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Abstract

We investigate the bilinear-biquadratic Heisenberg model on the pyrochlore lattice.
While negative biquadratic couplings result in a first-order transition into a nematic or-
dered state with spins aligned mutually collinearly, it is found that positive biquadratic
interactions lead to spins orienting in mutually perpendicular directions, described as oc-
tupolar or tetrahedral ordering. This transition is probed using classical Monte Carlo
and it is found that the system undergoes a first-order transition into a octupolar ordered
state with no long-range order. Unfortunately, we find that single spin-flip Monte Carlo
simulations freeze completely at the transition with exceptionally slow dynamics and an
extreme lack of ergodicity. The application of parallel tempering does not improve simu-
lation results, which, due to the poor ergodicity of the simulation, cannot be reweighted
using histogram techniques. We also present and discuss a potential loop algorithm which
may allow simulations to overcome local energy barriers and regain ergodicity.

Upon warming Monte Carlo simulations initialized in potential octupolar long-range
ordered states, we observe the dynamics of weathervane modes; zero energy rotational ex-
citations in the lattice. Taking the form of 2D membranes in the lattice, these weathervane
modes may rotate at no energy cost, allowing for the successful use of the single spin-flip
Monte Carlo algorithm. We find that these weathervane modes exist at rotational angles
of 0 and 7 corresponding to alternating layers of spins, in agreement with previous work.
Depending on the long-range ordered state that the simulation is initialized in, weather-
vane modes may be stabilized by the periodic boundary conditions or, if free to rotate at
will, may enter a weathervane manifold state where fast dynamics permit the simulation
to rapidly sample various weathervane ordered states.
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Chapter 1

Introduction

Though often taken for granted, the importance of magnetism in our daily lives cannot be
understated. The discovery of the compass allowed the explorers of old to explore the world
and chart unknown lands. The development of the electric motor and generator which
utilizes magnets to induce current led to the widepread adoption of electricity throughout
the world bringing what was before a scientific curiosity into the household. Storage of
information on magnetic tape and hard drives led to the rise and proliferation of the internet
in the late 20th century. Magnetism is an intrinsic part of today’s technology with uses
ranging from ordinary consumer headphones and speakers to magnetic resonance imaging
(MRI) in hospitals to plasma confinement in reseach labs developing fusion technology.
Areas of magnetism such as high temperature superconductivity are not yet understood,
yet hold much potential for real world applications.

An understanding of magnetism, like many phenenoma in physics, is bolstered by the
observation and modeling of the basic fundamental principles that underpin magnetic
properties. Simple theoretical toy models such as the nearest-neighbour Ising model have
greatly bolstered our understanding of magnetic behaviour and have been successfully
utilized as a starting point in describing many real world materials despite appearing
on the surface as hopelessly naive. For instance, the two-dimensional Ising model, in
which magnetic spins on a 2D surface may only align upwards or downwards, beautifully
illustrates a phase transition and is useful as a proxy for much more complex systems due
to the universal criticality in many body systems at the phase transition. Thus complex
many body effects and interactions in real world materials can be reduced and investigated
as much simpler theoretical models allowing for the setting of a starting point in the
laboratory. For this reason, there is much interest and work being done to model these



simple toy models using both analytic techniques and computational techniques such as
Monte Carlo simulation and use them as a proxy for complex magnetic materials.

1.1 Magnetic Frustration

Magnetic frustration occurs when it is impossible to simultaneously satisfy all competing
lattice interactions for all terms in the Hamiltonian. The ground state of these systems
possesses a tremendous degeneracy — multiple configurations exist that possess that same
(lowest) energy with no states (or set of states) being energetically preferred over the oth-
ers. This frustration occurs in two forms; random frustration and geometric frustration.
Random frustration can occur when a system has multiple competing interactions at the
same energy level with rivaling spatial correlations or if the system has some degree of
randomness (i.e. the Edwards Anderson model [!] in which the lattice bonds are randomly
assigned to be ferromagnetic or antiferromagnetic). Here, however, we are interested in
geometric frustration whereby the lattice prohibits the placement of spins that would simul-
taneuosly allow all lattice interactions to be satisfied. Consider a simple nearest-neighbour
Hamiltonian:

H=JY 8-S, (1.1)
<iyj>

with J < 0 the system is ferromagnetic and spins seek to align parallel to their neigh-
bours while for J > 0 the system is antiferromagnetic and the spins seek an antiparallel
alignment. This poses no issue on a square lattice where spins can be placed in such orien-
tations, however, on a triangular lattice, the third spin on the antiferromagnetic triangular
plaquette cannot be placed without violating a pairwise interaction with one of the other
two spins (Figure 1.1). Placing the third spin in an up or down configuration has no effect
on the total energy of the plaquette — there are multiple degenerate arrangements of spins
on the plaquette which possess the same energy and which are not preferentially preferred
over one another. Expanding this single plaquette to the entire lattice reveals a hugely
degenerate macroscopic ground state dependent on system size and posessing a residual
entropy [2]. Naturally, one wants to know the physics of this ground state and by which
additional interactions or perturbations it is possible to break this degeneracy and induce
some form of long-range magnetic order.



Figure 1.1: The third spin cannot be placed such that it simultaneously satisfies an anti-
ferromangetic interaction with both of its neighbours.

As shown previously, geometrical frustration is not driven by mutually competing terms
in the Hamiltonian but rather by lattice geometry. Lattices of note possessing the requisite
geometry include the triangular lattice, the kagome lattice (a 2D network of triangles and
hexagons), and the pyrochlore lattice (a network of corner sharing tetrahedra). Here we
investigate the pyrochlore lattice which has been extensively studied in the literature and
which is present in many real materials such as the cubic pyrochlore oxides [3].

1.2 Frustration on the Pyrochlore Lattice

The pyrochlore lattice is composed of a network of corner-sharing tetrahedrons with chem-
ical formula A3B>0; where A and B are metal atoms. The structure of the lattice is the
cubic face-centered space group F'd3m. Frustration on the lattice can be seen through the
extension of frustration on the triangular lattice — there is no spin configuration that will
simultaneously satisfy all 6 antiferromagnetic interactions between the four spins of a given
tetrahedron.



Figure 1.2: The pyrochlore lattice, a series of corner-sharing tetrahedra. Two types of
tetrahedra, a and b, are present, distinguished by orientation (shown in purple/beige and
blue/orange). As the a and b tetrahedra are corner sharing, the pyrochlore lattice may be
described as a singular arrangement of either a or b tetrahedra.

In the 1950s, it was predicted by Anderson [1] that no long-range-order would exist for
the antiferromagnetic Ising pyrochlore at any temperature and thus a Néel-like ground state
could not be stabalized. Decades later, Villain [5] made the same proposal for the classical
pyrochlore Heisenberg antiferromagnet, deeming the system an example of a cooperative
paramagnet or classical spin liquid, and showing that the system would not possess a long
range ordered state. Numerical Monte Carlo simulations of Heisenberg systems by Reimers
[6] and Moessner and Chalker [7] later confirmed that, indeed, no long-range-order develops
for the antiferromagnetic Heisenberg pyrochlore and that the system remains disordered
for all finite temperatures.

Looking deeper at the antiferromagnetic nearest-neighbour Heisenberg pyrochlore and
its ground state manifold, we observe that the ground state consists of tetrahedra with no
net moment i.e. the fours spins on each tetrahedra sum to 0 (S; + Sy + S3+ S4 = 0). The



tetrahedra are interlocked with one another and share corner spins (each spin belongs to
two tetrahedra) however, there are no other restrictions on the orientations of the spins.
Thus the system possesses a huge macroscopic ground state degeneracy and there is no
long-range order. Thermal fluctuations or ‘order-by-disorder’ could break this degeneracy
and select a ground state however this has not been observed in the pyrochlore lattice
[7]. However, the low temperature disordered state of the nearest-neighbour Heisenberg
pyrochlore has been found to be quite unstable and magnetic ordering is observed in
the presence of additional interactions such as dipole interactions [3], further neighbour
interactions [9] [10], lattice distortion [11] [12] or bond disorder [13] [14].

1.3 The Biquadratic Interaction

The low temperature states of real materials are often quite subtle and complex. The
typical order parameter for the nearest-neighbour Ising and Heisenberg model, the mag-
netization m, may be insufficient to describe states which possess (§ ) = 0 but that still
break spin rotational symmetery. These states are termed “spin nematic” states and
are described by multipolar order parameters of which the simplest such example is the
quadrupolar or nematic ordering first described by Blume and Hsieh [15]. This quadrupolar
ordered state possesses a nematic axis or director with spins aligned parallel or antiparallel
to this axis. These spins do not possess the positional ordering that would be observed
in an antiferromagnetically ordered state with alternating “up” and “down” spins — the
spins are, disregarding their tendency to order parallel or antiparallel to the nematic axis,
otherwise ordered randomly. In terms of fluctuations the spins in the ordered phase display
anisotropic fluctuations [16], they rotate at significantly lower energy cost perpendicular
rather than parallel to the director.

Quadrupolar ordering about a nematic axis can be quite easily induced by the addition
of a biquadratic term to the nearest neighbour Hamiltonian (Equation 1.2) with b < 0. For
convenience this Hamiltonian is often parameterized into the form shown in Equation 1.3.
Some theoretical work has been done on the bilinear-biquadratic model favouring the much
more approachable and potentially more experimentally realizable [I7] b < 0 collinear
ordered or nematic states. Work by Shannon and Penc [18] with b < 0 showed that in
the absence of an applied magnetic field, the bilinear-biquadratic model undergoes a first
order transition into a quadrupolar nematic state (i.e. no long-range order) at T ~ b.
This phase, with two spins oriented ‘up’ and two spins oriented ‘down’ with respect to the
O(3) nematic axis possesses zero magnetization; the quadrupolar tensor order parameter!

I'We will describe this tensor order parameter in more detail later.



is required to observe the transition into the ordered phase. While Shannon and Penc did
not observe long-range order with b < 0, they found that the application of a magnetic field
or a ferromagnetic third nearest neighbour interaction produced a variety of unconventional
states such as a vector multipole phase (canting of a nematic phase) or the stabilization of
long-range order.

H=JY S-Sj+b(Si-S)?, (1.2)
<t,5>
H=17Y cos6,S;-S;+sin0y(S;-S5,)* . (1.3)
<8,j>

Firm evidence for the existence of spin nematic ordering in real materials is lacking,
but a number of materials are under investigation such as NpOy [19][20] which has been
suggested to display triple ¢ ? octupolar and induced quadrupolar order and CeB, in
which antiferroquadrupolar ordering is believed to be present and in which the presence
of a magnetic field induces antiferro-aligned octupoles [21][22][23][24]. The pyrochlore
ThoTiyO7 is also believed to potentially possess a hidden long range ordered state consisting
of parallel and antiparallel aligned electric quadrupole moments [25][26][27].

While a biquadratic value of b < 0 will favour collinear spins, minimizing the angles be-
tween spins while still maintaining ) ,.S; = 0, the minimum energy configuration with b > 0
will have mutually perpendicularly aligned spins®. This describes tetrahedral or octupolar
ordering (Figure 1.3) in which spins on each tetrahedron point away from the center of
the tetrahedron®. Therefore we note that the Hamiltonian as shown in Equation 1.2 serves
as an easily approachable toy model to describe both quadrupolar and octupolar ordering
by simply flipping the sign of b. While more complex descriptions of multipolar ordering
can be constructed, the essential physics of phenomena giving rise to this ordering, such
as spin-lattice coupling [28][29] is sufficiently and more easily described by our Hamilto-
nian of choice. Favouring collinear or coplanar configurations, the biquadratic interaction
mimics thermal and quantum fluctuations [30]. We thus utilize the bilinear-biquadratic
Hamiltonian (Equation 1.3) as a toy model capable of describing both quadrupolar and
octupolar ordering.

2Characterized by the existence of multiple ordering ¢ vectors.

3Geometrically this is not possible in a 3D environment. The statement of “mutually perpendicular”
is thus taken to mean that the angles between spins are maximized i.e. ~ 109.5°.

4These spins possess O(3) symmtery and so can globally rotate. The convention of spins pointing
toward or away from the center of the tetrahedron is used for clarity only with angles of ~ 109.5° between
spins.
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Figure 1.3: The ground state arrangement of spins on a single tetrahedron for mutually
parallel or collinear (b < 0) (left) and mutually perpendicular or octupolar/tetrahedral
(b > 0) (right) spins.

Figure 1.3 shows mutually parallel (left) and mutually perpendicular (right) spins on
a single tetrahedron. In this figure, the collinear spins have been coloured red and blue
to indicate up and down orientations. The perpendicular spins are distinct and so have
been assigned four different colours. If multiple tetrahedra are present, the only way in
which spins in a given tetrahedron can point in mutually perpendicular directions is if each
tetrahedron contains one and only one spin of each colour (this restriction is known as the
colour ice rule). We term this state a colour ice state [31] and note that a large number of
distinct colour ice states will exist if the colour ice rule is imposed on the lattice.

Wan and Gingras [31] have investigated octupolar ordering of the b > 0 bilinear-
biquadratic pyrochlore and have confirmed that the ground state of the system should
possess octupolar ordering. However, much of the focus of their work was on the interest-
ing low temperature of an octupolar ordered state. They found that for b > 0 octupolar
ordered spins, there exist zero energy rotational modes [31] similar to that of the classical
kagome Heisenberg antiferromagnet [32][33][34][35][30][37]. These so called weathervane
modes consist of spin rotations on segments of the lattice that are isolated from the rest
of the lattice by a boundary of spins aligned ferromagnetically with respect to one another
(i.e. the weathervane pole) shown in Figure 1.4 on the kagome lattice. As these pole
spins all possess the same orientation and isolate the chunk of the lattice from the rest of
the lattice, they may rotate with respect to the boundary spins by an angle ¢ as a zero
energy excitation. Wan and Gingras also conducted an investigation of order-by-disorder



on several potential long-range dipolar ordered states and found that weathervane angles
of 0 and 180° possess the same minimum zero point energy and maximum degeneracy.
These order-by-disorder calculations imply that weathervane modes will exist in only two
configurations distinguished by a 180° rotation.

Figure 1.4: A weathervane mode on the kagome lattice. Thick red spins (pointing down-
ward) are used to delineate the boundary of the weathervane membrane i.e. they are the
“pole” spins. Weathervane membrane spins may rotate by any angle ¢ with respect to
the boundary spins at no energy cost as weathervane rotations do not change the angles
between any spins. In this figure, a weathervane rotation with ¢ = 7 would result in the
blue and green spins in the membrane pointing into and out of the page respectively. The
angles between spins of any colour would remain the same — this rotation is accomplished
at no additional energy cost. Note that weathervane boundaries delineated by green and
blue spins can all be seen in the figure.



Figure 1.5: Weathervane modes on the pyrochlore lattice at some temperature 7" in a
dipolar ordered state. The pyrochlore lattice consists of alternating stacked triangular
and kagome layers. If the spins in the triangular layers are all the same colour (here
black) the spins in the kagome planes can all be rotated by angle ¢ with respect to the
black weathervane pole spins at no energy cost. As each kagome plane is separated by
black triangular spins, the kagome planes may independently rotate by any angle without
incurring energy penalties.

This is interesting as we would naively expect weathervane modes, separated by bound-
ary spins, to rotate independently of one another with no prefered weathervane angles. In
this thesis we will perform Monte Carlo simulations of these weathervane modes in an
attempt to observe the low temperature physics of an octupolar ordered phase.



1.4 Outline

This work will investigate the predicted octupolar ordering on the Heisenberg pyrochlore
lattice with positive biquadratic interactions and attempt to describe the nature of the
expected paramagnetic to octupolar transition that is believed to occur as argued by Wan
and Gingras [31]. The nature of the ground state and potential long-range order will be
addressed. This endeavour is broken into a number of parts. In Chapter 2, the methods
and numerical techniques we use will be outlined both in their theoretical context and
application to other similar problems. General properties of multipolar transitions will be
introduced in Chapter 3 where the quadrupolar nematic phase as previously described in
the literature [18] will be briefly reviewed and reproduced, outlining the general properties
of multipolar transition, before the sign of the biquadratic interaction is flipped to generate
octupolar ordering. Chapter 4 will present our attempts to probe the octupolar state and
outline the properties of the paramagnetic to octupolar transition, potential low tempera-
ture ordered phases, and confirm the presence of weathervane modes. Finally, Chapter 5
will conclude this work and suggest potential future avenues of research.

10



Chapter 2

Methods

2.1 The Classical Metropolis Monte Carlo Simulation

The Monte Carlo Method, initially developed by Nicholas Metropolis [3%] and later gen-
eralized into what is now known as the Metropolis-Hastings algorithm is a very powerful
tool in the field of stochastic processes (i.e. a course of non-deterministic and random
events which cannot be directly inferred but do possess statistics). Widely used in the field
of condensed matter physics, Monte Carlo simulations allow for the efficient sampling of
states from a distribution of states in which direct sampling is difficult, reducing computa-
tionally untractable many-body problems to significantly more manageable levels. Systems
containing large numbers of particles with exponentially many energy levels can thus be
effectively reduced to a probability distribution whose statistics can be obtained with a
high degree of accuracy.

The Monte Carlo algorithm and its variants are only one of many tools used to probe
many-body systems. In the following section, the Monte Carlo algorithm and associated
methods as well as other algorithms used in this thesis to probe the biquadratic interaction
will be briefly reviewed. A more detailed description of the Monte Carlo method can be
found in many reference materials such as Newman and Barkema [39] and Landau and
Binder [10]. As will be shown in this chapter, specific care must be used in selecting an
algorithm that will efficiently and accurately characterize the physics under consideration.

11



2.1.1 Single Spin-Flip Monte Carlo

In statistical mechanics, the thermal average of classical observable O is defined (Equa-
tion 2.1) where Z =) i e~ Eu/ksT is the partition function, p represents all possible states
of the system, E, is the energy of each respective state, T' is the temperature and kp is
the Boltzman constant. Naturally, for systems with any significant number of particles,
the number of states becomes rapidly unmanageable. The solution therefore is to sample
the distribution of states and obtain a very good estimate of the observable O from that
sample. This is what our Monte Carlo simulation allows us to achieve.

1 _
(0) =~ > Oy Pkl (2.1)
w

Consider a system starting in state g and possibly ending up in a particular state v.
Let us define the R(u — v) to be the transition rate at which the system moves from state
i to state v. Then the probability that the system will be in state v some time dt later
can be written as P(u — v) = R(u — v)dt. This is then generalized to the many other
states v that the system could take. Thus after some amount of time the system could
conceiveably be in any one of these many states. But which ones? Defining the probability
that the system will be in state p at time ¢ as a,(t), the master equation [39] for the
evolution of the system from one state to another can be written as given by Equation 2.2,
where a, and a, are a set of weights that represent the probability that the system exists
in state p or v at a given time t.

L 3 [a)Rw — 1) — ()R v)] (22)

v

The first term on the right hand side of Equation 2.2 represents the rate at which the
system enters state p from state v while the second term represents the rate at which the
system in state p enters other states v. Eventually the system will reach an equilibrium,
that is dstu = 0. We can note that this is a Markov process — the system does not possess
‘memory’; the future state of the system is independant of its past states and only depends
on the system’s current state. This lack of memory is critical' to sampling the entire phase
space of the system and obtaining an accurate statistical description of the system.

The key component of the Monte Carlo scheme lies in the generation of the set of
random sample states from the full set of states from the Boltzmann distribution. Monte

! Especially so for the positive biquadratic interaction investigated here.

12



Carlo schemes almost exclusively rely on Markov processes to generate new states. Markov
processes are mechanisms which, when given one state p, will generate some other state v in
some random fashion with some transition probability P(u — v) satisfying two conditions;
1) that the transition probabilities are not time-dependant and 2) that the transition
probabilities are not influenced by past states of the system. Thus the probability that the
system will move from state p to state v should not evolve in time.

Using our Monte Carlo scheme, a Markov chain of states is generated by starting with
some initial state and feeding that state into our Markov process over and over again to
generate a set of states with weights given by the Boltzmann distribution. For the Monte
Carlo scheme to work, two conditions must be met: ergodicity and detailed balance.
For a Monte Carlo scheme to be ergodic, it must be possible for the scheme, starting in
any one particular state, to reach any other particular state in some finite amount of time.
There must be at least one ‘path’ between states that can occur with nonzero probability;
no state can be isolated from other states. Detailed balance implies that for any two states
p and v, the probability of transition from state p to state v (which we here redefine as
P(p — v)) is the same as the probability of transition from state v to state p (P(p — v)).
Thus the probability of the simulation being in state u, p, multiplied by the probability
that the simulation enters state v is equal to the probability of the simulation being in
state v (p,) and entering state p (Equation 2.3). Given that we want the equilibrium
distribution to obey the Boltzmann distribution, the condition of detailed balance must
satisfy Equation 2.4

puP<,u - U) = pvp(v — :u) ) (2'3)

Pp=v) _Po _ mmy

, 2.4
Plo—p (24)

If our Monte Carlo scheme satisfies the constraints of ergodicity and detailed balance, the
equilibrium set of states that it produces will be weighted according to the Boltzmann
distribution. Even following the constraints above, there is some flexibility in how the
transition probabilities are chosen. In general and in this work, the Metropolis scheme
(Equation 2.5) is chosen to describe transition probabilities.

e~ B=E/Tif B, — E, >0,

: (2.5)
1, otherwise .

PW%WZ{
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If states are generated and rejected according to the criteria given in Equation 2.5, then
our Monte Carlo algorithm should accurately sample the probability distribution of the
system. Here the most simple and general method for selecting new states is presented;
the single spin-flip algorithm. In this algorithm, a single spin is chosen at random from
the lattice and a new random orientation selected for it. For Ising spins this procedure is
quite simple; with only two orientations possible (spin up or spin down) we simply elect to
flip the spin from one orientation to another. Heisenberg spins however, may point in any
direction on the unit sphere and so “flipping” a Heisenberg spin is a slightly more elaborate
but still simple procedure. In short, however, new random orientation on the unit sphere
is chosen?. The magnitude of this new vector is then doubled and the two vectors (the
newly chosen vector and the vector giving the spin’s current location) added together and
renormalized® such that |S| = 1. Thus the third vector, representing the new potential
orientation of the spin, is calculated as a movement away from its initial orientation.

The spin is flipped to its new position with probabilities given by the change in energy
between its original and proposed orientations and flipped according to the Metropolis
criteria (Equation 2.5). A Monte Carlo simulation utilizing the single spin-flip algorithm
for the classical nearest-neighbour Heisenberg model (Equation 2.6) (where (i, j) denotes
the sum over nearest-neighbour pairs) proceeds as follows:

H=J)Y 585 (2.6)

1. Spins in the lattice are set to the initial starting orientations. The spins on the lattice
may be initialized in many different starting configurations (random, aligned, etc).

2. A random ‘trial’ spin with initial orientation S; is selected to be ‘flipped’ and its new
potential orientation, S, generated.

3. The energy difference AFE = Ey — E; between the new and old states is computed.

4. If AE < 0, the spin is ‘flipped’ and the move accepted. If AE > 0, then the
Boltzmann weighted acceptance probability is calculated e #2#. A random number

2Specific care must be taken to ensure this distribution is truly random. Picking spherical coordinates
(0, ¢) at random will result in a distribution with points “bunched” near the poles. A random distribution
on the unit sphere can be obtained by choosing the random variables; a = cos¢ € [—1,1] and 6 € [0, 27).
Cartesian coordinates can then be generated as x = v/1 — a2 cosf, y = V1 — a?sinf and z = a.

3We double the magnitude of the new vector so that the addition of the new vector with the vector
giving the current position of the spin will result in a complete 180° flip of the original vector if the new
vector was randomly chosen antiparallel to the current spin.
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0 < r < 1is generated; if » < e #2F then the flip is accepted, if r > e #2F then the
spin is left untouched. The probability of acceptance is thus given by the Metropolis
criteria Poceept = min(1, e PAE).

. These steps are performed a suitably large number of times for the system to reach
equilibrium. The elementary timescale of the simulation is given in Monte Carlo
(MC) steps where 1 step represents N attempted spin-flips where N is the number
of spins in the lattice. The number of Monte Carlo steps required to reach equi-
librium (Figure 2.1) varies greatly depending on the underlying physics at play in
the system. For a simple nearest-neighbour Heisenberg antiferromagnet on a cubic
lattice, equilibrium may be reached in a few thousand MC steps. Other systems
may require millions or more equilibrium Monte Carlo steps to reach equilibrium,
particularly glassy systems. After the system has reached equilibrium, the sampling
stage begins and observables such as the energy and magnetization are periodically
measured. The number of samples required for good statistics varies greatly from
system to system. The time series values of the observable are then averaged and
their arithmetic mean recorded.
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Figure 2.1: The energy of a Monte Carlo simulation started in a disorded state. After a
period of time, the equilibration time, the simulation will have reached equilibrium energy
E., and measurements of thermodynamic quantities can begin.

The single spin-flip algorithm is a good starting point for many numerical simulations.
It suffers, however, from a number of problems including but not limited to slow dynamics,
large autocorrelation times, and freezing at low temperature. As the single spin-flip algo-
rithm proceeds through a series of small local moves,* it can experience extreme difficulty
transitioning between distinct states with similar energies but whose traversal using single
spin local moves would require the simulation to enter high energy intermediate states —
that is, transitions between states separated by an energy barrier.

For instance, in the 2D ferromagnetic nearest-neighbour Ising model, we would expect
the system to order in either an all-up or all-down spin configuration with equal probabil-
ity as the two states have equal energy. However, the transition between the all-up and
all-down state becomes increasingly unlikely as the temperature is decreased and the prob-
ability to flip a spin with four neighbours with the same orientation becomes exponentially

—4J
low (P = e*sT). The quenching of the transition between the two states occurs because

4 The transition from one distinct state to another must be completed through a series of individual
single spin-flips.
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while a configuration of all-up spins or all-down spins is a ground state a configuration
of one down spin with all other spins up is not. The system cannot transition between
the all-up and all-down states without moving through a number of intermediate states,
none of which are ground states, but which the system must traverse if it is to move from
one ground state to the other. As the temperature drops, the simulation is less likely to
enter the intermediate states bridging the all-up or all-down states to such an extent that
the simulation may effectively no longer transition between the states, despite the all-up
or all-down states having the same energy. This is a loss of ergodicity as the simulation
is unable to alternate between the all-up and all-down states — the system cannot access
potential states.

A number of techniques have been proposed to address these issues involving adap-
tations to the single spin-flip algorithm (simulated annealing, parallel tempering [11][12],
over-relaxation [13][11], etc.). Other techniques involve grouping spins into specific “clus-
ters” or “loops” [12][15] which may be “flipped” at once at minimal or no energy cost. Some
of these techniques such as parallel tempering may be applied almost universally while loop
and cluster algorithms generally require tailoring to the problem under consideration. We
discuss these techniques below.

2.1.2 Simulated Annealing and Parallel Tempering

As we will discuss later, the energy landscape (energies of the system corresponding to var-
ious spin configurations) which our Monte Carlo simulation samples is frequently nonuni-
form, possessing many local energy extrema or metastable states® that our Monte Carlo
simulation may enter and fail to leave. Other states with lower energies may then fail to
be sampled. To aid the Monte Carlo algorithm and prevent it from remaining in local
metastable states we may elect to start our simulation at a higher temperature where the
simulation can easily sample the entire energy landscape without being trapped in local
minima and gradually cool the system. As the simulation is slowly cooled, it is far less
likely to enter and remain in a local metastable state. This process, known as simulated
annealing, is a term that takes its name from the field of metallurgy. In that field, to
anneal is to gradually cool a metal or compound such that defects are minimized and the
metallic structure is uniform.

Simulated annealing has been employed to great success in a variety of optimization
problems [16][17][18]. Here, we employ simulated annealing in all our Monte Carlo simu-

5Metastable states correspond to local energy minima, i.e. a region that the Monte Carlo simulation
may enter and have difficulty leaving.
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lations to minimize the glassy behaviour displayed by the biquadratic model with postive
biquadratic couplings. Simulated annealing is relatively easy to implement in any Monte
Carlo routine: one simply starts the simulation at some high temperature before equili-
brating and generating statistical data. The temperature of the simulation is then lowered
and this process repeated.

Figure 2.2: Energy landscape showing a simulation denoted by the black circle in a local
energy minimum by a barrier of height AFE. At low temperatures, the simulation may fail
to leave this metastable state entirely.

Another method for dealing with a system with many local extrema involves running
a number of simulations at a series of temperatures and periodically swapping spin config-
urations between simulations at neighbouring temperatures. Known as parallel tempering
[11][12], it allows states generated by high temperature simulations above potential energy
barriers to be “carried down” to low temperature simulations thus aiding in the exploration
and movement in and out of metastable states.

Parallel tempering requires a signficant increase in computational resources due to the
number of simultaneous parallel simulations involved (as the name implies). However, it
can dramatically reduce autocorrelations and produce better statistics than simulations
without parallel tempering which may encounter ergodicity issues [39]. The basic princi-
ples of parallel tempering are as follows. A number of simulations, M, of the same physical
system are performed at different temperatures Ty < 17 < Tb < ... < T); with the simula-
tion run at Ty corresponding to the system whose statistics we would like to acquire. All
M independent simulations are run as normal Monte Carlo simulations with equilibration
and sampling stages as described previously. However, periodically, every so many Monte
Carlo steps during the sampling stage, the energies of the simulations are computed. The
energy difference between a simulation and its neighbours (i.e. simulations up or down one
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temperature “step”) are then calculated. The states of the simulations (i.e the orientation
of their spins) are then “swapped” between adjacent simulations with a probability (2.7)
depending on the difference in energy between the states such that the state of each sim-
ulation satisfies the Boltzman distribution. The states of higher temperature simulations,
which are capable of overcoming any energy barriers present, are thus capable of ‘being
transmitted’ down to the lower energy simulations.

6—(Blow_ﬂhigh)AE7 if AE >0,

i (2.7)
1, otherwise.

P(u%v)={

The parallel tempering algorithm, which is both ergodic and satisfies detailed balance
[39], has been used extensively in the literature [19], [50], [51], [72] and has been shown to
be of particular use in highly frustrated systems such as spin glasses [53], [74]. Intuitively
is it clear why the parallel tempering algorithm is so powerful for these systems. As an
example, consider a simulation with parallel tempering involving two temperatures of a
glassy system that undergoes ordering at some temperature 7. In this case we might have
a simulation with a temperature 7., below the transition and a simulation at Ti;g, above
the transition. The low temperature simulation might be stuck in a metastable glassy
state while the high temperature simulation above the transition is rather unconstrained.
If the high temperature simulation should happen to fall into a lower energy minima,
then swapping the spin configurations between the two simulations will allow the low
temperature simulation to explore a new energy minima, aiding in the search for the
lowest energy state. Note that as the parallel tempering algorithm only depends on the
energy of the system, it can be used in conjunction with other Monte Carlo algorithms
beyond single spin-flips.

2.1.3 Histogram Methods

When performing a Monte Carlo simulation, thermodynamic quantities such as the internal
energy, specific heat, magnetization, etc. are obtained at the chosen discrete temperature
points. If we were only to utilise data from these specific points, calculations such as the
finite size scaling of the specific heat curve would be difficult unless we obtained enough
temperature points to accurately capture the peak in the specific heat to high precision
(with a curve consisting of only a few points it may not be possible to pick out the maximum
value of the specific heat). Both the single [55] and multiple [50] histogram methods allow
us to interpolate the values of statistical quantities between our temperature points. The
single histogram method developed by Ferrenberg and Swendsen [55] takes a histogram of
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the simulation measurements obtained at one temperature 1" and reweights them, allowing
for a very good approximation of quantities at temperatures close to 7.

In a classical system, the expected value of a thermodynamic quantity of interest O at
temperature T' (or inverse temperature [3) is given in Equation 2.8 which calculates such
a quantity as an average over all states p of the system with each state weighted by its
Boltzmann probability. However, such a calculation is only possible for small systems;
for larger systems we must instead select a sample of states. Consider a Monte Carlo
simulation at temperature 7). Here we sample M states at random from a specified
probability distribution® p,; the average value of therdynomatic quantity O will be given
by Equation 2.9 which describes the selection of a subset of M states at random with total
energies F,, from a specified probability distribution p,,. Therefore, Equation 2.9 gives
the predicted value of O at a temperature [3; as calculated by our Monte Carlo simulation.
For clarity, we note that the index ¢ is used to denote the subset of states that have been
selected from the system by our Monte Carlo simulation i.e. our sampled states.

> OueiﬁE’”
(0) = Tl " 2.3
>, e
M 1
o O, ‘1 BrEp;
(0) = 2z Ol © (2.9)

M _1,-B1E.;
2 j=1Pp € !

In the Monte Carlo schemes discussed previously, the weights in which we selected
individual sample states was given by the Boltzmann distribution (the “probability distri-
bution” of the previous paragraph). However, having already obtained a sample of states
weighted by the Boltzmann distribution at one particular temperature, we may choose to
instead reweight our entire set of samples by the Boltzmann distribution of another nearby
temperature kBLTQ = [ as given by Equation 2.10. Here Z, is the partition function at
temperature 75.

1
Day = e B (2.10)

Substituting Equation 2.9 into Equation 2.10, we obtain Equation 2.11, a quite simple
formula for the reweighting of measurements of quantity O taken at 7} to a nearby tem-
perature T5. In other words, once we have obtained a series of samples of quantity O at a

6Given by the Boltzmann distribution at the temperature of interest.
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given temperature T}, we may use Equation 2.11 to obtain an estimate of quantity O at
nearby temperatures 7T5.

<Zi\;1 O#ie_(BQ—ﬁl)Eui >T1

<Z;V:1 e*(ﬁz*ﬁl)E#])Tl ’

(O)r, = (2.11)

Single histogram reweighting allows for the generation of thermodynamic data at nu-
merous temperatures from a single simulation point. Thus it allows for the resolution of
features that are difficult to accurately sample such as sharp peaks and/or allows us to run
simulations at far fewer temperatures (thus taking far less time and resources) and inter-
polate the results for temperatures between our simulation points. One notable historical
drawback of the single histogram method is that the entire time series of measurements
must be stored”, however the rise of faster and more powerful computers with more mem-
ory has made this issue irrelevant. We further note that saving a time series of data allows
for further post-simulation analysis and so can be useful.

Single histogram reweighting “returns” good results near the initial chosen temperature.
However, as one moves to temperatures corresponding to the tails of the histograms, one
is unable to accurately reweight as the tails do not provide adequate statistics. We thus
turn to a technique known as the multiple histogram method developed by Ferrenberg and
Swendsen in 1979 [56] in which overlapping simulation data from multiple temperatures are
stitched together to allow for the extrapolation of simulation results across a far broader
temperature regime.

An in-depth explanation of multiple histogram reweighting can be found in many texts
such as Newman and Barkema [39]; here we simply provide a brief overview. In short the
Monte Carlo simulation is run at several temperatures T} < Ty < T3... < T); spaced such
that the energy histograms of each simulation overlap with one another®. The simulations
are then reweighted and stitched together to create a distribution encapsulating the entire
temperature set from T; to T), that can be reweighted to obtain the statistics for any
arbitrary temperature between T to Tj;. Despite appearing quite complex, the actual
implementation is quite straightforward. Naturally, in the reweighting procedure we must
numerically compute a numerical estimate of the partition function Zj; of the simulation
at each of our j starting temperatures [39]. This is given by Equation 2.12

"Originally due to computational constraints, the simulation data was first binned and the corresponding
histogram reweighted hence the name.

81f the simulations do not overlap then attempts to reweight at a temperature corresponding to a tail
will be inaccurate due to the poor statistics that the tails possess.
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1
D Sww e (212)

in which we sum over all m samples taken during the ¢th simulation and over the n;
samples in simulation j. Equation 2.12 is a little confusing, we have in fact a set of j
Equation 2.12s which must be solved self consistently. For a particular Z; the sum in the
denominator represents a sum over the j values of Z (i.e. temperatures 77 to Th;) — these
values of Z are iteratively solved for until convergence. A good gauge of this convergence
is given in Equation 2.13 [39]; where x represents the iteration number and Z7{ is the value
of the partition function at that temperature k on iteration z. We say that convergence
has been achieved when A2, a measure of much the values of Z;, change between successive
iterations, is less than some cutoff.

Zx o Z:E—l 9
A% = —k k17 2.13
2 7] (213)
k

A numerical estimate of the partition function at a given inverse temperature 3 can then
be calculated as given in Equation 2.14 once we have obtained a good estimate of the Z;
for the initial j temperatures.

ZZ n;Z ﬁ Bi) E; (2.14)

The values of thermodynamic quantities such as the energy can then be calculated
using Equation 2.15.

(E(p

ZZ 7 66 I, (2.15)

2.1.4 Nonlocal or Cluster Moves

As discussed in the previous sections, single spin updates tend to result in great difficulties
in moving the simulation from one low energy state to another if the states are separated
by energy barriers that cannot be relatively easily traversed by a series of local moves
without entering high energy intermediate states. One might also just desire a more efficient
algorithm with reduced autocorrelations for the simulation of large systems near a phase
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transitions. For this reason, a number of non-local cluster moves have been proposed such
as the Swendsen-Wang [12] and Wolff [15] algorithms which flip groups of spins with 0
energy cost. With regards to frustrated pyrochlore systems we will focus on the ice loop
move as used by Melko and Gingras [57] to study dipolar spin ice, a method previously
used for other ice models [39)].

Dipolar spin ice at low temperatures enters the so called two-in/two-out spin config-
uration where, on each tetrahedron, two of the four spins point inwards along their local
axes toward the center of the tetrahedron, while the other two spins point outwards away
from the center. This is a highly degenerate state with high energy barriers — to exit one
two-in-two-out state and enter another one must create intermediate higher energy three-
in-one-out and one-in-three-out states at a significant energy cost. In their investigation
of Ising dipolar spin ice, Melko and Gingras [57] utilized a loop move to show the existence
of a first order transition into a long-range ordered state; previous work having used solely
single spin-flips [58] showed a disordered low temperature state. Unlike the single spin algo-
rithm which must traverse high energy intermediate states, the loop algorithm flips groups
of spins at once moving the simulation quickly and efficiently through the two-in/two-out
spin ice manifold. This clearly demonstrates the strength of multiple spin-flip algorithms —
the removal of single spin-flip energy barriers allows the simulation to sample configuration
space more effectively and find potential long-range ordered states at temperatures when
T < J. Thus, for frustrated systems, loop or cluster algorithms may be of particular use.

The loop algorithm presented by Melko and Gingras [57] proceeds quite simply; spins
on the lattice are assigned a colour, black if they point inward towards the center of the
tetrahedron and white if they point outward. A loop consisting of at least 6 spins of
alternating colours is constructed as long as each tetrahedron that the loop traverses is
composed only of two-in/two-out tetrahedra’. The spins on the loop are then “flipped”
by reversing them (inward pointing spins now point outwards and vice versa) with the
resulting state still obeying the two-in/two-out ice rule. Due to the presence of additional
dipolar interactions, the energy to “flip” a loop may not be exactly zero. If this is the case,
the loop is “flipped” according to the Metropolis critereon. At nonzero temperatures, the
loop algorithm must be combined with single spin-flip moves as loops do not enter or affect
defect tetrahedra thus breaking ergodicity.

This loop algorithm has been extended to the biquadratic Heisenberg pyrochlore with
b < 0 biquadratic interactions by Shinaoka et al. [59] [60]. There are several notable
difficulties involved in the generalization to Heisenberg spins. First, recall that while the
nematic phase expected for negative biquadratic coupling does break symmetry, Heisenberg

9 To maintain detailed balance.
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systems will still possess a global O(3) symmetry. Simply put, while spins will order with
respect to the nematic axis, the nematic axis is not fixed and will freely rotate as the
simulation proceeds. Thus the vector describing the nematic axis — the director — must be
determined each time a measurement is made. Furthermore, by possessing O(3) symmetry,
every spin in the lattice is distinct — all ‘black’ and all ‘white’'? spins are expected to possess
slightly different orientations and thus the energy of a loop will increase with loop size and
temperature. Nevertheless, an extended loop algorithm was shown to significantly reduce
autocorrelations as compared to single spin-flips, especially at low temperatures [59].

The extended loop algorithm proceeds [60] in more or less the same manner as the
original loop algorithm used by Melko and Gingras [57]. The nematic axis (or director) is
calculated by randomly selecting a number of tetrahedra in the lattice m and iteratively
computing a projection axis by means of Equation 2.16 (in which the sum runs over the
spins ¢ in each of the m tetrahedrons, sgn is the sign function, and @, is an estimate for
the director) for those tetrahedron. Shinaoka et al.[59][60] proposes three different ways in
which one can modify the colours in a loop; i) flip the parallel components of the spin with
regards to the director (flip-parallel), ii) flip the zyz components of the spin (flip-zyz), or
iii) rotate spins in the loop from one position in the loop to another (rotate)''. In general,
these three methods represent a significant improvement over single spin-flips, although
this improvement depends on temperature and biquadratic strength.

Gne1 o Y sgn(S; - @,)S; . (2.16)

i€{Tm}

While a negative biquadratic interaction leads to a collinear ground state, a positive
biquadratic interaction leads to ordering in which spins on a tetrahedron orient in four
mutually distinct directions (angles of ~ 109.5° between spins) each of which we assign
a colour. The pyrochlore lattice with a postive biquadratic interaction will thus possess
four “colours” of spins as opposed to two. With no ordering axis or director present,
modifications to the loop algorithms introduced in this section are necessary. Later in this
thesis we will report an investigation of the modification of this alternating two colour loop
into an environment where spins can posses not two but four colours.

10 Colour is assigned with regards to a spin’s parallel or antiparallel orientation with respect to the
nematic ordering director.

"' The spins in the loop are sequentially labeled one through k. The spin with label 1 is moved into the
position in the lattice occupied by the spin labeled 2. The spin labeled 2 is moved into the position in the
lattice occupied by the spin labeled 3. Etc.
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2.1.5 Measurements and Errors in Monte Carlo Simulations

Evidence for phase transitions is given by changes in thermodynamic quantities tracked
by the Monte Carlo simulation. For instance, a discontinuity in the energy as the sys-
tem approaches the critical temperature T, is evidence for a first-order phase transition.
The order parameter should likewise display a clear jump at the transition temperature.
Quantities such as the energy, magnetization, heat capacity, etc., generated in a Monte
Carlo simulation possess some associated error as a Monte Carlo simulation only samples
the distribution of states and so will contain sampling error. In this thesis we calculate
errors using the Jacknife method [39]. Here, the average value of some quantity such as
the energy is calculated from the set of N measurements. The N energy measurements are
then divided into M blocks. For each block labelled ¢ the M;*™ block is removed from the
data set and the average value of the energy computed over the other M — 1 data blocks
giving an energy [;. The error in the energy is given by Equation 2.17, where E is the
average energy of all N measurements.

(2.17)

It is important to note that the computed errors are by no means guaranteed to be
accurate. A simulation that does not accurately sample the configuration space of the sys-
tem due to poor ergodicity will give erroneous results with errors that are not meaningful.
Ultimately generated results and their associated errors depend on the simulation itself
— a misbehaving simulation (with for instance extreme ergodicity issues) will not return
accurate results of, perhaps, any nature.

Finally, we remark on the more subtle details of our Monte Carlo simulations. It is
convenient for computational purposes to structure the pyrochlore lattice as a set of 4
interlocking FCC lattices centered at the following coordinates; (0, 0, 0), (0, 0.5, 0.5),
(0.5, 0, 0.5) and (0.5, 0.5, 0). These four FCC sublattices form the conventional 16 spin
pyrochlore unit cell which has a length of 1 along the z, y, and z directions — the lattice
then consists of 16L3 spins. We use periodic boundary conditions for all calculations in
this work.

All Monte Carlo simulations in this thesis make use of simulated annealing. In general,
sampling of thermydynamic quantities occurs every so many steps (in this work chosen as
4 or 8) steps to reduce correlations between samples. Simulation data is often saved as a
time series — though cumbersome and space consuming, this allows for post-processing of
data (e.g. in the histogram reweighting method).
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2.2 Correlations and Structure Factors

It is often useful to investigate correlations between spins in the lattice. For this reason
we compute quantities such as the spin structure factor given below

S(q_> — Z [ei(rfafoﬁ)'q} <Sza . SJB> , (218)
1,500,
2m

q= f(nxf +n, Y +n,2) . (2.19)

Here the indices ¢ and j run over the conventional cubic cells in the lattice while «
and S run over the 16 sublattice spins. The displacement vector from one spin to another
is given by (rin — rj3) and (Si, - Sjs) is the scalar product between the Heisenberg spins,
averaged over the number of samples taken during the Monte Carlo simulation.

We can simplify Equation 2.18 by taking the real part of the exponential (e = cos z +
isinz) and rewrite it as

S(@) = [cos((ria = 155) - D)) (Sia - Sy} - (2.20)

i7j7a718

2.3 Summary

An exposition of the Monte Carlo methods employed in this work has been presented. Ba-
sic single-spin Metropolis Monte Carlo as well as a number of refinements such as parallel
tempering and simulated annealing have been discussed. The non-local loop moves previ-
ously employed for the pyrochlore lattice for similar models such as dipolar spin ice and
the b < 0 bilinear-biquadratic Heisenberg pyrochlore have been reviewed and their par-
ticular effectiveness in equilibration brought to light. More nuanced details of our Monte
Carlo simulations have been presented to give context to Chapter 4 which highlights the
difficulties of equilibration into the octupolar phase. Various post-processing methods such
as histogram reweighting that can improve the quality of simulation results have also been
discussed.

In the following chapters, we will employ these methods first on the bilinear-biquadratic
model with negative biquadratic interactions as presented in the literature [18] before
flipping the sign of the interaction and investigating the octupolar phase expected in the
bilinear biquadratic model with b > 0.
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Chapter 3

The b < 0 Bilinear-Biquadratic
Heisenberg Pyrochlore

In this section, we briefly investigate the b < 0 bilinear-biquadratic Heisenberg model
(Equation 3.1).

H=JY si-sj+b> (si-s;)°, (3.1)
<ij> <ij>

As shown in previous work [18], a weak first-order phase transition is observed at T ~ b
from the paramagnetic state into a nematic state. The work by Shannon, Penc, and
Motome [I18] shows a sharp peak in the heat capacity that scales with the size of the
system and a clear jump in the order parameter'. Another group [00] has investigated the
bilinear-biquadratic (b < 0) and proposed a non-local loop move. As both quadrupolar
and octupolar ordering can be described by the same Hamiltonian (apart from the sign on
b), it is hoped that the bilinear biquadratic model with b < 0 will provide a fertile testing
ground for our later investigation with b > 0.

3.1 Order Parameters for the Biquadratic Model

In our investigation of the bilinear-biquadratic model, a variety of order parameters will
be used to characterize the states that our simulation enters into. To describe ordering

! To observe ordering into a nematic phase, the quadrupolar tensor order parameter (Q) is used. This
order parameter is described later in the chapter.
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into a nematically ordered phase, the quadrupolar order parameter is used as defined by
Shannon , Penc and Motome [18]. The quadrupolar order parameter is defined using a
rank-2 tensor (Equation 3.2) and is composed of 5 independent components (labeled «
and shown in Equation 3.3). The components of the spins, S;,S,, S, are defined globally
across the entire lattice.

1 N
Q== > (3.2)
=1
2 2 1
?*T57§M$Y—6%“%$H,
QY = (S0P - (81)
QY =28%5Y (3.3)

Qi = 28757
QU = 25Y57 .

Spins in the system described by Equation 3.1 with b < 0 will order along a common
nematic axis which is invariant under O(3) rotations. This can be detected using the order
parameter given in Equation 3.4 where each of the five components is first calculated across
all spins in the lattice e.g. Q3" = % SV Q¥

Q = /(@)@ 072 + (Qu)2 + (@) + (@) . (3.4)

For simplicity, references to the quadrupolar order parameter generally refer to this
magnitude @) (and likewise for the octupolar order parameter which we shall describe
shortly). In a perfectly nematic ordered state with all spins collinear, the quadrupolar
order parameter takes on its maximal value of %. In a completely disordered state this
tensor order parameter takes on a value of 0 2.

The octupolar phase, predicted by Wan and Gingras [31] to exist in the b > 0 bilinear-
biquadratic Heisenberg pyrochlore model, is best described by an octupolar order parame-
ter, a rank-3 traceless tensor order parameter [18] and whose value is 0 in a disordered state

2 In the disordered state, the orientations of spins are random and uncorrelated i.e. (S;) = 0 and
(S22 = (Sy)? = (S.)?. Each of the 5 components of the quadrupolar order parameter as shown in
Equation 3.3 then reduces to 0.
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and g\/ﬁ ~ 0.942809 in an perfectly ordered octupolar or tetrahedral state. This global
tensor order parameter is defined in Equation 3.5 with its 7 independent components given
in Equation 3.6.

O‘ENZTZ-Q : (3.5)

T8 = (5)P - 3(SP)(SY)?

7

TV = (SY) - 3(SY)(5%)?

7@ =y?)

; VEI(S)? = (S7)°1(S5)
T = 2V6S7 8757

T:c(r2 —5z2)

%

=STIST) + (SY)* = 4(S9)7]

%%ﬁ

T gsmsx) (S7)” = 4(S7)]
T;(3r275z2)

2 5718(57)2 + 8(51)? — 2877

7

(3.6)

To address the O(3) symmetry present in the model we compute and use the magnitude
of the octupolar tensor order parameter to detect the presence of octupolar ordering in the
same manner as for quadrupolar ordering; each of the seven components is computed across
all N spins before the total magnitude is computed.

TZhlt = (Tx 3 32y ) (Ty3—3y12)2 + (Tz(mQ—y2))2 + (Tmyz)2+
(Tm(r2—522))2 + (Ty(T2—5Z2))2 + (Tz(3r2—522))2 ) (37)
There exist numerous equivalent descriptions of the octupolar order parameter. An-

other way of writing the octupolar order parameter is given by Zhitomirsky [01] (Equa-
tion 3.8) in which the sum over 7, j runs over all spin in the lattice.

2 _ 1 3 3
T2 = 5 D[S S)%) = 2U(S:- )] (3.8)

.3
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which ranges from 0 in a disordered state to i+11—0 ~ 0.21547 in a fully tetrahedral state®.

15V/3
Though seemingly complex, the tensor octupolar parameter given used by Shannon, Penc,
and Motome [18] has been decomposed in such a way that it avoids pairwise interactions

thus making it far less time consuming to calculate?. A final subtlety must be noted,
looking at Equation 3.8, one notices that the value of the octupolar order parameter will
actually be maximized not when spins are organized in a tetrahedral arrangement but when
spins are ferromagnetically aligned with the scalar product S;-5; = 1. The octupolar order
parameter as defined in Equation 3.8 will have a value of % in a ferromagnetically-ordered
state. This is likewise true for the octupolar tensor order parameter which possesses a
maximal value of % 10 in a ferromagnetic state.

Quadrupolar and octupolar order can often coexist [18][61][62] and one must assign the
correct order parameter to the system at hand. Consider a tetrahedron with the spins
on each of its corners in a perfectly tetrahedral state. If the spins are subjected to a
uniaxial interaction along the z-axis (i.e. placed in a magnetic field), they will then start
to possess a rod-like symmetry as they begin to align with respect to the magnetic field.
“Stretched” along the z axis, the tetrahedron placed in the field will be distinguished from
its previous state by a nonzero quadrupolar order parameter. Thus we can see that if both
order parameters are present, determining which order parameter is the primary order
parameter can by a subtle process.

3.2 Reproduction of Previous Literature Results

Although it is not the direct focus of this work, the b < 0 bilinear biquadratic Heisenberg
pyrochlore provides a well-characterized testing ground for our Monte Carlo simulations.
We therefore briefly reproduce the results of Shannon, Penc and Motome[!8] before flipping
the sign of the biquadratic interaction in Chapter 4. As expected, the system undergoes
a first-order transition at T' ~ b, entering a nematic 2-up/2-down as shown in Figure 3.1°
state with no long-range order [18] (Figure 3.1). The specific heat and quadrupole ten-
sor order parameter obtained from our Monte Carlo simulations are shown in Figure 3.2

3In a tetrahedral state, spins are arranged into four mutually tetrahedral groups. A comparison between

groups of spins reveals that % of spins are are oriented such that S;-5; = —% (i.e. spins within one group

compared to spins in the other three groups). The remaining % spins (spins all in the same group) are
aligned parallel to one another with S; - S; = 1. Substituting these two values into Equation 3.8 returns a

3 1
value of 73 + 15 ~ 0.21547.

4Scales as O(N) rather than O(N?).
5The nematic axis is unfired and possesses O(3) symmetry and so the up and down spin states have
no a priori global orientation.
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along with the curve obtained using the Ferrenberg Swendsen multihistogram reweighting
technique (open red circles).

Figure 3.1: The nematic phase for b < 0 for a 2 x 2 x 2 chunk of the lattice. Spins are
arranged in a 2-up/2-down nematic phase with ‘up’ and ‘down’ spins coloured green and

red respectively.

The results obtained from histogram reweighting is quite sensitive to the quality of
the Monte Carlo simulation data. Figure 3.3 shows the time series of the energy and
quadrupolar order at the peak of the specific heat in Figure 3.2a. We note that ergodicity
does not appear to be an issue and that the Monte Carlo simulation does not freeze or
get “stuck” — Chapter 4 shows that this is not true with b > 0. Furthermore, as the size
of the system is relatively small and the transition does not appear to be strongly first
order, a bimodal energy distribution is not observed. We note that though histograms of
the energy at the transition are wider than those away from the transition, they do not
possess separate peaks and so histogram reweighting returns accurate results as evidenced
in Figure 3.3 where the calculated reweighted results agree with the simulation results
away from the temperature points used in the reweighting.

For larger simulation sizes, a bimodal structure was observed to develop in the energy
histograms as expected for large systems undergoing a first-order transtion. Finally, we
note that our simulation results agree with those of Shannon, Penc, and Motome [18].
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Figure 3.2: The specific heat and quadrupolar order parameter for 6, = -0.09966, L. = 4
from Monte Carlo simulation and reweighting. A 6, value of -0.09966 corresponds to a
ratio of b/J ~ -0.1 (tanf,). For reweighting, three temperatures (7" = 0.126, 0.130, and
0.136) were used. 250,000 Monte Carlo steps were computed for each data point.
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Figure 3.3: Time series of a) the energy and b) the quadrupolar order parameter at a
temperature of 7' = 0.13 (6, = -0.09966, L = 4) corresonding to the peak of the specific
heat shown in Figure 3.2a. Each sample represents a measurement after one Monte Carlo
sweep of the lattice.
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The spin-spin S(¢) and quadrupolar (q) structure factors

Q) = Z [T Qi - Q) (3.9)
,5,0,5

are calculated above and below the transition temperature and are shown in Figure 3.4.
Above the T ~ 0.13 transition, we note the characteristic “pinch-points” of the antifer-
romagnetic Heisenberg (b = 0) model [30][63][65]. As we slowly cool below the transition
temperature, this pinch-point scattering is slowly “quenched” (much more significantly so
at lower temperatures). Likewise, above the transition, we note the onset of quadrupolar
ordering with ¢ = 0 in the quadrupolar structure factor which condenses into sharp peaks
in the ordered phase. Bragg peaks at [1,1,1] and its associated points are seen represent-
ing scattering off the FCC lattice sublattices (with four FCC sublattices we note that the
intensity of these peaks is precisely % that of the ¢ = 0 peaks).
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Figure 3.4: The spin-spin and quadrupolar structure factors just above (panes a and b) and
below (panes ¢ and d) the transition temperature of T' ~ 0.13 for a system size of L=6.
Above the transition, we note diffuse ¢ = 0 peaks indicating the onset of quadrupolar
ordering which sharpen as the system undergoes the transition into the nematic state.
In the spin-spin structure factor we observe the characteristic pinch points which slowly
become quenched in the ordered phase.
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We remark again that the quadrupolar tensor order parameter measures effectively two
types of spin orientation — oriented parallel or antiparallel to the nematic axis — and must
weight each as equivalent. As such it is not a good indicator of the type of quadrupolar
order present. This is because a spin oriented parallel or antiparallel to the nematic axis
will be seen as identical by the quadrupolar order parameter and so ¢ = 0 ordering is
always observed. Potential long range ordered states must instead be noted through other
potential features in the structure factor.

Finally, it must be said that although one might be tempted to see “lines” connecting
the ¢ =0 and Bragg peaks in Figure 3.4b, there are none present — this is a visual artifact
due to the diffuse scattering of the nearby peaks.

This paramagnetic to quadrupolar transition is observed by the jump in the quadrupo-
lar order parameter and the sharpening of the peaks in the quadrupolar structure factor
as the system enters a nematically ordered phase. Looking forward, we would expect sim-
ilar behaviour in the octupolar order parameter and its associated structure factor as an
indication of octupolar ordering for b > 0 biquadratic interactions. Potential differences
between the quadrupolar ordering shown in this chapter and the octupolar ordered state
discussed in Chapter 4 may be indicative of more complex ordering, indicating that the
ground state of the b > 0 system could potentially possess some form of long-range order.

3.3 Summary

With b < 0, the bilinear-biquadratic Heisenberg pyrochlore undergoes a first-order transtion
at T' ~ b into a nematic ordered state [18]. We note that a Monte Carlo simulation with
b < 0 with single spin flips and simulated annealing is capable of producing good quality
results — although nonlocal algorithms involving loops have been previously presented [60],
we have had no difficulty reproducing the work of Shannon, Penc and Motome[l&] who
themselves utilize single spin-flips. Although we have not presented new work in this
chapter, we have briefly described the properties of the b < 0 model as a comparison to
our work with b > 0 in Chapter 4. As shall be seen in the following chapter, probing the
biquadratic interaction with b > 0 presents a series of new computational challenges.
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Chapter 4

The b > 0 Bilinear-Biquadratic
Heisenberg Pyrochlore

In this chapter, we utilize the Monte Carlo methods and associated techniques presented in
Chapter 2 to investigate the ordering of the classical b > 0 bilinear-biquadratic Heisenberg
pyrochlore into a putative octupolar state. We will discuss the order parameters associated
with octupolar ordering and show that this octupolar ordered state possesses no long-
range order. Numerous difficulties encountered in the simulation of this system such as
severe ergodicity issues with a single spin-flip algorithm due to the glassiness of the low
temperature states will be discussed. We will also remark on some of the pecularities
that we have encountered such as the sharpness of the first-order transtion and potential
metastable weathervane states that bear relation to the work done by Wan and Gingras
[31]. The potential adoption of the pyrochlore loop move to a four colour system will be
presented and discussed.

4.1 Pertinent Order Parameters

As discussed in Chapter 1, multipolar ordering is often subtle and difficult to characterize;
to properly characterize octupolar ordering on the pyrochlore lattice, we must employ
a variety of order parameters. The quadrupolar and octupolar tensor order parameters
presented in the previous chapter are computed for all simulations — the jump in the
octupolar tensor order parameter 7" marks the onset of octupolar ordering. However the
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octupolar order parameter gives less information about the type of octupolar ordering®
and, like quantities such as the magnetization, cannot convey positional information?.
Therefore, additional secondary order parameters that allow one to distinguish between
generic octupolar states and long range ordered states are necessary.

One useful secondary order parameter is the staggered magnetization, a quantity which
represents the magnetization of the four pyrochlore FCC sublattices. The staggered mag-
netization ranges from 0 in a paramagnetic state or in a random colour ice state, to 1 in a
state where each FCC sublattice contains spins of one and only one colour i.e. the spins
on each sublattice are ferromagnetically aligned. The staggered magnetization is given
in Equation 4.1 where m,, which ranges from 0 to %, is the magnetization of each FCC
sublattice.

4
1
MS:N;%. (4.1)

It is also useful to introduce a parameter describing the angle between nearest-neighbours.
In a perfectly tetraheral state we would expect spins to orient at a relative angle of
cos_l(—%) ~ 109.5°. By measuring the angle between nearest-neighbour spins, the tetrahe-
dral order parameter gives a good measure of ordering on each tetrahedron. The tetraheral
order parameter has been used elsewhere [66][67][68] and is given for a single tetrahedron
by Equation 4.2, where 0;; is the angle between two spins in tetrahedron k.

3 1,2
Sp=1——= | Z [cos@ij + 5} , (4.2)
1<4,(1,J,€k)

We then sum this quantity over all tetrahedra in the lattice, S = % > xSk In a perfectly
tetrahedral state, the tetahedral order parameter S attains a maximum value of 1.

Calculated over each tetrahedron the tetrahedral order parameter best describes local
tetrahedral or octupolar order — in simulations a small but discrete jump is observed at
the transition temperature. Despite this, the tetrahedral order parameter is important
because it gives a measure of the angles between neighbouring spins and thus of the energy

!The octupolar order parameter only gives a measure of the degree to which octupolar order is present
in the system. It does not tell us what type of ordering may be present — it is not possible to encode this
kind of information with a single scalar quantity.

2The magnetization (for something like the 2D Ising model) tells us the ratio of up to down spins. It
tells us nothing about which spins are up or down; multiple states will possess the same magnetization.
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of the system. We clarify here that the octupolar tensor order parameter (Equation 3.7) is
a measure of global ordering throughout the lattice i.e. that the four groupings of mutually
tetrahedral spins that describe octupolar ordering extend over the entire lattice. It is also
possible for local octupolar order to be present — spins in a given tetrahedron order pointing
in particular directions at angles of 109.5° with respect to one another, but these directions
are local to each tetrahedron (or a small region of the lattice). The local tetrahedral order
parameter is therefore not sensitive to global order and serves to measure local octupolar
ordering independent of the presence of weathervane rotations (which we will describe later
in this chapter).

4.2 Thermodynamic Quantities

Our Monte Carlo simulations show that the b > 0 bilinear-biquadratic Heisenberg py-
rochlore undergoes a first-order transition at very low temperatures from a disordered
state into an octupolar ground state with no long range order®. This phase transition ap-
pears to be very strongly first-order for weak biquadratic interactions but weakens as the
biquadratic interaction increases in strength. The results of single spin-flip Monte Carlo
simulations making use of simulated annealing for ¢, = 0.12 are shown in the following
figures for system sizes of L =4 and L = 5. In contrast to the negative biquadratic interac-
tion discussed in the previous chapter, the simulation must proceed much, much longer in
order to obtain good statistics of physical quantities to clearly show the transition into the
octupolar ordered state. Four million Monte Carlo steps were run for each temperature in
the following results with sampling occuring every 8 steps. In contrast, a mere 80,000 steps
and 20,000 samples can be used to obtain reasonably good quality statistics for 6, < 0.

3Disregarding simulation freezing and lack of ergodicity
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Figure 4.1: The energy per spin and specific heat for L=4 and L=>5 with 6, = 0.12. Note
the sharp first order transition. Due to the freeezing of the simulation and therefore the
sharpness of the transition, there is difficulty capturing the peak in the specific heat.
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Figure 4.2: The quadrupolar and octupolar order parameters for L=4 and L=>5 with 6, =
0.12.

41



Tetrahedral Order Parameter 6, = 0.12 .10 Staggered Magnetization 6, = 0.12

L=4 L=4
0.94 | o o L=5/ L=5
0.08 |- °
& - )
- - Q
0.92 |- \ R %%Wmﬁ)&uﬁm
%= =
5 £
£ 5 0.06
E 2
g £
o o0
< 090} { £ W smsnsssmmmpsss
£ 3
S 5
= & 0.04
£ 088l
o
>
0.02 |
0.86 |-
1 L 1 1 L L 0_00 L L L 1 1
0.025 0026 0027 0028  0.029 0030 0031  0.032 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Temperature Temperature (kB=1)
(a) Tetrahedral Order Parameter (b) Staggered Magnetization

Figure 4.3: The tetrahedral order parameter and the staggered magnetization for L=4 and
L=5 with 6, = 0.12.

Considering Figure 4.1, we note a sharp discontinuity in the energy that is difficult to
capture in the simulation (we elaborate below) leading to the poor behaviour of peak in
the specific heat as we calculate the heat capacity of the simulation as C' = <E2>T;2<E>2 In
general, we find that the specific heat is not well-behaved at the transition for all values
of 6y, as shall be found throughout this chapter. Thus standard methods that involve
an analysis of the specific heat peak cannot be employed — at a first-order transition the
height of the peak of the specific heat should be proportional to the size of the system
(C, o L% where d is the dimension of the system); as we cannot capture the peak we
cannot comment on finite-size effects in this manner. We will comment on finite-size
effects later in this chapter, but we note that for a weak biquadratic interaction it would
seem that the supposed critical temperature 7, can be obtained to what appears to be a
high degree of precision due to the observed sharpness of the first order transition. This is
merely an illusion — due to the freezing of the simulation the transition temperature is in
principle very ill-defined.

As the strength of the biquadratic interaction is increased, the jump in the order pa-
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rameter becomes less pronounced and the system appears to become more weakly first
order (and/or the simulation experiences significantly more issues). For example, for 0,
= 1.2 (Figure 4.4) the drop in the energy occurs over a much larger temperature range.
The peak of the specific heat remains poorly defined. It thus appears that the simulation
proceeds very slowly through the transition and that the region near the transition may
not be as depicted in Figures 4.4 to 4.6 due to freezing. Typically, thermodynamic values
computed by a Monte Carlo simulation at a first order transition will possess large errors
as the simulation transitions between the ordered and disordered states. This can be noted
by the relatively large error bars as seen in Figure 4.1. The small error bars in the simu-
lations with 8, = 1.2 would therefore imply that something is amiss. Unlike simulations
with small ¢, the simulation takes longer to order from the paramagnet to octupolar state
with the simulation appearing to be briefly stuck in local metastable states (Figure 4.10c).

Observing the essentially flat staggered magnetization below the transition, we note
extreme ergodicity and freezing issues. This freezing of the staggered magnetization implies
that the ratio of spins of a given colour on each sublattice remains the same without
fluctuations. While the spins in the lattice are free to rotate around (O(3) symmetery)
their orientations relative to one another do not change; the lattice has frozen into a
particular octupolar configuration or colour ice state. We elaborate on this later in the
chapter.
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Figure 4.6: The tetrahedral order parameter and the staggered magnetization for L=4 and
L=5 with 6, = 1.20.

Figures 4.1 to 4.6 for #, = 0.12 and 6, = 1.20 strongly suggest the formation of a low
temperature octupolar ordered phase, despite the ergodicity and freezing issues. We ob-
serve a clear drop in the energy along with a sharp rise in the octupolar order parameter
giving all indications of a first order transition. Secondary order parameters such as the
tetrahedral order parameter and staggered magnetization also signal this transition. The
quadrupolar order parameter is included for completeness. As the system enters an oc-
tupolar phase with spins in a tetrahedral arrangement the quadrupolar order parameter,
a measure of mutual collinearity, abruptly drops.

Figure 4.7 illustrates the orientation of spins in a conventional 16 spin cubic unit cell in
the paramagnetic and octupolar regime. Simulations show that upon cooling, the octupolar
colour ice state that is reached possess no long-range order and freezes completely into a
random colour ice state. Evidence for this freezing is illustrated in Figure 4.8 and discussed
in the accompanying caption. It is quite apparent that due to the freezing of the Monte
Carlo simulation it is difficult to describe this system below the critical temperature; it
is possible that the lack of long-range order that we observe is a consequence of freezing.
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Later in this chapter we will present a brief exploration of the low temperature regime by
investigating warming starting from various candidate ground states.

(a) Paramagnetic State (b) Octupolar Colour Ice State

Figure 4.7: The orientation of the spins in a single conventional cell for the paramagnetic
state and a random octupolar colour ice state are shown. The a sublattice tetrahedra are
shown in black with blue lines corresponding to the sides of the b sublattice tetrahedra.
Above the critical temperature in the paramagnetic state, we see that the spins (shown in
red) on each tetrahedron are organized such that the vectors describing their orientation
sum to 0 with no obvious similarities between the spins on different tetrahedra. In the
octupolar state, each tetrahedron possesses four spins angled at ~ 109.5° with respect to
one another. Unlike in the paramagnetic state, these spins can be organized into four
groups across the entire lattice with each tetrahedron possessing one spin of each colour—
a global octupolar ordered phase. The spins belonging to each of these four groups have
been painted different colours; black, red, blue, and green.
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(a) T = 0.005 (b) T = 0.025

Figure 4.8: The orientation of the spins in a single conventional cell for the same simula-
tion at temperatures of 7' = 0.005 (right) and 7" = 0.025 (left) with 6, = 0.12, L =4. The
spins in the left and right panes have rotated due to the O(3) nature of the Hamiltonian
but the colours of the spins have not changed — the simulation has frozen out below the
critical temperature T, ~ 0.0291 indicated in Figure 4.1. This same section of the lattice
for this simulation at 7" = 0.010 can be seen in Figure 4.7b. Note that as the temperature
is increased, spins of a given colour show greater deviations from their expected colour
orientation. Four million Monte Carlo steps are completed for each temperature with tem-
perature points spaced AT = 0.005 apart and so 1.6 x 108 Monte Carlo steps seperate the
left and right panels. This shows quite concretely that these Monte Carlo simulations are
completely nonergodic.

In an attempt to characterize this first-order transition we ran simulations with sizes
ranging from L = 3 to L = 7. As previously noted, the specific heat is, and remains not
well-behaved and cannot be captured accurately. However, the first order transition is
found to be exceptionally sharp (see Figure 4.9) at small §, and we can observe the critical
temperature. This of course assumes that the Monte Carlo simulation, with its extreme
freezing and lack of ergodicity, can be assumed to be somewhat accurate. However we note
some pecularities. In Monte Carlo simulations of finite sized systems at a first order phase

48



transition in the metastable window between the critical temperatures upon cooling T
and warming 7y.,m, one expects to see the ordered and paramagnetic phases separated
by an energy barrier. The simulation will exist in either the ordered or disordered phase,
occasionally traversing the energy barrier and entering the other phase. In general this is
not what we observe here as our simulation appears to exist in the paramagnetic state for
an extremely long period of time before entering the octupolar state. The simulation never
re-enters the paramagnetic state.

The time series of the simulation shown in Figures 4.10a and 4.10b at a temperature of
0.029074 (the histogram in Figure 4.9b) is instead characterized by the slow and gradual
transition from the paramagnetic to octupolar state over a significant fraction of the 4
million Monte Carlo steps that comprise that data point. This agrees with simulations
where it was observed that failure to spend sufficient time at the transition temperature
resulted in the simulation failing to enter an octupolar state and having defects* freeze in as
the temperature dropped rapidly. It appears that the dynamics of the bilinear biquadratic
Heisenberg pyrochlore with b > 0 is exceptionally slow”. Furthermore, we must note the
extremely small temperature ranges presented here. Note that the simulation in question
has dozens of data points, each consisting of 4 million Monte Carlo steps in a temperature
range of A T = 0.0001. It is thus difficult to comment on the nature of this transition due
to the freezing and extremely long equilibration times but these slow dynamics provide
an explanation for the behaviour of the specific heat as fluctuations in energy are slow
compared to the time spent to simulate “running” at each temperature.

4Tetrahedra which do not obey the colour ice rule.
5 At least with a single spin flip algorithm.
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temperature range. T, ~ 0.029074.

Figure 4.9: Monte Carlo simulation with ¢, = 0.12, L=4. a) A critical temperature of
approximately 0.029074 is observed. The spacing between temperature points is extremely
small (107°). Yet the transition from the paramagnetic to octupolar state occurs over 1-2
data points or a temperature range of AT = 1-2 x107%. We thus observe what appears as
a very, very strong first order transition (assuming ergodicity issues do not render our dis-
cussion of the transition irrelevant). Repeating the simulation confirms that exceptionally
sharp ordering is not an abberation, although the critical temperature may vary sligthly
from run to run. b) A bimodal energy distribution at the critical temperature.
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.10: Monte Carlo time series data of the energy per spin (top) and octupolar tensor
rameter (middle) at 7' = 0.029074 with 6, = 0.12, L=4 as shown for Figure 4.9. The
bottom panel shows the time series of the octupolar order parameter for a simulation with
0 and L=4 for six temperatures as the simulation enters the ordered state. Four
million Monte Carlo steps are run with sampling every 8 steps. We see one transition from
the paramagnetic ground state to the ordered octupolar state. In the entire simulation,
this transition is only made once — the simulation never re-enters the paramagnetic state.
In the above figures only every 100" (top, middle) or 1000*® (bottom) sample is shown for
clarity.
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For a first order transition, the transition temperature should scale as T, ~ 77 [10]
where d = 3 is the dimension of the system as plotted in Figure 4.11. Unfortunately,
due to the slow simulation dynamics and freezing, the transition temperature is not well
defined, even if the transition appears sharp in the simulation results. Thus it is quite
difficult to accurately identify the transition temperatures of simulations upon cooling,
which appear to possess a somewhat random component to the temperature at which they
order. While the transition temperature between the paramagnetic and octupolar phases
appears to be sharp it is not necessarily accurate. Nevertheless, Figure 4.11 shows an
attempt at describing finite-size effects in the system. We note the absence of error bars;
due to the lack of ergodicity and other simulation issues it is not possible to place accurate
error bars (which are only meaningful if the simulation is ergodic) in Figure 4.11. The
attempted linear fit in Figure 4.11 is visually equivalent for various values of d ranging
from 1 to 5 (R* > 0.95); nothing meaningful can be inferred from the figure and we include
it for completeness.
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Figure 4.11: Finite size scaling of T, ~ ﬁ with d = 3 and 6, = 0.12. Systems of size L =
3,4, 5,6, and 7 are used.

4.2.1 Parallel Tempering
As described in the preceeding chapters, methods such as parallel tempering have been

employed to significant success in systems that encounter difficulty equilibrating near the
transition temperature. We must first caution that parallel tempering is not magic and may
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not necessarily return better results than a generic single spin flip algorithm. Named after
the fact that algorithmically, multiple simulations are performed simultaneously, parallel
tempering often involves running simulations in parallel computationally as well, due to
a significant increase in the total required computational time. Unfortunately, efficient
multithreading® is often nontrivial.

As described in Chapter 2, simulations of the same system are run at different temper-
atures with the lowest temperature being the target temperature. Periodically, the orien-
tation of the spins are swapped between simulations with similar temperatures according
to the Boltzman distribution. While the simulations themselves can be multithreaded and
run independently of one another, they must be re-synchronized every time swaps take
place”.

Results for the b > 0 bilinear-biquadratic model with both parallel tempering and sim-
ulated annealing (cooling) are shown in Figure 4.12. Due to the computational overhead,
the spacing between temperatures was increased for simulations involving parallel temper-
ing. It was expected that this would not have a significant effect on the results due to
the larger number of temperatures that would be accessed (for each target temperature
there were 15 more higher temperature simulations — a “chain” of 16 simulations) and the
swapping that would occur between simulations. Unfortunately, due to the extremely slow
dynamics exhibited by the system, there was difficultly equilibrating near the transition
and the simulations often froze with significant defects (tetrahedra which do not obey the
colour ice rule), especially for the simulations with higher temperatures in the chain. This
became pronounced as ¢, was increased.

SMultithreading or running a single piece of code across multiple CPU cores, is often difficult due to the
way in which algorithms must be structured (both with respect to computing resources and the algorithm
itself) in order to properly utilize parallel resources.

"This resynchronization is not permitted under the OpenMP (the multithreading library used here)
standard. The threads must be re-created constantly with simulation data statically saved and reassigned
to the appropriate thread.
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Figure 4.12: Comparison of parallel tempering + simulated annealing with simulated an-
nealing alone for 6, = 0.12 for system sizes of L = 4 and L = 5. The inclusion of parallel
tempering appears to drive the critical temperature down. In the left pane, the slightly
lower octupolar order for the L = 5 simulation with parallel tempering is suggestive of
frozen-in defects or tetrahedra violating the colour ice rule. With parallel tempering, the
magnetization does not appear to be frozen anymore below the transition. This is not pre-
cisely true — while the 16 simulations are frozen the parallel tempering algorithm only swaps
spin configurations between simulations. Therefore the staggered magnetization with par-
allel tempering turned on is just a randomly weighted average of the frozen magnetizations
of the 16 simulations.

As we have seen, the first-order transition that we have observed utilizing only single
spin flips and simulated annealing is to a large degree questionable due to extreme lack
of ergodicity in Monte Carlo simulations. With the addition of parallel tempering, it is
tempting to believe that this has been fixed — the transition is much less ‘sharp’ and we
see a more gradual entry into the ordered phase. However, it is important to note that
parallel tempering does not add new spin configurations but only moves spin configurations
between simulations according to their Boltzmann weighted energies. Thus, the issue of
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exceptionally slow dynamics remains as the system must first order into the ordered state
before the swapping of spin configurations becomes beneficial. The apparent advantage of
parallel tempering, better ergodicity, may not count for much if transitions between states
are extremely slow with respect to simulation and swapping times.

The inclusion of parallel tempering reduces the apparent critical temperature. This
may be attributed to two things. First, the temperature spacings are tighter for the runs
without parallel tempering. As the dynamics of the system appear to be exceptionally
slow in comparison to the time the simulation spends at each temperature, we would
expect simulations sampling closely spaced temperatures to enter the octupolar phase first®.
Second, the swapping frequency of every 80 Monte Carlo steps is very quick compared
to the time the simulation takes to transition between states — on the order of 400,000 -
800,000 Monte Carlo steps as shown in Figure 4.10 (samples are 8 Monte Carlo steps apart).
Thus swapping configurations quickly between systems may have the effect of introducing
high frequency noise and inhibiting ordering as systems so to speak will live at multiple
temperatures and thus may encounter difficulty equilibrating. A system attempting to
enter the ordered state at the lowest temperature Ty, where ordering may be energetically
favourable, will have to contend with frequently being swapped to temperature T} where
ordering may be less favourable — inhibiting ordering as a whole. The solution of course
would be to swap less often. However, the dynamics of the single spin-slip simulation are
so slow that swapping would occur so infrequently as to render parallel tempering mostly
pointless. There is no way to fix this other than to run the simulation for significantly
longer at each temperature, dramatically increasing computation times.

8 A useful though not strictly correct way to picture this is to imagine a mean time 7 that a simulation
in the disordered state will exist in the disordered state before transitioning to the ordered state. If a
system is started in the disordered state and the dynamics of the system is very very slow relative to the
simulation time, then one would expect a simulation which runs longer in a given temperature range to
enter the ordered phase at a lower temperature than a simulation that quickly traverses that temperature
range.
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Figure 4.13: Time series of the octupolar order for the simulation with 6, = 0.12, L = 4
with parallel tempering and simulated annealing for the temperatures of T'= 0.028 to T' =
0.026 (first and second 500,000 samples respectively) shown in Figure 4.12a. The collection
of points below the main band at the latter half of the time series shown by the red arrow
indicates swapping with the simulation at the next higher temperature (i.e. temperature
T; in the “chain” of temperatures Tg, 11,75, ...T15) in the paramagnetic phase. Gradually
the simulation at temperature 77 in the chain enters the ordered phase at around sample
900,000. For clarity, only every 100" sample is shown. There is a short equilibration period
between the two temperatures which shows as a subtle discontinuity at sample 500,000.

The end result is that it is difficult to say whether the addition of parallel tempering
improves our Monte Carlo simulation. We can say with certainty that significantly longer
simulations that ergodically sample configuration space would be required to obtain truly
trustworthy results.
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4.3 Speculative Paramagnetic-Octupolar Phase Dia-
gram

Another indicator of a first order transition is a hysteresis where the transition lags behind
its driving forces. In principle, the transition temperature obtained by simulation should
be lower for simulations undergoing cooling from the paramagnetic (Tco01) phase than for
simulations being warmed from the octupolar phase (Tyam) as simulations are finite in
time and first order transitions proceed through nucleation (with a corresponding energy
barrier).

Upon warming the simulations starting in a low temperature random state, we observe
that the simulation remains in the disordered state until the general vicinity of T, at
which point it gradually enters a random colour ice state. Upon further warming the
simulation then rapidly collapses back to the paramagnetic state at T'yam (a jump followed
by a drop is observed in the octupolar order parameter). A plot of this is shown later in
this chapter (e.g. Figure 4.21D).

The transition temperature is the midpoint of the jump in the octupolar order pa-
rameter between the octupolar and paramagnetic phases. The error in temperature is
calculated as half the temperature range between the temperatures at which the simula-
tions enters/leaves the pure octupolar and paramagnetic states (i.e. the transition region).
We note that the boundary of the paramagnetic-octupolar transition resembles the specu-
lated semiclassical phase diagram proposed by Wan and Gingras [31]. The existence of a
potential long range ordered state in relation to the classical order-by-disorder calculations
of Wan and Gingras are presented later in the chapter.

We show the hysteresis gap, or the difference between Ty.m and T, for a variety
of biquadratic strengths 0.05 < 6, < 1.30 in Figure 4.14 and confirm that the entire
paramagnetic-octupolar phase boundary appears to be first order (simulation issues aside)
due to its presence. There is a small irregularity at 6, ~ 0.42 which we cannot comment
on and persists through repeated simulations.
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Figure 4.14: Paramagnetic-octupolar transition showing the hysteresis gap upon warming
and cooling from disordered states for 0.05 < 6, < 1.30 for simulations with L = 4. Upon
warming, the simulation rapidly collapses from the octupolar to the paramagnetic state
hence the small error bars. A small jump in 7, at 6, = 0.40 to 6, = 0.44 is observed and
confirmed from many simulations.

4.4 Correlations

We plot the spin and octupolar structure factor just above and just below the paramagnetic
to octupolar transition. In a random colour ice state, we would expect the number of spins
of a given colour to be found in roughly equal quantities on each FCC sublattice and
the spin-spin structure factor to cancel to zero. However, in the all-in/all-out (AIAO)
ordered phase in which each FCC sublattice contains spins of one and only one colour
(i.e. ferromagnetic ordering on each FCC sublattice), we would expect to observe peaks
in both the spin and octupolar structure factor due to the regular ordering of spins on the
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sublattices. Here, we would expect to see peaks at ¢ = [111] (and all symmetry related ¢'’s)
corresponding to correlations between spins along the direction of the stacked triangular
and kagome planes and at ¢ = [220] and [002] corresponding to correlations between spins
on their FCC sublattice. In contrast, in the paramagnetic phase, we would expect to see the
characteristic pinch point scattering cited in the literature [63][64][65]. The spin-spin and
octupolar structure factor are presented below for simulations well above the transition,
just above the transition, and below the transition. Structure factors are calculated over
1000 samples with interpolation? between points due to the small system sizes to increase
resolution.

Sr(@) = Y [T, - Tyg) (4.3)

i7j7a7/8

The octupolar structure factor is calculated as defined in Equation 4.3. We again stress
that the presence of a ¢ = 0 peak does not imply the existence of ¢ = 0 ordering but
instead means that the entire system is in some octupolar state. Therefore the octupolar
structure factor of any octupolar ordered phase will contain a ¢ = [000] peak.

9This can create visual artifacts.
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Figure 4.15: The spin and octupolar structure factors well above (7" = 0.0505), just above
(T =0.033), and just below (7" = 0.028) the transition temperature (7. ~ 0.2907) for
system size L = 4, 6, = 0.12. Above the transition we observe the onset of local octupolar
order as diffuse ¢ = 0 peaks in the octupolar structure factor. As the system cools into the
octupolar state the ¢ = 0 peaks in the octupgpjar structure factor “sharpens” and grows in
intensity. Due to the freezing of the system, the spin-spin structure factor is not flat below
T, with correlations persisting to lower temperatures.
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Figure 4.16: The spin-spin and octupolar structure factors near the transition at temper-
atures of T' = 0.26, 0.28, and 0.30 with the inclusion of parallel tempering for L = 4, 6, =
0.12 for the simulation shown in Figure 4.12. The top panes show the paramagnetic state,
the middle panes the system just above the transition and the lower panes show the system
just below the transition. The swirls seen ingthe spin structure factor below the transition
(bottom left) are random artifacts that are not seen in subsequent simulations. Despite
the addition of parallel tempering, no significant changes are observed in the spin-spin and
octupolar structure factors.
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Calculations of the structure factor further confirm our expectation of an octupolar
state. Above the transition, we see the indications of developing local octupolar order as
diffuse ¢ = 0 peaks. As the system is cooled, it enters a globally octupolar state without
any long range dipolar order as evidenced by the increasing height of the ¢ = 0 peaks. Due
to the simulation freezing-out, the spin-spin structure factor is not flat below the transition;
the “bow-ties” begin to disappear but the spins freeze and leave a random “signature” at
the location of the bow ties. The potentially intriguing circular structures in pane e) of
Figure 4.16 are random — repeated simulations and simulations at nearby temperatures
show no evidence of this specific structure. The structure factors at other values of 6, are
not significantly different.

4.5 Histogram Reweighting

The success of the single and multiple histogram reweighting methods depends on the
acquisition of good quality simulation data. Therefore, the slow dynamics and freezing
of the simulation below the critical temperature suggests that any attempt at histogram
reweighing is doomed to fail. This can be quite clearly understood as only one temperature
point (in a simulation with or without parallel tempering) actually contains thermodynamic
information sampling both the octupolar and paramagnetic phases. Other temperature
points contain only “knowledge” of one of the phases and so there is no region of coexistence
to reweight. Worse still, is that due to the slow simulation dynamics and lack of ergodicity,
we cannot know if that temperature point accurately describes the physics of the b > 0
bilinear-biquadratic model or the quantities calculated at that temperature are an artifact
of the simulation failing. Attempts to apply histogram reweighting to the b > 0 bilinear-
biquadratic Heisenberg pyrochlore simulation data using the methodology described in
Chapters 2 and 3 were thus met with failure.

4.6 A Potential Loop Move

To aid in our attempt to probe the paramagnetic-octupolar transition and fix ergodicity
and freezing issues, we explored potential loop moves as utilized previously in the literature
for different pyrochlore systems and described in Chapter 2. Such loop moves are expected
to aid in equilibration by allowing the system to access states with similar energies that
may be separated by large energy barriers not readily traversable via single spin flips.
Unfortunately, the tetrahedral ground state ordering of the b > 0 bilinear-biquadratic
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model presents a number of difficulties in implementing such moves. First, like with b <
0, there is no global ordering axis with a fixed direction as present in Ising models; this
model possesses an O(3) symmetry and thus local axes must be determined throughout
the lattice for each attempted loop move. Unlike in the nematically ordered phase for
b < 0, there are four distinct local axes as spins are assigned 4 mutually different colours.
Thus the potential moves as presented by Shinaoka et al.[60] as flip xzyz and flip parallel
are invalid as the colour axes for the positivie biquadratic model are positive definite and
spins flipped with respect to their colour axis break the colour ice rules and are not colour
spins.

The rotate move, involving the rotation of spins from one position in the loop to the
next does remain potentially valid. This move is illustrated in Figure 4.17 and involves
the construction of an alternating two color loop. The spins are then rotated or permuted
through the loop (in a red-green loop the red spin in the first position is moved to the
second position while the green spin in the second position is moved to the third position
and so on). Loops involving more than two colours are not permitted as a rotation of
a three colour loop would break the ice rule (Figure 4.17). However, the construction of
such a two colour loop is hampered by the fact that such a two colour loop must live in a
four colour environment and there are numerous means in which its construction could be
blocked. By sheer probability alone, one should expect that in a random colour ice state,
there to exist far fewer two colour loops in a four colour environment than two colour
loops in a two colour environment as half the spins, not being the correct colour, cannot
be added to the loop.
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(a) A two colour red-green loop. (b) Rotation of the two colour loop shown in

a)

Figure 4.17: a) A two colour loop composed of alternating red and green spins marked by
the thick blue line. Note the boundary of blue and black spins surrounding green and red
spins. b) The same loop after rotation. Note that for a given tetrahedron the rotation
of spins means that one green (red) spin enters the tetrahedron and one green (red) spin
leaves the tetrahedron thus preserving the colour ice state. If one attempted to rotate a
three (or more) colour loop, one would break the colour ice rules.

This two colour rotational loop move in a four colour environment has previously been
presented and utilized in the literature [31][09][70][71][72] although for Ising-like spins. In
contrast to such two colour loops in two colour environments, the loop presented here does
not exist without a number of caveats. Random colour ice states are not only significantly
less likely to support two colour loops, but there is a significant degree of “colour isolation”.
In Figure 4.17, we notice that the red and green loop is seperated from the rest of the lattice
by a boundary of blue and black spins. This does not mean that the spins of the loop are
fixed (a connecting loop of blue and green spins could rotate a single green spin out of the
loop.) However, two colour loops in a four colour environment do not posses the richly
connected and branching nature that two colour loops in a two colour environment do.
Unlike the two-up/two-down ice state where a loop entering a tetrahedron on a black spin
may exit the tetrahedron on one of two white spins, two colour loops in colour ice state
may only exit a tetrahedron through the one appropriately coloured spin. Two colour
loops in a four colour system are therefore highly restricted and lack the interconnected
and branching nature of two colour loops in two colour spin ice.

The additional constraint of significantly lower loop connectivity is expected to greatly
limit the efficacy of two colour loops in a four colour environment. Furthermore, as shown
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in Figure 4.17, if loops do not interconnect, loop rotations will not accomplish anything
i.e. if there is no interconnecting blue/black-green/red loop in Figure 4.17, the red and
green spins in will simply be rotated around in circles. Finally, the “connectivity” of these
two colour loops must be sufficiently ergodic as to allow the simulation to organize into
potential long-range ordered states.

Complicating these issues, is that loops in potential long-range ordered states are gen-
erally on the order of the linear size L of the lattice and will possess “ends” that will
only close through the periodic boundaries. This is generally not an issue for Ising-like
spins as all spins of the same colour point in the exact same direction and are otherwise
identical. However, Heisenberg spins are different and will deviate slightly with respect to
the colour axes. As the temperature is increased, this deviation increases. Thus, in a four
colour system with Ising spins, the interchange of any two spins of the same colour has an
energy cost of 0 (barring the presence of any further interactions); not so for Heisenberg
spins. Ising-like loops will have a zero energy cost to rotate independent of the temperature
while the energy cost to rotate Heisenberg-like loops grows as the temperature and size of
the loop is increased. As long-range ordered states will only possess loops of length L we
would expect the loop acceptance ratio in these order states to drop to 0 as the size of the
Heisenberg system grows and the energy cost of a rotation increases.

Preliminary work on the implementation of the two colour loop was attempted but not
finished due to time constraints. Due to the ergodicity and freezing issues that we have
encountered and the potential benefits that nonlocal moves could bring, fully investigating
the effect that two colour loops have on the b > 0 model is of great importance. Should
the loops address these issues, stronger statements could be made regarding the ordered
octupolar phase and its low temperature properties.

4.7 Absence of Long-Range Dipolar Order

The investigation of the ground state of the b > 0 bilinear-biquadratic model has been
extensively hindered by issues of ergodicity and freezing as we approach the transition
from above. We then turn our investigation into starting from low temperature ordered
states and approaching the transition from below. Approaching the transition from below
not only allows us to expose the hysteresis of the first order transition compared with
simulations cooling from the disordered paramagnetic state, but allows us a window into
the behaviour of the “weathervane modes” as described by Wan and Gingras [31].
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4.7.1 Metastable Weathervane States

A weathervane mode can be described as a portion or membrane of the lattice that collec-
tively rotates at no energy cost. On a single tetrahedron, one observes that if a given spin
is “pinned” in place (we dub this spin the weathervane pole) one may rotate the remaining
three spins around the axis defined by that spin (tracing out the surface of a downwards
facing cone) at no energy cost — the angles ¢ between the spins remain constant and so
the total energy of the tetrahedron remains constant. Generalizing this to the pyrochlore
lattice shows that these rotational membranes should exist for any segment of the lattice
that is completely bounded by spins of one colour (i.e. the pole spins). This is easily proven
as the weathervane membrane is only connected to the lattice through the pole spins and
that under the zero energy cost global rotation along the axis of the pole spins, the angles
between three colours of spins that make up the membrane do not change (see Figures 1.4
and 1.5. Thus for a system with Hiesenberg spins, there are an infinite number of angles
along which a weathervane membrane may be rotated at zero energy cost with angles of ¢
=0, j:%” which correspond to permutations of colours within the weathervane membrane.
The number of weathervane modes that a system may support ranges from 0 (i.e. a global
rotation of spins in the system) to O(L) in the AIAO state [31].

The concept of weathervane modes is not altogether new — regions of a lattice that may
rotate at zero energy cost have been previously noted in the kagome lattice [35][32][33][34]
[36][37]. Here we investigate the weathervane modes present in systems started at low
temperatures in the long-range ordered ATAO and {001}'° states described by Wan and
Gingras [31] and shown in Figure 4.18. The AIAO state consists of spins of one colour
on each FCC sublattice while the {001} state alternates layers of ATAO tetrahedrons with
‘swapped’ AIAO tetrahedrons (the pairs of spins in each tetrahedron with the same z value
swap colours) along the z axis. The V3 x /3 state was not investigated in this work as it
requires a different hexagonal unit cell to satisfy periodic boundary conditions and due to
time constraints.

Previously, Wan and Gingras [31] investigated order-by-disorder on the weathervane
modes in the ATAO, {001} and V3x1/3 states (shown in Figure 4.18; the V3x+/3 state is an
ordered state in the kagome lattice. See Ref. [01] for a description.). However, their search
only considered stacked weathervane membranes with the spins on the even numbered
membranes “pinned” in place; only spins on odd-labeled weathervane membranes were
free to rotate. Nevertheless, they found that spins on alternating weathervane membranes
possess maximal entropy or minimal zero point energy at weathervane angles of ¢ = m,

10We will consider one of these states with modulation ¢ = (001) i.e. stacking weathervane membranes
along the z direction.
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degenerate with ¢ = 0. Angles of :l:%7r did not correspond to local energy minima or local
entropy maxima.

x(a) ATAO

Figure 4.18: The ATAO (left) and {001} (right) ordered states. A 2x2x2 section of the
lattice is shown. In the ATAQO state, every FCC sublattice possesses the same colour spin —
all tetrahedra are identical. In pane a), weathervane modes are seen running along the [111]
direction bounded by the red spins. In pane (b), the {001} state consists here of stacked
layers of tetrahedra along the vertical z axis, one layer consisting of AIAO tetrahedra and
the other composed of “inverted” (time-reversed) tetrahedra (the spins in each pair of
spins with the same z coordinates exchange colours) possesses weathervane modes along
the [001] direction seen by the blue and green spins. For clarity, only the sublattice of a
tetrahedra are shown.

The AIAO and {001} states stack weathervane membranes along different directions
and thus define different spatial correlations. The spin and octupolar structure factors
of these states are illustrated in Figure 4.19 for a system of size L = 6. Looking first at
the ATAO spin structure factor, we observe two groups of Bragg peaks corresponding to
correlations between spins on FCC sublattices (¢ = (0,0, £2), (£2,4£2,0)) and between
spins on stacked kagome and triangular planes (¢ = (1,1,41), (=1, —1,+1))'. The height

' Not all these points are seen in the hhl plane.
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of these peaks were measured as % and %, respectively, corresponding to cubic symmetry

and stacked kagome and triangular planes along the [1,1,1], [-1,-1,1], [-1,1,-1], [1,-1,-1]
directions therefore giving aggregate peak intensities on the order of the number of spins
N (3456 for a L = 4 system).

In the {100} state, the ¢ = (0,0,£2),(£2,42,0) correlations are maintained while
the ¢ = (1,1,4£1),(—1,—1,41) correlations are broken to include further ¢ = (£1,+£1,0)
correlations which are indicative of the stacked weathervane membranes along the z axis.
The intensity of these peaks were calculated to be év—4 and 1% respectively.

Peaks in the octupolar structure factor possess intensities scaled by the octupolar tensor
parameter and its scalar products relative to the intensity of peaks in the spin structure
factor. We note that the value of the octupolar order parameter in a fully ferromagnetic and
tetrahedral states is % 10 and % 2 respectively (in a ferromagnetic state the magnetization
would be 1 for instance) and that these values scale the heights of the observed peaks in
the octupolar structure factor relative to the peak height in the spin structure factor. For
instance, the ¢ = (1,1, +1), (=1, —1, £1) octupolar peaks are 1.6x or (%x/ﬁ)z = % (T; - T
= 1.6) the intensity of the equivalent peaks in the spin structure factor (S; - S; = 1).

Likewise the ¢ = 0 peak has an intensity of N[1 — (5\/\/%)2] = N[1— 2] = 3456 * 5 = 1535.
5
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Figure 4.19: Calculated spin and octupolar structure factors for the AIAO and {001}
states.

Comparing the octupolar structure factor analytically determined in Figure 4.19 to the
results of the Monte Carlo simulation (Figures 4.15 and 4.16) shows that the ¢ = (0,0, +2)
and ¢ = (£2,£2,0) peaks are missing in the results of the Monte Carlo simulations. The
random octupolar states obtained by Monte Carlo simulation do not contain any sort of
ordering — spins on each tetrahedron may be randomly coloured as long as the entire
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lattice obeys the colour ice rules. However, the calculated ATAO and {001} states do
possess periodic ordering (the ATAO and {001} lattice can be created by the translation
of the 16 spin base unit cell). Therefore peaks corresponding to this cubic symmetry are
observed in the ATAO and {001} ordered states but not for random octupolar states.

On the following pages we present results for warming from three initial low temperture
starting conditions — the AIAO state, the {001} state (Figure 4.18) and a completely
random non-colour ice state. Unlike Wan and Gingras [31], we fix no spins in our lattice
and thus the rotation of weathervane modes is completely unhindered. The action of all
weathervane membranes are thus taken into account. Though the single spin flip move is
extremely slow, the simulation will run for a relatively long time in the octupolar phase and
single spin flips should not encounter any undue difficulty sampling zero energy rotations
which do not require spins to change colour and thus overcome energy barriers. Spins will
be free to rotate in the manifold of energetically degenerate weathervane modes and the
presence of potential long-range order for that particular state may be uncovered. The
caveat, however, is that as the single spin-flip algorithm appears to be unable to break the
ice rules and change the colour of a spin, it is unlikely that a simulation started in one
particular long-range ordered state will transition into a different long-range ordered state.

4.7.2 Low Temperature Ordered Phases

We observe numerous and intriguing results in these warming simulations which we will
briefly summarize here. Warming from a low temperature ATAO state shows the develop-
ment of distinct metastable states manifested as plateaus in the octupolar order parameter.
These states are distinct and clearly defined, as can be seen in Figure 4.20. Repeating the
simulation under the same parameters shows that the entry and exit of the simulation
into these states is completely random. In contrast, warming the {001} state reveals a
system sampling a metastable manifold — spins cleanly rotate through the multitude of
weathervane modes present in the lattice and quantities such as the octupolar order pa-
rameter take on a wide range of values'?>. Warming from a random configuration of spins
gives a frozen system that slowly orders into a random octupolar state at a temperature
slightly lower than the temperature that a simulation being cooled transitions from the

12The octupolar order parameter captures the lattice ordering into a “global colour state” — all spins in
the lattice pointing in the same colour directions in a colour ice state. A lattice with weathervane modes
will possess spins that do not orient along the four colour groupings (these spins have been rotated by
the weathervane angle ¢) while also being a colour ice state. As the octupolar order parameter sums the
global orientations of spins across the entire lattice, octupolar states containing weathervane modes are
expected to possess a lower octupolar order than states without weathervane modes.
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paramagnetic to octupolar phase. The following section analyses results that do not make
use of parallel tempering. This is because the swapping of simulations between different
temperatures makes it difficult to observe the plateaus that mark these metastable states.
Nevertheless we do note the fingerprints of these metastable modes in computations with
parallel tempering.
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Figure 4.20: Energy and octupolar order for systems under various starting conditions
with 6, = 0.12. The simulation started in the disordered state and warmed struggles
to equilibrate into the octupolar phase, only fully ordering into an octupolar state at
T ~ 0.022.
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Figure 4.22: Energy and octupolar order for systems under various starting conditions with
0, = 1.20.

A number of pecularities are shown in Figures 4.20 - 4.22. The hysteresis gap is ob-
served to increase as #, increases to some degree. Interestingly, we note that simulations
started in the ATAO phase generally transition upon warming at a higher temperature than
simulations started in the {001} phase which generally enter the paramagnetic phase at sim-
ilar temperatures as simulations started in a completely disordered state. All simulations
undergoing warming exhibit a transition temperature higher than simulation undergoing
cooling for a given biquadratic strength. The octupolar-paramagnetic phase diagram from
Figure 4.14 is reproduced in Figure 4.23 showing the transition temperatures of systems
started in the ATAO and {001} states.

The energy and the octupolar order parameter as well as other thermodynamic quan-
tities are the same in the paramagnetic phase for all simulations (Figures 4.20 - 4.22).
However, in the octupolar phase the energy per spin of the disordered system upon cooling
is very slightly higher than the energies of the ordered ATAO and {001} systems (visible
in Figure 4.22 and also true for Figures 4.20 and 4.21 but not visible in the plots). This
is true for all values of ,. Furthermore, a small but consistent difference in the energies
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of the ordered ATAO and {001} states is found for weak biquadratic interactions with the
ATAOQ state being of very slightly lower energy. This energy difference is nearly imperceiv-
able (on the order of 10°°) but is observed for all small values of 6, and is smaller than the
error in the energy (~10° - 107). As the biquadratic interaction strength is increased this
difference in energy becomes unresolved.
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Figure 4.23: Paramagnetic-octupolar transition showing the hysteresis gap upon cooling
and upon warming from disordered, ATAO, and {001} states for 0.05 < 6, < 1.30. The
irrelegularity at T ~ 0.40 - 0.44 remains.

A look at octupolar ordering however, reveals a much more complex picture. As might
have been expected, the disordered systems undergoing either warming or cooling and
which order into a random colour ice state possess the same level of octupolar ordering i.e.
they fall on the same curve in the ordered phase as shown in Figure 4.21b. However, at
very low temperatures, the long-range ordered AIAO and {001} states appear to possess a
lower level of octupolar ordering than random colour ice states. As noted previously, the
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octupolar tensor order parameter does not depend on the position of spins in the lattice -
it cannot distinguish between random colour ice states and ordered octupolar states such
as the ATAO and {001} states. As such the difference in the order parameter must depend
entirely on the fluctuations of the spins in each state from their ideal colour positions.

We also note the presence of metastable modes in systems started in the ATAO ordered
state seen as plateaus'® in the octupolar order and label them N1, N2, and N3 (Fig-
ure 4.24b). These states are designated as metastable as they are energetically degenerate
—no change in the energy is observed as the simulation enters and leaves them!*. Repeated
simulations show that the simulation enters and leaves these metastable states randomly.
For small 6, the simulation only infrequently enters the first of these metastable modes
(Figure 4.21). As 6, is increased, simulations begin to enter the N2 and N3 metastable
states (Figure 4.24b). The small but consistent uptick in octupolar order as the system
exits the octupolar phase is intriguing as it suggests that the transition from the metastable
weathervane state into the paramagnetic regime is unfavoured.

BThe plateaus in the plots are flat in the expected sense, rather we use plateau to refer to linearly
decreasing segments in the octupolar order parameter separated by jumps or discontinuities.

14Weathervane modes are zero energy excitations and so there should be no difference in energy between
otherwise identical classical systems with and without weathervane modes.
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Figure 4.24: Octupolar order for a) {001} starting state, 6, = 0.05 and b) AIAO starting
state, 0, = 1.30. Metastable states are shown. “M” labels refer to {001} metastable states
while “N” labels refer to ATAO metastable states. M0 and NO are the {001} and AIAO
long range ordered states respectively. M1 and M2 label metastable {001} states. NI,
N2, and N3 label three metastable AIAO states. N2 and N3 possess very similar levels of
octupolar ordering and are difficult to distinguish.

Metastable weathervane states are also subtly present in systems initialized in the {001}
state as can be carefully observed in Figure 4.24a (labeled M1) although only for weak
biquadratic interactions. It appears that these {001} weathervane modes are similar to
the ATAO weathervane modes albeit occuring at significantly weaker biquadratic strengths.
For very weak biquadratic interactions, the {001} system tends to exist for a long period
of time in the {001} state before dropping into less ordered weathervane states. As 6, is
increased, the simulation rapidly exits the {001} state, entering less ordered weathervane
states. We note a difference between the M2 metastable state and the N1, N2, N3, and M1
states as it possesses a relatively chaotic nature; here the simulation rapidly varies in its
energy and octupolar order over very short timeframes. Finally, we note the same upwards
“tick” in the octupolar order for {001} simulations as we do for AIAO simulations just
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before the system transitions into the paramagnetic state.

The octupolar tensor order parameter we utilize is susceptible to changes in the global
ordering and rotations of weathervane modes as it measures the orientation of spins relative
to one another across the lattice. Thus, states without weathervane modes (¢ # 0) will
possess a lower degree of octupolar ordering. The different levels of octupolar ordering in
the ground states of the AIAO and {001} systems compared with the more ordered random
colour ice states are due to larger possible global fluctations allowed by the weathervane
modes — the presence of weathervane modes allows for greater fluctuations in the orienta-
tions of spins in a weathervane membrane and consequently a lower degree of octupolar
ordering.

4.7.3 AIAO Metastable States

Investigating the orientation of spins in the ATAO metastable states reveals that the N1, N2
and N3 states are AIAO states with varying numbers of rotated weathervane membranes.
In these states the three coloured groups of spins composing the kagome weathervane
membrane have been rotated by ¢ =7 degrees (into what we term a colour conjugate (CC)
layer). This is the same angle as noted by Yuan and Gingras in their classical order-
by-disorder calculations where the weathervane rotation angle ¢ = 0 was found to be
degenerate with ¢ = 7. We find that the N1 state corresponds to a 3:1 ratio of AIAO/CC
layers (along the [111] direction) with the N2 state corresponding to a 2:2 AIAO/CC
layering. It is not until the M3 state with the lowest octupolar order is reached that a 1:1
alternating stack of ATAO and CC layers are encountered.

We note the restricted stacking ratios of the weathervane layers as they do not appear
to be free to rotate independently on their own with weathervane angles of ¢ = 0, 7, but
rather stack in a periodic arrangement that respects the periodic boundary conditions. Due
to this system size dependence, it is not possible to comment precisely on the properties of
weathervane modes in the thermodynamic limit. However, we expect that as the simulation
size is increased more and more weathervane stacked modes should become accessible.

We remark that it is quite likely that these ATAO weathervane mode states are not
“distinct” from one another at all — it may only be due to the slow simulation dynamics
and confinement by periodic boundary conditions that these different states are individ-
ually stabilized and observed. Instead a weathervane manifold state (a state that moves
rapidly between multiple weathervane modes) might be observed in the absence of periodic
boundary conditions. It is not our intention to fully characterize the general properties
of these zero energy excitiations. Nevertheless, a description of the weathervane modes
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present in a system with L = 4 is presented. The orientations of spins in the lattice in the
N2 and N3 weathervane mode states are shown in Figures 4.25 and 4.26 respectively.
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Figure 4.25: The N2 (2:2 AIAO/CC) state for a L = 4 simulation at a temperature of
T = 0.05, 6, = 0.60. The entire 1024 spin system is shown. The weathervane pole spins
are coloured red while other ATAO colour spins are painted green, orange and magenta
with the colour conjugates (CC) pained blue, purple, and magenta. ATAO layers therefore
consist of orange, green, and orange spins while CC layers are made of purple, blue, and
magenta spins. A 2:2 stacking arrangement along the [111] direction consisting of two layers
of ATAO spins with ¢ = 0 followed by two layers of colour conjugate spins with ¢ = 7w
is observed. Colours are painted on the spins via projection along the colour axis; higher
temperatures and greater fluctuations may lead to misassigned or unassigned (black) spins.
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Figure 4.26: The N3 (1:1 AIAO/CC) state for a L = 4 simulation at temperature of 7' =
0.065, 6, = 0.80. The entire 1024 spin system is shown. The weathervane spins are coloured
red; other colour spins and their colour conjugates are respectively green-purple, orange-
magenta, and cyan-blue. ATAO layers are shown as planes of green, cyan, and orange spins
while the CC layers are blue, purple, and magenta. A 1:1 stacking arrangement of ATAO
and CC layers along the (111) direction is observed.

Looking at the structure factors of these weathervane states we observe that the spin
and octupolar structure factors are flat (0 intensity) with the exception of the previously
described expected Bragg peaks and the ¢'= 0 peak in the octupolar structure factor. The
structure factor of the AIAO state under Monte Carlo simulation (not shown) is identical
to the calculated results shown in Figure 4.19.

In the N1, N2, and N3 states we observe additional correlations in the spin structure
factor (Figure 4.27) along the line described by ¢ = (6, §, £2 + §)' in the hhl plane. This

15A line in 3D space can be written in vector parametric form (defining the x, y, and z components of the
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corresponds to the correlations between layers of spins. We note that the effect that the
different stacking ratios have on points in along this line. For 1:1 ATAO/CC stacking, this
manifests as a peak at every other point along the ¢ = (0, §, £2 + 4) line. The effect of
this stacking is also seen in the octupolar order parameter along the ¢ = 0 lines.

line in terms of a parameter ¢) i.e. 7= 7)+t-m where 7Y is the intercept of the line and m = (my, my, m,)
is the directional vector. To describe a line parallel to the [111] direction we set my; = m, =m, = 4.
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Figure 4.27: Spin and octupolar structure factors for the N1, N2, and N3 weathervane
states with 6, = 1.30, L=4 for the simulation shown in Figure 4.24b.
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4.7.4 {001} Metastable States

Simulations started in the MO or {001} ground state rapidly order into the M1 and M2
states, spending the vast majority of their time for most biquadratic strengths in the M2
state (Figure 4.24a). Unlike the ATAO ordered phase where weathervane stacking occurs
along the [111] direction, the {001} state as considered here stacks weathervane modes
along the 2 direction (Figure 4.18b). The z-stacked weathervane modes in the {001} state
are parallel to the z axis, and are thus constrained by the periodic boundary conditions in
only two dimensions. The plateau labeled M1 represents a system with a significant degree
of order where 3:1 colour/conjugate colour stacking is observed. The M2 manifold state,
however, consists of parallel weathervane membranes whose boundaries may be delineated
by spin of any colour — weathervane membranes may be interleaved with one another. We
observe the system in a variety of states with greatly variable degrees of octupolar ordering
(Figures 4.20 - 4.22). Furthermore, the colours of spins on each FCC sublattice may change
as the simulation rotates weathervane membranes relative to one another.

We first note that the M1 state bears many similarities to the AIAO N1 metastable
state with 3:1 stacking layers. Only spins of one colour form the weathervane poles as
shown in red in Figure 4.28. The simulation is only found in this arrangement for weak
biquadratic interactions and for short periods of time. It is quite possible that this state
simply represents the first transition step into the M2 weathervane manifold phase. The
other stacking arrangements of 2:2 and 1:1 are likely possible, but are not observed.

The colours of the lattice as shown in Figure 4.30a depict what appears to be a perfect
arrangement of weathervane modes. Careful eyes will notice however that the groups of
orange spins in the two orange membranes along the center portion of the lattice appear
to point in subtly different directions in the figure. Interestingly, the orange spins on the
non-weathervane alternating orange-blue line of spins appear to have orientations exactly
between the directions that the weathervane membrane spins point (3 way colour splitting).
This does not appear to be a coincidence or a visual projection artifact. We note that
the green weathervane membrane spins are slightly tilted with respect to all the non-
weathervane membrane green spins. This may be related to the predicted weathervane
angle of ¢ = 7 [31]; spins in the lattice could be rotated by a similar angle'®. However, this
would violate the colour ice rules as a colour and its colour conjugate are not permitted in
the same tetrahedron. This colour spin would have to compose the weathervane pole spins
while the colour conjugate would take the place of this colour at all other positions in this

16The system may lack a global weathervane “pole”, with interleavened weathervane membranes spins
may be rotated with respect to more than one set of pole spins and so this angle may not be precisely
180°.
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lattice. This explanation is unsatisfactory as there appears to be more than a two-fold
colour splitting as shown in Figure 4.30a. However, one must note that the M1 3:1 stacked
state (Figure 4.28) does possess a weathervane angle of ¢ = 7 and so has conjugate colours.

Finally, is very difficult to visually assign colours due to the interleaved spin colour
groups and so they are not assigned in the following figures. A small section of the lattice
showing this in more detail is seen in Figure 4.30 along with a Mercator projection'’
showing one of many general arrangements that spins take in the M2 manifold.

I7A projection of a sphere onto a 2D surface. Most commonly used for maps, a Mercator projection is a
cylindrical projection of the surface of a sphere onto a 2D plane. Lines of both latitude and longititude are
drawn as parallel vertical and horizontal lines leading to significant differences in the distances between
equally spaced points at the equator and at the poles. The advantage is that shapes and bearings are
preserved.
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Figure 4.28: The {001} M1 3:1 stacked weathervane state showing the stacking of AIAO
and CC layers along the z axis. Colours and their colour companions are assigned with

the weathervane “poles” coloured red. The xy plane of the lattice is shown with the 2z axis
extending into the page.
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Figure 4.29: The {001} M2 manifold state. We observe the random stacking of weathervane
membranes along the z direction. In the image shown all colours of spins (red, blue, green,
and orange) are seen to delineate a weathervane boundary at least once. While colour
conjugates are almost certaintly present, it is difficult to assign colours accurately.

The M2 weathervane manifold state shows rapid fluctuations between various weath-
ervane states on significantly faster timescales than observed for the ATAO weathervane
states and for the paramagnetic to octupolar transition observed in the systems under-
going cooling (Figure 4.30c). Observing “snapshots” of the spins in the system on the
unit sphere (not shown), we note the presence of many temporary arrangements of spins
including, but not limited to, the standard 4 colour cluster, the four colour cluster with
each cluster elongated into ovals, the four colour cluster with a varying number of “strings”
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— spins connecting one cluster to another in “chains” that include varying number of clus-
ters (these “strings” may be sufficiently thick that clusters “merge” with one another),
and 7+ cluster configurations (i.e. 3 of the four colours possess a colour companion, one
colour forms the “pole”). Occasionally, 104 groupings of spins are seen. A time series of
octupolar order is shown in Figure 4.30c showing short lived spikes and drops representing
the simulation exploring various weathervane states (i.e. a very high measure of octupolar
order implies the absence of weathervane modes). As a zero energy excitation with no
substantial energy barriers between states, the rotation of weathervane membranes does
not appear to be hindered by any significant extent by the single spin flip algorithm and
the dynamics of the system are fast. Only a brief investigation of the M2 manifold state
has been completed; it is quite likely that the complete description of the state is quite a
bit more complex than presented here.
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(a) 2x2x2 section of the lattice showing (b) Mercator projection of spins on the unit
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Figure 4.30: A snapshot of the L = 4 lattice a) A section of the lattice in the M2 state
showing colour fluctuations. Companion colours are difficult to assign but we notice group-
ings within each colour indicative of a weathervane angle of 180°. b) Mercator projection
of a snapshot of spins in the lattice on the unit sphere. We notice that the four tetrahe-
dral groupings appear bimodal. The tightness of the grouping of the spins is indicated by
colour. ¢) Time series of octupolar order pz§r7ameter. The dynamics of simulations in the
{001} state are significantly faster than for simulations of random colour states due to the
presence of the zero energy rotational modes.



Finally, we characterize the starting {001} state with stacking along the z axis using
the structure factor to describe general (i.e. the sum of the contributions of all weathervane
modes) spin correlations. The spin and octupolar structure factor are shown in Figure 4.31.
We note that the fully ordered {001} structure factor differs greatly from the fully ordered
ATAOQO structure factor as it possesses weathervane modes parallel to the z axis and thus
we observe peaks at ¢ = (£1, £1, 0). As weathervane rotations are introduced, we note
correlations “splitting” with ¢, = 0 (i.e. spins in the plane extending in the z direction are
the same colour if they are part of a weathervane membrane). As weathervanes stack in the
xy plane with random periodicity these correlations smear out and form bars with ¢, = 0.
These correlations between planes along the z axis are also observed in the octupolar
structure factor with its ¢ = 0 ordering.
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Figure 4.31: Spin and octupolar structure factors for the M0 (6, = 0.05, T = 0.007), M1
(0, = 0.05, T = 0.012), M2 states (0, = 0.48, T = 0.037).
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4.7.5 Potential Dipolar Long-Range Order

This preliminary investigation into the low temperature ordered phases of the b > 0 bilinear
biquadratic Heisenberg pyrochlore has revealed several important new things. First, it
appears that the single spin-flip algorithm is sufficient (although perhaps still not fast)
at sampling weathervane states, especially states started in a {001} arrangement. The
imposition of periodic boundary conditions forces specific weathervane mode arrangements
in the ATAO state (and to some degree in the {001} state). Finally, it must be noted that
this investigation is far from complete as numerous other potential ground states exist such
as the v/3 x /3 state [31] which we have obmitted from this search.

We note a potential point of major significance in the spin structure factors of the
ATAO and {001} states which are distinct from one another due to the different stacking
of weathervane membranes and possess the fingerprints of different rotational weathervane
states. First, the {001} structure factor, even in its ground state, is distinct from the
ATAO structure factor due to the stacking of weathervane layers parallel to the z axis.
Second, as the system is cooled towards the transition temperature, it begins to display
short-range correlations indicative of its lower temperature behaviour — fingerprints of the
lower temperature ordered phase. These fluctuations should be observable in the structure
factor just above the critical temperature. It is tempting to attribute the similarity in the
octupolar structure factor of the system undergoing cooling as shown in Figures 4.15 and
4.16 just above the critical temperature and which appears to possess the same diagonal
qd = (6,6,£2 £ 0) correlations as the simulations started in the ATAO phase as significant.
However, calculations with larger system sizes indicate that this potential fingerprint of
long range octupolar order is just a visual artifact of the constructive interference of the
diffuse scattering on the nearby peaks — no intensity is observed along the ¢ = (4, §, +2+4)
lines. We therefore observe that the correlations in the spin and octupolar structure factors
indicating the presence of weathervane modes in the ATAO and {001} states do not appear
to be present, leading us to believe that simulations are unlikely to order into the long-
range dipolar ATAO and {001} states at low temperatures. Such a conclusion is not without
caveats. As discussd eariler, the single spin flip algorithm cannot be shown to be reliable
and it is possible that the addition of a loop move would aid in equilibration potentially
revealing interesting physics in the octupolar ordered phase.
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4.8 Summary

We have shown that the bilinear-biquadratic Heisenberg pyrochlore with positive biquadratic
interactions appears to undergo a first-order transition at low temperatures into an oc-
tupolar ordered state with no long-range spin dipolar order. This has been confirmed with
classical Monte Carlo simulation using single spin-flips. The dynamics of the single spin
flip algorithm remains exceedingly slow for simulations cooling below the transition and
the implementation of non-local loop moves that are capable of flipping multiple spins at
once could possibly dramatically improve simulation ergodicity. Although it appears that
the octupolar ordered state of the b > 0 biquadratic pyrochlore possesses no long-range
dipolar order, the freezing of the simulation below the transition temperature makes this
statement somewhat tenuous.

An investigation into the dynamics of the low temperature ATAO and {001} long-range
ordered states confirms the presence of weathervane modes with angles of ¢ = 0 and 7
as initially predicted by Wan and Gingras [31]. Low temperature simulations starting in
the ATAO state reveal the periodic 3:1, 2:2, and 1:1 stacking of kagome layers along the
[111] direction with weathervane angles of ¢ = 0 or ¢ = m and which are stabalized by the
periodic boundary conditions of the lattice. Weathervane modes are less constrained in the
{001} state, and simulations started in this state rapidly enter a weathervane manifold state
characterized by rapid dynamics as the simulation samples the various allowed weathervane
rotational states.
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Chapter 5

Conclusion

We have shown that the bilinear-biquadratic Heisenberg pyrochlore with 6 > 0 undergoes
a first-order transition from the paramagnetic to an octupolar or tetrahedral state and is
unlikely to possess long-range dipolar order. The spin and octupolar structure factors have
been calculated and serve as an indicator for this transition with sharp ¢= 0 peaks forming
in the octupolar structure factor as the system is cooled below the transition temperature.
We note that octupolar ordering can be subtle to observe and that care must be taken when
interpreting multipolar order parameters which can have difficulty distinguishing random
octupolar states from those of long-range ordered spin states.

An investigation into the low temperature physics of the potential AIAO and {100}
long range ordered states has helped to reveal potential intricacies of the weathervane
mode rotations. We confirm that the rotational modes predicted by Wan and Gingras [31]
exist for weathervane rotational angles of ¢ = 0 and w. For the ATAO low temperature
state, we find that the stacking of the AIAO (¢ = 0) and colour-conjugate (¢ = ) rotated
weathervane membranes along the [111] direction are constrained by the periodic boundary
conditions. For a small L = 4 simulation, we find stacking of AIAO and colour conjugate
(CC) layers with 3:1, 2:2 and 1:1 periodicities.

The {100} state with weathervane membranes stacked along a cubic axis is less con-
strained by the periodic boundary conditions and system size. We find that while the
simulation does potentially possess stacked states (only a 3:1 stacked state was observed
for small 6,), the simulation rapidly evolves into a weathervane manifold state in which a
large variety of distinct weathervane states are sampled in the course of the simulation.
These states involve interleaved weathervane membranes of all colours stacked in the z
(or symmetrically equivalent) direction; however the simulation appears to also sample a
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vast variety of other weathervane states such as fully tetrahedral ordered states and states
whose octupolar order is indistinguishable from that of the paramagnetic state.

We note the fingerprints of the weathervane modes in these states in the spin and
octupolar structure factors as additional correlations in the spin and octupolar structure
factors. The low-temperature AIAO states show correlations along this reciprocal space
direction = (9, 6, £2 £ §) with periodicity given by the stacking ratio. The {100} state
shows weathervane membranes stacking along the direction of the alternating layers of
tetrahedra (z axis) and correlations of various length scales in the perpendicular zy plane
ie. ¢.=0.

Just above the transition temperature, and before the Monte Carlo simulation freezes,
the onset of potential dipolar order may be visible if the low temperature ordered state
of the system would possess dipolar long range order. However, the spin structure factor
of the simulation upon cooling just above the critical temperature did not display the
characteristic scattering of weathervane rotations in the AIAO or {100} states, or in the
case of the {100} state, the additional (£1, +1, 0) peaks representative of the ¢, = 0
stacked weathervane membranes. We therefore see no indication of a potential long-range
ordered state developing upon cooling although this cannot be confirmed due to the freezing
of the simulation at, and below, the transition temperature.

The simulation dynamics of the b > 0 bilinear-biquadratic Heisenberg pyrochlore using
single spin-flips is found to be extremely slow with simulations freezing upon cooling below
the transition temperature. Simulation timescales are extremely long (the transition from
the paramagnetic to octupolar state takes hundreds of thousands of Monte Carlo sweeps)
and therefore statistics cannot be significantly improved by the use of parallel tempering.
However, the weathervane dynamics of the low temperature ordered states was found to
be approachable with single spin flips owing to the zero energy nature of the rotations of
weathervane modes.

Looking forward, the addition of two colour loop moves should aid in the equilibration
and help address the ergodicity issues that were encountered in this thesis project. It is
hoped that the addition of zero energy moves that do not violate the colour ice rules might
help prevent freezing at the transition. Furthermore, two colour loop moves may shed more
light on the dynamics of the low temperature ordered states. As an example, rotating the
colours in the inverted tetrahedra in the {100} state will allow the transformation into
the ATAO state. At the moment, the ergodicity issues due to the extremely slow single
spin-flip dynamics make it difficult to assign certainty to the specifics of the paramagnetic
to octupolar transition such as the exact location of the transition or the behaviour of the
specific heat. It may also be worthwhile to investigate other potential long-range ordered
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states such as the v/3 x v/3 state which would require a modified Monte Carlo code making
use of a hexagonal unit cell.

The collapse of the “cooperative paramagnet” ground state of the classical nearest-
neighbout Heisenberg pyrochlore into magnetically ordered states in the presence of further
interactions such as dipole interactions [8] or further neighbour interactions [73][74] has
been well defined, however, little work as been has been done exploring these perturbations
in quantum systems ! . Specifically what is the role that quantum fluctuations play in the
low temperature physics of Heisenberg systems and the selection of a ground state? How do
quantum fluctuations lift the degeneracy of the classical ground state? While preliminary
work investigating quantum fluctutations has been completed [75], the effect of biquadratic
coupling is unknown.

Finally, we remark that unique properties can present themselves in models and mate-
rials where they would not normally be expected. An example of this are the pyrochlore
antiferromagnets NaSrMnyF7 [70] and NaCaNiyF7 [76][77][78] which behave like Heisenberg
antiferromagnets with additional interactions. These materials have motivated work in-
vestigating the role that small perturbations play in the ordering of Heisenberg pyrochlore
in the presence of further interactions [75] and possess interesting properties characteristic
of quantum spin liquids, nematic order, and glassy systems [77]. Interesting and novel
physics often manifests itself in subtle manners.

LA wery recently published paper by Igbal et al. [75] provides some insight towards this question.
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