-based formulation, and 

this is named as rate tangent crystal plasticity-based fast Fourier transform (i.e., RTCP-FFT) 

framework. This framework is used as a predictive tool for obtaining stress-strain response and 

texture evolution in new strain-paths with minimal calibration for aluminum alloys. The RTCP-

FFT framework is benchmarked against an existing FFT-based model at small strains and finite 

element-based model at large strains, respectively, for the case of an artificial Face Centered Cubic 

(FCC) polycrystal. The predictive capability as well as the computational efficiency of the 

developed framework are then demonstrated for aluminum alloy (AA) 5754. 
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In the second part of this thesis, the RTCP-FFT framework, developed earlier, is coupled with the 

Marciniak and Kuczynski (MK) approach to establish a new full-field framework for generating 

forming limit diagrams (FLDs) of aluminum sheet alloys, e.g., AA3003 and AA5754. The new 

coupled framework is able to investigate the complex effects of grain morphology, local 

deformation, local texture and grain interactions on the predictions of forming limit strains. This 

study reveals that among the various microstructural features, the grain morphology has the 

strongest effect on the predicted FLDs for aluminum alloys. Furthermore, this study also suggests 

that the FLD predictions can be significantly improved if the actual grain structure of the material 

is properly accounted for in the crystal plasticity models. 

In addition to aluminum alloys, magnesium alloys are getting significant attention by the 

automotive industry due to their light weight and high specific strength. However, the automotive 

industry has not been able to take full advantage of the lightweight characteristic of magnesium 

alloys because of their poor formability at room temperature. Therefore, to enhance the workability 

and restore their ductility, the magnesium alloys are formed at elevated temperature. High 

temperature forming of magnesium alloys is often accompanied by dynamic recrystallization 

(DRX), which allows the final microstructure, as well as the properties of the material (e.g., initial 

grain size, initial texture, etc.), to be controlled. Therefore, DRX coupled with a full-field crystal 

plasticity FLD framework can be used as a tool to design microstructure of a material. Since it 

would be beneficial to be able to redesign the material properties of magnesium alloys using 

physics-based computational tools than using physical experiments, this work takes a step ahead 

towards such an outcome by presenting a new framework that predicts DRX and models its effects 

on the formability of magnesium alloys. 

Accordingly, in the third part of this thesis, a new full-field, efficient and mesh-free numerical 

framework, to model microstructure evolution, dynamic recrystallization (DRX) and formability 

in hexagonal closed-packed (HCP) metals such as magnesium alloys at warm temperatures, is 

developed. This coupled framework combines three new FFT-based approaches, namely: (a) 

crystal plasticity modelling of HCP alloys, (b) DRX model, and (c) MK model. First, a rate 

tangent-fast Fourier transform-based elasto-viscoplastic crystal plasticity constitutive model for 

HCP metals (RTCP-FFT-HCP) is developed. Then, it is coupled with a probabilistic cellular 

automata (CA) approach to model DRX. Furthermore, this new model is coupled with the 
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Marciniak-Kuczynski (M-K) approach to model formability of magnesium alloys at elevated 

temperatures.  

The RTCP-FFT-HCP model computes macro stress-strain response, twinning volume fraction, 

micromechanical fields, texture evolution and local dislocation density. Nucleation of new grains 

and their subsequent growth is modeled using the cellular automata approach with probabilistic 

state switching rule. This framework is validated at each level of the coupling for magnesium sheet 

alloy, AZ31. First, the RTCP-FFT-HCP model is validated by comparing the simulated macro 

stress-strain responses under uniaxial tension and compression with experimental measurements 

at room temperature. Furthermore, the texture evolution predicted with the new model is compared 

with experiments. The predictions show a good agreement with experiments with high degree of 

accuracy. Next, the forming limit diagrams (FLDs) are simulated at 100 C, 200 C and 300 C, 

respectively, for AZ31 sheet alloy considering the effects of DRX. The predicted FLDs show very 

good agreement with the experimental measurements. The study reveals that the DRX strongly 

affects the deformed grain structure, grain size and texture evolution and also highlights the 

importance accounting for DRX during FLD simulations at high temperatures. 
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Chapter 1. Introduction 

1.1 Background 

Almost every aspect of present-day life involves materials and benefits from the advances in 

materials research. Laptops, mobile phones, automobiles, aircrafts, power stations, fuels, 

medications, and much else that we now take for granted, all rely on materials. In addition, 

numerous processes in the world, ranging from the growth of ice in the upper atmosphere, all the 

way down to diseases caused by protein mis-folding, also involve the properties of materials. 

Moreover, many of today's challenges, such as climate change, energy production and healthcare 

demand robust methods for probing the properties of a vast range of materials. Thus, materials 

modelling can drive progress, saving time, effort and resources and can be used to solve real-world 

problems. Modelling means simplification of reality that is intended to promote understanding of 

a real-world phenomenon.  

Describing a physical phenomenon using numerical models have been used for a long time. 

Around 430 years ago, Galileo Galilei proposed that it is important to depict the outcomes 

scientifically once a specific number of trials has been performed. If one succeeds in illustrating 

the physical phenomenon using the mathematical equations, at that point, the response of the 

system of interest can be anticipated for an expansive scope of conditions, including the ones for 

which leading the trials are extremely troublesome, too exorbitant, or impractical by any stretch of 

the imagination. Although, mathematical equations allow one to understand the physical 

phenomena, yet it is typically considered as an analytical modelling that can take care of simple 

problems only. Complex phenomena could not be modeled using the analytics until the advent of 

computers in 19th century that broke the computing barrier and made numerical modelling of 

physical mechanisms possible for complex parts in an efficient manner with good precision.  

The advancements in numerical modelling led to development of several new material modelling 

techniques, the most popular one among those was finite element method (FEM). Due to its 

robustness and general applicability, FEM was pleasantly adopted by the academia and the 

industries all over the world to test large spectrum of problems and thus the applications of 
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numerical modelling mushroomed drastically over the past few decades. As the usage increased, 

the roadblocks in numerical modelling also increased, which challenged the assumptions made 

during the initial development of numerical methods as the technology was hitting its limits. For 

example, it is easy to predict linear behavior in a homogeneous material using FEM but when it 

comes to model fracture, the conventional FEM fails. These kinds of problems shifted the focus 

of researchers to improve the numerical models. In addition, harnessing the increased 

computational ability of computers, going beyond the macro scale, and analyzing behavior of 

crystals, atoms, molecules etc. that further led to generation of various material models. 

Nowadays, the leading engineering companies, for example, General Electric (GE), General 

Motors (GM), Ford, Airbus and Boeing use computer simulations to demonstrate, test mechanical 

and aerodynamic attributes of their products, for example, cars, jet engines and aircrafts, before 

assembling them or even before testing a prototype model in a wind tunnel or crashing them into 

a wall. Among the various advantages of the modelling materials, one is that if any issues found 

in the design amid modelling, it can be fixed before sending the technical illustrations to the 

assembling unit of the company and thus the expensive economical misfortunes can be avoided. 

1.2 Motivation 

When consumers think of buying a new vehicle, they expect it to be safe, affordable and fuel-

efficient. They envisage faster, stronger and lighter cars. However, people are seldom aware of the 

race of automotive materials to meet automakers’ demands to deliver the definitive lightweight 

technologies. Consumer preferences have constrained the downsizing options available to 

automakers. In addition, the safety and performance benchmarks (e.g., The Corporate Average 

Fuel Economy (CAFE) standards) limit their ability to further reduce the weight of a vehicle with 

the conventional materials. Every potential vehicle light weighting aspect is under investigation. 

The main method that automakers use to reduce weight and boost vehicle fuel economy is the 

material substitution. Thus, replacing heavier iron and steel with light weight advanced 

composites, plastics, aluminum alloys, magnesium alloys and advanced high-strength steel. 

High strength-to-weight ratio, good formability, good corrosion resistance and recycling potential 

have made aluminum alloys the ideal candidate for the replacement of heavier materials in the 
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automotive industry. Most aluminum is used for car parts, e.g., cylinder heads, radiators, cars body 

and wheel rims. However, it was found that magnesium alloys have several advantages over 

aluminum alloys due to its light weight and physical properties in terms of manufacturability. 

Because of the increasing need for alternative materials, interest in magnesium alloys has been 

revived and magnesium alloys have become more common. They are present in automotive 

components, e.g., steering wheels, steering column parts, instrument panels, seats, gearboxes, and 

air intake systems. Even though aluminum alloys are still widely used today, the market for 

magnesium alloys is predicted to develop and their applications will rapidly increase in the near 

future due to their superior physical and mechanical properties. 

Particular to aluminum applications in automotive and aerospace, advances in aluminum 

engineering over the past few decades have led to the invention of a wide number of alloys for 

various applications. Typically, these alloys are labeled as (AA) xxxx where AA represents 

“aluminum alloy” followed by a 4-digit number corresponding to the major alloying element and 

alloying content. For example, (AA) 5754 is a common aluminum alloy that is used as sheets in 

door/roof panels of cars and (AA) 3003 is widely used in aircraft structures, especially in wing and 

fuselage structures that are usually under extreme amount of tension.  

The use of magnesium, copper and zinc as alloying elements change the properties of aluminum 

in such a way that they can be hardened as well as softened by the use of heat. The different heat 

treatment results in different temper designations and are indicated by a letter number combination 

following the 4-digit alloy number. The most common temper designations are T3 and T6. The T3 

represents solution heat-treated and cold-worked by the flattening process. T6 is also solution heat-

treated but artificially aged. 

Even though the sheet aluminum alloys have significantly improved corrosion resistance and 

strength-to-weight properties, yet it is still outperformed by steel in terms of formability. This is a 

significant drawback as vehicle designs are becoming more intricate and demands for enhanced 

mechanical properties such as formability are increasing nowadays. Thus, several methods have 

been provided by the researchers to improve the formability of an aluminum sheet. Controlling the 

alloying content and alloying elements can improve the materials ductility, but at the cost of some 

desired properties such as strength.  
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The material microstructure can also be controlled; however, this requires complex material 

processing and is difficult to control experimentally. However, the mechanical properties of 

aluminum components can be tailored by using numerical tools so that lightweight designs can be 

achieved (Hausöl et al., 2010; Merklein et al., 2012). Thus, the most effective method is to develop 

physics-based predictive computational tools that can accurately and efficiently predict the 

behavior of aluminum alloys.  

In addition to aluminum alloys, magnesium, being the lightest of the structural metals, is also 

garnering significant interest from the automotive industry. While boasting of highest strength-to-

weight ratio among all the structural metals, magnesium is also 36% lighter than aluminum, and 

76% lighter than iron. Thus, magnesium and its alloys could be used to replace aluminum in 

vehicles that further reduce the weight and improves fuel efficiency.  

At present, the amount of magnesium used in cars ranges between 14 and 26 kg saving about 20% 

of weight over aluminum. However, mainly the cast magnesium alloys are used as replacements. 

The reason for the limited use of magnesium alloys in vehicles is because of their poor formability 

at room temperature caused by the low symmetry of the crystal structure and high anisotropy. 

There are several solutions to this problem; one of them is to use rare earth elements in the alloys 

and the other method is to control the microstructure (i.e., initial grain size and initial texture 

strength). The latter can be attained by processing magnesium alloys at high temperature, which 

is inevitably accompanied by the dynamic recrystallization (DRX) that changes the size and shape 

(i.e., morphology) of the grains as well as the texture. The DRX takes place during hot working of 

metallic alloys and it leads to material softening and improved ductility. Moreover, the DRX can 

be used as a tool to control the initial texture and grain size of metals, both of which play a 

significant role in the formability of the HCP metals.  

The process of dynamic recrystallization (DRX) is a complex phenomenon that occurs because of 

migration of the high angle grain boundaries driven by the stored energy associated with 

dislocations. At elevated temperatures, DRX plays an important role in the texture evolution. 

However, using the experimental methods to find the optimal microstructural parameters required 

to achieve certain characteristics for the magnesium alloys (e.g., initial grain size, initial texture 

strength) are extremely difficult, time-consuming and expensive.  
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Therefore, the development of an advanced numerical model, which is able to predict and 

investigate the effects of various DRX parameters on the texture formation, 3D microstructure 

evolution and formability in the magnesium alloys, is needed. 

1.3 Research Scope and Research Problems 

Virtual fabrication is a key ingredient for increasing the competitiveness of the industry, by 

reducing the time from concept to market and by increasing quality and reliability of the final 

product. Pushing more and more tasks from the usual design/test/redesign cycles to the computer-

based testing of a virtual prototype dramatically reduces the research and development phase. 

Nowadays, in automotive and aerospace industries, an important part of the virtual factory relies 

on the numerical simulation of aluminum and magnesium parts by crystal plasticity models.  

Better understanding of microstructure evolution of aluminum and magnesium alloys can 

significantly improve the accuracy of predictions using crystal plasticity theory. To achieve this, 

the crystal plasticity model must capture, if not all, but some of the important microstructural 

features such as texture, grain morphology, grain interactions and recrystallization mechanisms. 

Although, such crystal plasticity models, e.g., crystal plasticity Finite element method (CP-FEM) 

and elasto-viscoplastic fast Fourier transform (EVP-FFT) already exist that can capture 

microstructure evolution explicitly and can predict material’s behavior, which is in good 

agreement with experiments. However, the massive amount of computational cost incurred by 

these models, hinders their use to replace expensive experiments for testing of aluminum and 

magnesium parts. Furthermore, the mesh related problems and the degeneration of the finite 

elements at excessive localized strains are some of its main limitations that render use of CP-FEM 

impractical for formability analyses. Consequently, the industry prefers using meshless crystal 

plasticity models that are extremely efficient but are less accurate as they are based on 

oversimplification schemes of polycrystal behavior such as Taylor-type models (explained in 

section 2.2.2).  
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Therefore, a crystal plasticity-based full-field and meshless numerical framework, which can 

model excessive localization problem and gives similar or better results than CP-FEM with smaller 

computational cost, is need. The present thesis is a contribution in this direction. 

Assessing the current state-of-the-art crystal plasticity models available in literature, in case of 

aluminum alloys, for example, the existing crystal plasticity-based formability modelling tools 

does indeed give insightful guidelines with respect to optimized microstructure (Yoshida et al., 

2007; Yoshida, 2014). Even though this makes crystal plasticity an appealing approach to predict 

formability, often no clear improvement in the accuracy of the predictions of forming limit 

diagrams (FLDs) is obtained from the crystal plasticity models with respect to newly developed 

phenomenological material modelling approaches (Chiba et al., 2013). 

Accordingly, there is a need to improve the existing crystal plasticity models for formability 

analysis in two major areas: a) computational speed, b) accuracy. Signorelli et al. (2009) suggest 

that advanced crystal plasticity models, which incorporate grain interactions and non-equiaxed 

grain morphology, can improve accuracy of FLD predictions compared to a more basic Taylor 

crystal plasticity model, in which, the local deformation inside each crystal is unaffected by its 

environment in the microstructure.  

To the best knowledge of the author, there is no crystal plasticity framework available in literature 

that can model the effects of 3D grain morphology on the FLD using a full-field crystal plasticity 

model that accounts for the 3D spatial distribution of texture to obtain an accurate micromechanical 

and effective response for aluminum alloys. The present thesis attempts to address this concern. 

In case of magnesium alloys, along with crystallographic slip, twinning, initial texture and texture 

evolution, the dynamic recrystallization (DRX) during magnesium processing at elevated 

temperatures also play important roles on formability of magnesium alloys (Lévesque et al., 2010, 

2016; Samuha et al., 2018). Enhancements in experimental and numerical techniques have 

increased the understanding of DRX phenomenon in recent years. However, modelling of DRX 

phenomenon is still a challenging problem. There are several works in literature to model dynamic 

recrystallization in magnesium and its alloys. These approaches can be classified mainly into 

Monte-Carlo (MC), Cellular Automata (CA) and Phase Field (PF) methods. Monte-Carlo-based 

models simulate the microstructure evolution during DRX and can produce many features of the 
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DRX process (Rollett et al., 1992; Peczak, 1995). However, these models were unable to describe 

grain growth kinetics because of the lack of physical length and time scale. The PF method is 

computationally expensive model with focus on a continuous description of grain boundary.  

The CA method is able to capture the local effects and is computationally efficient (Hallberg, 

2011). However, the CA methods alone lack the ability to predict microstructure evolution during 

deformation. Therefore, coupling the CA approach with crystal plasticity-based finite element 

model (CP-FEM) has been shown to be an effective tool for modelling recrystallization (Raabe, 

2002; Seyed Salehi and Serajzadeh, 2012; Popova et al., 2015; Madej et al., 2016). However, due 

to the inherent problems of CP-FEM as discussed earlier, the coupled CA-CP-FEM models cannot 

be used for simultaneously modelling formability of the magnesium alloys. Therefore, a meshless 

and efficient full-field model is required that enables synchronous modelling of DRX along with 

FLD analysis for magnesium alloys. 

While the crystal plasticity-based modelling techniques discussed above are able model to various 

deformation phenomena in magnesium alloys, however, to-date, there is no single framework 

available in literature that can model effects of dynamic recrystallization (DRX) on formability of 

magnesium alloys at elevated temperatures. The difficulty lies in proper modelling procedure of 

DRX phenomenon and the computational cost to generate forming limit strains for 3D 

microstructure. The present thesis an endeavor to address this concern as well. 

1.4 Research Objectives and Associated Tasks 

This thesis contributes several new crystal plasticity modelling tools that represent the current 

state-of-the-art in modelling material behavior in both aluminum and magnesium alloys at room 

temperature as well as at elevated temperatures. Accordingly, the objectives of this thesis, each of 

which correspond to a new contribution to the scientific community as a published/submitted 

journal article, are as follows: 

Objective 1: 

To develop a novel, fast Fourier transform (FFT)-based numerical framework for modelling 

deformation in aluminum alloys incorporating the rate-dependent crystal plasticity theory with a 
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semi-explicit forward gradient time-integration scheme. The main goal is to achieve significant 

gains in terms of computational efficiency of several orders over the existing CP-FEM model while 

obtaining an accurate full-field response of the 3D microstructure. The novelty of this framework 

is its extremely small computational cost while accurately predicting both micro and macro stress-

strain responses as well as the texture evolution for different strain paths with minimal calibration. 

Objective 2: 

To develop a novel full-field numerical framework for modelling localized deformation in 

aluminum alloys that can account for the full richness of the 3D microstructure (texture, grain 

morphologies, grain interactions, etc.) and their effects on the forming limit diagrams (FLDs) of 

aluminum alloys at room temperature. The novelty of this frameworks is its capability to explicitly 

account for the effects of different 3D grain morphologies on the formability and consequently, 

the framework is expected to give better predictions of FLDs compared to the existing simplified 

and efficient crystal plasticity models (i.e., Taylor-type model) with similar computational cost. 

Objective 3: 

To extend the frameworks developed for aluminum alloys as mentioned above to magnesium 

alloys with an additional essential capability of synchronously modelling dynamic 

recrystallization (DRX). The goal is to develop a novel full-field numerical framework for 

modelling complex deformation mechanisms along with formability of magnesium alloys at room 

temperature and at elevated temperatures. This framework accounts for complex deformation 

mechanisms such as slip, twinning, slip inside the twinned regions and the DRX while also 

accounting for the full richness of the 3D microstructure (i.e., texture, grain morphologies, grain 

interactions, etc.). The novelty of this framework is its ability to synchronously model the effects 

of DRX on the microstructure evolution, localization and formability which ultimately lead to 

accurate predictions of FLDs of magnesium alloys at elevated temperatures. 

In the studies conducted in this thesis, for each objective mentioned above, first the theory and 

mathematical frameworks are established, then the in-house codes are developed and validated. 
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1.5 Organization of Thesis 

This thesis consists of six chapters. The first chapter presents the introduction and also describes 

the motivation, scope and objectives of the different research works conducted in this thesis. 

Chapter two presents a comprehensive literature review of the general background knowledge of 

crystal structures, dislocation theory, slip deformation, deformation twinning, dynamic 

recrystallization, Fourier transforms and modelling localized deformation in aluminum and 

magnesium alloys. Chapter two also presents a literature review of available crystal plasticity 

models and their applications, numerical modelling of forming limit diagrams and the dynamic 

recrystallization. 

Chapters three through five are published and submitted research works. These chapters illustrate 

the studies that have been conducted in this thesis. In each of these chapters, first the abstract is 

presented, which is followed by the introduction, model description, results, discussions and 

finally, the conclusions or summary. 

Chapter three - Part 1: A novel numerical framework for modelling deformation in aluminum 

alloys is developed in this chapter. The developed model is benchmarked against an existing FFT-

based model for the case of a Face Centered Cubic (FCC) polycrystal. Finally, the predictive 

capability as well as the computational efficiency of the developed model are demonstrated, where 

predictions obtained using the proposed model are compared to the experiments for the aluminum 

alloy (AA) 5754 and this is followed by the conclusions of the developed framework. 

Chapter four - Part 2: The model developed in Part 1 is further coupled with Marcniak-Kuzynski 

framework to predict forming limit diagrams (FLDs) and investigate the complex effects of grain 

morphology, local deformation, local texture and grain interactions on the predictions of forming 

limit strains of different aluminum sheets. 

Chapter five - Part 3: A new coupled probabilistic cellular automata-full-field crystal plasticity-

fast Fourier transform based framework to model effects of dynamic recrystallization on 

formability of hcp metals is developed in this chapter. First the model is validated and then the 

FLDs are obtained at 100 C, 200 C and 300 C, respectively, considering the effects of DRX. 
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The predicted FLDs are then compared with those obtained by turning off DRX in the code and 

the corresponding experimental observations. The results are then discussed, and the conclusions 

are presented. 

Finally, Chapter six summarizes this thesis with conclusions of the contributions of the developed 

computational tools for microstructure engineering and presents some opportunities for future 

work.  
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Chapter 2. Literature Review 

2.1 Introduction 

Numerical models serve as powerful, economical and efficient tools since they can dramatically 

improve strategies for part optimization and can reduce time-to-market by enabling ‘virtual 

laboratory” of manufacturing processes. Mainly there are two types of numerical constitutive 

models available to simulate the deformation behavior of magnesium alloys, i.e., 

phenomenological and microstructural. 

 Several phenomenological constitutive laws have been developed recently to study large 

deformation behavior of aluminum and magnesium alloys (Takuda et al., 2000; Barlat et al., 2003; 

Yoshida et al., 2007; Chiba et al., 2013; Ghaffari Tari et al., 2014; Muhammad et al., 2015). 

However, these models do not account for physical deformation mechanisms happening inside the 

material at different temperatures.  

Therefore, in order to accurately model the deformation behavior, the relationship between 

microstructure and properties of the polycrystalline metals needs to be investigated. Hence, crystal 

plasticity-based microstructural models are needed that account for temperature dependent 

material properties, physical deformation mechanisms, gradual evolution of microstructure and 

texture. 

 “Crystal plasticity” provides a theory that links the constitutive response of a polycrystal with 

different crystal structures to the key features of its microstructure. The elastic-plastic deformation 

of a polycrystal depends on the direction of loading, i.e., crystals are mechanically anisotropic. In 

crystal plasticity-based models, the plastic anisotropy (i.e., unequal amount of plastic deformation 

in different directions) is analyzed using the crystallographic slip activity in each crystal. The main 

application of the crystal plasticity-based constitutive equations is to model the rotations of 

individual grains (a grain is a group of crystals with same orientation) in a polycrystal, and hence 

to predict the evolution of preferred orientations (i.e., texture) and to account for the effects of 

texture on the development of anisotropy in a polycrystalline solid. 
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2.1.1 Crystal Structures 

The beautiful hexagonal patterns of snowflakes, the plane faces and hard faceted shapes of 

minerals and the bright cleavage fracture surfaces of brittle iron have long been recognized as 

external evidence of an internal order-evidence, that is, of the patterns or arrangements of the 

underlying building blocks, i.e., crystal structures. A graphical representation of crystals, grains 

and grain boundaries in a polycrystalline material is shown in Figure 2.1. 

 

Figure 2.1: Grains and grain boundaries in a polycrystal. To the right, defect in atomic structure: 
grain boundaries (orange spheres), to the left, grains (in yellow) and grain boundaries (in black) 

as seen through an optical microscope (Callister Jr, 2000). 

Almost all metals are crystalline solids and consist of atoms arranged in different patterns and 

these patterns are repeated in all directions. This spatial atomic arrangement can be described using 

a unit cell as shown in Figure 2.2. By repeating these unit cells in all dimensions, a structure of the 

grain is obtained. Among several types of crystal unit cells, the body-centered cubic (BCC), the 

face-centered cubic (FCC), and the hexagonal close-packed (HCP) are the typical metallic unit 

cells shown in Figure 2.2. 

Some of the metals that has FCC crystal unit cells are aluminum, gamma iron, copper, brass, nickel 

etc. Beta iron, potassium and molybdenum have BCC while magnesium, titanium and zirconium 

have HCP unit cells. 
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2.1.2 Crystallographic Texture 

"Texture" in the context of materials science means, “preferred crystallographic orientation". 

Textures are developed at all stages of any forming process and affect the mechanical, thermal and 

electrical properties of a material. It has been shown in numerous researches that prediction of the 

texture developments is important in forming operations since the formability of metals depend 

highly on their textures. Almost all naturally occurring or artificial materials show preferred 

crystallographic orientations or textures that means that the crystal axes are not randomly (or, more 

correctly, uniformly) distributed. The distribution of these orientations within a polycrystalline 

metal is an important material property that governs the anisotropy of the material. 

 

Figure 2.2: Unit cells of typical metallic crystal structures showing atomic arrangement for: (a) 
BCC (Body-centered cubic), (b) FCC (Face-centered cubic) and (c) HCP (Hexagonal closed 

pack) (Conway and Sloane, 1993). 

Commonly, three independent parameters are used to identify the orientation of a single crystal 

with respect to a fixed reference frame of sample. These three parameters are known as Euler 

angles (φ1, Φ,φ2) (Bunge and Esling 1984), which describe rotations from the sample frame 

coordinate axis to the crystal coordinate axis. Using the Euler angles, there are various ways to 

represent texture in materials such as pole figure (PF), inverse pole figure (IPF), orientation 

distribution function (ODF) and 3X3 orthogonal rotation matrices (Kocks et al., 2000). Some of 

these methods are summarized in the following. A pole figure is simply a stereographic projection 

of orientations of crystals with its axes defined by an external frame of reference with particular h 

k l poles plotted onto it from all of the crystallites in the polycrystal (the intersection of the normal 

line and the sphere is the pole and h k l are the Miller indices). Typically, the external frame is 

defined by the normal direction, the rolling direction, and the transverse direction in a sheet (ND, 
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RD and TD respectively). Pole figures do not give information about the orientation of a particular 

crystal relative to another crystal. 

 

Figure 2.3: Experimentally measured texture of (AA) 5754-O tempered sheet (available in-
house). 

More information can be gathered from orientations distribution function (ODF) sections (Figure 

2.3b). An orientation of a crystal can be completely described by a point in a cube with axes of 

Euler angles (φ1, Φ,φ2) (Bunge and Esling 1984) as illustrated in Figure 2.3(c). This cube is 

referred to as Euler space and is often shown as a series of 2D cross-sections (by fixing one angle 

and varying the other two), which is called as an ODF. Figure 2.3 shows typical texture for an 

FCC metal in form of pole figure (Figure 2.3a) and in form of ODF (Figure 2.3b) respectively. 

Furthermore, the texture of a material can be broken down into some frequently occurring 

preferred crystallographic orientations known as texture components. Some of the common texture 

components in cold rolled FCC metals are summarized in Table 2.1. Copper, Brass, and S 

orientations form most of the rolled texture with some small amounts of others present. 
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2.1.3 Microstructure and Representative Volume Element 

“Microstructure” is the structure of a metal, comprising of crystal structure, grain orientations, 

crystal defects and microchemistry, revealed by an optical or electron microscope. The 

microstructure is a statistical descriptor of the geometrical arrangement of grains and crystal 

imperfections. It makes sense to define volume averaged properties, which are then independent 

of the size and position of the volume element considered, provided it is sufficiently large. A 

volume element that contains all the necessary information for the statistical description of a given 

microstructure is called a “Representative Volume Element” (RVE). 

Table 2.1: Euler angles (in degrees) for the common texture components in FCC metals (Kocks 
et al., 2005). 

Component Euler angles (𝛗𝟏, 𝚽, 𝛗𝟐) 

Cube (0, 0, 0) 

Copper (0, 35, 45) 

S (64.93, 74.50, 33.69) 

Goss (0, 45, 0) 

Brass (35, 45, 0) 

Using crystal plasticity-based models, material is simulated as a representative volume element 

(RVE) that assumes repetitive symmetry in the actual material texture. Compared to macro-scale 

simulations, the accuracy of a crystal plasticity simulation depends on the quality of 

microstructural information used in the model and on the crystal plasticity-based formulation used 

to model it. Microstructural information includes both the orientation as well as the position of a 

crystal in an RVE. Microstructure data characterization for materials is done using the standard 

grain orientation technique known as EBSD (Electron Backscatter Diffraction). Using EBSD, only 

a 2D map of the grains on a single plane can be obtained at a time. This 2D map is a list of pixels 

containing information about x, y coordinates, from a reference point, and the orientation of crystal 

at each point. 

The 3D microstructure of the material is serially sectioned, polished and scanned repeatedly to get 

multiple 2D surfaces to create a reasonable estimate of the real microstructure. Figure 2.4 shows 
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the observation planes in a polycrystal sample, grains are assigned colors based on the 

crystallographic orientations.  

 

Figure 2.4: EBSD observation areas (Brahme et al., 2006). 

Several numerical techniques are available in literature that can be used to develop 3D 

microstructures without the use of serial sectioning to avoid high equipment costs, alignment of 

scans and time-consuming material removal. In present work, M-Builder (Brahme et al., 2006) is 

used to generate the statistically equivalent microstructures. M-Builder takes in two orthogonal 2D 

scans of the material and analyze them to identify grain size, aspect ratio, orientation distribution, 

misorientation distribution and grain size.  

A volume of space in the material is filled with ellipsoids of different sizes (around the average 

grain size) with measured material aspect ratios. Points are then randomly introduced and Voronoi 

tessellation is performed to make non-interference, volume-filled structure. All the created 

Voronoi cells that reside within the same ellipsoid are merged to make a single grain. Grain 

orientations are then assigned based on the orientation and misorientation distribution in the real 

material. An iterative approach is used to compare and reduce the discrepancies between the 

experimental and calculated orientation space, misorientation distribution and average grain size. 

In polycrystals, an individual crystal of an irregular shape is determined by the nucleation and 

growth conditions during manufacturing process that may further lead to grain shape with certain 

aspect ratios, i.e., columnar, equiaxed and elongated shaped grains can develop in a microstructure. 

Equiaxed shaped grains are usually observed in O-tempered aluminum sheet alloy (Iadicola et al., 
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2008). During severe plastic deformation, e.g., in rolling these grains can become elongated as 

illustrated by Verlinden (2009). Using M-builder, microstructures with different grain shapes can 

be created as shown in Figure 2.5. Moreover, different type of grain shapes may lead to different 

material properties. Depending on the application, one type of grain is preferred, e.g., equiaxed 

grains in car engines and columnar grains in turbine blades as reported by Reinhart et al. (2005) 

and Kuangfei et al. (2010). 

 

Figure 2.5: RVEs with different grain morphologies generated using Voronoi tessellation 
algorithm (M-builder). Only full-field crystal plasticity models (e.g., CP-FFT and CP-FEM) can 

explicitly account for different grain shapes in 3D microstructure. 

2.1.4 Deformation Mechanisms in FCC metals 

The real crystals may contain different types of imperfections in their lattice (i.e., a lattice is an 

idealized structure of crystals where each lattice point represent an identical group of atoms). These 

lattice imperfections could be as a point, line, interfacial, atomic vibrations and bulk defects. The 

most important line imperfection is known as dislocation. Dislocation may be defined as the 

shearing of rows of atoms in a crystal propagating throughout the crystal as the stress or 

temperature changes. The movement of dislocations accommodates the plastic deformation and 

are described as the areas where atoms are out of place in the crystal lattice.  
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2.1.4.1 Crystallographic Slip 

Dislocation movement is similar to the way a caterpillar moves as shown in Figure 2.6. The 

caterpillar hump is representative of the extra half-plane of atoms that move along a preferred 

plane also known as slip plane (the closest packed plane) as shown in Figure 2.7(a) and along a 

preferred direction (Figure 2.7b) known as slip direction. This movement of the atoms is known 

as crystallographic slip. The combination of crystallographic slip and its direction is called a slip 

system. The crystallographic slip is anisotropic due to different number of slip systems in each 

type of crystal structure, i.e., in FCC, BCC, HCP etc. 

 

Figure 2.6: Example showing movement of dislocations similar to that of a caterpillar (Callister 
Jr, 2000). 

The main physical mechanism of plastic deformation at ambient temperature is the flow of 

dislocations along crystal slip systems. Dislocation motion results in no net compression or 

expansion of the crystal lattice, therefore plastic deformation is volume preserving. The lattice is 

undistorted when the dislocation has passed through. A very important side effect of 

crystallographic slip is crystal lattice rotation, which happens due to the finite deformation nature 

of massive dislocation flow. Due to the finite deformation nature of slip on the slip system, an out 

of balance moment is generated. To re-establish equilibrium, the lattice, must rotate. This generates 

bending stresses because of the gripping constraints applied by the surroundings. Generalizing 

this, one can say that lattice rotation is geometrical in nature and also that rotation does not have 

to be uniform throughout a crystal; it can be constrained in certain locations, which can result in 

the generation of stresses in the crystals. A British mineralogist, William Hallowes Miller 

introduced a notation system in crystallography for planes in crystal (Bravais) lattices (Miller et 

al., 1839). A family of lattice planes is determined by three integers ℎ, 𝑘, and 𝑙, the Miller indices 
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and are written as (ℎ 𝑘 𝑙) to represent a plane. For crystal directions, the corresponding notations 

are [h k ℓ], with square instead of round brackets, denotes a direction; and similarly, the notation 

<h k ℓ> denotes the set of all directions that are equivalent to [h k ℓ] by symmetry.  

 

Figure 2.7: (a) (1 1 1) <1 1 0> slip system in FCC unit cell (b) (1 1 1) Plane from (a) and three 
slip directions within the plane (shown by arrows) (Callister Jr, 2000). 

Figure 2.7(a) shows an FCC unit cell with (1 1 1) slip plane and 〈1 1 0〉 directions (Figure 2.7b) 

which means that slip occurs along the 〈1 1 0〉 directions within the (1 1 1) slip plane. The number 

of independent slip systems represents the different combinations where slip can occur. For FCC, 

there are four unique (1 1 1) planes and three 〈1 1 0〉 directions per plane resulting in 12 unique 

slip systems. At high temperatures, FCC metals can have several plastic deformation mechanisms 

namely; slip, twinning and grain boundary sliding. However, slip is the most dominant mechanism 

of plastic deformation at room temperature. In aluminum, the dominant deformation mechanism 

that operates is slip, which is simpler to model as compared to the other deformation mechanisms. 

Schmid's law describes the slip plane and the slip direction of a stressed material, which can resolve 

the most amount of shear stress. The Schmid’s law can be explained using an example of cylinder 

(Figure 2.8) loaded along its axis by applying a tensile force, F. Assuming the cross-sectional area 

to be A, the tensile stress developed parallel to the applied force is 𝜎 = 𝐹/𝐴. This force has a 

component in the slip direction 𝐹𝑐𝑜𝑠(𝜆) (lambda being the angle between the 𝐹 and the slip 

direction). This force component acts over the slip surface with an area 𝐴/𝑐𝑜𝑠 (𝜓), where angle 𝜙 
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is the rotation from 𝐹 to the slip plane normal. The resolved shear stress on a given slip plane and 

given slip direction can be represented as 

 τ =  σ cos (λ) cos (ψ) (2.1) 

Throughout this research work, τ is used to represent the shear stress resolved on to a slip system 

in this way. The translation, cos(λ) x cos(ϕ), from σ to τ is known as the Schmid factor. 

Furthermore, if a critical force (Fc) is required to initiate slip, the corresponding shear stress is 

denoted τc or critical resolved shear stress (CRSS). Schmid’s Law states that a single crystal yields 

or deforms plastically, when the resolved shear stress (τ) reaches the critical resolved shear stress 

(τc). 

 

Figure 2.8: Description of Schmid’s law: (a) A resolved shear stress, τr, is produced on a slip 
system. (b) Movement of dislocations on the slip system deforms the material (Callister Jr, 

2000). 

2.1.5 Deformation Mechanisms in HCP Metals 

Magnesium with hexagonal closed packed (HCP) structure is the eighth most abundant element in 

the earth’s crust and the third most plentiful element dissolved in the seawater. The orientations in 

an HCP structure are represented by the four axes {𝑎1, 𝑎2, 𝑎3, 𝑐} in the Miller-Bravais coordinate 

system as shown in Figure 2.9. The 𝑐 axis is orthogonal to the rest of three axes. The angle between 

each pair of the axes, i.e., between 𝑎1and 𝑎2, 𝑎1 and 𝑎3, 𝑎2 and 𝑎3, respectively, is 120 . The ratio 
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of lengths of axes, e.g., 𝑐/𝑎 in pure magnesium is 1.624 which is close to the ratio in an ideal HCP 

structure (c/a=1.633) (Partridge, 1967). In present work, these axes are transformed to the 

orthonormal Miller coordinate system from Miller-Bravais coordinate system for computational 

convenience using the well-known procedure, which can be found in literature, see, e.g., Niewczas 

(2010). 

 

Figure 2.9: Unit cell of HCP metals. 

 

Figure 2.10: Slip systems and twinning systems in HCP metals (Partridge, 1967). 

2.1.5.1 Crystallographic Slip 

Slip is the major deformation mechanism in magnesium and its alloys. Unlike FCC crystal 

structure, the HCP crystal structure has more complex deformation systems. There are total 24 

deformation systems, out of which, 18 are the primary slip systems and the remaining 6 are 
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twinning systems. Figure 2.10 shows the primary slip planes in the HCP crystal structure. In 

magnesium alloys, the basal slip system has the lowest CRSS value, while pyramidal (c + a) slip 

system has the highest CRSS at room temperature. Thus, most of the plastic deformation is 

accommodated by the basal slip system at room temperature.  

 

Figure 2.11: Schematic representation of twinning process (Paufler, 1994). 

Based on the Von Mises criterion, activity of five independent plastic deformation mechanisms 

were required to accommodate an arbitrary plastic deformation in a given material. Basal, 

prismatic, and pyramidal (a) slip systems provide four independent plastic deformation 

mechanisms. Pyramidal (c + a) slip system, which can be the fifth independent plastic deformation 

mechanism, is difficult to activate at room temperature, since it has a high CRSS. At room 

temperature, deformation twinning has a lower CRSS than the pyramidal (c + a) slip system, and 

it can provide the fifth independent plastic deformation mechanism to satisfy the Von Mises 

criterion. At elevated temperature, the CRSS of pyramidal (c + a) slip and other non-basal slip 

systems decreases, and they can provide the fifth independent plastic deformation mechanism. 
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2.1.5.2 Deformation Twinning 

Twinning is a complex deformation mechanism. Twinning occurs when the lattice undergoes an 

abrupt rotation relative to specific planes. The newly formed orientation is a mirrored orientation 

of the initial matrix grain. The schematic representation of twinning is given in the Figure (2.11). 

In HCP metals, twins can be divided into two different types: extension and contraction twins. The 

extension twin occurs, when the c-axis is under tensile loading, rotating the lattice by 86.6_ degrees, 

while contraction twin occurs when c-axis is under compression and the rotation angle is 56.6 

degrees. The main difference of twinning from slip is the magnitude of rotation. Slip causes a 

slight rotation to the crystal lattice, while the rotation due to twinning is much larger. Another 

difference is that the shear displacement due to twinning is one directional, i.e., shear in one 

direction is not the same as in its opposite direction while slip can occur on the specific plane in 

both directions. 

 

Figure 2.12: Microstructure evolution during annealing of Al-0.1% Mn alloy after 95% cold 
rolling (Gottstein, 2004). 

2.1.6 Recrystallization 

Recrystallization is a collective term to describe the change in orientations of grains by grain 

boundary motion. It proceeds via formation and migration of high-angle grain boundaries driven 

by the stored energy associated with dislocations. After plastic deformation, the stored energy 

renders a driving force for further deformation or the recovery process. Static recrystallization 

(SRX) happens during annealing treatment of the material, while dynamic recrystallization (DRX) 

occurs during plastic deformation at elevated temperatures. In Figure 2.12, a few steps of 
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recrystallization process are shown. As it can be seen from the final microstructure, a few grains 

have grown consuming the other small grains. In the literature, dynamic recrystallization 

mechanisms are divided into three main types, discontinuous DRX states for nucleation and 

growth of high-angle boundaries; continuous DRX states for a recovery process of low-angle 

boundary movement consuming dislocations and forming high-angle boundaries and twinning 

DRX. It is known that DRX and SRX take place by the grain growth phenomenon. Normal grain 

growth is a process when all grains grow roughly at the same rate of boundary migration resulting 

with almost the same size. Abnormal grain growth is the growth of a few orientations (nuclei) at 

the expense of other grains. 

2.1.7 Fourier Transform-based Methods 

For the derivation of the elasto-viscoplastic crystal plasticity fast-Fourier transform formulation 

developed in this thesis in the chapters five, six and seven, the basic mathematical background of 

the Green's function method and the Fourier transforms are presented in this section. 

2.1.7.1 Green’s Function Method (Hantson and Jaeger, 2006) 

In the present work, Green’s function is used to solve the equation of stress equilibrium for the 

prediction of microstructure-property relations in FCC and HCP polycrystalline aggregates. A 

general derivation of Green’s function is given in the following section. In a 3D space resolved 

grid of Fourier points in the RVE, to define the displacement 𝑢(𝑥) of a Fourier point 𝑥, a Green's 

function 𝐺(𝑥, 𝑥′) gives solution of the equation of form 

 𝐿(𝑥)𝐺(𝑥, 𝑥′) = 𝛿(𝑥 − 𝑥′)   (2.2) 

where 𝛿 is the unit impulse function (Dirac delta), 𝑥′ is the new position of Fourier point 𝑥 and 

𝐿(𝑥) a linear differential operator. 

Green's function method can be used to solve any heterogenous linear differential equations of 

form 
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 𝐿(𝑥)𝑢(𝑥) = 𝑓(𝑥)   (2.3) 

A convolution operator 𝐺(𝑥 − 𝑥′) can be used for 𝐺(𝑥, 𝑥′) for a translation invariant operator 𝐿(𝑥) 

that has constant coefficients with respect to 𝑥. Multiplying Equation (2.2) with 𝑓(𝑥′) and 

integrating over 𝑥′ results in 

 
∫𝐿(𝑥)𝐺(𝑥 − 𝑥′)𝑓(𝑥′)𝑑𝑥′ = ∫𝛿(𝑥 − 𝑥′)𝑓(𝑥′)𝑑𝑥′   (2.4) 

By virtue of the properties of the Dirac delta function, the right-hand side of above equation equals 

f(x). Thus, inserting above expression into Equation (2.3) results in 

 
𝐿(𝑥)𝑢(𝑥) = ∫𝐿(𝑥)𝐺(𝑥 − 𝑥′)𝑓(𝑥′)𝑑𝑥′  (2.5) 

and, since 𝐿(𝑥) does not depend on 𝑥′ and acts on both sides, Equation (2.5) is rewritten as 

 
𝑢(𝑥) = ∫𝐺(𝑥 − 𝑥′)𝑓(𝑥′)𝑑𝑥′  (2.6) 

In this thesis, the Equation (2.6) is solved by finding 𝐺(𝑥 − 𝑥′) using fast Fourier transform and 

carrying out the integration as simple product in the Fourier space. The Fourier transform and ways 

to compute the Green’s function are presented next. 

2.1.7.2 Fourier Transform (Marks, 2009) 

The forward Fourier transform (ℱ) is a mathematical operation that transforms a time dependent 

continuous integrable function of space, 𝑓(𝑥), from cartesian coordinate system to a function of 

frequency in Fourier space, i.e. it is denoted by adding a circumflex 𝑓(𝜉). The Fourier transform 

is a useful tool in solving in linear differential equations and is widely used in image and digital 
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signal processing. Several common conventions for defining the Fourier transform of an integrable 

function are available. In present work, we will use the following definition 

 
ℱ(𝑓(𝑥)) = 𝑓(𝜉) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥

∞

−∞

 ∀ 𝜉 ∈ 𝓡 (2.7) 

Negative sign is used in this convention because at frequency, 𝜉=0, the function 

𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 represents only amplitude of 𝑓(𝜉). 

Under suitable conditions, the inverse Fourier transform is performed via an equation as follows 

 
𝑓(𝑥) = ∫ 𝑓(𝜉)

∞

−∞

𝑒−2𝜋𝑖𝑥𝜉𝑑𝜉 ∀ 𝑥 ∈ 𝓡 (2.8) 

In the Fourier space, the advantage of the Fourier transform is the simple way of differentiating 

and integrating, i.e., the derivative is simply the original function multiplied by 2𝜋𝑖𝜉 as follows 

 
ℱ (

𝑑

𝑑𝑥
𝑓(𝑥)) = (2𝜋𝑖𝜉). 𝑓(𝜉) (2.9) 

2.1.7.3 Discrete Fourier Transform (Marks, 2009; Rao et al., 2010) 

The discrete Fourier transform (DFT) can be used as an approximation of the continuous Fourier 

transform if the data is properly discretized. The DFT is applicable only if the discrete data 

represents a single period in an infinitely extended periodic function. Furthermore, each discrete 

data represents one wavenumber, where the total number of waves is equal to the number of input 

data sets. For the DFT to be applicable on the input data, the space has to be discretized into a 

regular grid of Fourier points and the periodic boundary conditions must be set.  

For one-dimensional problem, the DFT is defined for a sequence 𝑥𝑛, where n counts the discrete 

values of the variable x. 
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Accordingly, the DFT of a function 𝑓(𝑥𝑛), with 𝑁 complex numbers, where 𝑛 = 0, 1, 2,… ,𝑁 −

1, is the transformed sequence, 𝑓(𝜉𝑗), with 𝑗 = 0, 1, 2,… ,𝑁 − 1 of 𝑁 wavenumbers 𝜉0, … , 𝜉𝑁−1 

defined as follows 

 
𝑓(𝜉) =  ∑ 𝑓(𝑥𝑛) . 𝑒

−𝑖
2𝜋
𝑁
𝑗𝑛

𝑁−1

𝑛=0

, 𝑗 = 0, 1, 2,… , 𝑁 − 1 (2.10) 

The wavenumbers are selected with ∆ being the sampling interval such that 

 
𝜉 =

𝑗

∆𝑁
, 𝑗 = −

𝑁

2
,… ,0,… ,

𝑁

2
 (2.11) 

Note that, 𝜉 in above equation is defined for N + 1 wavenumbers. As the extremum values at 

−
𝑁

2
 𝑎𝑛𝑑 

𝑁

2
, respectively, give the same result, it does not clash with the definition given in Equation 

(2.9). The inverse DFT is given by 

 
𝑓(𝑥𝑛) =

1

𝑁
 ∑ 𝑓(𝜉). 𝑒−𝑖

2𝜋
𝑁
𝑗𝑛 , 𝑛 = 0, 1, 2,… ,𝑁 − 1

𝑁−1

𝐽=0

 (2.12) 

Equation (2.12) computes the values at each discrete Fourier point that results from the operations 

conducted in Fourier space. For an input of pure real data, i.e., ℑ𝑚(𝑓(𝑥))= 0, the transformed data 

𝑓(𝜉) in wavenumber domain is the conjugate complex of 𝑓(−𝜉): 𝑓(𝜉) = ℜ𝑒 (𝑓(−𝜉)) −

ℑ𝑚(𝑓(−𝜉)). The transformed data is anti-symmetric in the imaginary domain and symmetric 

with respect to the origin in the real domain. Thus, only the half of the outputs have to be computed 

using a DFT algorithm for this case. The other half of the outputs can be directly obtained from 

the transformed data of the first half. In the same way, for the inverse transform for a data set with 

𝑓(𝜉): 𝑓(−𝜉) = ℜ𝑒 (𝑓(−𝜉)) − ℑ𝑚(𝑓(−𝜉))  only half of it is needed to transform to a set of real 

data. 
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Figure 2.13: Decimation in Time method of FFT (Marks, 2009). 

For a three-dimensional function depending on vector x with discrete values 𝑛𝑥 = 0, 1, 2,… ,𝑁𝑥 −

1; 𝑛𝑦 = 0, 1, 2,… , 𝑁𝑦 − 1; 𝑛𝑧 = 0, 1, 2, … ,𝑁𝑧 − 1 for the components x, y, z, respectively. The 

forward DFT, is a discrete function depending on 𝜉 = (𝜉1; 𝜉2; 𝜉3) and 𝑗1 = 0, 1, 2,… , 𝑁𝑥 − 1; 𝑗2 =

0, 1, 2,… ,𝑁𝑦 − 1; 𝑗3 = 0, 1, 2, … ,𝑁𝑧 − 1, is a given by 

 
𝑓(𝜉) =  ∑ ∑ ∑ 𝑓(𝑥) . 𝑒

−𝑖2𝜋(
𝑛𝑥𝑗1
𝑁𝑥

+
𝑛𝑦𝑗2
𝑁𝑦

+
𝑛𝑧𝑗3
𝑁𝑧

)

𝑁𝑧−1

𝑛𝑧=0

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

  (2.13) 

Accordingly, the inverse of the three-dimensional DFT is given by 

 
𝑓(𝑥) =

1

𝑁𝑥 ×𝑁𝑦 × 𝑁𝑧
∑ ∑ ∑ 𝑓(𝜉) . 𝑒

−𝑖2𝜋(
𝑛𝑥𝑗1
𝑁𝑥

+
𝑛𝑦𝑗2
𝑁𝑦

+
𝑛𝑧𝑗3
𝑁𝑧

)

𝑁𝑧−1

𝑗3=0

𝑁𝑦−1

𝑗2=0

𝑁𝑥−1

𝑗1=0

 (2.14) 
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2.1.7.4 Fast Fourier Transform: An Efficient Class of Algorithms (Rao et al., 

2010) 

The computation of the DFT as introduced in Equations (2.13) and (2.14) require 𝒪(𝑁2) 

operations. The computation time increases quadratically with the number of Fourier points under 

consideration. The fast-growing computation cost makes the direct DFT unattractive for its 

application on large number of data sets. Thus, another method known as the fast Fourier transform 

(FFT) is preferred. FFT a group of algorithms that calculate the DFT in only 𝒪(𝑁𝑙𝑜𝑔𝑁) 

operations. The block diagram below illustrates how an N point DFT can be split into two N/2-

point DFTs to handle the even and odd values of a length 8 sequence. This method saves 

computation time and so the process would necessarily be continued. Therefore, each N/2-point 

DFT can be divided into two N/4-point DFTs and so on (Figure 2.13). 

The most common type of FFT-algorithms is the Cooley-Tukey algorithm. The algorithm first 

divides the DFT of a sequence x(n) into two parts, the odd elements, and the even: 

 

𝑋(𝑗) =  ∑ 𝑥(2𝑛). 𝑒−𝑖
2𝜋
𝑁
𝑗(2𝑛) + ∑𝑥(2𝑛 + 1) . 𝑒−𝑖

2𝜋
𝑁
𝑗(2𝑛+1)

𝑁
2
−1

𝑛=0

𝑁
2
−1

𝑛=0

 (2.15) 

A common multiplier of 𝑒−𝑖
2𝜋

𝑁
𝑗  is then factored out of the second term 

 

𝑋(𝑗) =  ∑ 𝑥(2𝑛). 𝑒
−𝑖

2𝜋
𝑁/2

𝑗(2𝑛)
+ 𝑒−𝑖

2𝜋
𝑁
𝑗 ∑𝑥(2𝑛 + 1) . 𝑒

−𝑖
2𝜋
𝑁/2

𝑗(2𝑛)

𝑁
2
−1

𝑛=0

𝑁
2
−1

𝑛=0

 (2.16) 

Therefore, the two expressions above are now in the form of two N=2-point DFTs and can be 

written explicitly as a sum of even and odd terms 

 
𝑋(𝑗) = 𝑋𝑒𝑣(𝑛) + 𝑒

−𝑖
2𝜋
𝑁
𝑗𝑋𝑜𝑑𝑑(𝑛) (2.17) 

The index 𝑗 must extend to N-1, and using the periodic property of the even and odd DFTs it can 

be seen that 

 𝑋𝑒𝑣(𝑗) = 𝑋𝑒𝑣(𝑗 + 𝑁/2) (2.18) 
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𝑋𝑜𝑑𝑑(𝑗) = 𝑋𝑜𝑑𝑑(𝑗 + 𝑁/2) 

The FFT also exploits the periodic nature of 𝑒−𝑖
2𝜋

𝑁
𝑗(2𝑛) term: 

 
𝑒−𝑖

2𝜋
𝑁
(𝑗+𝑁/2) = 𝑒−𝑖

2𝜋
𝑁
𝑗 . 𝑒−𝑗𝜋 = 𝑒−𝑖

2𝜋
𝑁
𝑗 (2.19) 

This allows the number of calculations involving FFT term to be cut in half and for 0 ≤ k ≤ N/2 

The FFT is 

 
𝑋(𝑗) = 𝑋𝑒𝑣(𝑗)+𝑒

−𝑖
2𝜋
𝑁
𝑗𝑋𝑜𝑑𝑑(𝑗) 

𝑋(𝑗 + 𝑁/2) = 𝑋𝑒𝑣(𝑗)−𝑒
−𝑖
2𝜋
𝑁
𝑗𝑋𝑜𝑑𝑑(𝑗) 

(2.20) 

“Cooley-Tukey” algorithm is a Divide et impera method, that means it will divide the whole 

transformation into smaller parts that are simpler (and faster) to compute. It is based on the idea 

of breaking down the DFT with 𝑁 = 𝑁1 × 𝑁2 points into several DFTs of 𝑁1 and 𝑁2. The most 

efficient and common implementation is dividing 𝑁 repeatedly by 2, resulting in 𝑁1 = 𝑁2 =  𝑁/2. 

Therefore, it has the requirement that the total number of input data of Fourier points hast to be a 

power of two. It is known as the “radix-2” variant of the algorithm. Divisions based on prime 

numbers are also possible but are computationally less efficient. 

2.1.8 Instability, Localization and Failure in Metals 

The ‘formability’ or ‘forming limit’ is determined by the onset of localized necking. The forming 

limit diagram (FLD) gives an indication whether the material can sustain certain values of strains 

without failing. During the sheet metal operations, the tearing of a polycrystalline sheet metal is 

the most common mode of failure, resulting from an uneven or exorbitant amount of plastic 

deformation forming a localized neck and therefore limiting the formability of the polycrystalline 

sheet metal. 

During the forming of sheet metal into a more complex shape, a number of plastic instabilities may 

occur subsequently. A ‘plastic instability’ occurs when the zone of plastic deformation is suddenly 

confined to a smaller zone. The first plastic instability that usually occurs in forming processes is 
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the onset of diffuse necking, in which plastic deformation is confined to a smaller zone, but with 

typical dimensions that are still in the order of magnitude of the actual part’s dimensions. As often 

observed in uniaxial tensile tests of sheet metal, diffuse necking is followed by localized necking. 

While the size of a diffuse neck is of the order of magnitude of the sample width, the width of the 

localized neck is only of the order of the sheet thickness. After the onset of localized necking, 

strain is concentrated within the neck while the surrounding material returns to the elastic state. 

Consequently, the thickness within the neck drops drastically compared to the elastic surrounding. 

Localized necking is therefore also known as thinning instability. Moreover, the macroscopic shear 

localization (over multiple grains) can also occur within the developed neck. It is observed that 

shear localization initiates at the free surface within the neck, and multiple shear bands can be 

found within a single localized neck that can eventually lead to fracture. 

 

Figure 2.14: (a) FLD defined by Keeler (1961) and Goodwin (1968), (b) Probabilistic FLD of 
four different grades of O-tempered AA5182. 

In the sheet-metal forming industry, it is of high importance that the failure of metal sheets due to 

localized necking must be analyzed. The concept of forming limit curve (FLC) also known as the 

forming limit diagram (FLD) was introduced by Keeler (1961) and Goodwin (1968) that provide 

an approximation of how close the material is to neck. FLDs have been extensively used thereafter 

to quantify the formability of a sheet metal. To generate an FLD, the strain in the loading direction 

(major strain) is plotted with strain along width of the sample (minor strain) at the onset of necking 

for different strain paths as shown in Figure 2.14(a). Figure 2.14(b) shows a probabilistic map of 

safety for four different grades of aluminum alloy sheet. 
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To obtain the FLD experimentally, the surface of the blank of a sheet metal is printed using a 

regular grid and is then subjected to stretching using a hemispherical punch, the regular grid 

deforms and the principal strains (major strain and minor strain) at localization are calculated using 

a high-resolution digital image correlation (DIC) technique. The FLD represents, in one graph, all 

combinations of critical-limit surface strains corresponding to failure. Within the FLD, a line called 

the forming-limit curve (FLC) marks the onset of local necking and divides strain space into safe 

and failure zones. The objective of sheet-metal process design is to ensure that strains in the sheet 

do not approach this limit curve. Though the concept of the FLD is simple, a material’s ability to 

deform plastically depends on a large number of coupled effects, making its experimental 

determination non-trivial and a very time-consuming procedure. As a result, considerable effort 

has recently been made to develop theoretical predictive models, based on the theory of crystal 

plasticity and different instability criteria.  

2.2 Development of Advanced Crystal Plasticity Models 

Polycrystalline materials are ubiquitous in industrial and technological applications due to their 

inexpensiveness and ease of manufacturing. The response of an aggregate of crystallites of varying 

size and orientation subjected to plastic deformation is governed by the spatial distribution and 

dynamics of crystalline defects. The development of advanced characterization tools has enabled 

very detailed characterization of polycrystalline materials. For example, Scanning Electron 

Microscope (SEM) and Transmission Electron Microscope (TEM) (Lee and Lam, 1996; Nieh et 

al., 1998; Salem et al., 2003; Armstrong and Walley, 2008; Karel et al., 2016; Wickramarachchi 

et al., 2016) are used for surface analysis of the material’s microstructure. Synchrotron-based X-

Ray Diffraction (XRD) and Focus-Ion-Beam (FIB) combined with Electron Back-Scattering 

Diffraction (EBSD) are used to measure the chemical composition and crystal structure (Ohashi 

et al., 2009; Gardner et al., 2010; Jeong et al., 2015; Abdolvand et al., 2015; Erinosho et al., 2016).  

These advanced experimental techniques bestow highly sophisticated microstructure information 

and generate large amounts of data creating a difficult task for computational techniques to 

interpret and harness relevant information. In order to establish the relationship between 

microstructure and macroscopic properties of polycrystalline materials undergoing plastic 
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deformation, an accurate prediction of the micromechanical behavior based on directional material 

properties along with gradual development of substructure of the constituent grains is required. 

Therefore, efficient crystal plasticity-based computational schemes are needed to investigate the 

microstructure-property relations. 

A polycrystal deformation model should be able to describe some phenomena, which cannot be 

illustrated by phenomenological theories (e.g., continuum mechanics-based models), such as 

crystallographic slip, textures, grain morphology etc. Usually, such model can be obtained from 

single crystal deformation models, but the concern is how to build the relationships between 

microstructural mechanisms of deformation operating on level of single crystal and overall 

response of a polycrystal. In the early models of crystal plasticity, some assumptions were made 

about the distribution of stresses and strains in the polycrystal to relate the behavior of a polycrystal 

to its constituent single crystals. In these crystal plasticity models, the behavior of polycrystal is 

obtained using some appropriate averaging technique for the response of its constituent single 

crystals. 

 

Figure 2.15: Four common types of crystal plasticity models to estimate polycrystal response 
(Roters et al., 2012). 

During the 19th century, several such models have been proposed that have provided much useful 

understanding about the development of preferred crystallographic orientations (texture) and strain 

hardening behavior in the polycrystal. These models are based on the concept of plastic 

deformation due to crystallographic slip. Other deformation mechanisms, such as grain boundary 

sliding and diffusion, are not covered in this review. Figure 2.15 illustrates four commonly used 

homogenization schemes, namely the iso-strain or full constraints Taylor scheme, Taylor-based 

schemes allowing for relaxation (e.g., cluster models; LAMEL, GIA or RGC), and full-field 
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estimation by FEM or spectral methods using an FFT. These schemes are explained in detail in 

following sections. 

2.2.1 Sach’s Model  

Sachs (1928) model, one of the earliest epitomes of polycrystal models, assumes that each crystal 

is subjected to the same stress state. In this “iso-stress” model, the grains are treated as if they were 

an array of single crystals that can deform independently of each other. For a better understanding 

of this model, let us apply the Schmid’s law to each of the crystals. It can be found, on increasing 

stress level gradually, that at first there would be no plastic deformation anywhere, until a critical 

level of stress is reached after which the plastic deformation would start in the grain/grains with 

the most favorable lattice orientation. Since all the grains are assumed to be experiencing the same 

state of stress in this model, the plastic deformation that results from it can vary from one grain to 

another, thus the compatibility conditions in the aggregate are violated. As a result, continuity of 

strain across a grain boundary is violated. Moreover, in this model, strain and orientation changes 

are deduced from the stress in the same way as in the case of a free single crystal submitted to a 

known stress. In general, this theory was not found to be very successful in predicting deformation 

textures. Nowadays, the iso-stress assumption is acknowledged as an oversimplification, so this 

model is hardly used anymore. 

2.2.2 The Taylor Crystal Theory  

In order to overcome the disapproval to Sach’s model, Taylor proposed an alternative model. There 

are two important aspects in the original Taylor theory: (a) a criterion for selecting the active slip 

systems in a deformed single crystal (Schmid’s Law), and (b) the assumptions for linking the 

deformation behavior between the constituent grains, and the polycrystalline aggregate. The basic 

idea underlying the Taylor model rests on experimental observations. By examining a micrograph 

of the cross section of a drawn wire, Taylor observed that all the grains were elongated in the 

direction of extension, and contracted in the two perpendicular directions. He concluded that the 

strain field throughout the polycrystal is homogeneous, implying that each grain deforms exactly 

in the same way as the polycrystal. This assumption has served as a tool for linking the deformation 

behavior among all constituent grains, and between individual grains and polycrystals. It is now 
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known that it is not exactly true, but the assumption has the advantage of assuring continuity of 

the strain rate across the grain boundaries so that no voids are created.  

With the Taylor assumption, the stress state is not continuous, but varies abruptly from grain to 

grain, depending on different grain orientations. In the classical Taylor-type models, out of 12, at 

least five independent slip systems have to be activated to guarantee deformation compatibility of 

the whole specimen for FCC polycrystal. Since the number of strain conditions (the “number of 

constraints”) is as large as five, such models are referred to as “full constraint” (FC) models. 

Summarizing, two main points that emerge from the Taylor theory regarding the relation between 

the deformations of single crystals and that of polycrystals: 

1. The deformation in each crystal is the same as the macroscopic deformation; the shapes of 

the constituent crystals do not enter in the idealization; and 

2. The macroscopic stress of a polycrystal is the average of the stresses of all constituent 

single crystals. 

An in-house Taylor model-based code will be used in this research for comparison of predictions 

of forming limit strains with the proposed model in this work (see, e.g., Chapter 4). 

2.2.3 Relaxed Constraint Models 

It is well recognized that the Taylor-type models overestimate both texture and the stresses in a 

polycrystal. To answer these limitations, several improvements have been proposed, one of which 

is the Relaxed Constraint Taylor model (Houtte, 1982; Raphanel and Houtte, 1985). The idea here 

is to assume that when grains re-orient and take on much distorted shapes, characterized by large 

aspect ratios of the principal lengths, it is possible to partially relax the strict compatibility 

requirements imposed in the Taylor model. Non-uniform deformations are envisaged to occur at 

the grain boundaries that accommodate the incompatibilities implied by the non-imposed strain 

components. When applied to certain deformation states such as axisymmetric tension and 

compression they argue that the dimensionality of the problem is reduced so that less than five 

independent slip systems are needed. The authors (Houtte, 1982; Raphanel and Houtte, 1985) have 

used the methodology of relaxed constraints to analyze deformation textures in FCC polycrystals 

following several strain histories such as axisymmetric tension and compression, along with large 
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simple shear. Since the imposed strain increments differ from those that would be imposed in a 

full constraint (Taylor) model, the slip modes and lattice rotations predicted by the two approaches 

are different.  

2.2.4 Grain Interaction Models 

The relaxations are the integral part of so-called ‘grain interaction models’ (also known as ‘cluster’ 

models), which include advanced homogenization schemes. The homogenization is done on a 

small cluster of grains instead of single crystals as compared to the schemes explained in previous 

section. In these models, the average plastic velocity gradient of the cluster is assumed equal to 

the macroscopic velocity gradient. Therefore, these ‘cluster’ models introduce interactions 

between crystals in the polycrystal. One of these cluster models, “the Advanced LAMEL” 

(ALAMEL) model was proposed by Van Houtte et al. (2005) as a generalization of the LAMEL 

Houtte et al. (1999) and Liu et al. (2002) . The ALAMEL model analyze interactions in different 

clusters containing two grains each, separated by an interface of grain boundary. The grain 

boundary is usually arbitrarily oriented according to a certain distribution function.  

In the ALAMEL model, according to admissible relaxation modes, the local strains of crystals 

deviate from the macroscopic strain, and the extent of the relaxation is obtained by minimizing the 

collective plastic work inside the grain cluster. Recently, Arul Kumar et al. (2011), Mahesh (2010) 

proposed several improvements to the original ALAMEL model. Delannay et al. (2009, 2002) and 

Houtte et al. (2002) proposed another multisite approach which extends the ALAMEL and 

assumes that each grain interacts exclusively with one or several of the immediate surrounding 

grains, furthermore, adding elastic part to the governing equations. Another Grain Interaction 

(GIA) model, which also use the concept of grain clusters, was proposed by Crumbach et al. (2002) 

and was further developed by Engler et al. (2005). This GIA model considers short-range 

interactions between first-order neighbor grains in a group of grains consisting of eight hexahedral 

grains. Recently, the formulation of GIA was further developed by Eisenlohr et al. (2009), 

Tjahjanto et al. (2015) and they proposed the Relaxed Grain Cluster (RGC) model. Tjahjanto et 

al. (2015) extended to this model for modelling multi-phase materials. 
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2.2.5 Self-Consistent Schemes 

Another type of homogenization model is the self-consistent scheme initially developed by 

Lebensohn and Tomé (1993), Molinari et al. (1997, 1987) which was inspired by Eshelby (1957)’s 

analytical solution of elasticity problem for an ellipsoidal inclusion embedded in an effective 

medium and was then extended to viscoplastic regime by Lebensohn et al. (2007) known as Visco-

Plastic Self-Consistent model (VPSC). In the VPSC, all the grains in the RVE are considered as 

an effective medium, which is assumed to be homogeneous. Each crystal is treated as ellipsoidal 

inclusions that can deform plastically and is constrained by the effective medium; therefore, the 

short-range interactions are neglected. However, the model accounts for long-range interactions 

the in the polycrystalline, using the interactions of all the crystals with the effective medium in an 

average sense. In addition, the VPSC model enforces both strain compatibility and stress 

equilibrium between grains and their surroundings, as opposed to the Taylor-type models that 

assume homogeneous strain in the RVE. Based on the original SC method, Molinari et al. (1987) 

and Tóth et al. (1996) were able to predict the texture evolution for FCC and BCC polycrystals 

during rolling and torsion, respectively.  

Later on, Lebensohn and Tomé (1993) predicted texture evolution during rolling and axisymmetric 

deformation and determined the plastic anisotropy of a rolled zirconium alloy sheet. Choi et al. 

(2000) also used the SC method to investigate the effects of crystallographic and morphological 

texture on the macroscopic anisotropic properties (R-value and normalized yield stress) for 

AA5019 sheets in H48 and O temper conditions using the full-constraint Taylor and a visco-plastic 

self-consistent polycrystal model. They have presented results in which spherical and ellipsoidal 

grain shapes were analyzed. For cubic metals, such as FCC polycrystals, textures predicted by the 

SC models are rather similar to those obtained with the FC and RC models.  

2.2.6 Spectral Crystal Plasticity (SCP) 

The Spectral crystal plasticity (SCP) can be seen as a special case of database-type coupling. 

Whereas it also relies on sampling responses of a crystal plasticity framework, the way in which 

the results are stored and queried greatly differentiates the SCP from the approach presented in the 

previous section. The database techniques store the homogenized responses of the RVE, while the 
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SCP stores the intermediate results of a Taylor-type model. Observe that if a Taylor-type model is 

used, each crystal is treated separately, and any per-grain solution of the crystal plasticity model 

depends solely on the orientation of the crystal and the strain rate imposed on it. The solution may 

include stress, lattice spin, shearing rates, Taylor factor etc. It is then possible to first evaluate a 

Taylor-type model for a large number of orientations, strain rates, and subsequently store the 

results in an easily retrievable manner. As long as no other factors are considered, such as 

hardening of slip systems or grain interactions, these calculations can be done once and for all.  

To achieve this, Fourier (spectral) representation of orientation distribution function (Bunge and 

Esling 1984) can be conveniently used for storing the results of a Taylor-type model, see, e.g., 

Kalidindi and Duvvuru (2005) and Kalidindi et al. (2006). The one-time, but time-consuming task 

is to find coefficients in Fourier series of the spectral representation for the functions that represent 

the per-grain solutions of the Taylor-type CP model. These solutions must be computed for each 

crystal orientation in Euler space subjected to all possible strain rates. This way, a database of 

spectral coefficients is generated. The advantage of the approach is that the result of the CP model 

can be later retrieved just by querying the database without doing any actual CP calculations. The 

computational advantage of the SCP comes with certain drawbacks, though. Independent sampling 

of individual grains is implicitly required; thus, the accuracy of the SCP is bound by the limitations 

of the Taylor assumptions. It is now well known that Taylor-type models do not offer best texture 

and anisotropy prediction. Furthermore, the SCP approach is hardly capable of going beyond quite 

simple Taylor-type models. For instance, adding internal variable hardening models would render 

the SCP impractical, since constructing the database of spectral coefficients would require 

exploring a high dimensional space. 

2.2.7 Crystal Plasticity Finite Element Method (CP-FEM) 

Early approaches to describe plastic anisotropy with simple boundary conditions such as Sachs 

(1928) and Taylor (1938) formulations were developed by simplifying assumptions of strain or 

stress homogeneity. They were not designed to consider explicitly the mechanical interactions 

among crystals in a polycrystal or for responding to complex internal and external loading 

boundary conditions. To overcome these issues, variational methods in the form of finite-element 

approximations have gained tremendous momentum in the field of plasticity. These crystal 
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plasticity finite-element (CP-FEM) models are based on the variational solution of equilibrium 

between forces and compatibility of displacements using a weak form of the principal of virtual 

work within a finite-volume element. The FE model is built using the discretization of the 

specimen into these elements. The CP-FE method employs the extensive knowledge gained from 

experimental and theoretical studies on single crystal deformation and dislocation dynamics 

(Curtin and Miller, 2003; Arsenlis et al., 2004; Vitek et al., 2004) to inform the further 

development of continuum field theories (Zienkiewicz et al., 1977).  

The constitutive framework offered through variational crystal plasticity formulations provides a 

desirable tool for developing comprehensive theories of plasticity that apply the current knowledge 

of the physics of deformation processes to continuum mechanics computational tools with the goal 

of developing advanced and physically-based engineering design methods (Roters et al., 2010). 

The success of CPFE methods can also be attributed to the ability to include various constitutive 

formulations for plastic flow and hardening at an elementary slip system level. The constitutive 

flow rules that have been suggested over the past few decades are developed from empirical 

viscoplastic formulations (Asaro and Rice, 1977; Rice, 1971) to physics-based models (Arsenlis 

et al., 2004; Arsenlis and Parks, 2002, 1999; Evers et al., 2002; Raabe and Roters, 2004). It should 

be reiterated at this point that the FEM itself is not the actual model but the variational solver for 

the applied constitutive equations that maps the material anisotropy of elastic-plastic shear 

associated with various lattice defects (specifically dislocations in aluminum).  

The first introduction of this method by Peirce et al. (1982) has matured into a wide collection of 

constitutive and numerical formulations to be applied to a very wide variety of crystal-mechanical 

problems. A large body of work exists on incorporating crystal plasticity frameworks as 

constitutive relation in the Finite Element method. An excellent review of these attempts has been 

published by Roters et al. (2010) that contains a comprehensive overview of the constitutive laws, 

kinematics, homogenization and multiscale methods in the CP-FEM modelling. Constitutive 

models extending the works of Asaro and Needleman (1984), Asaro and Rice (1977), Peirce et al. 

(1983), Peirce et al. (1982) are very commonly used and include visco-plastic, elasto-viscoplastic 

and elastic-plastic constitutive behavior. Plastic deformation of the material and evolution of 

texture results from activation of deformation mechanisms, such as slip and twinning. 
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In “CP-FEM”, the FE mesh represents an aggregate of grains, each having a specific set of 

attributes, such as shape, orientation, phase, etc. The method offers several advantages over 

statistical approaches. Most remarkably: If several finite elements constitute a grain, the gradients 

of stress and strain inside individual crystal can be considered. This holds even if low order 

elements (e.g., linear) are used to discretize the domain. Gradients of other fields inside the grains 

can be captured as well. For instance, crystal orientation gradient may be accounted for, which is 

crucial in modelling intra-granular localization processes. Complicated geometry of individual 

crystals can be explicitly dealt with in the model. Since the grains are spatially bound by each 

other, explicit grain boundaries are introduced in the model. This also allows to take into 

consideration grain boundary properties. The CP-FEM models are formulated as either rate-

dependent or rate-insensitive with respect to the material response. The hardening at the level of 

crystallographic slip and twinning is considered as well. A power law is often chosen to relate the 

applied resolved shear stress on the slip or twinning system to the shear rate in the slip or twinning 

direction. Large inelastic deformation can be reached in CP-FEM. However, we have to keep in 

mind that accuracy of the FEM may be undermined if large distortions of elements are experienced. 

This issue can be addressed by advanced mesh refinement methods, see, e.g., Resk et al. (2009) 

and Quey et al. (2011). 

2.2.8 Crystal Plasticity Fast Fourier Transform Method (CP-FFT) 

The “FFT-based Crystal Plasticity” methods are based on the fact that the local mechanical 

response of a heterogeneous medium can be calculated as a convolution integral between Green 

function associated with appropriate fields of a linear reference homogeneous medium and the 

actual heterogeneity field. This approach is suitable for finding the solution of a unit cell problem 

with periodic boundary conditions. If a periodic medium is considered, one can use the Fourier 

transform to reduce convolution integrals in real space to simple products in Fourier space. Thus, 

the fast Fourier transform algorithm can be utilized to transform the heterogeneity field into 

Fourier space. Afterwards, the mechanical fields can be calculated by applying the transformation 

back to real space. The FFT solvers can only make use of uniform grid, which might be too coarse 

to properly approximate stress and strain fields near grain boundaries. 



 

 
41 

An efficient alternative to CP-FEM, is given by the FFT-based method. Recently, considerable 

attention has been attracted by the crystal plasticity fast Fourier transform (CP-FFT) methods 

(Lebensohn, 2001; Lebensohn et al., 2004; Prakash and Lebensohn, 2009; Liu et al., 2010; 

Eisenlohr et al., 2013; Shanthraj et al., 2015), which promise substantial improvement over the 

CP-FEM in terms of calculation time, while keeping high spatial resolution in order to capture the 

details of complex microstructures. This formulation, originally developed by Moulinec and 

Suquet (1994), (1998) to compute the macro and micro response of composites, consists in solving 

Lippmann-Schwinger equation by an iterative method that involves the use of the Green’s operator 

associated to a linear reference medium. Since then, several authors have proposed modifications 

or improvements of the original Moulinec-Suquet (“basic scheme”) (Eyre and Milton, 1999; 

Brisard and Dormieux, 2010; Zeman et al., 2010;  Zeman and Marek, 2014). 
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Figure 2.16: FFT-based methods for composites and polycrystals. 

Specifically, Zeman et al. (2010) proposed accelerated algorithms to overcome the low 

convergence rate of the basic scheme for materials with high mechanical contrast but only small 

computational gains were achieved. This scheme has been successful in achieving acceleration on 

the convergence rate proportional to the square root of the mechanical contrast; however, the 

scheme fails to converge for infinite contrast. The basic scheme has been further developed for 

polycrystalline material deforming in elastic regime (Brenner et al., 2009), rigid-viscoplastic 

regime (Lebensohn, 2001; Lebensohn et al., 2008), elasto-viscoplastic regime (Lebensohn et al., 

2012) for infinitesimal strains, recently extended to finite strains (Eisenlohr et al., 2013; Geus et 

al., 2016; Kabel et al., 2016). 

As opposed to the CP-FEM, the CP-FFT method is meshless, so it uses voxels to discretize domain. 

As shown in Figure 2.16, the CP-FFT-based formulation consists in finding a strain-rate field, 

associated with a kinematicaly admissible velocity field that minimizes the average of local work-

rate, under the compatibility and equilibrium constraints (Lebensohn, 2001). To keep the grid 

regular, simplifications to the kinematic equations have to be made, see, e.g., Prakash and 

Lebensohn (2009) and Liu et al. (2010). Moreover, the fundamental requirement of periodic 

boundary conditions renders the CP-FFT somewhat less flexible than the CP-FEM. 

2.3 Modelling Dynamic Recrystallization 

Hot working of magnesium alloys is inevitably accompanied by dynamic recrystallization (DRX). 

Experimental measurements of DRX are difficult, too expensive and time consuming to provide a 

processing window for each alloy. Thus, being able to predict material behavior and modelling 

microstructure evolution would provide an opportunity to control different material properties 

(Hallberg, 2011). For example, improving the understanding of kinetics of grain boundary 

movement as well as controlling texture evolution and grain size during the plastic deformation 

are some of key advantages of accurate modelling of DRX (Rollett, 1997). Nevertheless, the 

modelling of DRX still remains a difficult and challenging problem. As the power of 

computational resources have increased in last few years, several computationally intensive, 
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physics-based tools are now available for modelling DRX phenomenon, e.g., atomistic 

simulations, molecular dynamics, and crystal plasticity models.  

Initial attempts to model DRX were taken in 1930s, when the the so-called JMAK theory (i.e., an 

analytical model) was developed  by Avrami (1939) and Shiryayev (1992). In this model, the 

volume fraction of DRX, 𝑓, is represented in terms of the nucleation rate 𝑘 and time t as 

 𝑓 = 1 − exp (−𝑘𝑡𝑛) (2.21) 

where n is the Avrami exponent. This expression describes the evolution of the volume fraction of 

recrystallized grains and it is used by researchers for model verification. Sandsttröm (1977) 

developed a theoretical model for subgrain growth during annealing. The authors modeled 

subgrain growth by defining a criteria for grain boundary migration. They applied this model to 

two-phase alloys and pure metals. In later years, Furu et al. (1995) proposed an another subgrain 

growth model for severely deformed aluminum alloy. Taking into account the dynamic recovery 

as well as grain size, Sandström and Lagneborg (1975) developed a model that predicts stress-

strain curve during DRX. However, with the increase in power of computational resources, several 

new numerical models have been developed to simulate the process of recrystallization. As 

expected, each of these models has its own weaknesses and strengths. Accordingly, the most 

common models can be divided into the following categories: 

• Monte Carlo models  

• Vertex models  

• Phase-field models  

• Cellular Automata 

The literature on each of these models is briefly discused below. 
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2.3.1 Monte Carlo Models 

The Monte Carlo models with probabilistic methods are used in the Potts model, which is a 

modified Ising model , for modelling recrystallization. Modelling recrystallization and grain 

growth using the Monte Carlo methods, extensive studies were performed by Srolovitz et al. 

(1988), Anderson et al. (1989) and Rai et al. (2007).  

In the Monte Carlo models, the domain of interest is divided into lattice sites by using a descritized 

grid of points. Each grain is assigned a site index 𝑠𝑖 and the state variables. Accordingly, the 

switching parameter 𝜔𝑠𝑤𝑖𝑡𝑐ℎ that defines a new nucleus depends on the change in internal energy 

∆𝐸 as 

 
𝜔𝑠𝑤𝑖𝑡𝑐ℎ(∆𝐸) =

1

2
𝜔0 [1 − 𝑡𝑎𝑛ℎ (

∆𝐸

2𝑘𝑇
)] (2.22) 

where 𝜔0 is the grain boundary mobility between the current 𝑠𝑖  and neighbouring 𝑠𝑗 sites, 𝑇 is the 

temperature and 𝑘 is the Boltzmann constant. According to the Monte Carlo method, the switch is 

accepted if the generated random number  𝜉 ≤ 𝜔𝑠𝑤𝑖𝑡𝑐ℎ(∆𝐸). Then the orientation of site 𝑠𝑖 is 

swapped with the orientation of the neighbouring site 𝑠𝑗 . The schematic representation of the 

Monte Carlo model is given in the Figure 2.17, where the bold lines represent the grain boundaries. 
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Figure 2.17: Schematic representation of the division of the domain for Monte Carlo method 
(Hallberg, 2011). 

 

Figure 2.18: Schematic of grain boundary definition in vertex model (Miodownik, 2002). 

Because of the simplicity, small computational cost and the relative ease of implementation, the 

Monte Carlo model is an attractive method of modelling DRX. However, the process of seeding 

the nucleation sites correctly becomes extremely important, since the update of the microstructure 

in Monte Carlo models happens randomly. 

2.3.2 Vertex Models 

Vertex models (also known as the front tracking models) were developed for modelling grain 

growth problems with curved grain boundaries. The vertex models have an advantage of defining 
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a deterministic grain boundary (Piekoś et al., 2008) compared to the Monte Carlo models, where 

the curvature of the grain boundary cannot be well described. In the vertex method, the vertices 

are located at triple junctions (2D) of the grain boundary and are assumed to be in equilibrium. 

Line segments connecting these vertices define the grain boundary. The grain boundary velocity 

𝜈 is described as a function of grain boundary mobility 𝜇 and the grain boundary energy 𝛾 as 

follows 

 𝜈 =  𝛾(𝜃, 𝑇) . 𝜇 (𝜃, 𝑇)𝑘  (2.23) 

where T is the simulation temperature, 𝜃 is the misorientation between two grains and 𝑘 is the 

grain boundary curvature. As shown in Figure 2.18, depending on the translation rules, the triple 

junctions are moved to the directions perpendicular to the plane. The triple junction angles ∅𝑖 of 

the nodes can defined in terms of the grain boundary energies 𝛾𝑖  as follows 

 𝛾1
𝑠𝑖𝑛∅1

=
𝛾2

𝑠𝑖𝑛∅2
=

𝛾3
𝑠𝑖𝑛∅3

  (2.24) 

Further details of the kinematics formulation of the vertex models can be found in Nakashima et 

al. (1989). 

2.3.3 Phase-Field Models 

Unlike in Monte Carlo models, where the boundary is not identified explicitly,  in the phase-field 

models, the grain boundary is explicity defined as a separate phase (Figure 2.19). In the phase-

field model, the volume fraction of k phase is represented by phase-field parameter, 𝑛𝑘. In this 

model, 𝑛𝑘 represents a grain in the polycrystalline aggregate with N number of grains. In that case, 

𝑛𝑘 is equal to 1 in the kth grain, and equal to 0 in the other grains.  

Since the phase-field method is based on the energy minimization that depends the phase-field 

variables and their gradients, the method is computationally very expensive. Consequently, the 

model is not comonly used and is usually limited to 2D applications. 
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Figure 2.19: Schematic representation of the division of the domain in the phase-field model 
(Miodownik, 2002). 

In Takaki et al. (2009), a multi-phase-field model for dynamic recrystallization (MPF-DRX) was 

developed. In this model, the deformation of the grain is taken into account by resizing the grid. 

Their simulation results of the single grain growth were in good agreement with theory. Tikare et 

al. (1998) presented a comparison study of phase-field modelling with Monte Carlo model for a 

grain growth problem. Both models gave very similar results. Further details of the phase-field 

modelling studies can also be found in Tikare et al. (1998), Gurtin and Lusk (1999), Lusk (1999) 

and Muramatsu et al. (2010). 

2.3.4 Cellular Automata  

von Neumann introduced the cellular automata (CA) for a Turing machine (Schwartz et al., 1967). 

In later years, it was adopted for modelling recrystallization problems (Raabe, 2002). For the 

recrystallization problems, the CA method is based on the discretization of physical space, time 

and the orientation space. The domain of interest is divided in to discrete cells that represent grains 

and each cell has its own state variables that define its current status. Commonly, the dislocation 

density and the crystal orientation are used as state variables in the CA-based recrystallization 

problems. The CA can be defined on the decritized 2D or 3D lattice cells considering the first, 
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second, and third order neighbors for the calculation of the local driving forces in a representative 

volume element (RVE) of the microstructure. 

 

Figure 2.20: Schematic representation of the grain boundaries in cellular automata (Janssens, 
2003). 

For CA method, an illustration of the grain boundary determination is presented in Figure 2.20. In 

this model, the current state of each cell depends on the state of the neighbouring cells. In 

recrystallization problems, a cell would be recrystallized in the current time step only if any 

neighbouring cells were recrystallized in the time steps before (Janssens, 2003). Once the 

recrystallization update of the grains is done, the state variables of the entire aggregate of grains is 

also updated simultaneously.  

The so-called the probabilistic CA first computes the switching probability of each cell and then 

makes the switching based on a probabilistic step (Raabe, 2002) while the deterministic CA 

switches the state of a cell due to recrystallization by the neighbor cells depending on the rate 

equation. Due to ease of implementation and low computational cost, the CA is defined as a general 

algorithm with a possibility to use a wide range of state variables and transition rules. Therefore, 

it is very useful candidate for modelling recrystallization problems. Similar to other 

recrystallization models discussed above, one of the major complications with the CA models is 

the association of the simulation time with real time,. Nonetheless, the CA model has been 
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successfully used in the recrystallization problems (Goetz and Seetharaman, 1998; Janssens, 2003, 

2010; Seyed Salehi and Serajzadeh, 2012; Popova et al., 2015, 2016; Li et al., 2016; Madej et al., 

2016). 

2.4 Modelling Forming Limit Diagrams of Polycrystals  

The concept of a forming limit diagram (FLD), first introduced by (Keeler and Backofen, 1964) 

from his investigation of plastic instability and fracture in sheets stretched over steel punches, has 

proved to be extremely useful for representing conditions for the onset of sheet necking. It is now 

a standard tool for characterizing materials in terms of their drawability. Early calculations of 

forming limit diagrams were based on Hill’s criterion (Hill, 1952) for localized necking along a 

direction of zero-extension. In Hill’s bifurcation analysis for rate-insensitive materials, J2 flow 

theory (The von Mises theory is often called “J2 plasticity” because it is usually described in terms 

of the so-called second invariant of the stress and is based on macroscopic material behavior only) 

was employed together with a power-law stress-strain relationship and smooth yield surface. Hill’s 

predictions only gave the critical strains between the uniaxial tension and plane strain states on the 

FLD. When the sheet is under biaxial stretching. Hill’s direction of zero-extension does not exist. 

As an alternative plane stress analysis, Marciniak and Kuczyński developed the most influential 

plastic instability criteria for analyzing unstable deformation in sheet metals also known as the M-

K analysis (Marciniak and Kuczyński, 1967) as shown in Figure 2.21. Marciniak and Kuczyński 

postulated that a sheet metal contains different types of intrinsic imperfections. For example, 

uneven thickness of the sheet, surface defects, voids and inclusions are some of the 

inhomogeneities that can develop during the manufacturing process of the sheet metal. These 

imperfections further evolve during the forming process which become the sites of the localized 

plastic flow.  

In the M-K analysis (Marciniak and Kuczyński, 1967), plastic instability was considered to 

originate in the imperfection groove with a thickness lesser than the thickness of the surrounding 

material, subsequently leading to localized necking and failure of the sheet metal. For the first 

time, Azrin and Backofen (1970) realized the Marciniak and Kuczyński’s postulate experimentally 

by studying the effects of an imperfection patch in a sheet metal on forming limit diagrams. 
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Figure 2.21: Schematic of M-K instability criteria (Mohammadi et al., 2014). 

Originally developed as a means of describing localized necking in biaxial stretching for which 

the minor strain > 0, the M-K analysis was later extended to the negative minor strain region 

(Stören and Rice, 1975; Hutchinson and Neale, 1978a). Furthermore, in Hutchinson and Neale’s 

work (Hutchinson and Neale, 1978b), the M-K model, which is based on the flow theory of 

plasticity framework and quadratic plastic potentials, was also refined by incorporating the J2 

deformation theory of plasticity. Another extension, namely the inclusion of strain-rate effects in 

studies of sheet metal formability, was initially initiated by (Marciniak et al., 1973; Hutchinson 

and Neale, 1978a; Needleman and Tvergaard, 1984) carried out similar analyses for rate-sensitive 

materials. In these simulations, the effects of various constitutive features on localized sheet 

necking were explored.   

It is well known that the localization of plastic flow is strongly influenced by deformation-induced 

textures and anisotropy (Asaro and Needleman, 1985). In turn, this localization then affects, to 

some degree, the texture development in polycrystals. Considering these factors, polycrystal 

deformation models can be expected to be very effective for simulating plastic instability 

processes. A polycrystal model should provide an improved understanding of the relation of 

localization to the microstructure of the material, and thus be more successful in predicting strain 

localization phenomena than phenomenological models. Based on the simple M-K-type model, 

Asaro and Needleman (1985) presented analyses of localized necking in thin sheets subjected to 
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balanced biaxial stretching with their polycrystal model. Their work enabled, for the first time the 

study of the effects of texture and path-dependent strain hardening on sheet necking.  

Zhou and Neale (1995) have directly applied a rate-sensitive crystal plasticity model in conjunction 

with the M-K approach to predict FLDs for annealed FCC sheet metals. Their analyses considered 

the initial texture and its evolution. However, elasticity was neglected and the imperfection groove 

was restricted to be normal to the major principal stretch direction. Wu et al. (1996) used the Asaro 

and Needleman (1985) polycrystal plasticity model to calculate the FLDs for FCC polycrystals. 

They have discussed in detail the effects of initial imperfection intensity and orientation, initial 

distribution of grain orientations, crystal elasticity, strain rate sensitivity, single slip hardening, 

and latent hardening on the predicted FLDs.  

It is known that the initiation of a neck leads to localized deformation, with further stretching, 

either strain localizes progressively in this neck or necking triggers the formation of shear bands. 

In the mathematical description, the formation of localized shear bands in solids is quite similar to 

localized necking in sheets. However, shear bands represent a material instability, and they do not 

depend on constraints along the boundary of the solid. Such material instabilities are of 

significance as a precursor to fracture, and have been observed in a wide variety of materials. The 

basic phenomenon of shear localization can be studied using a relatively simple approach similar 

to the above-mentioned M-K analysis where localized shearing is assumed to occur in a thin slice 

of material, while the strain fields outside this band are assumed to remain uniform throughout the 

deformation history.  

Peirce et al. (1982) presented finite element calculations for non-uniform deformation modes in 

ductile single crystals based on a rate-independent constitutive model for crystallographic slip. 

Their analysis, however, highlighted inherent limitations of the rate independent idealization of 

crystalline slip. These limitations were so severe that an analysis of large strain plastic flow was 

precluded for a full range of material properties, in particular for materials having high strain 

hardening. As a result, Peirce et al. (1983) adopted the rate-dependent constitutive theory for 

crystalline slip, and were able to simulate large strain tension tests of single crystals. Their results 

provided a general understanding of the roles of rate sensitivity and lattice kinematics in the 

development of localized modes of deformation. Wu et al. (2004) and Yoshida et al. (2007) showed 
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that the typical recrystallization texture component (cube texture) improves the right side of the 

FLD (biaxial formability) while the rolling texture components (Copper, Brass, Goss and S 

textures) show a decline in the biaxial formability (Yoshida et al., 2007).  

Inal et al. (2005) used a rate-sensitive polycrystal plasticity model with the full constraint Taylor 

type homogenization scheme (FC-Taylor) and suggested that the effect of texture evolution during 

deformation on formability of body-centered cubic (BCC) polycrystal is much less (higher forming 

limit curve) as compared to the FCC polycrystals (lower forming-limit curve). Inal et al. (2005) 

also reported that the number of slip systems strongly affects the occurrence of localized necking 

in a polycrystalline material, which agrees with what Barlat (1987) demonstrated. The above-

mentioned studies show that initial texture of the sheet metal not only affects the slip activity on 

different slip systems but also play an important role in strain localization that causes failure of the 

sheet metal.  

Serenelli et al. (2011) and Signorelli and Bertinetti (2009, 2012) claimed that FLDs predicted using 

VPSC-MK models are able to achieve better agreement with the measured FLDs as compared to 

the MK-Taylor models. However, the MK-VPSC models are computationally very expensive as 

compared to the MK-Taylor models (Schwindt et al., 2015; Jeong et al., 2016) and thus limiting 

the application of VPSC to problems with small computational domains. Wang et al. (2011) used 

both Taylor and VPSC models coupled with the M-K approach to assess the formability of Mg 

sheet alloy (with HCP crystal structure) and suggested that the texture evolution highly affects the 

formability for uniaxial and biaxial deformations showing a low forming limit curve, while it has 

little effect on the formability for plane strain deformation. 

2.5 Brief Conclusions of Literature Review 

To obtain the failure strains, the M-K approach employs two representative volume elements. To 

generate the complete forming limit diagram (FLD) using the M-K approach, failure strains are 

obtained at 16 different strain paths, i.e., imposed strain ratio is changed from -0.5 (i.e., uniaxial 

tension) to 1.0 (i.e., balanced biaxial tension) with an increment of 0.1. In addition, for each strain 

path, the initial imperfection band angle is swept from 0  to 90  in in-plane with an increment of 

5  and the lowest value of failure strain is selected. Therefore, a total of 288 different simulations 
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are required to obtain the complete FLD. Thus, to model the DRX and obtain FLDs simultaneously 

for 3D microstructure of HCP metals, using a full-field crystal plasticity model, large amount of 

computations is required. Besides, modelling a complex material such as an HCP metal that has 

eighteen slip systems and six twinning systems is computationally more expensive than modelling 

similar phenomena in a relatively simple material such as aluminum alloy that has only twelve slip 

systems. Therefore, a highly efficient full-field crystal plasticity model is required. Thus, efficient 

FFT-based crystal plasticity model seems to be good candidate for formability analyses. 

Furthermore,  since a simulated area in the cellular automat (CA) is discretized using cells, a grid 

of Fourier points can be directly coupled to model a real microstructure. If the time-scaling is 

calibrated correctly, the Fourier points can represent cells. This is one of the main advantages of 

coupling FFT-based crystal plasticity model and CA.    
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Abstract 

In this chapter, a new full-field numerical framework is proposed to model large strain phenomena 

in polycrystals. The proposed framework is based on the elasto-viscoplastic (EVP) fast Fourier 

transform (FFT) formulation presented by Lebensohn et al. (2012) and the rate dependent crystal 

plasticity framework developed by Asaro and Needleman (1985). In this implementation, the full-

field solutions of micromechanical fields are computed on a regular, voxelized representative 

volume element (RVE) in which either a single or multiple grid point represent a single grain. The 

Asaro and Needleman (1985) formulation coupled with a semi-explicit, forward gradient time-

integration scheme (Peirce et al., 1983) is used to compute local stresses and the FFT-based method 

is used to find local strain fluctuations at each grid point. The proposed model is calibrated using 

experimental uniaxial tensile test results of aluminum alloy (AA) 5754 sheet and then used to 

predict texture evolution and stress-strain response for balanced biaxial tension and plane-strain 

tension along rolling (RD) and transverse (TD) directions. The predicted stress-strain and texture 

results show a good agreement with experimental measurements. The CPU time required by the 

proposed model is compared with the original EVP-FFT model for two separate cases and the 

proposed model showed significant improvement in computation time (approximately 100 times 

faster). 

Keywords: Crystal plasticity, Fast Fourier Transforms, Tangent Method, Computational 

efficiency, Texture, Aluminum alloys, Variable loading path 
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3.1 Introduction 

The response of an aggregate of crystallites of varying size and orientation subjected to plastic 

deformation is governed by the spatial distribution and dynamics of crystalline defects. The 

development of advanced characterization tools has enabled very detailed characterization of 

polycrystalline materials. For example, Scanning Electron Microscopy (SEM) and Transmission 

Electron Microscopy (TEM) (Lee and Lam, 1996; Nieh et al., 1998; Salem et al., 2003; Armstrong 

and Walley, 2008; Karel et al., 2016; Wickramarachchi et al., 2016) are used for surface analysis 

of the material’s microstructure. Synchrotron-based X-Ray Diffraction (XRD) and Focus-Ion-

Beam (FIB) combined with Electron Back-Scattering Diffraction (EBSD) are used to measure the 

chemical composition and crystal structure (Ohashi et al., 2009; Gardner et al., 2010; Abdolvand 

et al., 2015; Jeong et al., 2015; Erinosho et al., 2016). These advanced experimental techniques 

bestow highly sophisticated microstructure information and generate large amounts of data 

creating a difficult task for computational techniques to interpret and harness relevant information. 

In order to establish the relationship between microstructure and properties of polycrystalline 

materials undergoing plastic deformation, an accurate prediction of the micromechanical behavior 

based on directional material properties and gradual development of substructure of the constituent 

grains is required. Therefore, efficient computational schemes are needed to investigate the 

microstructure-property relations. In this section, we review crystal plasticity formulations that are 

extensively used to deal with this challenge. 

Among the several crystal plasticity formulations available, the Sachs model (Sachs, 1928) and 

the Taylor model (Taylor, 1938) are the earliest epitomes of the so-called mean-field polycrystal 

models. According to the Taylor model, every crystal is assumed to have the same strain 

throughout the material, thus the macro strain of the material is simply equal to the local crystal 

strain. However, while this approach retains the inter-granular compatibility by definition, it leads 

to violation of inter-granular stress equilibrium. On the contrary, the Sachs model assumes that 

every crystal experiences the same stress throughout and the local stress is equal to the macro 

stress. This preserves inter-granular stress equilibrium but it violates inter-granular compatibility. 

A more realistic approach known as the self-consistent (SC) model, originally proposed by 

Molinari et al. (1987) for modelling viscoplastic (VP) behavior in polycrystals, accounts for the 
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average interactions of the constituent grains of a polycrystal and has been extensively used to 

predict texture evolution of polycrystals. This approach was further developed by Lebensohn and 

Tomé (1993) and Lebensohn et al. (2007). The Viscoplastic Self Consistent (VPSC) model 

consists in treating each constituent crystal is treated as an Eshelby heterogeneity embedded in a 

Homogeneous Equivalent Medium (HEM) and has been extensively used for polycrystal 

modelling accounting for texture-induced plastic anisotropy. 

Beyond the formulations discussed above, which rely on mean-field approximations to obtain the 

plastic response of polycrystalline materials undergoing plastic deformation, full-field approaches 

are also available, which can predict the actual micromechanical stress and strain fields as well as 

the effective response of polycrystals with a specific microstructure. Full-field approaches, namely 

crystal plasticity Finite element method (CP-FEM) and crystal plasticity fast Fourier transform 

(CP-FFT)-based method, provide richer micromechanical information with direct input from an 

image of microstructure obtained by EBSD (e.g., Kalidindi et al., 1992, Spowart et al., 2003; 

Brahme et al., 2006). Although CP-FEM is a very powerful tool, the size and resolution of the 

polycrystal that can be treated with this approach are limited, mainly due the large number of 

degrees of freedom required by CP-FEM computations.  

An efficient alternative to CP-FEM is given by the CP-FFT. The FFT-based formulation was 

originally developed by Moulinec and Suquet (1994, 1998) to compute the macro and micro 

response of composites, that consists of solving the Lippmann-Schwinger equation (Lippmann and 

Schwinger, 1950) by an iterative method that involves the use of the Green’s operator associated 

to a linear reference medium. The CP-FFT-based schemes have been developed for polycrystalline 

materials deforming in elastic regime (Brenner et al., 2009), rigid-viscoplastic regime (Lebensohn, 

2001; Lebensohn et al., 2008), and elasto-viscoplastic regime (Lebensohn et al., 2012, Grennerat 

et al., 2012) for infinitesimal strains. Furthermore, the CP-FFT-based methods have been recently 

extended to finite strains (Eisenlohr et al., 2013; Geus et al., 2016; Kabel et al., 2016).  

An explicit or an implicit time-integration scheme can be used to update the rate-dependent 

constitutive behavior simulated in CP-FEM and FFT-based models. In the various FFT-based 

techniques available, e.g., Lebensohn et al. (2011), Lebensohn et al. (2012), a modified Newton-

Raphson method and augmented Lagrangians procedure based on an implicit integration procedure 
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to iteratively adjust a compatible strain-rate field (or strain field) related to an equilibrated stress 

has been used. In these FFT-based techniques, the value of temporal step is taken very small. This 

approach requires relatively longer computational times to reach large deformations. On the other 

hand, the crystal plasticity models that use semi-explicit time integration schemes are generally 

more efficient, since larger time steps can be employed in the analysis (e.g., Rashid and Nemat, 

1992; Rossiter et al., 2010).  

Various researches have shown that CP-FFT methods are more efficient than CP-FEM (e.g., Liu 

et al., 2010; Prakash and Lebensohn, 2009) in obtaining the response of a polycrystalline material. 

However, the computationally expensive iterative character of Newton-Raphson type solver and 

augmented Lagrangians procedure used in most of these FFT-based methods renders them 

unsuitable for their use in applications that involve larger computational domains deforming under 

complex strain paths in which large strains are reached (i.e. predictions of forming limit strains). 

These simulations require highly efficient models to obtain material response expeditiously in 

order to achieve reasonable computing times. In this chapter, a new numerical framework that 

incorporates the rate-dependent crystal plasticity theory (Asaro and Needleman, 1985) with a semi-

explicit forward gradient time-integration scheme (Peirce et al., 1983) into the FFT-based 

formulation (Lebensohn et al., 2012) is presented. The new model achieves significant gains in 

terms of computational efficiency over the existing EVP-FFT method (at least 100 times faster).  

The plan of this chapter is as follows: In Section 3.2, the details of the proposed model are 

presented. In Section 3.3, the proposed model is benchmarked for the case of a Face Centered 

Cubic (FCC) polycrystal. Finally, the predictive capability as well as the computational efficiency 

of the proposed model is demonstrated, where predictions obtained using the proposed model are 

compared to experiments for the aluminum alloy (AA) 5754 in Section 3.4. 

3.2 Model Formulation 

The proposed model obtains the solutions for a heterogeneous volume element chosen to be 

statistically representative of the whole microstructure. Periodic boundary conditions are enforced 

across the RVE. For every discrete material point, the numerical analysis employs the tangent 

method with a semi-explicit integration scheme to find the equilibrated stress and compatible 
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strains through the constitutive relations in a single equilibrium iteration. For completeness, first 

the rate dependent polycrystal formulation (Asaro and Needleman, 1985) is reviewed, followed by 

the rate tangent method and the new numerical framework.  

3.2.1 Crystal Plasticity Constitutive Model 

According to rate dependent polycrystal formulation presented by Asaro and Needleman (1985), 

for single-phase FCC polycrystals, two distinct physical deformation mechanisms result in total 

deformation of single crystal. Primarily, the dislocation slip on active slip systems is considered 

to be the only mechanism responsible for plastic deformation in a single crystal, the elastic 

distortion and rigid body rotations of crystal lattice with embedded material construct the 

secondary mode of deformation. Hence, the total deformation gradient can be decomposed into 

product of plastic deformation gradient embodying dislocation slip and elastic deformation 

containing lattice distortion as proposed by Lee (1969).  

Accordingly, the total deformation gradient 𝐅 is written as following 

 𝐅 = 𝐅∗𝐅𝐏 (3.1) 

where, 𝐅 is the deformation gradient that satisfies compatibility within each grain and between 

grains and 𝐅𝐏 consists of dislocation slip that occurs as plastic shear on twelve slip systems having  

{1 1 1} slip planes with normal vector 𝐦(α) and  〈1 1 0〉 slip directions with slip vectors 𝐬(α) with 

1 ≤ α ≤ 12 in an FCC crystal. Note that, the brackets for the subscripts α indicate that the quantity 

is computed over the total number of slip systems. 𝐅∗ embodies elastic deformation and rigid body 

rotations of crystal lattice. In the un-deformed state, the lattice vectors 𝐦(α), 𝐬(α), are orthonormal 

and in the deformed state they rotate and stretch as 

 𝐦(𝛂)
∗ = 𝐦(𝛂)𝐅

∗−𝟏 , 𝐬(𝛂)
∗ = 𝐅∗𝐬(𝛂) (3.2) 

The velocity gradient is written as sum of its elastic and plastic parts as  
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 𝐋 = 𝐋∗ + 𝐋𝐏 = 𝐅̇𝐅−𝟏 (3.3) 

where 

 𝐋∗ = 𝐅̇∗𝐅∗
−𝟏
, 𝐋𝐏 = 𝐅∗(𝐅̇𝐏𝐅𝐏

−𝟏
)𝐅∗

−𝟏 (3.4) 

Taking the symmetric and antisymmetric parts of the above relations lead to; (i) the elastic strain 

rate 𝐃∗ (ii) the plastic strain rate 𝐃P, (iii) the so-called plastic spin 𝐖P, and (iv) the spin 𝐖∗ 

associated with the rigid lattice rotation. Accordingly, the total strain rate and spin tensors can be 

written as, 

 𝐃 = 𝐃∗ +𝐃𝐏 (3.5) 

 𝛀 = 𝛀∗ + 𝛀𝐏 (3.6) 

By introducing the following symmetric 𝐏(α) and skew symmetric 𝐖(α) second order tensors for 

each slip system α, 

 
𝐏(𝛂) =

𝟏

𝟐
[𝐬(𝛂)
∗ ⊗𝐦(𝛂)

∗ +𝐦(𝛂)
∗ ⊗ 𝐬(𝛂)

∗ ] (3.7) 

 
𝐖(𝛂) =

𝟏

𝟐
[𝐬(𝛂)
∗ ⊗𝐦(𝛂)

∗ −𝐦(𝛂)
∗ ⊗ 𝐬(𝛂)

∗ ] (3.8) 

the plastic strain rate 𝐃P and plastic spin 𝛀P for the crystal can be written as 

 𝐃𝐏 =∑𝐏(𝛂) 𝛄̇(𝛂),       

𝛂

𝛀𝐏 =∑𝐖(𝛂) 𝛄̇(𝛂)
𝛂

 (3.9) 

where γ̇(α) is the shear rate on each slip system α. The constitutive equation for a crystal is 

specified by the Jaumann rate of the Kirchoff stress, 𝛕, as 
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  𝛕
𝛁
= 𝓛:𝐃 −∑𝐑(𝛂) 𝛄̇(𝛂)

𝛂

 (3.10) 

where, 𝓛 is the fourth order tensor of elastic moduli based on the anisotropic elastic constants of 

the FCC crystals which exhibits the appropriate cubic symmetry and, 𝐑(α) is the second-order 

tensor given as 

 𝐑(𝛂) = 𝓛: 𝐏(𝛂) +𝐖(𝛂)𝛕 − 𝛕𝐖(𝛂) (3.11) 

In order to complete the constitutive description, the shear rate on each slip system needs to be 

defined. The shear rate γ̇(α) on each slip system α is governed by a power-law expression, so that 

 
 γ̇(α) = γ̇0 sgn τ(α) |

τ(α)

g(α)
|

1 m⁄

 (3.12) 

where τ(α) is the resolved shear stress, g(α) is the hardness, of slip system α, γ̇0 is the reference 

shear rate (same for each slip system) and m is the index of strain rate sensitivity. The hardened 

state of each slip system 𝛂 is characterized by g(α). The hardening rate, ġ(α), for multiple slip is 

defined by hardening law as following 

  ġ(α) =∑𝐡𝛂𝛃|γ̇β|

β

 (3.13) 

where, 𝐡(αβ) is the hardening moduli and γ̇(β) is the single slip shear stress rate on slip system β. 

The hardening moduli used here is the one that has been used previously by Peirce et al. (1983) 

and Asaro and Needleman (1984), 

 𝐡(𝛂𝛃) = 𝐪(𝛂𝛃)h(β) (no sum on β) (3.14) 
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where qαβ matrix describes the latent hardening of the crystallite and hβ is the single slip 

hardening. Following (Asaro and Needleman, 1985), it is considered that gα depends on the 

accumulated sum, γa, of the slips, where 

 
γ(a) = ∫ ∑|γ̇(α)|dt

α

t

0

 (3.15) 

The model presented by Chang and Asaro (1981) is employed to calculate the single slip 

hardening. Accordingly,  

 
h(β) = hs + (h0 − hs)sech

2 {(
h0 − hs
τs − τ0

)γ(a)} (3.16) 

where τ0 is the critical resolved shear stress, τs is the value of saturated shear stress, hs is the 

asymptotic hardening rate of slip systems and h0 is the hardening constant. 

3.2.2 Rate Tangent Modulus Method 

The new numerical framework developed in this research employs the semi-explicit rate tangent 

modulus method developed by Peirce et al. (1983). According to this method, the increment in slip 

on each slip system α at time t is given by 

 ∆γ(α) = γ(α)
t+∆t − γ(α)

t  (3.17) 

Within the time increment ∆t, a linear interpolation of slip increment is employed to give 

 ∆γ(α) = [(1 − θ) γ̇(α)
t + θ γ̇(α)

t+∆t] ∆t (3.18) 
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where θ is an interpolation parameter ranging between 0 and 1. θ = 0 corresponds to Euler time 

stepping scheme (θ = 0.5 is used in the current formulation). The last term in above equation can 

be approximated by using Taylor series expansion as 

 
 γ̇(α)
t+∆t ≅  γ̇(α)

t + 
∂γ̇(α)

∂τ(α)
|
t

∆τ(α) +  
∂γ̇(α)

∂g(α)
|
t

∆g(α) (3.19) 

Equation (3.19) can be further simplified as (Peirce et al., 1983); 

 ∑𝐍(𝛂𝛃)∆γ(β) = ( γ̇(α)
t +𝐐(𝛂): 𝐃)

β

∆t (3.20) 

where  γ̇(α)t  can be calculated by Equation (3.12) and 𝐐α is given as 

 
Q(α) = (

θ∆t γ̇(α)
t

mτ(α)
)R(α) (3.21) 

and 

 
𝐍(𝛂𝛃) = 𝛅(𝛂𝛃) + (

θ∆t γ̇(α)
t

m
) × [

𝐑(𝛂): 𝐏(𝛃)

τ(α)
+ sgn(τ(β))

𝐡(𝛂𝛃)

g(α)
] (3.22) 

Denoting the inverse of 𝐍(𝛂𝛃) by 𝐌(𝛂𝛃) and then inverting Equation (3.22) leads to a simpler form 

 ∆γ(α) = [ ḟ(α) + 𝛘(𝛂): 𝐃]∆t (3.23) 

where 
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  ḟ(α) =∑𝐌(𝛂𝛃) γ̇(α)
t

β

 and 𝛘(𝛂) =∑𝐌(𝛂𝛃)𝐐(𝛂)
β

 (3.24) 

The Equation (3.23) allows Equation (3.10) to be written as 

  𝛕
𝛁
= 𝓒:𝐃 −∑𝐑(𝛂)𝐟(̇𝛂)

𝛂

 (3.25) 

where 𝒞 is the elasto-viscoplastic moduli given as 

 𝓒 = 𝓛 −∑𝐑(𝛂)
𝛂

𝛘(𝛂) (3.26) 

Note that, for θ = 0 the Equation (3.25) reduces to Equation (3.10). Now, expressing constitutive 

Equation (3.25) in form of Jaumann rate 𝛔
𝛁

 of Cauchy stress 𝛔  

 𝛔
𝛁
= 𝓒:𝐃 − 𝛔̇𝟎 − 𝛔 𝐭𝐫𝐃 (3.27) 

Since, σ = det F−1 τ, the viscoplastic stress-rate is given by 

 𝛔̇𝟎 =∑𝐑(𝛂) γ̇(α)
α

 (3.28) 

Now, updating the Cauchy stress tensor for next time step as following 

 𝛔𝐭+∆𝐭 = 𝛔𝐭 + 𝛔̇𝟎 ∆t (3.29) 
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The sections above describe the general (Asaro and Needleman, 1985) framework that has been 

used in various homogenization as well as in full-field schemes (Inal, 2002; Inal et al., 2010; 

Brahme et al., 2011; Izadbakhsh et al., 2011; Inal and Mishra, 2012; Cyr et al., 2015;  Muhammad 

et al., 2015; Pinna et al., 2015). This formulation, coupled with a rate tangent semi-explicit 

integration scheme is implemented into an FFT-based model as described next.  

3.2.3 FFT Model and Implementation of the New Crystal Plasticity 

Framework  

To predict the evolution of micromechanical fields and intragranular texture during deformation, 

the space resolved configuration of the regular Fourier grid points and the grain interactions must 

be considered in the whole RVE. In proposed numerical approach, each Fourier grid point 

represents a voxel inside a grain. The Fourier grid {xd} is defined as  

 
{xd} = {((I1 − 1)

ℓ1
N1
, (I2 − 1)

ℓ2
N2
, (I3 − 1)

ℓ3
N3
) ; Ik = 1,… ,Nk, k = 1,3} (3.30) 

where ℓk is the length of the grid and Nk is the number of Fourier points in each direction k. Note 

that, from this point onward, index notation will be employed in the formulations. In order to 

account for the interaction of each grid point with all the other points in the RVE, the following 

problem for heterogeneous RVE needs to be solved at each grid point written as following: 

 
{

σij(x) = ℒijkl(x)εkl(x), ∀x ∈  {xd} 

σij,j(x) = 0

 Periodic boundary conditions across RVE

 (3.31) 

where εkl(x) and σij(x) are the local strain and local stress fields and ℒijkl(x) is the local elastic 

stiffness. The total local strain is given by 
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 εij(x) = ε̃ij(x) + Eij (3.32) 

where ε̃ij(x) is the strain fluctuation in the crystal due to heterogeneity and Eij is the strain imposed 

on the RVE. The local strain fluctuation can be found using Green function method if local stress 

polarization field is known. Finding local stress polarization involves ℒ 0, an average elastic moduli 

of a linear reference medium. Here, linear medium refers to medium that is not yet loaded or is in 

the un-deformed state.  

Accordingly, the stress tensor can be written as; 

 σij(x) = σij(x) + ℒijkl
0 εkl(x) − ℒijkl

0 εkl(x) (3.33) 

or, 

 σij(x) = ℒijkl
0 εkl(x) + σ̃ij(x) (3.34) 

where, σ̃ij(x) is the stress polarization and is given by: 

 σ̃ij(x) = σij(x) − ℒijkl
0 εkl(x) (3.35) 

The strain tensor εkj is related to displacement gradient uk,l(x) as 

 εkl = (uk,l(x) + uk,l(x)) /2 (3.36) 

Thus, the local problem for heterogeneous RVE becomes: 
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{

σij(x) = ℒijkl
0 εkl(x) + σ̃ij(x), ∀x ∈  {χd} 

σij,j(x) = 0

 Periodic boundary conditions across RVE

 (3.37) 

To satisfy equilibrium locally, the divergence of local Cauchy stress tensor must be equal to zero, 

i.e., 

 ℒijkl
0 εkl,j(x) + σ̃ij(x) = 0 (3.38) 

The Green’s function method is used to solve the equilibrium Equation (3.38) for an applied strain 

Eij that requires the solution of following problem (Lebensohn et al., 2012): 

 ℒijkl
0 Gkm,lj(x − x

′) + δimδ(x − x
′) = 0 (3.39) 

where Gkm,lj(x − x′) is the Green’s function associated with the displacement field. Accordingly, 

the local strain fluctuations can be expressed as convolutions in the real space so that 

ε̃kl(x) = ∫ Gki,jl(x − x
′)σ̃ij(x

′)dx′
 

R3
 (3.40) 

Since a convolution integral in real space can be expressed as a product in the Fourier space for a 

regular Fourier grid, Equation (3.40) is solved in the Fourier space that renders the FFT-based 

implementations computationally efficient for computing the local response. Using the 

convolution theorem, the local strain fluctuations in Fourier space are given by 

ε̂̃kl(ξ) =  Γ̂ijkl
0 (ξ))σ̂̃kl(ξ) (3.41) 
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where “  ̂” indicates Fourier transform, and ξ is the frequency point in the Fourier space. 

Furthermore, the Green operator in Fourier space Γ̂ijkl0 , which is a function of the stiffness tensor 

of the reference medium and the frequency, is given by 

 Γ̂ijkl
0 (ξ) =  −ξjξlĜik(ξ), Ĝik(ξ) = [ℒijkl

0 ξlξj]
−1

 (3.42) 

Accordingly, the local strain fluctuations in real space can be obtained by taking the inverse Fourier 

transform of Equation (3.41) such as 

ε̃kl(x) = fft
−1(sym(Γ̂ijkl

0 (ξ))σ̂̃kl(ξ)) 

As a part of augmented Lagrangians iterative procedure, (Michel et al., 2001) proposed an 

alternative method in which the Fourier transform of local stress tensor is computed instead of 

local perturbation field. This approach is employed in the single iteration procedure presented in 

this chapter. Accordingly, the total local strain is given by 

 εij(x) = fft
−1(sym(Γ̂ijkl

0 (ξ)) σ̂kl(ξ)) + Eij (3.43) 

In the new numerical framework, to calculate the local stress at each material point, the rate tangent 

method is used to update the rate form of the constitutive equation in a single iteration for 

equilibrium, (i.e., Equation (3.25)). At first time step, with an imposed macro strain Eij , the 

algorithm can be initialized with zero strain fluctuation, ε̃ij(x) = 0 and σijt (x) = 𝒞ijkl
t (x)Dkl

t  (x). 

For next temporal increment, the algorithm computes the: 

1. Current guess of local Cauchy stress σijt+Δt(x) using rate tangent scheme, 

2. Fourier transform of current guess of Cauchy stress, σ̂ijt+ ∆t(ξ) = fft (σijt+Δt(x)), 

3. Green operator (Γ̂ijkl0 (ξ)) as a function of reference medium stiffness (ℒijkl0 ) for each 

frequency (ξ) as given by Equation (3.41), 
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4. Local strain fluctuation, ε̃ij t+ ∆t(x) = fft−1(sym(Γ̂ijkl0 (ξ)) σ̂kl(ξ)), 

5. Total local strain as, given by Equation (3.43), 

6. Updates of the current local strain rate tensor Dijt+Δt(x)  and the current Cauchy stress tensor 

σij
t+Δt(x) using rate tangent scheme, 

7. The algorithm then repeats steps 1-6 for the next temporal increments. 

8.  

Figure 3.1: The synthesized microstructure of copper polycrystal and for an artificial FCC 
polycrystal with 16 x 16 x 16 Fourier points in 100 grains showing initial texture distribution. 

3.3 Model Calibration and Validation 

In this section, the proposed numerical model is validated by comparing the predictions from the 

new model with the predictions obtained from the well-established elasto-viscoplastic fast Fourier 

transform (EVP-FFT) model (Lebensohn et al., 2012) . The numerical analyses are carried out for 

a copper polycrystal and an artificial random FCC polycrystal with anisotropic constants, A=2.2 

and A=0.5 respectively (A = (2 x C44) / (C11-C12)). The corresponding elastic constants employed 

in these analyses are presented in Table 3.1. For both cases, the same representative volume 
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element (RVE) is used where 100 grains with randomly assigned copper orientations are employed 

in a regular grid of 16 x 16 x 16 Fourier points (to discretize the RVE, Figure 3.1). 

 

Figure 3.2: Predicted von Mises equivalent stress–strain curves during uniaxial tension along RD 
using the EVP-FFT model for cases of the copper polycrystal and an artificial FCC polycrystal.  

It should be mentioned that the same material parameters and boundary conditions are used for 

both models during each set of simulations. The polycrystals deform plastically by slip on twelve 

slip systems for a critical resolved shear stress (CRSS), τ0, of 10 MPa (no strain-hardening is 

assumed) and the strain rate sensitivity index, m, is set to 0.1. The simulations are carried out up 

to a strain of 0.2% with an applied strain rate of 10-4 s-1 along the rolling direction (RD). Note that, 

from now on, the new model will be referred to as RTCP-FFT model. 

Figure 3.2 shows the equivalent stress–strain curves predicted by the EVP-FFT model, while 

Figure 3.3 (a-b) present comparisons between the predictions obtained from the EVP-FFT and the 

RTCP-FFT models. Note that, for these simulations, the main interest is the elasto-viscoplastic 

transition zone, which varies with anisotropic constants. For both the analyses (for a copper 

polycrystal and the artificial FCC polycrystal) the simulations with the RTCP-FFT model are in 

excellent agreement with the predictions obtained from the EVP-FFT. 
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Figure 3.3: Comparisons of the predicted von Mises equivalent stress–strain curves during 
uniaxial tension along RD between the RTCP-FFT and EVP-FFT models for; (a) copper 

polycrystal, and (b) an artificial polycrystal. 
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Figure 3.4: Comparison of the simulated micromechanical fields for the copper polycrystal (A = 
2.2) at 5% equivalent strain during uniaxial tension along RD; (a-b) – distribution of the von 

Mises equivalent stress (MPa), (c-d) – distribution of equivalent strain. 

Next, for the case of the copper polycrystal, the predicted local micromechanical fields obtained 

with both models obtained at an equivalent strain of 5% are compared (Figure 3.4a-d). A 

qualitative comparison of the results shows that the proposed model reproduces similar 

micromechanical fields as compared to the original EVP-FFT model (Figure 3.4); the locations of 

deviations from uniform stress and strain fields predicted by the RTCP-FFT model, in general, are 

also in reasonable agreement with those predicted by the original EVP-FFT model. However, some 

variations are observed between the computed local strains at some locations. These variations are 

mainly due to the different numerical integration schemes employed in the models. Furthermore, 

to quantify the variations, the mismatch in terms of both the local equivalent strains and the local 

(a) EVP-FFT (vM stress) (b) RTCP-FFT (vM stress) 

(c) EVP-FFT (equivalent strain) (d) RTCP-FFT (equivalent strain) 
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equivalent stresses, normalized by the sum of local equivalent fields, i.e. strains or stresses on all 

the voxels, are presented in the Figure 3.5. 

 

Figure 3.5: Comparison of variations in the local fields for each voxel between the RTCP-FFT 
and the EVP-FFT models in copper polycrystal (A = 2.2) at 5% equivalent strain during uniaxial 

tension along RD: (a) mismatch in the local equivalent strain, (b) mismatch in the local 
equivalent stress. 

The normalized difference is calculated per voxel as 

Mismatch in local fields at voxel i =
2 ∗ |Fieldi

EVP−FFT − Fieldi
RTCP−FFT |

∑ Fieldi
EVP−FFT N

i=1 + ∑ Fieldi
RTCP−FFT N

i=1
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where N is the total number of voxels. It should be mentioned that even though the local fields 

calculated by the RTCP-FFT model can be different from those computed by the EVP-FFT model, 

these differences have a very little impact, if any, on the macroscopic behavior (Figure 3.3a). 

Table 3.1: Adopted elastic constants for copper polycrystal (Simmons and Wang, 1971) and for 
an artificial polycrystal (Lebensohn et al., 2012). 

Elastic constants 𝐂𝟏𝟏 𝐂𝟏𝟐 𝐂𝟏𝟒 

Copper polycrystal 170.2 GPa 114.9 GPa 61.0 GPa 

Artificial polycrystal 233.6 GPa 88.2 GPa 33.8 GPa 

3.4 Application to Aluminum Alloy (AA) 5754 

In this section, the predictive capability of the new model is demonstrated by comparing 

predictions from the new model with experiments for the commercial aluminum alloy (AA) 5754. 

It is important to mention that the proposed model is only calibrated for uniaxial tension along RD, 

then the same parameters are employed for the predicting the macroscopic stress-strain responses 

and the texture evolution for various other strain paths. For each case, the predictions obtained 

with RTCP-FFT model are compared with the measured data presented in Hu et al. (2012). 

3.4.1 Model Setup 

In this analysis, a representative volume element (RVE) with 128 x 128 x 128 points that represent 

8837 equiaxed grains is used to model AA5754 (Figure 3.6e). The pole figures and orientation 

distribution functions (ODF) of the initial texture of as received O-temper AA5754 are presented 

in Figure 3.6 (a-d). The synthetic microstructure in the RVE with equiaxed grains is built using a 

microstructure building software as proposed by (Brahme et al., 2006). In this approach, an 

optimization technique is used to minimize the error, in both orientation distribution function 

(ODF) and misorientation distribution function (MDF), between measured and assigned 

orientations.  
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Table 3.2: Constitutive parameters used to calibrate RTCP-FFT model for uniaxial tension along 
RD. 

h0/τ0 τs/τ0 τ0 hs/τ0 m q 

10.0 2.24 25.5 1.9 0.02 1.0 

3.4.2 Boundary Conditions 
Simulations of uniaxial tension, balanced biaxial tension and plane strain tension are performed in 

this section. Uniaxial tension is simulated by applying a velocity gradient in RD (X) and TD (Y) 

directions respectively while the remaining components of the velocity gradient are kept 

unconstrained. Equibiaxial tension is simulated by applying a velocity gradient in both RD-TD 

(X-Y) directions while keeping ND (Z) direction unconstrained. Similarly, plane strain tension is 

simulated by applying a velocity gradient in the RD (X) and TD (Y) directions respectively while 

constraining the ND (Z) direction. 

 

Figure 3.6: Comparison of initial texture: (a) pole figure representations of the as-received 
experimental texture and (b) fitted texture; Comparison of contours of experimental ODFs (c) 
and fitted ODFs (d) at 0, 45, and 60 degrees of φ2 sections. (e) The generated microstructure 

with 128 x 128 x 128 points in 8837 equiaxed grains, the colors represent different grains. 
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3.4.3 Model Calibration 

An initial curve fitting of the macroscopic stress-strain response of the polycrystalline is performed 

for uniaxial tensile test to calibrate the RTCP-FFT model (Figure 3.7a), and the material 

parameters employed in the model are presented in Table 3.2. Note that, the same set of material 

parameters (as presented in Table 3.2) are employed in all of the simulations presented in section 

3.4. 

 

Figure 3.7: (a) Comparison of macroscopic stress strain curves of measured data (Hu et al., 2011) 
and simulated response by calibrated-RTCP-FFT model for RD-uniaxial tension. (b) Simulated 

texture in form of pole figure for RD-uniaxial tension after 15% true strain. (c) and (d) 
Comparison of ODF sections of measured and simulated texture for RD-uniaxial tension at 5%, 

10% and 15% true strain. 

The predicted texture evolution for 15% strain during uniaxial tension along RD is presented in 

Figure 3.7b, while Figure 3.7 (c-d), present a comparison of ODF sections of measured and 

predicted evolved texture at different levels of true strain. Results show that the RTCP-FFT model 

can accurately capture the major trends of texture evolution. Both the experimentally measured 
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and the predicted texture (evolved) show an increase in the intensity of Copper and S (typical 

rolling textures) as the deformation proceeds from 5% to 15% uniaxial tension. 

 
Figure 3.8: Comparison of predicted and measured (Hu et al., 2011) stress-strain curves for four 
different strain paths after 15% true strain; (a) equibiaxial tension (σ11 ,  e11 ), (b) plane-strain 
tension in RD (σ11,  e11 ), (c) Uniaxial tension in TD (σ22 ,  e22) and (d) plane strain tension in 

TD (σ22 ,  e22  ). 

3.4.4 Simulations of Balanced Biaxial Tension and Plane Strain 

Tension 

In this section, the RTCP-FFT model is employed to simulate the stress-strain response of AA5754 

during; balanced biaxial tension, plane strain tension along RD, uniaxial tension and plane strain 

tension along TD. The predictions are compared with those determined experimentally. The 
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numerical analyses show that the RTCP-FFT model can accurately predict the macroscopic stress-

strain response of AA5754 for the above-mentioned strain paths (Figure 3.8a-d).  

Recently, Hu et al. (2012), presented a similar study for AA5754 where they used a Taylor 

assumption-based model, VPSC model and VP-FFT model. While their predictions were also in 

good agreement with experiments, it should be mentioned that they employed a single set of 

hardening parameters that was obtained by simultaneously curve fitting the simulations to all the 

different experimental strain paths (uniaxial tension, balanced biaxial tension, plane strain 

tension).  

Contrary to their approach, all the predictions presented in this section employ the same set of 

parameters (Table 3.2) obtained from a single curve fit for uniaxial tension. Thus, the RTCP-FFT 

model can accurately predict the macroscopic stress-strain response for various strain paths with a 

single set of parameters that are directly obtained from an experimental uniaxial stress-strain curve.  

 
Figure 3.9: Comparison of predicted texture in form of pole figures for four different strain 

paths; (a) equibiaxial tension, (b) plane strain tension along RD, (c) uniaxial tension along TD 
and (d) plane strain tension along TD. 

3.4.5 Predictions of Texture Evolution 

The RTCP-FFT model is also employed to predict texture evolution (Figure 3.9). The initial 

texture (Figure 3.6b) contains higher amounts of Brass, Cube and S compared to Copper and Goss 

texture components. In the predicted texture after 15% true strain, an increase in Brass is observed 

in balanced biaxial tension and uniaxial tension along TD with a decrease in the intensities of cube 

and S. On the other hand, Copper component is strengthened after 15% strain in cases of plane 
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strain tension along RD and TD. Overall, a smaller change is observed in intensities of texture 

components from their initial values in uniaxial tension and plane strain tension cases. 

Next, an analysis of texture evolution is presented using ODF sections. The predicted texture 

evolutions are compared with experimental measurements (Hu et al., 2011) at 5%, 10% and 15% 

true strain. Figs. 3.10-3.13 show the progress of ODF with strain during balanced biaxial tension, 

plane strain tension along RD and TD respectively as well as in uniaxial tension along TD. 

Simulations show that, as the deformation progresses, the grains favor the formation of Brass and 

Cube orientations during uniaxial tension along TD, the grains tend to form the Brass in case of 

plane strain tension along TD and the β-fiber rolling texture is further strengthened in plane strain 

tensions along RD. In case of balanced biaxial tension, a stronger growth of Brass and Copper 

components are observed. Overall, the RTCP-FFT model successfully predicts the general trends 

observed in the measured ODF sections for the different strain paths considered in this study.  

It should be mentioned that, Hu et al. (2012) presented results where the well-known crystal 

plasticity models such as VPSC and Taylor-type approximations tend to over predict the texture 

evolution for AA5754 due lack of proper treatment of grain to grain interaction and strain 

partitioning. 

On the other hand, the results in this research indicate that the RTCP-FFT model can accurately 

capture the trends of texture evolution due to consideration of the actual interaction of grains and 

allowing voxels in a grain to deform independently. This leads to an increase in distribution of 

orientations inside a grain, thus the substantial changes in texture are hindered, which lead to a 

more realistic texture evolution. 
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Figure 3.10: Comparison of measured (Hu et al., 2011) and predicted ODF sections at strain 

levels of 5, 10, and 15% for equibiaxial tension. 

 

Figure 3.11: Comparison of measured (Hu et al., 2011) and predicted ODF sections at strain 
levels of 5, 10, and 15% for plane strain tension in RD. 
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Figure 3.12: Comparison of measured (Hu et al., 2011) and predicted ODF sections at strain 
levels of 5, 10, and 15% for plane strain tension in TD. 

 

Figure 3.13: Comparison of measured (Hu et al., 2011) and predicted ODF sections at strain 
levels of 5, 10, and 15% for uniaxial tension in TD. 
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3.4.6 Computational Efficiency 

Previous researches have demonstrated that the augmented Lagrangians scheme-based FFT 

models are several orders more efficient than FEM-based model in computing polycrystalline 

response under similar loading conditions (Liu et al., 2010; Prakash and Lebensohn, 2009). In 

present work, the EVP-FFT model is significantly modified to exploit its use in potential 

applications based on single-phase polycrystal modelling by further accelerating the FFT scheme 

using a semi-explicit rate tangent modulus method. In this section, a comparison of computational 

efficiency, in terms of CPU time, between the proposed RTCP-FFT model and the EVP-FFT 

model is presented using two different cases up to 20% true strain with a strain rate of 10-4 s-1. The 

simulations were performed on a single processor of Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz 

at the University of Waterloo supercomputing centre without using any parallelization schemes. 

 
Figure 3.14: The synthesized microstructure of AA5754 consisting of one Fourier point per grain 

with 16 Fourier points in each of x, y and z-axis representing 4096 Cube grains, the colors 
represent different grains. (b) Computational cost comparison of proposed model (RTCP-FFT) 

and EVP-FFT model for three different strain paths up to 20% true strain. 

In first case, for AA5754, the effect of different strain paths on CPU time is studied using a 16 x 

16 x 16 regular grid of Fourier points in an RVE with 4096 Cube grains (Figure 3.14a) 

corresponding to a single Fourier point per grain to minimize the number of calculations required 

for single temporal increment. Both RTCP-FFT and EVP-FFT models were first calibrated with 

uniaxial tension stress-strain curve along RD and then simulations were performed for plane strain 

tension along RD and balanced biaxial tension.  
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The computation times for the RTCP-FFT and the EVP-FFT simulations for three different strain 

paths up to 20% true strain are summarized in Figure 3.14b. The EVP-FFT model required an 

average CPU time of 19.39 minutes to simulate the material response for the three strain paths, 

while the RTCP-FFT model required an average CPU time of only 9.48 seconds. Thus, for the 

average CPU times, the RTCP-FFT model is 122.7 times faster than the EVP-FFT model. To 

further investigate the computational costs of the RTCP-FFT and the EVP-FFT models, the 

simulations of uniaxial tension with no strain hardening are also performed. The analysis shows 

that the RTCP-FFT model is 83 times faster than the EVP-FFT model when no strain hardening is 

considered. 

 

Figure 3.15: A comparison of CPU time required by proposed model (RTCP-FFT) and EVP-FFT 
model respectively to complete RD uniaxial tension simulation up to 20% true strain versus total 
number of Fourier points in each of six different RVEs used; (a) Bar chart representation (b) log 

plot showing proportional limit. 

In the second case, the effect of increasing the number of Fourier points per grain on the total CPU 

time is analyzed. For this case, six different RVEs are used; each consisting of 64 grains with 4 

grains in X, Y and Z directions. The orientations of these grains are sampled from the AA5754 

texture. Each RVE is then discretized using a regular Fourier grid of; a) 4 x 4 x 4 = 64 points, b) 8 

x 8 x 8 = 512 points, c) 16 x 16 x 16 = 4096 points, d) 32 x 32 x 32 = 32768 points, e) 64 x 64 x 

64 = 262144, and f) 128 x 128 x 128 = 2097152 points, respectively. Note that, the above-

mentioned discretization results in an increase in the number of Fourier points in each grain, with 

1 x 1 x 1 = 1, 2 x 2 x 2 = 8, 4 x 4 x 4 = 64, 8 x 8 x 8 = 512, 16 x 16 x 16 = 4096, 32 x 32 x 32 = 
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32768 Fourier points per grain in RVEs described in a-e respectively. The RVEs are then subjected 

to uniaxial tension along RD (up to 20% true strain) with both models. 

A comparison between the CPU times required by the two models to compute the response of six 

different RVEs with an applied strain rate of 10-4 s-1 is presented in Figure 3.15a. For each case, 

the RTCP-FFT model is, at an average, 110 times faster than EVP-FFT. Note that the computation 

times of the simulations performed by both RTCP-FFT and EVP-FFT models scale proportionally 

with the number of Fourier points (Figure 3.15b). This is a direct indication of the efficiency of 

both the models as both of the models employ an optimum matrix-inversion algorithm in the 

solver. The CPU times of the RTCP-FFT simulations are much quicker and fall about two orders 

of magnitude below that of the corresponding CPU times of the EVP-FFT simulations.  

3.5 Summary and Conclusions 

A new, computationally efficient full-field numerical framework (RTCP-FFT) for single-phase 

polycrystalline solids is developed by coupling a tangent modulus method-based crystal plasticity 

formulation with the fast Fourier transform (FFT) method to simulate large strain phenomena. The 

RTCP-FFT model is able to compute 3-D space-resolved local and overall micromechanical fields 

with high intragranular resolution using the direct input from images of microstructures of a 

polycrystalline material with extremely small computational cost.  

The proposed numerical framework is verified by using simulations of the elastic-viscoplastic 

transitions of two polycrystals with the EVP-FFT model as a reference. As the first application 

with the RTCP-FFT model, for AA5754, the simulated stress-strain curves and texture evolution 

during five different strain paths are compared to experiments for model validation. Predictions 

with the RTCP-FFT model showed excellent agreement with experiments. 

Simulations showed that the RTCP-FFT model is significantly faster than the EVP-FFT model in 

terms of CPU time; an acceleration of about two orders of magnitude is achieved over the 

augmented Lagrangians procedure-based FFT methods. The solutions produced by the RTCP-FFT 

model can be slightly different locally (per material point) from those produced by the EVP-FFT 
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model, however, these local variations (due to the difference in the integration algorithms) have 

with very little/no effect on macroscopic response.  

Finally, the computational efficiency of the proposed numerical model makes it an excellent 

candidate to study the formability of polycrystalline metals since it can account for the richness of 

three-dimensional microstructures. Research with the proposed model to study the effect of various 

microstructural features (e.g., 3D grain morphologies) on the forming limit strains is presented in 

Chapter 4.  
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Abstract 

In this chapter, the new rate tangent-fast Fourier transform-based elasto-viscoplastic crystal 

plasticity constitutive framework (RTCP-FFT) developed by Nagra et al. (2017) is implemented 

in the so-called Marciniak-Kuczynski (M-K) (Marciniak and Kuczyński, 1967) framework to 

predict the forming limit diagrams (FLDs) of FCC polycrystals. The RTCP-FFT approach that 

accounts for 3D grain morphologies and grain interactions is used to compute the FLDs for 

aluminum alloys. The model employs two statistically representative volume elements (RVEs) 

with identical initial microstructure; one inside the imperfection band region (required for M-K 

analysis) and other outside the imperfection band region of the sheet metal. The proposed RTCP-

FFT-based M-K model is a full-field, mesh-free and an efficient crystal plasticity formulation that 

enables a comprehensive investigation of the effects of 3D microstructural features on the FLDs 

with extremely small computational times. The new model is validated by comparing the predicted 

FLDs for AA5754 and AA3003 aluminum alloys with experimental measurements. Furthermore, 

the predicted FLDs are compared with the well-known Taylor type homogenization scheme-based 

M-K model (MK-Taylor) predictions. Furthermore, the effects of different grain shapes as well as 
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local grain interactions on the FLD predictions are studied. The study reveals that among the 

various microstructural features, the grain morphology has the strongest effect on the predicted 

FLDs and the FLD predictions can significantly be improved if the actual grain structure of the 

material is properly accounted for in the numerical models. 

Keywords: Crystal plasticity, RTCP-FFT, Forming limit diagram, 3D microstructure, Grain 

morphology, M-K model 

 

Figure 4.1: Graphical abstract of Chapter 4. 

4.1 Introduction 

The concept of forming limit curve (FLC) also known as the forming limit diagram (FLD), first 

introduced by Keeler in 1961, provides an approximation of how close the material is to neck. The 

FLDs have been extensively used thereafter to quantify the formability of a sheet metal. The 

response of a sheet metal subjected to plastic deformation is governed by the material’s 



 

 
87 

microstructure (i.e., texture, morphology). However, it is very difficult and time consuming to 

study the effects of microstructure on the forming experimentally. Hence, theoretical methods are 

introduced to the analyses and a significant amount of research has been done to characterize the 

formability of a sheet metal using various computational models. In the available theoretical 

methods for obtaining the FLD of a sheet metal, the response of a material deforming plastically 

is obtained either using the phenomenological plasticity models (Takuda et al., 2000; Barlat et al., 

2003; Yoshida et al., 2007; Chiba et al., 2013) or using meso-scale crystal plasticity (CP) as 

material model (Hutchinson and Neale, 1978a, 1978b, Wu et al., 1997, 2004; Inal et al., 2002; Inal 

et al., 2002; Inal et al., 2005, 2010; Delannay et al., 2009; Signorelli and Bertinetti, 2009; Signorelli 

et al., 2012; Mohammadi et al., 2014; Lévesque et al., 2016; Cyr et al., 2017) and a separate plastic 

instability criteria (e.g., Marciniak and Kuczyński (M-K) analysis) is employed to obtain failure 

strains. It is widely recognized that the deformation-induced texture and anisotropy strongly affects 

the localization of plastic flow (Barlat, 1987; Zhou and Neale, 1995; Tóth et al., 1996; Wu et al., 

1997;Boudeau et al., 1998; Boudeau and Gelin, 2000; Tang and Tai, 2000). Since, the 

phenomenological plasticity models do not account for texture evolution during deformation of a 

polycrystalline sheet metal, the crystal plasticity (CP)-based models are usually preferred for more 

realistic predictions of the FLD.  

Marciniak and Kuczyński developed the well-known plastic instability criteria for analyzing 

unstable deformation in sheet metals also known as the M-K analysis (Marciniak and Kuczyński, 

1967). Initial investigations of the plastic instability analysis with crystal plasticity as the material 

model were based on Taylor-Bishop-Hill yield surfaces and these works provided predictions that 

were in good agreement with corresponding experimental results (Bassani et al., 1979; Barlat, 

1989). Coupling a rate sensitive crystal plasticity model with the M-K analysis, Zhou and Neale 

(1995) computed the FLDs for a thin, face-centered cubic (FCC) sheet metal, where the initial 

texture and deformation induced texture evolution were considered in the model. In the later years, 

Wu et al. (1997) computed the FLDs for FCC polycrystals by employing the Asaro-Needleman 

crystal plasticity framework in which the imperfection grove was considered to be rotating with 

respect to the major biaxial stretch direction in the plane of the sheet metal. The effects of various 

parameters in the numerical model such as the material strain-rate sensitivity, single slip hardening, 

initial imperfection factor, texture, etc. on the predicted FLDs were investigated in detail by Wu 
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et al. (1997). Inal et al. (2005) used a rate-sensitive polycrystal plasticity model with the full 

constraint Taylor type homogenization scheme (FC-Taylor) and suggested that the effect of texture 

evolution during deformation on formability of body-centered cubic (BCC) polycrystal is much 

less (higher forming limit curve) as compared to the FCC polycrystals (lower forming-limit curve). 

Inal et al. (2005) also reported that the number of slip systems strongly affects the occurrence of 

localized necking in a polycrystalline material.  

The studies mentioned above have significantly improved our understanding of FLD modelling, 

but they could not provide any information about the effects of grain morphologies and local strain 

partitioning on the FLD predictions since they were based on the Taylor-type homogenization 

scheme. It is well-known that the Taylor-type homogenization scheme cannot account for grain to 

grain interactions or grain morphology since each grain is assumed to have the same value of 

macroscopic strain while the stresses are computed as function of grain orientation. Molinari et al. 

(1987) proposed a more realistic approach that accounts for the interactions of the constituent 

grains (on an average sense) of a polycrystal for modelling its viscoplastic (VP) behavior. This 

approach has been further developed by Lebensohn and Tomé (1993) and Lebensohn et al. (2007) 

and is also known as viscoplastic self-consistent formulation (VPSC). The Viscoplastic Self 

Consistent (VPSC) model considers each constituent crystal as an Eshelby heterogeneity 

embedded in a Homogeneous Equivalent Medium (HEM) and has been extensively used for 

polycrystal modelling accounting for texture-induced plastic anisotropy (Lebensohn et al., 2007; 

Signorelli et al., 2009; Signorelli and Bertinetti, 2012; Huang et al., 2010; Jeong et al., 2015; 

Schwindt et al., 2015). In recent studies, Serenelli et al. (2011); and Signorelli and Bertinetti, 

(2009, 2012) showed that FLDs predicted using coupled models of VPSC and M-K method (MK-

VPSC) are able to provide better agreement with the measured FLDs as compared to the Taylor-

based MK models. However, the MK-VPSC models are computationally very expensive as 

compared to the Taylor-based MK models (Schwindt et al., 2015; Jeong et al., 2016). The 

formulations discussed above rely on mean-field approximations to obtain the plastic response of 

polycrystalline materials undergoing plastic deformation. Apart from these models, full-field 

approaches are also available, that can predict the actual micromechanical stress and strain fields 

as well as the effective response of polycrystals with a specific microstructure. Full-field 

approaches, namely crystal plasticity-Finite element (CP-FE) (Bronkhorst et al., 1992; Lee et al., 
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2010; Zeng et al., 2014; Alharbi and Kalidindi, 2015; Popova et al., 2015; Zhang et al., 2015; Li 

et al., 2016; Ardeljan et al., 2017; Pouriayevali and Xu, 2017; Grilli et al., 2018)  and crystal 

plasticity-fast Fourier transform (CP-FFT)-based methods (Lebensohn, 2001; Prakash and 

Lebensohn, 2009; Liu et al., 2010; Lebensohn et al., 2011; Lebensohn et al., 2012; Eisenlohr et 

al., 2013; Nagra et al., 2017), provide richer micromechanical information with direct input from 

an image of microstructure obtained by EBSD. To the best knowledge of the authors there is no 

systematic work presenting the effect 3D grain morphology on the FLD using a full-field model 

that accounts for the 3D spatial distribution of texture to obtain an accurate micromechanical and 

effective response. Advanced and efficient full-field CP models, that can model 3D 

microstructures and consider the actual grain morphology, grain to grain interactions and sub-grain 

texture evolution, can improve the accuracy of FLD predictions as compared to; a) the full 

constraint-Taylor models (homogenous deformation is assumed throughout the material) and b) 

VPSC models (Yamanaka, 2016).  

In the present work, a new and efficient, full-field numerical framework that can account for the 

full richness of the 3D microstructure (texture, grain morphologies, grain interactions, etc.) is 

combined with the well-known M-K plastic instability criteria and the effects of various 3D 

microstructural features on the formability of aluminum alloys are presented. Accordingly, the rate 

tangent-based crystal plasticity-fast Fourier transform model (RTCP-FFT) (Nagra et al. 2017) is 

coupled with the M-K framework (Inal et al., 2005, 2010; Mohammadi et al., 2014; Lévesque et 

al., 2016; Cyr et al., 2017). The RTCP-FFT model accounts for the 3D microstructure, grain 

interactions, intragranular texture evolution, and grain morphology while providing full-field 

solutions to micromechanical fields within reasonable computational times. The RTCP-FFT model 

gives comparable results to the established full-field models, e.g., CPFE and EVPFFT approaches, 

with a considerable computation time saving, by a factor ~150 and ~100 respectively (Nagra et al. 

2017). In addition, since the proposed methodology is able to capture the vital 3D microstructural 

features; the predicted forming limit strain are in excellent agreement with the experiments with 

significant improvement in FLD predictions compared to the MK-Taylor model. The plan of this 

chapter is as follows: In section 4.2, the details of the RTCP-FFT model and the M-K method are 

presented. In section 4.3, the FLD predictions for AA5754 and AA3003 at room temperature are 

presented using the proposed methodology and are compared with those obtained from MK-Taylor 
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model as well as with the corresponding measured FLDs. In section 4.4, the effects of 

microstructural features on FLD predictions for AA3003 polycrystal are discussed and this is 

followed by section 4.5, where the conclusions of this research are summarized.  

4.2 Constitutive Framework 

In this numerical framework, the RTCP-FFT model is employed. The RTCP-FFT model  is the 

hybrid combination of the rate-dependent crystal plasticity formulation (Asaro and Needleman, 

1985) and the modified FFT algorithm developed from elasto-viscoplastic FFT (EVP-FFT) model 

(Lebensohn et al. 2012), to compute the full-field solutions of micromechanical fields in a 

statistically equivalent representative volume element (RVE). The RTCP-FFT model is 

approximately 100 times faster than the EVP-FFT model and its details of can be found in Nagra 

et al. (2017). For completeness, a brief summary of the RTCP-FFT model is presented in the 

following. According to the rate dependent crystal plasticity framework, the total deformation of 

a single crystal is the result of two distinct physical phenomena: 

a) Plastic deformation due to the movement of dislocations that cause crystallographic slip. 

b) The elastic distortion and rigid body rotations of crystal lattice within embedded material.  

For a single crystal, the elastic constitutive equation to update the Jaumann rate 𝛔
𝛁

 of Cauchy stress 

𝛔 can be written as: 

 𝛔
𝛁
= 𝓒:𝐃 − 𝛔̇ − 𝛔 𝐭𝐫𝐃 (4.1) 

In Equation (4.1), 𝐃 is the total strain rate tensor, 𝛔̇ is the viscoplastic stress-rate, 𝓒 is the elasto-

viscoplastic moduli which is determined using rate tangent method, details of which can be found 

in Peirce et al. (1983), Rashid and Nemat-Nasser (1992), Nagra et al. (2017). The viscoplastic 

stress-rate 𝛔̇ is computed based on the slip rates on each slip system. The shear rate γ̇(α) on each 

slip system α is governed by a power-law expression, so that 



 

 
91 

 
 γ̇(α) = γ̇0 sgn τ(α) |

τ(α)

g(α)
|

1 m⁄

 (4.2) 

where τ(α) is the resolved shear stress, γ̇0 is the reference shear rate (same for each slip system) 

and m is the index of strain rate sensitivity. The hardened state of each slip system α is 

characterized by g(α). Following Asaro and Needleman (1985), it is considered that gα depends 

on the accumulated sum, γa, of the slips, where 

 
γ(a) = ∫ ∑|γ̇(α)|dt

α

t

0

 (4.3) 

In present work, the model originally proposed by Chang and Asaro (1981) is employed. 

Accordingly, the hardening rate ġ(α)for multiple slip is defined by hardening law as following 

   ġ(α) =∑𝐡𝛂𝛃|γ̇β|

β

 (4.4) 

In Equation (4.4), 𝐡(𝛂𝛃) is the hardening moduli and γ̇(β) is the single slip shear stress rate on slip 

system β. The hardening moduli used here is the one that has been used previously by Peirce et al. 

(1983) and Asaro and Needleman (1984), 

 𝐡(𝛂𝛃) = 𝐪(𝛂𝛃)h(β) (no sum on β) (4.5) 

where 𝐪𝛂𝛃 matrix describes the latent hardening of the crystallite and hβ is the single slip 

hardening. The model presented by Chang and Asaro (1981) is employed to calculate the single 

slip hardening. Accordingly,  
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h(β) = hs + (h0 − hs)sech

2 {(
h0 − hs
τs − τ0

)γ(a)} (4.6) 

where τ0 is the critical resolved shear stress, τs is the value of saturated shear stress, hs is the 

asymptotic hardening rate of slip systems and h0 is the hardening constant. To compute the 

micromechanical fields and intragranular texture evolution during the deformation, the space 

resolved configuration of the grains and their interactions must be considered in the whole RVE. 

In present work, the FFT-based algorithm is employed to calculate the fluctuations in local strain 

components and thus, the total strain in one direction can be written as following: 

 εij(x) = ε̃ij(x) + Eij (4.7) 

where ε̃ij(x) is the strain fluctuation in the crystal due to heterogeneity and Eij is the average strain 

imposed on the RVE. The FFT technique requires a regular 3D grid {xd} of Fourier points with 

length Lk and Nk be the number of Fourier points in each xk direction, is discretized as following: 

 
{xk} = {((i1 − 1)

L1
N1
, (i2 − 1)

L2
N2
, (i3 − 1)

L3
N3
) ; ik = 1,… , Nk, k = 1,3} (4.8) 

In Equation (4.7), each Fourier point represents a single crystal in the RVE which is modeled as 

an FCC crystal with 12 distinct slip systems. To compute the full-field solutions of 

micromechanical fields for a heterogeneous representative volume element (RVE), the local 

problem is needed to be solved at each grid point written as following: 

 
{

σij(x) = ℒijkl(x)εkl(x), ∀x ∈  {xd} 

σij,j(x) = 0

 Periodic boundary conditions across RVE

 (4.9) 
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where εkl(x) and σij(x) are the local strain and local stress fields and ℒijkl(x) is the local elastic 

stiffness. After solving the above local problem (Nagra et al., 2017), the total local strain is given 

by: 

 εij(x) = fft
−1(sym(Γ̂ijkl

0 (ξ)) σ̂kl(ξ)) + Eij (4.10) 

where, “  ̂” indicates quantities in Fourier space, fft−1 indicates inverse Fourier transform into real 

space, ξ is the frequency point in Fourier space, Γ̂ijkl0  is the Green operator in Fourier space, 

and σ̂kl is the forward Fourier transform of the current local stress tensor. Due to the heterogeneity 

of the material, the set of convected Fourier points no longer forms a regular grid as the 

deformation progresses. However, a regular Fourier grid is needed in order to compute the strain 

fluctuation (Eq. 4.10) using convolution theorem. Therefore, in the present work, the following 

scheme is adopted for updating coordinates of the Fourier points, neglecting contribution from 

strain fluctuations, so that the Fourier grid remains regular with deformation (Lebensohn et al., 

2008) 

 xk
t+1 = xk

t + Dxk
t × ∆t (4.11) 

After each time step increment, the distances between adjacent Fourier points change, but the 

Fourier grid remains regular, thus determining an ‘‘average stretching” of the grains in the RVE. 

Using the RTCP-FFT model as outlined above, the full field solutions of micromechanical fields 

are computed for a polycrystal RVE subjected to periodic boundary conditions. For modelling 

formability, the RTCP-FFT model is incorporated into the M-K framework (Inal et al., 2005, 2010; 

Mohammadi et al., 2014; Lévesque et al., 2016; Cyr et al., 2017). Accordingly, the sheet metal is 

assumed to contain a geometrical imperfection, such as a narrow band or grove across the sheet’s 

width, which is slightly thinner than the rest of the sheet and this is defined as the imperfection 

factor (f) given by: 
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f =

hb(0)

h(0)
 (4.12) 

where, hb(0) is the initial thickness of band region and h(0) is the initial thickness of the region 

outside band. 

 

Figure 4.2: Initial configuration of M-K criteria used for FLD analysis; a) 3D representation of 
sheet metal, RVEs, boundary conditions and imperfection band, b) Schematic of top surface of 

sheet showing band direction vectors and initial band angle. 

To model the effect of this imperfection on sheet formability, two RVEs with identical initial 

texture and grain morphology, one outside the imperfection band (safe region) and other in the 

imperfection band (unsafe zone), are employed. Compatibility and equilibrium are satisfied across 

the band interface assuming with the assumption of plane stress conditions (Figure 4.2). The failure 

of the sheet is due to the rapid thinning of the sheet in normal direction (ND), when the sheet is 

subjected to proportional boundary conditions along orthotropic symmetry directions, i.e., in 

rolling direction (RD) and transverse direction (TD) respectively. In this work, the RVE in the safe 

region (i.e., outside the imperfection band) is subjected to the proportional loading (Eq. 4.13) and 

the strain rates in the imperfection band are computed through compatibility and equilibrium 

equations so that: 
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{
 

 𝜌 =
𝐷22
𝐷11

, −0.5 ≤ 𝜌 ≤ 1.0 

𝑊𝑖𝑗 = 0 

 𝐷𝑖𝑗 = 0 ∀ 𝑖 ≠ 𝑗

 (4.13) 

where, 𝑊𝑖𝑗  is the spin rate, 𝜌 is the applied strain ratio, 𝐷11 and 𝐷22 are principal strain rates. The 

third principal component of strain-rate tensor (𝐷33) that describes the rate of thinning is found 

using the plane stress condition imposed in the formulation.  

 

Figure 4.3: 2D Electron backscatter diffraction (EBSD) map used to generate synthetic 
microstructure for AA5754. 

4.3 Results: Application to Aluminum Alloys 

The objective of this work is not only to validate the M-K criteria-based RTCP-FFT model (MK-

RTCP-FFT) but to also assess the effects of various 3D microstructural features such as 

neighborhood, grain morphology and texture on the FLDs. These analyses are performed by 

considering two different materials; two commercial aluminum alloys, AA3003 and AA5754 are 

employed in this study. Using MK-RTCP-FFT model, the formability of AA 5754 and 3003 sheets 

are assessed at 25 oC and is compared with predictions of MK criteria-based Taylor type model 

(MK-Taylor) as well as with experimental observations taken from literature. Since the MK-
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RTCP-FFT model accounts for the actual grain morphology and grain interactions, significant 

differences between the predicted FLDs are observed when compared to MK-Taylor model. These 

microstructural features are further investigated for AA3003 using three different RVEs with 

equiaxed grains, columnar grains and elongated (pancake shape) grains, respectively. In all the 

simulations that are reported in this chapter, the typical values of material parameters for an 

aluminum alloy are considered; the slip rate sensitivity, m, is taken as 0.01 and the reference plastic 

shearing rate (𝛾̇𝑜)  is assumed to be 0.001 s-1, while the anisotropic crystal elastic constants are 

taken to be C11 = 206 GPa, C12 = GPa, and C44 = 54 GPa (Cyr et al., 2017). 

4.3.1 Predicted FLDs for AA5754 

In this section, the formability of an O-temper aluminum alloy (AA) 5754 sheet is studied using 

both the MK-Taylor and MK-RTCP-FFT models. The AA5754 is commonly used in interior sheet 

components and flooring in automotive bodies and thus, accurate simulations of forming processes 

are required to design and fabricate AA5754 sheet components efficiently.  

4.3.1.1 Model Setup 

The equiaxed grain structure resembles the grain shapes as perceived experimentally in an O-

tempered material (Iadicola et al., 2008) and the 2D electron backscatter diffraction (EBSD) map 

for AA5754 is presented in Figure 4.3. From this EBSD map, Euler angle triplets are extracted and 

assigned to voxels in each grain. The synthetic microstructure in the RVE is built using 

microstructure builder as proposed by Brahme et al. (2006), using an optimization technique to 

minimize the error, in both orientation distribution function (ODF) and misorientation distribution 

function (MDF), between the measured and assigned orientations. An RVE of AA5754 with 64 X 

64 X 64 Fourier points and 278 equiaxed grains, is employed in this study (Figure 4.4). It should 

be mentioned that, for consistency, the number of Fourier points are kept same in each RVE used 

throughout this chapter.  
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Figure 4.4: Comparison of initial texture of AA5754-O: pole figure representations of the 
experimental texture (a) and fitted texture (b); Comparison of contours of experimental ODFs (c) 

and fitted ODFs (d) at 0, 45, and 60 degrees of 𝜑2 sections. (e) The generated microstructure 
with 64 x 64 x 64 Fourier points in 278 grains, the colors represent different grains. 

Figure 4.4(a) and Figure 4.4(b) show the pole figure and orientations distribution function (ODF) 

of the initial texture of as received O-tempered AA5754. Figure 4.4(c) and Figure 4.4(d) show the 

pole figure and ODF sections of the initial texture of an equivalent synthesized microstructure 

generated from the experimental data.  A good agreement between the experimental and fitted 

initial textures can be observed. 

4.3.1.2 Model Calibration 

The material parameters used in the simulations are obtained by curve fitting simulated uniaxial 

stress-strain curve to the experimental uniaxial tensile curve (Iadicola et al., 2008). The error bars 

represent experimental uncertainties as reported in Iadicola et al. (2008) (Figure 4.5). The strain 

hardening parameters employed for AA5754 are shown in Table 4.1.  
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Table 4.1: Constitutive parameters used to calibrate models for RD uniaxial tension. 

Model 𝒉𝟎/𝝉𝟎 𝝉𝒔/𝝉𝟎 𝝉𝟎 𝒉𝒔/𝝉𝟎 𝒎 𝒒 

Taylor 12.5 3.30 23.8 0.28 0.01 1.0 

RTCP-FFT 10.0 3.33 23.8 .001 0.01 1.0 

 

Figure 4.5: Comparison of overall stress-strain curves of measured data and simulated response 
by calibrated-RTCP-FFT and Taylor models respectively for RD uniaxial tension at 25 oC. 

4.3.1.3 FLD Results and Discussion 

The predicted FLDs for a direct cast AA5754-O with MK-RTCP-FFT and MK-Taylor models as 

well as the experimental FLD are presented in Figure 4.6. The imperfection parameter, f, employed 

with the MK-RTCP-FFT and MK-Taylor model is 0.9945 and 0.9934 respectively. For both 

models, the imperfection parameter is obtained by matching the limit strain associated with the in-

plane plane strain tension case (𝜌 = 0.0) to the corresponding value of the experimental limit 

strains. Note that, due to a wide spread of limit strains near 𝜌 = 0.0, the fitting strain value is 

chosen relatively arbitrary. In this case, the value of fitted major strain is 14.4% for both MK-

RTCP-FFT and MK-Taylor models. On the left-hand side of FLD (-0.5 ≤ 𝜌 ≤ 0.0), the predicted 

limit strains by both models decrease as strain path changes from uniaxial tension (ρ = -0.5) up to 

Experiment 
RTCP-FFT 
Taylor model 
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in-plane plane strain tension (ρ = 0.0) and are in good agreement with experimental values of 

forming limit strains.  

 

Figure 4.6: Comparison of FLD predictions of AA5754-O at 25 oC using MK-RTCP-FFT and 
MK-Taylor models with experiment data (Cyr et al., 2017). 

On the biaxial side of FLD (0.0 ≤ ρ ≤ 1.0), initially the limiting strains predicted by both models 

increase but after ρ = 0.5, the MK-Taylor model predicts a sudden decrease in limit strains. This 

sudden dip has also been also reported in several other analyses based on the MK-Taylor model 

(Mohammadi et al., 2014; Lévesque et al., 2016; Cyr et al., 2017). However, the MK-RTCP-FFT 

model predicts limit strains that are in excellent agreement with the measured FLDs up to 

equibiaxial tension. It is clear from the results that the microstructural features strongly affect the 

predicted forming limit strains and a significant improvement, compared to the MK-Taylor model, 

is achieved by the proposed MK-RTCP-FFT model. It should be noted that the orientation of the 

imperfection band is also an important factor affecting the limit strains. In Figure 4.7, the band 

orientations that produce the lowest limit strains are plotted versus the strain ratio. Results show 

that both models follow similar overall trends. The MK-RTCP-FFT model predicts a lower 

imperfection band orientation than the MK-Taylor model throughout the biaxial stretching region 

except at equibiaxial condition where the band is perpendicular to RD. 

Experiment 
MK-RTCP-FFT 
MK-Taylor 
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Figure 4.7: Evolution of critical imperfection band angle with strain path of AA5754-O predicted 
using MK-RTCP-FFT and MK-Taylor models. 

4.3.2 Predicted FLDs for AA3003 

In this section, the formability of an O-temper AA3003 sheet is studied using both the MK-Taylor 

and MK-RTCP-FFT models.  

4.3.2.1 Model Setup 

For AA3003-O sheet alloy, an RVE with 64 x 64 x 64 Fourier points and 916 equiaxed grains, is 

employed in the simulations. The same methodology as explained in section 4.3.1.1, is used to 

generate the RVE for AA3003. The 2D EBSD map of the AA3003 from which the 3D 

microstructure is reconstructed is presented in Figure 4.8. The pole figure and orientations 

distribution function (ODF) of the initial texture of as received AA3003-O are presented in Figure 

4.9(a) and Figure 4.9(b), while Figure 4.9(c) and Figure 4.9(d) show the pole figures and ODFs of 

the initial texture of the synthesized 3D microstructure (Figure 4.9e).  

RTCP-FFT MK-RTCP-FFT 
MK-Taylor 
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Figure 4.8: 2D Electron backscatter diffraction (EBSD) map used to generate synthetic 
microstructure for AA3003. 

4.3.2.2 Model Calibration 

The material parameters (Table 4.2) used in the simulations are obtained by curve fitting simulated 

uniaxial stress-strain curve to the experimental uniaxial tensile curve (Bagheriasl et al., 2011) as 

shown in Figure 4.10 using MK-RTCP-FFT and MK-Taylor models respectively.  

Table 4.2: Constitutive parameters used to calibrate RTCP-FFT and Taylor models for RD 
uniaxial tension. 

Model 𝒉𝟎/𝝉𝟎 𝝉𝒔/𝝉𝟎 𝝉𝟎 𝒉𝒔/𝝉𝟎 𝒎 𝒒 

Taylor 11.9 2.30 20.78 0.66 0.01 1.0 

RTCP-FFT 11.9 2.27 21.0 0.6 0.01 1.0 
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Figure 4.9: Comparison of initial texture of AA3003-O: pole figure representations of the 
experimental texture (a) and fitted texture (b); Comparison of contours of experimental ODFs (c) 

and fitted ODFs (d) at 0, 45, and 60 degrees of φ2 sections. (e) The generated microstructure 

with 64 x 64 x 64 Fourier points in 916 grains, the colors represent different grains. 
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Figure 4.10: Comparison of overall stress-strain curves of measured data (Bagheriasl et al., 2011) 

and simulated response by calibrated-RTCP-FFT and Taylor models for AA3003-O under 
uniaxial tension along RD at 25 oC. 

4.3.2.3 FLD Results and Discussion 

For AA3003-O, the predicted FLDs using the MK-RTCP-FFT and the MK-Taylor models are 

shown in Figure 4.11(a). The critical values of imperfection band angles versus strain path are 

plotted in Figure 4.11(b). Simulations show that both the MK-Taylor and MK-RTCP-FFT models 

follow similar trend of evolution of critical band angle. However, overall, the MK-Taylor model 

under predicts the forming limit strains. It can be inferred that the MK-Taylor model accumulates 

higher shear rate on the slip systems to accommodate the imposed deformation that results in the 

prediction of premature failure prediction for each strain path. However, once again, with the 

proper grain morphologies being employed in the analyses, the MK-RTCP-FFT model predicts 

limit strains that show excellent agreement with experimental results. 

Similar observations were presented by Tadano et al. (2013). In their work, a method using the 

plastic flow localization combined with a homogenization-based finite element model (FEM) to 

capture the response of a heterogeneous microstructure (provided that the RVE can still be found 

and can be reproduced using a FE method) was presented. They then used this approach to compare 
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the predicted forming limit strains for an aluminum polycrystal with predictions obtained from a 

Taylor-type crystal plasticity-based M-K model. Their findings showed that the results were 

similar in both cases. However, it should be mentioned that the major difference between this 

research and the approach presented by Tadano et al. (2013) is that the proposed modelling 

approach can account for the full richness of the 3D microstructures that include the heterogeneity 

in grain morphologies, grain interactions as well as textural gradients. 

 

Figure 4.11: (a) Comparison of predicted FLDs for AA3003-O using MK-RTCP-FFT model and 
MK-Taylor model with experimental observations at 25 oC. (b) Comparison of evolution of 

imperfection band angle with strain ratio predicted using MK-RTCP-FFT model and MK-Taylor 
model. 

4.4 Discussions 

In the previous sections, the FLD predictions with the MK-RTCP-FFT model are presented for 

AA5754-O and AA3003-O sheet alloys. Since, the MK-RTCP-FFT model can account for the 

effects of 3D grain morphologies and interactions (neighborhood effect) on the predicted limit 

strains, it provides the unique capability to investigate the microstructural features that strongly 

influence the predicted forming limit strains. For this purpose, the AA3003-O sheet alloy is further 

studied. First, the effects of different grain morphologies (texture-based grain shapes) on the 

predicted FLDs are investigated in detail using three types of grain shapes; a) columnar, b) 

equiaxed, and c) elongated. Then the effects of grain interactions (neighborhood effect) and 

evolution of texture are further studied for each type of grain morphology. 



 

 
105 

 

Figure 4.12: RVEs for model A, inverse pole figure maps showing initial texture distribution and 
grain morphology. 

4.4.1 Effects of Grain Morphology on Localized Deformation 

In this section, the effects of grain morphologies (in three dimensions) on the FLDs are investigated 

in detail. The inverse pole figure maps of three different RVEs with equiaxed grains, columnar 

grains and elongated grains are shown in Figure 4.12(a-c), respectively. The same RVE with 

equiaxed grains used in previous section is considered here for comparison with columnar and 

elongated grain structures. All three RVEs have 916 grains and a regular 64 x 64 x 64 Fourier grid 

along with the initial texture of AA3003-O. 

For cases of equiaxed and elongated grains, the microstructures were generated by following a 

procedure as explained in Brahme et al. (2006) that minimizes the error of grain misorientations 

while assigning a triplet of Euler angles to a grain. To generate the columnar microstructure, first 

916 voxels with randomly assigned orientations are created on a x-y plane using voronoi 

tessellation method and then this layer is extruded in z-direction. Collectively, these six RVEs (one 

inside band and one outside band for each type of grain morphology) are referred to as model ‘A’ 

here. 
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Figure 4.13: Comparison of overall stress-strain response of the RVEs for model A with 
columnar, equiaxed and elongated grain structure respectively under uniaxial tension along RD. 

Then the MK-RTCP-FFT model is calibrated using uniaxial true stress-true strain experimental 

data. It should be noted that the average true stress-true strain response of each RVE of model A 

(Figure 4.13) is similar to response of the RVE with equiaxed grains as shown in Figure 4.10 for 

same material hardening parameters (Table 4.2). However, the local micromechanical fields vary 

significantly. To generate the FLDs using these three RVEs, first the in-plane plane strain point is 

fitted with the experimental data at 14.10% major strain (𝜀11). Due to different grain shapes, 

different values of imperfection parameter, f, are required to fit the same in-plane plane strain point 

on FLD (f = 0.9975 for columnar grains; f=0.996 for equiaxed grains and f=0.9958 for elongated 

grains). 

4.4.1.1 FLD Simulations with Different Grain Morphologies 

The FLDs predicted from the model A microstructures are compared with experimental 

observations for AA3003-O (Figure 4.14). The results show significant differences in the predicted 

forming limit strains using different grain structures. The columnar grain structure shows a notable 

improvement in the predicted formability and significantly over predicts the FLD as compared to 

equiaxed grain structure (on both sides of the FLD). Finally, the elongated grain structure under 
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predicts the forming limit strains exhibiting a behavior close to predictions from the MK-Taylor 

model as shown in previous section. These significant differences in the predictions of FLDs are 

a direct result of the local partitioning of strains in the RVE. The different grain shapes lead to 

uneven subdivision of micromechanical fields inside the RVE. The causes are further investigated 

for the in-plane plane strain point (𝜌 = 0) where all the three RVEs (outside band) undergo the 

same average strain, i.e., 𝜀11= 14.1% (also same imperfection band angle) and thus, at this strain 

level their local strain partitioning can be compared. Signorelli et al. (2009) presented a study 

where they concluded that non-equiaxed grain morphology would lead to higher formability. The 

research presented in this chapter not only confirms this correlation between the grain morphology 

and forming limits but also investigates the underlying reasons for these correlations. 

 

Figure 4.14: Comparison of predicted FLDs for using different grain morphologies (model A) 
with experimental observations. 

4.4.1.2 Local Strain Partitioning 

The equivalent local strains in the six RVEs for 𝜌 = 0 obtained at the last time before reaching the 

limit strains are presented in Figure 4.15.  
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Figure 4.15: Results of in-plane plane strain tension: Distribution of equivalent strain on surface 
of RVEs inside and outside the imperfection band (columns) with different grain morphologies 

(rows). 

In Figure 4.15, the distribution of local strains is shown for the RVEs inside the imperfection band 

as well as for RVEs outside the imperfection band for equiaxed, columnar and elongated grain 

structures, respectively. For outside the band region, the equivalent strain distribution in equiaxed, 

columnar and elongated grain structures were plotted on same scale and it is seen that at same 
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average strain (14.1%). Simulations show that variations in the local strains in the columnar grain 

structure is far less compared to the variations in the equiaxed and elongated grain structures, while 

the elongated grain structure shows highest local variations in strain as well as a greater number 

of hotspots of strains. Similar trends are seen in the RVEs inside the band.  

However, since significant amount of strain is accumulated inside the imperfection band region, 

much more pronounced variations in local strain fields are seen among the different grain 

structures. To show location of hotspots properly, the equivalent strain inside the band are plotted 

at different scales for each RVE inside the band region. The maximum equivalent strain that occurs 

in the columnar grain structure is around 87%. On the contrary, very high amount (over 150%) of 

equivalent strain is accumulated in the cases of equiaxed and elongated grains. This can be directly 

correlated with the predicted FLDs; for each strain path, strain localization occurs faster in the 

elongated grains leading to lower limit strain predictions, while the columnar grain structure 

demonstrates delayed strain localization and thus, higher limit strain predictions. 

4.4.1.3 Texture Evolution 

Seven grains in each RVE (inside the band) are selected to analyze the effect of grain morphology 

on texture evolution. Figure 4.16 present the 001-inverse pole figure (IPF) for initial (blue) and 

final (orange) texture for selected grains. Initial texture of the selected grains is spread in the IPF 

space using the minimum misorientation between initial texture and IPF corners [001], [011] and 

[111]. The rotation of each voxel is tracked throughout the deformation and the final orientation 

of all voxels inside each grain is then averaged to obtain the final texture for the grain (Ali et al., 

2016). For ease of comparison, the initial grains selected in each RVE (elongated, equiaxed and 

columnar grains) have similar orientations. This was done by finding the grains with the minimum 

misorientation between different RVEs (elongated, equiaxed and columnar grains).  

As observed in the previous section for the case of local strain distribution, the trend for local 

texture evolution is also similar; the elongated grains experience highest rotation followed by 

equiaxed grains and columnar grains. For example, grains near [001] and [111] (Figure 4.16) show 

the highest rotation in elongated grains followed by equiaxed and columnar grains. This also 

demonstrates that elongated grains undergo more local deformation inside the band. While the 

analyses presented in Figure 4.16 might be informative it is not necessarily representative of the 
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complete microstructure since only seven discrete orientations (grains) are considered. Therefore, 

the average misorientation and maximum misorientation are presented in Figure 4.17. This is 

accomplished by tracking the texture evolution of each voxel in the microstructure and obtaining 

the misorientation between the initial and the deformed state. The same trends, as shown in Figure 

4.16, are observed where the elongated grains undergo the highest average and maximum 

misorientation (Figure 4.17). 

 

Figure 4.16: Inverse pole figures (IPFs) of selected 7 grains in (a) Columnar grains, (b) Equiaxed 
grains, (c) Elongated grains. Blue dot - initial texture, orange dot - deformed texture of grain in 

IPF after in-plane plane strain tension up to 14.1% true strain. 

 Figure 4.15. shows that for the three different RVEs studied (that all have the similar average 

initial texture as shown in Figure 4.9), for the same amount of applied strain, the localization 

patterns (location and intensity) are different. These differences in the localization patterns can be 

traced back to the amount of texture rotation in similarly oriented grains in the three RVEs (Figure 

4.16). These observations combined with the results presented in Figure 4.16 indicate that for the 

same average strain, elongated grains experience the most local strains as they have the most 

average rotation.  

Finally, the initial and deformed volume fractions of different texture components for columnar, 

equiaxed and elongated RVE are also calculated (Table 4.3). Simulations show that Cube, Goss 

and S decrease while Brass and Copper increase after deformation in each case. These trends agree 

with the observations presented in Wen and Lee (2000) for AA3003 sheets under plane strain 

tension. However, the percentage change of volume fractions of different texture components, for 
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each of the grain morphology studied, is different. This is closely linked to the local deformation 

of each Fourier point, which can be very different based on the grain morphology. 

 

Figure 4.17: Comparison of predicted average and maximum misorientations for columnar 
grains, equiaxed grains, and Elongated grains after in-plane plane strain tension up to 14.1% true 

strain. 

Table 4.3: Volume fraction of different texture components (within 15° from the exact 
component location); initial and after in-plane plane strain tension up to 14.1% true strain. 

Texture 
component 

Columnar grains Equiaxed grains Elongated grains 

 
Initial After % 

change 
Initial After % 

change 
Initial After % 

change 
Cube 4.5 3.0 -32.3 3.6 1.8 -48.3 3.9 1.4 -63.8 

Goss 3.6 2.6 -26.5 4.0 2.3 -42.3 3.9 3.0 -23.6 

Brass 4.0 6.6 65.4 4.2 6.6 55.8 4.4 6.7 54.0 

Copper 2.5 3.1 23.3 2.7 4.3 57.2 2.8 4.8 74.0 

S 1.8 1.2 -32.3 2.4 1.5 -39.4 1.7 1.5 -11.2 
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4.4.2 Effects of Local Grain Neighborhoods and Texture Evolution on 

FLDs 

In the previous sections, it is demonstrated that the grain morphology strongly affects the FLD 

predictions. As a final study, a second set of microstructures for equiaxed, columnar and elongated 

grains are generated (model B). In this case, the grain structure inside the RVE is kept the same as 

of model A but the overall texture is shuffled; i.e., the same 916 independent grain orientations are 

now randomly assigned inside the RVE. This changes the local interactions of the grains as the 

grains now have different neighbors as compared to those in model A. Figure 4.18 shows the IPF 

maps of the RVEs of model B for equiaxed, columnar and elongated grain structures respectively. 

Furthermore, the effects of texture evolution on FLD predictions are also analyzed for each case. 

 
Figure 4.18: RVEs for model B, inverse pole figure maps showing initial texture distribution and 

grain morphology. 

Using the same microstructures of model A, the texture evolution was turned off in the code and 

this set is referred to as model C. The MK-RTCP-FFT model is first calibrated for uniaxial tension 

and then the in-plane plane strain point on FLD is fitted for each case of model B and model C as 

well. Figure 4.19 shows the comparison of FLD predictions of models A, B and C for the RVEs 

with equiaxed grains, columnar grains and elongated grains respectively. These results show that 

the by changing the grain interactions (by shuffling texture or neglecting texture evolution), similar 

trends in predictions of forming limit strains are observed as compared to model A and a relatively 

narrow band of FLDs are obtained for each type of grain morphology. 
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The origin of the predicted different forming limits with the 3 RVEs studied in this work can be 

traced back to the fluctuations in micromechanical fields due to grain interactions & grain 

morphology. These fluctuations have significant effect on the anisotropy of plastic deformation 

(local strain partitioning) and texture evolution which, in turn plays an important role on the onset 

of necking and thus leading to different forming limit strains. 

 
Figure 4.19: Comparison of predicted FLDs for models A, B and C; (a) columnar grains, (b) 

equiaxed grains, (c) elongated grains. 

4.5 Summary 

A rate tangent-fast Fourier transform-based elasto-viscoplastic crystal plasticity constitutive 

framework model was successfully implemented in a Marciniak-Kuczynski type analysis to 

predict the forming limit diagrams of FCC polycrystals. The proposed MK-RTCP-FFT model can 

account for the effects of three-dimensional grain morphologies, texture as well as the grain 

interactions on FLD predictions. The MK-RTCP-FFT was also employed to successfully predict 
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the FLD for AA3003-O and AA5754-O. The simulations presented in this research clearly 

demonstrated that among all microstructural features considered, the grain shapes (three-

dimensional) had the most significant effect on the FLD predictions while the effects local grain 

neighborhoods and texture evolution both had relatively negligible effects. Furthermore, the 

effects of local grain neighborhoods and texture evolution on the predicted FLDs are all dependent 

on the initial grain morphologies.  



 

 
115 

Chapter 5. – Part 3: A New Micromechanics-Based 

Full-Field Numerical Framework to Simulate the 

Effects of Dynamic Recrystallization on the 

Formability of HCP Metals, submitted to International Journal of 

Plasticity 

Jaspreet S. Nagra1, Abhijit Brahme1, Julie Lévesque2, Raja Mishra3, Ricardo A. Lebensohn4, 

Kaan Inal1 

1 University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada 

2Department of Mechanical Engineering, Laval University, Québec, Québec, G1V 0A6, Canada 

3General Motors Research and Development Center, Warren, MI 48090, USA 

4 Los Alamos National Laboratory, MS G755, Los Alamos, NM 87845, USA 

 

Abstract 

This chapter presents a new full-field, efficient and mesh-free numerical framework to model 

microstructure evolution, dynamic recrystallization (DRX) and formability in hexagonal closed-

packed (HCP) metals such as magnesium alloys at warm temperatures. A rate tangent-fast Fourier 

transform-based elasto-viscoplastic crystal plasticity constitutive model for HCP metals (RTCP-

FFT-HCP) is coupled with a probabilistic cellular automata (CA) approach to model DRX (CA-

DRX). Furthermore, this new model is coupled with the Marciniak-Kuczynski (M-K) approach to 

model formability of magnesium alloys at elevated temperatures. The RTCP-FFT-HCP model 

computes macro stress-strain, twinning volume fraction, micromechanical fields, texture evolution 

and local dislocation density. Nucleation of new grains and their subsequent growth is modeled 

using the cellular automata approach with probabilistic state switching rule. First, the proposed 

RTCP-FFT-HCP model is validated by comparing the simulated macro stress-strain responses 
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under uniaxial tension and compression with experimental measurements for AZ31 sheet alloy at 

room temperature. Furthermore, the texture evolution predicted with the new model is compared 

with experiments. Next, the forming limit diagrams (FLDs) are simulated at 100 C, 200 C and 

300 C respectively for AZ31 sheet alloy considering the effects of DRX. The predicted FLDs 

show very good agreement with the experimental measurements. The study reveals that the DRX 

strongly affects the deformed grain structure, grain size and texture evolution and also highlights 

the importance accounting for DRX during FLD simulations at high temperatures. 

Keywords: Crystal plasticity-FFT, Dynamic recrystallization, Forming limit diagram, 3D 

microstructure, M-K model, Warm forming 

5.1 Introduction 

Magnesium alloys are getting significant attention by the transportation industry due to their light 

weight and high specific strength. However, the low formability at room temperature raises 

challenges to manufacture magnesium alloy components to desirable shapes for widespread usage 

(Bohlen et al., 2007). At room temperature, the low number of active slip systems (that 

accommodate plastic deformation), is believed to be one of the reasons for the poor formability of 

magnesium alloy sheets, e.g., AZ31 (Zhang et al., 2006; Chino et al., 2007; Wang et al., 2013). In 

addition to the crystallographic slip, the deformation twinning also plays an important role in the 

deformation behavior of magnesium alloys (Yang et al., 2008; Abdolvand and Daymond, 2012; 

Abdolvand et al., 2015; Lentz et al., 2016). Magnesium alloys have a total of twenty-four slip 

systems with eighteen primary slip systems and six twinning systems. Only four slip systems are 

active due to low critical resolved shear stress (CRSS) for basal and prismatic systems compared 

to those of other slip systems (i.e., pyramidal I and pyramidal II) at room temperature. Since the 

rolled magnesium alloy sheets possess a strong basal texture, therefore, it is difficult to reduce 

their thickness by the activation of the basal and prismatic slip systems alone (Yoshida, 2015).  

Warm forming (i.e., up to 300 C) of magnesium alloys leads to the activation of different 

deformation mechanisms, additional slip systems as well as grain boundary sliding, thus improving 

the formability (Nieh et al., 1998; Galiyev et al., 2001; Martin and Jonas, 2010). The elevated 

temperature processing is inevitably associated with the dynamic recrystallization (DRX) driven 
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by the stored energy of the material in the form of dislocations. Like any recrystallization process, 

the DRX proceeds by (a) nucleation of a new grain and (b) growth of a new grain at the expense 

of the deformed matrix (Rollett et al., 2004). The dislocation content evolves with strain in both 

the matrix and recrystallized region during the DRX. Experimental data shows that the nucleation 

is the slowest process and, therefore, the rate controlling one in magnesium alloys (Sivakesavam 

et al., 1993). The dislocation content in a material varies with the type of deformation mechanisms 

and processing temperature. At elevated temperatures, numerous plastic deformation mechanisms 

are operative in magnesium alloys. The active deformation mechanisms include basal, prismatic 

and pyramidal slip (1st and 2nd order), cross-slip, dislocation climb and twinning. Each deformation 

mechanism makes its own contribution to nucleation and grain growth process resulting in 

different recrystallization mechanisms operating under different conditions (Nieh et al., 1998; 

Galiyev et al., 2001; Martin and Jonas, 2010). 

The DRX mechanisms are classified broadly into three types in magnesium alloys. (a) Continuous 

DRX (CDRX), which includes a gradual transformation of low angle grain boundaries (LAGBs) 

into high-angle grain boundaries (HAGBs) upon straining. New grains are formed progressively 

within the deformed grains by the continuous increase in misorientation across deformation-

induced boundaries (Sivakesavam et al., 1993; Rollett et al., 2004; Xia et al., 2005; Beer and 

Barnett, 2007) (b) Discontinuous DRX (DDRX) involves the development of HAGBs via 

nucleation and growth of new grains. Nuclei form on original HAGBs due to the operation of a 

bulging mechanism which then grow and consume the deformed matrix resulting in decreased 

dislocation density, thus softening the material and increasing ductility. The above mechanism 

involves the development of high-angle grain boundaries via the nucleation and growth of new 

grains. It is closely related to the strain induced migration of initial boundaries (Beer and Barnett, 

2007; Kaibyshev, 2012). DDRX generally occurs in materials with relatively low stacking fault 

energies (Rollett et al., 2004; Beer and Barnett, 2007; Kaibyshev, 2012). (c) DRX associated with 

twinning (TDRX), in which twinning leads to the formation of coarse lamellae surrounded by 

special grain boundaries (Muránsky et al., 2008). There are at least three processes by which 

TDRX can occur: mutual intersection of primary twins, the occurrence of secondary twinning 

within the primary twinning, and coarse twin lamellae can be subdivided by deformation induced 

LAGBS that transform into HAGBs upon further straining and provide chains of DRX grains 
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(Kaibyshev, 2012). Out of the three DRX mechanisms explained above, DDRX is characterized 

by absorption of significant amount of lattice dislocations by migrating HAGBs (Beer and Barnett, 

2007).   

Numerical models, especially based on crystal plasticity theory, serve as powerful and efficient 

tools since they can dramatically improve strategies for part optimization and can reduce the time-

to-market by enabling ‘virtual laboratory” of manufacturing processes. However, accurate 

modelling requires physics-based microstructural models that account for temperature dependent 

material properties, physical deformation mechanisms, the gradual evolution of microstructure and 

texture. In past decade, the crystal plasticity modelling of magnesium alloys with crystallographic 

slip being the primary deformation mechanism has been successfully used to model large 

deformation during finite plastic straining (Balasubramanian and Anand, 2002). However, it is 

well known that the deformation of magnesium alloys at low temperatures typically occurs by 

crystallographic slip accompanied by deformation twinning simultaneously (Kelley and Hosford, 

1968). Van Houtte (1978) proposed the first model for modelling twinning in HCP polycrystals 

that considered the evolution of the volume fractions of the twinned regions in the grains. Later, 

Kalidindi, (1998) proposed a new model where the twinning was modeled as a pseudo-slip 

deformation mechanism and the parent-to-twin relationship was preserved in the entire 

deformation.  

Various numerical modelling approaches, i.e., Taylor type, viscoplastic self-consistent (VPSC), 

finite elements-based crystal plasticity frameworks (CP-FEM) and the crystal plasticity fast-

Fourier transform (CP-FFT), have been used to study deformation in magnesium and its alloys 

(Proust et al. 2009; Biswas et al., 2011; Wang et al., 2011; Jain et al., 2012; Oppedal et al., 2012; 

Steglich et al., 2012; Izadbakhsh et al., 2012; Chen et al., 2015; Popova et al., 2015; Qiao et al., 

2016, Levesque et al. 2010, 2016). All these models have provided good predictions of texture 

evolution and macroscopic stress-strain curves. Abdolvand and Daymond (2012) evaluated several 

twin-parent interaction models to study the internal strains and the texture evolution during 

twinning for magnesium and zirconium alloys. They compared the model results with neutron 

diffraction measurements and concluded that the PTR (predominant twin reorientation) scheme 

provided better results for texture prediction and internal strains.  
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The concept of forming limit diagram (FLD) was first introduced by Keeler (1961). Since 

obtaining the FLDs experimentally is expensive and complex, several analytical and numerical 

methods have been developed to calculate FLDs. The so-called M-K approach, presented by 

Marciniak and Kuczyński (1967), is based on the presence of a thickness imperfection in an infinite 

sheet. By increasing the applied load, strain level in the imperfection zone increases and the sheet 

fails accordingly due to rapid thinning. The M-K approach has been employed successfully in 

many applications where FLDs were accurately predicted for various metals. Inal et al. (2005) 

used a rate-sensitive polycrystal plasticity model with the full constraint Taylor type 

homogenization scheme (FC-Taylor) to explain the differences in the formability of body-centered 

cubic (BCC) polycrystal and FCC polycrystals. Inal et al. (2005) reported that the number of slip 

systems strongly affects the occurrence of localized necking in a polycrystalline material, while 

Izadbakhsh et al. (2011) presented a numerical study to investigate the contribution of the various 

deformation mechanisms to the formability in magnesium single crystals. Recently, Nagra et al. 

(2018) extended the rate-tangent-crystal plasticity-fast Fourier (RTCP-FFT) framework developed 

by Nagra et al. (2017) to model formability of aluminum alloys using the M-K approach. They 

reported that among various microstructural features, the grain morphology strongly influences 

the forming limit strain predictions in aluminum alloys. To calculate FLDs for HCP polycrystals, 

Lévesque et al. (2010, 2016) have employed the M-K approach in a Taylor type polycrystal model. 

They presented a parametric study to explain the effects of crystallographic slip and twinning on 

the formability of magnesium alloys.  

It is well-known that, along with crystallographic slip and mechanical twinning, the dynamic 

recrystallization (DRX) during processing at elevated temperatures also plays an important role on 

the formability of magnesium alloys (Samuha et al., 2018). However, modelling of DRX 

phenomenon is still a challenging problem. This is due to multi-scale nature of DRX phenomenon, 

which involves the effects of impurities, precipitation, dislocation motion, movement of the high 

angle grain boundaries etc. (Pond and Casey, 1992). Accordingly, there are several approaches in 

literature to model dynamic recrystallization in magnesium alloys. These approaches can be 

classified mainly into Monte-Carlo (MC), Cellular Automata (CA) and Phase Field (PF) methods. 

Monte-Carlo-based models simulate the microstructure evolution during DRX and can produce 

many features of the DRX process (Rollett et al., 1992; Peczak, 1995). However, these models are 
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unable to describe grain growth kinetics because of the lack of physical length and time scale. The 

phase field-based methods are powerful tools but they are computationally expensive models with 

focus on a continuous description of grain boundary. The CA method is based on the distinct cells 

with state variables that define the cell. An initial state is assigned to represent the microstructure. 

Switching the state of the cell defines the kinetics of CA and the switching of the state of the cell 

depends on its previous state as well as the state of the neighboring cell (Miodownik, 2002). The 

CA method is able to capture the local effects and is computationally efficient (Hallberg, 2011). 

However, the CA methods alone lack the ability to predict microstructure evolution during 

deformation. Therefore, coupling the CA approach with crystal plasticity-based finite element 

modelling (CP-FEM) has been shown to be an effective tool for modelling recrystallization. For 

instance, Popova et al. (2015) investigated the DRX in magnesium alloys using the coupled CA-

CP-FEM framework for 2D microstructures. Popova et al. (2016) extended this model to study the 

effects of twinning on texture evolution at elevated temperature deformation accompanied by the 

DRX. 

While the crystal plasticity-based modelling techniques discussed above are able model to various 

deformation phenomena in magnesium alloys, there is a lack of a single framework that can model 

the effects of DRX on the formability of magnesium alloys at elevated temperatures. The difficulty 

lies in proper modelling procedure of DRX phenomenon and the computational cost to generate 

forming limit strains for 3D microstructure. In this research, a new full-field numerical framework 

that can account for; (i) the full richness of the 3D microstructure (e.g., texture, grain 

morphologies, grain interactions, etc.) and (ii) the effects of DRX on micro/macro behavior is 

presented. Furthermore, this new full field numerical framework is incorporated in to an M-K type 

analysis to predict the formability of magnesium alloys at elevated temperatures.  

In Section 5.2, the details of the proposed framework are presented while the proposed RTCP-

FFT-HCP model is validated by comparing the predicted macroscopic (stress-strain) and 

microscopic (texture evolution) responses under uniaxial tension and compression with 

experimental measurements for AZ31 sheet alloy at room temperature in Section 5.5.2. Finally, 

the forming limit diagrams (FLDs) are predicted at 100 C, 200 C and 300 C, respectively, 

considering the effects of DRX and without DRX. The predicted FLDs are then compared with 

experimental observations in Section 5.5.4.  
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5.2 Model Description 

The well-known framework of Asaro and Needleman (Asaro and Needleman, 1985), that was 

modified by Kalidindi, (1998) and Lévesque et al. (2010, 2016) to incorporate deformation 

twinning is employed in the proposed framework. Lévesque et al. (2010, 2016) employed a crystal 

plasticity constitutive model for HCP metals based on the so-called Taylor-type homogenization 

scheme. This model was then implemented in to an M-K framework to predict the formability of 

various magnesium alloys. However, in order to model the dynamic recrystallization (DRX), there 

is a need of full-field model that accounts for the neighbourhood effects of the grains as well as 

the local strain partitioning. While finite element models can accurately provide the local strain 

partitioning, they would be extremely demanding in terms of CPU to compute the FLDs. 

Accordingly, the crystal plasticity constitute model for HCP materials is implemented into the rate 

tangent crystal plasticity-fast Fourier transform (RTCP-FFT) framework developed by (Nagra et 

al., 2017, 2018). The new numerical framework is then coupled with a cellular automata (CA) 

model and the M-K approach to investigate the formability of magnesium alloys at elevated 

temperatures. 

In this section, first, the details of proposed rate tangent-crystal plasticity fast Fourier transform 

model for HCP alloys (RTCP-FFT-HCP) are presented. Then, the DRX model is explained 

followed by a brief overview of M-K method. An overall flowchart of the coupled framework is 

also presented. 

5.2.1 Rate Tangent-Crystal Plasticity Fast Fourier Transform Model 

for HCP alloys (RTCP-FFT-HCP) 

5.2.1.1 Constitutive Equations 

The crystal plasticity formulation employed in this research is based on elastic-viscoplastic crystal 

plasticity. The constitutive model can account for both crystallographic slip and deformation 

twinning where a pseudo-slip approach is adopted for deformation twinning. More details of this 

constitutive formulation can be found in Levesque et al. (2010, 2016). Accordingly, the total 

deformation gradient 𝐅 is written as following 
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 𝐅 = 𝐅∗𝐅𝐏 (5.1) 

where 𝐅𝐏 consists of both part of deformation from crystallographic slip and twinning. 𝐅∗ 

embodies elastic deformation and rigid body rotations of crystal lattice. Note that, for simplicity, 

index notation and tensor notation are used interchangeably in this chapter. 

Table 5.1: Slip and twinning systems used in proposed framework. 

Slip systems { 0001 } 〈 12̅10 〉 
{ 101̅0 } 〈 12̅10 〉 
{ 11̅01 } 〈 112̅0 〉 
{ 12̅12 } 〈 12̅13̅ 〉 

Basal 
Prismatic 
Pyramidal <a> - I 
Pyramidal <c+a> - II 

Twinning systems { 101̅2 } 〈 1̅011 〉 
{ 11̅01 } 〈 1̅102 〉 

Extension 
Contraction 

The spatial velocity gradient 𝐋 in the current configuration is written as sum of its elastic and 

plastic parts as 

 𝐋 = 𝐋∗ + 𝐋P = 𝐅̇𝐅−1 (5.2) 

where 𝐋P = 𝐅∗(𝐅̇P𝐅P
−1
)𝐅∗

−1 is the plastic velocity gradient in the intermediate or relaxed 

configuration.  

The list of the active slip and twinning systems for magnesium alloys are summarized in Table 

5.1. It is assumed that a crystal behaves as an elasto-viscoplastic solid in which the slip and 

twinning rates follow a power-law according to Hutchinson (1976). Thus, the slip rate on slip 

system α in the parent matrix region and the slip rate in twinned region, respectively, are given by 

 
γ̇sl
(α) = γ̇sl

0 sgn τsl
(α) |

τsl
(α)

gsl
(α)
| 

1
m⁄

 (5.3) 
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γ̇tw−sl
(α)tw(β)

= γ̇sl
0 sgn τtw−sl

(α)tw(β)
|
τtw−sl
(α)tw(β)

g
tw−sl

(α)tw(β)
| 

1
m⁄

  (5.4) 

Accordingly, the rate of twinning on the twinning system β is defined as 

 
ḟtw
(β)
=
ḟtw
0

γtw
|
τtw
(β)

gtw
(β)
| 

1
m⁄

  (5.5) 

where γ̇sl0  and ḟtw0  are the reference shear and twinning rates. They are considered the same for all 

the slip and twinning systems. In addition, m is the strain-rate sensitivity index, τsl
(α) is the resolved 

shear stress on the slip system α in parent matrix and gsl
(α) is its hardness, τtw−sl

(α)tw(β) is the resolved 

shear stress on the reoriented slip systems in twinned region and gtw−sl
(α)tw(β) is its hardness and τtw

(β)
 is 

the resolved shear stress on the twin system β and gtw
(β) is its hardness.  

5.2.1.2 Hardening Law 

Hardening laws for the slip systems in matrix, slip systems in twinned region and the twinning 

systems, respectively, are defined as the rate of increase of the functions gsl
(α), gtw−sl

(α)tw(β) and gtw
(β), 

so that; 

 
ġsl
(α)

=∑𝐡sl
(αβ)

|γ̇sl
(α)
|

β

  

ġtw−sl
(α) twβ

=∑𝐡tw−sl
(αβ)

|γ̇tw−sl
(α)tw(β)

|

β

 

ġtw
(α)

=∑𝐡(αβ)tw |ḟtw
(β)
|

β

 

(5.6) 

 

(5.7) 

 

(5.8) 
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where 𝐡sl
(αβ), 𝐡tw−sl

(αβ)  and 𝐡tw
(αβ) are the hardening moduli of the slip systems in matrix, slip systems 

in twinned region and the twinning systems, respectively. The hardening moduli employed in this 

study is similar to the work previously presented by Peirce et al. (1983) and Asaro and Needleman 

(1984), 

 𝐡sl
(αβ)

= 𝐪(αβ)hsl
(α)
 (no sum on β) 

𝐡tw−sl
(αβ)

= 𝐪(αβ)htw−sl
(α)tw(β)

 (no sum on β) 

𝐡tw
(αβ)

= 𝐪(αβ)htw
(β)
 (no sum on β) 

(5.9) 

(5.10) 

(5.11) 

where 𝐪(αβ) matrix describes the latent hardening of the crystallite. hsl
(α)
 , htw−sl

(α)tw(β) and htw
(β)
  are 

the single slip hardening. In this study, all latent hardening parameters 𝐪(αβ) are set to one. The 

hardness of the slip and the twinning systems is represented by a power-law equation;  

 
hsl
(α)
= hsl

0 [
hsl
0 γsl

(α)

τ0sln
+ 1]

n−1

  (5.12) 

 
htw−sl
(α)tw(β)

= htw−sl
0 [

htw−sl
0 γtw−sl

(α)tw(β)

τ0tw−sln
+ 1]

n−1

+ h1 (5.13) 

 
htw
(β)
= htw

0 [
htw
0 ftw

(β)

τ0twn
+ 1]

n−1

  (5.14) 

where hsl0 , htw−sl0  and htw0  are the initial hardness of the slip systems in matrix, slip systems in 

twinned region and the twinning systems, respectively. Accordingly, γsl
(α), γtw−sl

(α)tw(β)and ftw
(β) 

represent the sum of the accumulated slip and twin on all the slip systems in matrix, slip systems 

in twinned region and the twinning systems, respectively and n is the hardening exponent. In 

addition, a term that accounts for the hardening caused by the twin boundaries is also incorporated 



 

 
125 

in the formulation (h1). This term enables to constitutive model to restrict dislocation motion. The 

increase of the volumetric fraction of the twins leads to the density of twin boundaries to increase. 

However, as twinning continues, the twins merge; thus, the twin boundaries disappear and the 

density of twin boundaries decreases. In other words, the parameter h1 grows until the density of 

the twin boundaries within a grain reaches its highest value and then decreases. Thus; 

If∑fβ ≤ ζ then

β

 

 
 h1 = hTB (1 − |

ζ −∑ fβ
β

ζ
|)

e

 (5.15) 

If∑fβ > ζ then

β

 

 
 h1 = hTB (1 − |

ζ −∑ fβ
β

1 − ζ
|)

e

 (5.16) 

where ζ is the volume fraction of twins associated with the maximum twin boundary density and 

hTB is a parameter corresponding to the effect of twin boundaries on the hardening of the slip 

systems. It has been experimentally observed that the volume fraction of twinned regions in many 

magnesium alloys reaches a maximum of 0.8 (Rémy, 1981; Kalidindi, 1998; Fernández et al., 

2011). Thus, the value of ζ is taken as 0.8 in the present work. 

5.2.1.3 Update of Shear Strain and Stress 

At time t, the shear strain in the parent matrix, is updated as 

 γsl
(α)

= γ̇sl,t−1
(α) +∑|γ̇sl

(α)|∆

α

t  (5.17) 

whereas in the twinned region, it takes the form 
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γtw−sl
(α)tw(β)

=∑|γ̇tw−sl
(α)tw(β)

| ∆

α

t +
ft−1
β

fβ
γtw−sl
(α)tw(β)

+ c
(fβ − ft−1

β
)

fβ
γtw−sl
(α)tw(β) (5.18) 

where the coefficient c is the fraction of slip that is kept in the parent matrix when they twin. Since 

the slip systems are reoriented during twinning, this is a simplified way to account for the fact that 

they are not restored. 

The increment in stresses in the matrix and the β-twinned region of the material point are calculated 

using the co-rotational Jaumann rate of the Cauchy stress as 

 ∆𝛔𝐦t = 𝐂tan
mt
: 𝐃 − 𝛔̇𝟎

mt + 𝛔− 𝛔 − 𝛔 𝐭𝐫𝐃 (5.19) 

 ∆𝛔twβ = 𝐂tan
twβ
: 𝐃 − 𝛔̇𝟎

twβ
+ 𝛔− 𝛔 − 𝛔 𝐭𝐫𝐃 (5.20) 

where 𝐂tanmt  and 𝐂tantwβ  are the elasto-viscoplastic tangent moduli for the matrix and twinned 

regions, respectively. These are calculated using the rate tangent integration scheme. More details 

of the rate tangent integration scheme can be found in Pierce et al. (1983) and Nagra et al. (2017). 

Using Equations (7.19) and (7.20), the stresses at time t are updated by the following equations 

 𝛔mt = 𝛔t−1
mt + ∆𝛔mt (5.21) 

 
𝛔twβ =

ft−1
β
𝛔t−1
twβ

+ ft
β
∆𝛔twβ + ∆fβ𝛔t−1

mt

ft
β

 (5.22) 

By averaging the stresses in the twinned and un-twinned parts of the grain, the total Cauchy stress 

𝛔 for the material point at time t is written as follows 
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𝛔 = (1 −∑fβ

Ntw

β=1

)∆𝛔mt + ∑(fβ∆𝛔twβ)

Ntw

β=1

 (5.23) 

Note that, in the proposed framework, all twin variants are considered active at all time, even in 

cases where their twinning rate is equal to zero. Using the matrix stress as the stress of the 

additional twinned fraction ensures that the twins do not possess abnormal value of stress, in cases 

where they become active later in the simulation, due to rotation of the parent grain or change in 

the stress state.  

5.2.1.4 Stress Equilibrium and Microstructural Heterogeneity 

The model presented in this study obtains the solutions for a 3D heterogeneous volume element 

chosen to be statistically representative of the microstructure of a given HCP material. The 

proposed model is based on the assumption that the heterogeneity of a crystalline material can be 

modeled using the convolution integrals between Green functions associated with the local 

response of an equivalent linear reference medium with polarization field and Eigen strains. In the 

conventional FFT-based methods, the polarization field is unknown apriori and the non-linear 

constitutive equations result in high mechanical contrast that results in diverging solutions of 

micromechanical fields at large strain. However, in the proposed RTCP-FFT model, the numerical 

analysis employs the rate tangent method with a semi-explicit integration scheme to obtain the 

heterogenous micromechanical fields using the rate form of the elasto-viscoplastic constitutive 

equations. Furthermore, the FFT method is used satisfy the quasi-static linear momentum balance 

condition, i.e., ∇. 𝛔 = 0, for each discrete material point. Details of an analogous formulation for 

face-centered cubic (FCC) polycrystals are presented in Nagra et al. (2017). 

In the simulations, periodic boundary conditions are applied to enforce mechanical equilibrium 

within the RVE in order to link the micromechanical fields to the effective material behavior at 

the macroscale. To predict the evolution of micromechanical fields and intragranular texture 

during deformation, the space resolved configuration of the grid points and the grain interactions 

must be considered in the whole RVE. The proposed numerical approach requires a regular Fourier 

grid {𝐱k}, i.e., defined as  
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{𝐱k} = {((i1 − 1)

L1
N1
, (i2 − 1)

L2
N2
, (i3 − 1)

L3
N3
) ; ik = 1,… ,Nk, k = 1,3} (5.24) 

where, 𝐋𝐤 is the length of the grid and 𝐍𝐤 is the number of Fourier points in each direction, k. In 

proposed numerical approach, each grid point represents a voxel inside a grain and to consider the 

interaction of each grid point with all the other points in the RVE, the following problem for 

heterogeneous RVE needs to be solved at each grid point to obtain micromechanical fields, written 

as follows 

 
{

𝛔 = 𝐂𝐭𝐚𝐧: 𝛆 
∇. 𝛔 = 0

 Periodic boundary conditions across RVE
 (5.25) 

where, 𝛆 and 𝛔 are the total local strain and the total local stress fields. The total elasto-viscoplastic 

stiffness 𝐂𝐭𝐚𝐧 has the contributions from the stiffness of matrix region and stiffness of twinned 

region and is obtained as follows 

 
𝐂𝐭𝐚𝐧 = (1 −∑fβ

Ntw

β=1

)𝐂tan
mt
+ ∑(fβ𝐂tan

twβ
)

Ntw

β=1

 (5.26) 

Because of heterogeneity in microstructure, fluctuations in the local strain arises. Thus, the total 

local strain is given by 

 𝛆 = 𝛆̃ + 𝐄 (5.27) 

where, 𝛆̃ is the strain fluctuation in the crystal due to heterogeneity and 𝐄 is the average strain 

imposed on the RVE. The local strain fluctuation can be found using Green function method if 

local stress polarization field is known. Finding local stress polarization involves 𝐂 0, an average 

elastic moduli of a linear reference medium. Accordingly, the stress tensor can be written as 
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 𝛔 = 𝛔 + 𝐂𝟎: 𝛆 − 𝐂𝟎: 𝛆 (5.28) 

or, 

 𝛔 = 𝐂𝟎: 𝛆 + 𝛔̃ (5.29) 

where, 𝛔̃  is the local stress polarization.  

The compatible strain tensor 𝛆 is related to displacement gradient 𝐮 as 

 𝛆 = (𝐮 + 𝐮T)/2 (5.30) 

Thus, the local problem for heterogeneous RVE becomes: 

 
{

𝛔 = 𝐂𝟎: 𝛆 + 𝛔̃ 
∇. 𝛔 = 0

 Periodic boundary conditions across RVE
 (5.31) 

To satisfy stress equilibrium locally, the divergence of local Cauchy stress tensor at each Fourier 

point must be equal to zero, i.e., 

 𝛁. (𝐂𝟎: 𝛆 + 𝛔̃) = 0 (5.32) 

The Green’s function method is used to solve the equilibrium Equation (5.32) for an applied strain 

𝐄 that requires the solution of following problem (Lebensohn et al., 2012): 

 Cijkl
0 Gkm,lj(x − x

′) + δimδ(x − x
′) = 0 (5.33) 
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where Gkm,lj(x − x′) is the Green’s function associated with the displacement field. Note that, for 

simplicity, index notation is employed to derive an expression for strain fluctuations. Accordingly, 

the local strain fluctuations can be expressed as convolutions in the real space so that 

ε̃kl(x) = ∫ Gki,jl(x − x
′)σ̃ij(x

′)dx′
 

R3
 (5.34) 

For the periodic microstructure, the FFT algorithm can be used to reduce these convolution 

integrals in the real space to a simple product in the Fourier space. Accordingly, Equation (5.34) 

is solved in the Fourier space that makes the FFT-based implementations computationally efficient 

for computing the local response. Thus, the Fourier transforms are used to: (a) transform the 

polarization field into Fourier space, (b) obtain the product of polarization field and the appropriate 

kernel function in the Fourier space, and (c) anti-transform the product in Fourier space back to 

the real space to obtain strain fluctuations. Using the convolution theorem, the local strain 

fluctuations in Fourier space are given by 

ε̂̃kl(ξ) =  Γ̂ijkl
0 (ξ))σ̂̃kl(ξ) (5.35) 

where “  ̂” indicates forward Fourier transform, and ξ is the frequency point in the Fourier space. 

Furthermore, the Green operator in Fourier space Γ̂ijkl0 , which is the kernel function of the average 

stiffness tensor of the reference medium 𝐂ijkl0  and the frequency, is given by 

 Γ̂ijkl
0 (ξ) =  −ξjξlĜik(ξ), Ĝik(ξ) = [𝐂ijkl

0 ξlξj]
−1

 (5.36) 

In the present work, an average kernel function of linear reference medium which is two times 

stiffer than reference medium is employed. This ensures a converged solution of micromechanical 

fields in a single step of stress and plastic strain integration provided the time step is kept 

sufficiently small.  
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The local strain fluctuations in real space can be obtained by taking the inverse Fourier transform 

of Equation (5.35) such as 

 ε̃kl(x) = fft−1(sym(Γ̂ijkl
0 (ξ))σ̂̃kl(ξ)) (5.37) 

Finally, the total local strain is given by 

 𝛆 = fft−1(sym(𝚪̂0(ξ)) 𝛔̂(ξ)) + 𝐄 (5.38) 

It should be mentioned that the proposed framework gives stable results even at extremely large 

strains, such as those that will be obtained in FLD simulations. 

5.2.1.5 Grain Morphology Update 

Due to the heterogeneity of the material, the set of convected Fourier points no longer forms a 

regular grid as the deformation progresses. However, a regular Fourier grid is needed in order to 

compute the strain fluctuation (Eq. 5.37) using the convolution theorem. Therefore, in the present 

work, the following scheme is adopted for updating coordinates of the Fourier points, neglecting 

contribution from strain fluctuations and using volume averaged strain rate, so that the Fourier grid 

remains regular with deformation (Lebensohn et al., 2008) 

 xk = xk
t−1 +𝐃avgxk

t−1 × ∆t  ∀ k ∈ 1,3 (5.39) 

After each time step increment, the distances between adjacent Fourier points change, but the 

Fourier grid remains regular, thus determining an ‘‘average stretching” of the grains in the RVE.  

Using the RTCP-FFT-HCP model as outlined above, the full field solutions of micromechanical 

fields are computed for a polycrystal RVE subjected to periodic boundary conditions. The DRX 

framework and its coupling with the RTCP-FFT-HCP model are described in the next section. 
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5.2.2 Dynamic Recrystallization (DRX) Model 

The probabilistic cellular automata model that is coupled with the crystal plasticity-fast Fourier 

transform method (described in the previous section) to model dynamic recrystallization (DRX) 

in HCP metals. In the proposed framework, a Fourier point represents a voxel inside a grain in the 

3D microstructure. Each Fourier point is modeled as a cell and the corresponding state variables 

are obtained using RTCP-FFT-HCP model. Note that, the terms cell, material point or Fourier 

point are used interchangeably in this chapter, since they overlap and represent the same spatially 

resolved 3D grid. The proposed DRX approach can be divided into four main parts: (a) Onset of 

DRX, (b) Kinematics of nucleation, (c) Kinematics of grain growth, and (d) Cellular automata 

model for state switching of cells. 

5.2.2.1 Onset of DRX 

During deformation, the onset of the dynamic recrystallization (DRX) depends on various factors. 

In general, there are two types of criteria used in literature for the onset of DRX: (a) based on the 

critical value of dislocation density (Bailey and Hirsch, 1962)  and (b) the geometrical criterion, 

i.e., once the pre-existing grain boundary bulging reaches a critical value (Sandström and 

Lagneborg, 1975; Roberts and Ahlblom, 1978). The dislocation density-based criterion used in 

Takaki et al. (2009) is adopted in the present work. Thus, the DRX starts once dislocation density 

ρ reaches the critical value given by 

 
ρcr = (

20SD

3bLMλ2
)

1
3⁄

 (5.40) 

where D is the local strain rate, S is the Read and Shockley (1950) grain boundary energy per unit 

area. M is the grain boundary mobility and λ = cμb2, b is burgers vector, L = K/c2√ρ  is the mean 

free path of dislocation. Accordingly, K and c are the fitting parameters and are determined by 

calibration with the experimental stress-strain curve. Similar to the hardening parameters, K and c 

also vary when temperature changes. 
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5.2.2.2 Kinematics of Nucleation (Popova et al. (2015, 2016)) 

Two main concepts of nucleation and growth have been generally employed in numerical models; 

(a) pre-existing nucleated sites that grow with deformation, and (b) nuclei are not pre-existing, but 

new nuclei form and evolve with deformation. Cahn (1950) introduced the concept of 

recrystallization nuclei as initiators of grain growth based on the dislocation density where 

identifying regions with high contrast in dislocation density with the surroundings was the main 

focus. Popova et al. (2015, 2016) employed this concept in a coupled CA-CPFEM model to 

simulate DRX in magnesium alloys. In addition, Popova et al. (2016) showed that twins can also 

serve as a nucleation site and the DRX can be observed along the twin boundaries where high 

contrast in dislocation density occurs. 

In the present work, only GNDs are considered and modelling SSDs are left as improvements for 

future works. The density of GNDs can be obtained using screw dislocation and edge dislocation 

(Arsenlis and Parks, 1999).  

Accordingly, the accumulated edge (ρGN(edge)) and screw dislocations (ρGN(screw)) are calculated 

using the reoriented lattice vectors (𝐦sl
∗(α), 𝐬sl

∗(α)) and shear strain γsl
(α) on each slip system α as 

follows 

 
ρGN(edge)b

2 = −∑∇(γsl
(α).𝐦sl

∗(α))

Nsl

α=1

 (5.41) 

 
ρGN(screw)b

2 = −∑∇γsl
(α). (𝐬sl

∗(α) ×𝐦sl
∗(α))

Nsl

α=1

 (5.42) 

The magnitude of total GND density can be obtained as 

 
ρGN = √(ρGN(edge)

α )
2
+ (ρGN(screw)

α )
2
 (5.43) 
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Furthermore, the total dislocation density, ρGN, is used to calculate the mismatch in dislocation 

densities, dρij, between the material points such as 

 dρij = |ρGNi − ρGNj | (5.44) 

where ρGNi ,  ρGNj  are the total dislocation densities of the material points i and j, respectively.  

5.2.2.3 Kinematics of Grain Growth 

Based on stored deformation energy (P) and mobility of the grain boundary (M), Gottstein and 

Shvindlerman (1999) have demonstrated that velocity of the grain boundary, υ, can be calculated 

as  

 υ = MP (5.45) 

While the stored deformation energy can be calculated as 

 
P =

1

2
ρμb2 (5.46) 

where μ is the shear modulus and ρ is dislocation density. 

Furthermore, the mobility (M) of the grain boundary depends on the temperature and 

misorientation angle and follows Arrhenius type of the equation: 

 
M = {

0, if θ < θcr

M0exp (−
Hm
kT
) , if θ ≥ θcr

 (5.47) 

where T is the temperature, Hm is the activation enthalpy, k is the Boltzmann constant, and M0 is 

the pre-exponential factor that depends on grain boundary misorientation. To calculate 
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misorientation between two materials point, the crystal orientation for each material is stored as a 

2nd order orientation matrix (φ). Using rotation matrices, the disorientation, θ, is calculated 

between current material point i and its neighboring material point j as follows 

 
θ = min [cos−1 (

tr(φiφi
T) − 1

2
)] (5.48) 

where φi and φj are the rotation matrices of the elements i and j respectively. This disorientation 

is then used to calculate the mobility of the boundary, (Mij), between elements i and j (Eq. 5.47). 

Doherty (1997) has demonstrated that during the DRX, the grain boundaries move leaving behind 

a strain free grain, and as a result, the dislocation density over the entire sample decreases. 

Therefore, DRX is known to soften the response of the grain. Accordingly, in this implementation, 

the flow stress is relaxed for the recrystallized material points. 

The above formulation is used in the current work and calculated as a part of RTCP-FFT-HCP 

simulation. The probabilistic cellular automata approach is then used to determine nucleation sites 

as well as their growth. 

5.2.2.4 Probabilistic Cellular Automata Model 
In the present work, the probabilistic CA is used to (a) identify potential nucleation sites and (b) 

grow the nuclei in the matrix. In order to model DRX using CA, the microstructure is divided into 

cells with state variables (Janssens, 2010). A cell in the current framework corresponds to a 

material point or a Fourier point, therefore, no mapping procedure is needed. A probabilistic 

switching rule is defined that depends on the state of the neighboring cell. In the present work, a 

modified Moore neighborhood is used, since it provides more freedom for the grain to grow in the 

3D space. The neighborhood used in the present work has spherical boundary and thus, all the first 

order, 26 neighbors are considered for the state switching rule (Figure 5.1).  

In this research, an RVE with lengths of 64 μm in each of X, Y and Z directions, respectively, is 

employed in all the simulations. The spacing between two neighboring material points (nearest), 

∆x, is 1 μm. To define the neighborhood in 3D, a sphere with fixed radius r, where r is 1.74 x ∆x, 
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is used. Since the farther material points (i.e., at middle and corners of a plane with respect to 

material point at center) are harder to recrystallize, proportionality of 0.48 and 0.25, respectively, 

are used. It is already well documented that length and time scales are some of the main challenges 

in the CA models (Hallberg, 2011). The parameter ∆tDRX is implemented in order to define the 

correlation between simulation time and the DRX time step such as; 

 
∆tDRX = CT ×

∆x

νavg
gb

 (5.49) 

where νavg
gb
 is an average grain boundary velocity, ∆x is the cell size, i.e., the spacing between to 

material points, CT is a constant, which is calibrated through a nucleation process. DRX step occurs 

once the velocity of the grain boundary is high enough to surpass the size of the cell. Since, the 

parameter ∆tDRX depends on the cell size, ∆tDRX should have a lower value for a finer Fourier grid 

compared to that for a coarse grid. 

 
Figure 5.1: Modified Moore neighborhood is used in the present work; defining a material point 
and its neighbors in 3D space using a spherical boundary with 26-point scheme. A material point 

interacts with all other material points that lie at distance less than the radius of the sphere. 

Three state variables are used in the cellular automata model; (a) 2nd order crystal orientation 

matrix, φ; (b) dislocation density, ρ; (c) the variable, N, that can take the values 0 or 1 depending 

on whether the material point is a new nucleus or apriori recrystallized material point. At the 

beginning of a simulation, all the CA cells (i.e., material points in the present work) are assigned 

Bond length = 1.732 μm 

Bond length = 1.414 μm 

Bond length = 1 μm 

Sphere radius = 1.74 X ∆x 
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N = 0 indicating that there are no pre-existing nuclei and then DRX computations are performed 

based on the criteria discussed earlier in this section. During the DRX step, the following 

sequences are observed;  

(1) the potential nucleation sites are determined, i.e., based on high contrast in dislocation density 

inside between two materials points at a time (Eq. 5.44). If the total dislocation density ρGN is 

more than the critical value ρcr, then nucleation can take place. If θ ≥ θcr and dρ ≥ ρcr for the 

current material point, then the site is identified as a potential nucleus. In addition, the viable nuclei 

are chosen with a probability depending on the grain boundary mobility and stored energy 

difference. This step ensures that identified nucleation site has a high chance of growing. The 

switching parameter used to determine the probability is based on the velocity of the grain 

boundary is given by 

 

ωswitch =

{
 
 

 
 

υij

νmax
, if dij ≤ ∆x 

0.48
υij

νmax
, if ∆x <  dij ≤ √2∆x

0.25
υij

νmax
, if  √2∆x <  dij ≤ r

 (5.50) 

where dij is the distance between material point i and its neighbor j, r is the radius of sphere that 

defines neighborhood of each material point (r = 1.75 x ∆x, constant, in the present work), νmax  is 

the maximum velocity of the grain boundary in the computational domain (obtained from the 

RTCP-FFT-HCP) and νij is the velocity of the boundary between the current element i with respect 

to its neighbor j. During the probabilistic step, a random number ξ ∈ [0,1] is generated and if ξ ≤

 ωswitch then the current material point is a feasible nucleus, and the switching variable for 

nucleation N takes a value of 1, otherwise N = 0. 

 (2) The nucleus grows by consuming the neighboring matrix cells. To determine if the current 

material point would be consumed by one of its neighbors, the following procedure is used. The 

current material, i, that hasn’t been recrystallized in the previous steps, has to have at-least one 

recrystallized neighbor, i.e., Ni = 0 and Nj = 1. If this condition is satisfied then the difference in 

stored dislocation energy and the grain boundary mobility (based on the misorientation between 
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the two material points) are calculated using Equations (5.44) and (5.47). The state of the current 

element is then changed based on the velocity obtained from Equation (5.45). Similar to the 

nucleation criteria, the probability of getting consumed by material point j for material point i is 

based on the velocity. Furthermore, a random number ξ ∈ [0,1] is generated when a growth step 

is taken. If ξ ≤  ωswitch then the current material point i is recrystallized by material point j only 

if the material point j is already a nucleus or previously recrystallized element, i.e., Nj = 1. Finally, 

if the material point i is successfully recrystallized by material point j, i.e., φi = φj, N = 0 and its 

stress is relaxed. 

 
Figure 5.2: Flowchart for the proposed numerical framework. 

A flowchart for the proposed numerical framework is presented in Figure 5.2. The DRX 

formulation explained above is incorporated in the RTCP-FFT-HCP model and then coupled with 

the well-known M-K framework to determine the failure strains for magnesium alloys.  

5.2.3 Marciniak and Kuczyński (M-K) Framework 

The well-known Marciniak and Kuczyński formulation (Marciniak and Kuczyński, 1967) is used 

to model and study the effects of the dynamic recrystallization on formability predictions of rolled 
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AZ31 magnesium alloy sheet at different temperatures. The M-K model employed in this research 

follows the implementations presented by Wu et al. (1997) and used by Inal et al. (2005, 2010), 

Lévesque et al. (2010, 2016), Mohammadi et al. (2014) and Nagra et al. (2018). In M-K 

framework, an infinitely long orthotropic sheet with axes transverse direction (TD) and rolling 

direction (RD, respectively, is considered to have an imperfection band that is inclined to the RD 

at an initial angle, ψ.  Figure 5.3 presents a schematic of M-K framework showing an orthotropic 

sheet with an inclined imperfection band. The rolled sheet is assumed to contain a geometrical 

imperfection, such as a narrow band or grove across the sheet’s width, which is slightly thinner 

than the rest of the sheet and this is defined as the imperfection factor (f imp) given by 

 
f imp =

h0
b

h0
 (5.51) 

where, h0b is the initial thickness of band region and h0 is the initial thickness of the region outside 

band. To model the effect of this imperfection on sheet formability, two 3D RVEs with identical 

initial texture and grain morphology, one outside the imperfection band and other in the 

imperfection band, are employed in the present work.  

Compatibility and equilibrium conditions are satisfied across the band interface assuming a plane 

stress condition, i.e., σ̇33 = 0.  

The boundary conditions applied to the sheet can be written as 

 

{
 

 ρ =
D22
D11

= constant, −0.5 ≤ ρ ≤ 1.0 

Ωij = 0 ∀ i = j

 Dij = 0 ∀ i ≠ j

 (5.52) 

where, Ωij is spin rate, ρ is the applied strain ratio, D11 and D22 are principal strain rates. The band 

angle at time t, ψ(t), is related to the initial band angle through 

 tan ψt−1 = exp [(1 − ν)D33t−1Δt] tanψ (5.53) 



 

 
140 

 

 Figure 5.3: Schematic of M-K framework: initial configuration of an orthotropic sheet showing 
imperfection band direction vectors (n and t), band angle, initial thicknesses and boundary 

conditions. 

As the deformation in the simulation progresses, the onset of localized necking is assumed to have 
occurred when the thinning rate inside band increases rapidly compared to thinning rate outside 

band, i.e., the failure strains are obtained when D33b > 104 × D33 and the accumulated plastic strain 
outside band is 16 times greater than accumulated plastic strain inside band. 

5.3 Experimental Data 

The LEO 1450 scanning electron microscope (SEM) fitted with a TSL EBSD camera was used to 

obtain all the EBSD scans for the magnesium sheet alloy AZ31. In the present work, the scan size 

selected was 2000 X 2000 m. The average grain size over this sample is ~14 m. The EBSD data 

was analyzed using the TSL OIM Analysis™ software and following the analysis presented by 

Brahme et al. (2012), an area of 800 X 300 m was assumed to be the representative scan size. 
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Figure 5.4: Experimentally measured microstructure; (a) EBSD scan, (b) 0001 polefigure, and 

(c) 10-10 polefigure. 

Using the TSL Grain Dilation feature, the cropped EBSD data was cleaned to remove the bad data 

points by setting the grain tolerance angle to 5° and the minimum grain size to 10 data pixels. Only 

data points having a confidence index (CI) above 0.2 were retained for the analysis. Using the 

misorientation tolerance of 10°, the grains were identified with the TSL Single Orientation per 

Grain option set to 10°, i.e., A grain is identified by grouping all the pixels having a misorientation 

of less than 10°. Grains with less than 10 data points were excluded from the analysis. The pixels 

within the identified grains were then assigned average orientation of the grain. Consequently, the 

misorientation of any two pixels within a grain is zero. 

5.4 Synthetic 3D Microstructure 

For all the studies presented in this work, a representative volume element (RVE) that contains 

276 grains (Figure 5.5a) is employed with 64X64X64 Fourier points. The grains are constructed 

as equiaxed (similar to the measured microstructure) and have a grain size of 9.83 m. Each of the 

grains is assigned an orientation such that the overall texture of the RVE (Figure 5.5) is similar to 

the experimentally measured texture (Figure 5.4). The assigned texture also exhibits strong basal 

pole, as evident from the 0001 polefigure showing a strong pole at the center with a texture strength 

~11. It should be mentioned that the same RVE is used to (i) first calibrate the model, (ii) simulate 

dynamic recrystallization at elevated temperatures and (iii) predict forming limit diagrams at 

elevated temperatures. 

 
(a) 

 
(b) 

  
(c) 
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Figure 5.5: Regenerated synthetic microstructure with 276 grains, shown in (a), (b) and (c) show 

0001 and 10-10 polefigures. 

5.5 Results and Discussions 

In the next sections, the results obtained from the numerical model as well as comparisons with 

experimental observations are presented. 

5.5.1 Calibration of RTCP-FFT-HCP Model 

The model parameters for the slip and twin systems are calibrated by curve fitting the uniaxial 

tension and compression (along RD) stress-strain responses from the model to the experimental 

measurements. To obtain the model parameters, first the slip system parameters are determined 

such that the resultant stress-strain response closely matches the experimentally measured uniaxial 

tension response (Figure 5.6a). The, the twin parameters are determined so that, with the same slip 

system parameters used for uniaxial tension, the uniaxial compression curve matches the measured 

uniaxial compression response (Figure 5.6b). The calibrated values are reported in Table 5.2. Note 

that, the results from the compression use the absolute values of true stress and true strain. 
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Figure 5.6: Comparison of the simulated flow curves (Red) and experimentally measured 

responses (Blue triangles) for uniaxial; (a) tension, and (b) compression. 
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Table 5.2: Constitutive parameters used to calibrate proposed model for RD uniaxial tension and 
compression at room temperature. 

  𝑺𝒍𝒊𝒑 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔   
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐵𝑎𝑠𝑎𝑙 𝑃𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 𝑐 + 𝑎 

τ0 (Mpa) 1.8 72.0 76.5 76.5 
h1 2.0 45.0 150.0 150.0 
c 6.0 6.0 6.0 6.0 

hTB(Mpa) 850.0    

  𝑻𝒘𝒊𝒏𝒏𝒊𝒏𝒈 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔   

τ0,twinning (Mpa) 100.0    

h0,twinning (Mpa) 0.01    

 

Figure 5.7: Predicted texture after 8% uniaxial compression, shown in (a) and compared to that 
reported by Khan et al. (2011) shown in (b). 

5.5.2 Validation of RTCP-FFT-HCP Model 

The predictive capability of the proposed model is validated by comparing the evolved texture 

predictions from the model with those published in literature. Khan et al. (2011) studied a similar 

AZ31 alloy under various loading conditions and reported, amongst other findings, the deformed 

texture after compressive loadings along RD. Comparing, the textures predicted by the proposed 
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model with the measurements presented in Khan et al. (2011) show that the proposed model can 

accurately capture the texture evolution (Figure 5.7).  

Since twinning is clearly a dominant mechanism during compression along RD, to understand the 

role of slip as well as the twin systems play in accommodating the overall deformation, the 

activities of the slip and the twin systems are plotted as a function of the absolute true strain during 

compression (Figure 5.8). The activity plot shows that initial yielding is primarily due to the basal 

glide. The prismatic slip is also active initially. During uniaxial compression along RD, the ND 

has to undergo extension for the given sample of AZ31 alloy due to strong basal texture as seen in 

Figure 5.4. This implies that the deformation along ND has to be accommodated by c-axis 

extension. 

 

Figure 5.8: Slip and twin system activity during uniaxial compression along RD till 20% uniaxial 
compression. 

The available mechanisms to accommodate the deformation of c-axis in HCP materials are the 

pyramidal <c+a> slip and the twinning. Of these two, twinning is a polar deformation with the 

different twin mechanisms active during extension and contraction of c axis. To accommodate 

extension of c axis the 10-12 family of twin systems needs to be activated. 

At room temperature, CRSS for extension twins (10-12 family) is lower than the <c+a> slip 

system. When the average true stress reaches about 100 MPa, the twinning becomes active, as can 
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be seen from the twin activity picking up right after macro-yielding. Twinning also reorients the 

crystallographic texture of the lattice in the twinned region such that the c axis is aligned to the 

compression direction, in the present case, towards the RD. Hence, in the twinned orientation 

neither basal or pyramidal slip are favorable as the deformation is compressive along c axis. As a 

result, the twinned region accommodates this deformation via <c+a> slip. As the amount of 

twinning increases, the volume of the microstructure which is reoriented increases and the activity 

of pyramidal <c+a> also increases (Figure 5.8). 

 

Figure 5.9: (a) Distribution of volume fraction of twins and (b) stress distribution in the 
microstructure at 8% uniaxial compression along RD (X). 

Figure 5.9(a) shows the local distribution of regions which are twinned in the microstructure after 

8%. Note that the loading is applied along the X axis in Figure 5.9. It is immediately clear that 

there is no “preferred” location for twin formation in the microstructure; twinning seems to be 

prevalent everywhere. Since the twinning in the current model is determined by the resolved shear 

stress on the twin system, the compressive stress distribution in the microstructure is also shown 

in Figure 5.9(b). Comparing these two, it is observed that the regions that show twinning have 

higher values of stress. This is expected as the stress in the material point increases the resolved 

stress on the twin system increases and when it satisfies the twinning criterion twin appears.  

(b) (a) 
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Table 5.3: Constitutive parameters used to calibrate coupled MK-CA-RTCPFFT-HCP model for 
RD uniaxial tension at 100 C, 200 C and 300 C, respectively. 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑩𝒂𝒔𝒂𝒍 𝑷𝒓𝒊𝒔𝒎𝒂𝒕𝒊𝒄 𝑷𝒚𝒓𝒂𝒎𝒊𝒅𝒂𝒍 𝑷𝒚𝒓𝒂𝒎𝒊𝒅𝒂𝒍 𝒄 + 𝒂 

Temperature: 100  C     
τ0 (Mpa) 0.8 25.0 85.0 82.0 

h1 0.5 2.0 20.0 20.0 
c 16.0 16.0 16.0 16.0 

hTB(Mpa) 200.0    

Temperature: 200 C     
τ0(Mpa) 0.8 25.0 57.0 57.0 

h1 0.5 25.0 85.0 85.0 

c 16.0 16.0 16.0 16.0 

hTB(Mpa) 200.0    

Temperature: 300 C     
τ0(Mpa) 0.8 20.0 35.0 38.0 

h1 0.5 2.0 20.0 20.0 
c 16.0 16.0 16.0 16.0 

hTB(Mpa) 200.0    

5.5.3 Coupled Model Calibration at Elevated Temperatures 

The main goal of the present work is to predict the elevated temperature formability of magnesium 

alloys with the proposed numerical model that accounts for not only deformation twinning and 

crystallographic slip, but also the dynamic recrystallization. Accordingly, the parameters of the 

numerical model, including the parameters that account for dynamic recrystallization, are 

calibrated for various elevated temperatures. 

For magnesium alloys, the twinning CRSS has been shown to be athermal, hence the twinning 

CRSS is not changed in the model. For the CRSS of the slip systems, the model parameters are 

adjusted so that they match the flow curves at the elevated temperatures until the onset of DRX. 

The onset of DRX leaves a clear signature on the flow curve by a marked softening in the stress 

with the increasing strain. This point and the subsequent softening are used to calibrate the criterion 
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for nucleation and growth kinematics of the nucleated grains governed by Equations (5.44) and 

(5.45) respectively. Accordingly, the parameters for the numerical model are calibrated for 100, 

200 and 300 C, the model parameters are calibrated for these temperatures. These constitutive 

parameters are highlighted in Table 5.3. The experimental macroscopic stress-strain responses at 

different elevated temperatures employed in this study are shown in Figure 5.10  (Chen et al., 

2003). 

 

Figure 5.10: Experimental trues stress-strain curves for AZ31 sheet alloy at 100 C, 200 C, and 
300 C, respectively, reproduced from  Chen et al. (2003). 

A comparison between the simulated stress-strain curves and the experimental measurements 

(Chen et al., 2003) are presented in Figure 5.11. In the Figure 5.11, the simulated stress-strain 

curves with and without DRX, as can be expected (due to limited DRX at this temperature), show 

similar behavior at 100 C. However, as the temperature increases, DRX becomes more 

pronounced where the onset of DRX is defined by a saturation of the flow stress immediately 

followed by softening behavior (Figure 5.11).  
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Figure 5.11: Trues stress-strain for AZ31 alloy at (a) 100 C, (b) 200 C, and (c) 300 C. Black 
dashed line shows experimental data (Chen et al., 2003), the model prediction with and without 

DRX are shown with red and blue lines, respectively. 

Finally, for each of the temperatures studied, the M-K analysis requires an imperfection parameter. 

The imperfection parameter is calibrated so that the forming limit strain for the plane-strain 

condition predicted by the model matches the experimentally measured limit strain (Cyr et al., 

2018). For comparison purposes, 2 different numerical models are used to predict the FLDs; (i) 

model with DRX and (ii) model without DRX. Note that, for both of these models, the same 

imperfection parameter obtained for the model with DRX is used in the M-K analysis. 
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Figure 5.12: Comparison of predicted FLD (with and without DRX) with experimental FLD of 
AZ31 sheet alloy strain at (a) 100 C, (b) 200 C, and (c) 300 C. 

5.5.4 FLD Predictions with and without DRX at Elevated 

Temperatures 

In this section, the numerical model is employed to predict the FLDs at 100, 200 and 300 C. 

Furthermore, for each of the temperatures studied, the predictions are compared to the FLDs 

reported in literature by Chen et al. (2003). The predicted FLDs by the above models as well as 

experimental limit strains at 100, 200 and 300 C are presented in Figure 5.12. Simulations show 
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that the model with DRX provides accurate predictions of forming limit diagrams for all three 

temperatures. 

 

Figure 5.13: Evolution of recrystallized volume fraction (percentage) during deformation for 
uniaxial tension (𝜌 = −0.5) at 300 C. The microstructure showing location of the recrystallized 

grain structure is overlaid on top. 

As the temperature increases, experimentally measured FLDs shows a significant increase in the 

limit strains for both the uniaxial and biaxial sides of the. This increase can be directly attributed 

to the DRX taking place at these temperatures. Contrary to this, the model without DRX predicts 

significantly lower forming limits for all three temperatures. Furthermore, the model with DRX 

can successfully predict the initial decrease in the limit strains in the biaxial stretching region 

followed by increase in limit strains towards balanced biaxial tension (also observed 

experimentally at both 200 and 300oC).  

To better understand the effects of DRX on the deformation, various other analyses are performed 

as explained in the next sections. 
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Figure 5.14: Showing evolution of (i) recrystallized grains, (ii) grain boundary migration, (iii) 
DRX wave-front and (iv) the equivalent stress distribution in the microstructure for uniaxial 

tension (𝜌 = −0.5) at 300 C. 
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Figure 5.15: Showing at the top the initial RVE, which is identical both inside and outside the 
band. The resultant microstructure at failure strains outside and inside the band for biaxial 

tension (𝜌 = 0.2) at 300 C are shown below. Both these show different evolution with regards 
to amount of DRX. 

5.5.5 Evolving Microstructure during DRX at 300 C Inside Band 

Figure 5.13 shows the evolution of volume fraction for dynamically recrystallized grains during 

deformation under uniaxial tension. The numerical simulation shows that DRX sets in at 4.9% 

strain, and then rapidly increases throughout the RVE. Around 42% strain, most of the 

microstructure has seen DRX (more than 90%). After this point, no more DRX is observed for rest 

of the simulation. The deformed microstructures including DRX at various strain levels are also 

presented in Figure 5.13.  

Figure 5.14 shows the entire microstructure with the recrystallized grains, recrystallization wave-

front and the equivalent stress distributions in the RVE after onset of DRX till the entire 

microstructure is recrystallized, i.e., at the same time steps viz. 4.9% strain, 13.2% strain, 32.4% 

strain, 38.3% strain and 41.8% strain. Figure 5.13 and Figure 5.14 show that the first set of material 

points that undergo recrystallization/nucleation are all decorating the boundaries. The decoration 

of nuclei along grain boundaries forming a necklace structure has been observed in many 



 

 
154 

experimental works on elevated temperature deformation in magnesium alloys (Al-Samman and 

Gottstein, 2008). From Figure 5.14, it can also be seen that these points are not necessarily either 

high or low stress locations. 

 

Figure 5.16: DRX volume fraction (percentage) inside and outside band with minor strain at 
failure strains at 100, 200 and 300 C. 

As the deformation proceeds, more locations promote nucleation along with the growth of the 

existing recrystallized grains. The new nucleation events seen at 13.2% strain also show the same 

grain boundary decoration. After 32.4% strain, when the volume fraction of recrystallized grains 

is about 50% (Figure 5.13), both Figure 5.13 and Figure 5.14 suggest that there are almost no new 

nucleation events and from this point onwards, the increase in the volume fraction of DRX is 

primarily due to growth of the nuclei. 

The stress contours at the corresponding strain levels show that even though the initial nucleation 

might not by correlated with stress gradients, the presence and growth of the nuclei affects the 

stress distribution. As the deformation proceeds and nuclei form the local stress in the DRX region 

drops significantly, as the model assigns new texture to the recrystallized region as well as relaxes 

the stress. This continues till the entire microstructure is recrystallized. 
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5.5.6 Recrystallization Outside and Inside Band 

The FLD framework implemented in this study uses two RVEs one in the band and one outside 

the band. The strains in the band can go very high even though the macrostrain at forming limit is 

low. Hence, accurate representation of microstructure evolution at higher strains like the ones 

presented above are of extreme significance. To illustrate this, the initial and evolved 

microstructures for 𝜌 = 0.2 at 300 C are shown in Figure 5.15. Initially, the RVE is identical 

inside and outside the band as shown at the top in Figure 5.15. 

During deformation, the regions inside and outside the band experience different amount of strain 

based on the orientation of the band grove angle and texture evolution. As a result, the two RVEs, 

inside and outside, evolve differently as shown at the bottom of Figure 5.15. For comparison 

purposes, the amount of DRX at failure strains corresponding to strain paths of the predicted FLDs 

at 100, 200 and 300 C are reported in Figure 5.16.  

From Figure 5.15 and Figure 5.16, it can be concluded that not only they have undergone different 

amount of DRX with the region in the band having more DRX than the RVE outside the band 

implicating higher strain levels inside the band but also the nucleation and grain growth is quite 

different in both RVEs.  

5.5.7 Effects of Initial Imperfection on FLD Predictions without DRX 

To assess the importance of including DRX in the M-K analysis to predict FLDs, the same exercise 

presented in 5.5.4 is repeated for the model without DRX, but this time, the imperfection factor is 

calibrated so that the plane strain (𝜌 = 0.0) limit strain predicted by the model without DRX 

matches the experimental limit strain for plane strain (Figure 5.17). Figure 5.17 clearly shows that 

even though the plane strain point is calibrated, the rest of the FLD curve deviates from the 

measurements. Furthermore, for 200 and 300 oC, the model without DRX cannot predict the initial 

decrease in the limit strains in the biaxial stretching region, followed by the increase in limit strains 

towards balanced biaxial tension.  
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Figure 5.17: Comparison of predicted FLDs without DRX model (re-calibrated plane strain limit 
strain) with reduced imperfection (i.e., higher imperfection factor, fimp in Equation (5.52)) with 
DRX model as well as with the experimental FLD of AZ31 sheet alloy strain at (a) 100 C, (b) 

200 C, and (c) 300 C. 

5.6 Conclusions 

A new full-field, efficient and mesh-free numerical framework, to model microstructure evolution, 

dynamic recrystallization (DRX) and formability in magnesium alloys at warm temperatures, is 

presented in this work. This coupled framework combines three approaches; (a) CP modelling of 

HCP alloys, (b) DRX model, and (c) Marciniak-Kuczynski (M-K) approach into the FFT-based 

method.  
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The developed framework is validated at each level of the coupling for the magnesium sheet alloy, 

AZ31. Simulations of FLDs with the new modelling framework demonstrated the importance of 

accounting for DRX in the model to accurately predict the limit strains for magnesium alloys at 

high temperatures; even if the plane strain point is calibrated to match the corresponding 

experimental measurement, the numerical model without DRX was not able to accurately capture 

the FLDs. Furthermore, the new framework with DRX was able to capture various phenomena 

observed experimentally such as a decrease in the limit strains followed by an increase towards 

balanced biaxial tension in the FLD simulations for 200 and 300oC.  

Finally, the numerical analyses presented in this research revealed that the DRX strongly affects 

the deformed grain structure, grain size and texture evolution and thus, clearly demonstrated the 

need to properly account for the DRX mechanism for accurate predictions of FLDs for magnesium 

alloys at high temperatures. 

In next chapter, the research conducted in this thesis is concluded and the scope for future work is 

provided. 
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Chapter 6. Conclusions and Future Work 

Aluminum and magnesium alloys are polycrystalline materials. Automotive industry has 

significant interest in these materials as they are light weight and have high specific strength 

compared to the other engineering materials. For the improvement of vehicle fuel economy and 

reduced environmental impact of the automotive industry, the light-weighting of vehicles is 

crucial. Nowadays, in automotive industries, an important part of the design and testing of new 

light-weight components relies on the numerical simulation of aluminum and magnesium parts 

with crystal plasticity models. Better understanding of microstructure evolution of aluminum and 

magnesium alloys can significantly improve the accuracy of predictions of the material response 

using crystal plasticity theory. To achieve this, the crystal plasticity model must capture the 

important microstructural features such as texture, 3D grain morphology, grain interactions and 

recrystallization mechanisms. Therefore, in this thesis, five new and advanced micromechanics-

based elasto-viscoplastic crystal plasticity models have been developed for modelling various 

deformation phenomena in polycrystalline materials. 

The mechanical behavior of a polycrystalline material is also governed by the spatial distribution 

of the crystals and dynamics of crystalline defects. In order to establish the relationship between 

microstructure and properties of a polycrystalline materials undergoing plastic deformation, an 

accurate prediction of the micromechanical behavior based on directional material properties and 

gradual development of substructure of the constituent grains is required. Accordingly, in Chapter 

3, a new, computationally efficient full-field crystal plasticity model based on fast Fourier 

transforms was developed to study the microstructure-property relations for FCC metals. The new 

numerical framework (RTCP-FFT) is developed by coupling a tangent modulus method-based 

crystal plasticity formulation with the fast Fourier transform (FFT) method to simulate large strain 

phenomena. The RTCP-FFT model is able to compute 3-D spatially resolved local 

micromechanical fields and effective response with high intragranular resolution. The RTCP-FFT 

show good agreement with EVP-FFT model at small strains (section 3.3) and excellent agreement 

with CP-FEM at large strains (Appendix - A). This framework is further used as a predictive tool 

for obtaining material response in new strain-paths with minimal calibration for aluminum alloys. 

The predicted macroscopic response (stress-strain curves) and microscopic response (texture 
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evolution) show excellent agreement with the experiments for various strain paths. Simulations 

also showed that the RTCP-FFT model has greatly improved efficiency when compared to the 

well-established EVP-FFT model, developed by Lebensohn et al. (2012), in terms of CPU time; 

an acceleration of about two orders of magnitude is achieved over the augmented Lagrangians 

procedure-based FFT methods.  

The improved computational efficiency of the RTCP-FFT model makes it an excellent candidate 

to study the formability of polycrystalline metals since it can also account for the richness of three-

dimensional microstructures. Therefore, in Chapter 4, the RTCP-FFT model was successfully 

implemented in a Marciniak-Kuczynski (M-K) type analysis (MK-RTCP-FFT) to predict the 

forming limit diagrams of FCC polycrystals. The MK-RTCP-FFT model can account for the 

effects of three-dimensional grain morphologies, texture as well as the grain interactions on FLD 

predictions. The MK-RTCP-FFT was employed to successfully predict the FLD for AA3003-O 

and AA5754-O. The simulations presented in Chapter 4 demonstrated that 

1. employing the developed full-field model in M-K approach, for simulating formability of 

aluminum alloys, significantly improves the accuracy of predicted forming limit strains 

compared to MK-Taylor and MK-VPSC models. 

2. amongst all microstructural features considered, the grain shapes (three-dimensional) had 

the most significant effect on the FLD predictions while the effects local grain 

neighborhoods and texture evolution both had relatively smaller effects. 

To accurately predict the formability of HCP materials at elevated temperature, the developed 

approaches in Chapter 3 and Chapter 4 are extended to HCP materials and then further enhanced 

by including the effects of the dynamic recrystallization (DRX) and finally used for formability 

simulations. To achieve this goal, first the RTCP-FFT model developed in Chapter 3 is extended 

to model deformation slip, deformation twinning, texture evolution and micro/macro behavior in 

HCP alloys (RTCP-FFT-HCP) as outlined in Chapter 5. Then this model is coupled with cellular 

automata to simulate DRX and is named as CA-RTCPFFT-HCP. Finally, this is further coupled 

with M-K instability criteria to model effects of DRX on formability of magnesium alloys (MK-

CA-RTCP-FFT-HCP). The developed framework is validated at each level of the coupling for 
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the magnesium sheet alloy, AZ31. Simulations of the FLDs for AZ31 sheet alloy at elevated 

temperatures with the new modelling framework have demonstrated  

1. the importance of accounting for DRX in the model to accurately predict the limit strains 

for magnesium alloys at high temperatures;  

2. the recalibration of plane strain point, alone, to the corresponding experimental 

measurement, is not sufficient to accurately capture the FLDs without considering the 

effects of DRX.  

Furthermore, the new framework with DRX was able to capture various phenomena observed 

experimentally such as a decrease in the limit strains followed by an increase towards balanced 

biaxial tension in the FLD simulations for 200 and 300oC. The numerical analyses presented in 

Chapter 5 revealed that the DRX strongly affects the deformed grain structure, grain size and 

texture evolution and thus, clearly demonstrated the need to properly account for the DRX 

mechanism for accurate predictions of FLDs for magnesium alloys at high temperatures. 

 
Figure 6.1: Summary of the developed models in present thesis.  

A high-level flowchart that outlines the contributions of this thesis is presented in Figure 6.1. 

Developed Models

FCC Polycrystals H CP Polycrystals

RTCP-FFT Model

MK-RTCP-FFT Model

RTCP-FFT-HCP Model

CA-RTCP-FFT-HCP Model

MK-CA-RTCP-FFT-HCP Model
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Since the models developed in this thesis are based on the FFT approach for solving partial 

differential equations (PDEs), the developed models also inherent its advantages and 

disadvantages.  

In next section, the overall advantages and limitations of the models developed in this thesis are 

presented. 

6.1 Advantages of the Developed Models 

• One of the main advantages of the fast Fourier transform-based crystal plasticity models 

developed in this thesis is the extremely small computational cost required to obtain 

response of an RVE with very high resolution of discretised FFT grid. 

• The developed models don’t require 3D meshes those especially conforming to 

microstructure that are notoriously time consuming and difficult to make, e.g., in case of 

CP-FEM. 

• The FFT method requires a discrete grid of Fourier points for integration of constitutive 

equations. Therefore, complex input microstructures can be easily generated by sampling 

with a grid of Fourier points. 

• Since the developed models are meshless, direct instantiation with 3D images from serial 

sectioning, 3D X-ray microscopy, or other sources is also possible. 

6.2 Limitations of the Developed Models 

• The developed models are intended for modelling material response using an RVE and are 

not suitable for solving dynamic boundary value problems.  

• To solve the PDEs in Fourier space using the convolution theorem, periodic structure with 

regular grid of integration points is required which shortens their scope and limits their 

applicability to only RVE-based problems with periodic microstructure. 
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6.3 Scope for Future Work 

In future work, the new FFT-based crystal plasticity models developed in this thesis will be further 

explored and developed. Due to their excellent computational efficiency and robustness, these 

models can be further coupled with phenomenological modelling approaches, e.g., FEM or 

Peridynamics, to model mechanical response of lab-scale components. This multi-scale model can 

be of hierarchal nature, i.e., the deformation gradient at each material point in the component can 

be obtained using either FEM or peridynamics which can then be used as an input to, e.g., RTCP-

FFT model. After computing the microstructural information using RTCP-FFT model, it can be 

passed to FEM or peridynamics solver that will, in-turn, affect the macroscopic response of the 

component.  



 

 
163 

References 

Abdolvand, H., Daymond, M.R., 2012. Internal strain and texture development during twinning: 

Comparing neutron diffraction measurements with crystal plasticity finite-element approaches. 

Acta Mater. 60, 2240–2248. https://doi.org/10.1016/j.actamat.2012.01.016 

Abdolvand, H., Majkut, M., Oddershede, J., Schmidt, S., Lienert, U., Diak, B.J., Withers, P.J., 

Daymond, M.R., 2015. On the deformation twinning of Mg AZ31B: A three-dimensional 

synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plast. 

70, 77–97. https://doi.org/10.1016/j.ijplas.2015.03.001 

Al-Samman, T., Gottstein, G., 2008. Room temperature formability of a magnesium AZ31 alloy: 

Examining the role of texture on the deformation mechanisms. Mater. Sci. Eng. A 488, 406–414. 

https://doi.org/10.1016/j.msea.2007.11.056 

Alharbi, H.F., Kalidindi, S.R., 2015. Crystal plasticity finite element simulations using a database 

of discrete Fourier transforms. Int. J. Plast. 66, 71–84. https://doi.org/10.1016/j.ijplas.2014.04.006 

Ali, U., Brahme, A.P., Mishra, R.K., Inal, K., 2016. New Methodology to Determine Stable 

Texture Components Under Cold Rolling in FCC Metals, in: Light Metals 2016. John Wiley & 

Sons, Inc., pp. 157–161. https://doi.org/10.1002/9781119274780.ch27 

Anderson, M.P., Grest, G.S., Doherty, R.D., Li, K., Srolovitz, D.J., 1989. Inhibition of grain 

growth by second phase particles: Three dimensional Monte Carlo computer simulations. Scr. 

Metall. 23, 753–758. https://doi.org/10.1016/0036-9748(89)90525-5 

Anglin, B.S., Lebensohn, R.A., Rollett, A.D., 2014. Validation of a numerical method based on 

Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical 

solutions. Comput. Mater. Sci. 87, 209–217. https://doi.org/10.1016/j.commatsci.2014.02.027 

Ardeljan, M., Beyerlein, I.J., Knezevic, M., 2017. Effect of dislocation density-twin interactions 

on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modelling. Int. J. 

Plast. 99, 81–101. https://doi.org/10.1016/j.ijplas.2017.09.002 



 

 
164 

Armstrong, R.W., Walley, S.M., 2008. High strain rate properties of metals and alloys. Int. Mater. 

Rev. 53, 105–128. https://doi.org/10.1179/174328008X277795 

Arsenlis, A., Parks, D.M., 2002. Modeling the evolution of crystallographic dislocation density in 

crystal plasticity. J. Mech. Phys. Solids 50, 1979–2009. https://doi.org/10.1016/S0022-

5096(01)00134-X 

Arsenlis, A., Parks, D.M., 1999. Crystallographic aspects of geometrically-necessary and 

statistically-stored dislocation density. Acta Mater. 47, 1597–1611. 

https://doi.org/10.1016/S1359-6454(99)00020-8 

Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V. V., 2004. On the evolution of crystallographic 

dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52, 1213–

1246. https://doi.org/10.1016/j.jmps.2003.12.007 

Arul Kumar, M., Mahesh, S., Parameswaran, V., 2011. A “stack” model of rate-independent 

polycrystals. Int. J. Plast. 27, 962–981. https://doi.org/10.1016/j.ijplas.2010.10.010 

Asaro, R.J., Needleman, A., 1985. Overview no. 42 Texture development and strain hardening in 

rate dependent polycrystals. Acta Metall. 33, 923–953. https://doi.org/10.1016/0001-

6160(85)90188-9 

Asaro, R.J., Rice, J.R., 1977. Strain localization in ductile single crystals, Journal of the Mechanics 

and Physics of Solids. Office of Scientific and Technical Information ({OSTI}). 

https://doi.org/10.1016/0022-5096(77)90001-1 

Avrami, M., 1939. Kinetics of phase change. I: General theory. J. Chem. Phys. 7, 1103–1112. 

https://doi.org/10.1063/1.1750380 

Azrin, M., Backofen, W.A., 1970. The deformation and failure of a biaxially stretched sheet. 

Metall. Trans. 1, 2857–2865. https://doi.org/10.1007/BF03037824 

Bagheriasl, R., Ghavam, K., Worswick, M., 2011. Formability analysis of aluminum alloy sheets 

at elevated temperatures with numerical simulation based on the M-K method, in: AIP Conference 

Proceedings. pp. 1517–1522. https://doi.org/10.1063/1.3589732 



 

 
165 

Bailey, J.E., Hirsch, P.B., 1962. The Recrystallization Process in Some Polycrystalline Metals. 

Proc. R. Soc. A Math. Phys. Eng. Sci. 267, 11–30. https://doi.org/10.1098/rspa.1962.0080 

Balasubramanian, S., Anand, L., 2002. Plasticity of initially textured hexagonal polycrystals at 

high homologous temperatures: Application to titanium. Acta Mater. 50, 133–148. 

https://doi.org/10.1016/S1359-6454(01)00326-3 

Barlat, F., 1989. Forming Limit Diagrams-Predictions based on some microstructural aspects of 

materials. Form. Limit Diagrams Concepts, methods Appl. 275–301. 

Barlat, F., 1987. Crystallographic texture, anisotropic yield surfaces and forming limits of sheet 

metals. Mater. Sci. Eng. 91, 55–72. https://doi.org/10.1016/0025-5416(87)90283-7 

Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., 

Chu, E., 2003. Plane stress yield function for aluminum alloy sheets - Part 1: Theory. Int. J. Plast. 

19, 1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0 

Bassani, J., Hutchinson, J., Neale, K., 1979. On the prediction of necking in anisotropic sheets. 

Met. Form. Plast. https://doi.org/10.1007/978-3-642-81355-9_1 

Bauer, O., Baneth, G., Eshkol, T., Shaw, S.E., Harrus, S., 2006. Polygenic detection of Rickettsia 

felis in cat fleas (Ctenocephalides felis) from Israel. Am. J. Trop. Med. Hyg. 74, 444–448. 

https://doi.org/10.1016/S0022-5096(02)00032-7 

Beer, A.G., Barnett, M.R., 2007. Microstructural development during hot working of Mg-3Al-

1Zn. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38, 1856–1867. 

https://doi.org/10.1007/s11661-007-9207-5 

Biswas, S., Suwas, S., Sikand, R., Gupta, A.K., 2011. Analysis of texture evolution in pure 

magnesium and the magnesium alloy AM30 during rod and tube extrusion. Mater. Sci. Eng. A 

528, 3722–3729. https://doi.org/10.1016/j.msea.2011.01.021 

Bohlen, J., Letzig, D., Kainer, K.U., 2007. New Perspectives for Wrought Magnesium Alloys. 

Mater. Sci. Forum 546–549, 1–10. https://doi.org/10.4028/www.scientific.net/MSF.546-549.1 



 

 
166 

Boudeau, N., Gelin, J.C., 2000. Necking in sheet metal forming. Influence of macroscopic and 

microscopic properties of materials. Int. J. Mech. Sci. 42, 2209–2232. 

https://doi.org/10.1016/S0020-7403(00)00003-5 

Boudeau, N., Gelin, J.C., Salhi, S., 1998. Computational prediction of the localized necking in 

sheet forming based on microstructural material aspects. Comput. Mater. Sci. 11, 45–64. 

https://doi.org/10.1016/S0927-0256(97)00153-5 

Brahme, A., Alvi, M.H., Saylor, D., Fridy, J., Rollett, A.D., 2006. 3D reconstruction of 

microstructure in a commercial purity aluminum. Scr. Mater. 55, 75–80. 

https://doi.org/10.1016/j.scriptamat.2006.02.017 

Brahme, A., Staraselski, Y., Inal, K., Mishra, R.K., 2012. Determination of the minimum scan size 

to obtain representative textures by electron backscatter diffraction. Metall. Mater. Trans. A Phys. 

Metall. Mater. Sci. 43, 5298–5307. https://doi.org/10.1007/s11661-012-1364-5 

Brahme, A.P., Inal, K., Mishra, R.K., Saimoto, S., 2011. A new strain hardening model for rate-

dependent crystal plasticity. Comput. Mater. Sci. 50, 2898–2908. 

https://doi.org/10.1016/j.commatsci.2011.05.006 

Brenner, R., Lebensohn, R.A., Castelnau, O., 2009. Elastic anisotropy and yield surface estimates 

of polycrystals. Int. J. Solids Struct. 46, 3018–3026. https://doi.org/10.1016/j.ijsolstr.2009.04.001 

Brisard, S., Dormieux, L., 2010. FFT-based methods for the mechanics of composites: A general 

variational framework. Comput. Mater. Sci. 49, 663–671. 

https://doi.org/10.1016/j.commatsci.2010.06.009 

Bronkhorst, C.A., Kalidindi, S.R., Anand, L., 1992. Polycrystalline Plasticity and the Evolution of 

Crystallographic Texture in FCC Metals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 341, 443–

477. https://doi.org/10.1098/rsta.1992.0111 

Bunge, H.J., Esling, C., 1984. Texture development by plastic deformation. Scr. Metall. 18, 191–

195. https://doi.org/10.1016/0036-9748(84)90506-4 



 

 
167 

Cahn, R.W., 1950. A new theory of recrystallization nuclei. Proc. Phys. Soc. Sect. A 63, 323–336. 

https://doi.org/10.1088/0370-1298/63/4/302 

Callister Jr, W.D., 2000. Materials Science and Engineering - An Introduction (5th ed.). Anti-

Corrosion Methods Mater. 47, acmm.2000.12847aae.001. 

https://doi.org/10.1108/acmm.2000.12847aae.001 

Chang, Y.W., Asaro, R.J., 1981. An experimental study of shear localization in aluminum-copper 

single crystals. Acta Metall. 29, 241–257. https://doi.org/10.1016/0001-6160(81)90103-6 

Chen, F.K., Huang, T. Bin, Chang, C.K., 2003. Deep drawing of square cups with magnesium 

alloy AZ31 sheets. Int. J. Mach. Tools Manuf. 43, 1553–1559. https://doi.org/10.1016/S0890-

6955(03)00198-6 

Chen, L., Chen, J., Lebensohn, R.A., Ji, Y.Z., Heo, T.W., Bhattacharyya, S., Chang, K., 

Mathaudhu, S., Liu, Z.K., Chen, L.Q., 2015. An integrated fast Fourier transform-based phase-

field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. 

Comput. Methods Appl. Mech. Eng. 285, 829–848. https://doi.org/10.1016/j.cma.2014.12.007 

Chiba, R., Takeuchi, H., Kuroda, M., Hakoyama, T., Kuwabara, T., 2013. Theoretical and 

experimental study of forming-limit strain of half-hard AA1100 aluminium alloy sheet. Comput. 

Mater. Sci. 77, 61–71. https://doi.org/10.1016/j.commatsci.2013.04.025 

Chino, Y., Iwasaki, H., Mabuchi, M., 2007. Stretch formability of AZ31 Mg alloy sheets at 

different testing temperatures. Mater. Sci. Eng. A 466, 90–95. 

https://doi.org/10.1016/j.msea.2007.02.027 

Choi, S.H., Brem, J.C., Barlat, F., Oh, K.H., 2000. Macroscopic anisotropy in AA5019A sheets. 

Acta Mater. 48, 1853–1863. https://doi.org/10.1016/S1359-6454(99)00470-X 

Conway, J.H., Sloane, N.J.A., 1993. Sphere Packings and Kissing Numbers. pp. 1–30. 

https://doi.org/10.1007/978-1-4757-2249-9_1 



 

 
168 

Crumbach, M., Goerdeler, M., Gottstein, G., 2002. Nucleation spectra for recrystallization 

simulated with the grain interaction model for deformation textures. Textures Mater. Pts 1 2 408–

4, 425–432. https://doi.org/10.4028/www.scientific.net/msf.408-412.425 

Curtin, W.A., Miller, R.E., 2003. Atomistic/continuum coupling in computational materials 

science. Model. Simul. Mater. Sci. Eng. 11, R33–R68. https://doi.org/10.1088/0965-

0393/11/3/201 

Cyr, E., Mohammadi, M., Brahme, A., Mishra, R.K., Inal, K., 2017. Modeling the formability of 

aluminum alloys at elevated temperatures using a new thermo-elasto-viscoplastic crystal plasticity 

framework. Int. J. Mech. Sci. 128–129, 312–325. https://doi.org/10.1016/j.ijmecsci.2017.05.005 

Cyr, E.D., Brahme, A., Mohammadi, M., Mishra, R.K., Inal, K., 2018. A new crystal plasticity 

framework to simulate the large strain behaviour of aluminum alloys at warm temperatures. Mater. 

Sci. Eng. A 727, 11–28. https://doi.org/10.1016/j.msea.2018.04.020 

Cyr, E.D., Mohammadi, M., Mishra, R.K., Inal, K., 2015. A three dimensional (3D) thermo-elasto-

viscoplastic constitutive model for FCC polycrystals. Int. J. Plast. 70, 166–190. 

https://doi.org/10.1016/j.ijplas.2015.04.001 

de Geus, T.W.J., Vondřejc, J., Zeman, J., Peerlings, R.H.J., Geers, M.G.D., 2017. Finite strain 

FFT-based non-linear solvers made simple. Comput. Methods Appl. Mech. Eng. 318, 412–430. 

https://doi.org/10.1016/j.cma.2016.12.032 

Delannay, L., Kalidindi, S.R., Van Houtte, P., 2002. Quantitative prediction of textures in 

aluminium cold rolled to moderate strains. Mater. Sci. Eng. A 336, 233–244. 

https://doi.org/10.1016/S0921-5093(01)01966-9 

Delannay, L., Melchior, M.A., Signorelli, J.W., Remacle, J.F., Kuwabara, T., 2009. Influence of 

grain shape on the planar anisotropy of rolled steel sheets - evaluation of three models. Comput. 

Mater. Sci. 45, 739–743. https://doi.org/10.1016/j.commatsci.2008.06.013 

Doherty, R.D., 1997. Recrystallization and texture. Prog. Mater. Sci. 42, 39–58. 

https://doi.org/10.1016/S0079-6425(97)00007-8 



 

 
169 

Eisenlohr, P., Diehl, M., Lebensohn, R.A., Roters, F., 2013. A spectral method solution to crystal 

elasto-viscoplasticity at finite strains. Int. J. Plast. 46, 37–53. 

https://doi.org/10.1016/j.ijplas.2012.09.012 

Eisenlohr, P., Tjahjanto, D.D., Hochrainer, T., Roters, F., Raabe, D., 2009. Texture prediction from 

a novel grain cluster-based homogenization scheme. Int. J. Mater. Form. 2, 523–526. 

https://doi.org/10.1007/s12289-009-0561-2 

Eisenlohr, P., Tjahjanto, D.D., Hochrainer, T., Roters, F., Raabe, D., 2009. Comparison of texture 

evolution in fcc metals predicted by various grain cluster homogenization schemes. Int. J. Mater. 

Res. 100, 500–509. https://doi.org/10.3139/146.110071 

Engler, O., Crumbach, M., Li, S., 2005. Alloy-dependent rolling texture simulation of aluminium 

alloys with a grain-interaction model. Acta Mater. 53, 2241–2257. 

https://doi.org/10.1016/j.actamat.2005.01.032 

Erinosho, T.O., Collins, D.M., Wilkinson, A.J., Todd, R.I., Dunne, F.P.E., 2016. Assessment of 

X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading. Int. J. Plast. 

83, 1–18. https://doi.org/10.1016/j.ijplas.2016.03.011 

Eshelby, J.D., 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related 

Problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241, 376–396. 

https://doi.org/10.1098/rspa.1957.0133 

Eyre, D.J., Milton, G.W., 1999. A fast numerical scheme for computing the response of composites 

using grid reenement. Eur. Phys. Journal-Applied Phys. 6, 41--47. 

https://doi.org/10.1051/epjap:1999150 

Fernández, A., Pérez Prado, M.T., Wei, Y., Jérusalem, A., 2011. Continuum modelling of the 

response of a Mg alloy AZ31 rolled sheet during uniaxial deformation. Int. J. Plast. 27, 1739–

1757. https://doi.org/10.1016/j.ijplas.2011.05.002 



 

 
170 

Furu, T., Ørsund, R., Nes, E., 1995. Subgrain growth in heavily deformed aluminium-experimental 

investigation and modelling treatment. Acta Metall. Mater. 43, 2209–2232. 

https://doi.org/10.1016/0956-7151(94)00410-2 

Galiyev, A., Kaibyshev, R., Gottstein, G., 2001. Correlation of plastic deformation and dynamic 

recrystallization in magnesium alloy ZK60. Acta Mater. 49, 1199–1207. 

https://doi.org/10.1016/S1359-6454(01)00020-9 

Gardner, C.J., Adams, B.L., Basinger, J., Fullwood, D.T., 2010. EBSD-based continuum 

dislocation microscopy. Int. J. Plast. 26, 1234–1247. https://doi.org/10.1016/j.ijplas.2010.05.008 

Ghaffari Tari, D., Worswick, M.J., Ali, U., Gharghouri, M.A., 2014. Mechanical response of 

AZ31B magnesium alloy: Experimental characterization and material modelling considering 

proportional loading at room temperature. Int. J. Plast. 55, 247–267. 

https://doi.org/10.1016/j.ijplas.2013.10.006 

Goetz, R.L., Seetharaman, V., 1998. Modeling dynamic recrystallization using cellular automata. 

Scr. Mater. 38, 405–413. https://doi.org/10.1016/S1359-6462(97)00500-9 

Goodwin, G.M., 1968. Application of Strain Analysis to Sheet Metal Forming Problems in the 

Press Shop, in: SAE Technical Paper. SAE International. https://doi.org/10.4271/680093 

Gottstein, G., 2004. Physical foundations of materials science, Materials Today. Springer Berlin 

Heidelberg, Berlin, Heidelberg. https://doi.org/10.1016/S1369-7021(04)00348-7 

Gottstein, G., Molodov, D.A., Shvindlerman, L.S., 1998. Grain Boundary Migration in Metals : 

Recent Developments, Interface Science. Taylor & Francis. 

https://doi.org/10.1023/A:1008641617937 

Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., Duval, P., 2012. 

Experimental characterization of the intragranular strain field in columnar ice during transient 

creep. Acta Mater. 60, 3655–3666. https://doi.org/10.1016/j.actamat.2012.03.025 



 

 
171 

Grilli, N., Janssens, K.G.F., Nellessen, J., Sandlöbes, S., Raabe, D., 2018. Multiple slip dislocation 

patterning in a dislocation-based crystal plasticity finite element method. Int. J. Plast. 100, 104–

121. https://doi.org/10.1016/j.ijplas.2017.09.015 

Gurtin, M.E., Lusk, M.T., 1999. Sharp-interface and phase-field theories of recrystallization in the 

plane. Phys. D Nonlinear Phenom. 130, 133–154. https://doi.org/10.1016/S0167-2789(98)00323-

6 

Hallberg, H., 2011. Approaches to Modeling of Recrystallization. Metals (Basel). 1, 16–48. 

https://doi.org/10.3390/met1010016 

Hantson, P., Jaeger, A., 2006. Décontamination et élimination des toxiques médicamenteux, 

Reanimation. https://doi.org/10.1016/j.reaurg.2006.06.017 

Hausöl, T., Höppel, H.W., Göken, M., 2010. Tailoring materials properties of UFG aluminium 

alloys by accumulative roll bonded sandwich-like sheets. J. Mater. Sci. 45, 4733–4738. 

https://doi.org/10.1007/s10853-010-4678-y 

Hill, R., 1952. On discontinuous plastic states, with special reference to localized necking in thin 

sheets. J. Mech. Phys. Solids 1, 19–30. https://doi.org/10.1016/0022-5096(52)90003-3 

Houtte, P. Van, 1978. Simulation of the rolling and shear texture of brass by the Taylor theory 

adapted for mechanical twinning. Acta Metall. 26, 591–604. https://doi.org/10.1016/0001-

6160(78)90111-6 

Hu, L., Rollett, A.D., Iadicola, M., Foecke, T., Banovic, S., 2012. Constitutive relations for AA 

5754 based on crystal plasticity. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 854–869. 

https://doi.org/10.1007/s11661-011-0927-1 

Hutchinson, J.W., 1976. Bounds and Self-Consistent Estimates for Creep of Polycrystalline 

Materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 101–127. 

https://doi.org/10.1098/rspa.1976.0027 



 

 
172 

Hutchinson, J.W., Neale, K.W., 1978a. Sheet Necking-II. Time-Independent Behavior, in: 

Mechanics of Sheet Metal Forming. Springer Nature, pp. 127–153. https://doi.org/10.1007/978-1-

4613-2880-3_6 

Hutchinson, J.W., Neale, K.W., 1978b. Sheet Necking-III. Strain-Rate Effects, in: Mechanics of 

Sheet Metal Forming. Springer Nature, pp. 269–285. https://doi.org/10.1007/978-1-4613-2880-

3_11 

Iadicola, M.A., Foecke, T., Banovic, S.W., 2008. Experimental observations of evolving yield loci 

in biaxially strained AA5754-O. Int. J. Plast. 24, 2084–2101. 

https://doi.org/10.1016/j.ijplas.2008.03.003 

Inal, K., Mishra, R.K., 2012. Crystal plasticity based numerical modelling of large strain 

deformation in hexagonal closed packed metals, in: Procedia IUTAM. pp. 239–273. 

https://doi.org/10.1016/j.piutam.2012.03.016 

Inal, K., Mishra, R.K., Cazacu, O., 2010. Forming simulation of aluminum sheets using an 

anisotropic yield function coupled with crystal plasticity theory. Int. J. Solids Struct. 47, 2223–

2233. https://doi.org/10.1016/j.ijsolstr.2010.04.017 

Inal, K., Neale, K.W., Aboutajeddine, A., 2005. Forming limit comparisons for FCC and BCC 

sheets. Int. J. Plast. 21, 1255–1266. https://doi.org/10.1016/j.ijplas.2004.08.001 

Inal, K., Neale, K.W., Wu, P.D., 2002. Parallel finite element algorithms for the analysis of 

multiscale plasticity problems, Advances in High Performance Computing. 

Inal, K., Wu, P.D., Neale, K.W., 2002a. Finite element analysis of localization in FCC 

polycrystalline sheets under plane stress tension. Int. J. Solids Struct. 39, 3469–3486. 

https://doi.org/10.1016/S0020-7683(02)00162-2 

Inal, K., Wu, P.D., Neale, K.W., 2002b. Instability and localized deformation in polycrystalline 

solids under plane-strain tension. Int. J. Solids Struct. 39, 983–1002. 

https://doi.org/10.1016/S0020-7683(01)00246-3 



 

 
173 

Izadbakhsh, A., Inal, K., Mishra, R.K., Niewczas, M., 2011. New crystal plasticity constitutive 

model for large strain deformation in single crystals of magnesium. Comput. Mater. Sci. 50, 2185–

2202. https://doi.org/10.1016/j.commatsci.2011.02.030 

Jain, J., Poole, W.J., Sinclair, C.W., 2012. The deformation behaviour of the magnesium alloy 

AZ80 at 77 and 293K. Mater. Sci. Eng. A 547, 128–137. 

https://doi.org/10.1016/j.msea.2012.04.003 

Janssens, K.G.F., 2010. An introductory review of cellular automata modelling of moving grain 

boundaries in polycrystalline materials. Math. Comput. Simul. 80, 1361–1381. 

https://doi.org/10.1016/j.matcom.2009.02.011 

Janssens, K.G.F., 2003. Random grid, three-dimensional, space-time coupled cellular automata for 

the simulation of recrystallization and grain growth. Model. Simul. Mater. Sci. Eng. 11, 157–171. 

https://doi.org/10.1088/0965-0393/11/2/304 

Jeong, Y., Gnäupel-Herold, T., Barlat, F.G., Iadicola, M., Creuziger, A., Lee, M.G., 2015. 

Evaluation of biaxial flow stress based on elasto-viscoplastic self-consistent analysis of X-ray 

diffraction measurements. Int. J. Plast. 66, 103–118. https://doi.org/10.1016/j.ijplas.2014.06.009 

Jeong, Y., Pham, M.S., Iadicola, M., Creuziger, A., Foecke, T., 2016. Forming limit prediction 

using a self-consistent crystal plasticity framework: A case study for body-centered cubic 

materials. Model. Simul. Mater. Sci. Eng. 24, 055005. https://doi.org/10.1088/0965-

0393/24/5/055005 

Kabel, M., Fliegener, S., Schneider, M., 2016. Mixed boundary conditions for FFT-based 

homogenization at finite strains. Comput. Mech. 57, 193–210. https://doi.org/10.1007/s00466-

015-1227-1 

Kaibyshev, R., 2012. Dynamic recrystallization in magnesium alloys. Adv. Wrought Magnes. 

Alloy. Fundam. Process. Prop. Appl. 42, 186–225. https://doi.org/10.1016/B978-1-84569-968-

0.50005-3 



 

 
174 

Kalidindi, S.R., 1998. Incorporation of deformation twinning in crystal plasticity models. J. Mech. 

Phys. Solids 46, 267–290. https://doi.org/10.1016/S0022-5096(97)00051-3 

Kalidindi, S.R., Bronkhorst, C.A., Anand, L., 1992. Crystallographic texture evolution in bulk 

deformation processing of {FCC} metals. J. Mech. Phys. Sol. 40, 536–569. 

https://doi.org/10.1016/0022-5096(92)80003-9 

Kalidindi, S.R., Duvvuru, H.K., 2005. Spectral methods for capturing crystallographic texture 

evolution during large plastic strains in metals. Acta Mater. 53, 3613–3623. 

https://doi.org/10.1016/j.actamat.2005.04.017 

Kalidindi, S.R., Duvvuru, H.K., Knezevic, M., 2006. Spectral calibration of crystal plasticity 

models. Acta Mater. 54, 1795–1804. https://doi.org/10.1016/j.actamat.2005.12.018 

Kapoor, R., 2017. Severe Plastic Deformation of Materials. Mater. Under Extrem. Cond. 44, 717–

754. https://doi.org/10.1016/B978-0-12-801300-7.00020-6 

Karel, J., Casoli, F., Lupo, P., Nasi, L., Fabbrici, S., Righi, L., Albertini, F., Felser, C., 2016. 

Evidence for in-plane tetragonal c-axis in MnxGa1-xthin films using transmission electron 

microscopy. Scr. Mater. 114, 165–169. https://doi.org/10.1016/j.scriptamat.2015.11.019 

Keeler, S., Backofen, W., 1964. Plastic instability and fracture in sheets stretched over rigid 

punches. ASM Trans. Quart. Massachusetts Institute of Technology, Cambridge, MA. 

https://doi.org/10.1007/s12143-011-9087-8 

Kelley, E.W., Hosford, W.F., 1968. The Deformation Characteristics of Textured Magnesium. | 

National Technical Reports Library - NTIS. Trans. TMS-AIME, 242  242, 654–661. 

Khan, A.S., Pandey, A., Gnäupel-Herold, T., Mishra, R.K., 2011. Mechanical response and texture 

evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 27, 

688–706. https://doi.org/10.1016/j.ijplas.2010.08.009 

Kocks, U.F., Tomé, C.N., Wenk, H.R., 2005. Texture and Anisotropy: Preferred Orientations in 

Polycrystals and their Effect on Materials Properties. Cambridge University Press. 



 

 
175 

Lebensohn, R.A., 2001. N-site modelling of a 3D viscoplastic polycrystal using Fast Fourier 

Transform. Acta Mater. 49, 2723–2737. https://doi.org/10.1016/S1359-6454(01)00172-0 

Lebensohn, R.A., Brenner, R., Castelnau, O., Rollett, A.D., 2008. Orientation image-based 

micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater. 

56, 3914–3926. https://doi.org/10.1016/j.actamat.2008.04.016 

Lebensohn, R.A., Kanjarla, A.K., Eisenlohr, P., 2012. An elasto-viscoplastic formulation based on 

fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. 

Int. J. Plast. 32–33, 59–69. https://doi.org/10.1016/j.ijplas.2011.12.005 

Lebensohn, R.A., Liu, Y., Castañeda, P.P., 2004. On the accuracy of the self-consistent 

approximation for polycrystals: Comparison with full-field numerical simulations. Acta Mater. 52, 

5347–5361. https://doi.org/10.1016/j.actamat.2004.07.040 

Lebensohn, R.A., Rollett, A.D., Suquet, P., 2011. Keeping up with emerging characterization 

methods of crystalline materials: Fast Fourier Transform-based modelling for the determination of 

micromechanical fields in polycrystals Ricardo A. Lebensohn, Anthony D. Rollett and Pierre 

Suquet 3, 13–18. 

Lebensohn, R.A., Rollett, A.D., Suquet, P., 2011. Fast fourier transform-based modelling for the 

determination of micromechanical fields in polycrystals. Jom 63, 13–18. 

https://doi.org/10.1007/s11837-011-0037-y 

Lebensohn, R.A., Tomé, C.N., 1993. A self-consistent anisotropic approach for the simulation of 

plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta 

Metall. Mater. 41, 2611–2624. https://doi.org/10.1016/0956-7151(93)90130-K 

Lebensohn, R.A., Tomé, C.N., Castañeda, P.P., 2007. Self-consistent modelling of the mechanical 

behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos. Mag. 

87, 4287–4322. https://doi.org/10.1080/14786430701432619 

Lee, E.H., 1969. Elastic-Plastic Deformation at Finite Strains. J. Appl. Mech. 36, 1. 

https://doi.org/10.1115/1.3564580 



 

 
176 

Lee, M.G., Kim, S.J., Han, H.N., 2010. Crystal plasticity finite element modelling of mechanically 

induced martensitic transformation (MIMT) in metastable austenite. Int. J. Plast. 26, 688–710. 

https://doi.org/10.1016/j.ijplas.2009.10.001 

Lee, W.S., Lam, H.F., 1996. The deformation behaviour and microstructure evolution of high-

strength alloy steel at high rate of strain. J. Mater. Process. Technol. 57, 233–240. 

https://doi.org/10.1016/0924-0136(95)02068-3 

Lentz, M., Risse, M., Schaefer, N., Reimers, W., Beyerlein, I.J., 2016. Strength and ductility with 

{10 11}-{1012} double twinning in a magnesium alloy. Nat. Commun. 7, 11068. 

https://doi.org/10.1038/ncomms11068 

Lévesque, J., Inal, K., Neale, K.W., Mishra, R.K., 2010. Numerical modelling of formability of 

extruded magnesium alloy tubes. Int. J. Plast. 26, 65–83. 

https://doi.org/10.1016/j.ijplas.2009.05.001 

Lévesque, J., Mohammadi, M., Mishra, R.K., Inal, K., 2016. An extended Taylor model to 

simulate localized deformation phenomena in magnesium alloys. Int. J. Plast. 78, 203–222. 

https://doi.org/10.1016/j.ijplas.2015.10.012 

Li, H., Sun, X., Yang, H., 2016. A three-dimensional cellular automata-crystal plasticity finite 

element model for predicting the multiscale interaction among heterogeneous deformation, DRX 

microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast. 87, 154–180. 

https://doi.org/10.1016/j.ijplas.2016.09.008 

Lippmann, B.A., Schwinger, J., 1950. Variational principles for scattering processes. I. Phys. Rev. 

79, 469–480. https://doi.org/10.1103/PhysRev.79.469 

Liu, B., Raabe, D., Roters, F., Eisenlohr, P., Lebensohn, R.A., 2010. Comparison of finite element 

and fast Fourier transform crystal plasticity solvers for texture prediction. Model. Simul. Mater. 

Sci. Eng. 18, 085005. https://doi.org/10.1088/0965-0393/18/8/085005 



 

 
177 

Liu, Y.S., Delannay, L., Van Houtte, P., 2002. Application of the Lamel model for simulating cold 

rolling texture in molybdenum sheet. Acta Mater. 50, 1849–1856. https://doi.org/10.1016/S1359-

6454(02)00037-X 

Lusk, M.T., 1999. A phase-field paradigm for grain growth and recrystallization. Proc. R. Soc. A 

Math. Phys. Eng. Sci. 455, 677–700. https://doi.org/10.1098/rspa.1999.0329 

Madej, L., Sitko, M., Perzynski, K., Sieradzki, L., Radwanski, K., Kuziak, R., 2016. Multi scale 

cellular automata and finite element based model for cold deformation and annealing of a ferritic-

pearlitic microstructure. Multiscale Mater. Model. Approaches to Full Multiscaling 77, 235–254. 

https://doi.org/10.1515/9783110412451_014 

Mahesh, S., 2010. A binary-tree based model for rate-independent polycrystals. Int. J. Plast. 26, 

42–64. https://doi.org/10.1016/j.ijplas.2009.05.002 

Marciniak, Z., Kuczyński, K., 1967. Limit strains in the processes of stretch-forming sheet metal. 

Int. J. Mech. Sci. 9, 609–620. https://doi.org/10.1016/0020-7403(67)90066-5 

Marciniak, Z., Kuczyński, K., Pokora, T., 1973. Influence of the plastic properties of a material on 

the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci. 15, 789–800. 

https://doi.org/10.1016/0020-7403(73)90068-4 

Marks, R.J., 2009. Handbook of Fourier Analysis & Its Applications. Oxford University Press. 

https://doi.org/: 

Martin, É., Jonas, J.J., 2010. Evolution of microstructure and microtexture during the hot 

deformation of Mg-3% Al. Acta Mater. 58, 4253–4266. 

https://doi.org/10.1016/j.actamat.2010.04.017 

Merklein, M., Böhm, W., Lechner, M., 2012. Tailoring Material Properties of Aluminum by Local 

Laser Heat Treatment. Phys. Procedia 39, 232–239. https://doi.org/10.1016/j.phpro.2012.10.034 

Michel, J.C., Moulinec, H., Suquet, P., 2001. A computational scheme for linear and non‐linear 

composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52, 139–160. 

https://doi.org/10.1002/nme.275 



 

 
178 

Miodownik, M.A., 2002. A review of microstructural computer models used to simulate grain 

growth and recrystallisation in aluminium alloys. J. Light Met. 2, 125–135. 

https://doi.org/10.1016/S1471-5317(02)00039-1 

Mohammadi, M., Brahme, A.P., Mishra, R.K., Inal, K., 2014. Effects of post-necking hardening 

behavior and equivalent stress-strain curves on the accuracy of M-K based forming limit diagrams. 

Comput. Mater. Sci. 85, 316–323. https://doi.org/10.1016/j.commatsci.2014.01.017 

Molinari, A., Ahzi, S., Kouddane, R., 1997. On the self-consistent modelling of elastic-plastic 

behavior of polycrystals. Mech. Mater. 26, 43–62. https://doi.org/10.1016/S0167-6636(97)00017-

3 

Molinari, A., Canova, G.R., Ahzi, S., 1987. A self consistent approach of the large deformation 

polycrystal viscoplasticity. Acta Metall. 35, 2983–2994. https://doi.org/10.1016/0001-

6160(87)90297-5 

Moulinec, H., Suquet, P., 1998. A numerical method for computing the overall response of 

nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–

94. https://doi.org/10.1016/S0045-7825(97)00218-1 

Moulinec, H., Suquet, P., 1994. A fast numerical method for computing the linear and nonlinear 

mechanical properties of composites. Comptes rendus l’Académie des Sci. Série II, Mécanique, 

Phys. Chim. Astron. 318, 1417–1423. 

Muhammad, W., Mohammadi, M., Kang, J., Mishra, R.K., Inal, K., 2015. An elasto-plastic 

constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and 

ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths. Int. J. Plast. 

70, 30–59. https://doi.org/10.1016/j.ijplas.2015.03.004 

Muramatsu, M., Tadano, Y., Shizawa, K., 2008. A Phase-Field Simulation of Nucleation from 

Subgrain and Grain Growth in Static Recrystallization. Mater. Sci. Forum 584–586, 1045–1050. 

https://doi.org/10.4028/www.scientific.net/MSF.584-586.1045 



 

 
179 

Muránsky, O., Carr, D.G., Barnett, M.R., Oliver, E.C., Šittner, P., 2008. Investigation of 

deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction 

and EPSC modelling. Mater. Sci. Eng. A 496, 14–24. https://doi.org/10.1016/j.msea.2008.07.031 

Nagra, J.S., Brahme, A., Lebensohn, R.A., Inal, K., 2017. Efficient fast Fourier transform-based 

numerical implementation to simulate large strain behavior of polycrystalline materials. Int. J. 

Plast. 98, 65–82. https://doi.org/10.1016/j.ijplas.2017.07.001 

Nagra, J.S., Brahme, A., Mishra, R., Lebensohn, R.A., Inal, K., 2018. An efficient full-field crystal 

plasticity-based M-K framework to study the effect of 3D microstructural features on the 

formability of polycrystalline materials. Model. Simul. Mater. Sci. Eng. 26, 075002. 

https://doi.org/10.1088/1361-651X/aadc20 

Nakashima, K., Nagai, T., Kawasaki, K., 1989. Scaling behavior of two-dimensional domain 

growth: Computer simulation of vertex models. J. Stat. Phys. 57, 759–787. 

https://doi.org/10.1007/BF01022831 

Needleman, A., Tvergaard, V., 1984. Limits of Formability in Rate-Sensitive Metal Sheets., in: 

Mechanical Behaviour of Materials. Elsevier, pp. 51–65. https://doi.org/10.1016/B978-1-4832-

8372-2.50008-7 

Nemat-Nasser, S., Ni, L., Okinaka, T., 1998. A constitutive model for fee crystals with application 

to polycrystalline OFHC copper. Mech. Mater. 30, 325–341. https://doi.org/10.1016/S0167-

6636(98)00055-6 

Nieh, T.G., Hsiung, L.M., Wadsworth, J., Kaibyshev, R., 1998. High strain rate superplasticity in 

a continuously recrystallized Al-6%Mg-0.3%Sc alloy. Acta Mater. 46, 2789–2800. 

https://doi.org/10.1016/S1359-6454(97)00452-7 

Niewczas, M., 2010. Lattice correspondence during twinning in hexagonal close-packed crystals. 

Acta Mater. 58, 5848–5857. https://doi.org/10.1016/j.actamat.2010.06.059 



 

 
180 

Ohashi, T., Barabash, R.I., Pang, J.W.L., Ice, G.E., Barabash, O.M., 2009. X-ray microdiffraction 

and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni 

bicrystal grain boundary. Int. J. Plast. 25, 920–941. https://doi.org/10.1016/j.ijplas.2008.04.009 

Oppedal, A.L., El Kadiri, H., Tomé, C.N., Kaschner, G.C., Vogel, S.C., Baird, J.C., Horstemeyer, 

M.F., 2012. Effect of dislocation transmutation on modelling hardening mechanisms by twinning 

in magnesium. Int. J. Plast. 30–31, 41–61. https://doi.org/10.1016/j.ijplas.2011.09.002 

Partridge, P.G., 1967. The crystallography and deformation modes of hexagonal close-packed 

metals. Metall. Rev. 12, 169–194. https://doi.org/10.1179/mtlr.1967.12.1.169 

Paufler, P., 1994. W. F. Hosford. The mechanics of crystals and textured polycrystals. Oxford 

University Press, New York–Oxford 1993. 248 Seiten, Preis £ 30,–. ISBN 0-19-507744-X. Cryst. 

Res. Technol. 29, 532–532. https://doi.org/10.1002/crat.2170290414 

Peczak, P., 1995. A Monte Carlo study of influence of deformation temperature on dynamic 

recrystallization. Acta Metall. Mater. 43, 1279–1291. https://doi.org/10.1016/0956-

7151(94)00280-U 

Peirce, D., Asaro, R.J., Needleman, A., 1983. Material rate dependence and localized deformation 

in crystalline solids. Acta Metall. 31, 1951–1976. https://doi.org/10.1016/0001-6160(83)90014-7 

Peirce, D., Asaro, R.J., Needleman, A., 1983. Material rate dependence and localized deformation 

in ductile single crystals. Acta Met. 31, 1951–1976. 

Peirce, D., Asaro, R.J., Needleman, A., 1982. An analysis of nonuniform and localized 

deformation in ductile single crystals. Acta Metall. 30, 1087–1119. https://doi.org/10.1016/0001-

6160(82)90005-0 

Peirce, D., Shih, C.F., Needleman, A., 1984. A tangent modulus method for rate dependent solids. 

Comput. Struct. 18, 875–887. https://doi.org/10.1016/0045-7949(84)90033-6 

Piekoś, K., Tarasiuk, J., Wierzbanowski, K., Bacroix, B., 2008. Generalized vertex model of 

recrystallization - Application to polycrystalline copper. Comput. Mater. Sci. 42, 584–594. 

https://doi.org/10.1016/j.commatsci.2007.09.014 



 

 
181 

Pinna, C., Lan, Y., Kiu, M.F., Efthymiadis, P., Lopez-Pedrosa, M., Farrugia, D., 2015. Assessment 

of crystal plasticity finite element simulations of the hot deformation of metals from local strain 

and orientation measurements. Int. J. Plast. 73, 24–38. https://doi.org/10.1016/j.ijplas.2015.05.015 

Pond, R.C., Casey, S.M., 1992. Topological Theory of Line-Defects on Crystal Surfaces, and their 

Interactions with Bulk and Interfacial Defects, in: Equilibrium Structure and Properties of Surfaces 

and Interfaces. Springer US, Boston, MA, pp. 139–174. https://doi.org/10.1007/978-1-4615-3394-

8_6 

Popova, E., Brahme, A.P., Staraselski, Y., Agnew, S.R., Mishra, R.K., Inal, K., 2016. Effect of 

extension {1012} twins on texture evolution at elevated temperature deformation accompanied by 

dynamic recrystallization. Mater. Des. 96, 446–457. https://doi.org/10.1016/j.matdes.2016.02.042 

Popova, E., Staraselski, Y., Brahme, A., Mishra, R.K., Inal, K., 2015. Coupled crystal plasticity - 

Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. 

Int. J. Plast. 66, 85–102. https://doi.org/10.1016/j.ijplas.2014.04.008 

Pouriayevali, H., Xu, B.X., 2017. Decomposition of dislocation densities at grain boundary in a 

finite-deformation gradient crystal-plasticity framework. Int. J. Plast. 96, 36–55. 

https://doi.org/10.1016/j.ijplas.2017.04.010 

Prakash, A., Lebensohn, R.A., 2009. Simulation of micromechanical behavior of polycrystals: 

Finite elements versus fast Fourier transforms. Model. Simul. Mater. Sci. Eng. 17, 064010. 

https://doi.org/10.1088/0965-0393/17/6/064010 

Proust, G., Tomé, C.N., Jain, A., Agnew, S.R., 2009. Modeling the effect of twinning and 

detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861–880. 

https://doi.org/10.1016/j.ijplas.2008.05.005 

Qiao, H., Barnett, M.R., Wu, P.D., 2016. Modeling of twin formation, propagation and growth in 

a Mg single crystal based on crystal plasticity finite element method. Int. J. Plast. 86, 70–92. 

https://doi.org/10.1016/j.ijplas.2016.08.002 



 

 
182 

Quey, R., Dawson, P.R., Barbe, F., 2011. Large-scale 3D random polycrystals for the finite 

element method: Generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 

1729–1745. https://doi.org/10.1016/j.cma.2011.01.002 

Raabe, D., 2002. Cellular Automata in Materials Science with Particular Reference to 

Recrystallization Simulation. Annu. Rev. Mater. Res. 32, 53–76. 

https://doi.org/10.1146/annurev.matsci.32.090601.152855 

Raabe, D., Roters, F., 2004. Using texture components in crystal plasticity finite element 

simulations. Int. J. Plast. 20, 339–361. https://doi.org/10.1016/S0749-6419(03)00092-5 

Rai, R., Peng, G., Li, K., Lin, S.Y., 2007. DNA damage response: The players, the network and 

the role in tumor suppression. Cancer Genomics and Proteomics 4, 99–106. 

https://doi.org/10.1016/0001-6160(84)90151-2 

Rao, K.R., Kim, D.N., Hwang, J.-J., 2010. Fast Fourier Transform - Algorithms and Applications, 

Signals and Communication Technology. Springer Netherlands, Dordrecht. 

https://doi.org/10.1007/978-1-4020-6629-0 

Raphanel, J.L., Van Houtte, P., 1985. Simulation of the rolling textures of b.c.c. metals by means 

of the relaxed taylor theory. Acta Metall. 33, 1481–1488. https://doi.org/10.1016/0001-

6160(85)90049-5 

Rashid, M.M., Nemat-Nasser, S., 1992. A constitutive algorithm for rate-dependent crystal 

plasticity. Comput. Methods Appl. Mech. Eng. 94, 201–228. https://doi.org/10.1016/0045-

7825(92)90147-C 

Read, W.T., Shockley, W., 1950. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 

275–289. https://doi.org/10.1103/PhysRev.78.275 

Reinhart, G., Mangelinck-Noël, N., Nguyen-Thi, H., Schenk, T., Gastaldi, J., Billia, B., Pino, P., 

Härtwig, J., Baruchel, J., 2005. Investigation of columnar-equiaxed transition and equiaxed growth 

of aluminium based alloys by X-ray radiography. Mater. Sci. Eng. A 413–414, 384–388. 

https://doi.org/10.1016/j.msea.2005.08.197 



 

 
183 

Rémy, L., 1981. The interaction between slip and twinning systems and the influence of twinning 

on the mechanical behavior of fcc metals and alloys. Metall. Trans. A 12, 387–408. 

https://doi.org/10.1007/BF02648536 

Resk, H., Delannay, L., Bernacki, M., Coupez, T., Logé, R., 2009. Adaptive mesh refinement and 

automatic remeshing in crystal plasticity finite element simulations. Model. Simul. Mater. Sci. 

Eng. 17, 75012. https://doi.org/10.1088/0965-0393/17/7/075012 

Rice, J.R., 1971. Inelastic constitutive relations for solids: An internal-variable theory and its 

application to metal plasticity. J. Mech. Phys. Solids 19, 433–455. https://doi.org/10.1016/0022-

5096(71)90010-X 

Richards, J.W., 1900. A treatise on crystallography, Journal of the American Chemical Society. 

Cambridge: Printed at the Pitt Press, for J. & J.J. Deighton. https://doi.org/10.1021/ja02042a023 

Roberts, W., Ahlblom, B., 1978. A nucleation criterion for dynamic recrystallization during hot 

working. Acta Metall. 26, 801–813. https://doi.org/10.1016/0001-6160(78)90030-5 

Rollett, A., Humphreys, F., Rohrer, G.S., Hatherly, M., 2004. Recrystallization and Related 

Annealing Phenomena: Second Edition, Recrystallization and Related Annealing Phenomena: 

Second Edition. Elsevier. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2 

Rollett, A.D., 1997. Overview of modelling and simulation of recrystallization. Prog. Mater. Sci. 

42, 79–99. https://doi.org/10.1016/S0079-6425(97)00008-X 

Rollett, A.D., Luton, M.J., Srolovitz, D.J., 1992. Microstructural simulation of dynamic 

recrystallization. Acta Metall. Mater. 40, 43–55. https://doi.org/10.1016/0956-7151(92)90198-N 

Rossiter, J., Brahme, A., Simha, M.H., Inal, K., Mishra, R., 2010. A new crystal plasticity scheme 

for explicit time integration codes to simulate deformation in 3D microstructures: Effects of strain 

path, strain rate and thermal softening on localized deformation in the aluminum alloy 5754 during 

simple shear. Int. J. Plast. 26, 1702–1725. https://doi.org/10.1016/j.ijplas.2010.02.007 



 

 
184 

Roters, F., Eisenlohr, P., Bieler, T.R., Raabe, D., 2010. Crystal Plasticity Finite Element Methods: 

In Materials Science and Engineering, Crystal Plasticity Finite Element Methods: In Materials 

Science and Engineering. Wiley-Blackwell. https://doi.org/10.1002/9783527631483 

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D., 2010. Overview 

of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity 

finite-element modelling: Theory, experiments, applications. Acta Mater. 58, 1152–1211. 

https://doi.org/10.1016/j.actamat.2009.10.058 

Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D., 2012. DAMASK: The 

d̈usseldorf advanced material simulation kit for studying crystal plasticity using an fe based or a 

spectral numerical solver. Procedia IUTAM 3, 3–10. https://doi.org/10.1016/j.piutam.2012.03.001 

Sachs, G., 1928. Zur ableilung einer gleissbedingung 72, 734. 

Salem, A.A., Kalidindi, S.R., Doherty, R.D., 2003. Strain hardening of titanium: Role of 

deformation twinning. Acta Mater. 51, 4225–4237. https://doi.org/10.1016/S1359-

6454(03)00239-8 

Samuha, S., Kahana, E., Sadot, O., Shneck, R.Z., 2018. Improved formability of Mg-AZ80 alloy 

under a high strain rate in expanding-ring experiments. Materials (Basel). 11, 329. 

https://doi.org/10.3390/ma11020329 

Sandström, R., Lagneborg, R., 1975. A controlling factor for dynamic recrystallisation. Scr. 

Metall. 9, 59–65. https://doi.org/10.1016/0036-9748(75)90146-5 

Sandsttröm, R., 1977. Subgrain growth occurring by boundary migration. Acta Metall. 25, 905–

911. https://doi.org/10.1016/0001-6160(77)90177-8 

Schwartz, J.T., von Neumann, J., Burks, A.W., 1967. Theory of Self-Reproducing Automata. 

Math. Comput. https://doi.org/10.2307/2005041 

Schwindt, C., Schlosser, F., Bertinetti, M.A., Stout, M., Signorelli, J.W., 2015. Experimental and 

Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: 



 

 
185 

An efficient and robust implementation of the M-K model. Int. J. Plast. 73, 62–99. 

https://doi.org/10.1016/j.ijplas.2015.01.005 

Serenelli, M.J., Bertinetti, M.A., Signorelli, J.W., 2011. Study of limit strains for FCC and BCC 

sheet metal using polycrystal plasticity. Int. J. Solids Struct. 48, 1109–1119. 

https://doi.org/10.1016/j.ijsolstr.2010.12.013 

Seyed Salehi, M., Serajzadeh, S., 2012. Simulation of static recrystallization in non-isothermal 

annealing using a coupled cellular automata and finite element model. Comput. Mater. Sci. 53, 

145–152. https://doi.org/10.1016/j.commatsci.2011.09.026 

Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F., 2015. Numerically robust spectral methods for 

crystal plasticity simulations of heterogeneous materials. Int. J. Plast. 66, 31–45. 

https://doi.org/10.1016/j.ijplas.2014.02.006 

Shiryayev, A.N., 1992. On The Statistical Theory of Metal Crystallization, in: Selected Works of 

A. N. Kolmogorov. Springer Netherlands, Dordrecht, pp. 188–192. https://doi.org/10.1007/978-

94-011-2260-3_22 

Signorelli, J.W., Bertinetti, M. de los A., 2012. Self-Consistent Homogenization Methods for 

Predicting Forming Limits of Sheet Metal. Met. Form. - Process. Tools, Des. 175–210. 

https://doi.org/http://dx.doi.org/10.5772/50662 

Signorelli, J.W., Bertinetti, M.A., 2009. On the role of constitutive model in the forming limit of 

FCC sheet metal with cube orientations. Int. J. Mech. Sci. 51, 473–480. 

https://doi.org/10.1016/j.ijmecsci.2009.04.002 

Signorelli, J.W., Bertinetti, M.A., Turner, P.A., 2009. Predictions of forming limit diagrams using 

a rate-dependent polycrystal self-consistent plasticity model. Int. J. Plast. 25, 1–25. 

https://doi.org/10.1016/j.ijplas.2008.01.005 

Signorelli, J.W., Serenelli, M.J., Bertinetti, M.A., 2012. Experimental and numerical study of the 

role of crystallographic texture on the formability of an electro-galvanized steel sheet. J. Mater. 

Process. Technol. 212, 1367–1376. https://doi.org/10.1016/j.jmatprotec.2012.01.020 



 

 
186 

Sivakesavam, O., Rao, I.S., Prasad, Y.V.R.K., 1993. Processing map for hot working of as cast 

magnesium. Mater. Sci. Technol. 9, 805–810. 

Spowart, J.E., Mullens, H.M., Puchala, B.T., 2003. Collecting and Analyzing Microstructures in 

Three Dimensions: A Fully Automated Approach. Jom 55, 35–37. https://doi.org/10.1007/s11837-

003-0173-0 

Srolovitz, D.J., Grest, G.S., Anderson, M.P., Rollett, A.D., 1988. Computer simulation of 

recrystallization-II. Heterogeneous nucleation and growth. Acta Metall. 36, 2115–2128. 

https://doi.org/10.1016/0001-6160(88)90313-6 

Steglich, D., Jeong, Y., Andar, M.O., Kuwabara, T., 2012. Biaxial deformation behaviour of AZ31 

magnesium alloy: Crystal-plasticity- based prediction and experimental validation. Int. J. Solids 

Struct. 49, 3551–3561. https://doi.org/10.1016/j.ijsolstr.2012.06.017 

Stören, S., Rice, J.R., 1975. Localized necking in thin sheets. J. Mech. Phys. Solids 23, 421–441. 

https://doi.org/10.1016/0022-5096(75)90004-6 

Takaki, T., Hisakuni, Y., Hirouchi, T., Yamanaka, A., Tomita, Y., 2009. Multi-phase-field 

simulations for dynamic recrystallization. Comput. Mater. Sci. 45, 881–888. 

https://doi.org/10.1016/j.commatsci.2008.12.009 

Takuda, H., Mori, K., Takakura, N., Yamaguchi, K., 2000. Finite element analysis of limit strains 

in biaxial stretching of sheet metals allowing for ductile fracture. Int. J. Mech. Sci. 42, 785–798. 

https://doi.org/10.1016/S0020-7403(99)00018-1 

Tang, C.Y., Tai, W.H., 2000. Material damage and forming limits of textured sheet metals. J. 

Mater. Process. Technol. 99, 135–140. https://doi.org/10.1016/S0924-0136(99)00404-5 

Taylor, G.I., 1938. Plastic strain in metals. J. Inst. Met. 62, 307–324. 

Tikare, V., Holm, E.A., Fan, D., Chen, L.Q., 1998. Comparison of phase-field and potts models 

for coarsening processes. Acta Mater. 47, 363–371. https://doi.org/10.1016/S1359-

6454(98)00313-9 



 

 
187 

Tjahjanto, D.D., Eisenlohr, P., Roters, F., 2015. Multiscale deep drawing analysis of dual-phase 

steels using grain cluster-based RGC scheme. Model. Simul. Mater. Sci. Eng. 23, 45005. 

https://doi.org/10.1088/0965-0393/23/4/045005 

Tóth, L.S., Dudzinski, D., Molinari, A., 1996. Forming limit predictions with the perturbation 

method using stress potential functions of polycrystal viscoplasticity. Int. J. Mech. Sci. 38, 805–

824. https://doi.org/10.1016/0020-7403(95)00109-3 

Van Houtte, P., 1982. On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory 

for partially constrained plastic deformation of crystals. Mater. Sci. Eng. 55, 69–77. 

https://doi.org/10.1016/0025-5416(82)90085-4 

Van Houtte, P., Delannay, L., Kalidindi, S.R., 2002. Comparison of two grain interaction models 

for polycrystal plasticity and deformation texture prediction. Int. J. Plast. 18, 359–377. 

https://doi.org/10.1016/S0749-6419(00)00102-9 

Van Houtte, P., Delannay, L., Samajdar, I., 1999. Quantitative prediction of cold rolling textures 

in low-carbon steel by means of the LAMEL model. Textures Microstruct. 31, 109–149. 

https://doi.org/10.1155/TSM.31.109 

Van Houtte, P., Li, S., Seefeldt, M., Delannay, L., 2005. Deformation texture prediction: From the 

Taylor model to the advanced Lamel model. Int. J. Plast. 21, 589–624. 

https://doi.org/10.1016/j.ijplas.2004.04.011 

Vitek, V., Mrovec, M., Bassani, J.L., 2004. Influence of non-glide stresses on plastic flow: From 

atomistic to continuum modelling. Mater. Sci. Eng. A 365, 31–37. 

https://doi.org/10.1016/j.msea.2003.09.004 

Vondřejc, J., Zeman, J., Marek, I., 2014. An FFT-based Galerkin method for homogenization of 

periodic media. Comput. Math. with Appl. 68, 156–173. 

https://doi.org/10.1016/j.camwa.2014.05.014 



 

 
188 

Wang, H., Wu, P.D., Boyle, K.P., Neale, K.W., 2011. On crystal plasticity formability analysis for 

magnesium alloy sheets. Int. J. Solids Struct. 48, 1000–1010. 

https://doi.org/10.1016/j.ijsolstr.2010.12.004 

Wang, H., Wu, P.D., Tomé, C.N., Huang, Y., 2010. A finite strain elastic-viscoplastic self-

consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612. 

https://doi.org/10.1016/j.jmps.2010.01.004 

Wang, K., Lu, S., Mi, G., Li, C., Fu, H., 2010. Simulation of microstructural evolution in 

directional solidification of Ti-45.%Al alloy using cellular automation method. China Foundry 7, 

47–51. 

Wang, L., Qiao, Q., Liu, Y., Song, X., 2013. Formability of AZ31 Mg alloy sheets within medium 

temperatures. J. Magnes. Alloy. 1, 312–317. https://doi.org/10.1016/j.jma.2014.01.001 

Wen, X.Y., Lee, W.B., 2000. Textures of Sheet in AA3003 Aluminum Alloy Under Biaxial 

Stretching. Textures Microstruct. 34, 217–225. https://doi.org/10.1155/TSM.34.217 

Wickramarachchi, S.J., Ikeda, T., Dassanayake, B.S., Keerthisinghe, D., Tanis, J.A., 2016. 

Incident energy and charge deposition dependences of electron transmission through a microsized 

tapered glass capillary. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. 

Atoms 382, 60–66. https://doi.org/10.1016/j.nimb.2016.06.006 

Wu, P.D., MacEwen, S.R., Lloyd, D.J., Neale, K.W., 2004. A mesoscopic approach for predicting 

sheet metal formability. Model. Simul. Mater. Sci. Eng. 12, 511–527. 

https://doi.org/10.1088/0965-0393/12/3/011 

Wu, P.D., Neale, K.W., Van Der Giessen, E., 1997. On crystal plasticity FLD analysis. Proc. R. 

Soc. A Math. Phys. Eng. Sci. 453, 1831–1848. https://doi.org/10.1098/rspa.1997.0099 

Wu, P.D., Neale, K.W., Van Der Giessen, E., 1996. Simulation of the behaviour of FCC 

polycrystals during reversed torsion. Int. J. Plast. 12, 1199–1219. https://doi.org/10.1016/S0749-

6419(96)00048-4 



 

 
189 

Xia, K., Wang, J.T., Wu, X., Chen, G., Gurvan, M., 2005. Equal channel angular pressing of 

magnesium alloy AZ31. Mater. Sci. Eng. A 410–411, 324–327. 

https://doi.org/10.1016/j.msea.2005.08.123 

Yamanaka, A., 2016. Multiscale Modelling of Sheet Metal Forming, Journal of the Japan Society 

for Technology of Plasticity, ESAFORM Bookseries on Material Forming. Springer International 

Publishing, Cham. https://doi.org/10.9773/sosei.57.209 

Yang, H., Yin, S., Huang, C., Zhang, Z., Wu, S., Li, S., Liu, Y., 2008. EBSD study on deformation 

twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv. Eng. Mater. 10, 955–

960. https://doi.org/10.1002/adem.200800111 

Yoshida, K., 2015. Prediction of ductile fracture induced by contraction twinning in AZ31 sheet 

subjected to uniaxial and biaxial stretching modes. Int. J. Plast. 84, 102–137. 

https://doi.org/10.1016/j.ijplas.2016.05.004 

Yoshida, K., 2014. Effects of grain-scale heterogeneity on surface roughness and sheet metal 

necking. Int. J. Mech. Sci. 83, 48–56. https://doi.org/10.1016/j.ijmecsci.2014.03.018 

Yoshida, K., Ishizaka, T., Kuroda, M., Ikawa, S., 2007. The effects of texture on formability of 

aluminum alloy sheets. Acta Mater. 55, 4499–4506. https://doi.org/10.1016/j.actamat.2007.04.014 

Zeman, J., Vondřejc, J., Novák, J., Marek, I., 2010. Accelerating a FFT-based solver for numerical 

homogenization of periodic media by conjugate gradients, Journal of Computational Physics. 

https://doi.org/10.1016/j.jcp.2010.07.010 

Zeng, W., Larsen, J.M., Liu, G.R., 2014. Smoothing technique based crystal plasticity finite 

element modelling of crystalline materials. Int. J. Plast. 65, 250–268. 

https://doi.org/10.1016/j.ijplas.2014.09.007 

Zhang, C., Li, H., Eisenlohr, P., Liu, W., Boehlert, C.J., Crimp, M.A., Bieler, T.R., 2015. Effect 

of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-

2.5Sn. Int. J. Plast. 69, 21–35. https://doi.org/10.1016/j.ijplas.2015.01.003 



 

 
190 

Zhang, K.F., Yin, D.L., Wu, D.Z., 2006. Formability of AZ31 magnesium alloy sheets at warm 

working conditions. Int. J. Mach. Tools Manuf. 46, 1276–1280. 

https://doi.org/10.1016/j.ijmachtools.2006.01.014 

Zhou, Y., Neale, K.W., 1995. Predictions of forming limit diagrams using a rate-sensitive crystal 

plasticity model. Int. J. Mech. Sci. 37, 1–20. https://doi.org/10.1016/0020-7403(94)00052-L 

Zienkiewicz, O., Taylor, R., Zhu, J.Z., 1977. The Finite Element method, CRC Press. 

 

  



 

 
191 

 Comparison of RTCP-FFT Model with 

CP-FEM Model 

In section 3.3, the verification case is presented in which the predictions using developed model 

(RTCP-FFT) are compared with those obtained from EVP-FFT (Lebensohn et al., 2012) model at 

very low strain values (elasto-viscoplastic transition region) by matching stress-strain curves for a 

copper polycrystal and then comparing predictions for an artificial polycrystal. In order to ascertain 

the capability of the new RTCP-FFT model to simulate large strain behavior, a numerical 

experiment comparing the RTCP-FFT and CP-FEM was performed.  

 

Figure AA - 1: Comparison of local distribution of equivalent stress at 9% true strain in uniaxial 
tension, results show that the developed model (RTCP-FFT) is in good agreement with CP-FEM 

model. 

To compare the predictions of micromechanical fields at large strains, the case of copper 

polycrystal, from the verification case mentioned above, is extended up to 9% tensile strain. In this 

case, results from CP-FEM code are chosen as a benchmark. The comparison of predicted local 

stress distribution in the RVE is shown in Figure AA - 1. Note that the same microstructure is 

simulated using CP-FEM code (UMAT) in LS-DYNA. The predicted local stress distribution 

using the developed model (RTCP-FFT) are in good agreement with CP-FEM. This study verifies 

that the developed model can capture both elasto-viscoplastic transition (at very low strain) as well 

as large strain behavior accurately. 

Developed RTCP-FFT model CP-FEM (LS-DYNA)  


