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Abstract

This thesis details two types of deterministic solid-state quantum emitters, an optically-

driven quantum dot source in a tapered nanowire waveguide, and an electrically-driven

source implemented by integrating a single-electron pump into a two-dimensional p-n

junction.

A finite-difference time-domain model of the optically-driven nanowire quantum dot

source yielded optimized architectural parameters required to obtain a high transmission

efficiency and a Gaussian far-field emission profile. An additional model of an electrically-

gated nanowire source examined the effect of the surrounding structures on the emission

properties of the source.

A successfully working prototype p-n junction device as a precursor to the electrically-

driven quantum emitter was implemented by simultaneously inducing positive and negative

two-dimensional carrier gases in an undoped semiconductor heterostructure. This device,

fabricated in-house, offers a path forward in the development of a new class of bright,

deterministic sources of single- and entangled-photons.
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Chapter 1

Introduction

The study of the quantum nature of light and matter served as the basis for pioneering

research by several scientists in the 20th century, yielding breakthroughs that completely

revised our understanding of the physical world we live in, in turn resulting in revolutionary

new technologies. Devices such as the transistor, photovoltaics and lasers arrived as part

of the first quantum revolution, that directly arose from attempts to theoretically explain

19th and 20th century discoveries such as the photoelectric effect and black-body radiation.

Since the start of the 21st century, a new class of technologies have been proposed and are

being developed, ushering in a second quantum revolution [1]. These devices make use of

our understanding of quantum superposition, entanglement and sensing to engineer unique

quantum mechanical systems to possess favourable electronic and optical properties, and

promise to revolutionize the fields of communication, imaging, metrology, remote-sensing

and computing. However, there are many scientific and engineering challenges to overcome

before such devices can be made practical. The aim of this thesis is to provide solutions to

some of the challenges associated with the development of quantum light sources.

Section 1.1 offers some historical context to understand how these sources work and

why they are useful. Section 1.2 describes the properties of an ideal quantum emitter, and

evaluates the current state-of-the-art. Section 1.3 gives an overview of this thesis and a

quick breakdown of each chapter.
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1.1 Historical background

For a long time, it was believed that a classical picture was sufficient to explain all

observable phenomena in nature. Max Planck was among the first scientists to challenge

this notion through his formulation of a semi-classical model of light in 1900 [2] based on

his analysis of black-body radiation. Black-body radiation is the thermal electromagnetic

radiation emitted by an object, and possesses a wavelength and intensity dependent on

the object’s temperature [3]. Planck described this radiation as being emitted in discrete

‘energy elements’ whose value depended on the frequency of the emitting oscillator; this

model explained experimental observations better than established classical descriptions

of radiation. Until this discovery, it was assumed that light or in general electromagnetic

radiation was wave-like in nature, as established by Thomas Young’s famous double-slit

experiment in 1801. Around the same time, Albert Einstein published his mathematical

description of the photoelectric effect, a phenomenon demonstrating the dependence of the

energy of light on its frequency as opposed to its intensity [4]. Einstein’s formalism relied

on quantizing light itself into individual particles. Each particle is generated and detected

as a whole, and can propagate in free space independently; this model was consistent

with Planck’s hypothesis. These ground-breaking results gave rise to the concept of the

elementary particle known as the photon, and firmly established the dual wave-particle

nature of light.

It is now agreed that describing photons and other quantum objects in classical terms

such as ‘particle’ or ‘wave’ is misleading, since these objects reside in their own separate

category altogether. However, such descriptions offer a more intuitive understanding of

the properties exhibited by photons. Quantum field theory (QFT) attempts to find a true

understanding of the nature of photons and their interaction with matter, and is an active

area of research. QFT formally defines a photon as an elementary excitation of a single

mode of the quantized electromagnetic field [5]. Given a mode k with frequency νk of the

quantized electromagnetic field, a single photon in this mode possesses an energy ε given by

ε = hνk, (1.1)

where h is the Planck constant. An understanding of quantum light-matter interaction
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forms the basis for the construction of sources and detectors of single photon states, and

allow us to make use of the unique properties associated with these quantum objects.

In 1935, Einstein, Boris Podolsky and Nathan Rosen published a paper that outlined a

strange effect arising from quantum mechanics [6]. Quantum theory predicts that certain

quantum systems can become strongly correlated, such that their collective quantum state

cannot be factored into a product of individual states. A paradoxical consequence of this

is that when a measurement is conducted on a property of one system, it results in an

instantaneous collapse of the collective state; thus the other systems in the collective

‘know ’ that a measurement has been conducted even if the systems are arbitrarily far

apart, implying that information can travel instantly. Erwin Schrödinger referred to such

strong quantum correlations as quantum ‘entanglement’, with the states being ‘entangled’.

This result, later dubbed the ‘EPR paradox’, seemed to indicate that quantum theory at

the time was incomplete, and there were ‘hidden variables’ at play that linked entangled

systems. The EPR paradox raised troubling philosophical questions regarding locality

(the assumption that information cannot propagate instantly across an arbitrary distance)

and realism (the assumption that the results of quantum mechanical measurements on a

system arise from its real properties), and was the subject of several public debates between

Einstein and the Danish physicist Niels Bohr. However, the hidden variable theory was

disproved in 1964 by John Stewart Bell [7]. Bell’s theorem essentially drew a clear line

between classical and quantum behaviour: quantum properties cannot be explained using

classical assumptions. Since Bell’s startling discovery, entanglement has been successfully

demonstrated in various quantum mechanical systems, and several experimental ‘Bell

tests’ have been conducted to verify that local realism is insufficient to explain quantum

mechanics [8]. Entangling photons via their polarization states is especially suited to this

endeavour.

Quantum photonic devices are centred on the generation, manipulation and detection

of single- and entangled-photons, and arrived with the second quantum revolution. In

addition to pursuing answers to fundamental questions, these devices and their unique

properties promise the development of: secure communication via quantum key distribution

protocols such as the BB84 [9] or E91 [10] protocols; high-resolution imaging and metrology

[11]; remote-sensing via quantum illumination [12]; linear optical quantum computing [13];

3



and distributed quantum networks (or a ‘quantum internet’) [14]. Three sub-categories of

technologies have arisen: single-photon detectors, linear and nonlinear optical circuits, and

single- (and entangled-) photon sources; the quantum light emitters described in this thesis

belong to the final sub-category of devices.

1.2 The ideal quantum emitter

A quantum light source should possess certain properties [15, 16, 17, 18] to be classified

as ideal, including:

-- deterministic or on-demand photon generation - single photons generated in a pre-

dictable manner with 100% probability,

-- single-photon purity - null probability of zero-photon or multi-photon emission,

-- indistinguishability - all emitted photons indisinguishable from each other,

-- high brightness - large number of photons emitted/collected per second,

-- large measured entanglement fidelity - large degree of entanglement between two

photons in an entangled pair as measured by sensitive photodetectors,

-- position-controllability - the location of the source is possible to control, and

-- coherent and tunable emissions - emission waveforms from different sources made

identical.

Broadly, sources of single- and entangled-photon states can be divided into two categories:

probabilistic and deterministic [15]. Single-photon sources based on spontaneous parametric

down-conversion (SPDC) currently represent among the best and most widely-used sources,

possessing entanglement fidelities of ∼ 97% and source efficiencies of ∼ 5% [19]. While

their emissions have very high single-photon purity and indistinguishability, these sources

are inherently non-deterministic (or probabilistic). Probabilistic single-photon sources

rely on correlated photon pair emissions: the detection of one photon in the pair is used

to ‘herald’ the emission of the other. This drastically reduces the number of ‘useful’

photons emitted. Additionally, since their purity and entanglement fidelity deteriorate

with increasing brightness due to multi-photon emission, their brightness must be limited.

These sources are thus restricted from certain applications such as remote sensing, which

4



requires bright, on-demand sources. Deterministic single-emitter sources such as quantum

dots have therefore been the focus of intense research in the past decade.

Various material systems have been used to develop deterministic sources, including

single atoms/ions [20, 21], ensembles of atoms [22], colour centres in crystals [23], quantum

wells [24] and quantum dots [25, 26]. Of these, semiconductor quantum dots possess the

largest purities (in excess of 99% [26]) and very high indistinguishabilities (¿ 92% [18]).

Quantum dots are also capable of producing entangled photon pairs via a radiative cascade

process (section 2.1.1). While these sources are theoretically deterministic, losses in the

extraction of emitted photons (low brightness) and degradation of detected entanglement

(low fidelity) effectively result in probabilistic implementations. Current research on

deterministic sources aims to improve photon collection rates and detected entanglement

fidelities.

In this thesis, two kinds of on-demand sources are discussed: quantum dots embedded

in tapered nanowire waveguides (driven optically), and two-dimensional charge carrier

gases confined in mesoscopic quantum wells (driven electrically), both implemented in III-V

semiconductor systems.

1.3 Thesis overview

At the Quantum Photonic Devices (QPD) lab1 in the Institute for Quantum Computing

(IQC), our goal is to develop the next generation of solid-state quantum emitters and

detectors for the advancement of quantum information and quantum communication

technologies, while simultaneously seeking answers to fundamental questions in quantum

optics. The work described in this thesis aims to contribute to the body of collective

knowledge required to reach this goal.

Chapter 2 covers how deterministic single- and entangled-photon generation can be

achieved in two classes of sources: optically-driven quantum dots and electrically-driven

two-dimensional carrier gases in quantum wells. Techniques to engineer the environment

1https://uwaterloo.ca/institute-for-quantum-computing/research/groups/

quantum-photonic-devices-lab
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surrounding the sources in order to boost their efficiency, shape their emission profiles and

direct their emissions will also be discussed.

Chapter 3 examines the simulation results from a model to optimize the emission

parameters of a tapered nanowire quantum dot source. Different architectural parameters

are considered, with a suggestion of what best parameters to use when fabricating subsequent

devices. Related code is included in appendices A and B. All results in this section were

obtained by the author.

Finally, chapter 4 details the design and testing of a prototype device fabricated in-

house that aids in the development of a new class of electrically-driven quantum emitter.

The cleanroom fabrication steps for this device are given in appendix C. This project is

conducted in collaboration with the Coherent Spintronics group2 led by Prof. Jonathan

Baugh, also at the IQC, and the Molecular Beam Epitaxy research group3, led by Prof.

Zbigniew Wasilewski at the Waterloo Institute for Nanotechnology (WIN).

2https://uwaterloo.ca/institute-for-quantum-computing/research/groups/

coherent-spintronics-group
3https://uwaterloo.ca/molecular-beam-epitaxy
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Chapter 2

Bright, deterministic quantum light

generation

As detailed in the introduction, ideal sources of single- and entangled-photons are

deterministic (or on-demand), i.e. they predictably emit one photon at a time with a

probability of 100% for each emission event. In other words, the event of ‘pulling a trigger’

results in the emission of exactly one photon, not more, not less. SPDC sources are

inherently non-deterministic, and while they possess high purities and indistinguishabilities,

their brightness is limited, restricting their potential applications.

Sections 2.1 and 2.2 cover the theory behind the emission of photons from two types of

deterministic sources that can in theory be engineered to be very bright: optically driven

semiconductor quantum dots and electrically driven quantum light sources. Section 2.3

explains ways in which the environment surrounding the emitters can be engineered to

enhance the source brightness and collection efficiency, shape the profile of the emission in

the far-field, and funnel the emissions along a specific direction.

7



2.1 Optically-driven semiconductor quantum dots

Quantum dots are a class of nanomaterial that possess unique optical and electronic

properties by virtue of their small sizes. Solid-state quantum dots are capable of strongly

confining electrons and holes, and are referred to as artificial atoms since they possess

discretized energy levels that charge carriers can move between through exchanges of energy.

The size and structure of quantum dots can be easily modified to reflect a change in their

properties, making them an attractive candidate for the development of optical sources for

quantum information and communication. They also possess the advantage of scalability

and integration since they are compatible with existing semiconductor technologies.

Solid-state quantum dots are fabricated using epitaxial growth techniques. A variety of

III-V semiconductor materials have been used to fabricate high-performing quantum dot

sources, such as InAs/GaAs [27] and InP/InAsP [28], the latter being the material system

of the sources used in the QPD group. Growth techniques that allow for the control of

quantum dot size, shape and positioning possess a competitive advantage.

Both single photons and entangled photon pairs can be emitted from quantum dot

sources through a radiative cascade process known as the biexciton-exciton cascade (section

2.1.1). The measured entanglement fidelity may be compromised due to strain in or around

the quantum dot or asymmetry in its shape or charge environment, but this is possible

to correct for (section 2.1.2). Because the photons from these sources propagate in all

directions, there is a need to engineer the environment surrounding the source to funnel

the emissions in one direction, as well as shape their mode while simultaneously enhancing

the spontaneous emission rate of the source (section 2.3).

2.1.1 The biexciton-exciton cascade

Due to the strong quantum confinement of both valence- and conduction-band car-

rier wavefunctions, quantum dots possess atom-like discretized energy levels. Multiple

excitations can occur across these energy states, resulting in unique emission properties.

In epitaxially grown solid-state dots, there normally exist two confined shells per band,

the n- and p-shell (figure 2.1). The wetting layer (the first atomic layer grown during
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epitaxy) possesses a quasi-continuum of delocalized states that exist in the same energy

domain as the localized shells in the dot [29]. When the system is placed at extremely

low temperatures (< 5K) and excited off-resonantly (i.e. with an energy greater than

the bandgap of the quantum dot) by a pump laser, free carriers (electrons and holes) are

generated in the wetting layer that quickly relax into the lower energy shell states of the

dot. (Note: low temperatures are required to prevent re-excitations of electrons between

the energy levels).

Figure 2.1: Energy states in a semiconductor quantum dot. Two shells are confined in the

quantum harmonic potential of the dot. The quasi-continuum of states in the wetting layer are

represented by the blue regions

The electron-hole pairs generated through this population inversion are called excitons.

When the first electron-hole pair recombines, the resulting emission is called the biexciton

(XX) emission, while the subsequent recombination yields the exciton (X) emission. This

radiative recombination process is termed the biexciton-exciton cascade (figure 2.2), and

was first presented as a means to produce entangled photon pairs using solid-state quantum

dot emitters by Oliver Benson et. al. in 2000 [30].

The polarization states of the XX and X emissions depend on the spin states of the

9



Figure 2.2: The biexciton-exciton radiative cascade for an ideal quantum dot. The X levels for

the two recombination pathways are degenerate. Optical emission occurs when jehz = ±1. The

entangled output state is given by equation 2.1.

electron and hole in the recombining electron-hole pair [31]. The z-projection (jz) of the total

angular momentum quantum number (j) takes the values +1
2

(↑) and −1
2

(↓) for electrons

in the conduction band. In lens-shaped dots with strong z-confinement, mostly heavy holes

(and not light holes) are confined in the valence band, and jz can equal +3
2

(⇑) or −3
2

(⇓) [32]. Recombination can occur between any pair of electron and hole, but an optical

emission occurs only when the total angular momentum of the recombining electron-hole

pair is ±1; i.e. jez = −1
2
, jhz = +3

2
(|↓⇑〉) or jez = +1

2
, jhz = −3

2
(|↑⇓〉). A quantum dot

initialized to the XX state can thus emit photons in two possible ways depending on which

electron-hole pair recombines first: right circularly polarized XX emission (|RXX〉) followed

by left circularly polarized X emission (|LX〉), or vice-versa. Ideally, the two X levels

along each recombination pathway are degenerate, resulting in the maximally entangled

two-photon Bell state

|Ψ〉 =
1√
2

(|RXX〉 |LX〉+ |LXX〉 |RX〉). (2.1)

|Ψ〉 is rewritten in the horizontal (H) and vertical (V ) polarization basis using the transfor-
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mations

|H〉 =
1√
2

(|R〉+ |L〉); (2.2a)

|V 〉 =
i√
2

(|R〉 − |L〉), (2.2b)

yielding

|Ψ〉 =
1√
2

(|HXX〉 |HX〉+ |VXX〉 |VX〉). (2.3)

The entanglement fidelity of the measured two-photon state is given by

f = Tr[ρ′.ρ0], (2.4)

where ρ′ is the experimentally obtained density matrix reconstructed from cross-correlation

measurements between the XX and X photons and ρ0 = |Ψ〉 〈Ψ| is the density matrix of the

maximally entangled Bell state from equation 2.3. ρ′ = ρ0 for an ideal dot, and thus f = 1.

In practical implementations, there is an asymmetry in the recombination pathways of

the XX-X cascade due to an energy splitting δ of the bright excitonic state, known as the

fine structure splitting (FSS) (figure 2.3). This break in X degeneracy is because of the

Coulombic exchange interaction coupling the electron and hole spins [33], which in turn

can be due to several reasons, including elongation in the quantum dot shape [31], random

alloying [34], or lattice strain [35]. The FSS causes a spin-orbit interaction that mixes the

excitonic states, resulting in the eigenfunctions 1√
2
(|↓⇑〉 − |↑⇓〉) and 1√

2
(|↓⇑〉+ |↑⇓〉) [36].

During the cascade, the exciton precesses between these two states, modifying the output

state in the HV basis to become time-dependent:

|Ψ(t, δ)〉 =
1√
2

(|HXX〉 |HX〉+ e−i
δ
~ t |VXX〉 |VX〉). (2.5)

If the timing resolution τ of the measurement system is good enough (τ � ~/δ), the

fidelity of the detected entanglement will not be degraded since precise energy detection

is no longer possible (by the uncertainty relation ∆E.τ ≥ ~/2) [37]. However, detection

systems are normally not fast enough to prevent this, causing f < 1. Section 2.1.2 discusses

ways to erase the FSS and improve the measured entanglement of the output state.

11



Figure 2.3: The biexciton-exciton cascade for a dot with fine structure splitting δ. The output

state is given by equation 2.5.

2.1.2 Erasure of fine structure splitting

Several methods have been developed to remove FSS from quantum dots and improve

the measured entanglement fidelity of the output state. Growth techniques producing

symmetric dots have shown some promise [38, 39, 40], but are material specific and do

not have a high yield. In addition, even dots with cylindrical symmetries have been found

to possess FSS [32]. Post-growth perturbation using external electric fields [41], magnetic

fields [42] and strain fields [43] can be applied to quantum dot sources regardless of the

semiconductor material system, and can correct for varying levels of FSS. While strain-based

tuning has proven to be quite versatile [25], it cannot be used on sources embedded in

collection structures since the applied strain relaxes over a length scale of ∼ 100 nm [44].

Collection structures are necessary to improve the light extraction efficiency and near-unity

single mode fibre coupling of the emissions; the chosen FSS tuning technique must minimize

FSS without compromising on source brightness. In July 2018, Fognini et. al. proposed an

all-optical approach to eliminating FSS, preventing the need for additional fabrication [45];

this scheme requires specialized optical elements and electronics.
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A model for the electron-hole exchange that causes the FSS (δ) in laterally deformed

lens-shaped dots by Ramirez et. al. in 2010 derives the following relation:

δ =
2.K.β.ξ(1− ξ)

(lehy )3
, (2.6)

where the factor K = 3
√
πe2~2Ep

(4πε0)16
√
2εm0(Ebg)

2 is in terms of physical constants and material

parameters (Ep = conduction-valence band interaction energy, Eb
g = bulk energy gap, ε =

dielectric constant), β = | 〈Ψe|Ψh〉 |2 is the electron-hole wavefunction overlap, and ξ =
lehy
lehx

is a measure of the asymmetry in the exciton wavefunction (with lehx,y being the wavefunction

extents). Minimizing β reduces δ, but compromises the source brightness by lowering the

electron-hole recombination probability. The alternative is to tune ξ to 1 (or lehx to equal

lehy ) by applying an external electric field. Most works in this regard utilize a lateral field,

but this requires a precise orientation relative to the dot dipole moment, and also lowers the

brightness by reducing β. In September 2018, Zeeshan et. al proposed a novel FSS eraser

using a quadrupole electric field [46]. This technique uses a system of four metal gates

placed around and in the plane of a lens-shaped dot confined within a nanowire collection

structure (figure 2.4). Using this configuration, it is possible to completely erase the FSS

Figure 2.4: Quantum dot source inside a gated nanowire waveguide. The four metal gates apply

a quadrupole electric field to erase the FSS.

for any dot dipole orientation while maintaining the source brightness and efficiency. The
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Gaussian shape of the far-field emission from the tapered nanowire is also preserved; this is

described in chapter 3.

2.2 Electrically-driven quantum light sources

The solid-state dot sources described in the previous section rely on optical excitations to

achieve population inversion and subsequent quantum emission. A more practical approach

that allows for scalability and increases emission rates is to integrate an electrical pumping

mechanism to drive photon emission. Electron pumps (section 2.2.2) are generally imple-

mented using two closely spaced tunable electric gates that create quantum confinement via

tunnel barriers; by tuning their heights relative to each other, an integer number of charge

carriers can be allowed to pass. A challenging aspect of this implementation is preventing

electron-hole recombination at defect or impurity sites [18]; as such it is necessary to use

defect-free materials with high carrier mobilities. Two-dimensional carrier gases induced in

intrinsic high mobility III-V semiconductor quantum wells are an ideal candidate for such

a material (section 2.2.1). Rectangular quantum well structures are created by sandwiching

a sub-micron layer of low-bandgap material (such as GaAs) between layers of high-bandgap

material (such as AlGaAs). Such layered heterostructure materials are fabricated using

molecular beam epitaxy (MBE), which allows for precise control over the thickness and

composition of each layer. High recombination probabilities and large emission rates require

a high frequency pump transferring electrons from an electron-rich region to a hole-rich

region, i.e. across lateral a p-n junction. Our goal is to implement a two-dimensional p-n

junction in a quantum well structure with recombination controlled by a single-parameter

electron pump; the design and testing of such a device is described in chapter 4.

2.2.1 Two-dimensional carrier systems

Tsuneya Ando et. al.’s 1982 review on the electronic properties of two-dimensional

systems [47] serves as the primary reference for this section. Dynamically two-dimensional

systems, in which charge carriers (electrons or holes) experience strong quantum confinement
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along the z-direction but can freely move along the x- and y-directions, can be created

through suitable doping [48] or by using the field effect [49] in layered semiconductor

heterostructures. The field effect involves the application of an external electric field to

modify the bandstructure of a semiconductor material, creating charge confinement that

allows for carrier conduction by bending the bands below the Fermi energy at layer interfaces

(figure 2.5). Such a field can be applied using a top-gate separated from the semiconductor

surface by an oxide insulator. The two-dimensional confinement of electrons and holes,

resulting respectively in a two-dimensional electron gas (2DEG) and two-dimensional hole

gas (2DHG), can be induced at the interface of an undoped (intrinsic) single heterojunction

(figures 2.5c and 2.5e) as well as within an intrinsic quantum well (figures 2.5d and 2.5f)

by the applied top-gate voltage VTG. Changing the polarity of VTG changes the polarity

of the induced carrier gas. Note that in either case, the magnitude of VTG must exceed a

threshold value before the confinement of electrons or holes begins and the 2DEG/2DHG

is formed. The shape of the confinement potential at a single heterojunction interface is

triangular, and is rectangular in a quantum well. Unlike doped samples, low-density 2DEGs

and 2DHGs induced in intrinsic heterostructures via the field effect do not suffer from

reduced conduction and carrier mobilities due to scattering from remote ionized impurities.

Figure 2.6 (source: Harrell et. al. [49]) shows the improved mobility of induced intrinsic

devices at low carrier densities compared to doped devices.
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(a) VTG = 0 for a SHJ (b) VTG = 0 for a QW

(c) VTG > 0 for a SHJ (d) VTG > 0 for a QW

(e) VTG < 0 for a SHJ
(f) VTG < 0 for a QW

Figure 2.5: Energy band diagrams for undoped GaAs/AlGaAs single heterojunction (SHJ) and quantum

well (QW) structures. The axes for each figure represent z-position (horizontal) and energy (vertical). To

the left of each structure is a top-gate separated from the surface by an oxide, while the bulk substrate

extends to the right. The conduction band EC , valence band EV and Fermi energy (EF ) are represented

respectively by blue, red and dashed black lines. (a, b) No carrier gases induced, (c, d) 2DEG induced,

(e, f) 2DHG induced.
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Figure 2.6: Electron transport mobilities for a range of carrier densities in an undoped induced

2DEG and a modulation doped 2DEG at 1.7 K. At low carrier densities, the doped device has

greatly reduced mobility relative to the induced device. Reprinted from [49], with the permission

of AIP Publishing (copyright permission on page 50).

In a z-confined 2DEG, the electron energies are quantized in the z-direction into subbands.

The energy of the nth subband is Ez
n, with the total energy given by

E = Ez
n +

~2

2m∗e
(k2x + k2y), (2.7)

where m∗e is the effective mass of an electron and kx, ky are the components of the electron

wavevector for motion in the plane of confinement. An effective way to validate the

existence of a 2DEG/2DHG in an induced device is to measure its electrical properties

under the application of an external magnetic field B directed perpendicular to its surface

(z-direction).

This external B-field quantizes the carrier energies in the x-y plane in addition to the

already existing z-quantization, creating Landau levels. Equation 2.7 then becomes

E = Ez
n +

~2k2l
2m∗e

= Ez
n + (l +

1

2
)~ωc, (2.8)

where kl is the wavevector of the lth Landau level and ωc = eB/m∗e is the cyclotron frequency

of the electron. The Landau level density of states g(E) are ideally delta functions (figure
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2.7a). In reality, however, there is an energy broadening δE at each level due to electron

scattering caused by impurities and defect sites, implying that Landau quantization will

only be observable for ~ωc � δE. Assuming this condition is true, the number of occupiable

states per unit area per Landau level is given by 2eB/h, where the factor 2 accounts for

spin. Each Landau level can further be treated as two spin-split half Landau levels, making

the total energy

E = Ez
n + (l +

1

2
)
~eB
m∗e
± g∗µBB, (2.9)

where µB is the Bohr magneton, g∗ is the effective g-factor, and the ± accounts for spin-up

and spin-down configurations. The two-dimensional carrier density n2D is then

n2D = ν
eB

h
, (2.10)

where the fill factor ν is the number of occupied spin-split half-Landau levels. Thus, the

number of electrons per level and the spacing between consecutive levels are both affected

by a changing magnetic field, in turn changing the conductance properties of the 2DEG.

Consider the situation where the Landau Fermi energy El
F is at the middle of the highest

occupied Landau level, i.e., ν is a half-integer (figure 2.7b). The system will have a high

conductivity since there are a lot of empty states just above the Fermi energy that the

electrons can enter. If El
F is between two levels, the highest occupied level is completely

filled (i.e. ν is an integer), and the system acts as an insulator (figure 2.7c). It follows

that sweeping the magnetic field switches the system between these two states, causing

oscillations in the conductivity of the 2DEG. These oscillations are known as Shubnikov-de

Haas oscillations. (Note: The magnitude of the spin-splitting between two half-Landau

levels is much smaller than the subband spacing between Landau levels. Dips in conductivity

are thus harder to observe in the case of the former due to the requirement of a high

B-field.)

Another important phenomenon used to prove the existence of a two-dimensional

electron (hole) gas is the integer quantum Hall effect. The classical Hall voltage Vxy is

the voltage measured perpendicular to the direction of carrier conduction induced by a

longitudinal voltage Vxx in a 2DEG or 2DHG. For a current I, the classical Hall resistance
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Figure 2.7: Landau level density of states created by quantizing a horizontal two-dimensional

carrier gas with a vertically applied magnetic field. (a) δE = 0; (b) δE 6= 0, ν = half-integer; (c)

δE 6= 0, ν = integer.

RH = Vxy/I is related to the two-dimensional carrier density n2D as

RH =
B

en2D

, (2.11)

where B is applied in the z-direction as before. At high values of B, RH exhibits quantized

plateaus [50] at values

RH =
1

ν
(
h

e2
) =

25.818

ν
kΩ. (2.12)

Here, only the integer values of ν are considered, corresponding to the number of fully-

occupied spin-split half-Landau levels. The observation of these quantum Hall plateaus

along with the Shubnikov-de Haas oscillations is used to validate the existence of a two-

dimensional electron (hole) gas.
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By measuring the hall resistance RH , the two-dimensional electron (hole) density n2D

can be calculated using equation 2.11. The carrier mobility µ can be calculated in turn:

µ =
1

n2Deρxx
(2.13)

where

ρxx =
Vxx|B=0

I(l/w)
. (2.14)

Here, l and w are the length and width of the electron gas region. Note that the above

results can be applied to holes confined in 2DHGs as well; m∗e is replaced by the effective

hole mass m∗h.

The most important advantage of using the field effect in an undoped device over a

doped sample is the ability to simultaneously induce a 2DEG and a 2DHG in the same

GaAs/AlGaAs heterostructure via a split top-gate. By inducing these electron and hole

gases next to each other and contacting them with ohmic contacts, a bright source of

photons via electron-hole recombinations can be created. Deterministic integer photon

generation can be subsequently engineered by adding Schottky gates to the device to create

an on-demand single electron pump.

2.2.2 Single-parameter electron pumps

The need to individually manipulate single quantized charges originated with metrolog-

ical experiments designed to redefine the ampere and other electrical standards [51, 52].

All single charge manipulation techniques involve the use of two potential barriers in an

otherwise conductive region applied by a pair of closely spaced electrical gates. Charges

can be allowed to pass over or tunnel through these barriers depending on the heights of

the barriers. By tuning the barrier heights with a frequency f , charges can be made to

pass individually, creating a quantized current

I = nef, (2.15)

where e is the electron charge and n is the number of electrons pumped across the barriers

per tuning cycle. When designing these devices, the overall conductance must be optimized
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such that it is low enough to suppress charge noise to keep n from fluctuating, but high

enough to ensure the pump rate f is not compromised [53].

Single-parameter pumps [54, 55] work by tuning the height of the entrance tunnel barrier

with an RF voltage while keeping the exit barrier height fixed above the Fermi level EF

(figure 2.8). Initially, the entrance barrier height is below EF , allowing a relatively large

number of charges to load (figure 2.8a). The barrier is then quickly raised, leading to an

avalanche of back-tunneling of most charges (figure 2.8b). m charges are left trapped in the

potential well (figure 2.8c), and n of them are subsequently ejected with unity probability

once the entrance barrier reaches a high enough amplitude (figure 2.8d). The entrance gate

controls the number of trapped charges m and can in turn affect an increase in n. The exit

gate controls n but has no effect on m. The energy of the ejected electrons will be different

depending on the height of the barriers relative to EF .

By having to vary just one gate voltage, the problem of phase synchronization between

different variable parameters does not arise. In addition, no external bias voltage is required

to facilitate charge pumping; noise in this external bias that may otherwise cause fluctuations

is therefore not a cause for concern. Single-parameter charge pumps are capable of operating

at a frequency of over 1 GHz; integrating these charge sources into a two-dimensional p-n

junction would yield very high photon emission rates. By increasing the number of pumped

charges per cycle to two, correlated photon pair emission could also be achieved.
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Figure 2.8: Pump mechanism of a single-parameter electron pump. Each pump cycle involves

charge loading, back-tunneling, trapping and ejection. The entrance gate controls the barrier to

the left, and the exit gate controls the barrier to the right. The Fermi level EF is indicated by

the dashed line.

2.3 Collection structures

Since the emissions from single-emitter sources propagate in all directions, there is a need

to engineer the environment surrounding the source to funnel the emissions in one direction.

For a majority of solid-state quantum dots, this is achieved using III-V semiconductor

nanowire waveguides. These nanowires could be etched around pre-grown dots (top-down

approach [56]) or the nanowire and dot can be grown in tandem (bottom-up approach

[28]). While top-down nanowire sources possess high brightness (defined as the number of
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photons arriving at the first collection optic), they are limited by defects due to the etching

process. Controlling the dot position inside such nanowires is also challenging. Bottom-up

growth, although resulting in less bright sources, allows for a more precise control of the dot

position within the waveguide, and does not suffer from the same fabrication imperfections.

For the purpose of coupling the emission from a quantum dot into an optical fibre,

restricting it to a single mode is necessary [57, 58]. In cylindrical waveguides, this mode is

labelled the fundamental or HE11 mode [59]. For any given emitter, we are interested in

maximizing the spontaneous emission rate Γ into the HE11 mode relative to the emission

rate Γ′ into higher-order guided modes, as well as the rate γ into the continuum of radiation

modes (non-guided or ‘leaky’ modes). This is equivalent to maximizing the factor β given

by

β =
Γ

Γ + Γ′ + γ
. (2.16)

The goal is thus to increase Γ while simultaneously reducing Γ′ and γ. Γ is enhanced by

the nanowire waveguide via the Purcell Effect [60], named for its discoverer Edward Mills

Purcell. The level of Purcell enhancement of the HE11 emission by the nanowire is given

by the Purcell factor Fp:

Fp =
Γ

Γ0

, (2.17)

where Γ0 is the spontaneous emission rate of the dot in bulk semiconductor.

To lower Γ′ and γ, emission into higher-order and radiation modes is restricted by

setting upper and lower bounds to the waveguide diameter d, determined by analyzing

the spontaneous emission dynamics of the nanowire (figure 2.9). In figure 2.9a, Fp peaks

at d/λe ≈ 0.24 (where λe is the free space emitter wavelength); this corresponds to the

maximum Purcell enhancement of the HE11 mode [61]. Values above d/λe ≈ 0.35 including

the peak at d/λe ≈ 0.4 are ignored since they correspond to the combination of HE11

spontaneous emission with the higher-order HE12 mode. This is in agreement with Claudon

et. al.’s upper-bound of d/λe = 0.366 [62]. From figure 2.9b we deduce that γ is minimum

in the range 0.23 ≤ d/λe ≤ 0.28. This yields a β-factor of 90% within this diameter range.

The following subsections cover how the spontaneous emission and extraction efficiency

can be further enhanced in finite nanowires, as well as how to shape the far-field emission

profile to allow for single-mode fibre coupling.
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(a) Purcell factor Fp (b) β-factor

Figure 2.9: Spontaneous emission dynamics of a quantum dot in an infinitely long cylindrical

nanowire waveguide. The dot is modelled as a linear dipole source located radially on the axis of

the nanowire. Fp is maximum at d/λe = 0.236, while β is maximum at d/λe = 0.258. Lumerical

script in section A.1.

2.3.1 Micropillar cavities

Placing a quantum dot source between two reflective surfaces creates a planar cavity

that can be used to accelerate its rate of spontaneous emission into a certain mode

(labelled the ‘cavity mode’) via the Purcell effect [63]. The cavity magnifies the local

density of electromagnetic modes around the dot, driving Fp over unity and drastically

enhancing emission brightness while simultaneously narrowing the linewidth. Micropillar

cavities are fabricated by etching pillars around pre-grown dots sandwiched between two

distributed Bragg reflector (DBR) layer stacks (figure 2.10). The upper mirror should

have a transmission three times that of the lower to allow for efficient photon collection

at the top [56]. Since the dots in the substrate may be randomly situated and possess

varying emission properties, choosing the right dot to etch around is difficult. If the dot’s

position is well defined and has an emission line in resonance with the cavity mode, the

challenge is to centre the dot on the axis of the micropillar so that the emissions efficiently

couple to the pillar waveguide mode [64]. In addition, sidewall roughness due to top-down
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Figure 2.10: Semiconductor quantum dot inside a micropillar cavity. The cavity is asymmetric

to allow for collection from the top. The sidewalls are rough due to fabrication imperfections.

etching imperfections leads to losses in emission. Despite these challenges, sources using

micropillar cavities still have the best brightness, though their emissions lack shaped modes

for subsequent coupling to a single mode fibre.

2.3.2 Tapered nanowires

Bottom-up nanowire growth allows for the placement of a single quantum dot on the

axis of the waveguide, increasing the coupling efficiency of the emitted mode with the

waveguide. Nanowires grown epitaxially via the vapour-liquid-solid (VLS) method tended

to have stacking faults around the dot [65], creating charge traps that induce multi-photon

emission, but more recent work has corrected for this [66]. Another advantage of bottom-up

growth is the ability to introduce a very sharp taper (< 2°) at the top of the waveguide

(compared to ∼ 5° for top-down tapered waveguides [27]). This architecture prevents

losses due to total-internal reflection at the semiconductor-air interface by achieving a

smooth, adiabatic transition of the effective refractive index experienced by the outward

propagating mode [61] (figure 2.11). Importantly, a sharp taper tailors the shape of the

emission mode to a Gaussian in the far-field, increasing the coupling efficiency to a single

mode optical fibre [57]. A numerical model of the quantum dot source inside a tapered

nanowire waveguide is discussed in chapter 3.
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(a) Simulated mode expan-

sion

(b) Adiabatic conversion of effective refractive index

Figure 2.11: Adiabatic transition of the emitted mode in tapered nanowires
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Chapter 3

Nanowire quantum dot source model

Since its inception, the QPD group has collaborated with scientists at the National

Research Council (NRC) in Ottawa to design and fabricate semiconductor nanowire quantum

dot sources for use in quantum optics experiments [67]. These sources are fabricated using

a bottom-up VLS growth technique that ensures a single quantum dot (InAsP) is centred

along the axis of a tapered nanowire (InP), maximizing the coupling between the emitted

mode and the waveguide. The angle of the nanowire taper, the diameter of the nanowire,

its cylindrical base height and the height of the dot from the bottom are all controllable

parameters (figure 3.1). These parameters must be optimized to maximize the brightness

of the source while maintaining a circular Gaussian emission profile in the far-field. In

practice, the source transmission efficiency can be significantly boosted by coating the base

of the nanowire with a mirror (usually gold), to reflect any downward propagating modes

from the source back up and collect them along with the upward emissions [28]. Section

3.1 details the parameter optimization results of a nanowire quantum dot source model

constructed using a commercially available Maxwell solver for nanophotonic devices based

on the finite-difference time-domain (FDTD) method, called Lumerical FDTD.

It is also useful to model the emission properties of existing nanowire structures that

have been modified by additional fabrication processes. Particularly, it must be ensured

that the emissions from the gated nanowire waveguide described in section 2.1.2 are not

significantly affected by the surrounding metal gates and the dielectric cladding. Section
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Figure 3.1: Schematic of a quantum dot source inside a tapered InP nanowire waveguide.

3.2 outlines the results of this model.

3.1 Parameter sweep to maximize brightness

While there are several controllable architectural parameters of the source, optimizing all

of them through parameter sweeps is time consuming. However, the number of parameters

to optimize are easily reduced through a few assumptions. Since the emissions from the

source must possess a Gaussian far-field emission profile, a sharp nanowire taper of 2°
is ideal. Additionally, at very low temperatures (∼ 4K), the extinction coefficient of

the nanowire material (the imaginary part of its refractive index, indicating the level of

attenuation on a propagating electromagnetic wave) is approximately zero, implying that

the waveguiding properties of the nanowire are not affected by the height of the cylindrical

base: i.e., the source brightness is not compromised more over longer distances since there

is no attenuation; the cylindrical base height is thus set to a typical value of 1.5 µm. With

these simplifications, a source model is constructed using Lumerical FDTD to maximize
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the transmission efficiency (η) at the end of the tapered nanowire by optimizing the

waveguide diameter (d) and the vertical position of the quantum dot (zQD) (figure 3.2).

The quantum dot is modelled as a dipole point source located radially on the axis of an InP

nanowire. The mirror at the bottom facet of the nanowire is implemented by modifying the

simulation boundary condition to metallic at that location. The remaining boundaries of

the three-dimensional simulation region are perfectly matched layers (PMLs) that strongly

absorb any incident radiation, effectively acting as open boundaries.

(a) Side view (b) Perspective view

Figure 3.2: Quantum dot emitter modelled as a dipole source embedded in a nanowire with a 2°
taper and 1.5 µm cylindrical base height. The bottom facet boundary condition is metallic, while

the remaining boundaries are PMLs.

Based on the spontaneous emission dynamics of a dot in a nanowire described in section

2.3, the reduced diameter d/λe (λe is the emission wavelength) is varied from 0.23 to 0.28

(ensuring β > 90%) in steps of 1 nm. The dot must be positioned in a manner that allows

for the constructive interference of upward emissions with reflected downward emissions,

i.e. it must be placed at an antinode of the emission electromagnetic field. zQD is swept

from 0.2 µm to 1.4 µm in steps of 50 nm to guarantee at least one antinode is covered. The

results of this simulation are shown in figure 3.3. There are clearly defined regions in the

parameter space (d/λe, zQD) corresponding to constructive and destructive interference of
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the emission electromagnetic field. The peak regions corresponding to η > 90% are broad,

while the troughs (η < 30%) are sharp. There is an overall trend of alternating peaks and

troughs in the transmission for a fixed value of d/λe and varying zQD.

Figure 3.3: Full spectrum of transmission efficiencies for varying nanowire diameter and quantum

dot height.

Figure 3.4 is a reproduction of figure 3.3 with η > 95% highlighted. The variation

in the spread of high transmission domains across the parameter space indicates that

certain values of dot height and nanowire diameter offer greater tolerance to error than

others. The (d/λe, zQD) pairing of (∼ 0.237, ∼ 1.275 µm) yields the greatest flexibility in

parameter values while maintaining η over 97%. The overall maximum value of η is also

present in this domain, with a value of 97.32% at (0.238, 1.25 µm). Importantly, through

correspondence with NRC, it was determined that the uncertainties in d/λe and zQD

during device fabrication are ±0.011 and ±50 nm respectively. This makes the parameters

corresponding to the transmission peak at (0.248, 0.5 µm) a better choice for maintaining

a high transmission with a greater degree of flexibility. Table 3.1 lists the parameters

corresponding to all the high transmission domains, as well as η ∼ 50% and the lowest

value of η = 2.92%.
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Figure 3.4: η ≥ 95% for varying nanowire diameter and quantum dot height.

d/λe zQD (µm) η (%) R2 Gaussian fit (%)

0.238 1.25 97.32 97.31

0.230 0.85 97.27 97.19

0.255 0.3 97.27 97.12

0.243 0.55 97.13 98.93

0.236 1.3 97.13 97.83

0.248 0.75 97.12 96.65

0.246 1.4 97.10 98.69

0.267 1.15 50.21 91.46

0.272 0.95 2.92 61.59

Table 3.1: Selected transmission efficiencies for different nanowire diameters and dot heights.

The fourth column in table 3.1 contains the R2 goodness-of-fit values of the far-field

emission profiles at these coordinates to two-dimensional Gaussian functions. Interestingly,

the best Gaussian fit of 98.93% occurs at (0.243, 0.55 µm), which do not correspond to the

parameters for highest transmission (0.238, 1.25 µm). This is explained by observing the

far-field emission profiles for these two coordinates (figures 3.5a and 3.5b). The peak height
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is larger for the latter, implying its improved Gaussian nature. Despite these differences, all

high-η domains have far-field profiles with R2 > 96%. The far-field at η = 50.21% (figure

3.5c) has a relatively shrunken profile in k-space, and a reduced fit of 91.46%. R2 is even

lower (61.59%) for η =2.92% (figure 3.5d), with the emission profile no longer resembling a

Gaussian at all.

(a) d/λe=0.238, zQD=1.25 µm, η=97.32%, R2=97.31% (b) d/λe=0.243, zQD=0.55 µm, η=97.13%, R2=98.93%

(c) d/λe=0.267, zQD=1.15 µm, η=50.21%, R2=91.46% (d) d/λe=0.272, zQD=0.95 µm, η=2.92%, R2=61.59%

Figure 3.5: Far-field emission profiles simulated using Lumerical FDTD corresponding to (a)

maximum η, (b) maximum R2, (c) ∼ 50% η and (d) minimum η.
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3.2 Gated nanowire quantum dot source

The nanowire quantum dot source described in section 2.1.2 is surrounded by four

metallic gates for the purpose of applying a quadrupole electric field to erase the FSS. In

addition, there exists a uniform cladding of Al2O3 dielectric, which due to current fabrication

restrictions cannot be removed from the nanowire. It was of significant interest to determine

whether the brightness and far-field emission profile of the source were compromised due

to these additional surrounding features. Using a Lumerical FDTD source model defined

in section A.3, the extraction efficiency and far-field emission profile of this source were

obtained (figure 3.6). The device dimensions were set to match an existing gated source.

The two-dimensional Gaussian fit of the far-field yielded an R2 value of 97.85%. This

near-unity overlap confirms that the metal gates do not modify the emission mode profile

significantly. The light extraction efficiency is calculated to be 35.31%, which can be

optimized further by removing the dielectric cladding, integrating a mirror at the base, and

utilizing the optimized dot height and nanowire radius from section 3.1.

(a) Model view
(b) Far-field emission profile

Figure 3.6: Lumerical model and resulting far-field emission profile for a gated nanowire structure.

Calculated light extraction efficiency = 35.31%. The overlaid contour lines indicate a Gaussian fit

of R2 = 97.85%.
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Chapter 4

Design and testing of all-electric

quantum emitter

Since September 2017, the QPD group has collaborated with the Coherent Spintronics

group (CSG, led by Prof. Jonathan Baugh) and the Molecular Beam Epitaxy (MBE)

research group (led by Prof. Zbignew Wasilewski) on an ongoing project to develop an

all-electric quantum emitter through the integration of a single-parameter electron pump

and a wide two-dimensional p-n junction diode. The diode is created by inducing an

embedded 2DEG and 2DHG adjacent to each other in a GaAs/AlGaAs heterostructure

using a split top-gate and contacting these charge carriers with ohmic contacts. The device

described in this chapter is one of the milestones achieved in the development of this p-n

junction diode. The electron and hole gases are currently being induced at a GaAs/AlGaAs

single heterojunction interface; future devices will utilize an induced 2DEG/2DHG in a

quantum well, which will then be integrated with the electron pump.

All device fabrication was conducted at the Quantum-Nano Fabrication and Characteri-

zation Facility in the University of Waterloo, in collaboration with Dr. Francois Sfigakis

and Brandon Buonacorsi from CSG. The GaAs/AlGaAs substrate wafers were grown by

the MBE research group. The cleanroom fabrication recipe for the final p-n device is listed

in appendix C. Section 4.1 details the architectural components of the device and how

they come together. The existence of the induced electron and hole gases at cryogenic
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temperatures was established using magnetoresistance measurements, and their ohmicity

and carrier mobilities and densities were subsequently quantified (section 4.2). Finally,

section 4.3 describes the p-n diode behaviour of the completed device.

4.1 Diode architecture

The important architectural components of the p-n junction device are show in figure

4.1. Every feature is patterned using ultraviolet lithography techniques; positive and

Figure 4.1: Device components of a p-n junction in an induced GaAs/AlGaAs heterostructure.

negative photoresists are both needed for different steps. The device is fabricated using

a GaAs/Al0.3Ga0.7As heterostructure wafer grown using MBE. The single heterojunction
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interface at which the 2DEG and 2DHG are induced is located 310 nm below the surface.

An elevated area or mesa is patterned and etched into the substrate past this interface to

define the region in which charge carriers can be induced and transported. Low-resistance

ohmic contacts are then deposited to contact the 2DEG and 2DHG, which are induced by

a pair of transparent top-gates separated by a narrow gap. The top gate and the bond pad

leads are separated from the device by an oxide insulator with via holes to allow some leads

to connect to the ohmic contacts.

4.1.1 Substrate wafer specifications and mesa

A schematic of the layered MBE-grown substrate wafer is shown in figure 4.2a. The

wafer is capped with a 10 nm thick layer of GaAs to prevent oxidation of the relatively

more reactive AlGaAs barrier layer. The AlGaAs thickness determines the depth of the

single heterojunction and thus the 2DEG/2DHG. In this case the junction depth is chosen

to be 310 nm since device fabrication is easier; future devices will use a shallower 2DEG

to more easily implement the tunnel barriers of the electron pump. Figure 4.2b shows

(a) Layer details
(b) Top view of the mesa etch pattern

Figure 4.2: GaAs/AlGaAs heterostructure and mesa pattern

the pattern of the mesa etched into this wafer, which allows for three ohmic contacts on
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each end of a wire: n-type on the left and p-type on the right. Both longitudinal and Hall

measurements can be conducted with this configuration. The crenellations at the edges of

the mesa increase the contact perimeter and decrease contact resistance between the ohmic

contacts and 2DEG (2DHG). The height of the mesa must be over 310 nm to ensure that

the electron or hole gas region is well-defined; the target etch depth is set to 350 nm.

4.1.2 Ohmic contacts

n-type and p-type alloyed ohmic contacts are required to form an electrical connection

with the induced 2DEG and 2DHG respectively. A recess or pit is etched into the edges of

the mesa before the contacts are deposited. n-type contacts are fabricated by depositing

(10/250/120) nm of (Ni/AuGe/Ni) using an electron-beam deposition tool. The Ni acts as

a catalyst for the diffusion of Ge dopant into the semiconductor to create a contact with

the 2DEG [68]. This diffusion is facilitated by a high-temperature anneal in an inert gas

soon after the ohmic contacts are deposited. The bottom of the ohmic recess on the n-side

must be below the interface. The ohmic material is then deposited at an angle of 45° to

coat the recess sidewalls and make a good contact with the 2DEG. The etched ohmic recess

takes advantage of the larger diffusion constant of AuGe in GaAs relative to AlGaAs. The

lateral diffusion profile is thus further extended below the AlGaAs/GaAs interface, so that

the top-gate is not screened by any diffused AuGe in the AlGaAs layer.

p-type contacts use a eutectic mixture of Au and Be. A post-deposition anneal causes

the Be dopant to diffuse and contact the 2DHG. For optimum contacts, the ohmic recess

must terminate 10-40 nm above the GaAs/AlGaAs interface. Presumably, because the

diffusion process is a solid-phase reaction (rather than liquid-phase reaction as in the case

of AuGe), the resulting diffusion profile does not screen the top-gate from inducing a 2DHG

atht eh interface.

4.1.3 Top-gate and bond pads

The dimensions of the top-gate define the regions where the 2DEG/2DHG are induced in

the mesa. Since the goal is to collect light emitted by the p-n junction, the split top-gate is
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fabricated using indium tin oxide (ITO), a transparent conductive material. The bond pads

do not have this restriction, and are thus fabricated using gold, with an underlying layer of

titanium to help adhere to the silicon oxide insulating layer separating these structures

from the rest of the device. Four bond pads connect to the two halves of the split top-gate

and six additional bond pads connect to the three n-type and three p-type ohmic contacts

via holes etched into the insulating oxide layer.

4.2 2DEG/2DHG characterization

The characterization of an undoped 2DEG and 2DHG was carried out using devices

having an electron gas or a hole gas (respectively) induced across the entire mesa using

a single continuous top-gate (figures 4.3a and 4.3b). All measurements and analyses

presented in this section were performed with Dr. Francois Sfigakis from the Coherent

Spintronics group. Two additional ohmic contacts are present at the middle of each device

(a) n-type device with 2DEG (b) p-type device with 2DHG

Figure 4.3: n-type and p-type devices fabricated for the characterization of 2DEGs and 2DHGs.

Aside: The difference in background colour is because the n-type device used Al2O3 as the

insulating material, while the p-type device used SiO2.
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for redundancy. The top-gate and bond pads share the same material (Ti/Au), since

there is no requirement to extract light from these devices. To separate the 2DEG/2DHG

resistances from other contributions to the total resistance of the device (including ohmic

contacts, wiring, filters, etc.), a four-terminal measurement setup is used (figure 4.4).

Current passes through the 2DEG/2DHG via contacts 4 and 8. The longitudinal voltage

Vxx is measured across any one of the pairs of contacts (5, 7), (5, 6), (6, 7), (3, 1), (3, 2) or

(2, 1). The Hall voltage Vxy is measured across any one of (3, 5), (2, 6) or (1, 7).

Figure 4.4: Four-terminal measurement setup to determine I-V characteristics, observe magne-

toresistance phenomena and extract carrier density and mobility.

4.2.1 Magnetoresistance

Magnetoresistance measurements of the 2DEG and 2DHG follow the theory outlined

in section 2.2.1. The device is placed in a 1.4 K helium cryostat equipped with a variable

electromagnetic field. The B-field applied perpendicular to the sample is swept from 0

T to 5 T in average steps of 3 mT. The Hall and Shubnikov-de Haas measurements for

a 2DEG and 2DHG are shown in figures 4.5 and 4.6 respectively. The integer quantum

Hall plateaus and Shubnikov-de Haas oscillations are very clearly defined in the case of the
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Figure 4.5: Magnetoresistance measurements of an induced 2DEG in an undoped GaAs/AlGaAs

heterojunction device. The quantum Hall plateaus (red) and the Shubnikov-de Haas oscillations

(blue) are visible.

2DEG. The plateaus at Rxy = 12.906 kΩ, 6.453 kΩ and 4.340 kΩ correspond to Landau

level fill factors (ν) of 2, 4 and 6 respectively. The B-field values at which the minimas

in Rxx occur correlate with the B-field at these integer values of ν. This unambiguously

proves the existence of a 2DEG in our devices. (Note: The absence of the ν = 1 Hall

plateau is due to the requirement of a magnetic field larger than 5 T to observe it, which

exceeds the capabilities of our cryostat. Shubnikov-de Haas dips and Hall plateaus for the

ν = 3 and ν = 5 levels are not visible since they correspond to a Fermi energy at the spin

gap rather than the cyclotron gap (figure 2.7), which require also require high magnetic

fields to resolve.)

The Hall plateaus and Shubnikov-de Haas oscillations are much less pronounced in the

2DHG sample. Since the effective hole mass in GaAs is about five times the effective electron

mass (m∗h/m
∗
e = 0.34/0.067), the spacing between successive Landau levels (proportional

to ~ωc = eB/m∗h) is a factor of five smaller in a 2DHG. This makes ~ωc comparable to

the energy broadening δE at each Landau level, and the resulting lack of level separation
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Figure 4.6: Magnetoresistance measurements of an induced 2DHG in an undoped GaAs/AlGaAs

heterojunction device.

erases the oscillations in Rxx and plateaus in Rxy. However this does not mean that the

2DHG does not exist, it only means their existence cannot be confirmed via the current

magnetoresistance measurement setup. By lowering the sample temperature from 1.4 K to

300 mK, the broadening δE will reduce, and make the Rxx oscillations and Rxy plateaus

visible.

4.2.2 Carrier densities and mobilities

The carrier densities and mobilities of the 2DEG and 2DHG were obtained from

longitudinal source-drain measurements for different top-gate inducing voltages at zero

B-field using equations 2.11 and 2.13. The turn-on gate voltage values at which the 2DEG

and 2DHG were respectively induced are 1.00 V and -1.75 V (figure 4.7). Above these

values, VTG and n2D, p2D share a nearly linear relationship with no hysteresis, indicating

that there is no gate leakage and no charge build-up in the layered structure (e.g. in the

dielectric). (Note: The small non-linearities are most likely due to the use of Al2O3 as a
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(a) 2DEG (b) 2DHG

Figure 4.7: Top-gate voltage versus two-dimensional carrier densities for a 2DEG and 2DHG.

dieletric instead of SiO2). Figure 4.8 shows the n- and p-type carrier mobilities for a range

of carrier densities. The p-type mobilities are an order of magnitude lower than the n-type

(a) 2DEG (b) 2DHG

Figure 4.8: Density-mobility relationship for carriers in a 2DEG and 2DHG.

mobilities.
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4.2.3 I-V measurements

Figures 4.9 and 4.10 show the linear ohmic relationship at 4 K between the source-

drain bias and resulting current for a device with an induced 2DEG and induced 2DHG

respectively. The 2DEG is induced at VTG = +2.0 V. The measured resistance of Rn = 1.03

Figure 4.9: Ohmic behaviour of a 2DEG.

VTG = +2.0 V, Rn = 1.03 kΩ.

VTG (V) R2DEG (Ω) Rcontact (Ω)

1.0 2400 280

1.2 1500 190

1.4 1040 145

1.6 760 130

1.8 600 115

2 480 115

2.2 400 110

2.4 320 110

Table 4.1: 2DEG and contact resis-

tances

kΩ includes the 2DEG resistance (R2DEG), two ohmic contact resistances (2Rcontact) and

additional series resistances (Rseries) in the measurement setup. Individual values for

R2DEG and Rcontact at different VTG values are shown in table 4.1 and calculated using the

equations

R4−8
n = R2DEG + 2Rcontact +Rseries; (4.1a)

R4−6
n = 0.5R2DEG + 2Rcontact +Rseries. (4.1b)

The superscripts 4-8 and 4-6 refer to the location of the contacts used for the two-terminal

measurements (refer to figure 4.4). Here, it is assumed that all ohmic contacts possess

equal contact resistances. Both R2DEG and Rcontact decrease with increasing gate voltage.

Although Rcontact saturates around 1.8 V, its value is well under 1 kΩ, which is acceptable

for our purposes. The 2DHG in the p-type device is induced at VTG = −3.25 V. The I-V

relationship is linear and ohmic. As expected, the 2DHG resistances are greater than that
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Figure 4.10: Ohmic behaviour of a 2DHG.

VTG = −3.25 V, Rp = 6.67 kΩ.

VTG (V) R2DHG (kΩ) Rcontact (kΩ)

-1.6 118.16 44.47

-1.8 39.96 6.81

-2.0 21.24 3.05

-2.2 14.64 1.83

-2.4 11.36 1.17

-2.6 9.16 0.83

-2.8 7.62 0.62

-3.0 6.44 0.50

Table 4.2: 2DHG and contact resis-

tances

of the 2DEG by about an order of magnitude (table 4.2). Again, both R2DHG and Rcontact

decrease with increasing VTG; at high carrier densities, the contact resistance is under 1 kΩ.

4.3 Diode behaviour

The fabricated p-n junction diode with a 2DEG induced on the left and a 2DHG induced

on the right is shown in figure 4.11a. Three separate devices were fabricated, each with a

different gap between the two halves of the split ITO top-gate. Measurements and analyses

in this section were also conducted with Dr. Sfigakis. Figure 4.11b shows I-V curves

for devices with split gaps of 1.5 µm, 2.0 µm and 3.0 µm. All three devices successfully

exhibited diode behaviour, with turn-on voltages of approximately 1.5 V. The devices were

all unstable to certain extents; the 2.0 µm and 3.0 µm gap devices were worse-off and

exhibited an increasing drift in the turn-on bias with time. Figure 4.12 depicts this drift

for the 2.0 µm device. The 3 µm device was even more unstable, making it hard to capture

data depicting the accurate turn-on voltage of 1.5 V (figure 4.11c). Since the gap between

the top-gates results in an insulating region at the level of the single heterojunction, charges

are possibly dumped into the substrate at this region as they try to cross the length of the
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(a) Fabricated p-n junction
(b) I-V curves

(c) I-V curves (magnified)

Figure 4.11: Picture of fabricated p-n junction diode along with I-V curves for three devices

with different top-gate separations.

device. This in turn could create a negative bias that has to be overcome on a subsequent

voltage sweep. This is more likely to happen in devices with larger gate separations.
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Figure 4.12: Diode behaviour of a p-n junction in an undoped single heterojunction device

measured at increasing time intervals t1 through t6. The gate separation is 2.0 µm.
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Chapter 5

Summary & future work

This thesis has aimed to lay the groundwork for the development of the next generation

of quantum light emitters using novel semiconductor materials and architectures.

Chapter 2 introduced the theory behind the deterministic generation of single and

entangled photons. A specific focus was held on optically-driven semiconductor quantum

dots, as well as electrically-driven light emission in quantum wells. Techniques to engineer

the environment surrounding the sources to boost extraction efficiency were also covered.

Chapter 3 detailed the results of a finite-difference-time-domain model of a semiconductor

nanowire quantum dot source. Optimized architectural parameters that boosted the source

transmission efficiency while maintaining a symmetric Gaussian emission profile in the

far-field were calculated. Additionally, the Gaussian nature of the far-field emission profile

of an existing gated nanowire quantum dot source was calculated to verify that the emissions

from such sources are not compromised by the surrounding structures.

Chapter 4 laid out the preliminary results in the development of an all-electric quantum

emitter that aims to combine a single-parameter electron pump with a wide two-dimensional

p-n junction created by inducing an electron and hole charge carrier gas adjacent to each

other in a quantum well device. A p-n junction diode was successfully fabricated in a single

heterojunction device and characterized.

These results pave the road towards the creation of bright sources of photons with high
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entanglement fidelities and modal properties. The following sections propose the potential

next steps to follow to reach this goal.

5.1 Gated nanowire source optimized for brightness

With the optimized nanowire source parameters obtained in chapter 3, a bright, deter-

ministic source of single and entangled photons can be fabricated by integrating metallic

gates around the source to effectively erase any finestructure splitting that is present in

the quantum dot. A suitable technique must be developed to electrically isolate the gates

from the semiconductor substrate without having to coat the entire nanowire in dielectric

material, since this compromises the source brightness and to some extent the tightness of

the outgoing beam.

5.2 Integrating an electron pump and a narrow p-n

junction

The p-n junction device described in chapter 4 is a proof-of-concept prototype towards

the creation of an electrically driven quantum emitter. Subsequent devices must be

fabricated using a GaAs/AlGaAs quantum well substrate, such as the one in figure 5.1.

The GaAs quantum well offers tighter carrier confinement than a single heterojunction,

and helps keep carriers confined as they cross the insulation barrier between the p- and

n-side of the device. Additionally, the junctions must be narrowed to prevent electrons

from being dumped in large numbers at once onto the p-side. This will also help in the

subsequent integration of Schottky gates for an electron pump. Additional gates on the

p-side can create quantization of heavy holes, which can control the spin properties of the

recombining electron-hole pairs, and thus create quantum correlations between emitted

photons.
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Figure 5.1: GaAs/AlGaAs heterostructure with a quantum well.
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granting permission to use the data plot in figure 2.6.
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Appendix A

Lumerical FDTD script files

A.1 Infinitely long cylindrical nanowire

1 #Extracts the Purcell factor, transmission and effective refractive index of an infinitely long

InP nanowire sweeping over diameter

2 deleteall;

3 #Initializing input variables

4 d = 0.2e-6; #Default diameter (m)

5 n = 3.4; #Refractive Index of InP

6 lambda = 890e-9; #Source wavelength

7 #Simulation region

8 addfdtd;

9 set("x", 0); set("y", 0); set("z", 0);

10 set("x span", 5e-6);

11 set("y span", 5e-6);

12 set("z span", 10e-6);

13 #Nanowire geometry

14 addcircle; set("name", "NW");

15 set("x", 0); set("y", 0); set("z", 0);

16 set("radius", d/2); set("z span", 12e-6);

17 set("material", "<Object defined dielectric>");

18 set("index", n);

19 dia = 80e-9:5e-9:400e-9; #Diameter sweep vector (m)

20 l = length(dia);

21 #Preallocating for output variables

22 purcell_fac = matrix(l);

23 transm = matrix(l);

24 n_eff = matrix(l);

25 #Monitor to extract effective refractive index (neff)
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26 addmodeexpansion; set("name", "mode_exp");

27 set("monitor type", "2D Z-normal");

28 set("x", 0); set("y", 0); set("z", 0);

29 set("x span", 2e-6); set("y span", 2e-6);

30 set("mode selection", "fundamental mode");

31 set("override global monitor settings", 1);

32 set("wavelength center", lambda);

33 set("wavelength span", 0);

34 #Monitor to extract transmission

35 addpower; set("name", "Transmission");

36 set("monitor type", "2D Z-normal");

37 set("x", 0); set("y", 0); set("z", 4.9e-6);

38 #Quantum dot

39 adddipole; set("name", "QD");

40 set("x", 0); set("y", 0); set("z", 0);

41 set("theta", 90);

42 set("center wavelength", 890e-9);

43 set("wavelength span", 0);

44 #Loop to extract Purcell factor, transmission and neff for different diameters

45 for(i = 1:l)

46 {

47 switchtolayout;

48 select("NW");

49 set("radius", dia(i)/2);

50 select("Transmission");

51 set("x span", 1.5*dia(i));

52 set("y span", 1.5*dia(i));

53 ?"Running simulation "+num2str(i)+" of "+num2str(l);

54 run;

55 purc = getresult("QD","purcell");

56 purcell_fac(i) = purc.purcell;

57 tran = getresult("Transmission", "T");

58 transm(i) = tran.T;

59 effri = getresult("mode_exp", "neff");

60 n_eff(i) = real(effri.neff);

61 }

62 #Writing data to text files

63 write("Fp_" + num2str(dia(1))+"nm_"+num2str(dia(l))+"nm.txt", num2str(purcell_fac));

64 write("Effective_RI_"+num2str(dia(1))+"nm_"+num2str(dia(l))+"nm.txt", num2str(n_eff));

65 write("Transmission_infwire_"+num2str(dia(1))+"nm_"+num2str(dia(l))+"nm.txt", num2str(transm));

A.2 Diameter and dot height sweep to maximize trans-

mission

1 #Script to sweep over NW diameter QD z-position and obtain Purcell factors and Transmission
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values for a tapered NW.

2 deleteall;

3 d = 0.23e-6; #Default diameter

4 ht = 1.5e-6; #Cylindrical base height

5 n = 3.4; #Refractive index of InP

6 lambda = 890e-9; #Emitter wavelength

7 #Simulation region:

8 addfdtd;

9 set("x", 0); set("y", 0); set("z", 0);

10 set("x span", 10e-6); set("y span", 10e-6); set("z min", -6.5e-6);

11 set("z max", 4.5e-6); set("z min bc", "Metal");

12 #Nanowire:

13 addstructuregroup;

14 set("name", "NW");

15 set("x", 0); set("y", 0); set("z", 0);

16 adduserprop("material", 5, "<Object defined dielectric>");

17 adduserprop("index", 0, n); adduserprop("theta", 0, 2);

18 adduserprop("radius", 2, d/2); adduserprop("ht_base", 2, ht);

19 set("construction group", 1);

20 set("script", read("Cone_Mirrored_Setup_Script.txt"));

21 #Sweep vectors

22 qdht = 0.2e-6:0.05e-6:1.4e-6; lqd = length(qdht);

23 dia = 205e-9:1e-9:249e-9; ld = length(dia);

24 #Initializing

25 purcell_fac = matrix(lqd, ld);

26 transm = matrix(lqd, ld);

27 ht_cone = matrix(ld);

28 #Power monitor to extract transmission

29 addpower; set("name", "Transmission");

30 set("x", 0); set("y", 0);

31 set("x span", 10e-6); set("y span", 10e-6);

32 #Dipole to model quantum dot

33 adddipole; set("name", "QD");

34 set("x", 0); set("y", 0); set("theta", 90);

35 set("center wavelength", 890e-9);

36 set("wavelength span", 0); set("optimize for short pulse", 0);

37 counter = 0;

38 for(j = 1:lqd)

39 {

40 for(k = 1:ld)

41 {

42 switchtolayout; select("NW"); set("radius", dia(k)/2);

43 ht_cone(k) = (dia(k)/2)/tan(2*pi/360);

44 select("FDTD"); set("z min", - (ht + ht_cone(k)/2));

45 select("QD"); set("x", 0); set("y", 0); set("z", - (ht + ht_cone(k)/2) + qdht(j));

46 select("Transmission"); set("z", ht_cone(k)/2);

47 counter = counter + 1;

48 ?"Running simulation " + num2str(counter) + " of " + num2str(ld*lqd);
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49 run;

50 purc = getresult("QD", "purcell"); purcell_fac(j, k) = purc.purcell;

51 trans = getresult("Transmission", "T"); transm(j, k) = trans.T;

52 }

53 }

54 #Matrix indices corresponding to max transmission

55 Tmax = max(transm); Tmax_index = find(transm == Tmax);

56 jmax = mod(Tmax_index, lqd); kmax = (Tmax_index - jmax)/lqd + 1;

57 #Writing max transmission and corresponding NW diameter, QD z-position and Purcell factor to

file

58 write("Max_transmission2.txt", "T = " + num2str(Tmax));

59 write("Max_transmission2.txt", "Fp = " + num2str(purcell_fac(jmax, kmax)));

60 write("Max_transmission2.txt", "Normalized T = " + num2str(Tmax/purcell_fac(jmax,kmax)));

61 write("Max_transmission2.txt", "QD z-position = " + num2str(qdht(jmax)));

62 write("Max_transmission2.txt", "Diameter = " + num2str(dia(kmax)));

63 #Writing all Purcell factor and transmission values into matrices

64 write("Fp_QDz.txt", num2str(purcell_fac));

65 write("Transmission_QDz.txt", num2str(transm));

A.2.1 Setup script

1 #Cone_Mirrored_Setup_Script.txt

2 #Equation for conical taper

3 z_span = radius/tan(theta*pi/360);

4 eqn = num2str(radius/z_span)+"*(x+"+num2str(z_span*(0.5)*1e6)+")";

5 #Conical taper

6 addcustom; set("name","cone");

7 set("x", 0); set("y", 0); set("z", 0);

8 set("create 3D object by","revolution");

9 set("x span", z_span); set("y span", 2*radius); set("z span", 2*radius);

10 set("equation 1", eqn); set("first axis","y"); set("rotation 1",90);

11 set("material", material);

12 if(get("material")=="<Object defined dielectric>")

13 { set("index",index); }

14 #Cylindrical base

15 addcircle; set("name", "base");

16 set("x", 0); set("y", 0); set("z", -(z_span + ht_base)/2);

17 set("radius", radius); set("z span", ht_base); set("material", material);

18 if(get("material")=="<Object defined dielectric>")

19 { set("index",index); }

A.3 Gated InP nanowire with Al2O3 dielectric cladding

1 #Extract transmission efficiency and far-field emission profile of gated NW structure with

rounded tip dielectric cladding
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2 deleteall;

3 d = 0.220e-6; #NW Diameter (m)

4 clad_t = 0.15e-6; #Clad thickness (m)

5 n_NW = 3.4; #NW RI (AlGaAs)

6 n_clad = 1.76; #Clad RI (Al2O3)

7 n_sub = 3.66; #substrate RI (GaAs)

8 r_tip = 0.05e-6; #Clad round tip radius (m)

9 #Simulation region:

10 addfdtd;

11 set("x", 0); set("y", 0); set("z", 0);

12 set("x span", 7e-6);

13 set("y span", 7e-6);

14 set("z min", -5e-6);

15 set("z max", 7.5e-6);

16 #Entire structure:

17 addstructuregroup;

18 set("name", "Gated_roundtip_NW");

19 set("x", 0); set("y", 0); set("z", 0);

20 #AlGaAs Nanowire:

21 adduserprop("NW_mat", 5, "<Object defined dielectric>");

22 adduserprop("NW_RI", 0, n_NW);

23 adduserprop("alpha1", 0, 2); #Tapering angle (full angle) in degrees

24 adduserprop("radius", 2, d/2);

25 adduserprop("ht_base", 2, 1e-6); #Height of cylindrical base

26 #Al2O3 dielectric cladding:

27 adduserprop("clad_mat", 5, "<Object defined dielectric>");

28 adduserprop("clad_RI", 0, n_clad);

29 adduserprop("clad_t", 2, clad_t);

30 adduserprop("r_tip", 2, r_tip);

31 adduserprop("alpha2", 0, 4.62); #Cladding tapering angle (full angle)

32 #Substrate:

33 adduserprop("sub_mat", 5, "<Object defined dielectric>");

34 adduserprop("sub_RI", 0, n_sub);

35 adduserprop("sx", 2, 12e-6);

36 adduserprop("sy", 2, 12e-6);

37 adduserprop("sz", 2, 5e-6);

38 #Au gates:

39 adduserprop("gate_mat", 5, "Au (Gold) - Palik");

40 adduserprop("gl", 2, 1e-6);

41 adduserprop("gw", 2, 0.1e-6);

42 adduserprop("gh", 2, 0.1e-6);

43 set("construction group", 1);

44 set("script", read("Gated_roundtip_Setup.txt"));

45 runsetup;

46 #Extracting z-coordinates for the placement of QD dipole and power monitor

47 select("Gated_roundtip_NW::Gate1");

48 z_QD = get("z");

49 select("Gated_roundtip_NW::clad_tip");
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50 z_p1 = get("x span");

51 z_p2 = get("z");

52 z_power = z_p1/2 + z_p2;

53 addanalysisgroup;

54 set("name", "Gated_roundtip_analysis");

55 set("x", 0); set("y", 0); set("z", 0);

56 adduserprop("QD_center_wavelength", 2, 890e-9);

57 adduserprop("QD_wavelength_span", 2, 0);

58 adduserprop("zQD", 2, z_QD);

59 adduserprop("zpower", 2, z_power);

60 set("setup script", read("Gated_NW_Analysis_Script.txt"));

61 run;

A.3.1 Setup script

1 #Gated_roundtip_Setup.txt

2 z_NW = radius/tan(alpha1*pi/360); #Height of nanowire

3 r_clad = radius+clad_t; #Cladding base radius

4 theta = tan(alpha2*pi/360);

5 z_clad = (r_clad)/theta; #Height of cladding

6 xs_tip = r_tip-(r_tip*sin(theta)); #Excess tip height (ht of rounded portion)

7 z_tip = z_clad-r_tip; #Tip length

8 t = (r_tip+r_tip*sin(theta))/2;

9 #1 = Nanowire cone, 2 = Cladding cone, 3 = Cladding tip

10 eqn1 = num2str(radius/z_NW)+"*(x+"+num2str(z_NW*(0.5)*1e6)+")";

11 eqn2 = num2str(theta)+"*(x+"+num2str(z_tip*(0.5)*1e6)+")+"+num2str(r_tip*1e6);

12 eqn3 = "sqrt("+num2str(r_tip*1e6)+"ˆ2-(x-"+num2str(t*1e6)+")ˆ2)";

13 #Wire taper

14 addcustom; set("name","NW_cone");

15 set("x", 0); set("y", 0); set("z", 0);

16 set("create 3D object by","revolution");

17 set("x span", z_NW); set("y span", 2*radius); set("z span", 2*radius);

18 set("equation 1", eqn1); set("first axis","y"); set("rotation 1",90);

19 set("material", NW_mat);

20 if(get("material")=="<Object defined dielectric>") { set("index", NW_RI); }

21 #Clad taper

22 addcustom; set("name","clad_cone");

23 set("x", 0); set("y", 0); set("z", (z_clad-xs_tip-z_NW)/2);

24 set("create 3D object by","revolution");

25 set("x span", z_clad-xs_tip); set("y span", 2*r_clad); set("z span", 2*r_clad);

26 set("equation 1", eqn2); set("first axis","y"); set("rotation 1",90);

27 set("override mesh order from material database", 1);

28 set("mesh order", 3); set("alpha", 0.45); set("material", clad_mat);

29 if(get("material")=="<Object defined dielectric>") { set("index", clad_RI); }

30 #Clad tip

31 addcustom; set("name","clad_tip");

32 set("x", 0); set("y", 0); set("z", z_clad-xs_tip/2-z_NW/2);
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33 set("create 3D object by","revolution");

34 set("x span", xs_tip); set("y span", 2*r_clad); set("z span", 2*r_clad);

35 set("equation 1", eqn3); set("first axis","y"); set("rotation 1",90);

36 set("override mesh order from material database", 1);

37 set("mesh order", 3); set("alpha", 0.45); set("material", clad_mat);

38 if(get("material")=="<Object defined dielectric>") { set("index", clad_RI); }

39 #Wire base

40 addcircle; set("name", "NW_base");

41 set("x", 0); set("y", 0); set("z", -(z_NW + ht_base)/2);

42 set("radius", radius); set("z span", ht_base);

43 set("material", NW_mat);

44 if(get("material")=="<Object defined dielectric>") { set("index", NW_RI); }

45 #Clad base

46 addcircle; set("name", "clad_base");

47 set("x", 0); set("y", 0); set("z", -(z_NW + ht_base)/2);

48 set("radius", r_clad); set("z span", ht_base);

49 set("override mesh order from material database", 1);

50 set("mesh order", 3); set("alpha", 0.45); set("material", clad_mat);

51 if(get("material")=="<Object defined dielectric>") { set("index", clad_RI); }

52 #Clad film over substrate

53 addrect; set("name", "clad_film");

54 set("x", 0); set("y", 0); set("z", -(z_NW/2 + ht_base - clad_t/2));

55 set("x span", sx); set("y span", sy); set("z span", clad_t);

56 set("override mesh order from material database", 1);

57 set("mesh order", 4); set("alpha", 0.45); set("material", clad_mat);

58 if(get("material")=="<Object defined dielectric>") { set("index", clad_RI); }

59 #Substrate

60 addrect; set("name", "Substrate");

61 set("x", 0); set("y", 0); set("z", -(z_NW/2 + ht_base + sz/2));

62 set("x span", sx); set("y span", sy); set("z span", sz);

63 set("material", sub_mat);

64 if(get("material")=="<Object defined dielectric>") { set("index", sub_RI); }

65 #Gates

66 addrect; set("name", "Gate1");

67 set("x", r_clad + gl/2); set("y", 0); set("z", -(z_NW/2 + ht_base - clad_t - gh/2));

68 set("x span", gl); set("y span", gw); set("z span", gh); set("material", gate_mat);

69 addrect; set("name", "Gate2");

70 set("x", -(r_clad + gl/2)); set("y", 0); set("z", -(z_NW/2 + ht_base - clad_t - gh/2));

71 set("x span", gl); set("y span", gw); set("z span", gh); set("material", gate_mat);

72 addrect; set("name", "Gate3");

73 set("x", 0); set("y", r_clad + gl/2); set("z", -(z_NW/2 + ht_base - clad_t - gh/2));

74 set("x span", gw); set("y span", gl); set("z span", gh); set("material", gate_mat);

75 addrect; set("name", "Gate4");

76 set("x", 0); set("y", -(r_clad + gl/2)); set("z", -(z_NW/2 + ht_base - clad_t - gh/2));

77 set("x span", gw); set("y span", gl); set("z span", gh); set("material", gate_mat);
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A.3.2 Analysis script

1 #Gated_NW_Analysis_Script.txt

2 #Dipole to model quantum dot

3 adddipole; set("name", "QD");

4 set("x", 0); set("y", 0); set("z", zQD); set("theta", 90);

5 set("center wavelength", QD_center_wavelength);

6 set("wavelength span", QD_wavelength_span);

7 set("optimize for short pulse", 0);

8 #DFT monitor to extract transmission and far-field profile

9 addpower; set("name", "TFF");

10 set("x", 0); set("y", 0); set("z", zpower);

11 set("x span", 7e-6); set("y span", 7e-6);
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Appendix B

Python code

B.1 Circular two-dimensional Gaussian fit function

1 #Fits simulated 2D far-field data from a .csv file to a circular 2D Gaussian

2 #k_x and k_y vectors are also inputted

3 #Output: Data plot with overlaid Gaussian fit contour + R-squared value

4 #Importing libraries

5 import pandas as pd

6 import numpy as np

7 import math as mth

8 from scipy.optimize import curve_fit

9 import pylab as plt

10 #Reading simulated far-field data

11 data = pd.read_csv(’data_filename.csv’, header = None)

12 data_flat = data.values.ravel() #Flattening to 1D

13 #Importing k-vector for far-field data

14 kxy = pd.read_csv(’x_y_vector_500.txt’, header=None)

15 klength = len(kxy)

16 #Defining a 2D symmetric circular Gaussian function

17 def twoD_Gaussian(kdata_tuple, amplitude, sigma):

18 (x,y) = kdata_tuple

19 g = amplitude*np.exp( - (x**2 + y**2)/(2*sigma**2))

20 return g.ravel() #Flattening to 1D

21 #Meshing k-vector

22 kx,ky = np.meshgrid(kxy, kxy)

23 #Fitting simulated data to 2D Gaussian using curve_fit

24 initial_guess = [2.8e-12, 0.2] #[amplitude, sigma]

25 popt, pcov = curve_fit(twoD_Gaussian, (kx, ky), data_flat, p0 = initial_guess)

26 data_fitted_flat = twoD_Gaussian((kx,ky), *popt)
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27 data_fitted = data_fitted_flat.reshape(klength, klength)#De-flattening to 2D

28 #Plotting simulated data with best-fit Gaussian overlaid as a contour

29 fig, ax = plt.subplots(1, 1)

30 ax.hold(True)

31 img = ax.imshow(data, cmap=plt.cm.jet, origin=’bottom’,

32 extent=(kx.min(), kx.max(), ky.min(), ky.max()))

33 ax.contour(kx, ky, data_fitted, 6, colors=’k’)

34 plt.xlabel(’$k_x$’, size = 14)

35 plt.ylabel(’$k_y$’, size = 14)

36 plt.xlim(-0.4,0.4)

37 plt.ylim(-0.4,0.4)

38 cb = plt.colorbar(img, ax=ax)

39 cb.set_label(’$|\overrightarrow{E}|ˆ2\>\>\>\>(Vˆ2mˆ{-2})$’, size = 14)

40 plt.show()

41 #Calculating R-squared goodness-of-fit

42 residuals = data_flat - data_fitted_flat

43 ss_res = np.sum(np.sum(residuals**2))

44 ss_tot = np.sum((data_flat - np.mean(data_flat))**2)

45 Rsq = 1 - ss_res/ss_tot

46 print(Rsq)
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Appendix C

Wide 2D p-n junction cleanroom

nanofabrication procedure

This procedure was written in collaboration with Dr. Francois Sfigakis and Brandon

Buonacorsi. The substrate used in this fabrication process is an undoped GaAs/AlGaAs

heterostructure wafer grown using molecular beam epitaxy by the MBE research group.

The single heterojunction layer (where the 2DEG forms under an applied potential) lies at

the interface of a GaAs and AlGaAs layer at a depth of 310 nm.

C.1 Mesa pattern

1. Sonicate freshly cleaved wafer for 5 min each in Acetone followed by IPA. As with all

new samples make sure to clean the substrate. After cleaving, there is dust that sits

on the substrate that will prevent good lithography, and you also want to remove any

potential organics on the sample.

2. 30 s Buffered Oxide Etch (BOE, 1:10 HF:NH4F by volume) dip. There is a thin

native oxide layer on the sample that needs to be removed, else the resist in the first

lithography step will not adhere well, causing issues when etching the mesa.
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3. Spin a PMMA A6/ma-N bilayer. When spin-coating samples, keep sample covered at

all times to prevent dust or other particles from landing on it. Even while baking, use

a glass beaker or petridish to cover the sample.

(a) Pre-bake the sample for 1 min at 120°C - Helps remove any layer of moisture

on the sample before you spin the first layer of resist. Be careful not to do too

much hotter or longer of a pre-bake as you risk re-forming an oxide layer that

will prevent the PMMA from adhering well to the substrate.

(b) While hot, spin PMMA A6 at 5000 rpm for 60 s, 1000 rpm/s up-ramp and

1000rpm/s down-ramp. Be as quick and careful as possible when moving the

sample from the hot plate to the spinner before it cools. This will help with

adhesion of the PMMA to the GaAs cap layer.

(c) Bake PMMA for 5 mins at 180°C

(d) While warm, spin ma-N at 5000 rpm for 60 s, 1000 rpm/s up-ramp and 1000rp-

m/s down-ramp

(e) Bake ma-N for 90 s at 120°C

4. Expose the wide-arm Mesa (mask pattern E2): Channel 1, 35 s, soft contact

5. Develop in maD-5335 for 2 mins followed by at least 1 min in H2O. Simply place the

chip on the bottom of the beaker during development. This eliminates any movement

you may introduce which can cause jagged edges and delamination of the two resist

layers.

6. Ash for 10 mins (recipe 11) - This is to remove the PMMA from the regions we

developed the ma-N. Approximately 5 mins is spent removing the PMMA, and the

remaining 5 mins are for forming the undercut.

7. Reflow bake sample at 150°C for 5 mins - Helps with adhesion of the PMMA to the

substrate before we do an etch.

8. Etch the mesa pattern

(a) Dektak the sample to measure resist height
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(b) Dip sample in BOE for 15 s and a 1 min dip in H2O - removes any oxide formed

from the ashing

(c) Dip sample in a 1:8:120 solution of H2SO4:H2O2:H2O (∼ 60 - 80 seconds). Use

the Dektak to see how much you have etched. While we aim for 350 nm, the

exact depth does not matter, but you must go past the AlGaAs/GaAs interface

(∼ 310 nm deep). The typical etch rate is between 3.5 - 5.5 nm/s. There should

be a premixed bottle of 1:120 H2SO4:H2O. Mix 45 mL of this solution and 3 mL

of H2O2 to get the desired ratio.

9. Strip the resist by submerging in Acetone and sonicating for 5 - 7 mins. We can

sonicate freely here because there is no metal deposited.

10. Dektak the sample to measure actual etched height and confirm the mesa pattern is

sharp and clean.

C.2 n-type ohmic contacts

1. Mix a solution of 1:1:9 H2O2:HCl:H2O the night before you are going to do the

ohmic recess etch.

2. Spin a S1811 layer on main sample. Spin a diluted S1805 layer on an extra sample

piece to calibrate the etch rate.

(a) Spin resist on each sample at 5000 rpm for 60 s and 1000 rpm/s ramp speed

with a ramp down rate of 1000 rpm/s.

(b) Bake for 90 s at 120°C

3. Expose the ohmics (pattern E4): Channel 2, 4.5 s, soft contact. Half the ohmics

should be covered with tape to prevent their exposure. Only three ohmics to one side

should be exposed. From here on out, whenever you do an exposure, you need to

manually decrease the alignment distance until your separation is 0 µm. This helps

prevent rotation from the resist beads at the corners of your wafer that act as pivot

points when the mask comes in contact for the exposure.
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4. Develop in MF-319 for 45 s and rinse in H2O. Mildly agitate, just enough to get the

developed Shipley off of your patterned area.

5. Do a brief 10 sec ash to ensure all Shipley is removed (recipe 5).

6. Reflow bake sample at 150°C for 5 mins.

7. Etch the ohmic pattern

(a) Dektak the test etch sample to get resist height. The reason we used the diluted

Shipley is so that the height measured here is more accurate since the resist is

so thin.

(b) Dip the test etch sample in BOE for 15 s.

(c) Dip test etch sample in H2O2:HCl:H2O etching solution prepared the night before

for ∼ 70 - 80 s (record the exact time).

(d) Dektak the test etch sample again to calibrate the etch rate. Use this rate to

calculate how much time it takes to etch to 350 nm. Typical etch rates are ∼ 5

nm/s.

(e) Dip the main sample in BOE for 10 s.

(f) Dip main sample in H2O2:HCl:H2O etching solution for the appropriate amount

of time to obtain ∼ 350 nm deep recess using rate from test etch sample. One

reason we leave the etch solution overnight is to yield a solution with a stable

etch rate. When the solution is first mixed, the etch rate decays rapidly for the

first few hours until it equilibrates.

8. Ash sample for 4.5 min (recipe 11). Simply cancel the recipe after 4.5 min and

manually vent. The goal is to remove as much of the resist overhang made during

the wet etch as we can. This will allow us to deposit ohmic material as high up on

the wall of our ohmic etch region as possible, making a more reliable and consistent

contact to the AlGaAs/GaAs interface where we will induce the 2DEG. Without this

etching step, we would not deposit any material on the wall and would have to rely on

the diffusion of the metal up towards the interface during the ohmic anneal step.
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9. Dip sample in BOE for 10 s. We want to make sure there is absolutely no oxide

between the ohmic and the heterojunction where the 2DEG is formed.

10. Deposit 10/250/120 nm of Ni/Au+Ge/Ni (0.5/2.0/1.5 A/s deposition rates) in the

INTLVAC using the Rotatilt at an angle of 45°. The first layer of Ni helps catalyze

the reaction that causes the Ge to diffuse into the GaAs substrate to form a conductive

channel to the 2DEG. The Au+Ge is in the ratio 88:12 by weight percentage. The

cap layer of Ni is used to help the smoothness of the ohmics after the annealing step.

For all layers, use a beam amplitude to focus the beam reducing the required power.

As described above, the Rotatilt ensures that we are depositing ohmic material directly

on the interface where we want to form the 2DEG making a good ohmic contact

between our ohmic pad. Be careful with the Rotatilt and make sure to select the no

rotation profile for the INTLVAC. When connecting the ground and signal cables

to the Rotatilt, make sure the tape on the signal line is there to prevent the signal

shorting to the ground line during the deposition. The Au+Ge crucible is our own

and no other group is allowed to use it.

11. After deposition, place sample in Remover PG and perform metal liftoff. Either let it

sit overnight at room temperature or place it on a hot plate at 100°C for one hour.

Use the spray bottle of acetone to remove any metal pieces clinging to the sample

surface.

12. Anneal the ohmics using the rapid thermal annealer (RTA). Use recipe ‘FSUNDOPN’

which does a several minute purge with N2 gas and heats the sample in Ar at 450°C
for 3 mins. It is a good idea to condition the chamber by running the process without

a sample once before doing a run with the sample in the chamber. This is not critical

but simply an extra precaution against any unwanted contamination a previous user

may have introduced.
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C.3 p-type ohmic contacts

1. Mix a solution of 1:1:20 H3PO4:H2O2:H2O the night before you are going to do the

ohmic recess etch.

2. Spin a S1811 layer on your actual sample. Spin a diluted S1805 layer on an extra

sample piece that we will use to calibrate our etch rate.

(a) Spin resist on each sample at 5000 rpm for 60 sec and 1000 rpm/sec ramp speed

(b) Bake for 90 s at 120°C

3. Expose the ohmics (pattern E4): Channel 2, 4.5 s, soft contact. Rotate the mask 180°
to expose the ohmics on the other half of the device.

4. Develop in MF-319 for 35 s and rinse in H2O - Do mild agitation. Simply enough to

get the developed Shipley off of your patterned area.

5. Do a brief ash to ensure all Shipley is removed (recipe 8).

6. Etch the ohmic pattern. The target etch depth is 20-50 nm above the heterojunction

interface.

(a) Dektak the test etch sample to get resist height

(b) Dip the test etch sample in BOE for 10 s

(c) Dip test etch sample in H3PO4:H2O2:H2O etching solution you prepared the

night before for ∼70-80 s (record the exact time).

(d) Dektak the test etch sample again to calibrate the etch rate. Use this rate to

calculate how much time it takes to etch to ∼290 nm.

(e) Dip the real sample in BOE for 10 s

(f) Dip real sample in H2O2:HCl:H2O etching solution for the appropriate amount

of time to obtain ∼290 nm depth using rate from test etch sample.

7. Ash sample for 4 min (recipe 11). Simply cancel the recipe after 4 min and manually

vent.
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8. Dip sample in BOE for 10 s. - We want to make sure there is absolutely NO oxide

between the ohmic and the heterojunction where the 2DEG is formed.

9. Deposit 160-200nm of Au+Be onto the sample using a slug weighing 1200-1600 mg in

the Angstrom thermal evaporator at an angle of 45°.

10. After deposition, place sample in Remover PG and perform metal liftoff. Either let it

sit overnight at room temperature or place on a hot plate at 100°C for one hour. Use

the spray bottle of acetone to remove any metal pieces clinging to the sample surface.

11. Cap the ohmics with 1 µm of SiO2 using the PECVD to prevent contamination of

the RTA in the subsequent annealing step.

12. Anneal the ohmics using the RTA. Use recipe ‘FSUNDOPP’ which does a several

minute purge with N2 gas and heats the sample in Ar at 520°C for 3 mins. It is a

good idea to condition the chamber by running the process without a sample once

before doing a run with the sample in the chamber. This is not critical but simply

an extra precaution against any unwanted contamination a previous user may have

introduced.

C.4 Oxide insulator and via-holes

1. Deposit 300 nm of SiO2 using the Oxford Cluster. Use the Silane recipe which deposits

at 100 nm/min (0.1 nm/cycle). Make sure to clean and condition the chamber prior

to deposition even if the previously run process was the same.

2. Spin a S1811 layer on your sample

(a) Spin resist at 5000 rpm for 60 s and 1000 rpm/s ramp speed

(b) Bake for 90 s at 120°C

3. Expose the vias (pattern E9): Channel 2, 4.5 s, soft contact. Remember to manually

decrease the alignment gap.
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4. Develop in MF-319 for 45 s and rinse in H2O.

5. Ash for 10 s to remove any resist residue (recipe 5).

6. Dip in BOE for 3 mins. Check under the scope to make sure you have removed all

the oxide in the via areas by looking at the fine alignment marks.

7. Place the sample in Remover PG and heat to 100°C for 10 mins. Treat the resist

removal as a regular metal liftoff. Dry the sample. We have found that the BOE

forms a thin hardened layer of resist during the etching which needs to be removed

like a layer of metal when the resist is stripped. If you don’t, then the resist layer

will fall down onto your sample and can delaminate or flake onto your sample.

C.5 Top gate and bond pads

1. Spin a PMGI/S1811 bilayer.

(a) Pre-bake the sample for 1 min at 120°C.

(b) While hot, spin PMGI: 5000 rpm for 60 s and 1000 rpm/s ramp with a ramp

down rate of 1000 rpm/s.

(c) Bake PMGI for 5 mins at 180°C.

(d) While warm, spin S1811: 5000 rpm for 60 s and 1000 rpm/s ramp with a ramp

down rate of 1000 rpm/s.

(e) Bake S1811 for 90 s at 120°C.

2. Expose the top gate and bond pad patterns (patterns E8 and F4): Channel 2, 4.5 s,

soft contact - Remember to manual decrease the alignment gap.

3. Develop in MF-319 for 2.5 mins and rinse in H2O. Do not hold the sample during

the development step. Simply place the sample in the beaker and step away for the

development time. We found that holding the sample during the development can

cause the MF-319 to get in between the resist layer and mess up the pattern profile.
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4. Look at the device under the microscope to see if there is a noticeable undercut (1-2

µm). If there is, proceed to the next step. If not, then develop in MF-319 for another

30 seconds and check again. Repeat this until there is a proper undercut.

5. Ash for 10 seconds to remove any resist residue (recipe 5).

6. Dip in 1:4 HCl:H2O to remove any oxide from ashing. Do not do a BOE dip like you

normally would before the deposition. You have sensitive oxide there that will etch

away if you do a BOE dip.

7. Deposit 20/80 nm of Ti/Au (0.5/2.0 A/s deposition rate) in the INTLVAC - no need

for the rotatilt here.

8. Place in Remover PG for liftoff - either leave overnight or heat at 100°C for one hour.
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