The Logarithmic Derivative and Model-Theoretic Analysability in Differentially Closed Fields

by
Ruizhang Jin

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Pure Mathematics

Waterloo, Ontario, Canada, 2019
©Ruizhang Jin 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner David Marker
LAS Distinguished Professor
Department of Mathematics, Statistics, and
Computer Science
University of Illinois at Chicago
Supervisor(s) Rahim Moosa
Professor
Department of Pure Mathematics
University of Waterloo
Internal Member Ross Willard
Professor
Department of Pure Mathematics
University of Waterloo
Internal Member Jason Bell
Professor
Department of Pure Mathematics
University of Waterloo
Internal-external Member Jeffrey Shallit
Professor
School of Computer Science
University of Waterloo

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

This thesis deals with internal and analysable types, mainly in the context of the stable theory of differentially closed fields. Two main problems are dealt with: the construction of types analysable in the constants with specific properties, and a criterion for a given analysable type to be actually internal to the constants.

For analysable types, the notion of canonical analyses is introduced. A type has a canonical analysis if all its analyses of shortest length are interalgebraic. Given a finite sequence of ranks, it is constructed, in the theory of differentially closed field, a type analysable in the constants such that it admits a canonical analysis and each step of the analysis is of the given rank. The construction of such a type starts from the well-known example of $\delta(\log \delta x)=0$, whose generic type is analysable in the constants in 2 steps but is not internal to the constants. Along the way, techniques for comparing analyses in stable theories are developed, including in particular the notions of analyses by reductions and by coreductions.

The property of the $\log \delta$ function is further studied when the following question is raised: given a type internal to the constants, is its preimage under $\log \delta$, which is 2 -step analysable in the constants, ever internal to the constants? The question is answered positively, and a criterion for when the preimage is indeed internal is proposed. Partial results are proven for this conjectured criterion, namely the cases where the group of automorphisms (the binding group) of the given internal type is additive, multiplicative, or trivial. In particular, the conjecture is resolved for generic types of equations of the form $\delta x=f(x)$ where f is a rational function over the constants. It is discovered that the related problem where $\log \delta$ is replaced by δ is significantly different, and the analogue of the conjecture fails in this case.

Also included in this thesis are two examples asked for in the literature: internality of a particular twisted D-group, and a 2-step analysable set with independent fibres.

Acknowledgements

First and foremost, I am deeply indebted to my Ph.D. advisor, Professor Rahim Moosa, for his continuous guidance and support throughout my years of graduate study. This thesis could not have possibly been completed without his numerous and detailed inputs and suggestions. I thank Professors Jason Bell, David Marker, Jeffrey Shallit, and Ross Willard, for agreeing to be on my thesis oral defence committee, and for taking the time to read my thesis. I am grateful to Professor Anand Pillay for giving me insightful ideas. Finally, I would like to express my appreciation to my family and my friends, for their emotional support throughout the years.

> Yè Mǐnwěi In memory of 叶敏玮, PhD Candidate, and a friend, with whom I have discussed mathematics and everything.

Contents

1 Introduction 1
2 Preliminaries 6
2.1 Internality in stable theories 7
2.2 Differentially closed fields 14
2.3 An intuition from meromorphic functions 23
3 Analysability 24
3.1 Basic notions 25
3.2 Reductions and coreductions 29
4 Some constructions of analysability in DCF_{0} 39
4.1 Iterated logarithmic derivative 39
4.2 A construction of a canonical \mathcal{C}-analysis with given U-type 42
5 Pullbacks under the logarithmic derivative map 57
5.1 The non-weakly-orthogonal case 60
5.2 The weakly-orthogonal case 67
5.3 Examples 76
5.4 A counterexample to (*) 80
5.5 A binding group analysis of condition (*) 85
5.6 Pullbacks under the derivative map 89
5.7 Appendix 93
6 Two commissioned examples 96
6.1 A twisted D-group 96
6.2 A two-step \mathcal{C}-analysis with independent fibres 99
References 102
Glossary 106

List of symbols

$$
\begin{array}{ll}
\delta & \text { derivation } \\
\downarrow & \text { forking independence } \\
\upharpoonright & \text { restriction of functions or types } \\
\models & \text { realization of a type }
\end{array}
$$

$\operatorname{acl}(A)$ model-theoretic algebraic closure of the set A
$\operatorname{Aut}(\mathcal{M})$ automorphism group of the structure \mathcal{M}
\mathcal{C} field of constants
DCF_{0} differentially closed field of characteristic 0
Dom domain
$\operatorname{dcl}(A) \quad$ definable closure of the set A
$F^{\text {alg }}$ field-theoretic algebraic closure of the field F
id identity map
$\log \delta \quad \operatorname{logarithmic}$ derivative
$p \mid A$ non-forking extension of the stationary type p to the parameter set A
$p \vdash q$ the type p determines the type q
$S_{n}(A)$ complete n-types over a parameter set A
$\operatorname{stp}(a / A)$ strong type of a over A, i.e., $\operatorname{tp}(a / \operatorname{acl}(A))$
$\operatorname{tp}(a / A)$ type of a over A
Tr.Deg transcendence degree
$U(a / A) \quad U$-rank of $\operatorname{tp}(a / A)$
\mathcal{U} saturated model

1 Introduction

This thesis is concerned with the model theory of differentially closed fields (of characteristic 0). A differential field is a field F equipped with a derivative $\delta: F \rightarrow F$, i.e., a linear operator satisfying the Leibniz Rule $\delta(x y)=$ $x \delta y+y \delta x$. A differential field (F, δ) is differentially closed if every system of algebraic differential equations and inequations having a solution in some differential field extension of (F, δ) already has a solution in F. These are the existentially closed differential fields, and they were shown to be axiomatizable by Blum [4]. Its first-order theory, denoted by DCF_{0}, is ω-stable and thus admits a very tame theory of independence and rank on definable sets.

We will be focusing on definable sets of finite rank. These have played a significant role in the application of model theory to other areas of mathematics. For example, they are central to Hrushovski's [11] renowned proof of the function field Mordell-Lang Conjecture in characteristic 0 - following earlier ideas of Buium [5]. More recently, finite rank definable sets in DCF_{0} appear in the work of Freitag and Scanlon on the differential equation satisfied by the j-function, the work of Nagloo and Pillay [24, 25] on functional transcendence of solutions to the Painlevé equations, works of Bell, Launois, León Sánchez and Moosa [2, 3, 16] of the Dixmier-Moeglin equivalence in noncommutative algebra.

The study of DCF_{0} can be viewed as an expansion of algebraic geometry into differential-algebraic geometry. We can somehow categorize definable sets by their "distance" from definable sets in the algebraic geometry. In DCF_{0} we have the constant field $\{x: \delta x=0\}$, on which algebraic geometry lives. Indeed, the full induced structure on the constants is that of a pure algebraically closed field. This means that the study of definable sets from the constants is algebraic geometry. A little bit further away we have definable sets that are internal to the constants. They are definably isomorphic to a definable set living in (a cartesian power of) the constant field. That this is not the same thing as living in the constants is because we allow
the isomorphism to be definable over additional parameters. Even further away we have the notion of analysability. An example of an analysable set is illustrated in Example 2.27: it is a definable set admitting a definable surjective map to a set that is internal to the constants, and each fibre of this mapping is also internal. In general, a definable set is analysable in the constants if it admits a finite sequence of definable surjections $X \rightarrow X_{n} \rightarrow$ $X_{n-1} \rightarrow \cdots \rightarrow X_{1}$ where the fibres at each stage, and X_{1}, are internal to the constants. If a definable set is not analysable in the constants then it must have some part that has no connection to the constants at all. This thesis has nothing to say about them.

We will now describe the results of the thesis, chapter by chapter. Our original contributions begin in Chapter 3, which is the only chapter that works at the level of a general stable theory. (The rest of the thesis is about DCF_{0} in particular.) In that chapter we begin a systematic study of finite rank analyses, introducing the notions of

- analyses by reductions: obtained by taking maximal definable images that are internal;
- analyses by coreductions: obtained by taking minimal definable images so that the fibres are internal;
- canonical analyses: an analysis that has the minimal number of steps and is equivalent up to interalgebraicity with any other analysis with the minimal number of steps.

We prove a number of propositions that begin the foundational study of these notions. Among them are:

- Any analysable finite rank type has an analysis by reductions. (Proposition 3.8)
- If every finite rank type has a coreduction then any analysable finite rank type has an analysis by coreductions. (Proposition 3.10)
- Analyses by reductions (or by coreductions) have the minimal number of steps. (Proposition 3.12)
- If an analysis by reductions has the same finite rank at each step as an analysis by coreductions, then both analyses are canonical. Moreover, every canonical analysis is of this form. (Proposition 3.15)
- Given an analysis where each step is of rank 1, one can produce analyses by reductions (respectively coreductions) where the steps have any given decreasing (respectively increasing) sequence of finite ranks. (Proposition 3.17)

The proofs of these propositions use only the basic machinery of stability theory.

In Chapter 4 we begin our focus on DCF_{0} and in particular the logarithmic derivative. The logarithmic derivative is a group homomorphism from \mathbb{G}_{m} (the universe viewed as a multiplicative group) to \mathbb{G}_{a} (the universe viewed as an additive group) with kernel the (multiplicative) constants. There is no such homomorphism in algebraic geometry, but in differential-algebraic geometry there is, namely $\log \delta: x \mapsto \frac{\delta x}{x}$. We are able to generate examples of analysable types by simply iterating the logarithmic derivative map (see Corollary 4.2). What's more, by intricately applying the logarithmic derivative map on each level of the analysis, we are able to prove the following main result:

Theorem 4.7. Given positive integers n_{1}, \ldots, n_{ℓ}, there exists in DCF_{0} a type that admits a canonical analysis in the constants with the i-th step having rank n_{i}.

The results of Chapters 3 and 4 appeared in [12].
The application of the logarithmic derivative map in the above cases leads to a natural question: for a definable set that is internal to the constants, when is its preimage under the $\log \delta$ map internal instead of merely
analysable? This question is also a special case of the following open problem: given a set of differential equations in two variables, if we know in advance that the set of solutions is analysable in the constants, when can we determine that the set of solutions is indeed internal? This problem is the focus of Chapter 5. We have provided a conjecture:

Conjecture 5.4. Suppose p is a minimal type in $S_{1}(F)$ that is almost ${ }^{1}$ internal to the constants, where F is an algebraically closed differential field. Let $q=\log \delta^{-1}(p)$. Then the following are equivalent:
(1) q is almost internal to the constants,
(2) q is in finite-to-finite definable correspondence with a product of types that are almost internal to the constants.

A third more explicit description of the finite-to-finite correspondence of (2) is also conjectured to be equivalent.

The main results of Chapter 5 are summarized as follows:
Theorems 5.6 and 5.12. Conjecture 5.4 is true for types p that are not weakly orthogonal to the constants, as well as those p satisfying the following additional condition:
(*) For every realization $a \models p$, there exists $v \in F\langle a\rangle \backslash F$ such that $\delta v \in F$ or $\log \delta(v) \in F$.

Although the condition above seems technical, we show in Corollary 5.13 that it covers the case when p is the generic type of a differential equation $\delta x=f(x)$ where f is a rational function over the constants. So in that case wo obtain a proof of Conjecture 5.4. Moreover, condition (*) can be formulated in terms of a constraint on the binding groups: see the discussion in Section 5.5. In Section 5.3 we exhibit a series of examples illustrating cases where our theorems do apply, and in Section 5.4 an example where they do not.

[^0]This (conjectured) behaviour of a clear "split" as in (2) does not hold if $\log \delta$ is replaced by δ, as seen in Section 5.6. If a condition for preimages of internal types under δ to be internal exists, then it must differ significantly from that conjectured for the logarithmic derivative.

A final chapter in this thesis records two specific examples that were asked of me by other researchers and that appear in their publications. The first was requested by Bell, León Sánchez and Moosa, and appeared in [3]. The second was asked for by Haykazyan and Moosa and is referred to in [9]. They are closely related to many of the ideas and techniques developed in Chapters 4 and 5.

2 Preliminaries

We do not, in this thesis, include an introduction to or review of model theory, nor of stability theory. (We have, however, included a glossary at the end and a list of symbols at the beginning.) For one thing, there are many good books on these subjects: we suggest [20] for model theory and [27] for stability theory. Moreover, except for Chapter 3, this thesis is about the model theory of one particular first-order theory - the theory of differentially closed fields of characteristic $0\left(\mathrm{DCF}_{0}\right)$, a review of which is included in this chapter - so the general machinery is unnecessary for most of this thesis. We will, however, in this chapter, spend some time reviewing the particular notion of internality in stable theories, as this is at the heart of the thesis.

Our model-theoretic notion is standard. In particular, we fix a complete theory T that admits elimination of imaginaries, and a sufficiently saturated model $\mathcal{U} \models T$. All parameter sets and models will be assumed to be small, that is, of cardinality strictly less than $|\mathcal{U}|$. Given $A \subseteq \mathcal{U}$, we let $\operatorname{Aut}_{A}(\mathcal{U})$ denote the group of automorphisms of \mathcal{U} that fix A pointwise. For each positive integer $n, S_{n}(A)$ denotes the set of complete n-types in \mathcal{U} over A. We sometimes write $S(A)$ instead of $S_{n}(A)$ when n is either clear from context or unimportant. Given a tuple a we will write $\operatorname{stp}(a / A)$ for the stationary type $\operatorname{tp}(a / \operatorname{acl}(A))$.

We will assume throughout that T is stable, even though this is not always necessary. Stable theories come with a well-behaved notion of independence, i.e., Shelah's non-forking independence. Indeed, this is their characteristic property. As usual, given a tuple \bar{a} and parameter sets $B \subseteq C$, we will write $\bar{a} \downarrow_{B} C$ to mean that $\operatorname{tp}(\bar{a} / C)$ is a non-forking extension of $\operatorname{tp}(\bar{a} / B)$. Associated with non-forking independence are several "ranks"; we will mostly work with the Lascar rank on complete types, referred to here as U-rank. While this rank in a general stable theory is sometimes ordinal-valued and sometimes undefined (so bigger than every ordinal), we are often most interested in types of finite U-rank. The interaction of U-rank with independence
is of course central: suppose $B \subseteq C$ and $U(\bar{a} / B)$ is finite, then $\bar{a} \downarrow_{B} C$ iff $U(\bar{a} / C)=U(\bar{a} / B)$.

Finally, a word about tuples. We will often deal with tuples in this thesis, and the following conventions are used: for any n-tuple \bar{a}, we use $a_{1}, a_{2}, \ldots, a_{n}$ to denote its elements; for two n-tuples \bar{a} and $\bar{b}, \bar{a} \cdot \bar{b}$ (or simply $\bar{a} \bar{b}$ when no confusion arises) is defined as $\sum_{i=1}^{n} a_{i} b_{i}$, and $\bar{a}^{\bar{b}}:=\prod_{i=1}^{k} a_{i}^{b_{i}}$ whenever this makes sense. We sometimes simply write a instead of \bar{a} for a tuple when no confusion arises.

Nothing in this chapter is new, though proofs are sometimes included, either for the sake of completeness or because no appropriate references in the literature were found.

2.1 Internality in stable theories

The following notion expresses a possible interaction between two definable sets.

Definition 2.1. Suppose D and E are A-definable sets. We say that D is E-internal if there exists a definable surjective function $f: E^{n} \rightarrow D$.

In other words, D is interpretable in the structure induced by \mathcal{U} on E; D is definably isomorphic to E^{n} / \sim where \sim is the equivalence relation of being in the same fibre of f. So if the induced structure on E from \mathcal{U} eliminates imaginaries, then D being E-internal is equivalent to D being definably isomorphic to some subset of some cartesian power of E.

It is, however, very important here that f need not be A-definable: additional parameters may be required. All of the internality structure arises from the (potential) need for additional parameters.

This definition does not use stability. But when the theory is stable as indeed our theory T is - then there is a reformulation of internality for types that is technically very useful even though at first sight much more complicated. The following definition is fundamental to this thesis:

Definition 2.2. Let q be a stationary type over A, and \mathcal{P} be a set of partial types (over different parameter sets) which is invariant under $\operatorname{Aut}_{A}(\mathcal{U})$. We say that q is \mathcal{P}-internal if for some (equivalently any) realization a of q, there exists $B \supseteq A$ which is independent from a over A, and c_{1}, \ldots, c_{n} realizations of types in \mathcal{P} whose parameter sets are contained in B, such that $a \in \operatorname{dcl}\left(B c_{1} \cdots c_{n}\right)$. We say that q is almost \mathcal{P}-internal if a is in $\operatorname{acl}\left(B c_{1} \cdots c_{n}\right)$ instead of $\operatorname{dcl}\left(B c_{1} \cdots c_{n}\right)$.

The following explains the correlation with Definition 2.1.
Proposition 2.3. Suppose D, E are A-definable sets and $\varphi(x)$ is an $L_{A^{-}}$ formula defining E. The following are equivalent:
(1) D is E-internal.
(2) For every $d \in D, \operatorname{stp}(d / A)$ is $\{\{\varphi(x)\}\}$-internal.

Proof. Suppose D is E-internal witnessed by a B-definable surjective function $f: E^{n} \rightarrow D$ for some $B \supseteq A$. Given $d \in D$ let $d^{\prime} \models \operatorname{stp}(d / A)$ but with $d^{\prime} \downarrow_{A} B$. Then $d^{\prime}=f(\bar{c})$ for some $\bar{c}=\left(c_{1}, \ldots, c_{n}\right) \in E^{n}$, so $d^{\prime} \in \operatorname{dcl}\left(B c_{1} \cdots c_{n}\right)$. That is, $\operatorname{stp}\left(d^{\prime} / A\right)=\operatorname{stp}(d / A)$ is $\{\{\varphi(x)\}\}$-internal.

For the converse we use the following fact about \mathcal{P}-internality in stable theories.

Fact 2.4 (Lemma 4.2 of Chapter 7 in [27]). Let A be a small set of parameters, and $q \in S(A)$ be a stationary \mathcal{P}-internal type. Then there exists a partial A-definable function $f\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$, a sequence of realizations a_{1}, \ldots, a_{m} of q, and $p_{1}, \ldots, p_{n} \in \mathcal{P}$, such that any realization a of q satisfies $a=f\left(a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{n}\right)$ for some $c_{1} \models p_{1}, \ldots, c_{n} \models p_{n}$.

Suppose now that any complete type extending D over $\operatorname{acl}(A)$ is $\{\{\varphi\}\}-$ internal. For each such $q \in S(\operatorname{acl}(A))$, Fact 2.4 gives us a surjective definable function

$$
f_{q}: X_{q} \rightarrow Y_{q}
$$

where $X_{q} \subseteq E^{n_{q}}$ and Y_{q} are definable over some $B_{q} \supseteq A$ and $q(\mathcal{U}) \subseteq Y_{q} \subseteq D$. Letting B be the union of all these B_{q} (which is still small by stability since $S(\operatorname{acl}(A))$ is small), we have that the set of all such Y_{q} forms a B-definable cover of D. By saturation, $D=Y_{q_{1}} \cup \cdots \cup Y_{q_{\ell}}$ for some finite set of complete types $q_{1}, \ldots, q_{\ell} \in S(\operatorname{acl}(A))$. Letting X be the disjoint union of $X_{q_{1}}, \ldots, X_{q_{n}}$ in some fixed E^{n}, we get a definable surjection $f_{0}: X \rightarrow D$. Fixing some $d \in D$, we further extend f_{0} to f with domain E^{n} by defining $f(x)=d$ for all $x \in E^{n} \backslash X$. The definable surjection f witnesses E-internality of D.

Remark 2.5. In Fact 2.4 we can actually take $\left\{a_{1}, \ldots, a_{m}\right\}$ to be a Morley sequence in q, i.e., to be a sequence of independent realizations of q (see proof of Lemma 4.2 of Chapter 7 in [27]).

Here are some basic properties of almost internal types.
Lemma 2.6. (1) If $\operatorname{stp}(a / A)$ is almost \mathcal{P}-internal and $b \in \operatorname{acl}(A a)$, then $\operatorname{stp}(b / A)$ is almost \mathcal{P}-internal.
(2) If $\operatorname{stp}\left(a_{1} / A\right)$ and $\operatorname{stp}\left(a_{2} / A\right)$ are almost \mathcal{P}-internal, then $\operatorname{stp}\left(a_{1} a_{2} / A\right)$ is almost \mathcal{P}-internal.
(3) If q is almost \mathcal{P}-internal then every stationary extension of q is almost \mathcal{P}-internal.

Proof. (1) Since $\operatorname{stp}(a / A)$ is almost \mathcal{P}-internal, there exists $B \supseteq A$ and c_{1}, \ldots, c_{n} realizations of types in \mathcal{P} such that $a \downarrow_{A} B$ and $a \in \operatorname{acl}\left(B c_{1} \cdots c_{n}\right)$. As $b \in \operatorname{acl}(A a)$, we have $b \downarrow_{A} B$ and $b \in \operatorname{acl}\left(B c_{1} \cdots c_{n}\right)$, so $\operatorname{stp}(b / A)$ is almost \mathcal{P}-internal.
(2) Since $\operatorname{stp}\left(a_{1} / A\right)$ and $\operatorname{stp}\left(a_{2} / A\right)$ are almost \mathcal{P}-internal, suppose for $i=1,2$ we have $B_{i} \supseteq A$ and $c_{i 1}, \ldots, c_{i n_{i}}$ realizations of types in \mathcal{P} such that $a_{i} \downarrow_{A} B_{i}$ and $a_{i} \in \operatorname{acl}\left(B_{i} c_{i 1} \cdots c_{i n_{i}}\right)$. Let $B_{1}^{\prime} \models \operatorname{stp}\left(B_{1} / A a_{1}\right)$ but with $B_{1}^{\prime} \downarrow_{A a_{1}} a_{2}$, and let $B_{2}^{\prime} \models \operatorname{stp}\left(B_{2} / A a_{2}\right)$ but with $B_{2}^{\prime} \downarrow_{A a_{2}} a_{1} B_{1}^{\prime}$. Then we have $B_{1}^{\prime} B_{2}^{\prime} \downarrow_{A} a_{1} a_{2}$. Moreover, as types in \mathcal{P} are invariant under $\operatorname{Aut}_{A}(\mathcal{U})$, for $i=1,2$ there exists $c_{i 1}^{\prime}, \ldots, c_{i n_{i}}^{\prime}$ realizations of types in \mathcal{P} such that $a_{i} \in$
$\operatorname{acl}\left(B_{i}^{\prime} c_{i 1}^{\prime} \cdots c_{i n_{i}}^{\prime}\right)$. Thus $a_{1} a_{2} \in \operatorname{acl}\left(B_{1}^{\prime} B_{2}^{\prime} c_{11}^{\prime} \cdots c_{1 n_{1}}^{\prime} c_{21}^{\prime} \cdots c_{2 n_{2}}^{\prime}\right)$, and therefore $\operatorname{stp}\left(a_{1} a_{2} / A\right)$ is almost \mathcal{P}-internal.
(3) Suppose $p \in S\left(A^{\prime}\right)$ extends $q \in S(A)$ and is stationary. Fix some $a \models p$. Since $a \models q$, there exists $B \supseteq A$ and c_{1}, \ldots, c_{n} realizations of types in \mathcal{P} such that $a \downarrow_{A} B$ and $a \in \operatorname{acl}\left(B c_{1} \cdots c_{n}\right)$. Let $B^{\prime} \models \operatorname{tp}(B / A a)$ but with $B^{\prime} \downarrow_{A a} A^{\prime}$, and let $\alpha \in \operatorname{Aut}_{A a}(\mathcal{U})$ be such that $\alpha(B)=B^{\prime}$. Then $a \downarrow_{A^{\prime}} B^{\prime}$, and $a \in \operatorname{acl}\left(A^{\prime} B^{\prime} \alpha\left(c_{1}\right) \cdots \alpha\left(c_{n}\right)\right)$, and therefore $p=\operatorname{tp}\left(a^{\prime} / A^{\prime}\right)$ is almost \mathcal{P}-internal.

The following lemma shows that, for any almost \mathcal{P}-internal type q, there exists a \mathcal{P}-internal type which is interalgebraic with q. Hence almost internality is not so far from internality.

Lemma 2.7. If a stationary type q over A is almost \mathcal{P}-internal, then for any $a \vDash q$, there exists a tuple a_{0} such that $\operatorname{tp}\left(a_{0} / A\right)$ is \mathcal{P}-internal and $\operatorname{acl}(A a)=$ $\operatorname{acl}\left(A a_{0}\right)$.

Proof. Given any realization $a \vDash q$, let n be the least number such that there exists an L_{A}-formula $\varphi(x, y, z)$, a tuple b independent from a over A and a tuple c realizing types in \mathcal{P} such that $\vDash \varphi(a, b, c)$ and $\varphi(\mathcal{U}, b, c)$ is of size n. We fix these b, c, and φ that satisfy $|\varphi(\mathcal{U}, b, c)|=n$.

Step 1. We prove that $\varphi(\mathcal{U}, b, c) \subseteq \operatorname{acl}(A a)$.
Let $a=a_{1}, a_{2}, \ldots, a_{n}$ be the elements of $\varphi(\mathcal{U}, b, c)$. Towards a contradiction, suppose without loss of generality that $a_{2} \notin \operatorname{acl}(A a)$. Then there are $a_{2}^{\prime}, b^{\prime}$ and c^{\prime} such that $\operatorname{tp}\left(a_{2}^{\prime} b^{\prime} c^{\prime} / A a\right)=\operatorname{tp}\left(a_{2} b c / A a\right)$ and $a_{2}^{\prime} b^{\prime} \downarrow_{A a} a_{2} \cdots a_{n} b$. Since $a_{2}^{\prime} \notin \operatorname{acl}(A a)$ and $a_{2}^{\prime} \downarrow_{A a} a_{2} \cdots a_{n} b, a_{2}^{\prime} \notin \operatorname{acl}\left(A a a_{2} \cdots a_{n} b\right)$. In particular, $a_{2}^{\prime} \neq a_{i}$ for $i=1,2, \ldots, n$. Also, since $a \downarrow_{A} b$ and $b \downarrow_{A a} b^{\prime}$, we have $b \downarrow_{A} a b^{\prime}$, and therefore $b \downarrow_{A b^{\prime}} a$. As $\operatorname{tp}\left(b^{\prime} / A a\right)=\operatorname{tp}(b / A a)$ and $b \downarrow_{A} a$, we have $b^{\prime} \downarrow_{A} a$, which, together with $b \downarrow_{A b^{\prime}} a$, yields $b b^{\prime} \downarrow_{A} a$. Now the fact that q is almost \mathcal{P}-internal is witnessed by $a \vDash \varphi(x, b, c) \wedge \varphi\left(x, b^{\prime}, c^{\prime}\right)$, and the size of $\varphi(\mathcal{U}, b, c) \wedge \varphi\left(\mathcal{U}, b^{\prime}, c^{\prime}\right)$ is smaller than n (notice that $|\varphi(\mathcal{U}, b, c)|=$
$\left|\varphi\left(\mathcal{U}, b^{\prime}, c^{\prime}\right)\right|=n$, but the two sets are not the same), contradicting minimality of n.

Step 2. Let d be the code of the set $\varphi(\mathcal{U}, b, c)$. That is, d is a tuple with the property that $\sigma \in \operatorname{Aut}(\mathcal{U})$ fixes d pointwise iff σ fixes $\varphi(\mathcal{U}, b, c)$ setwise. Then $\operatorname{tp}(d / A)$ is \mathcal{P}-internal and $\operatorname{acl}(A a)=\operatorname{acl}(A d)$.

We have $a \in \operatorname{acl}(d) \subseteq \operatorname{acl}(A d)$ by the definition of a code, and $d \in$ $\operatorname{dcl}\left(a a_{2} \cdots a_{n}\right) \subseteq \operatorname{acl}(A a)$. Moreover, as $a \downarrow_{A} b$, we have $d \downarrow_{A} b$. Since d is the code of $\varphi(\mathcal{U}, b, c)$ where φ is an L_{A}-formula, $d \in \operatorname{dcl}(A b c)$. Therefore $\operatorname{tp}(d / A)$ is \mathcal{P}-internal.

When q is \mathcal{P}-internal, the following group measures, to some extent, how many additional parameters are needed to witness the internality.

Definition 2.8. For a \mathcal{P}-internal type q over A, the binding group of q is $\operatorname{Aut}_{A}(q / \mathcal{P}):=\left\{\sigma \upharpoonright_{q(\mathcal{U})}: \sigma \in \operatorname{Aut}_{A}(\mathcal{U})\right.$ and $\sigma \upharpoonright_{p(\mathcal{U})}=\mathrm{id}$ for all $\left.p \in \mathcal{P}.\right\}$.

Note that $\operatorname{Aut}_{A}(q / \mathcal{P})$ acts naturally on the type-definable set $q(\mathcal{U})$. A central theorem in stability theory, going back to Zilber [32] and developed further by Poizat [29], is that when q is \mathcal{P}-internal, this group is definable.

Fact 2.9 (Theorem 4.8 of Chapter 7 in [27]). If the types in \mathcal{P} are over A, and q is a stationary type over A that is \mathcal{P}-internal, then both $\operatorname{Aut}_{A}(q / \mathcal{P})$ and its action on $q(\mathcal{U})$ are type-definable. That is, there exists a type-definable group G over A, acting type-definably over A on $q(\mathcal{U})$, such that G together with its action on $q(\mathcal{U})$ is isomorphic to $\operatorname{Aut}_{A}(q / \mathcal{P})$ acting naturally on $q(\mathcal{U})$.

While the group G given by the binding group theorem need only be typedefinable in general, if T is ω-stable (as it will be in our intended application) then G will in fact be a definable group. This is because in an ω-stable theory all type-definable groups are in fact definable (see Theorem 7.5.3 of [20]).

Lemma 2.10. Let $q \in S(A)$ be stationary and \mathcal{P}-internal. Then there exists an integer n and $a_{1}, \ldots, a_{n} \models q$ such that if $\alpha_{1}, \alpha_{2} \in \operatorname{Aut}_{A}(q / \mathcal{P})$ satisfies $\alpha_{1}\left(a_{i}\right)=\alpha_{2}\left(a_{i}\right)$ for $i=1,2, \ldots, n$, then $\alpha_{1}=\alpha_{2}$.

Proof. This is because, by Fact 2.4, there exist $a_{1}, \ldots, a_{n} \models q$ such that any $a \models q$ satisfies $a \in \operatorname{dcl}\left(A \mathcal{P}(\mathcal{U}) a_{1} \cdots a_{n}\right)$.

Remark 2.11. This property of a binding group is known as finite faithfulness (see, for example, Definition 3.9 of [9]). In addition, by Remark 2.5, we may choose a_{1}, \ldots, a_{n} to be any Morley sequence of p of length n.

As in the beginning of our discussion of internality, we are often interested in the case that $\mathcal{P}=\{\{\varphi(x)\}\}$ where $\varphi(x)$ is an L_{A}-formula. Writing $E:=$ $\varphi(\mathcal{U})$ we will say that q is E-internal or almost E-internal instead of \mathcal{P} internal and almost \mathcal{P}-internal, and we write $\operatorname{Aut}_{A}(q / E)$ for the binding group.

We conclude this section by exploring a little bit what happens when q is E-internal but the internality really requires new parameters. But first recall the following useful fact about stable theories.

Fact 2.12 (See, for example, Corollary 8.3.3 of [31]). Suppose $E \subseteq U^{n}$ is A-definable. Then E is stably embedded in \mathcal{U}. That is, if $X \subseteq \mathcal{U}^{n}$ is any definable set then $X \cap E$ is definable with parameters from $A \cup E$.

The following lemma, essentially contained in the appendix to [8], captures the usefulness of stable embeddedness.

Lemma 2.13. Suppose E is a stably embedded A-definable set.
(a) For any tuple $a, \operatorname{tp}(a / \operatorname{dcl}(A a) \cap \operatorname{dcl}(A \cup E)) \vdash \operatorname{tp}(a / A \cup E)$.
(b) Given tuples a_{1}, a_{2}, if $\operatorname{tp}\left(a_{1} / A \cup E\right)=\operatorname{tp}\left(a_{2} / A \cup E\right)$ then there is $\alpha \in$ $\operatorname{Aut}_{A}(\mathcal{U})$ with $\alpha \upharpoonright_{E}=\operatorname{id}$ and $\alpha\left(a_{1}\right)=a_{2}$.

Proof. Part (a) is the $(5) \Rightarrow(1)$ direction of Lemma 1 of the appendix to [8].
Part (b) can be deduced from the proof of $(2) \Rightarrow(6)$ in that lemma. But we give some details.

Claim. Given A_{1}, A_{2} subsets of \mathcal{U} of cardinality less than $|\mathcal{U}|$, and a partial elementary map $\tau: A \cup E \cup A_{1} \rightarrow A \cup E \cup A_{2}$ such that $\tau \upharpoonright_{A \cup E}=\mathrm{id}$ and $\tau\left(A_{1}\right)=A_{2}$, if $b_{1} \in \mathcal{U}$ then there exists $b_{2} \in \mathcal{U}$ realizing $\tau\left(\operatorname{tp}\left(b_{1} / A \cup E \cup A_{1}\right)\right)$.

Proof of Claim. By Part (a) applied to all finite tuples from $A_{1} \cup\left\{b_{1}\right\}$, there is $E_{0} \subseteq E$ such that $\left|E_{0}\right|<|\mathcal{U}|$ and $\operatorname{tp}\left(A_{1} b_{1} / A \cup E_{0}\right) \vdash \operatorname{tp}\left(A_{1} b_{1} / A \cup E\right)$. By saturation there is b_{2} realizing $\tau\left(\operatorname{tp}\left(b_{1} / A \cup E_{0} \cup A_{1}\right)\right)$. But $\tau\left(\operatorname{tp}\left(b_{1} / A \cup\right.\right.$ $\left.\left.E_{0} \cup A_{1}\right)\right) \vdash \tau\left(\operatorname{tp}\left(b_{1} / A \cup E \cup A_{1}\right)\right)$. This proves the claim.

Using this claim it is easy to build α by a familiar back-and-forth construction.

Fix an A-definable set E and a stationary type $q \in S(A)$.
Definition 2.14. We say that q is weakly orthogonal to E if for some (equivalently any) $a \models q$ and any finite tuple \bar{e} from $E, a \downarrow_{A} \bar{e}$.

So in some sense this says that q has nothing to do with E - but only if you fix the parameter set A. It leaves open the possibility of a lot of interaction if you pass to more parameters. So, in fact, a can be both E internal and weakly orthogonal to E. We will see natural examples of this in the context of differentially closed fields.

Lemma 2.15. Suppose q is E-internal. Then q is weakly orthogonal to E iff $\operatorname{Aut}_{A}(q / E)$ acts transitively on $q(\mathcal{U})$.

Proof. We first show that if q is weakly orthogonal to E then q has a unique extension to $A \cup E$. Indeed, for any $a_{1}, a_{2} \models q$ and \bar{e} a tuple from E, we have $a_{i} \downarrow_{A} \bar{e}$ for $i=1,2$, so $a_{1}, a_{2} \models q \mid \bar{e}$. Now, as q is stationary, this implies $\operatorname{tp}\left(a_{1} / A \cup \bar{e}\right)=\operatorname{tp}\left(a_{2} / A \cup \bar{e}\right)$. This shows that there is a unique extension of q to $A \cup \bar{e}$. Since \bar{e} is chosen arbitrarily, we get that there is a unique extension of q to $A \cup E$.

Suppose $a_{1}, a_{2} \models q$. Then as we have just seen, we have $\operatorname{tp}\left(a_{1} / A \cup E\right)=$ $\operatorname{tp}\left(a_{2} / A \cup E\right)$. Since E is stably embedded in \mathcal{U}, by Lemma 2.13, there exists $\alpha \in \operatorname{Aut}_{A}(\mathcal{U})$ such that $\alpha \upharpoonright_{E}=\mathrm{id}$ and $\alpha\left(a_{1}\right)=a_{2}$. That is, $\operatorname{Aut}_{A}(q / E)$ acts transitively on $q(\mathcal{U})$.

For the converse, suppose $\operatorname{Aut}_{A}(q / E)$ acts transitively on $q(\mathcal{U})$. Let $a \models q$ and \bar{e} be a tuple from E. Let $a^{\prime} \models q$ with $a^{\prime} \downarrow_{A} \bar{e}$. By assumption there
exists $\alpha \in \operatorname{Aut}_{A}(q / E)$ such that $\alpha\left(a^{\prime}\right)=a$. Since $\alpha \upharpoonright_{A \cup E}=\mathrm{id}$, we get $a \downarrow_{A} \bar{e}$ as desired.

Lemma 2.16. Suppose $q \in S(A)$ is minimal, i.e., of U-rank 1. Then q is not weakly orthogonal to E iff $q(\mathcal{U}) \subseteq \operatorname{acl}(A E)$.

Proof. If q is not weakly orthogonal to E, for some $a \models q$ and some \bar{e} from the set E, we have $a \mathbb{L}_{A} \bar{e}$. As q is of \mathcal{U}-rank $1, a \in \operatorname{acl}(A \bar{e}) \subseteq \operatorname{acl}(A E)$. By an automorphism argument we get $q(\mathcal{U}) \subseteq \operatorname{acl}(A E)$.

Conversely, suppose $q(\mathcal{U}) \subseteq \operatorname{acl}(A E)$. Let $a \models q$. Then $a \in \operatorname{acl}(A \bar{e})$ for some \bar{e} from E. As q is not algebraic, $a \notin \operatorname{acl}(A)$. Hence $a \not ぬ_{A} \bar{e}$ and we see that q is not weakly orthogonal to E.

2.2 Differentially closed fields

We begin with a review of differential algebra. A differential ring is a commutative unitary ring R equipped with an additional function $\delta: R \rightarrow R$ that satisfies the Leibniz rule $\delta(x y)=x \delta y+y \delta x$. A differential field is a differential ring whose underlying ring is is a field. If (F, δ) is a differential field then by the field of constants we mean the subfield $\mathcal{C}_{F}:=\{x \in F: \delta x=0\}$.

In this thesis all differential fields will be of characteristic zero.
Given a differential field (F, δ), the ring of δ-polynomials in x is the differential ring $F\{x\}:=F\left[x=x^{(0)}, x^{(1)}, \ldots\right]$ where $\delta x^{(i)}=x^{(i+1)}$. It is not hard to check that this uniquely determines a differential ring structure on $F\{x\}$ that extends (F, δ). One can, of course, in the obvious way, consider the δ-polynomial ring $F\{\bar{x}\}$ in a tuple of variables $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$. The fraction field of $F\{\bar{x}\}$, denoted by $F\langle\bar{x}\rangle$, is the differential field of δ-rational functions.

The following useful fact is deduced by a straightforward Leibniz rule computation.

Fact 2.17. Suppose (F, δ) is a differential field, $f \in F[\bar{x}]$, and $\bar{a}=\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)$ is a tuple from some differential field extension $(K, \delta) \supseteq(F, \delta)$. Then
$\delta f(\bar{a})=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\bar{a}) \delta a_{i}+f^{\delta}(\bar{a})$, where $f^{\delta} \in F[\bar{x}]$ is obtained by applying δ to the coefficients of f.

Corollary 2.18. Let $L \supseteq K$ be two differential fields. Then

$$
\mathcal{C}_{K}^{\text {alg }} \cap L=K^{\text {alg }} \cap \mathcal{C}_{L} .
$$

In particular, taking $L=K$, we see that the field of constants is relatively algebraically closed in a differential field.

Proof. Suppose $a \in L$ is algebraic over \mathcal{C}_{K}. Then $a \in \mathcal{C}_{K}^{\text {alg }} \subseteq K^{\text {alg. Now }}$ let $P \in \mathcal{C}_{K}[x]$ be the minimal polynomial of a over \mathcal{C}_{K}. Then $0=\delta P(a)=$ $\frac{d P}{d x}(a) \delta a+P^{\delta}(a)=\frac{d P}{d x}(a) \delta a$ by Fact 2.17. Since $P(x)$ is the minimal polynomial of a over $\mathcal{C}_{K}, \frac{d P}{d x}(a) \neq 0$, so $\delta a=0$. Therefore $a \in \mathcal{C}_{L}$.

Suppose now that $a \in \mathcal{C}_{L}$ is algebraic over K. Then $a \in \mathcal{C}_{L} \subseteq L$. Let $P \in K[x]$ be the minimal polynomial of a over K. Then $0=\delta P(a)=$ $\frac{d P}{d x}(a) \delta a+P^{\delta}(a)=P^{\delta}(a)$ by Fact 2.17. Note that P^{δ} is either the zero polynomial or a polynomial of strictly smaller degree than P (since P is monic). As $P^{\delta}(a)=0, P^{\delta}$ must be the zero polynomial, so $a \in \mathcal{C}_{K}^{\text {alg }}$.

For a differential field extension $F \subseteq K$, if $\alpha \in K$, then we use $F\langle\alpha\rangle$ to denote the differential field generated by F and α. Note that if α is differentially transcendental over F (meaning $\left\{\alpha, \delta \alpha, \delta^{2} \alpha, \ldots\right\}$ is algebraically independent over F), then $F\langle\alpha\rangle$ is isomorphic to the differential rational function field $F\langle x\rangle$. Similarly, for a set $A \subseteq K$, we use $F\langle A\rangle$ to denote the differential field generated by F and A.

We study differential fields model theoretically in the language $L=$ $\{0,1,+,-, \times, \delta\}$ of rings together with a unary function symbol for the derivation. The class of differential fields of characteristic 0 is axiomatizable in the natural way by the theory denoted DF_{0}. That this theory has a model completion was shown by Blum [4] who gave differential-algebraic
axioms, but see also the geometric axioms of Pierce and Pillay [26]. That model completion is the theory of differentially closed fields in characteristic zero, denoted by DCF_{0}. It is the theory of existentially closed differential fields. That is, a differential field (K, δ) is differentially closed if every system of differential polyomial equations with a solution in some differential field extension already has a solution in $K . \mathrm{DCF}_{0}$ enjoys a number of modeltheoretic tameness properties including

- Quantifier elimination,
- Elimination of imaginaries, and
- ω-stability.

See, for example, [19] for a survey of this theory.
We work as usual in a sufficiently saturated model $(\mathcal{U}, \delta) \models \mathrm{DCF}_{0}$, and denote its constant field by \mathcal{C}. Model-theoretic definable closure in this theory is given by differential field generation, and model-theoretic algebraic closure is given by field-theoretic algebraic closure. That is, if $A \subseteq \mathcal{U}$ then $\operatorname{dcl}(A)=\mathbb{Q}\langle A\rangle$ and $\operatorname{acl}(A)=\mathbb{Q}\langle A\rangle^{\text {alg }}$. Shelah's non-forking independence has the following algebraic characterization: for \bar{a} a tuple and $B \subseteq C$ sets of parameters, given that \bar{a} is not differentially transcendental over B, then $\bar{a} \downarrow_{B} C$ iff

$$
\operatorname{Tr} \cdot \operatorname{Deg}(\mathbb{Q}\langle C, \bar{a}\rangle / \mathbb{Q}\langle C\rangle)=\operatorname{Tr} \cdot \operatorname{Deg}(\mathbb{Q}\langle B, \bar{a}\rangle / \mathbb{Q}\langle B\rangle) .
$$

Equivalently, $\mathbb{Q}\langle B, \bar{a}\rangle^{\text {alg }}$ is algebraically disjoint from $\mathbb{Q}\langle C\rangle^{\text {alg }}$ over $\mathbb{Q}\langle B\rangle^{\text {alg }}$.
Let us now review the basics of differential-algebraic geometry.
The Kolchin topology on \mathcal{U}^{n} is defined as follows: we say that a definable set $A \subseteq \mathcal{U}^{n}$ is Kolchin closed if there exist $f_{1}, \ldots, f_{m} \in \mathcal{U}\{\bar{x}\}$ such that $A=\left\{\bar{x} \in \mathcal{U}^{n}: f_{1}(\bar{x})=\cdots=f_{m}(\bar{x})=0\right\}$. Theorem 1.16 of [18] shows that this topology is Noetherian: there is no descending chain of closed sets. The generic type of an irreducible Kolchin closed set B over a δ-field k is the type
which says that x is in B but not in any k-definable Kolchin closed proper subset of B. A definable set is irreducible if its Kolchin closure is. By the generic type of an irreducible definable set, we mean the generic type of its Kolchin closure. Note that this does not always coincide with the type of greatest U-rank: over the empty set, the generic type p of \mathcal{C} is of U-rank 1, which is the type of greatest U-rank in the set defined by $x \delta^{2} x=\delta x$, as shown in Corollary 5.17 of [18], but p is not generic in this definable set. The term "generic solution" is similarly defined: a generic solution of a set of equations over a given parameter set is a solution that realizes the generic type over that parameter set of the definable set defined by the set of equations.

As mentioned above, the generic type of the field of constants \mathcal{C} has U rank 1 . In fact it is strongly minimal and the full induced structure in \mathcal{C} from (\mathcal{U}, δ) is that of a pure algebraically closed field. It is in this sense that we view the study of DCF_{0} as an expansion of algebraic geometry: algebraic geometry lives as the structure induced by DCF_{0} in the constant field.

The following consequence of strong minimality of \mathcal{C} will be useful:
Lemma 2.19. Let $F \subseteq \mathcal{U}$ be an algebraically closed differential field with \mathcal{C}_{F} being its field of constants. For any $f(\bar{x}) \in F(\bar{x})$, if $f(\bar{x})=0$ has a solution $\bar{c} \in \mathcal{C}$, then it has a solution in \mathcal{C}_{F}.

Proof. Assume the conclusion does not hold. Let i be the maximal possible number such that the first i coordinates of a solution of the equation $f(\bar{x})=0$ are in \mathcal{C}_{F}, i.e., there exists a solution $\bar{e}=\left(e_{1}, \ldots, e_{k}\right) \in \mathcal{C}$ of $f(\bar{x})=0$ such that $e_{1}, \ldots, e_{i} \in \mathcal{C}_{F}$, and for any solution \bar{c}, at least one of c_{1}, \ldots, c_{i+1} is not in \mathcal{C}_{F}. In particular, $e_{i+1} \notin \mathcal{C}_{F}$.

Let $f_{i}\left(x_{i+1}, \ldots, x_{k}\right):=f\left(e_{1}, \ldots, e_{i}, x_{i+1}, \ldots, x_{k}\right)$. Note that $\left(e_{i+1}, \ldots, e_{k}\right)$ is a solution of $f_{i}\left(x_{i+1}, \ldots, x_{k}\right)=0$, which is an equation over F. Since \mathcal{C} is strongly minimal (of dimension 1 in DCF_{0}), and $e_{i+1} \notin F=\operatorname{acl}(F)$, the formula $\exists\left(x_{i+2}, \ldots, x_{k}\right) \in \mathcal{C}_{F}\left(f_{i}\left(x_{i+1}, \ldots, x_{k}\right)=0\right)$ has co-finitely many realizations in \mathcal{C}. Since \mathcal{C}_{F} is infinite, Let $e_{i+1}^{*} \in C_{F}$ be a realization of this formula witnessed by $\left(e_{i+2}^{*}, \ldots, e_{k}^{*}\right) \in \mathcal{C}$, i.e., $\left(e_{1}, \ldots, e_{i}, e_{i+1}^{*}, e_{i+2}^{*}, \ldots, e_{k}^{*}\right)$ is
a solution of $f(\bar{x})=0$. Then the first $i+1$ coordinates of this solution are in C_{F}, contradicting the definition of i.

Let us now look at \mathcal{C}-internality and weak orthogonality to \mathcal{C} in DCF_{0}. The following characterization improves upon Lemma 2.16 of the previous section.

Lemma 2.20. For F a differential field and $p \in S(F)$ minimal, p is not weakly orthogonal to \mathcal{C} iff any realization \bar{a} of p is interalgebraic over F with some $c \in \mathcal{C}$.

Proof. If some \bar{a} realizing p satisfies that \bar{a} is interalgebraic over F with some $c \in \mathcal{C}$, then $\bar{a} \mathscr{L}_{F} c$, so p is not weakly orthogonal to \mathcal{C}.

For the converse, suppose p is not weakly orthogonal to \mathcal{C}. Since any minimal type in \mathcal{C} is interalgebraic with the type of a singleton, it suffices to find a tuple in \mathcal{C} with which $\bar{a} \models p$ is interalgebraic over F. By not weak orthogonality, there exists a tuple \bar{c} from \mathcal{C} such that $\bar{a} \in \operatorname{acl}(F \bar{c})$. Let $\varphi(\bar{x}, \bar{y})$ be an F-formula such that \bar{a} is one of n possible solutions to $\varphi(\bar{c}, \bar{y})$. Consider the $F \bar{a}$-formula $\psi(\bar{x})$ given by $\exists^{\leq n} \bar{y} \varphi(\bar{x}, \bar{y}) \wedge \varphi(\bar{x}, \bar{a})$. Then $\psi(\mathcal{C})$ is nonempty (it contains \bar{c}) and by stable embeddedness is defined over $\mathcal{C}_{F\langle\bar{a}\rangle}$ in the language of rings. It therefore has a solution in $\mathcal{C}_{F\langle\langle\bar{a}\rangle}^{\text {alg }}$, say \bar{c}^{*}. It is then clear that $\bar{c}^{*} \in \operatorname{acl}(F \bar{a})$ and $\bar{a} \in \operatorname{acl}\left(F \bar{c}^{*}\right)$.

We now point out one more equivalent condition of p being weakly orthogonal if we know in addition that p is \mathcal{C}-internal.

Lemma 2.21. Let F be an algebraically closed differential field. Suppose $p \in S(F)$ is a minimal \mathcal{C}-internal type. Then p is weakly orthogonal to \mathcal{C} iff p is isolated.

Proof. If p is isolated, then it is not interalgebraic with a constant over F (as the only isolated types in the constants are algebraic), so p is weakly orthogonal to \mathcal{C} by Lemma 2.20.

If p is weakly orthogonal to \mathcal{C}, then by Lemma $2.15, p(\mathcal{U})$ is a definable set as it is the orbit of $a \models p$ under the action of the definable $\operatorname{group}_{\operatorname{Aut}_{F}}(p / \mathcal{C})$. It follows that p is isolated.

If we drop the minimality assumption. we get the full characterization for weak orthogonality.

Lemma 2.22. Let F be an algebraically closed differential field, and $p \in$ $S(F)$. Then p is weakly orthogonal to \mathcal{C} iff $\mathcal{C}_{F}=\mathcal{C}_{F\langle a\rangle}$ for $a \models p$.

Proof. If $\mathcal{C}_{F} \neq \mathcal{C}_{F\langle a\rangle}$ for some $\bar{a} \models p$, then there is some $c \in \mathcal{C}_{F\langle\bar{a}\rangle} \backslash \mathcal{C}_{F}$, so $\bar{a} \mathbb{L}_{F} c$, witnessing that p is not weakly orthogonal to \mathcal{C}.

If p is not weakly orthogonal to \mathcal{C}, then for any $\bar{a} \models p, \bar{a} \mathbb{X}_{F} \bar{c}$ for some constant tuple \bar{c}. Assume without loss of generality that \bar{c} is one of the constant tuples with the minimal length that satisfies $\bar{a} \not ્ \nsim_{F} \bar{c}$. Suppose $\bar{c}=\left(c_{1}, \ldots, c_{n}\right)$. Then $\bar{a} \downarrow_{F} c_{1} \cdots c_{n-1}$, so $\bar{a} \mathbb{L}_{F c_{1} \cdots c_{n-1}} c_{n}$, which means $c_{n} \in \operatorname{acl}\left(F a c_{1} \cdots c_{n-1}\right)$. Therefore, there exists a formula $\varphi\left(x_{1}, \ldots, x_{n-1}, y\right)$ over $F a$ such that c_{n} is one of m solutions of $\varphi\left(c_{1}, \ldots, c_{n-1}, y\right)$. As \mathcal{C} is stably embedded, we may assume φ is in fact a formula over $\mathcal{C}_{F\langle a\rangle}$. Suppose for a contradiction that $\mathcal{C}_{F}=\mathcal{C}_{F\langle a\rangle}$. Then φ is over \mathcal{C}_{F}, so $c_{n} \in \operatorname{acl}\left(F c_{1} \cdots c_{n-1}\right)$. This, together with $\bar{a} \downarrow_{F} c_{1} \cdots c_{n-1}$, yields $\bar{a} \downarrow_{F} \bar{c}$, a contradiction. We therefore get that $\mathcal{C}_{F} \neq \mathcal{C}_{F\langle a\rangle}$.

Remark 2.23. We may also prove this lemma from the fact that \mathcal{C} is stably embedded. By Lemma 2.13, since \mathcal{C} is stably embedded, for any a, $\operatorname{tp}(a / \operatorname{dcl}(a) \cap \mathcal{C})$ determines $\operatorname{tp}(a / \mathcal{C})$, so $\operatorname{dcl}(a) \cap \mathcal{C}$ is the smallest set B (up to interalgebraicity) that satisfies $a \downarrow_{B} \mathcal{C}$. Name all the elements in F, and we have that p is weakly orthogonal to \mathcal{C} iff $a \downarrow \mathcal{C}$ iff $a \downarrow \operatorname{dcl}(a) \cap \mathcal{C}$ iff $\operatorname{dcl}(a) \cap \mathcal{C} \subseteq \operatorname{acl}(F)$ iff $\mathcal{C}_{F\langle a\rangle}=\mathcal{C}_{F}$.

We end this section with examples of \mathcal{C}-internal types (and an example where the type is not \mathcal{C}-internal).

Example 2.24. Let F be a differential field. Suppose D is the solution space to a set of linear differential equations over F. If D is of finite dimension then D is \mathcal{C}-internal.

Proof. Let $\left\{\bar{b}_{1}, \ldots, \bar{b}_{k}\right\}$ be a \mathcal{C}-basis of D. Then $f:\left(c_{1}, \ldots, c_{k}\right) \mapsto c_{1} \bar{b}_{1}+$ $\cdots+c_{k} \bar{b}_{k}$ gives a definable map from \mathcal{C}^{k} to D, as D is a vector space of finite dimension over \mathcal{C}. Therefore D is \mathcal{C}-internal.

If the differential equations are not all homogeneous, then let \bar{b}_{0} be a solution to the inhomogeneous system, and $\bar{b}_{1}, \ldots, \bar{b}_{k}$ be a \mathcal{C}-basis of the set of solutions of the corresponding homogeneous linear differential equations. The function $f:\left(c_{1}, \ldots, c_{k}\right) \mapsto c_{1} \bar{b}_{1}+\cdots+c_{k} \bar{b}_{k}+\bar{b}_{0}$ then gives a definable map from \mathcal{C}^{k} to D, so D is again \mathcal{C}-internal.

Example 2.25. Let D be the strongly minimal set defined by the equation $\delta x=a x$ for some element $a \in \mathcal{U}$. Then D is \mathcal{C}-internal. Moreover, suppose F is an algebraically closed differential field that contains a and $D \cap F=\{0\}$. Let p be the generic type of D over F. Then p is weakly orthogonal to \mathcal{C} and $\operatorname{Aut}_{F}(p / \mathcal{C})=\mathbb{G}_{m}(\mathcal{C})$.

Proof. By Example 2.24, since $\delta x=a x$ is linear, D is \mathcal{C}-internal.
We now prove that p is weakly orthogonal to \mathcal{C}. By Lemma 2.21 , we only need to prove that p is isolated. The set of realizations of p is those elements in D which are not inside any proper F-definable Kolchin closed subset of D. Since D is strongly minimal, any proper F-definable Kolchin closed subset of it is finite. Therefore $p(\mathcal{U})=D \backslash F^{\text {alg }}=D \backslash F=D \backslash\{0\}$, so p is isolated.

Finally, we compute the binding $\operatorname{group}_{\operatorname{Aut}}^{F}(p / \mathcal{C})$. We first prove that any element $\alpha \in \operatorname{Aut}_{F}(p / \mathcal{C})$ acts as multiplication by a constant. Let $b_{0} \models p$ and set $c=\frac{\alpha\left(b_{0}\right)}{b_{0}}$. Since for any $b \models p$,

$$
\begin{aligned}
\alpha(b) & =\alpha\left(\frac{b}{b_{0}} b_{0}\right) \\
& =\alpha\left(\frac{b}{b_{0}}\right) \alpha\left(b_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{b}{b_{0}} \alpha\left(b_{0}\right) \\
& =c b
\end{aligned}
$$

we get that α is indeed multiplication by c. We now prove that multiplication by any $c \in \mathbb{G}_{m}(\mathcal{C})$ is an element of $\operatorname{Aut}_{F}(p / \mathcal{C})$. Given any $b \models p$, since $p(\mathcal{U}) \subseteq \operatorname{dcl}(F \mathcal{C} b)$, we only need to prove that $\operatorname{tp}(b / F \mathcal{C})=\operatorname{tp}(b c / F \mathcal{C})$. Since b and $b c$ are both in $D \backslash\{0\}$, we have $\operatorname{tp}(b / F)=\operatorname{tp}(b c / F)=p$. This implies $\operatorname{tp}(b / F \mathcal{C})=\operatorname{tp}(b c / F \mathcal{C})$ as p is weakly orthogonal to \mathcal{C}.

In the last example the logarithmic derivative was already implicit. Much of this thesis is about the logarithmic derivative. If we denote by \mathbb{G}_{m} the multiplicative group $\mathcal{U} \backslash\{0\}$ and by \mathbb{G}_{a} the additive group \mathcal{U}, then the logarithmic derivative is the definable group homomorphism $\log \delta: \mathbb{G}_{m} \rightarrow \mathbb{G}_{a}$ given by $\log \delta u=\frac{\delta u}{u}$. Its kernel is $\mathbb{G}_{m}(\mathcal{C})$. The final example we wish to discuss is the equation $\delta(\log \delta x)=0$. This is the definable subgroup $\log \delta^{-1}(\mathcal{C}) \leq \mathbb{G}_{m}$. But first let us record an algebraic fact about $\log \delta$ that will be of use later:

Lemma 2.26. If $f \in F(\bar{x})$ is a rational function (viewed as a partial differential rational function on $\left.\mathcal{U}^{n}\right)$, then there is $g \in F(\bar{x}, \bar{y})$ such that for any $\bar{u} \in \operatorname{Dom} f$ such that $f(\bar{u}) \neq 0, \log \delta f(\bar{u})=g(\bar{u}, \delta \bar{u})$. In particular, if $f \in F(\bar{x})$, then there exists $g \in F(\bar{x})$ such that $\log \delta f \upharpoonright_{\mathcal{C}^{n}}=g \upharpoonright_{\mathcal{C}^{n}}$.
Proof. Indeed, suppose $f(\bar{x})=\frac{f_{1}(\bar{x})}{f_{2}(\bar{x})}$ where $f_{1}, f_{2} \in F[\bar{x}]$, then $\log \delta f(\bar{u})=$ $\frac{f_{2}(\bar{u}) \delta f_{1}(\bar{u})-f_{1}(\bar{u}) \delta f_{2}(\bar{u})}{f_{1}(\bar{u}) f_{2}(\bar{u})}$. Now, by Fact 2.17, $\delta f_{i}(\bar{u})=g_{i}(\bar{u}, \delta \bar{u})$ for some $g_{1}, g_{2} \in F(\bar{x}, \bar{y})$.

The "in particular" clause is because $\delta u=0$ for any $u \in \mathcal{C}$.
Finally, the promised example.
Example 2.27 (See, for example, Fact 4.2 of [7]). Let G be the differential algebraic subgroup of \mathbb{G}_{m} defined by $\{x: \delta(\log \delta x)=0\}$. The generic type q of G (over $F:=\mathbb{Q}^{\text {alg }}$) is not almost \mathcal{C}-internal.

Proof. A proof is given in [7]. Here we give another more elementary proof.
Suppose for a contradiction that q is almost \mathcal{C}-internal. Let $\left(u_{1}, u_{2}, \ldots\right)$ be a Morley sequence of q, and $a_{i}=\log \delta u_{i}$ for $i=1,2, \ldots$. Note that $\delta a_{i}=0$, so $a_{i} \in \mathcal{C}$. Note also that $\left(a_{1}, a_{2}, \ldots\right)$ is algebraically independent as it is a Morley sequence. Almost \mathcal{C}-internality of q implies that $u_{1} \in$ $\operatorname{acl}\left(F \mathcal{C} u_{2} u_{3} \cdots u_{n}\right)=\mathcal{C}\left\langle u_{2}, \ldots, u_{n}\right\rangle^{\text {alg }}$ for some $n>0$. As $\delta u_{i}=a_{i} u_{i}$ and $a_{i} \in \mathcal{C}, \mathcal{C}\left\langle u_{2}, \ldots, u_{n}\right\rangle=\mathcal{C}\left(u_{2}, \ldots, u_{n}\right)$. Hence $\left\{u_{1}, \ldots, u_{n}\right\}$ is algebraically dependent over \mathcal{C}. Let $f \in \mathcal{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a nonzero polynomial such that $f\left(u_{1}, \ldots, u_{n}\right)=0$. Suppose

$$
f=\sum_{\bar{k} \in I} g_{\bar{k}} \bar{x}^{\bar{k}}
$$

where I is a finite set of non-negative integer n-tuples, and $g_{\bar{k}} \in \mathcal{C}$ nonzero for $\bar{k} \in I$. Let $\bar{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$. Then

$$
0=\sum_{\bar{k} \in I} g_{\bar{k}} \bar{u}^{\bar{k}}
$$

View δ as a \mathcal{C}-linear operator on the \mathcal{C}-vector space \mathcal{U}. Notice that for each $\bar{k} \in I, \log \delta\left(\bar{u}^{\bar{k}}\right)=\bar{k} \cdot \log \delta \bar{u}=\bar{k} \cdot \bar{a}$, so $\delta\left(\bar{u}^{\bar{k}}\right)=(\bar{k} \cdot \bar{a}) \bar{u}^{\bar{k}}$. Hence, $\bar{u}^{\bar{k}}$ is an eigenvector of δ with eigenvalue $\bar{k} \cdot \bar{a}$. As $\left\{a_{1}, \ldots, a_{n}\right\}$ is F-linearly independent, $\bar{k}_{1} \cdot \bar{a} \neq \bar{k}_{2} \cdot \bar{a}$ if $\bar{k}_{1} \neq \bar{k}_{2}$. That is, the eigenvalues for $\bar{u}^{\bar{k}}$ are different for different $\bar{k} \in I$. Therefore $\left\{\bar{u}^{\bar{k}}: \bar{k} \in I\right\}$ is \mathcal{C}-linearly independent, so $g_{\bar{k}}=0$ for all $\bar{k} \in I$, a contradiction.

Note that for $u \models q$ and $a:=\log \delta u, \operatorname{tp}(u / F a)$ is \mathcal{C}-internal (as u is a solution to $\delta x=a x$, a linear differential equation) and $\operatorname{tp}(a / F)$ is also \mathcal{C}-internal (as a itself is inside \mathcal{C}). We see that the type q, although not \mathcal{C}-internal, is somehow " 2 -step \mathcal{C}-internal". Types like this are said to be \mathcal{C} analysable. In the next chapter, we formalize the definition of \mathcal{C}-analysable types and discuss their properties.

2.3 An intuition from meromorphic functions

When working in the theory of differentially closed fields, it is difficult to get an intuitive idea as we do not have a concrete model. Often the differential field M of meromorphic functions on the complex plane can serve as a helpful tool: although not differentially closed, it is a relatively rich differential field that enables us to see, among other things, the behaviour of sets that are internal to or analysable in the constants.

The structure \mathcal{M} is defined as follows. The domain M is the set of meromorphic functions on the complex plane, with the usual addition, multiplication, and derivation. The field of constants in \mathcal{M} is the field of complex numbers \mathbb{C}. We will use ' to denote the derivation in \mathcal{M}. We let $t \in M$ be the identity function, so that $t^{\prime}=1$.

Remark 2.28. $\mathcal{M} \not \models \mathrm{DCF}_{0}$.
Proof. Let M_{0} be the field of meromorphic functions on $\mathbb{C} \backslash \mathbb{R}^{-}$, the complex plane with the negative half of the real line removed. Restriction induces an embedding of M into M_{0} as a differential field. Note that the differential equation $x^{\prime}=\frac{1}{t}$ has a solution in M_{0}, namely $x=\log t$, but does not have a solution in M. This shows that \mathcal{M} is not a differentially closed field.

We now illustrate how the structure \mathcal{M} helps us understand the behaviour of internal and analysable sets in DCF_{0} by analysing Example 2.27 using our intuitive tool \mathcal{M}. The equation $\left(\frac{x^{\prime}}{x}\right)^{\prime}=0$ has as its set of solutions in \mathcal{M} the multiplicative group $G=\left\{c_{1} e^{c_{2} t}: c_{1}, c_{2} \in \mathbb{C}, c_{1} \neq 0\right\}$. We can guess that the equation is analysable in the constants by observing that $\log \delta: G \rightarrow \mathbb{C}$ is given by $c_{1} e^{c_{2} t} \mapsto c_{2}$ and has fibres $G_{c_{2}}:=\left\{c_{1} e^{c_{2} t}: c_{1} \in \mathbb{C} \backslash\{0\}\right\}$, which is a definable copy of $\mathbb{C} \backslash\{0\}$. On the other hand, the equation should not be internal because the parametrization $\mathbb{C} \backslash\{0\} \times \mathbb{C} \rightarrow G$ given by $\left(c_{1}, c_{2}\right) \mapsto$ $c_{1} e^{c_{2} t}$ is not definable in the differential field \mathcal{M} even with parameters (it requires exponentiation).

3 Analysability

A notion similar to but weaker than internality is that of analysability. Instead of types that are internal, we explore types that are "internal in several steps", i.e., types that are built up through a finite sequence of fibrations whose fibres are internal. This is central to this thesis. It appears first in [10] though a form of it was implicit in the earlier work of Baldwin and Lachlan [1].

As a general setting, we work in a saturated model \mathcal{U} of a complete stable theory T that eliminates imaginaries.

Definition 3.1. Let \mathcal{P} be a set of partial types (over possibly different parameter sets) which is invariant under $\operatorname{Aut}_{A}(\mathcal{U})$, and q be a stationary type over a parameter set A. We say that q is \mathcal{P}-analysable if for some (equivalently any) realization a of q, there are $a_{0}=\varnothing, a_{1}, \ldots, a_{n}$ such that for all $i=1,2, \ldots, n, a_{i-1} \in \operatorname{dcl}\left(A a_{i}\right), \operatorname{stp}\left(a_{i} / A a_{i-1}\right)$ is almost \mathcal{P}-internal, and $\operatorname{acl}(A a)=\operatorname{acl}\left(A a_{n}\right)$. The sequence $\left(a_{i}\right)_{i=1}^{n}$ mentioned above is called a $\mathcal{P}-$ analysis of q or a \mathcal{P}-analysis of a over A.

In this chapter we begin with a finite U-rank type q that is \mathcal{P}-analysable and study the structure of the various possible analyses that might witness this. In particular, we introduce a notion of equivalence of analyses and produce extremal analyses (by "reductions" or by "coreductions"). We show that the analyses by reductions always exist (Proposition 3.8) and discuss certain conditions for analysis by coreductions to exist (Proposition 3.10). When analyses by reductions and coreductions exist and are equivalent, every analysis of q of the shortest possible length is equivalent; we call this unique analysis of shortest length the canonical analysis. This is Proposition 3.15 below. We also give criteria to determine if a given analysis is one of these extremals, in Proposition 3.16.

As a general reference for analysability we suggest Chapter 8 of [27]. We have provided proofs where explicit references were not available.

The results presented in this chapter appeared in [12].

3.1 Basic notions

For notational convenience, for any analysis $\left(a_{i}\right)_{i=1}^{n}$ we use a_{0} to denote the empty tuple. We call n the length of the analysis. Note that an algebraic type has a \mathcal{P}-analysis of length zero, and an almost \mathcal{P}-internal type has a \mathcal{P}-analysis of length 1.

Definition 3.1 looks more like what might be called almost analysable, and we may instead say that a type is strictly \mathcal{P}-analysable if $\operatorname{stp}\left(a_{i} / a_{i-1}\right)$ is internal (rather than almost internal) to \mathcal{P}. Indeed, this is closer to the original definition appearing in [10]. The following proposition proves that these two definitions are in fact equivalent. This is well-known but we include a proof here for completeness.

Proposition 3.2. A stationary type q over A is \mathcal{P}-analysable iff it is strictly \mathcal{P}-analysable.

Proof. The nontrivial direction is from left to right. Suppose $\left(b_{1}, \ldots, b_{n}\right)$ is an analysis of a over A. For convenience, let a_{0} be the empty tuple. We now construct the sequence $\left(a_{1}, \ldots, a_{n}\right)$.

Suppose we already have a sequence $\left(a_{1}, \ldots, a_{i-1}\right)$ where $1 \leq i \leq n$ such that $\operatorname{stp}\left(a_{j} / A a_{j-1}\right)$ is \mathcal{P}-internal, $a_{j-1} \in \operatorname{dcl}\left(A a_{j}\right)$, and $\operatorname{acl}\left(A a_{j}\right)=\operatorname{acl}\left(A b_{j}\right)$ for $j=1,2, \ldots, i-1$. Then as $\operatorname{stp}\left(b_{i} / A b_{i-1}\right)$ is almost \mathcal{P}-internal and $\operatorname{acl}\left(A a_{i-1}\right)=\operatorname{acl}\left(A b_{i-1}\right)$, we have that $\operatorname{stp}\left(b_{i} / A a_{i-1}\right)$ is almost \mathcal{P}-internal, so by Lemma 2.7, there exists a^{*} such that $\operatorname{acl}\left(A a_{i-1} a^{*}\right)=\operatorname{acl}\left(A a_{i-1} b_{i}\right)$ and $\operatorname{stp}\left(a^{*} / A a_{i-1}\right)$ is \mathcal{P}-internal. Let $a_{i}=a_{i-1} a^{*}$. Then we have $a_{i-1} \in \operatorname{dcl}\left(A a_{i}\right)$, $\operatorname{acl}\left(A a_{i}\right)=\operatorname{acl}\left(A a_{i-1} b_{i}\right)=\operatorname{acl}\left(A b_{i-1} b_{i}\right)=\operatorname{acl}\left(A b_{i}\right)$, and $\operatorname{stp}\left(a_{i} / A a_{i-1}\right)$ is $\mathcal{P}-$ internal.

The sequence $\left(a_{1}, \ldots, a_{n}\right)$ then witnesses the fact that $\operatorname{tp}(a / A)$ is strictly analysable.

Here are some elementary properties of analysability analogous to Lemma 2.6 about almost internality.

Lemma 3.3. (1) If $\operatorname{tp}(a / A)$ is \mathcal{P}-analysable and $b \in \operatorname{acl}(A a)$ then $\operatorname{stp}(b / A)$ is \mathcal{P}-analysable.
(2) If $\operatorname{tp}\left(a_{1} / A\right)$ and $\operatorname{tp}\left(a_{2} / A\right)$ are \mathcal{P}-analysable, then $\operatorname{stp}\left(a_{1} a_{2} / A\right)$ is \mathcal{P} analysable.
(3) If q is \mathcal{P}-analysable, then every stationary extension of q is also \mathcal{P} analysable.

Proof. (1) In contrast to what one might expect, this does not follow immediately from the analogous property for almost internality (Lemma 2.6(1)). Let $\left(a_{1}, \ldots, a_{n}\right)$ be a \mathcal{P}-analysis of a over A. Let $b_{i}=a_{i}$ for $i=1,2, \ldots, n-1$, and $b_{n}=b$. Then $\left(b_{1}, \ldots, b_{n}\right)$ satisfies that $\operatorname{tp}\left(b_{i} / A b_{i-1}\right)$ is almost \mathcal{P}-internal (but $b_{n} \notin \operatorname{acl}\left(A b_{n-1}\right)$, so this is not a \mathcal{P}-analysis). This shows that $\operatorname{stp}(b / A)$ is what Hrushovski calls "externally \mathcal{P}-analysable" in [10]. However, in Remark 2.7(d) of that paper he explains that externally \mathcal{P}-analysable implies \mathcal{P}-analysable.
(2) Let $\left(a_{11}, \ldots, a_{1 m}\right)$ and $\left(a_{21}, \ldots, a_{2 n}\right)$ be \mathcal{P}-analyses of a_{1} and a_{2} over A, respectively. Without loss of generality, suppose $m \leq n$. Set $a_{1, m+1}, \ldots, a_{1 n}$ to be all equal to $a_{1 m}$. Then note that $\left(a_{11}, \ldots, a_{1 n}\right)$ is still a \mathcal{P}-analysis of a_{1} over A. Using Lemma 2.6 we see that $\left(a_{11} a_{21}, \ldots, a_{1 n} a_{2 n}\right)$ is a \mathcal{P}-analysis of $a_{1} a_{2}$ over A.
(3) This is a direct consequence of part (3) of Lemma 2.6.

The U-type of an analysis $\left(a_{1}, \ldots, a_{n}\right)$ is the sequence $\left(U\left(a_{i} / A a_{i-1}\right)\right)_{i=1}^{n}$ of U-ranks. Note that U-ranks may be an ordinal or even ∞. We are mainly interested in the finite U-rank case, although results in this chapter work generally. We say the analysis is non-degenerate if each entry of the U-type is nonzero. Note that every analysis can be made non-degenerate by simply dropping those a_{i} such that $a_{i} \in \operatorname{acl}\left(A a_{i-1}\right)$.

We use the following definitions in order to better talk about analysable types and their analyses.

Definition 3.4. We say that the type q is n-step \mathcal{P}-analysable, or \mathcal{P}-analysable in n-steps, if there exists a \mathcal{P}-analysis of q of length n. A \mathcal{P}-analysis of q is minimal if there is no \mathcal{P}-analysis of q of strictly shorter length. A \mathcal{P}-analysis $\left(a_{i}\right)_{i=1}^{n}$ is said to be incompressible if $\operatorname{stp}\left(a_{i+1} / A a_{i-1}\right)$ is not almost \mathcal{P}-internal for all $i=1,2, \ldots, n-1$.

While a minimal analysis is clearly incompressible, the converse does not generally hold.

Example 3.5. Let $\operatorname{stp}(a)$ be 2 -step \mathcal{P}-analysable with an incompressible \mathcal{P} analysis $\left(a_{1}, a\right)$. Now let $\left(b_{1}, b\right)$ be such that $b b_{1} \downarrow a a_{1}$ and $\operatorname{stp}\left(b b_{1}\right)=$ $\operatorname{stp}\left(a a_{1}\right)$. Let $c=a b$. Then c is 3 -step \mathcal{P}-analysable, with an analysis $\left(a_{1}, a b_{1}, c=a b\right)$. This analysis is incompressible: $\operatorname{stp}\left(a b_{1}\right)$ is not almost \mathcal{P}-internal because $\operatorname{stp}(a)$ is not almost \mathcal{P}-internal and $\operatorname{stp}\left(a b / a_{1}\right)$ is not almost \mathcal{P}-internal because $\operatorname{stp}(b)$ is not almost \mathcal{P}-internal, and $\operatorname{stp}\left(b / a_{1}\right)$ is its non-forking extension. But c is 2 -step \mathcal{P}-analysable by ($a_{1} b_{1}, c=a b$), so the \mathcal{P}-analysis $\left(a_{1}, a b_{1}, c=a b\right)$ is not minimal despite being incompressible.

Nonetheless, the following lemma shows that incompressibility implies minimality if the U-type of an analysis is $(1,1, \ldots, 1)$.

Lemma 3.6. Let $\left(a_{1}, \ldots, a_{n}\right)$ be an incompressible \mathcal{P}-analysis of a over A of U-type $\underbrace{(1,1, \ldots, 1)}_{n}$. Then the analysis is minimal, i.e., $\operatorname{tp}(a / A)$ is not \mathcal{P}-analysable in $n-1$ steps.

Proof. For $n=2$, the only possibility that the analysis is not minimal is that $\operatorname{stp}(a / A)$ is 1 -step \mathcal{P}-analysable, i.e., almost \mathcal{P}-internal, which contradicts the fact that $\left(a_{1}, a_{2}\right)$ is an incompressible analysis.

Assume we have proved the conclusion for $n<k$. Suppose towards a contradiction that $\left(a_{1}, \ldots, a_{k}\right)$ is an incompressible \mathcal{P}-analysis of a over A of
U-type $\underbrace{(1,1, \ldots, 1)}_{k}$ which is not minimal. Let $\left(c_{1}, \ldots, c_{k-1}\right)$ be another \mathcal{P} analysis of a over A. Note that $\left(a_{1} c_{1}, a_{2} c_{2}, \ldots, a_{k-1} c_{k-1}\right)$ is also a \mathcal{P}-analysis of a over A. Let b_{1}, \ldots, b_{ℓ} be a subsequence of $\left(a_{i} c_{i}\right)_{i=1}^{k-1}$ such that $\left(b_{j}\right)_{j=1}^{\ell}$ is a non-degenerate \mathcal{P}-analysis of p. This can be done by taking away all elements $a_{i} c_{i}$ in $\left(a_{i} c_{i}\right)_{i=1}^{k-1}$ such that $U\left(a_{i} c_{i} / A a_{i-1} c_{i-1}\right)=0$. Let $b_{j}=a$ for $\ell+1 \leq j \leq k-1$. Then the only zero entries of the U-type of $\left(b_{j}\right)_{j=1}^{k-1}$ (if any) are at the end of the sequence.

If $U\left(b_{1} / A\right)=1$, then $\operatorname{acl}\left(A b_{1}\right)=\operatorname{acl}\left(A a_{1}\right)$, and $\operatorname{stp}\left(a / A a_{1}\right)=\operatorname{stp}\left(a / A b_{1}\right)$. But then $\left(a_{2}, \ldots, a_{k}\right)$ is a $(k-1)$-step incompressible \mathcal{P}-analysis of a over $A a_{1}$ of U-type $\underbrace{(1,1, \ldots, 1)}_{k-1}$, while $\left(b_{2}, \ldots, b_{k-1}\right)$ is a $(k-2)$-step \mathcal{P}-analysis of the same type with shorter length, contradicting our induction hypothesis.

Now suppose $U\left(b_{1} / A\right) \geq 2$. If the U-type of $\left(b_{j}\right)_{j=1}^{k-1}$ is degenerate then $U\left(b_{k-1} / b_{k-2}\right)=0$, and we have $U\left(b_{k-2} / A\right)=U(a / A)=k$. If $\left(b_{j}\right)_{j=1}^{k-1}$ is nondegenerate, then $U\left(b_{j} / A b_{j-1}\right) \geq 1$ for any $j=1, \ldots, k-2$ which gives us $U\left(b_{j} / A\right) \geq j+1$ for any $j=1, \ldots, k-2$. In both cases $U\left(b_{k-2} / A\right) \geq k-1$. By the induction hypothesis, $\operatorname{acl}\left(A b_{k-2}\right) \neq \operatorname{acl}\left(A a_{k-1}\right)$: otherwise, $\left(a_{i}\right)_{i=1}^{k-1}$ is a ($k-1$)-step incompressible \mathcal{P}-analysis of a_{k-1} over A of U-type $\underbrace{(1,1, \ldots, 1)}_{k-1}$, while $\left(b_{i}\right)_{i=1}^{k-2}$ is a $(k-2)$-step \mathcal{P}-analysis of the same type, contradicting our induction hypothesis. Similarly, $\operatorname{acl}\left(A b_{k-2}\right) \supsetneq \operatorname{acl}\left(A a_{k-1}\right)$ does not hold: otherwise $U\left(b_{k-2} / A a_{k-1}\right) \geq 1$, and since $b_{k-2} \in \operatorname{acl}(A a)$ and $U\left(a / A a_{k-1}\right)=1$, we have $\operatorname{acl}\left(A b_{k-2}\right)=\operatorname{acl}(A a)$; therefore $\left(a_{2}, \ldots, a_{k}\right)$ is a ($k-1$)-step incompressible \mathcal{P}-analysis of $\operatorname{stp}\left(a / A a_{1}\right)$ of U-type $\underbrace{(1,1, \ldots, 1)}_{k-1}$, while $\left(b_{1}, \ldots, b_{k-2}\right)$ is a $(k-2)$-step \mathcal{P}-analysis of the same type, contradicting our induction hypothesis. Hence $\operatorname{acl}\left(A b_{k-2}\right) \supseteq \operatorname{acl}\left(A a_{k-1}\right)$ does not hold, i.e., $a_{k-1} \notin \operatorname{acl}\left(A b_{k-2}\right)$. We have $k=U(a / A) \geq U\left(a_{k-1} b_{k-2} / A\right)=U\left(b_{k-2} / A\right)+U\left(a_{k-1} b_{k-2} / A b_{k-2}\right) \geq$ $(k-1)+1=k$, so $\operatorname{acl}\left(A b_{k-2} a_{k-1}\right)=\operatorname{acl}(A a)$. But then since $\operatorname{stp}\left(b_{k-2} / A a_{1}\right)$ and $\operatorname{stp}\left(a_{k-1} / A a_{1}\right)$ are $(k-2)$-step \mathcal{P}-analysable, so is $\operatorname{stp}\left(a / A a_{1}\right)$, while $\left(a_{2}, \ldots, a_{k}\right)$ is a $(k-1)$-step incompressible \mathcal{P}-analysis of a over $A a_{1}$ of U -
type $\underbrace{(1,1, \ldots, 1)}_{k-1}$, contradicting our induction hypothesis.

3.2 Reductions and coreductions

As shown in Example 3.5, Lemma 3.6 does not hold if the entries of the U-type are not all 1 . In the higher U-rank case, incompressibility will have to be replaced by some maximality or minimality property. We will use the notions of \mathcal{P}-reduction and \mathcal{P}-coreduction.

Definition 3.7 (See, for example, Section 4 of [22]). Suppose a is a tuple and A is a parameter set. We say a tuple b is a \mathcal{P}-reduction of a over A if b is maximally almost \mathcal{P}-internal over $A \operatorname{in} \operatorname{acl}(A a)$, i.e., $\operatorname{stp}(b / A)$ is almost \mathcal{P}-internal, $b \in \operatorname{acl}(A a)$, and if $c \in \operatorname{acl}(A a)$ with $\operatorname{stp}(c / A)$ almost \mathcal{P}-internal then $c \in \operatorname{acl}(A b)$. We say a non-degenerate \mathcal{P}-analysis $\left(a_{1}, \ldots, a_{n}\right)$ of a over A is a \mathcal{P}-analysis by reductions if a_{i} is the \mathcal{P}-reduction of a over $A a_{i-1}$ for $i=1,2, \ldots, n$.

Note that by definition \mathcal{P}-reductions are unique up to interalgebraicity over the parameter set, i.e., if b and c are both \mathcal{P}-reductions of a over A, then $\operatorname{acl}(A b)=\operatorname{acl}(A c)$. We may therefore call b the \mathcal{P}-reduction of a over A.

Proposition 3.8. Every \mathcal{P}-analysable type of finite U-rank has a \mathcal{P}-analysis by reductions.

Proof. We first show that if $U(a / A)<\omega$ then a \mathcal{P}-reduction of a over A exists. Indeed, let be a tuple that has maximal U-rank over A satisfying the condition that $\operatorname{stp}(b / A)$ is almost \mathcal{P}-internal and $b \in \operatorname{acl}(A a)$. Now, if $c \in \operatorname{acl}(A a)$ and $\operatorname{stp}(c / A)$ is almost \mathcal{P}-internal, then $\operatorname{stp}(b c / A)$ is almost \mathcal{P} internal and $b c \in \operatorname{acl}(A a)$, so $U(b c / A)=U(b / A)$, which means $c \in \operatorname{acl}(A b)$. So b is the \mathcal{P}-reduction of a over A.

Now suppose $q=\operatorname{tp}(a / A)$ is a stationary type that is of finite U-rank and is \mathcal{P}-analysable. Let $a_{0}=\varnothing$, and define a_{1}, a_{2}, \ldots recursively so that
a_{i} is the \mathcal{P}-reduction of a over $A a_{i-1}$ and $a_{i-1} \in \operatorname{dcl}\left(A a_{i}\right)$. By definition we will have that $\operatorname{stp}\left(a_{i} / A a_{i-1}\right)$ is almost \mathcal{P}-internal. If $a \notin \operatorname{acl}\left(A a_{i-1}\right)$ then, as $\operatorname{stp}\left(a / A a_{i-1}\right)$ is also \mathcal{P}-analysable by Lemma 3.3, there must exist $b \in$ $\operatorname{acl}(A a) \backslash \operatorname{acl}\left(A a_{i-1}\right)$ such that $\operatorname{stp}\left(b / A a_{i-1}\right)$ is \mathcal{P}-internal. Hence $U\left(a / A a_{i}\right)<$ $U\left(a / A a_{i-1}\right)$. So this process must stop with $a \in \operatorname{acl}\left(A a_{n}\right)$, and we have a \mathcal{P}-analysis of a over A by reductions.

Definition 3.9 (See, for example, Definition 4.1 of [22]). Suppose a is a tuple and A is a parameter set. We say a tuple b is a \mathcal{P}-coreduction of a over A if b is minimal in $\operatorname{acl}(A a)$ such that a is almost \mathcal{P}-internal over $A b$, i.e., $\operatorname{stp}(a / A b)$ is almost \mathcal{P}-internal, $b \in \operatorname{acl}(A a)$, and if $c \in \operatorname{acl}(a A)$ with $\operatorname{stp}(a / A c)$ almost \mathcal{P}-internal then $b \in \operatorname{acl}(A c)$. We say a non-degenerate \mathcal{P} analysis $\left(a_{1}, \ldots, a_{n}\right)$ of a over A is a \mathcal{P}-analysis by coreductions if a_{i-1} is a \mathcal{P}-coreduction of a_{k} over A for $i=1, \ldots, n$.

By definition \mathcal{P}-coreductions are unique up to interalgebraicity over the parameter set. We may therefore call b the \mathcal{P}-coreduction of a over A.

However, \mathcal{P}-coreductions do not automatically exist. The analogue of Proposition 3.8 becomes:

Proposition 3.10. Suppose that T has the property that every finite U-rank type has a \mathcal{P}-coreduction. Then every finite U-rank \mathcal{P}-analysable type has a \mathcal{P}-analysis by coreductions.

Proof. Suppose $q=\operatorname{tp}(a / A)$ is stationary, of finite U-rank, and \mathcal{P}-analysable. We prove by induction on $U(q)$ that it has a \mathcal{P}-analysis by coreductions. If $U(q)=0$ then the 0 -step \mathcal{P}-analysis is vacuously by coreductions. Suppose $U(q)>0$. Since q is \mathcal{P}-analysable, there is $b \in \operatorname{acl}(A a)$ with $a \notin \operatorname{acl}(A b)$ such that $\operatorname{stp}(a / A b)$ is almost \mathcal{P}-internal. Hence if we let \tilde{b} be the \mathcal{P}-coreduction of a over A then $\tilde{b} \in \operatorname{acl}(A a)$, so $\operatorname{stp}(\tilde{b} / A)$ is \mathcal{P}-analysable, and $a \notin \operatorname{acl}(A \tilde{b})$ which implies $U(\tilde{b} / A)<U(q)$. By induction we have a \mathcal{P}-analysis of \tilde{b} over A, $\left(b_{1}, \ldots, b_{n}\right)$, that is by coreductions. Then $\left(b_{1}, \ldots, b_{n}, a\right)$ is a \mathcal{P}-analysis of a over A by coreductions.

One context in which \mathcal{P}-coreductions always exist is when \mathcal{P} is the set of all nonmodular minimal types and T has the CBP. Recall that T has the canonical base property (CBP) if whenever $U(a / b)<\omega$ and $\operatorname{acl}(b)=$ $\operatorname{acl}(\operatorname{Cb}(a / b))$, then $\operatorname{stp}(b / a)$ is almost internal to the set of all nonmodular minimal types. See, for example, Section 1 of [23]. It is a fact that if T has the CBP then \mathcal{P}-coreduction exists for any finite-rank type (see Theorem 2.4 of [6]). So by Proposition 3.10, if \mathcal{P} is the set of nonmodular minimal types and T has the CBP, then every \mathcal{P}-analysable type of finite U-rank has a \mathcal{P}-analysis by coreductions.

Proposition 3.11. In DCF_{0} every \mathcal{C}-analysable type of finite U-rank has a \mathcal{C}-analysis by coreductions.

Proof. By Theorem 1.1 of [28], DCF_{0} has the CBP. Let \mathcal{P} be the set of all nonmodular minimal types. Therefore, if $\operatorname{tp}(a / A)$ is of finite U-rank then there exists b which is the \mathcal{P}-coreduction of a over A. We want to show that b is the \mathcal{C}-coreduction of a over A. Recall that \mathcal{C} denotes the field of constants of the differential field \mathcal{U}, and that by \mathcal{C}-coreduction we mean of course the $\{\{\delta x=0\}\}$-coreduction. We only need to show that if a type is almost \mathcal{P}-internal then it is almost \mathcal{C}-internal. Suppose $\operatorname{tp}(e / D)$ is \mathcal{P} internal. Then for some $B \supset D$ such that $B \underset{D}{\downarrow} e$ and a tuple c consisting of realizations of types in \mathcal{P} with bases in $B, e \in \operatorname{acl}(B c)$. Since every minimal nonmodular type in DCF_{0} is almost \mathcal{C}-internal, there exist $F \supset B$ such that $F \underset{B}{\downarrow} e c$ and $c \in \operatorname{acl}(F \mathcal{C})$. Now $e \in \operatorname{acl}(B c) \subseteq \operatorname{acl}(F \mathcal{C})$, and since $e \underset{B}{\downarrow} F$ and $e \underset{D}{\downarrow} B$, we have $e \underset{D}{\downarrow} F$. This shows that $\operatorname{tp}(e / D)$ is almost \mathcal{C}-internal. So every finite U-rank type has a \mathcal{C}-coreduction. The proposition now follows by Proposition 3.10.

It is not hard to see that analyses by reductions or coreductions are incompressible. If $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis by reductions of $\operatorname{tp}(a / A)$ and $\operatorname{stp}\left(a_{i+1} / A a_{i-1}\right)$ is almost \mathcal{P}-internal for some $i=1,2, \ldots, n-1$, then since a_{i}
is the \mathcal{P}-reduction of a over $A a_{i-1}, a_{i+1} \in \operatorname{acl}\left(A a_{i}\right)$ which implies $\operatorname{acl}\left(A a_{i}\right)=$ $\operatorname{acl}\left(A a_{i+1}\right)$. Now for any $j>i$, assume that $\operatorname{acl}\left(A a_{j}\right)=\operatorname{acl}\left(A a_{i}\right)$. Then since a_{j+1} is the \mathcal{P}-reduction of a over $A a_{j}$ and $\operatorname{acl}\left(A a_{j}\right)=\operatorname{acl}\left(A a_{i}\right), a_{j+1}$ is the \mathcal{P}-reduction of a over $A a_{i}$, so $\operatorname{acl}\left(A a_{j+1}\right)=\operatorname{acl}\left(A a_{i+1}\right)=\operatorname{acl}\left(A a_{i}\right)$. Thus a_{i}, \ldots, a_{n} are all the same up to interalgebraicity over A, and this is possible only if $i=n$, contradicting the fact that $i \leq n-1$. Similarly, if $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis by coreductions of $\operatorname{tp}(a / A)$ and $\operatorname{stp}\left(a_{i+1} / A a_{i-1}\right)$ is almost \mathcal{P} internal for some $i=1,2, \ldots, n-1$, then since a_{i} is the \mathcal{P}-coreduction of a_{i+1} over $A, a_{i} \in \operatorname{acl}\left(A a_{i-1}\right)$ which implies a_{i} and a_{i-1} are interalgebraic over A. An inductive argument similar to the reduction case shows that a_{0}, \ldots, a_{i} are all the same up to interalgebraicity over A, and this is possible only if $i=0$, contradicting the fact that $i \geq 1$.

More is true: they are actually minimal.
Proposition 3.12. Analyses by reductions are minimal and analyses by coreductions are minimal.

Proof. Let $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(c_{1}, \ldots, c_{\ell}\right)$ be \mathcal{P}-analyses of a over A with the analysis $\left(a_{1}, \ldots, a_{n}\right)$ being by reductions. We shall prove that $n \leq \ell$. We show that $c_{i} \in \operatorname{acl}\left(A a_{i}\right)$ for $i=1,2, \ldots, \min (n, \ell)$. For $i=1, \operatorname{since} \operatorname{stp}\left(c_{1} / A\right)$ is almost \mathcal{P}-internal and a_{1} is the \mathcal{P}-reduction of a over $A, c_{1} \in \operatorname{acl}\left(A a_{1}\right)$. Now if $c_{i-1} \in \operatorname{acl}\left(A a_{i-1}\right)$, then $\operatorname{stp}\left(c_{i} / a_{i-1}\right)$ is almost \mathcal{P}-internal, and as a_{i} is the \mathcal{P}-reduction of a over $A a_{i-1}, c_{i} \in \operatorname{acl}\left(A a_{i}\right)$ as desired. Suppose $\ell<n$. Then $\operatorname{acl}\left(A a_{\ell}\right) \subsetneq \operatorname{acl}\left(A a_{n}\right)$ since $\left(a_{1}, \ldots, a_{n}\right)$ is incompressible, so $\operatorname{acl}(A a)=\operatorname{acl}\left(A c_{\ell}\right) \subseteq \operatorname{acl}\left(A a_{\ell}\right) \subsetneq \operatorname{acl}\left(A a_{n}\right)=\operatorname{acl}(A a)$, a contradiction.

Now suppose $\left(b_{1}, \ldots, b_{m}\right)$ is a \mathcal{P}-analysis by coreductions of a over A. We shall prove that $m \leq \ell$. We show that $b_{m-j} \in \operatorname{acl}\left(A c_{\ell-j}\right)$ for $j=$ $0,1, \ldots, \min (m, \ell)-1$. For $j=0$, notice that b_{m}, c_{ℓ} are both interalgebraic over A with a. Now if $b_{m-j+1} \in \operatorname{acl}\left(A c_{\ell-j+1}\right)$, then $\operatorname{stp}\left(b_{m-j+1} / c_{\ell-j}\right)$ is almost \mathcal{P}-internal, and as b_{m-j} is the \mathcal{P}-coreduction of b_{m-j+1} over A, $b_{m-j} \in \operatorname{acl}\left(A c_{\ell-j}\right)$ as desired. Assume towards a contradiction that $\ell<m$. Then $\operatorname{acl}\left(A b_{m-\ell+1}\right) \subseteq \operatorname{acl}\left(A c_{1}\right)$. Since $m-\ell+1 \geq 2, \operatorname{stp}\left(b_{m-\ell+1} / A\right)$ is not
almost \mathcal{P}-internal because $\left(b_{1}, \ldots, b_{m}\right)$ is incompressible, but $\operatorname{stp}\left(c_{1} / A\right)$ is almost \mathcal{P}-internal, a contradiction.

So analyses by reductions and coreductions are of the same length. However, analyses by reductions and coreductions do not always have to agree (even up to interalgebraicity).

Definition 3.13. We say that two \mathcal{P}-analyses $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$ of a over A are interalgebraic over A if $n=m$ and $\operatorname{acl}\left(A a_{i}\right)=\operatorname{acl}\left(A b_{i}\right)$ for $i=$ $1,2, \ldots, n$. We call an analysis canonical if it is minimal and interalgebraic with every other minimal analysis.

Example 3.14. Using the notation of Example 3.5, the \mathcal{P}-analysis by reductions of $a b_{1}$ over \varnothing is $\left(a_{1} b_{1}, a b_{1}\right)$, while the \mathcal{P}-analysis by coreductions of $a b_{1}$ is $\left(a_{1}, a b_{1}\right)$. But $\left(a_{1} b_{1}, a b_{1}\right)$ and $\left(a_{1}, a b_{1}\right)$ are not interalgebraic. In particular, $\operatorname{stp}\left(a b_{1}\right)$ does not have a canonical \mathcal{P}-analysis.

The following theorem points out, however, that if an analysis by reductions has the same U-type as one by coreductions, then they are interalgebraic and are in fact canonical \mathcal{P}-analyses.

Proposition 3.15. Let $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ be \mathcal{P}-analyses by reductions and coreductions of a over A, respectively. Suppose $U(a / A) \neq \infty$. If the U-types of $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are the same, then $\left(a_{1}, \ldots, a_{n}\right)$ is interalgebraic with $\left(b_{1}, \ldots, b_{n}\right)$ over A. Moreover, if $\left(c_{1}, \ldots, c_{n}\right)$ is another \mathcal{P}-analysis of a over A, then $\left(c_{1}, \ldots, c_{n}\right)$ is also interalgebraic with both $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ over A.

In particular, if p has an analysis by reductions and an analysis by coreductions of the same U-type, then these analyses are canonical. Conversely, any canonical analysis of p is an analysis by reductions, and if p has an analysis by coreductions, then the canonical analysis is also an analysis by coreductions.

Proof. Having the same U-type implies that $U\left(a_{i} / A\right)=U\left(b_{i} / A\right)$ for $i=$ $1,2, \ldots, n$. Let $\left(c_{1}, \ldots, c_{n}\right)$ be another \mathcal{P}-analysis of a over A, We have seen in the proof of Proposition 3.12 that $c_{i} \in \operatorname{acl}\left(A a_{i}\right)$ and $b_{i} \in \operatorname{acl}\left(A c_{i}\right)$ for $i=1,2, \ldots, n$. Therefore $U\left(a_{i} / A\right)=U\left(b_{i} / A\right)=U\left(c_{i} / A\right)$ and $\operatorname{acl}\left(A a_{i}\right)=$ $\operatorname{acl}\left(A b_{i}\right)=\operatorname{acl}\left(A c_{i}\right)$ for $i=1,2, \ldots, n$, as desired.

The "in particular" clause now follows by Proposition 3.12. For the converse, let $\left(a_{i}\right)_{i=1}^{n},\left(b_{i}\right)_{i=1}^{n},\left(c_{i}\right)_{i=1}^{n}$ be \mathcal{P}-analyses of a over A, which are an analysis by reductions, an analysis by coreductions, and a canonical analysis, respectively. We have that a_{i} is the \mathcal{P}-reduction of a over $A a_{i-1}$, $\operatorname{acl}\left(A a_{i}\right)=\operatorname{acl}\left(A c_{i}\right)$, and $\operatorname{acl}\left(A a_{i-1}\right)=\operatorname{acl}\left(A c_{i-1}\right)$, so c_{i} is the \mathcal{P}-reduction of a over $A c_{i-1}$. Thus $\left(c_{i}\right)_{i=1}^{n}$ is a \mathcal{P}-analysis by reductions. Similarly, we have that b_{i} is the \mathcal{P}-coreduction of b_{i+1} over $A, \operatorname{acl}\left(A b_{i}\right)=\operatorname{acl}\left(A c_{i}\right)$, and $\operatorname{acl}\left(A b_{i+1}\right)=\operatorname{acl}\left(A c_{i+1}\right)$, so c_{i} is the \mathcal{P}-coreduction of a over $A c_{i-1}$. Thus $\left(c_{i}\right)_{i=1}^{n}$ is a \mathcal{P}-analysis by coreductions.

To make use of the above result we will need, both here and in Chapter 4, a way of determining if a given analysis is an analysis by reductions or coreductions. The following is a useful "local" criterion for when an analysis is by reductions or by coreductions.

Proposition 3.16. Let $\left(a_{1}, \ldots, a_{n}\right)$ be a \mathcal{P}-analysis of a over A. Then it is a \mathcal{P}-analysis by reductions iff a_{i} is a \mathcal{P}-reduction of a_{i+1} over $A a_{i-1}$ for $i=1, \ldots, n-1$; it is $a \mathcal{P}$-analysis by coreductions iff a_{i} is a \mathcal{P}-coreduction of a_{i+1} over $A a_{i-1}$ for $i=1, \ldots, n-1$.

Proof. Suppose $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis by reductions of a over A. For any $k=1,2, \ldots, n-1, a_{k}$ is a \mathcal{P}-reduction of a over $A a_{k-1}$, i.e., for any $a_{k}^{\prime} \in \operatorname{acl}(A a)$, if $\operatorname{stp}\left(a_{k}^{\prime} / A a_{k-1}\right)$ is almost \mathcal{P}-internal, then $a_{k}^{\prime} \in \operatorname{acl}\left(a_{k}\right)$. In particular, for any $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{k+1}\right)$, if $\operatorname{stp}\left(a_{k}^{\prime} / A a_{k-1}\right)$ is almost \mathcal{P}-internal, then $a_{k}^{\prime} \in \operatorname{acl}\left(a_{k}\right)$. Note that $a_{k} \in \operatorname{acl}\left(A a_{k+1}\right)$, so a_{k} is a \mathcal{P}-reduction of a_{k+1} over $A a_{k-1}$.

Now suppose $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis of a over A such that a_{i} is a \mathcal{P}-reduction of a_{i+1} over $A a_{i-1}$ for $i=1, \ldots, n-1$. We need to check that a_{k} is the \mathcal{P}-reduction of a over $A a_{k-1}$. In fact, let a_{k}^{\prime} be the \mathcal{P}-reduction of a over $A a_{k-1}$, then we only need to show that $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{k}\right)$.

We know $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{n}\right)$. Suppose $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{i}\right)$ for some i such that $k<i \leq n$. Since a_{k}^{\prime} is almost \mathcal{P}-internal over $A a_{k-1}$ and $k-1<i-1, a_{k}^{\prime}$ is almost \mathcal{P}-internal over $A a_{i-2}$. Now a_{i-1} is a \mathcal{P} reduction of a_{i} over $A a_{i-2}$, $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{i}\right)$, and a_{k}^{\prime} is almost \mathcal{P}-internal over $A a_{i-2}$, so $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{i-1}\right)$. By induction we get $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{k}\right)$.

We now turn to the coreduction part of this proposition. Suppose that $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis by coreductions of a over A. For any $k=$ $1,2, \ldots, n-1, a_{k}$ is a \mathcal{P}-coreduction of a_{k+1} over A, i.e., for any $a_{k}^{\prime} \in$ $\operatorname{acl}\left(A a_{k+1}\right)$, if $\operatorname{stp}\left(a_{k+1} / A a_{k}^{\prime}\right)$ is \mathcal{P}-internal, then $a_{k} \in \operatorname{acl}\left(A a_{k}^{\prime}\right)$. In particular, for any $a_{k}^{\prime} \in \operatorname{acl}\left(A a_{k+1}\right)$, if $\operatorname{stp}\left(a_{k+1} / A a_{k-1} a_{k}^{\prime}\right)$ is \mathcal{P}-internal, then $a_{k} \in \operatorname{acl}\left(A a_{k-1} a_{k}^{\prime}\right)$. So we have that a_{k} is a reduction of a_{k+1} over $A a_{k-1}$.

Now suppose $\left(a_{1}, \ldots, a_{n}\right)$ is a \mathcal{P}-analysis of a over A such that a_{i} is a \mathcal{P}-coreduction of a_{i+1} over $A a_{i-1}$ for $i=1, \ldots, n-1$. Fixing a $k \in\{1,2, \ldots$, $n-1\}$, we need to check that a_{k} is the \mathcal{P}-coreduction of a_{k+1} over A. In fact, let a^{\prime} be be such that $\operatorname{stp}\left(a_{k+1} / A a^{\prime}\right)$ is almost \mathcal{P}-internal. We need to prove that $a_{k} \in \operatorname{acl}\left(A a^{\prime}\right)$.

We know that $a_{1} \in \operatorname{acl}\left(A a^{\prime}\right)$. This is because a_{1} is the \mathcal{P}-coreduction of a_{2} over A, and $\operatorname{stp}\left(a_{2} / A a^{\prime}\right)$ is almost \mathcal{P}-internal (since $\left.a_{2} \in \operatorname{dcl}\left(A a_{k+1}\right)\right)$.

Suppose $a_{i-1} \in \operatorname{acl}\left(A a^{\prime}\right)$ for some i such that $1<i \leq k$. Since a_{i+1} is almost \mathcal{P}-internal over $A a^{\prime}$ (as $i+1 \leq k+1, a_{i+1} \in \operatorname{acl}\left(A a_{k+1}\right)$), and a_{i} is the \mathcal{P}-coreduction of a_{i+1} over $A a_{i-1}$, we have that $a_{i} \in \operatorname{acl}\left(A a^{\prime}\right)$. By induction we get $a_{k} \in \operatorname{acl}\left(A a^{\prime}\right)$.

It follows from the above lemma that an incompressible analysis of U type $(1,1, \ldots, 1)$ is canonical. Indeed, for such an analysis $\left(a_{1}, \ldots, a_{n}\right)$ of a over A, as $\operatorname{stp}\left(a_{i+1} / A a_{i-1}\right)$ is not almost \mathcal{P}-internal, by rank consideration, a_{i} must be both the \mathcal{P}-reduction and the \mathcal{P}-coreduction of a_{i+1} over $A a_{i-1}$
for $i=1,2, \ldots, n-1$.
We end this section by pointing out that once we have a type with an incompressible analysis of U-type $\underbrace{(1,1, \ldots, 1)}_{n}$ - as for example we will prove in Corollary 4.2 below that we do in DCF_{0} - then every decreasing sequence of positive integers of length n appears as the U-type of the \mathcal{P}-analysis by reductions of some other type in this theory. A similar statement holds for increasing sequences and \mathcal{P}-analyses by coreductions provided that every finite U-rank type has a \mathcal{P}-coreduction. For convenience we work over the empty set.
Proposition 3.17. Suppose $\left(a_{1}, \ldots, a_{n}\right)$ is an incompressible \mathcal{P}-analysis of U-type $(1,1, \ldots, 1)$.
(a) Given positive integers $s_{1} \geq \cdots \geq s_{n}$, there exists a tuple whose \mathcal{P} analysis by reductions is of U-type $\left(s_{1}, \ldots, s_{n}\right)$.
(b) Suppose every type of finite U-rank has a \mathcal{P}-coreduction. Given positive integers $s_{1} \leq \cdots \leq s_{n}$, there exists a tuple whose \mathcal{P}-analysis by coreductions is of U-type $\left(s_{1}, \ldots, s_{n}\right)$.
Proof. (a) Let $\bar{a}^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1,2, \ldots$ be tuples such that $\left(\bar{a}^{(1)}\right.$, $\left.\bar{a}^{(2)}, \ldots\right)$ is a Morley sequence of $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$. Let $\alpha_{i}=\left(a_{i}^{(1)}, \ldots, a_{i}^{\left(s_{i}\right)}\right)$ and $\beta_{i}=\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. Note that $a_{i}^{(j)} \in \beta_{i}$ for $j=1,2, \ldots, s_{i}$. We claim the tuple β_{n} is \mathcal{P}-analysable and its \mathcal{P}-analysis by reductions is of U-type $\left(s_{1}, \ldots, s_{n}\right)$. To show this, since $\left(\bar{a}^{(j)}\right)_{j}$ is a Morley sequence, we have

$$
\begin{aligned}
U\left(\beta_{i} / \beta_{i-1}\right) & =U\left(\alpha_{i} / \beta_{i-1}\right) \\
& =U\left(a_{i}^{(1)} \cdots a_{i}^{\left(s_{i}\right)} / \beta_{i-1}\right) \\
& =U\left(a_{i}^{(1)} \cdots a_{i}^{\left(s_{i}\right)} / a_{i-1}^{(1)} \cdots a_{i-1}^{\left(s_{i}\right)}\right) \\
& =s_{i}
\end{aligned}
$$

so we only need to prove that the \mathcal{P}-analysis by reductions of β is $\left(\beta_{1}, \beta_{2}\right.$, \ldots, β_{n}).

We simply check the definition in this case. Let b_{i} be the \mathcal{P}-reduction of β_{n} over β_{i-1}. We claim, and this will suffice, that b_{i} is interalgebraic with β_{i}. Since $a_{i-1}^{(j)} \in \operatorname{dcl}\left(\beta_{i-1}\right)$ for $j=1,2, \ldots, s_{i}$ (since $\left.s_{i-1} \geq s_{i}\right), \operatorname{stp}\left(a_{i}^{(j)} / \beta_{i-1}\right)$ is almost \mathcal{P}-internal for $j=1,2, \ldots, s_{i}$, so $\operatorname{stp}\left(\alpha_{i} / \beta_{i-1}\right)$ is almost \mathcal{P}-internal. Since $\beta_{i} \in \operatorname{dcl}\left(\alpha_{i}, \beta_{i-1}\right), \operatorname{stp}\left(\beta_{i} / \beta_{i-1}\right)$ is almost \mathcal{P}-internal, so $\beta_{i} \in \operatorname{acl}\left(b_{i}\right)$. We now need to show that $U\left(b_{i} / \beta_{i}\right)=0$. Toward a contradiction, suppose $U\left(b_{i} / \beta_{i}\right)>0$.

Set $B=\beta_{i}$, which is the collection of elements of the form $a_{p}^{(q)}$ where $1 \leq p \leq i$ and $1 \leq q \leq s_{i}$. Now we add elements of the form $a_{p}^{(q)}$ one by one into B according to lexicographic order of (p, q) where $i+1 \leq p \leq n$ and $1 \leq$ $q \leq s_{i}$ as long as $U\left(b_{i} / B\right)$ remains unchanged. Since $b_{i} \in \beta_{n}, U\left(b_{i} / \beta_{n}\right)=0$, so this process will terminate for some $a_{p}^{(q)}$ where $U\left(b_{i} / B a_{p}^{(q)}\right)<U\left(b_{i} / B\right)$.

Now B contains elements of the form $a_{p^{\prime}}^{\left(q^{\prime}\right)}$ where $\left(p^{\prime}, q^{\prime}\right)<(p, q)$ by lexicographic order. We have $a_{p}^{(q)} \underset{B}{\underset{~}{~}} b_{i}$. As $a_{p-1}^{(q)} \in B$ and $a_{p}^{(q)} \underset{a_{p-1}^{(q)}}{\downarrow} B$, $U\left(a_{p}^{(q)} / B\right)=1$, so $a_{p}^{(q)} \in \operatorname{acl}\left(B b_{i}\right)$. Let $C=\left\{a_{i}^{(j)}: a_{i+1}^{(j)} \in \operatorname{dcl}(B)\right\}$. Then $\operatorname{stp}(B / C)$ is almost \mathcal{P}-internal as $\operatorname{stp}\left(a_{i+1}^{(j)} / a_{i}^{(j)}\right)$ is almost internal for any i, j, and $\operatorname{stp}\left(b_{i} / C\right)$ is almost \mathcal{P}-internal because $\beta_{i-1} \in \operatorname{dcl}(C)$. Since $a_{p}^{(q)}$ is in $\operatorname{acl}\left(B b_{i}\right)$, this yields that $\operatorname{stp}\left(a_{p}^{(q)} / C\right)$ is almost \mathcal{P}-internal. However, the latter is impossible since $a_{p-1}^{(q)} \notin \operatorname{acl}(C)$, which is because $a_{p-1}^{(q)} \notin \operatorname{acl}\left(a_{p-2}^{(q)}\right)$ and $a_{p-1}^{(q)} \underset{a_{p-2}^{(q)}}{\downarrow} C$.
(b) Let $\bar{a}^{(j)}=\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right), j=1,2, \ldots$ be tuples such that $\left(\bar{a}^{(1)}\right.$, $\left.\bar{a}^{(2)}, \ldots\right)$ is a Morley sequence of $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$. Let $\beta_{i}=\left(a_{1}^{(1)}, \ldots, a_{1}^{\left(s_{i}\right)}, a_{2}^{(1)}\right.$, $\left.\ldots, a_{2}^{\left(s_{i-1}\right)}, \ldots, a_{i}^{(1)}, \ldots, a_{i}^{\left(s_{1}\right)}\right)$. Let $f(j)=\min \left\{k: j \leq s_{k}\right\}$, and let $f(j)$ be infinity if it is not defined. Then $a_{k}^{(j)} \in \operatorname{acl}\left(\beta_{i}\right)$ iff $k \leq i-f(j)+1$, and $\beta_{i}=\bigcup_{j=1}^{s_{i}} a_{i+1-f(j)}^{(j)}$. We claim the tuple β_{n} is \mathcal{P}-analysable and its \mathcal{P} analysis by coreductions is of U-type $\left(s_{1}, \ldots, s_{n}\right)$. Since $\beta_{i}=\bigcup_{j=1}^{s_{i}} a_{i+1-f(j)}^{(j)}$
and $\beta_{i-1}=\bigcup_{j=1}^{s_{i}} a_{i-f(j)}^{(j)}\left(\right.$ as $i-f(j)=0$ for $s_{i-1}<j \leq s_{i}$, we may set the upper bound as s_{i}), we have

$$
\begin{aligned}
U\left(\beta_{i} / \beta_{i-1}\right) & =U\left(\bigcup_{j=1}^{s_{i}} a_{i+1-f(j)}^{(j)} / \beta_{i-1}\right) \\
& =\sum_{j=1}^{s_{i}} U\left(a_{i+1-f(j)}^{(j)} / a_{i-f(j)}^{(j)}\right) \\
& =s_{i}
\end{aligned}
$$

as $\left(\bar{a}^{(j)}\right)_{j}$ is a Morley sequence. Thus we only need to prove that the \mathcal{P} analysis by coreductions of β is $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$.

Again, we check the definition. Fix $i=0,1, \ldots, n-1$. Suppose b is the $\mathcal{P}-$ coreduction of β_{i+1} over the empty set. We claim that $\operatorname{acl}(b)=\operatorname{acl}\left(\beta_{i}\right)$. Note that $\operatorname{stp}\left(\beta_{i+1} / \beta_{i}\right)$ is almost \mathcal{P}-internal, so $b \in \operatorname{acl}\left(\beta_{i}\right)$. Take any $a_{j}^{(k)} \in \operatorname{dcl}\left(\beta_{i}\right)$. Since $a_{j+1}^{(k)} \in \operatorname{dcl}\left(\beta_{i+1}\right)$ and $\operatorname{stp}\left(\beta_{i+1} / b\right)$ is almost \mathcal{P}-internal, $\operatorname{stp}\left(a_{j+1}^{(k)} / b\right)$ is almost \mathcal{P}-internal, so $a_{j}^{(k)} \in \operatorname{acl}(b)$ since $a_{j}^{(k)}$ is the \mathcal{P}-coreduction of $a_{j+1}^{(k)}$. We therefore have that $\beta_{i} \in \operatorname{acl}(b)$.

4 Some constructions of analysability in DCF_{0}

Probably the best known example of an analysable but not internal to the constants Kolchin closed set is the one defined by the equation $\delta\left(\frac{\delta x}{x}\right)=0$. It decomposes as an extension of the additive group of constants by the multiplicative group of constants, without itself being almost internal to the constants. Our first observation is to generalize this construction by iterating the logarithmic derivative. Writing $\log \delta x:=\frac{\delta x}{x}$ and $\log \delta^{(m)}=\underbrace{\log \delta \cdots \log \delta}_{m}$ we consider the equation $\log \delta^{(m)} x=0$, and show in Section 4.1 that while it is analysable in the constants in m steps, it is not analysable in $m-1$ steps. This is done by essentially reducing to the $m=2$ case.

Furthermore, we want analyses of a type p that are canonical. Not every finite rank type in DCF_{0} admits a canonical analysis (see Example 3.5). However, we show in Section 4.2 that given any sequence of positive integers $\left(n_{1}, \ldots, n_{m}\right)$ there exists in DCF_{0} a type that has a canonical analysis in the constants with i th step having U-rank n_{i}. Unlike in the logarithmic derivative case, these examples are not differential algebraic groups, and hence that theory is not directly available to us. Our proofs involve a careful algebraic analysis of the equations that arise. Note that the situation is very different for differential algebraic groups; in [3] it is shown that every differential algebraic group over the constants is analysable in at most 3 steps.

The results presented in this chapter appeared in [12].

4.1 Iterated logarithmic derivative

We work in a saturated model $\mathcal{U}=(U, 0,1,+, \times, \delta)$ of DCF_{0}. We often omit $0,1,+, \times$ and write $\mathcal{U}=(U, \delta)$.

We focus on types which are almost \mathcal{C}-internal or \mathcal{C}-analysable in DCF_{0}, where $\mathcal{C}=\{x: \delta x=0\}$ is the field of constants of \mathcal{U}.

We will be considering iterated logarithmic derivatives. For any $n \geq 1$ we
set $\log \delta^{(n)}(x):=\underbrace{\log \delta \log \delta \cdots \log \delta(x)}_{n \text { times }}$. Note that $\log \delta^{(n)}(x)$ is only defined at x if $\log \delta^{(i)}(x) \neq 0$ for $i=0,1, \ldots, n-1$ where $\log \delta^{(0)}(x)=x$. Whenever we write $\log \delta^{(n)}(x)$ it is always assumed that x is in this domain of definition. Note that for any $h \in \mathcal{U}$, the equation $\log \delta^{(n)}(x)=h$ defines an irreducible Kolchin constructible subset B of \mathcal{U}. Indeed, B is isomorphic to

$$
\begin{aligned}
B^{*} & =\left\{\left(x, \log \delta(x), \ldots, \log \delta^{(n-1)}(x)\right): x \in B\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \neq 0 ; \frac{\delta x_{i}}{x_{i}}=x_{i+1}, i=1,2, \ldots, n-1 ; \frac{\delta x_{n}}{x_{n}}=h\right\}
\end{aligned}
$$

whose Kolchin closure is

$$
\left\{\left(x_{1}, \ldots, x_{n}\right): \delta x_{i}=x_{i} x_{i+1}, i=1,2, \ldots, n-1 ; \delta x_{n}=h x_{n}\right\}
$$

which is irreducible since it is the set of D-points (or "sharp" set) corresponding to the irreducible D-variety (\mathbb{A}^{n}, s) where $s\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=$ $\left(x_{1} x_{2}, \ldots, x_{n-1} x_{n}, h x_{n}\right)$. (For details on D-varieties see [15].)

In particular, $\left\{x: \log \delta^{(2)}(x)=h\right\}$ is irreducible. Note also that the generic type of $\log \delta^{(2)}(x)=0$ is the same as that of G which is defined in Example 2.27. So the following proposition is in fact a generalisation of Example 2.27.

Proposition 4.1. Let $h \in U$ and consider $B=\left\{x: \log \delta^{(2)}(x)=h\right\}$. Let k be a δ-field containing h, and p be the generic type of B over k. Then p is not almost \mathcal{C}-internal.

Proof. We may assume that k contains an element of the form $a=\log \delta g_{0}$ where $g_{0} \in B$. Indeed, this follows from the fact that for any $g_{0} \in B, p$ is almost \mathcal{C}-internal iff the non-forking extension of p to $k\left\langle g_{0}\right\rangle$ is, and $p \mid k\left\langle g_{0}\right\rangle$ is the generic type of B over $k\left\langle g_{0}\right\rangle$.

We now construct a new model $\mathcal{V}=(U, D)$ of DCF_{0} as follows. The set U and the interpretation of $0,1,+$ and \times remain the same, while $D g:=\frac{\delta g}{a}$
for all $g \in \mathcal{U}$. Notice that \mathcal{V} is also a model of DCF_{0} with the same field of constants as \mathcal{U}, and any definable set in one model is definable in the other, with the same set of parameters, as long as the parameter set contains a. Now let q be a type in the model \mathcal{V} over k so that q and p have the same set of realizations in U. This can be done by replacing each occurrence of δ in formulas in p by $a D$.

Assume towards a contradiction that p is almost \mathcal{C}-internal. Hence, for any $g \models p$, there is $B \supset k$ such that $g \downarrow_{k} B$ and $g \in \operatorname{acl}(B C)$, in the model \mathcal{U}. Replacing δ by $a D$ in the formulas witnessing this fact, we have that $g \in \operatorname{acl}(B C)$ in \mathcal{V} as well. Moreover, $g \downarrow_{k} B$ holds in \mathcal{V} because U-ranks of types are the same in \mathcal{U} and \mathcal{V} if the parameter set contains a. We get that q is almost \mathcal{C}-internal in \mathcal{V}.

However, q is the generic type of B, since Kolchin closed sets definable over k (which contains a) are the same in \mathcal{U} and \mathcal{V}. The set B is defined in \mathcal{U} by the formula $\log \delta(\log \delta x)=h$, which is just $a \log D(a \log D x)=h$, which is equivalent to $\log D(\log D x)=0$. So q is the generic type of $B=\{x$: $\log D(\log D x)=0\}$, which is not almost \mathcal{C}-internal in \mathcal{V} by Example 2.27, a contradiction.

We can now show that the iterated logarithmic derivatives give rise to n-step \mathcal{C}-analysable types that are not $(n-1)$-step \mathcal{C}-analysable.

Corollary 4.2. In DCF_{0}, let $D=\{x \in U: \underbrace{\log \delta \log \delta \cdots \log \delta}_{n} x=0\}$. Then the generic type p of D is n-step \mathcal{C}-analysable but not $(n-1)$-step \mathcal{C}-analysable.

Proof. Let $a \in D$ be generic. Let $a_{n}=a, a_{k}=\log \delta a_{k+1}$ for $k=0,1, \ldots, n-1$. Note that $a_{0}=0, a_{k} \in \operatorname{dcl}\left(a_{k+1}\right)$ for $k=0,1, \ldots, n-1$, and a is interdefinable with $\left(a_{1}, \ldots, a_{n}\right)$.

As a is generic in $D, a_{i+1} \notin \operatorname{acl}\left(a_{i}\right)$ for each $i=0,1, \ldots, n-1$. By additivity of U-rank, for each $i=0,1, \ldots, n-1, U\left(a_{i+1} / a_{i}\right)=1$. Hence, $\operatorname{stp}\left(a_{i+1} / a_{i}\right)$ is the generic type over a_{i} of $\log \delta(x)=a_{i}$. The latter equation
defines a multiplicative translation of $\mathbb{G}_{m}(\mathcal{C})=\operatorname{ker}(\log \delta)$, so $\operatorname{stp}\left(a_{i+1} / a_{i}\right)$ is almost \mathcal{C}-internal of U-rank 1 . That is, $\left(a_{1}, a_{2}, \ldots, a_{n}=a\right)$ is a \mathcal{C}-analysis of p of U-type $\underbrace{(1,1, \ldots, 1)}_{n}$.

For each $i=1,2, \ldots, n-1, \operatorname{stp}\left(a_{i+1} / a_{i-1}\right)$ is the generic type of $\log \delta^{(2)} x=$ a_{i-1} over a_{i-1}. Proposition 4.1 tells us that this type is not almost \mathcal{C}-internal. That is, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an incompressible \mathcal{C}-analysis.

Hence, by Lemma 3.6, p is not \mathcal{C}-analysable in $n-1$ steps.

4.2 A construction of a canonical \mathcal{C}-analysis with given U-type

In this section we show that in DCF_{0} we can do better than the conclusions of Proposition 3.17. Given any sequence of positive integers we provide a type which has a canonical \mathcal{C}-analysis with that U-type. Our strategy is to build an example with a \mathcal{C}-analysis of the desired U-type, use Proposition 3.16 to check that it is an analysis by both reductions and coreductions, and then use Proposition 3.15 to conclude that it is canonical. Throughout we use the fact proven in Proposition 3.11 that any finite rank type has a \mathcal{C}-coreduction.

Suppose n_{1}, \ldots, n_{ℓ} are positive integers. We want to construct a type admitting a \mathcal{C}-analysis in ℓ steps where the i th step has U-rank n_{i}, and such that the analysis is canonical. Here is our construction.

For convenience, we name everything in $\mathbb{Q}^{\text {alg }}$ in the language. Let $c_{i j} \in$ $\mathbb{Q}^{\text {alg }}$ be algebraic numbers for $i=1,2, \ldots, \ell$ and $1 \leq j \leq n_{i}$ such that $\left\{c_{i j}\right\}_{j=1}^{n_{i}}$ is \mathbb{Q}-linearly independent for $i=1,2, \ldots, \ell$.

We inductively define (D_{i}, e_{i}) for $i=1,2, \ldots, \ell$ as follows:
Set $D_{1}:=\delta$ and let e_{1} be a generic solution over \varnothing to

$$
\begin{equation*}
\left(D_{1}-c_{11}\right)\left(D_{1}-c_{12}\right) \cdots\left(D_{1}-c_{1 n_{1}}\right) x=0 . \tag{1}
\end{equation*}
$$

For $i>1$ set $D_{i}:=\frac{\delta}{\prod_{j=1}^{i-1} e_{j}}$ and let e_{i} be a generic solution over $\left\{e_{1}, \ldots e_{i-1}\right\}$ to

$$
\begin{equation*}
\left(D_{i}-c_{i 1}\right)\left(D_{i}-c_{i 2}\right) \cdots\left(D_{i}-c_{i n_{i}}\right) x=0 . \tag{i}
\end{equation*}
$$

The notation $D_{i}-c_{i j}$ here represents a linear operator which sends y to $D_{i} y-c_{i j} y$, so equation $\left(\mathrm{E}_{i}\right)$ is a linear differential equation over $\left\{e_{1}, \ldots e_{i-1}\right\}$ of order n_{i}.

Now let $a_{i}=\left(e_{1}, \ldots, e_{i}\right)$ for $i=1,2, \ldots, n$, and $a_{0}=\varnothing$. We will show that $\left(a_{1} \cdots a_{\ell}\right)$ is a canonical \mathcal{C}-analysis of a_{ℓ} of U-type $\left(n_{1}, \ldots, n_{\ell}\right)$.

Since e_{i} is a generic solution of $\left(\mathrm{E}_{i}\right)$, an order n_{i} linear differential equation over a_{i-1}, we have $U\left(a_{i} / a_{i-1}\right)=n_{i}$, and $\operatorname{stp}\left(a_{i} / a_{i-1}\right)$ is almost \mathcal{C}-internal. So this is a \mathcal{C}-analysis of the correct U-type. We need to show it is by \mathcal{C} reductions and \mathcal{C}-coreduction.

Fixing $i \in\{1,2, \ldots, \ell\}$, the following coordinatisation of solutions of $\left(\mathrm{E}_{i}\right)$ is a useful tool that we will apply often.
Lemma 4.3. If f is any solution to $\left(E_{i}\right)$ then we can decompose $f=\sum_{j=1}^{n_{i}} f_{j}$ such that each f_{j} is a solution to $D_{i} x-c_{i j} x=0$ and f is interdefinable with $\left(f_{1}, \ldots, f_{n_{i}}\right)$ over a_{i-1}.

Proof. Indeed, let g_{j} be a generic solution of $D_{i} x-c_{i j} x=0$. The set $\left\{g_{j}: j=\right.$ $\left.1,2, \ldots, n_{i}\right\}$ is \mathcal{C}-linearly independent because g_{j} 's are nonzero eigenvectors of different eigenvalues under the \mathcal{C}-linear operator D_{i}. Note that since $\left(D_{i}-c_{i j}\right)$ commutes with $\left(D_{i}-c_{i j^{\prime}}\right)$ for any j, j^{\prime}, each g_{j} is a solution to $\left(\mathrm{E}_{i}\right)$. Since $\left(\mathrm{E}_{i}\right)$ is an order n_{i} linear differential equation and $\left\{g_{j}: j=1,2, \ldots, n_{i}\right\}$ is a set of \mathcal{C}-linearly independent solutions of $\left(\mathrm{E}_{i}\right)$, any solution of $\left(\mathrm{E}_{i}\right)$ is a \mathcal{C}-linear combination of g_{j} 's. In particular, f is of the form $\sum_{j=1}^{n_{i}} u_{j} g_{j}$ where $u_{j} \in \mathcal{C}$ for
$j=1, \ldots, n_{i}$. Let $f_{j}=u_{j} g_{j}$, so $f=\sum_{j=1}^{n_{i}} f_{j}$, and $f \in \operatorname{dcl}\left(f_{1}, \ldots, f_{n_{i}}\right)$. Also,

$$
D_{i} f_{j}-c_{i j} f_{j}=u_{j}\left(D_{i} g_{j}-c_{i j} g_{j}\right)=0
$$

so f_{j} is a solution to $D_{i} x-c_{i j} x=0$.
We still need to verify that $\left(f_{1}, \ldots, f_{n_{i}}\right) \in \operatorname{dcl}\left(a_{i-1} f\right)$. Indeed, suppose $\left(f_{j}^{*}\right)_{j=1}^{n_{i}}$ and $\left(f_{j}\right)_{j=1}^{n_{i}}$ have the same type over $a_{i-1} f$. Then in particular f_{j}^{*} is a solution to $D_{i} x-c_{i j} x=0$, and

$$
\sum_{j=1}^{n_{i}} f_{j}=f=\sum_{j=1}^{n_{i}} f_{j}^{*}
$$

which gives us $\sum_{j=1}^{n_{i}}\left(f_{j}-f_{j}^{*}\right)=0$. As $\left\{f_{j}-f_{j}^{*}: j=1,2, \ldots, n_{i}\right\}$ is a set of eigenvectors of different eigenvalues under the \mathcal{C}-linear operator D_{i}, we then have $f_{j}-f_{j}^{*}=0$ for all $j=1,2, \ldots, n_{i}$, so $\left(f_{j}^{*}\right)_{j=1}^{n_{i}}=\left(f_{j}\right)_{j=1}^{n_{i}}$.

Lemma 4.4. If f is a generic solution to (E_{i}) over a_{i-1}, then $\left\{f_{1}, \ldots, f_{n_{i}}\right\}$ obtained in Lemma 4.3 is independent over a_{i-1} and each f_{j} is a generic solution to $D_{i} x-c_{i j} x=0$.

Proof. Since f is a generic solution over a_{i-1} to $\left(\mathrm{E}_{i}\right)$, which is a linear differential equation of order n_{i}, we have $U\left(f / a_{i-1}\right)=n_{i}$ Since f_{j} is a solution for $D_{i} x-c_{i j} x=0, U\left(f_{i j} / a_{i-1}\right) \leq 1$. But

$$
\begin{aligned}
n_{i} & =U\left(f / a_{i-1}\right) \\
& =U\left(f_{1} f_{2} \cdots f_{n_{i}} / a_{i-1}\right) \\
& =U\left(f_{1} / a_{i-1}\right)+U\left(f_{2} / a_{i-1} f_{1}\right)+\cdots+U\left(f_{n_{i}} / a_{i-1} f_{1} f_{2} \cdots f_{n_{i}-1}\right) \\
& \leq U\left(f_{1} / a_{i-1}\right)+U\left(f_{2} / a_{i-1}\right)+\cdots+U\left(f_{n_{i}} / a_{i-1}\right) \\
& \leq n_{i} .
\end{aligned}
$$

So $U\left(f_{j} / a_{i-1}\right)=1$ and $U\left(f_{j} / a_{i-1} f_{1} f_{2} \cdots f_{j-1}\right)=1$ for $j=1,2, \ldots, n_{i}$. This means that $\left\{f_{1}, \ldots, f_{n_{i}}\right\}$ is independent over a_{i-1} and each f_{j} is a generic solution to $D_{i} x-c_{i j} x=0$.

Lemma 4.5. Let f be a generic solution over $\mathbb{Q}^{\text {alg }}$ to $\left(E_{1}\right)$. Then $\operatorname{acl}(f) \cap \mathcal{C}=$ $\mathbb{Q}^{\text {alg }}$.

Proof. Let $m=n_{1}$. Let $\left(f_{1}, \ldots, f_{m}\right)$ be the decomposition of f by Lemma 4.3 with respect to $\left(\mathrm{E}_{1}\right)$. Since f is generic, $f_{j} \neq 0$ for $j=1,2, \ldots, m$. Suppose the conclusion is false and there exists some c such that $c \in(\operatorname{acl}(f) \cap \mathcal{C}) \backslash \mathbb{Q}^{\text {alg }}$. Note that $\operatorname{acl}(f)=\mathbb{Q}\left(f_{1}, \ldots, f_{m}\right)^{\text {alg }}$ since $\delta f_{j}=c_{1 j} f_{j} \in \mathbb{Q}^{\text {alg }}\left(f_{j}\right)$.

For simplicity, let $\bar{f}=\left(f_{1}, \ldots, f_{m}\right)$, and $\bar{y}=\left(y_{1}, \ldots, y_{m}\right)$. Let $F(x, \bar{y})$ be a polynomial with coefficients in $\mathbb{Q}^{\text {alg }}$ such that $F(c, \bar{f})=0$ and $F(x, \bar{f}) \neq 0$. Since $c \notin \mathbb{Q}^{a l g}, F(c, \bar{y}) \neq 0$. Let $G(\bar{y})$ be a nonzero polynomial over \mathcal{C} with minimal number of terms such that $G(\bar{f})=0$. Since $F(c, \bar{y}) \neq 0$ and $F(c, \bar{f})=0, F(c, \bar{y})$ satisfies all conditions of G except for the minimality, so such a G exists.

Let

$$
G(\bar{y})=\sum_{\bar{r} \in I} s_{\bar{r}} \bar{y}^{\bar{r}},
$$

where I is a set of m-tuples of nonnegative integers, and $s_{\bar{r}} \in \mathcal{C}$. Let $\bar{c}=$ $\left(c_{11}, \ldots, c_{1 m}\right)$, and set $\bar{f} \bar{c}:=\sum_{j=1}^{m} f_{j} c_{1 j}$.

We claim that

$$
\bar{r}^{(1)} \bar{c}=\bar{r}^{(2)} \bar{c}
$$

for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$. Indeed, otherwise, fixing any $\bar{r}^{*} \in I$, we have

$$
\begin{aligned}
G^{*}(\bar{y}) & :=\bar{r}^{*} \bar{c} G(\bar{y})-\delta(G(\bar{y})) \\
& =\sum_{\bar{r} \in I}\left(\bar{r}^{*} \bar{c}\right) s_{\bar{r}} \bar{y}^{\bar{r}}-\sum_{\bar{r} \in I} s_{\bar{r}} \delta \bar{y}^{\bar{r}} \\
& =\sum_{\bar{r} \in I}\left(\bar{r}^{*} \bar{c}-\bar{r} \bar{c}\right) s_{\bar{r}} \bar{y}^{\bar{r}}
\end{aligned}
$$

is a polynomial with fewer terms than G (since the term with index \bar{r}^{*} is cancelled) such that its coefficients are in $\mathcal{C}, G^{*}(\bar{f})=0$ as $G(\bar{f})=\delta(G(\bar{f}))=0$, and $G^{*}(\bar{y}) \neq 0$ as there exist $\bar{r} \in I$ such that $\bar{r} \bar{c} \neq \bar{r}^{*} \bar{c}$. This contradicts the minimality of G.

We now have $\bar{r}^{(1)} \bar{c}=\bar{r}^{(2)} \bar{c}$ for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$, i.e., $\left(\bar{r}^{(1)}-\bar{r}^{(2)}\right) \bar{c}=0$ for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$. But $\left\{c_{11}, \ldots, c_{1 m}\right\}$ is \mathbb{Q}-linearly independent, so in fact $\bar{r}^{(1)}=\bar{r}^{(2)}$ for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$. Therefore there is only one element \bar{r} in I, and $G(\bar{f})=s_{\bar{r}} \bar{f}^{\bar{r}}$. Since all f_{j} 's are nonzero, $s_{\bar{r}}=0$, so G is the zero polynomial, a contradiction.

The following lemma is the technical heart of the construction.
Lemma 4.6. Fix $i \in\{1,2, \ldots, \ell-1\}$, and for notational convenience, let $m:=n_{i}$ and $L:=\operatorname{acl}\left(a_{i-1}\right)$. Then the following are true:
(i) Suppose f is a solution of $\left(E_{i}\right)$ and $\left(f_{1}, \ldots, f_{m}\right)$ is the decomposition of f by Lemma 4.3. Then f is generic over L iff all the f_{j} are nonzero.
(ii) Suppose f is a generic solution to (E_{i}) over $L, \alpha \in \mathbb{Q}^{\text {alg }}$ is nonzero, and h is a nonzero solution of $D_{i} x-\alpha f x=0$. Then f is the \mathcal{C}-coreduction of h over L.
(iii) The \mathcal{C}-coreduction of a_{i+1} over a_{i-1} is a_{i}.
(iv) The \mathcal{C}-reduction of a_{i+1} over a_{i-1} is a_{i}.

Proof. We use induction on i.
(i) Suppose the conclusion is true for $i-1$.

By Lemma 4.4, if f is a generic solution to $\left(\mathrm{E}_{i}\right)$ over L, then for any $j \in\{1,2, \ldots, m\}, f_{j}$ is a generic solution to $D_{i} x-c_{i j} x=0$. In particular, $f_{j} \neq 0$.

Now suppose $f_{j} \neq 0$ for all $j=1,2, \ldots, m$, but f is not generic, i.e., $U(f / L)<m$. Since

$$
\begin{aligned}
U\left(f / a_{i-1}\right) & =U\left(f_{1} f_{2} \cdots f_{m} / a_{i-1}\right) \\
& =U\left(f_{1} / a_{i-1}\right)+U\left(f_{2} / a_{i-1} f_{1}\right)+\cdots+U\left(f_{m} / a_{i-1} f_{1} f_{2} \cdots f_{m-1}\right)
\end{aligned}
$$

$U\left(f_{j} / a_{i-1} f_{1} f_{2} \cdots f_{j-1}\right)<1$ for some j, and hence $f_{j} \in L\left\langle\bigcup_{k \neq j} f_{k}\right\rangle^{\text {alg }}$ for that j. Note that

$$
\delta f_{k}=\left(D_{i} f_{k}\right) \prod_{j=1}^{i-1} e_{j}=c_{i k} f_{k} \prod_{j=1}^{i-1} e_{j} \in L\left(f_{k}\right)
$$

so $f_{j} \in L\left\langle\bigcup_{k \neq j} f_{k}\right\rangle^{\text {alg }}=L\left(\bigcup_{k \neq j} f_{k}\right)^{\text {alg }}$, which means that $\left\{f_{1}, \ldots, f_{m}\right\}$ is algebraically dependent over L in the field theoretic sense.

Let $\bar{f}=\left(f_{1}, \ldots, f_{m}\right), \bar{y}=\left(y_{1}, \ldots, y_{m}\right)$, and $\bar{c}=\left(c_{i 1}, \ldots, c_{i m}\right)$. Let $G(\bar{y})$ be a nonzero polynomial with minimal number of terms such that its coefficients are in L and $G(\bar{f})=0$. We will use a minimality argument similar to that in the proof of Lemma 4.5. Suppose

$$
G\left(y_{1}, \ldots, y_{m}\right)=\sum_{\bar{r} \in I} s_{\bar{r}} \bar{y}^{\bar{r}}
$$

where I is a set of m-tuples of nonnegative integers, and $s_{\bar{r}} \in L$ for $\bar{r} \in I$. Now

$$
\begin{aligned}
D_{i}(G(\bar{f})) & =D_{i} \sum_{\bar{r} \in I} s_{\bar{r}} \bar{f}^{\bar{r}} \\
& =\sum_{\bar{r} \in I}\left(\bar{f} \bar{r} D_{i} s_{\bar{r}}+s_{\bar{r}} D_{i} \bar{f}^{\bar{r}}\right) \\
& =\sum_{\bar{r} \in I}\left(\log D_{i} s_{\bar{r}}+\bar{r} \bar{c}\right) s_{\bar{r}} \bar{f}^{\bar{r}} .
\end{aligned}
$$

We claim that

$$
\log D_{i} s_{\bar{r}^{(1)}}+\bar{r}^{(1)} \bar{c}=\log D_{i} s_{\bar{r}^{(2)}}+\bar{r}^{(2)} \bar{c}
$$

for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$. Indeed, otherwise, fixing any $\bar{r}^{*} \in I$, we have

$$
\begin{aligned}
G^{*}(\bar{y}) & :=\left(\log D_{i} s_{\bar{r}^{*}}+\bar{r}^{*} \bar{c}\right) G(\bar{y})-D_{i}(G(\bar{y})) \\
& =\sum_{\bar{r} \in I}\left(\log D_{i} s_{\bar{r}^{*}}+\bar{r}^{*} \bar{c}-\log D_{i} s_{\bar{r}}-\bar{r} \bar{c}\right) s_{\bar{r}} \bar{y}^{\bar{r}}
\end{aligned}
$$

is a polynomial with fewer terms than G (since the term with index \bar{r}^{*} is cancelled) such that its coefficients are in $L, G^{*}(\bar{f})=0$ as $G(\bar{f})=D_{i}(G(\bar{f}))=0$, and $G^{*}(\bar{y}) \neq 0$ as there exist \bar{r} in I such that $\log D_{i} s_{\bar{r}}+\bar{r} \bar{c} \neq \log D_{i} s_{\bar{r}^{*}}+\bar{r}^{*} \bar{c}$. This contradicts the minimality of G.

There are at least two terms in $G(\bar{y})$. Indeed, if there is only one term, then $G(\bar{y})=s_{\bar{r}} \bar{y}^{\bar{y}}$ for the unique $\bar{r} \in I$. Since $f_{j} \neq 0$ for $j=1,2, \ldots, m$ and $G(\bar{f})=0$, we have $s_{\bar{r}}=0$, so $G(\bar{y})=0$, contradicting the fact that G is nonzero.

We now have

$$
\log D_{i} s_{\bar{r}^{(1)}}+\bar{r}^{(1)} \bar{c}=\log D_{i} s_{\bar{r}^{(2)}}+\bar{r}^{(2)} \bar{c}
$$

for all $\bar{r}^{(1)}, \bar{r}^{(2)} \in I$. Note that $\log D_{i} s_{\bar{r}}+\bar{r} \bar{c}=\log D_{i}\left(s_{\bar{r}} \bar{f}^{\bar{r}}\right)$ for any $\bar{r} \in I$. Therefore, fixing $\bar{r}^{(1)} \neq \bar{r}^{(2)}$ in I, we get $s_{\bar{r}(1)} \bar{f}^{\bar{r}^{(1)}}=c s_{\bar{r}^{(2)}} \bar{f}^{\bar{r}^{(2)}}$ for some nonzero $c \in \mathcal{C}$. This means that

$$
\begin{equation*}
c \bar{f}^{\bar{r}^{(2)}-\bar{r}^{(1)}}=s_{\bar{r}^{(1)}} s_{\bar{r}^{(2)}}^{-1} \tag{*}
\end{equation*}
$$

Note that as all $f_{j} \neq 0, \bar{f}^{\bar{r}^{(2)}-\bar{r}^{(1)}}$ makes sense and is nonzero. Let $h=$ $c \bar{f}^{\bar{r}^{(2)}-\bar{r}^{(1)}}$. Then h is a nonzero solution to

$$
\begin{equation*}
\log D_{i} x=\left(\bar{r}^{(2)}-\bar{r}^{(1)}\right) \bar{c} \tag{**}
\end{equation*}
$$

When $i=1$, right side of $(*)$ is in $\operatorname{acl}\left(a_{0}\right)=\mathbb{Q}^{\text {alg }} \subset \mathcal{C}$, so h is also a constant, but then it is not a solution for $(* *)$. When $i>1$, we apply part (ii) of the lemma for $i-1$ with e_{i-1} a generic solution of $\left(\mathrm{E}_{i-1}\right)$ over $a_{i-2}, \alpha=$ $\left(\bar{r}^{(2)}-\bar{r}^{(1)}\right) \bar{c}^{*} \neq 0$, and h a nonzero solution of $D_{i-1} x-d x=0$. We get that e_{i-1} is the coreduction of h over a_{i-2}. In particular, since $e_{i-1} \notin \operatorname{acl}\left(a_{i-2}\right)$, we have that $\operatorname{stp}\left(h / a_{i-2}\right)$ is not almost \mathcal{C}-internal. But the right side of $(*)$ is in L which is almost \mathcal{C}-internal over a_{i-2}, a contradiction.
(ii) Suppose the conclusion is true for $i-1$, and (i) is true for i.

We use induction on m, the order of the differential equation $\left(\mathrm{E}_{i}\right)$.
If $m=n_{i}=1$, we have that $\log D_{i} h=\alpha f$ and $\log D_{i}(\alpha f)=c_{i 1}$. Let h^{*} be a generic solution of $\log D_{i} x=\alpha f$ over $L f$. Since f is a generic solution of $\log D_{i}(x)=c_{i 1}$ over $L, \alpha f$ is also a generic solution of $\log D_{i}(x)=c_{i 1}$ over L, and therefore h^{*} is a generic solution of $\log D_{i}^{(2)} x=c_{i 1}$ over a_{i-1}. Thus $\operatorname{stp}\left(h^{*} / L\right)$ is not almost \mathcal{C}-internal by Proposition 4.1. Since h^{*} is a constant multiple of $h, \operatorname{stp}(h / L)$ is also not almost \mathcal{C}-internal. Note that (f, h) is a \mathcal{C}-analysis of h over L, and as it is incompressible of U-type $(1,1)$, we have that f is the \mathcal{C}-coreduction of h over L.

Now suppose the conclusion of (ii) is proven if the order of the equation $\left(\mathrm{E}_{i}\right)$ is less than or equal to $m-1$.

Let β be the \mathcal{C}-coreduction of h over L. Since $\operatorname{stp}(h / L f)$ is almost \mathcal{C} internal, we only need to show that $f \in \operatorname{acl}(L \beta)$. Let $\left(f_{1}, \ldots, f_{m}\right)$ be the decomposition of f by Lemma 4.3. By Lemma 4.4, f_{j} is a generic solution of $D_{i} x-c_{i j} x=0$ for $j=1,2, \ldots, m$. Suppose towards a contradiction that $f \notin \operatorname{acl}(L \beta)$. We may, without loss of generality, suppose $f_{1}, \ldots, f_{s} \notin \operatorname{acl}(L \beta)$ and $f_{s+1}, \ldots, f_{m} \in \operatorname{acl}(L \beta)$ for some $1 \leq s \leq m$.

In the rest of the proof we seek a contradiction to the above assumption.
We prove first that $s=m$. Suppose not, so $f_{m} \in \operatorname{acl}(L \beta)$. Let h_{m} be a nonzero solution to $D_{i} x-\alpha f_{m} x=0$. We have that $\operatorname{stp}\left(h_{m} / L f_{m}\right)$ is almost \mathcal{C}-internal. Since $f_{m} \in \operatorname{acl}(L \beta), \operatorname{stp}\left(h_{m} / L \beta\right)$ is almost \mathcal{C}-internal. Let
$h^{*}=h h_{m}^{-1}$. Then

$$
\begin{aligned}
\log D_{i}\left(h^{*}\right) & =\log D_{i}(h)-\log D_{i}\left(h_{m}\right) \\
& =\alpha\left(f_{1}+\cdots+f_{m-1}+f_{m}\right)-\alpha f_{m} \\
& =\alpha\left(f_{1}+\cdots+f_{m-1}\right)
\end{aligned}
$$

Let $f^{*}=f_{1}+\cdots+f_{m-1}$. Then h^{*} is a nonzero solution to $D_{i} x-\alpha f^{*} x=0$. From (i), since f_{1}, \ldots, f_{m-1} are all nonzero, f^{*} is a generic solution over L to

$$
\left(D_{i}-c_{i 1}\right) \cdots\left(D_{i}-c_{i, m-1}\right) x=0
$$

By the induction hypothesis, we conclude that the \mathcal{C}-coreduction of h^{*} over L is f^{*}. Since h and h_{m} are almost \mathcal{C}-internal over $L \beta$ and $h^{*}=h h_{m}^{-1}$, we get that $f^{*} \in \operatorname{acl}(L \beta)$. As f^{*} is interdefinable with $\left(f_{1}, \ldots, f_{m-1}\right)$ over L, $f_{1} \in \operatorname{acl}(L \beta)$, contradicting our assumption.

Let $g_{t 1}=t f_{1}$ for $t=1,2, \ldots$. We show that $\operatorname{stp}\left(g_{t 1} / L \beta\right)=\operatorname{stp}\left(f_{1} / L \beta\right)$. Since

$$
\begin{equation*}
D_{i} g_{t 1}-c_{i 1} g_{t 1}=t D_{i} f_{1}-t c_{i 1} f_{1}=0 \tag{4.1}
\end{equation*}
$$

we have that $g_{t 1} \in\left\{x: D_{i} x-c_{i 1} x=0\right\}$, a strongly minimal set. Thus in order to prove $\operatorname{stp}\left(g_{t 1} / L \beta\right)=\operatorname{stp}\left(f_{1} / L \beta\right)$ we only need to show that $g_{t 1} \notin \operatorname{acl}(L \beta)$, which follows from $f_{1} \notin \operatorname{acl}(L \beta)$.

For each integer $t \geq 1$, let η_{t} be an automorphism fixing $\operatorname{acl}(L \beta)$ and taking f_{1} to $g_{t 1}$. Set $g_{t j}:=\eta_{t}\left(f_{j}\right)$ for all $j=1,2, \ldots, m, g_{t}:=\eta_{t}(f)$, and $h_{t}:=\eta_{t}(h) . \operatorname{Sostp}\left(h_{t}, g_{t}, g_{t 1}, \ldots, g_{t m} / L \beta\right)=\operatorname{stp}\left(h, f, f_{1}, \ldots, f_{m} / L \beta\right)$ for all $t \geq 1$. In particular, g_{t} is a generic solution to $\left(\mathrm{E}_{i}\right)$ over L, h_{t} is a nonzero solution to $D_{i} x-\alpha g_{t} x=0, g_{t}=\sum_{j=1}^{m} g_{t j}$ is the decomposition by Lemma 4.3, and $\operatorname{stp}\left(h_{t} / \beta\right)$ is almost \mathcal{C}-internal.

We next show that $g_{t j}=t f_{j}$ for all $t \geq 1$ and all j.
Towards a contradiction, suppose that $g_{t j} \neq t f_{j}$ for some t and j. Fix this t. We argue first that $g_{t j}-t f_{j} \in \operatorname{acl}(L \beta)$. Let $H=h_{t} h^{-t}$, and let
$I=\left\{j: 2 \leq j \leq m, g_{t j}-t f_{j} \neq 0\right\}$ (note that $g_{t 1}=t f_{1}$, so we only need $j \geq 2$; also note that I is nonempty since $g_{t j} \neq t f_{j}$ for some j by assumption). We have that

$$
\begin{aligned}
D_{i} H & =\left(\log D_{i} H\right) H \\
& =\left(\log D_{i} h_{t}-t \log D_{i} h\right) H \\
& =\left(\alpha g_{t}-t \alpha f\right) H \\
& =\left(\alpha \sum_{j=1}^{m}\left(g_{t j}-t f_{j}\right)\right) H, \\
& =\left(\alpha \sum_{j \in I}\left(g_{t j}-t f_{j}\right)\right) H .
\end{aligned}
$$

So H is a nonzero solution of $D_{i} x-\left(\alpha \sum_{j \in I}\left(g_{t j}-t f_{j}\right)\right) x=0$.
Note that $\sum_{j \in I}\left(g_{t j}-t f_{j}\right)$ is a solution to

$$
\begin{equation*}
\left(\prod_{j \in I}\left(D_{i}-c_{i j}\right)\right)(x)=0 . \tag{4.2}
\end{equation*}
$$

This is because (4.2) is linear, and for each $j \in I$,

$$
\left(D_{i}-c_{i j}\right)\left(g_{t j}-t f_{j}\right)=\left(D_{i}-c_{i j}\right) g_{t j}-\left(D_{i}-c_{i j}\right) t f_{j}=0
$$

The decomposition of $\sum_{j \in I}\left(g_{t j}-t f_{j}\right)$ by Lemma 4.3 with respect to (4.2) is $\left(g_{t j}-t f_{j}\right)_{j \in I}$, and $g_{t j}-t f_{j} \neq 0$ for every $j \in I$. Therefore, applying part (i) where we replace $\left(\mathrm{E}_{i}\right)$ with (4.2), we get that $\sum_{j \in I}\left(g_{t j}-t f_{j}\right)$ is a generic solution to (4.2) over L.

Now, since (4.2) is of order less than m and H is a nonzero solution of $D_{i} x-\left(\alpha \sum_{j \in I}\left(g_{t j}-t f_{j}\right)\right) x=0$, by the induction hypothesis, the coreduction
of H over L is $\sum_{j \in I}\left(g_{t j}-t f_{j}\right)$. Since $H=h_{t} h^{-t}$ and both h and h_{t} are almost \mathcal{C}-internal over $L \beta$, we have $\operatorname{stp}(H / L \beta)$ is almost \mathcal{C}-internal. Therefore, for any $j \in I, g_{t j}-t f_{j} \in \operatorname{acl}(L \beta)$. We now fix some $j \in I$.

Let $\gamma=\frac{g_{t j}}{f_{j}}-t=\frac{g_{t j}-t f_{j}}{f_{j}} \neq 0$. Then γ is a constant in $\operatorname{acl}(L F) \backslash \operatorname{acl}(L \beta)$. Indeed, γ is a constant because $g_{t j}$ and f_{j} are both solutions to $D_{i} x-c_{i j} x=0$, and hence $\frac{g_{t j}}{f_{j}} \in \mathcal{C}$. We get $\gamma \in \operatorname{acl}(L f)$ by the fact that $g_{t j}-t f_{j} \in \operatorname{acl}(L \beta) \subseteq$ $\operatorname{acl}(L f)$. And $\gamma \notin \operatorname{acl}(L \beta)$ because if it were, then so would $f_{j}=\frac{g_{t j}-t f_{j}}{\gamma}$, but we know that is not the case.

When $i=1$ this is impossible, since $\operatorname{acl}(L f)=\operatorname{acl}(f)$, and Lemma 4.5 tells us that $\operatorname{acl}(f) \cap \mathcal{C}=\mathbb{Q}^{\text {alg }}$.

Suppose $i>1$. We apply part (iv) of the lemma for $i-1$ and get that the \mathcal{C}-reduction of a_{i} over a_{i-2} is a_{i-1}. As f is a generic solution of $\left(\mathrm{E}_{i}\right)$ over $L, \operatorname{stp}(f / L)=\operatorname{stp}\left(e_{i} / L\right)$, so the \mathcal{C}-reduction of f over a_{i-2} is a_{i-1}. Since $\gamma \in \operatorname{acl}(L f) \backslash \operatorname{acl}(L \beta), \gamma \notin L=\operatorname{acl}\left(a_{i-1}\right)$. So $\operatorname{stp}\left(\gamma / a_{i-2}\right)$ is not almost \mathcal{C}-internal. On the other hand, γ is a constant, a contradiction.

What we have actually shown is that for any $t \geq 1, \operatorname{stp}\left(t f_{1} / L \beta\right)=$ $\operatorname{stp}\left(f_{1} / L \beta\right)$, and if $\operatorname{stp}\left(\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{m} / L \beta\right)=\operatorname{stp}\left(f_{1}, \ldots, f_{m} / L \beta\right)$ and $\tilde{f}_{1}=t f_{1}$, then $\tilde{f}_{j}=t f_{j}$ for $j=2,3, \ldots, m$. In particular, $\operatorname{stp}\left(t f_{1}, \ldots, t f_{m} / L \beta\right)=$ $\operatorname{stp}\left(f_{1}, \ldots, f_{m} / L \beta\right)$ holds for all t. In addition, the case of $t=1$ tells us that $f_{j} \in \operatorname{dcl}\left(f_{1} \operatorname{acl}(L \beta)\right)$ for $j=2,3, \ldots, m$.

We now show that $\frac{f_{j}}{f_{1}} \in \operatorname{acl}(L \beta)$ for $j=2,3, \ldots, m$. Fix some j. Since $f_{j} \in \operatorname{dcl}\left(f_{1} \operatorname{acl}(L \beta)\right)$, there exists a formula $\varphi_{1}(x, y)$ over $\operatorname{acl}(L \beta)$ such that $\varphi_{1}\left(\mathcal{U}, f_{1}\right)=\left\{f_{j}\right\}$. Since $\operatorname{stp}\left(t f_{1}, t f_{j} / L \beta\right)=\operatorname{stp}\left(f_{1}, f_{j} / L \beta\right)$, we have $\varphi_{1}\left(\mathcal{U}, t f_{1}\right)$ $=\left\{t f_{j}\right\}$ for all t. Now set $\varphi_{2}(x, y):=\forall z\left(\varphi_{1}(z, y) \rightarrow x=\frac{z}{y}\right)$. Then $\varphi_{2}\left(\mathcal{U}, t f_{1}\right)=\left\{\frac{f_{j}}{f_{1}}\right\}$ for all t. So we have

$$
\left\{t f_{1}: t \geq 1\right\} \subseteq\left\{b \in \mathcal{U}: \log D_{i} b=c_{i 1} \text { and } \varphi_{2}(\mathcal{U}, b)=\left\{\frac{f_{j}}{f_{1}}\right\}\right\}
$$

Since $\log D_{i} x=c_{i 1}$ is strongly minimal, it must be that for all but finitely many solutions to $\log D_{i} x=c_{i 1}, \varphi_{2}(\mathcal{U}, b)=\left\{\frac{f_{j}}{f_{1}}\right\}$. It follows that $\frac{f_{j}}{f_{1}} \in$ $\operatorname{acl}(L \beta)$.

Let g_{01} be a generic solution over $L h$ to $D_{i} x-c_{i 1} x=0$, and $g_{0 j}=g_{01} \frac{f_{j}}{f_{1}}$ for $j=2,3, \ldots, m$. We have shown that each $\frac{f_{j}}{f_{1}}$ is in $\operatorname{acl}(L \beta)$, so $\left(g_{01}, \ldots, g_{0 m}\right) \in$ $\operatorname{acl}\left(L \beta g_{01}\right)$. Let $c_{01}=\frac{f_{1}}{g_{01}} \in \mathcal{C}$. Now,

$$
\begin{aligned}
\log D_{i}^{(2)}(h) & =\log D_{i}(\alpha f) \\
& =\log D_{i}\left(\alpha\left(f_{1}+\cdots+f_{m}\right)\right) \\
& =\log D_{i}\left(\alpha c_{01}\left(g_{01}+\cdots+g_{0 m}\right)\right) \\
& =\log D_{i}\left(g_{01}+\cdots+g_{0 m}\right)=: \epsilon .
\end{aligned}
$$

Hence h is a solution to $\log D_{i}^{(2)}(x)=\epsilon$ which is over acl $\left(L \beta g_{01}\right)$, which implies that $U\left(h / L \beta g_{01}\right) \leq 2$. Note that $U(h / L \beta) \geq 2$ since h is a generic solution to $\log D_{i} x=\alpha f$ and $U(f / L \beta) \geq 1$. But we also have $h \underset{L \beta}{\perp} g_{01}$ (recall that $\beta \in \operatorname{acl}(L h))$, so $U\left(h / L \beta g_{01}\right)=U(h / L \beta) \geq 2$. Thus $U\left(h / L \beta g_{01}\right)=2$, and h is a generic solution to $\log D_{i}^{(2)}(x)=\epsilon$ over $\operatorname{acl}\left(L \beta g_{01}\right)$. Hence $\operatorname{stp}\left(h / L \beta g_{01}\right)$ is not almost \mathcal{C}-internal by Proposition 4.1, and therefore $\operatorname{stp}(h / L \beta)$ is not almost \mathcal{C}-internal, contradicting the definition of β.
(iii) Assume part (ii) of the lemma is true for i.

Let $e_{i+1}=\sum_{j=1}^{n_{i+1}} b_{i+1, j}$ be the decomposition by Lemma 4.3 with respect to $\left(\mathrm{E}_{i+1}\right)$. We have that $\operatorname{stp}\left(a_{i+1} / a_{i}\right)$ is almost \mathcal{C}-internal. Also, by part (ii) applied to $f=e_{i}$ and $h=b_{i+1,1}$, the \mathcal{C}-coreduction of $b_{i+1,1}$ over a_{i-1} is e_{i}, which is interdefinable over a_{i-1} with a_{i}. Since $b_{i+1,1} \in \operatorname{dcl}\left(a_{i} e_{i+1}\right)=$ $\operatorname{dcl}\left(a_{i+1}\right)$, the \mathcal{C}-coreduction of a_{i+1} over a_{i-1} is a_{i}.
(iv) Assume parts (i) and (ii) of the lemma are true for i. For simplicity, we use n to denote n_{i+1}. Let $K=\operatorname{acl}\left(a_{i}\right)$. Let $\bar{b}_{i+1}=\left(b_{i+1,1}, \ldots, b_{i+1, n}\right)$.

We already know that $\operatorname{stp}\left(a_{i} / a_{i-1}\right)$ is \mathcal{C}-internal. Suppose $\beta \in \operatorname{acl}\left(a_{i+1}\right)$ is almost \mathcal{C}-internal over a_{i-1} and $\beta \notin \operatorname{acl}\left(a_{i}\right)$. Since e_{i+1} is interalgebraic with \bar{b}_{i+1} over $a_{i}, \beta \in \operatorname{acl}\left(a_{i} \bar{b}_{i+1}\right)$, which means $\beta \in K\left\langle\bar{b}_{i+1}\right\rangle^{\text {alg }}$. Since $\delta b_{i+1, j}=$ $c_{i+1, j} b_{i+1, j} \prod_{k=1}^{i} e_{k} \in K\left(b_{i+1, j}\right)$ for $j=1,2, \ldots, n$, we have $K\left\langle\bar{b}_{i+1}\right\rangle=K\left(\bar{b}_{i+1}\right)$, so $\beta \in K\left(\bar{b}_{i+1}\right)^{\text {alg }}$. Thus there exist a polynomial $F\left(x, y_{1}, \ldots, y_{n}\right)$ with coefficients in K so that $F\left(\beta, b_{i+1,1}, \ldots, b_{i+1, n}\right)=0$ and $F\left(x, b_{i+1,1}, \ldots, b_{i+1, n}\right) \neq 0$. Also, $F\left(\beta, y_{1}, \ldots, y_{n}\right) \neq 0$ since $\beta \notin K$.

Suppose $G\left(y_{1}, \ldots, y_{n}\right)$ is a nonzero polynomial with minimal number of terms such that the coefficients of G are almost \mathcal{C}-internal over a_{i-1} and $G\left(\bar{b}_{i+1}\right)=0$. Note that this is well-defined because $F\left(\beta, y_{1}, \ldots, y_{n}\right)$ satisfies all the conditions except for the minimality, as K and β are both almost \mathcal{C}-internal over a_{i-1}.

Let

$$
G\left(y_{1}, \ldots, y_{n}\right)=\sum_{\bar{r} \in I} s_{\bar{r}} \bar{y}^{\bar{r}}
$$

where I is a set of n-tuples of nonnegative integers, and $\operatorname{stp}\left(s_{\bar{r}} / a_{i-1}\right)$ is almost \mathcal{C}-internal. Let $\bar{c}_{i+1}=\left(c_{i+1,1}, \ldots, c_{i+1, n}\right)$. Arguing exactly as in the proof of part (i) of the lemma, we get by minimality of G that

$$
\begin{equation*}
\log D_{i} s_{\bar{r}^{(1)}}+\bar{r}^{(1)} \bar{c}_{i+1} e_{i}=\log D_{i} s_{\bar{r}^{(2)}}+\bar{r}^{(2)} \bar{c}_{i+1} e_{i} \tag{4.3}
\end{equation*}
$$

for any $r^{(1)}, r^{(2)} \in I$. Indeed,

$$
\begin{aligned}
D_{i}\left(G\left(\bar{b}_{i+1}\right)\right) & =\sum_{\bar{r} \in I}\left(\bar{b}_{i+1}^{\bar{r}} D_{i} s_{\bar{r}}+s_{\bar{r}} D_{i} \bar{b}_{i+1}^{\bar{r}}\right) \\
& =\sum_{\bar{r} \in I}\left(\bar{b}_{i+1}^{\bar{r}} D_{i} s_{\bar{r}}+s_{\bar{r}} \bar{r} \bar{c}_{i+1} e_{i} \bar{b}_{i+1}^{\bar{r}}\right) \\
& =\sum_{\bar{r} \in I}\left(\log D_{i} s_{\bar{r}}+\bar{r} \bar{c}_{i+1} e_{i}\right) s_{\bar{r}} \bar{b}_{i+1}^{\bar{r}}
\end{aligned}
$$

where the second equality is by the fact that

$$
\begin{aligned}
D_{i} \bar{b}_{i+1}^{\bar{r}} & =\bar{r} \overline{b_{i+1}^{\bar{r}}-\overline{1}} D_{i} \bar{b}_{i+1} \\
& =\bar{r} \bar{b} b_{i+1}^{\bar{r}}-\overline{1} e_{i} D_{i+1} \bar{b}_{i+1} \\
& =\bar{r} \overline{b_{i+1}^{r}} \overline{1} e_{i} \bar{c}_{i+1} \bar{b}_{i+1} \\
& =\bar{r} e_{i} \bar{c}_{i+1} \bar{b}_{i+1}^{r} .
\end{aligned}
$$

Now if (4.3) failed, then fixing any $\bar{r}^{*} \in I$ we see that

$$
\begin{aligned}
G^{*}(\bar{y}): & =\left(\log D_{i} s_{\bar{r}^{*}}+\bar{r}^{*} \bar{c}_{i+1} e_{i}\right) G(\bar{y})-D_{i} G(\bar{y}) \\
& =\sum_{\bar{r} \in I}\left(\log D_{i} s_{\bar{r}^{*}}+\bar{r}^{*} \bar{c}_{i+1} e_{i}-\log D_{i} s_{\bar{r}}-\bar{r} \bar{c}_{i+1} e_{i}\right) s_{\bar{r}} \bar{y}^{\bar{r}}
\end{aligned}
$$

whose coefficients are again almost \mathcal{C}-internal over a_{i-1}, would contradict the minimal choice of G.

If G has only one term, then for the only $\bar{r} \in I, G\left(\bar{b}_{i+1}\right)=s_{\bar{r}} \bar{b}_{i+1}$. Since $b_{i+1, j} \neq 0$ for $j=1,2, \ldots, n, s_{\bar{r}}=0$, which means $G(\bar{y})=0$, a contradiction. Now fix $r^{(1)} \neq r^{(2)}$ in I. Since $\log D_{i} s_{\bar{r}}+\bar{r} \bar{c}_{i+1} e_{i}=\log D_{i}\left(s_{\bar{r}} \bar{b}_{i+1}^{\bar{r}}\right)$ for any $\bar{r} \in I$, we have $s_{\bar{r}^{(1)}} \bar{b}_{i+1}^{\bar{r}^{(1)}}=c s_{\bar{r}^{(2)}} \bar{b}_{i+1}^{r^{(2)}}$ for some $c \in \mathcal{C}$. This means that $\bar{b}_{i+1}^{\bar{r}^{(1)}-\bar{r}^{(2)}}=c s_{\bar{r}^{(2)}} s_{\bar{r}^{(1)}}^{-1}$. So $\bar{b}_{i+1}^{\bar{r}^{(1)}-\bar{r}^{(2)}}$ is almost \mathcal{C}-internal over a_{i-1}.

On the other hand, as $D_{i+1} \bar{b}_{i+1}^{\bar{r}^{(1)}-\bar{r}^{(2)}}=\left(\bar{r}^{(1)}-\bar{r}^{(2)}\right) \bar{c}_{i+1} \bar{b}_{i+1}^{r^{(1)}-\bar{r}^{(2)}}, \bar{b}_{i+1}^{r^{(1)}-\bar{r}^{(2)}}$ is a solution of $\left(D_{i+1}-\left(\bar{r}^{(1)}-\bar{r}^{(2)}\right) \bar{c}_{i+1}\right) x=0$, with $\left(\bar{r}-\bar{r}^{*}\right) \bar{c}_{i+1} \neq 0$ since $\left\{c_{i+1, j}: j=1,2, \ldots, n\right\}$ is \mathbb{Q}-linearly independent. By part (ii) of the lemma with $f=e_{i}, h=\bar{b}_{i+1}^{\bar{r}^{(1)}-\bar{r}^{(2)}}$, and $\alpha=\left(\bar{r}^{(1)}-\bar{r}^{(2)}\right) \bar{c}_{i+1}, e_{i}$ is a \mathcal{C}-coreduction of $\bar{b}_{i+1}^{r^{(1)}-\bar{r}^{(2)}}$ over a_{i-1}. In particular, $\bar{b}_{i+1}^{\bar{r}^{(1)}-\bar{r}^{(2)}}$ is not almost \mathcal{C}-internal over a_{i-1}. This contradiction proves part (iv) of the lemma.

We have accomplished the desired construction:
Theorem 4.7. Given positive integers n_{1}, \ldots, n_{ℓ}, there exists in DCF_{0} a type over $\mathbb{Q}^{\text {alg }}$ that admits a canonical \mathcal{C}-analysis of U-type $\left(n_{1}, \ldots, n_{\ell}\right)$.

Proof. Let $\left(a_{1}, \ldots, a_{\ell}\right)$ be as in the above construction. We have seen that
$\left(a_{1}, \ldots, a_{\ell}\right)$ is a \mathcal{C}-analysis of $p=\operatorname{stp}\left(a_{\ell}\right)$ of U-type $\left(n_{1}, \ldots, n_{\ell}\right)$. By Proposition 3.16, parts (iii) and (iv) of Lemma 4.6 prove that it is a \mathcal{C}-analysis by reductions and coreductions. The result now follows from the "in particular" clause of Proposition 3.15.

5 Pullbacks under the logarithmic derivative map

Since $\log \delta: \mathbb{G}_{m} \rightarrow \mathbb{G}_{a}$ is a definable group homomorphism with kernel $\mathbb{G}_{m}(\mathcal{C})$, whenever $D \subseteq \mathbb{G}_{a}$ is a definable set with generic type almost \mathcal{C}-internal, the generic type of $\log \delta^{-1}(D)$ will be analysable in \mathcal{C} in at most 2 steps. When is it in fact already almost \mathcal{C}-internal?

A rephrasing of Fact 2.27 is that if $D=\mathcal{C}$ then $\log \delta^{-1}(D)$ is not almost \mathcal{C}-internal. A rephrasing of Proposition 4.1 is that if D is defined by $\delta x=h x$ for any $h \in \mathcal{U}$, then again $\log \delta^{-1}(D)$ is not almost \mathcal{C}-internal. One might guess after seeing the above examples that in fact $\log \delta^{-1}(D)$ is never almost \mathcal{C}-internal, but this is false.
Example 5.1. Let $D=\left\{x: \delta\left(\frac{1}{x}\right)=1\right\}$. Then $\log \delta^{-1}(D)$ is \mathcal{C}-internal.
Proof. Let $E=\left\{x: \frac{1}{x} \in D\right\}=\{x: \delta x=1\}$, which is 0-definably isomorphic to D by multiplicative inverse. Note that if $u \in \log \delta^{-1}(D)$ then $\frac{1}{\log \delta u} \in E$. On the other hand, $\delta^{2} u=0$. Indeed, $\frac{\delta u}{u} \in D$, so $1=\delta\left(\frac{u}{\delta u}\right)=\frac{(\delta u)^{2}-u \delta^{2} u}{(\delta u)^{2}}$, and as $u \neq 0$ this implies $\delta^{2} u=0$. That is, $\delta u \in \mathcal{C} \backslash\{0\}$. So we have a ($0-$ definable) $\operatorname{map} i: \log \delta^{-1}(D) \rightarrow E \times \mathcal{C} \backslash\{0\}$ defined by

$$
u \mapsto\left(\frac{1}{\log \delta u}, \delta u\right)
$$

We now show that i is a bijection. For injectivity, suppose $i(u)=i(v)$ for some $u, v \in \log \delta^{-1}(D)$. Then $\frac{1}{\log \delta u}=\frac{1}{\log \delta v}$ and $\delta u=\delta v$, so $u=\frac{\delta u}{\log \delta u}=$ $\frac{\delta v}{\log \delta v}=v$. For surjectivity, if $e \in E$ and $c \in \mathcal{C} \backslash\{0\}$, then $u=c e$ satisfies that $\delta u=c \delta e=c$ and $\frac{1}{\log \delta u}=\frac{u}{\delta u}=\frac{u}{c}=e$, and $\log \delta u=\frac{1}{e} \in D$.

Since E and $\mathcal{C} \backslash\{0\}$ are \mathcal{C}-internal, this means that $\log \delta^{-1}(D)$ is \mathcal{C}-internal.

Note that in the above example, the \mathcal{C}-internality of $\log \delta^{-1}(D)$ was witnessed by a 0 -definable decomposition into a product of strongly minimal \mathcal{C}-internal definable sets. In fact, we conjecture that if D is strongly minimal and $\log \delta^{-1}(D)$ is almost \mathcal{C}-internal, then it must be for a very strong reason similar to the above example.

To clearly state the conjecture, it is more convenient for us to work with types rather than definable sets.

Definition 5.2. Let $p \in S_{1}(F)$ be a complete type where F is an algebraically closed differential field. We say that $q \in S_{1}(F)$ is the logarithmic inverse of p, denoted $q=\log \delta^{-1}(p)$, if for some realization u of $q, \log \delta u$ realizes p and $u \notin \operatorname{acl}(F, \log \delta u)$.

Proposition 5.3. If $p \in S_{1}(F)$, then $\log \delta^{-1}(p)$ exists and is unique. Moreover, $U\left(\log \delta^{-1}(p)\right)=U(p)+1$.

Proof. Let a be a realization of p. Note that $\log \delta x=a$ has a solution not in $\operatorname{acl}(F a)$. Indeed, by saturation of \mathcal{U} we only need to find a solution to $(\log \delta x=a) \wedge(p(x) \neq 0)$ for any nonzero $p \in F(a)[x]$. Since $\log \delta x=a$ is order 1 , this has a solution by the axioms of DCF_{0}. Now the type over F of any solution to $\log \delta x=a$ that is not in $\operatorname{acl}(F a)$ will satisfy the definition of $\log \delta^{-1}(p)$.

We now prove uniqueness. For $i=1,2$, suppose a_{i} realizes of $p, \log \delta u_{i}=$ a_{i}, and $u_{i} \notin \operatorname{acl}\left(F a_{i}\right)$. We need to prove that $\operatorname{tp}\left(u_{1} / F\right)=\operatorname{tp}\left(u_{2} / F\right)$. Since a_{1}, a_{2} are realizations of p, there is an automorphism $\alpha \in \operatorname{Aut}_{F}(\mathcal{U})$ such that $\alpha\left(a_{2}\right)=a_{1}$. Note that $\log \delta\left(\alpha\left(u_{2}\right)\right)=\alpha\left(a_{2}\right)=a_{1}=\log \delta u_{1}$, so u_{1} and $\alpha\left(u_{2}\right)$ are both in the set $B=\left\{x: \log \delta x=a_{1}\right\}$, which is $F a_{1}$-definable and strongly minimal. Since $u_{1}, \alpha\left(u_{2}\right) \notin \operatorname{acl}\left(F a_{1}\right), \operatorname{tp}\left(u_{1} / F a_{1}\right)=\operatorname{tp}\left(\alpha\left(u_{2}\right) / F a_{1}\right)$, so $\operatorname{tp}\left(u_{1} / F\right)=\operatorname{tp}\left(\alpha\left(u_{2}\right) / F\right)=\operatorname{tp}\left(u_{2} / F\right)$.

For the U-rank of $\log \delta^{-1}(p)$, let u be a realization of $\log \delta^{-1}(p)$ and $a:=$ $\log \delta u$. Then $U\left(\log \delta^{-1}(p)\right)=U(u / F)=U(u / a F)+U(a / F)=U(u / a F)+$ $U(p)$. Since $\log \delta u=a$ and $u \notin \operatorname{acl}(F a), U(u / a F)=1$, so $U\left(\log \delta^{-1}(p)\right)=$ $U(p)+1$.

We recall the definition of tensor product of types. Let $p_{1}, p_{2} \in S(A)$. Then the tensor product of p_{1}, p_{2}, denoted $p_{1} \otimes p_{2}$, is the type that satisfies that $\left(a_{1}, a_{2}\right) \models p_{1} \otimes p_{2}$ iff $a_{1} \models p_{1}$ and $a_{2} \models p_{2} \mid A a_{1}$. In particular, we have $a_{1} \downarrow_{A} a_{2}$. The type $p^{(n)}$ is defined as $\underbrace{p \otimes \cdots \otimes p}_{n}$, and the realizations are exactly Morley sequences of p of length n.

We now state our conjecture.
Conjecture 5.4. Suppose p is an almost \mathcal{C}-internal minimal type in $S_{1}(F)$, where F is an algebraically closed differential field. Let $q=\log \delta^{-1}(p)$. Then the following are equivalent:
(1) q is almost \mathcal{C}-internal;
(2) there exist almost \mathcal{C}-internal minimal types q_{1} and q_{2} over F, and an F-definable function f whose domain contains $q(\mathcal{U})$, such that $\left.f\right|_{q(\mathcal{U})}$ is a finite-to-one map onto $\left(q_{1} \otimes q_{2}\right)(\mathcal{U})$;
(3) there is an integer $\ell \neq 0$ such that for some (equivalently any) $u \models q(x)$, $u^{\ell}=u_{1} u_{2}$ where $u_{1} \in F\langle\log \delta u\rangle$ and $\log \delta\left(u_{2}\right) \in F$.

Remark 5.5. It is not hard to see that $(3) \Rightarrow(2) \Rightarrow(1)$.
For $(2) \Rightarrow(1)$, let u be a realization of q. Suppose $f(u)=\left(u_{1}, u_{2}\right)$. Then $u \in \operatorname{acl}\left(F u_{1} u_{2}\right)$, where u_{1} and u_{2} are realizations of q_{1} and q_{2}, respectively. Since q_{1}, q_{2} are both almost \mathcal{C}-internal, we have that q is almost \mathcal{C}-internal.

For $(3) \Rightarrow(2)$, let u be a realization of q, and u_{1}, u_{2}, ℓ as in the statement of (3). Since $u_{1} \in F\langle\log \delta u\rangle \subseteq F\langle u\rangle$, there is an F-definable map f_{1} such that $f_{1}(u)=u_{1}$. Let $f_{2}(x)=\frac{x^{\ell}}{f_{1}(x)}$. We claim that $q_{1}=\operatorname{tp}\left(u_{1} / F\right), q_{2}=$ $\operatorname{tp}\left(u_{2} / F\right)$ and $f=\left(f_{1}, f_{2}\right)$ satisfy the statement of (2). Note first that since $U(u / F)=2, U\left(u_{2} / F\right) \leq 1$ as $\log \delta u_{2} \in F$, and $U\left(u_{1} / F\right) \leq 1$ as $u_{1} \in$ $\operatorname{dcl}(F, \log \delta u)$, we must have that $U\left(u_{1} / F\right)=U\left(u_{2} / F\right)=1$ and $u_{1} \downarrow_{F} u_{2}$, so q_{1}, q_{2} are minimal and $f(u)=\left(u_{1}, u_{2}\right) \models q_{1} \otimes q_{2}$. That f is finite-to-one because there are at most ℓ many elements in \mathcal{U} that satisfy $x^{\ell}=u_{1} u_{2}$.

Hence, the conjecture is really that $(1) \Rightarrow(3)$.
We categorize the almost \mathcal{C}-internal minimal types p into two main cases: those that are weakly orthogonal to \mathcal{C}, and those that are not. In Section 5.1 we will prove the the conjecture when p is not weakly orthogonal to \mathcal{C}. In Section 5.2 , we will consider the other case, where p is \mathcal{C}-internal but weakly orthogonal to \mathcal{C}. We prove the conjecture in that case under some additional differential algebraic assumptions. In particular, when $F \subseteq \mathcal{C}$ the conjecture is true - see Corollary 5.13 below. We provide several examples in Section 5.3, which illustrates cases that are dealt with in Sections 5.1 and 5.2. Section 5.4 gives an example which remains open. In Section 5.5, we discuss the specific condition which is used in Section 5.2. Finally, in Section 5.6, we discuss pullbacks under the derivative map instead of the logarithmic derivative map.

5.1 The non-weakly-orthogonal case

In this section, we prove Conjecture 5.4 when our minimal type p is not weakly orthogonal to \mathcal{C}.

Theorem 5.6. Conjecture 5.4 is true under the additional assumption that p is not weakly orthogonal to \mathcal{C}.

From the discussion in Remark 5.5, we know that we only need to prove $(1) \Rightarrow(3)$ of the conjecture. We prove this theorem in several steps, the first few of which do not assume that p is not weakly orthogonal to \mathcal{C}, and will be used again later.

We assume the following for the rest of this section:

1. F is an algebraically closed differential field,
2. p is an almost \mathcal{C}-internal minimal type over F,
3. $q=\log \delta^{-1}(p)$ is almost \mathcal{C}-internal,
4. $\left(u_{1}, u_{2}, \ldots\right)$ is a Morley sequence in q, and $a_{i}:=\log \delta u_{i}$,
5. K is the field generated by $F \cup \mathcal{C}$, and
6. $L:=K\left\langle a_{1}, a_{2}, \ldots\right\rangle$.

Lemma 5.7. For some positive integer $n,\left\{u_{1}, \ldots, u_{n}\right\}$ is algebraically dependent over L.

Proof. Since q is almost \mathcal{C}-internal, there exists some n such that $u_{1} \in$ $\operatorname{acl}\left(F C u_{2}, \ldots, u_{n}\right)$. By quantifier elimination of DCF_{0}, there is a formula $\varphi\left(x_{1}\right)=\left(\varphi_{1}\left(x_{1}\right) \wedge \cdots \wedge \varphi_{m}\left(x_{1}\right)\right)$ with parameters in $K\left\langle u_{2}, \ldots, u_{n}\right\rangle$ such that u_{1} realizes $\varphi\left(x_{1}\right)$, each $\varphi_{i}\left(x_{1}\right)$ is a literal (an atomic formula or its negation), and $\varphi(\mathcal{U})$ is finite. Since u_{1} satisfies the equation $\delta x_{1}=a_{1} x_{1}$, which we denote by $\zeta\left(x_{1}\right)$, we have that u_{1} realizes $\zeta\left(x_{1}\right) \wedge \varphi\left(x_{1}\right)$. Let $\psi\left(x_{1}\right)$ be the formula obtained by replacing δx_{1} with $a_{1} x_{1}$ in $\varphi\left(x_{1}\right)$, and similarly for $\psi_{i}\left(x_{1}\right)$'s. Then $\zeta(\mathcal{U}) \wedge \varphi(\mathcal{U})=\zeta(\mathcal{U}) \wedge \psi(\mathcal{U})$. Note that $\psi\left(x_{1}\right)$ is a formula with parameters in $\left.K\left\langle a_{1}, u_{2}, \ldots, u_{n}\right\rangle\right)$. Since $\psi_{i}\left(x_{1}\right)$ is a literal in the language of rings, each $\psi_{i}(\mathcal{U})$ is either finite or cofinite in \mathcal{U}. But $\zeta(\mathcal{U}) \cap \bigcap_{i=1}^{m} \psi_{i}(\mathcal{U})=\zeta(\mathcal{U}) \wedge \psi(\mathcal{U})=\zeta(\mathcal{U}) \wedge \varphi(\mathcal{U})$ is finite. Since $\zeta(\mathcal{U})$ is infinite, there must be some $t \leq m$ such that $\psi_{t}(\mathcal{U})$ is finite. Let $\xi\left(x_{1}\right)=\psi_{t}\left(x_{1}\right)$.

Since $\xi(\mathcal{U})$ is finite but nonempty (as it contains $\left.u_{1}\right), \xi\left(x_{1}\right)$ is an atomic formula in the language of rings (rather than a negated atomic formula). Without loss of generality, suppose $\xi\left(x_{1}\right)$ is of the form $f_{0}\left(x_{1}\right)=0$ where $f_{0}\left(x_{1}\right)$ is a nonzero polynomial over $K\left\langle a_{1}, u_{2}, \ldots, u_{n}\right\rangle$. We have $f_{0}\left(u_{1}\right)=0$.

Since each $\delta u_{i}=u_{i} a_{i}$, we have that

$$
K\left\langle a_{1}, u_{2}, \ldots, u_{n}\right\rangle=K\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\left(u_{2}, \ldots, u_{n}\right) \subseteq L\left(u_{2}, \ldots, u_{n}\right)
$$

We may therefore rewrite $f_{0}\left(x_{1}\right)=0$ as $f\left(x_{1}, u_{2}, \ldots, u_{n}\right)=0$ where $f \in$ $L\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Note that $f \neq 0$ and $f\left(u_{1}, \ldots, u_{n}\right)=0$. We thus have that $\left\{u_{1}, \ldots, u_{n}\right\}$ is not algebraically independent over L.

Lemma 5.8. For some $g \in L$ and some nonzero integer $k, g u_{1}^{k}=u_{2}^{k}$.
Proof. Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial over L with minimal number of terms such that $f\left(u_{1}, \ldots, u_{n}\right)=0$ and $f \neq 0$. Such an f exists because of Lemma 5.7.

Let

$$
f(\bar{x})=\sum_{\bar{k} \in I} g_{\bar{k}} \bar{x}^{\bar{k}}
$$

where I is a finite set of non-negative integer n-tuples, $g_{\bar{k}} \in L$ nonzero for $\bar{k} \in I$, and $\bar{x}^{\bar{k}}:=x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$. As $u_{i} \neq 0$ for all i, f has at least two terms.

Since $f\left(u_{1}, \ldots, u_{n}\right)=0$, we have

$$
\sum_{\bar{k} \in I} g_{\bar{k}} \bar{u}^{\bar{k}}=0
$$

Since $\delta u_{i}=a_{i} u_{i}$, we have $\log \delta\left(\bar{u}^{\bar{k}}\right)=\bar{k} \cdot \bar{a}\left(\right.$ where $\left.\bar{k} \cdot \bar{a}=k_{1} a_{1}+\cdots+k_{n} a_{n}\right)$, so

$$
\begin{aligned}
0 & =\delta\left(\sum_{\bar{k} \in I} g_{\bar{k}} \bar{u}^{\bar{k}}\right) \\
& =\sum_{\bar{k} \in I}\left(\delta\left(g_{\bar{k}}\right) \bar{u}^{\bar{k}}+\log \delta\left(\bar{u}^{\bar{k}}\right) g_{\bar{k}} \bar{u}^{\bar{k}}\right) \\
& =\sum_{\bar{k} \in I}\left(\delta\left(g_{\bar{k}}\right) \bar{u}^{\bar{k}}+(\bar{k} \cdot \bar{a}) g_{\bar{k}} \bar{u}^{\bar{k}}\right) \\
& =\sum_{\bar{k} \in I}\left(\log \delta g_{\bar{k}}+\bar{k} \cdot \bar{a}\right) g_{\bar{k}} \overline{u^{\bar{k}}} .
\end{aligned}
$$

Fix some $\bar{k}^{*} \in I$. Define

$$
f^{*}(\bar{x})=\sum_{\bar{k} \in I \backslash\left\{\bar{k}^{*}\right\}}\left(\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}-\log \delta g_{\bar{k}}-\bar{k} \cdot \bar{a}\right) g_{\bar{k}} \bar{x}^{\bar{k}} .
$$

Note that there are fewer terms in f^{*} than in f, and also we have

$$
\begin{aligned}
f^{*}(\bar{u}) & =\sum_{\bar{k} \in I \backslash\left\{\bar{k}^{*}\right\}}\left(\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}-\log \delta g_{\bar{k}}-\bar{k} \cdot \bar{a}\right) g_{\bar{k}} \bar{u}^{\bar{k}} \\
& =\sum_{\bar{k} \in I}\left(\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}-\log \delta g_{\bar{k}}-\bar{k} \cdot \bar{a}\right) g_{\bar{k}} \bar{u}^{\bar{k}} \\
& =\left(\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}\right) \sum g_{\bar{k}} \bar{u}^{\bar{k}}-\sum_{\bar{k} \in I}\left(\log \delta g_{\bar{k}}+\bar{k} \cdot \bar{a}\right) g_{\bar{k}} \bar{u}^{\bar{k}} \\
& =\left(\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}\right) f(\bar{u})-\delta(f(\bar{u}))=0 .
\end{aligned}
$$

So $f^{*}(\bar{x})=0$. This implies that for any $\bar{k} \neq \bar{k}^{*} \in I, \log \delta g_{\bar{k}}+\bar{k} \cdot \bar{a}=$ $\log \delta g_{\bar{k}^{*}}+\bar{k}^{*} \cdot \bar{a}$. This yields $\log \delta\left(g_{\bar{k}} \bar{u}^{\bar{k}}\right)=\log \delta\left(g_{\bar{k}^{*}} \bar{u}^{\bar{k}^{*}}\right)$. Fix $\bar{k}_{(1)} \neq \bar{k}_{(2)} \in I$, and we have $g_{\bar{k}_{(1)}} \bar{u}^{\bar{k}_{(1)}}=c g_{\bar{k}_{(2)}} \bar{u}^{\bar{k}_{(2)}}$ for some $c \in \mathcal{C}$. So $g_{0}=\frac{c g_{\bar{k}_{(2)}}}{g_{\bar{k}_{(1)}}} \in L$ and $\bar{k}=\bar{k}_{(2)}-\bar{k}_{(1)}$ satisfies that $g_{0} \bar{u}^{\bar{k}}=1$.

Since $\bar{k} \neq 0$, without loss of generality, assume $k_{1} \neq 0$. Let $\alpha, \beta \in$ $\operatorname{Aut}_{F}(\mathcal{U})$ be such that $\alpha\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)=\left(u_{1}, u_{3}, u_{4}, \ldots, u_{n+1}\right)$ and $\beta\left(u_{1}\right.$, $\left.u_{2}, u_{3}, \ldots, u_{n}\right)=\left(u_{2}, u_{3}, u_{4}, \ldots, u_{n+1}\right)$. We have

$$
\begin{aligned}
1 & =\alpha\left(g_{0} \bar{u}^{\bar{k}}\right) \\
& =\alpha\left(g_{0} u_{1}^{k_{1}} \prod_{i=2}^{n} u_{i+1}^{k_{i}}\right) \\
& =\alpha\left(g_{0}\right) \alpha\left(u_{1}\right)^{k_{1}} \prod_{i=2}^{n} \alpha\left(u_{i}\right)^{k_{i}} \\
& =\alpha\left(g_{0}\right) u_{1}^{k_{1}} \prod_{i=2}^{n} u_{i+1}^{k_{i}}
\end{aligned}
$$

and

$$
\begin{aligned}
1 & =\beta\left(g_{0} \bar{u}^{\bar{k}}\right) \\
& =\beta\left(g_{0} u_{1}^{k_{1}} \prod_{i=2}^{n} u_{i+1}^{k_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\beta\left(g_{0}\right) \beta\left(u_{1}\right)^{k_{1}} \prod_{i=2}^{n} \beta\left(u_{i}\right)^{k_{i}} \\
& =\beta\left(g_{0}\right) u_{2}^{k_{1}} \prod_{i=2}^{n} u_{i+1}^{k_{i}} .
\end{aligned}
$$

We therefore get $g u_{1}^{k_{1}}=u_{2}^{k_{1}}$ for nonzero integer k_{1} and $g=\frac{\alpha\left(g_{0}\right)}{\beta\left(g_{0}\right)} \in L$.
Lemma 5.9. There exists a nonzero polynomial $f \in F[y, z]$ such that any realization a of p satisfies $f(a, \delta a)=0$. In particular, $F\langle a\rangle=F(a, \delta a)$.

Proof. Since p is almost \mathcal{C}-internal, there exists an algebraically closed differential field $\hat{F} \supset F$ such that any realization a of $p \mid \hat{F}$ satisfies $a \in \operatorname{acl}(\hat{F} \mathcal{C})$. This implies that for some tuple $\bar{c} \in \mathcal{C}, a$ and \bar{c} are interalgebraic over \hat{F}. Since $\operatorname{tp}(a / \hat{F})$ is minimal, $\operatorname{tp}(c / \hat{F})$ is also minimal, and is completely determined by $\operatorname{tp}\left(c / \mathcal{C}_{\hat{F}}\right)$ by stable embeddedness of \mathcal{C} in \mathcal{U}. Therefore, $1=$ $\operatorname{Tr} . \operatorname{Deg}\left(C_{\hat{F}}(c) / \mathcal{C}_{\hat{F}}\right)=\operatorname{Tr} \cdot \operatorname{Deg}(\hat{F}(c) / \hat{F})=\operatorname{Tr} \cdot \operatorname{Deg}(\hat{F}\langle a\rangle / \hat{F})$. Moreover, since $a \downarrow_{F} \hat{F}, \operatorname{Tr} \cdot \operatorname{Deg}(F\langle a\rangle / F)=1$. Therefore, δa is algebraic over $F(a)$, which yields the existence of $f \in F[y, z]$ such that $f(a, \delta a)=0$.

The "in particular" clause follows from differentiating $f(a, \delta a)=0$ to get that

$$
\frac{\partial f}{\partial y}(a, \delta a) \delta a+\frac{\partial f}{\partial z}(a, \delta a) \delta^{2} a+f^{\delta}(a, \delta a)=0
$$

Hence $\delta^{2} a \in F(a, \delta a)$. Iterating yields $F\langle a\rangle \in F(a, \delta a)$.
We now invoke the condition of not weakly orthogonal to \mathcal{C}.
Proposition 5.10. Assume p is not weakly orthogonal to \mathcal{C}. Then there exist $g \in F\left\langle a_{1}, a_{2}\right\rangle$ and a nonzero integer k such that $\log \delta g=k a_{2}-k a_{1}$.

Proof. Apply Lemma 5.8, we assume $g u_{1}^{k}=u_{2}^{k}$ for some $g \in L$ and some nonzero integer k.

Since p is not weakly orthogonal to $\mathcal{C}, p(\mathcal{U}) \subseteq \operatorname{acl}(F \mathcal{C})$ by Lemma 2.16. It follows that $L \subseteq \operatorname{acl}(K F \mathcal{C})=K^{\text {alg }}$, so $g \in K^{\text {alg }}$. Let $h_{1}=g, h_{2}, \ldots, h_{m}$
be conjugates of g over $K\left\langle a_{1}, a_{2}\right\rangle$, and $h:=\prod_{i=1}^{m} h_{i}$. Note that $h \in K\left\langle a_{1}, a_{2}\right\rangle$. Since $\log \delta g=k a_{2}-k a_{1}, \log \delta h_{i}=k a_{2}-k a_{1}$ for $i=1,2, \ldots, m$, and we have $\log \delta h=k m a_{2}-k m a_{1}$. Let $g_{0} \in F\left\langle a_{1}, a_{2}\right\rangle(\bar{x})$ be such that $g_{0}(\bar{c})=h$. Note that \bar{c} is a solution in \mathcal{C} to $\log \delta g_{0}(\bar{x})=k m a_{2}-k m a_{1}$, and that $\log \delta g_{0}(\bar{x})$ (when the domain is restricted to \mathcal{C}) can be viewed as a rational function of \bar{x} over $F\left\langle a_{1}, a_{2}\right\rangle$ (see Lemma 2.26). By Lemma 2.19 there exists $\bar{e} \in \mathcal{C}_{F\left\langle a_{1}, a_{2}\right\rangle}$ which is also a solution. Then $g_{0}(\bar{e}) \in F\left\langle a_{1}, a_{2}\right\rangle$ and $k m$ witness the claim.

Proposition 5.11. Assume p is not weakly orthogonal to \mathcal{C}. Then there exist $g(y, z) \in F(y, z)$ and a nonzero integer k such that $\log \delta g(a, \delta a)-k a \in F$ for any realization a of p.

Proof. By Lemma 5.9, $F\left\langle a_{1}, a_{2}\right\rangle=F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$. By Proposition 5.10, there exist $g \in F(y, z, u, v)$ such that

$$
\log \delta g\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)=k a_{2}-k a_{1}
$$

Since $\left(a_{1}, a_{2}, a_{3}\right)$ is a Morley sequence over F, we have

$$
\log \delta g\left(a_{1}, \delta a_{1}, a_{3}, \delta a_{3}\right)=k a_{3}-k a_{1}
$$

and

$$
\log \delta g\left(a_{2}, \delta a_{2}, a_{3}, \delta a_{3}\right)=k a_{3}-k a_{2}
$$

so

$$
\log \delta g\left(a_{1}, \delta a_{1}, a_{3}, \delta a_{3}\right)+k a_{1}=\log \delta g\left(a_{2}, \delta a_{2}, a_{3}, \delta a_{3}\right)+k a_{2}
$$

We claim that there exists in F a realization of the formula

$$
\log \delta g\left(a_{1}, \delta a_{1}, x, \delta x\right)+k a_{1}=\log \delta g\left(a_{2}, \delta a_{2}, x, \delta x\right)+k a_{2},
$$

which we denote by $\varphi(x)$. By Lemma $5.9, p$ is the generic type of an order 1 definable set D over F. So D has Morley rank 1 (see Lemma 5.8 of [18]),
and as we are working over an acl-closed set we may take D to be strongly minimal. On the other hand, since p is not weakly orthogonal to \mathcal{C}, it cannot be isolated. Indeed, by Lemma 2.20, a is interalgebraic with a constant c over F, and $\operatorname{tp}(c / F)$ is not isolated because in ACF the only isolated types are the algebraic ones. We now have that D is strongly minimal and $p(\mathcal{U}) \subseteq D$ is not isolated, so $D \cap F$ is infinite. Since φ is realized by some generic element a_{3} of D, it is realized by all but finitely many elements in D, so in particular we can find some $f \in D \cap F$ that realizes φ, i.e.,

$$
\log \delta g\left(a_{1}, \delta a_{1}, f, \delta f\right)+k a_{1}=\log \delta g\left(a_{2}, \delta a_{2}, f, \delta f\right)+k a_{2}
$$

Letting $g_{0}(y, z)=g(y, z, f, \delta f) \in F(y, z)$, we have shown that the F-definable function $\log \delta g_{0}(y, \delta y)+k y$ has the same value at a_{1} as at a_{2}. As a_{1}, a_{2} are independent realizations of p, this implies that $\log \delta g_{0}(y, \delta y)+k y$ is constant on all of $p(\mathcal{U})$. Hence it must be that $\log \delta g_{0}(a, \delta a)+k a \in F$ for $a \models p$. So g_{0} witnesses the truth of the proposition.

Proof of Theorem 5.6. We now assume (1) in Conjecture 5.4 and we need to prove (3). Let $u \models q$ and $a=\log \delta u$. By Proposition 5.11, we have $\log \delta g(a, \delta a)-k a \in F$ for some $g \in F(y, z)$ and some nonzero integer k. Let $w_{1}=g(a, \delta a)$ and $w_{2}=\frac{u^{k}}{w_{1}}$. Then $u^{k}=w_{1} w_{2}, w_{1} \in F\langle a\rangle=F\langle\log \delta u\rangle$, and

$$
\begin{aligned}
\log \delta w_{2} & =\log \delta \frac{u^{k}}{w_{1}} \\
& =k \log \delta u-\log \delta w \\
& =k a-g(a, \delta a) \in F .
\end{aligned}
$$

That is, condition (3) of Conjecture 5.4 holds. This proves the conjecture when p is not weakly orthogonal to \mathcal{C}.

5.2 The weakly-orthogonal case

We now explore the case when the minimal type $p \in S_{1}(F)$ is weakly orthogonal to \mathcal{C}. We first introduce the following additional assumption:
(*) For every $a \models p$, there exists $v \in F\langle a\rangle \backslash F$ such that $\delta v \in F$ or $\log \delta(v) \in F$.

Theorem 5.12. Conjecture 5.4 is true for p satisfying ($*$).
Before we prove this theorem, let us point out that this implies the truth of the conjecture when working with order 1 degree 1 differential equations over a field of constants.

Corollary 5.13. Conjecture 5.4 is true when $F \subseteq \mathcal{C}$ and p is the generic type of a differential equation of the form $\delta x=f(x)$ where $f \in F(x)$.

Proof. By Theorem 5.12, we only need to prove that p satisfies ($*$).
Let $\left(a_{1}, a_{2}, \ldots\right)$ be a Morley sequence in p. Notice that $F\left\langle a_{i}\right\rangle=F\left(a_{i}\right)$ as $\delta a_{i} \in F\left(a_{i}\right)$. Since p is almost \mathcal{C}-internal, there exists an integer k such that $\operatorname{tp}\left(a_{k} / F a_{1} \cdots a_{k-1}\right)$ is not weakly orthogonal to \mathcal{C}. This implies that $\mathcal{C}_{F\left(a_{1}, \ldots, a_{k}\right)} \neq \mathcal{C}_{F\left(a_{1}, \ldots, a_{k-1}\right)}$ by Lemma 2.22. Let i be the least such k. Then by Rosenlicht's Theorem (see Theorem 6.12 of [18]), as $f(x)$ is defined over $\mathcal{C}_{F\left(a_{1}, \ldots, a_{i-1}\right)}=\mathcal{C}_{F}$ and $\mathcal{C}_{F\left(a_{1}, \ldots, a_{i}\right)} \neq \mathcal{C}_{F\left(a_{1}, \ldots, a_{i-1}\right)}$, we have that $\frac{1}{f(x)}$ is of the form $c \frac{\partial u}{\partial x} / u$ or $c \frac{\partial u}{\partial x}$ for some $u \in F(x), c \in F$.

If $\frac{1}{f(x)}=c \frac{\partial u}{\partial x} / u$, then for any $a \models p, u(a) \in F(a)$ satisfies

$$
\begin{aligned}
\log \delta u(a) & =\frac{\delta u(a)}{u(a)} \\
& =\frac{\frac{\partial u}{\partial x}(a) \delta a}{u(a)} \\
& =\frac{\frac{\partial u}{\partial x}(a)}{u(a)} f(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{c f(a)} f(a) \\
& =\frac{1}{c} \in \mathcal{C}_{F} .
\end{aligned}
$$

If $\frac{1}{f(x)}=c \frac{\partial u}{\partial x}$, then for any $a \models p, u(a) \in F(a)$ satisfies

$$
\begin{aligned}
\delta u(a) & =\frac{\partial u}{\partial x}(a) \delta a \\
& =\frac{\partial u}{\partial x}(a) f(a) \\
& =\frac{1}{c f(a)} f(a) \\
& =\frac{1}{c} \in \mathcal{C}_{F} .
\end{aligned}
$$

Therefore (*) holds.
The goal of the rest of this section is to prove Theorem 5.12. We may assume p is weakly orthogonal to \mathcal{C} by Theorem 5.6. Similar to the previous section, we only need to prove $(1) \Rightarrow(3)$ of the conjecture.

We assume the following for the rest of this section:

1. F is an algebraically closed differential field;
2. p is an almost \mathcal{C}-internal minimal type over F that is weakly orthogonal to \mathcal{C};
3. p satisfies $(*)$; note then that there is a non-constant δ-rational function $\alpha \in F\langle x\rangle$ such that either $\delta \alpha(a) \in F$ for all $a \models p$ or $\log \delta \alpha(a) \in F$ for all $a \models p$;
4. $q=\log \delta^{-1}(p)$ is almost \mathcal{C}-internal;
5. $\left(u_{1}, u_{2}, \ldots\right)$ is a Morley sequence in $q, a_{i}:=\log \delta u_{i}$, and $v_{i}:=\alpha\left(a_{i}\right)$;
6. K is the field generated by $F \cup \mathcal{C}$; and

$$
\text { 7. } L:=K\left\langle a_{1}, a_{2}, \ldots\right\rangle \text {. }
$$

Note that the above assumptions includes all those that appeared in the previous section, so we may use the results of Lemmas 5.7 through 5.9.

Proposition 5.14. We have $g u_{1}^{k}=u_{2}^{k}$ for some $g \in K\left\langle a_{1}, a_{2}\right\rangle$ and some nonzero integer k.

Proof. For any integer i, recall that $v_{i} \in F\left\langle a_{i}\right\rangle \backslash F$, and either $\delta v_{i} \in F$ or $\log \delta v_{i} \in F$. Since $\operatorname{tp}\left(v_{i} / F\right)=\operatorname{tp}\left(v_{j} / F\right)$, this means that either $v_{i}-v_{j} \in C$ or $\frac{v_{i}}{v_{j}} \in \mathcal{C}$ for any i, j. In either case, $v_{i} \in \mathcal{C}\left(v_{j}\right)$. On the other hand, by minimality of $p, a_{i} \in F\left\langle v_{i}\right\rangle^{\text {alg }}=F\left(v_{i}\right)^{\text {alg }}$ for all i (as we have $v_{i} \in F\left\langle a_{i}\right\rangle \backslash F$). Therefore, $a_{i} \in F\left(v_{i}\right)^{\text {alg }} \subseteq K\left(v_{j}\right)^{\text {alg }} \subseteq K\left\langle a_{j}\right\rangle^{\text {alg }}$ for any i, j, which means that $L=K\left\langle a_{1}, \ldots, a_{n}\right\rangle \subseteq K\left\langle a_{1}\right\rangle^{\text {alg }}$.

By Lemma 5.8 there is $g \in L=K\left\langle a_{1}, a_{2}, \ldots\right\rangle$ and a nonzero integer k such that $g u_{1}^{k}=u_{2}^{k}$. Let $g=g_{1}, g_{2}, \ldots, g_{m}$ be conjugates of g over $K\left\langle a_{1}, a_{2}\right\rangle$. Taking logarithmic derivative on both sides of $g u_{1}^{k}=u_{2}^{k}$, we get that $\log \delta g+$ $k a_{1}=k a_{2}$. Since g_{1}, \ldots, g_{m} are conjugates of g over $K\left\langle a_{1}, a_{2}\right\rangle, \log \delta g_{i}+k a_{1}=$ $k a_{2}$ for all $i=1, \ldots, m$. We therefore have $\log \delta\left(\prod_{i=1}^{m} g_{i}\right)+k m a_{1}=k m a_{2}$. Let $g_{0}=\prod g_{i} \in K\left\langle a_{1}, a_{2}\right\rangle$. Then as $\log \delta g_{0}+k m a_{1}=k m a_{2}$, there exists $c \in \mathcal{C}$ such that $c g_{0} u_{1}^{k m}=u_{2}^{k m}$.

Lemma 5.15. There exist $g \in F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$ and k a nonzero integer such that $c g u_{1}^{k}=u_{2}^{k}$ for some $c \in \mathcal{C}$.

Proof. By Proposition 5.14 and Lemma 5.9, we have $g_{0} u_{1}^{k}=u_{2}^{k}$ for $g_{0} \in$ $K\left\langle a_{1}, a_{2}\right\rangle \subseteq K\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$, so $\log \delta g_{0}=k a_{2}-k a_{1}$. Since K is the field generated by F and \mathcal{C}, we can rewrite $g_{0}=g(\bar{c})$ for $\bar{c} \in \mathcal{C}^{n}$, and $g \in$ $F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)(\bar{x})$. Then \bar{c} is a solution to $\log \delta g(x)=k a_{2}-k a_{1}$, and notice that $\log \delta g(\bar{x})$, restricted to \mathcal{C}, is a rational function over $F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$ (see Lemma 2.26). By Lemma 2.19, let $\bar{c}_{2} \in \mathcal{C}_{F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)}^{\text {alg }}$ be a solution of $\log \delta g(\bar{x})=k a_{2}-k a_{1}$. Let $\bar{e}_{1}=\bar{c}_{2}, \bar{e}_{2}, \ldots, \bar{e}_{m}$ be conjugates of
\bar{c}_{2} over $\mathcal{C}_{F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)}$. Then $\log \delta g\left(\bar{e}_{i}\right)=k a_{2}-k a_{1}$. Let $h=\prod_{i=1}^{m} g\left(\bar{e}_{i}\right) \in$ $F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$. Then $\log \delta h=k m a_{2}-k m a_{1}$, which means for some $c \in \mathcal{C}$, $c h u_{1}^{k m}=u_{2}^{k m}$, as desired.

Proposition 5.16. Suppose that for $a \models p, a \in F(\alpha(a))$. Then there exist some $g(y) \in F(y)$ and some nonzero integer k such that $\log \delta g\left(v_{i}\right)-k a_{i} \in F$ for all i.

Proof. By Lemma 5.15, we have $c g_{0} u_{1}^{k}=u_{2}^{k}$ for some $c \in \mathcal{C}, k$ nonzero integer, and $g_{0} \in F\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right)$. By assumption, $a_{i} \in F\left(v_{i}\right)$ for $i=1,2$. Moreover, either $\delta v_{i} \in F$ or $\log \delta v_{i} \in F$, so that $F\left\langle v_{i}\right\rangle=F\left(v_{i}\right)$. Hence, we also have that $\delta a_{i} \in F\left(v_{i}\right)$. Since $a_{i}, \delta a_{i} \in F\left(v_{i}\right)=F\left\langle v_{i}\right\rangle$ for $i=1,2$, So $g_{0} \in F\left(v_{1}, v_{2}\right)$, and we set $g\left(y_{1}, y_{2}\right) \in F\left(y_{1}, y_{2}\right)$ to be such that $g\left(v_{1}, v_{2}\right)=g_{0}$. In the following proof, we will use these facts about v_{i}.
(1) $\left(v_{1} a_{1}, v_{2} a_{2}, \ldots\right)$ is a Morley sequence over F. This is because $\left(a_{1}, a_{2}, \ldots\right)$ is a Morley sequence and $v_{i}=\alpha\left(a_{i}\right)$.
(2) $\log \delta g\left(v_{i}, v_{j}\right)=k a_{j}-k a_{i}$ for all $i \neq j$. Indeed, this is true for $(i, j)=$ $(1,2)$ because $g\left(v_{1}, v_{2}\right)=g_{0}$ and $c g_{0} u_{1}^{k}=u_{2}^{k}$. Now use (1) to see that the statement is true for all $i \neq j$.
(3) $v_{i} \notin K^{\text {alg }}$. Since p is weakly orthogonal to the constants, $a_{i} \notin K^{\text {alg }}$. Since $a_{i} \in F\left(v_{i}\right)$, this implies $v_{i} \notin K^{\text {alg }}$.
(4) $\operatorname{tp}\left(a_{i}, v_{i} / F\right)$ is minimal. This is because p is minimal and $v_{i} \in F\left\langle a_{i}\right\rangle$.
(5) $\delta v_{i} \in F$ for all i, or $\log \delta v_{i} \in F$ for all i. This is by assumption (*).

To deal with the two cases $\left(\delta v_{i} \in F\right.$ and $\left.\log \delta v_{i} \in F\right)$ uniformly, we define $[x: y]=x-y$ and $x * y=x+y$ if $\delta v_{i} \in F$ for all i, and $[x: y]=\frac{x}{y}$ and $x * y=x y$ otherwise (i.e., $\log \delta v_{i} \in F$ for all i). Since $\operatorname{tp}\left(v_{i} / F\right)=\operatorname{tp}\left(v_{j} / F\right)$, $\delta v_{i}=\delta v_{j}$ in the first case, and $\log \delta v_{i}=\log \delta v_{j}$ in the second. So either way, we have $\left[v_{i}: v_{j}\right] \in \mathcal{C}$ for all i, j.

Let $g_{1}(x, y)=g(x, x * y) \in F(x, y)$. Then $g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right)=g\left(v_{1}, v_{2}\right)$. Note that

$$
\begin{aligned}
& \log \delta\left(g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(v_{2},\left[v_{3}: v_{2}\right]\right) g_{1}\left(v_{3},\left[v_{1}: v_{3}\right]\right)\right) \\
= & k a_{2}-k a_{1}+k a_{3}-k a_{2}+k a_{1}-k a_{3} \\
= & 0
\end{aligned}
$$

so

$$
g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(v_{2},\left[v_{3}: v_{2}\right]\right) g_{1}\left(v_{3},\left[v_{1}: v_{3}\right]\right)=e_{1}
$$

for some $e_{1} \in \mathcal{C}$. Note also that an automorphism in $\operatorname{Aut}_{F}(\mathcal{U})$ that takes $\left(v_{1}, v_{2}, v_{3}\right)$ to $\left(v_{2}, v_{3}, v_{1}\right)$ or $\left(v_{3}, v_{1}, v_{2}\right)$ fixes e_{1}.

Suppose $g_{1}(x, y)=\frac{\sum_{i=0}^{m} p_{1 i}(y) x^{i}}{\sum_{i=0}^{n} p_{2 i}(y) x^{i}}$ where each $p_{1 i}(y), p_{2 i}(y) \in F(y)$.
If $\delta v_{i} \in F$ for all i, then

$$
\begin{aligned}
e_{1}= & g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(v_{2},\left[v_{3}: v_{2}\right]\right) g_{1}\left(v_{3},\left[v_{1}: v_{3}\right]\right) \\
= & g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(v_{1}+\left[v_{2}: v_{1}\right],\left[v_{3}: v_{2}\right]\right) g_{1}\left(v_{1}+\left[v_{3}: v_{1}\right],\left[v_{1}: v_{3}\right]\right) \\
= & \left(\frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right)}\right)\left(\frac{v_{1}^{m}+\sum_{i=0}^{m-1} v_{1}^{i} q_{1 i}}{v_{1}^{n}+\sum_{i=0}^{n-1} v_{1}^{i} q_{2 i}}\right)\left(\frac{p_{1 m}\left(\left[v_{3}: v_{2}\right]\right)}{p_{2 n}\left(\left[v_{3}: v_{2}\right]\right)}\right) \\
& \left(\frac{v_{1}^{m}+\sum_{i=0}^{m-1} v_{1}^{i} q_{3 i}}{v_{1}^{n}+\sum_{i=0}^{n-1} v_{1}^{i} q_{4 i}}\right)\left(\frac{p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)}\right)\left(\frac{v_{1}^{m}+\sum_{i=0}^{m-1} v_{1}^{i} q_{5 i}}{v_{1}^{n}+\sum_{i=0}^{n-1} v_{1}^{i} q_{6 i}}\right) \\
= & \left(\frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right)}\right)\left(\frac{p_{1 m}\left(\left[v_{3}: v_{2}\right]\right)}{p_{2 n}\left(\left[v_{3}: v_{2}\right]\right)}\right)\left(\frac{p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)}\right) \\
& \left(\frac{v_{1}^{3 m}+\sum_{i=0}^{3 m-1} v_{1}^{i} q_{7 i}}{v_{1}^{3 n}+\sum_{i=0}^{3 m-1} v_{1}^{i} q_{8 i}}\right)
\end{aligned}
$$

where $q_{j i} \in F\left(\left[v_{2}: v_{1}\right],\left[v_{3}: v_{2}\right],\left[v_{1}: v_{3}\right]\right) \subseteq K$ for all i, j.
If $\log \delta\left(v_{i}\right) \in F$ for all i, then

$$
\begin{aligned}
e_{1} & =g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(v_{2},\left[v_{3}: v_{2}\right]\right) g_{1}\left(v_{3},\left[v_{1}: v_{3}\right]\right) \\
& =g_{1}\left(v_{1},\left[v_{2}: v_{1}\right]\right) g_{1}\left(\left[v_{2}: v_{1}\right] v_{1},\left[v_{3}: v_{2}\right]\right) g_{1}\left(\left[v_{3}: v_{1}\right] v_{1},\left[v_{1}: v_{3}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right)}\right)\left(\frac{v_{1}^{m}+\sum_{i=1}^{m-1} v_{1}^{i} q_{1 i}}{v_{1}^{n}+\sum_{i=1}^{n-1} v_{1}^{i} q_{2 i}}\right)\left(\frac{p_{1 m}\left(\left[v_{3}: v_{2}\right]\right)}{p_{2 n}\left(\left[v_{3}: v_{2}\right]\right)}\right) \\
& \left(\frac{\left[v_{2}: v_{1}\right]^{m} v_{1}^{m}+\sum_{i=1}^{m-1} v_{1}^{i} q_{3 i}}{\left[v_{2}: v_{1}\right]^{n} v_{1}^{n}+\sum_{i=1}^{n-1} v_{1}^{i} q_{4 i}}\right)\left(\frac{p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)}\right) \\
& \left(\frac{\left[v_{3}: v_{1}\right]^{m} v_{1}^{m}+\sum_{i=1}^{m-1} v_{1}^{i} q_{5 i}}{\left[v_{3}: v_{1}\right]^{n} v_{1}^{n}+\sum_{i=1}^{n-1} v_{1}^{i} q_{6 i}}\right) \\
= & \left(\frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right)}\right)\left(\frac{p_{1 m}\left(\left[v_{3}: v_{2}\right]\right)}{p_{2 n}\left(\left[v_{3}: v_{2}\right]\right)}\right)\left(\frac{p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)}\right) \\
& \left(\left[v_{2}: v_{1}\right]^{m-n}\left[v_{3}: v_{1}\right]^{m-n}\right)\left(\frac{v_{1}^{3 m}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{7 i}}{v_{1}^{3 n}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{8 i}}\right)
\end{aligned}
$$

where $q_{j i} \in F\left(\left[v_{2}: v_{1}\right],\left[v_{3}: v_{2}\right],\left[v_{1}: v_{3}\right]\right) \subseteq K$ for all i, j.
In either case, since $e_{1} \in K, \frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right) p_{1 m}\left(\left[v_{3}: v_{2}\right]\right) p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right) p_{2 n}\left(\left[v_{3}: v_{2}\right]\right) p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)} \in K$, and $\left[v_{2}: v_{1}\right]^{m-n}\left[v_{3}: v_{1}\right]^{m-n} \in K$, we must have that $\frac{v_{1}^{3 m}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{7 i}}{v_{1}^{3 n}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{8 i}} \in K$.

However, since $v_{1} \notin K^{\text {alg }}=\operatorname{acl}(F C)$. we must also have that $m=n$ and each $q_{7 i}=q_{8 i}$, which yields $\frac{v_{1}^{3 m}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{7 i}}{v_{1}^{3 n}+\sum_{i=1}^{3 m-1} v_{1}^{i} q_{8 i}}=1$. Therefore

$$
\begin{equation*}
e_{1}=\frac{p_{1 m}\left(\left[v_{2}: v_{1}\right]\right) p_{1 m}\left(\left[v_{3}: v_{2}\right]\right) p_{1 m}\left(\left[v_{1}: v_{3}\right]\right)}{p_{2 n}\left(\left[v_{2}: v_{1}\right]\right) p_{2 n}\left(\left[v_{3}: v_{2}\right]\right) p_{2 n}\left(\left[v_{1}: v_{3}\right]\right)} \tag{5.1}
\end{equation*}
$$

Let $\mathcal{C}_{1}=\mathcal{C}_{F}\left(v_{1}, v_{2}, v_{3}\right)^{\text {alg }}$. Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is algebraically independent over F, \mathcal{C}_{1} and F are independent field extensions of \mathcal{C}_{F}. Write $\frac{p_{1 m}(y)}{p_{2 n}(y)}$ as $f_{1}(\bar{\alpha}, y)$ with $\bar{\alpha}$ a tuple from F and $f_{1} \in \mathcal{C}_{F}(\bar{x}, y)$. We have $f_{1}\left(\bar{\alpha},\left[v_{2}: v_{1}\right]\right) f_{1}(\bar{\alpha}$, $\left.\left[v_{3}: v_{2}\right]\right) f_{1}\left(\bar{\alpha},\left[v_{1}: v_{3}\right]\right)=e_{1}$.

We now show that $e_{1} \in \mathcal{C}_{1}$. By construction, $e_{1} \in F\left(v_{1}, v_{2}, v_{3}\right) \cap \mathcal{C}=$ $\mathcal{C}_{F\left(v_{1}, v_{2}, v_{3}\right)}$. Since $\operatorname{Tr} . \operatorname{Deg}\left(F\left(v_{1}, v_{2}, v_{3}\right) / F\left(v_{1}\right)\right)=2, \operatorname{Tr} \cdot \operatorname{Deg}\left(\mathcal{C}_{F\left(v_{1}, v_{2}, v_{3}\right)} / \mathcal{C}_{F\left(v_{1}\right)}\right)$ is at most 2. In fact, $\operatorname{Tr} \cdot \operatorname{Deg}\left(\mathcal{C}_{F\left(v_{1}, v_{2}, v_{3}\right)} / \mathcal{C}_{F\left(v_{1}\right)}\right)=2$, since $\left[v_{2}: v_{1}\right]$, $\left[v_{3}: v_{1}\right]$ are two algebraically independent elements in $\mathcal{C}_{F\left(v_{1}, v_{2}, v_{3}\right)}$ over $\mathcal{C}_{F\left(v_{1}\right)}$. As p is
weakly orthogonal to $\mathcal{C}, \mathcal{C}_{F}=\mathcal{C}_{F\left(v_{1}\right)}$ by Lemma 2.22. Therefore, $\mathcal{C}_{F\left(v_{1}, v_{2}, v_{3}\right)}^{\text {alg }}=$ $\mathcal{C}_{F}\left(\left[v_{2}: v_{1}\right],\left[v_{3}: v_{1}\right]\right)^{\text {alg }} \subseteq \mathcal{C}_{1}$, so $e_{1} \in \mathcal{C}_{1}$. Now by Lemma 5.30 of the appendix, there are $d_{1}(y), d_{2}(y), d_{3}(y) \in C_{F}(y)$ such that

$$
e_{1}^{n} d_{1}\left(\left[v_{2}: v_{1}\right]\right) d_{2}\left(\left[v_{3}: v_{2}\right]\right) d_{3}\left(\left[v_{1}: v_{3}\right]\right)=1
$$

for some $n>0$.
Since e_{1} is fixed under any automorphism that fixes F and takes $\left(v_{1}, v_{2}, v_{3}\right)$ to $\left(v_{2}, v_{3}, v_{1}\right)$ or (v_{3}, v_{1}, v_{2}), we have

$$
e_{1}^{3 n} \prod_{i=1}^{3} d_{i}\left(\left[v_{2}: v_{1}\right]\right) d_{i}\left(\left[v_{3}: v_{2}\right]\right) d_{i}\left(\left[v_{1}: v_{3}\right]\right)=1
$$

Let $g_{2}\left(x_{1}, x_{2}\right):=\left(g_{1}\left(x_{1},\left[x_{2}: x_{1}\right]\right)\right)^{n} \prod_{i=1}^{3} d_{i}\left(\left[x_{2}: x_{1}\right]\right)$, which is over F. We have $\log \delta g_{2}\left(v_{1}, v_{2}\right)=k a_{2}-k a_{1}$ and

$$
g_{2}\left(v_{1}, v_{2}\right) g_{2}\left(v_{2}, v_{3}\right) g_{2}\left(v_{3}, v_{1}\right)=1
$$

Note that $g_{2}\left(v_{2}, v_{1}\right) g_{2}\left(v_{3}, v_{2}\right) g_{2}\left(v_{1}, v_{3}\right)=1$ as well because v_{1}, v_{2}, v_{3} is indiscernible over F. Let $g_{3}\left(x_{1}, x_{2}\right)=\frac{g_{2}\left(x_{1}, x_{2}\right)}{g_{2}\left(x_{2}, x_{1}\right)}$. Then we have $\log \delta g_{2}\left(v_{1}, v_{2}\right)=$ $2 k a_{2}-2 k a_{1}, g_{3}\left(v_{1}, v_{2}\right) g_{3}\left(v_{2}, v_{3}\right) g_{3}\left(v_{3}, v_{1}\right)=1$, and $g_{3}\left(v_{2}, v_{3}\right) g_{3}\left(v_{3}, v_{2}\right)=1$.

Now v_{3} satisfies

$$
\begin{equation*}
g_{3}\left(v_{1}, v_{2}\right)=\frac{g_{3}\left(y, v_{2}\right)}{g_{3}\left(y, v_{1}\right)} \tag{5.2}
\end{equation*}
$$

and is independent from v_{1}, v_{2} over F. Since (5.2) is a field-theoretic equation, we get that it has infinite (therefore co-finite) many solutions. Let $c_{3} \in F$ be a solution, and let $g_{4}(x)=g_{3}\left(c_{3}, x\right) \in F(x)$. Then $\log \delta \frac{g_{4}\left(v_{2}\right)}{g_{4}\left(v_{1}\right)}=2 k a_{2}-2 k a_{1}$. Therefore $\log \delta g_{4}\left(v_{2}\right)-2 k a_{2}=\log \delta g_{4}\left(v_{1}\right)-2 k a_{1}$. Since $\operatorname{tp}\left(v_{i} / F v_{1}\right)$ are the same for all $i=2,3, \ldots$, we have that $\log \delta g_{4}\left(v_{i}\right)-2 k a_{i}$ does not depend on i. Since $\left(a_{1} v_{1}, a_{2} v_{2}, \ldots\right)$ is a Morley sequence over F, this implies that the
F-definable function $\log \delta g_{4}(y)-2 k x$ is constant on the set of realizations of $\operatorname{tp}\left(a_{i}, v_{i} / F\right)$. Hence it is F-valued, so $\log \delta g_{4}\left(v_{i}\right)-2 k a_{i} \in F$ for all i, as desired.

Proposition 5.17. There exist some $g \in F(x, z)$ and some nonzero integer k such that $\log \delta g\left(a_{i}, \delta a_{i}\right)-k a_{i} \in F$ for all i.

Proof. If $a \in F(\alpha(a))$ for $a=p$, then by Proposition 5.16, there exist $g(y) \in$ $F(y)$ and nonzero integer k such that $\log \delta g\left(v_{i}\right)-k a_{i} \in F$ for all i. Since $v_{i} \in F\left(a_{i}\right)$, we can write $g\left(v_{i}\right)=f\left(a_{i}\right)$, and setting $g^{*}(x, z)=f(x)$ witnesses the proposition.

Now assume $a \notin F(\alpha(a))$ for $a \models p$.
By Lemma 5.15, we have $c g_{0}\left(a_{1}, \delta a_{1}, a_{2}, \delta a_{2}\right) u_{1}^{k}=u_{2}^{k}$ for some $c \in \mathcal{C}$, k nonzero integer, and $g_{0}\left(x_{1}, z_{1}, x_{2}, z_{2}\right) \in F\left(x_{1}, z_{1}, x_{2}, z_{2}\right)$, so $\log \delta g_{0}\left(a_{1}, \delta a_{1}\right.$, $\left.a_{2}, \delta a_{2}\right)=k a_{2}-k a_{1}$. Let $a_{i 1}=a_{i}, a_{i 2}, \ldots, a_{i m}$ be the conjugates of a_{i} over $F\left(v_{i}\right)$, and let $b_{i}=\sum_{j=1}^{m} a_{i j}$. Note that since $a_{1}, v_{1} \downarrow_{F} a_{2}, v_{2}, \operatorname{tp}\left(a_{1 \alpha}, a_{2 \beta}\right)=$ $\operatorname{tp}\left(a_{1}, a_{2}\right)$ for any $\alpha, \beta \in\{1, \ldots, m\}$. Then we have $\prod_{\alpha=1}^{m} \prod_{\beta=1}^{m} g_{0}\left(a_{1 \alpha}, \delta a_{1 \alpha}\right.$, $\left.a_{2 \beta}, \delta a_{2 \beta}\right) \in F\left(v_{1}, v_{2}\right)$ and

$$
\log \delta\left(\prod_{\alpha=1}^{m} \prod_{\beta=1}^{m} g_{0}\left(a_{1 \alpha}, \delta a_{1 \alpha}, a_{2 \beta}, \delta a_{2 \beta}\right)\right)=m k b_{2}-m k b_{1}
$$

Let $g\left(y_{1}, y_{2}\right) \in F\left(y_{1}, y_{2}\right)$ be such that $g\left(v_{1}, v_{2}\right)=\prod_{\alpha=1}^{m} \prod_{\beta=1}^{m} g_{0}\left(a_{1 \alpha}, \delta a_{1 \alpha}\right.$, $a_{2 \beta}, \delta a_{2 \beta}$). Note that the proof of Proposition 5.16 applies here (as all facts used in the proof are satisfied if we replace a_{i} with $m k b_{i}$), so $\log \delta g_{1}\left(v_{i}\right)-$ $\ell m k b_{i} \in F$ for some $g_{1}(y) \in F(y)$ and nonzero integer ℓ.

Since $\prod_{\beta=1}^{m} g\left(a_{1}, \delta a_{1}, a_{2 \beta}, \delta a_{2 \beta}\right) \in F\left(a_{1}, \delta a_{1}, v_{2}\right)$, let $g_{2}(x, z, y) \in F(x, z, y)$
be such that $g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)=\prod_{\beta=1}^{m} g\left(a_{1}, \delta a_{1}, a_{2 \beta}, \delta a_{2 \beta}\right)$. We have $\log \delta g_{2}\left(a_{1}\right.$, $\left.\delta a_{1}, v_{2}\right)=\sum_{\beta=1}^{m}\left(k a_{2 \beta}-k a_{1}\right)=k b_{2}-m k a_{1}$, so

$$
\log \delta \frac{g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)^{\ell}}{g_{1}\left(v_{2}\right)}-(-\ell m k) a_{1}
$$

$$
=\ell \log \delta g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)-\log \delta g_{1}\left(v_{2}\right)-(-\ell m k) a_{1}
$$

$$
=\ell k b_{2}-\ell m k a_{1}-\log \delta g_{1}\left(v_{2}\right)-(-\ell m k) a_{1}
$$

$$
=-\left(\log \delta g_{1}\left(v_{2}\right)-\ell k b_{2}\right) \in F
$$

Let $f=\log \delta \frac{g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)^{\ell}}{g_{1}\left(v_{2}\right)}-(-\ell m k) a_{1}$. Note that $\frac{g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)^{\ell}}{g_{1}\left(v_{2}\right)} \in$ $K\left(a_{1}, \delta a_{1}\right)$ since $v_{2} \in \mathcal{C}\left(v_{1}\right) \subseteq K\left(a_{1}, \delta a_{1}\right)$. Let $g_{3}(\bar{x}) \in F\left(a_{1}, \delta a_{1}\right)(\bar{x})$ be such that $g_{3}(\bar{c})=\frac{g_{2}\left(a_{1}, \delta a_{1}, v_{2}\right)^{\ell}}{g_{1}\left(v_{2}\right)}$. So \bar{c} is a solution to $h(\bar{x})=0$ where $h(\bar{x})=\log \delta g_{3}(\bar{x})-(-\ell m k) a_{1}-f$. Note that $h \upharpoonright_{\mathcal{C}}$ is a rational function over $F\left(a_{1}, \delta a_{1}\right)$, so by Lemma 2.19 there exists $\bar{e} \in \mathcal{C}_{F\left(a_{1}, \delta a_{1}\right)}$ which is a solution of this equation. Since p is weakly orthogonal to $\mathcal{C}, \mathcal{C}_{F\left(a_{1}, \delta a_{1}\right)}=\mathcal{C}_{F}$. Therefore, $\log \delta g_{3}\left(a_{1}, \delta a_{1}, \bar{e}\right)-(-\ell m k) a_{i} \in F$. And since $\operatorname{tp}\left(a_{i} / F\right)$ does not depend on $i, \log \delta g_{3}\left(a_{i}, \delta a_{i}, \bar{e}\right)-(-\ell m k) a_{i} \in F$ for $(-\ell m k)$ a nonzero integer and $g_{3}(x, z, \bar{e}) \in F(x, z)$.

Proof of Theorem 5.12. We need to show that condition (3) of Conjecture 5.4 holds. Let $u \models q$ and $a=\log \delta u$. By Proposition 5.17, $\log \delta g(a, \delta a)-k a \in F$ for some $g(x, z) \in F(x, z)$ and some nonzero integer k. Let $w_{1}=g(a, \delta a)$ and $w_{2}=\frac{u^{k}}{w_{1}}$, so we have $u^{k}=w_{1} w_{2}$ where $w_{1} \in F\langle a\rangle=F\langle\log \delta u\rangle$ and $\log \delta w_{2}=k \log \delta u-\log \delta w_{1}=k a-\log \delta g(a, \delta a) \in F$, as desired.

5.3 Examples

In this section we describe some examples to which our theorems apply. We first show two examples where Theorem 5.6 applies.

Example 5.18. Let $p(x)$ be the generic type of the constants. We know by Fact 2.27 that $q=\log \delta^{-1}(p)$ is not almost \mathcal{C}-internal. But this can also be seen to follow from Theorem 5.6, which applies as p is not weakly orthogonal to \mathcal{C}. Suppose q is almost \mathcal{C}-internal. Then by the truth of Conjecture 5.4 in this case, we have, for $u \models q$, that $u^{\ell}=u_{1} u_{2}$ where $u_{1} \in \mathbb{Q}^{\text {alg }}\langle\log \delta u\rangle$ and $\log \delta u_{2} \in \mathbb{Q}^{\text {alg }}$. Since $\log \delta u \in \mathcal{C}, u_{1} \in \mathcal{C}$, and so $\log \delta u_{1}=0$. Hence $\log \delta u^{\ell}=\log \delta u_{2} \in \mathbb{Q}^{\text {alg }}$, contradicting the fact that q is of U-rank 2 .

Example 5.19. Fix t such that $\delta t=1$, and set $F=\mathbb{Q}(t)^{\text {alg }}$. Suppose $p \in S_{1}(F)$ is the generic type of the strongly minimal set D defined by the equation $\delta\left(\frac{1}{x}\right)=1$. This is really Example 5.1, except that we work over $\mathbb{Q}(t)^{\text {alg }}$ rather than $\mathbb{Q}^{\text {alg }}$. A consequence of working over F is that we can express D as $D=\left\{x: x=\frac{1}{t+c}, c \in \mathcal{C}\right\}$, so that p is not weakly orthogonal to \mathcal{C}. Hence Theorem 5.6 applies. But in this case we already know that $\log \delta^{-1}(D)$, and hence $q:=\log \delta^{-1}(p)$, is \mathcal{C}-internal. Moreover, our proof of this in Example 5.1 goes by decomposing $u \models q$ as $u=\left(\frac{u}{\delta u}\right)(u)$, witnessing condition (3) of Conjecture 5.4.

Here are examples where Theorem 5.12 applies.
Example 5.20. Consider again the minimal set D of Example 5.1 given by $\delta\left(\frac{1}{x}\right)=1$, but this time let p be the generic type of D over $F:=\mathbb{Q}^{\text {alg }}$. Note that p is weakly orthogonal to \mathcal{C} because otherwise, by Lemma 2.16, any realization a of p would be in $\operatorname{acl}(F \mathcal{C})=\mathcal{C}$, but no constant satisfies $\delta\left(\frac{1}{x}\right)=1$. So Theorem 5.6 does not apply but Theorem 5.12 does, since if $a \models p$ then $v=\frac{1}{a}$ satisfies $\delta v=1 \in F$. In any case, we already know that $\log \delta^{-1}(p)$ is \mathcal{C}-internal, by Example 5.1.

Example 5.21. Let $F:=\mathbb{Q}^{\text {alg }}$ and $p(x) \in S_{1}(F)$ be the generic type of the equation $\delta x=1$. It is \mathcal{C}-internal but weakly orthogonal to \mathcal{C}. Theorem 5.12 applies and $q:=\log \delta^{-1}(p)$ is not almost \mathcal{C}-internal.

Proof. To see that Theorem 5.12 applies, note that if $a \models p$ then $v:=a$ satisfies $\delta v=1 \in F$. Now, let u be a realization of q, and $a=\log \delta u$ a realization of p. Suppose $u^{\ell}=u_{1} u_{2}$ with $u_{1} \in F\langle a\rangle$ and $\log \delta u_{2} \in F$. Let t be an element in the universe such that $\delta t=1$, so that $a=t+c_{1}$ for some $c_{1} \in \mathcal{C}$. Hence $u_{1} \in \mathcal{C}(t)$. Suppose $u_{1}=e_{0} \prod_{i=1}^{n}\left(t-e_{i}\right)^{k_{i}}$ where $e_{i} \in \mathcal{C}$ and $k_{i} \in \mathbb{Z}$. Then $\log \delta u_{1}=\sum_{i=1}^{n} \frac{k_{i}\left(t-e_{i}\right)^{k_{i}-1}}{\left(t-e_{i}\right)^{k_{i}}}=\sum_{i=1}^{n} \frac{k_{i}}{t-e_{i}}$. But $\log \delta u_{1}=\ell \log \delta u-\log \delta u_{2}=\ell t+\ell c_{1}-\log \delta u_{2}=\ell t+c_{2}$ for some $c_{2} \in \mathcal{C}$, which means $\sum_{i=1}^{n} \frac{k_{i}}{t-e_{i}}=\ell t+c_{2}$. This implies that $t \in \mathcal{C}^{\text {alg }}=\mathcal{C}$, contradicting the fact that $\delta t=1$. Hence there can be no such decomposition of u^{ℓ}. By Theorem 5.12, p is not almost \mathcal{C}-internal.

Example 5.22. This is a generalization of Example 5.20. Let $F=\mathbb{Q}^{\text {alg }}$. Fix $n \in \mathbb{Z} \backslash\{0\}$ and suppose $p \in S_{1}(F)$ is the generic type of the strongly minimal set D defined by the equation $(\delta x)^{n}=n^{n} x^{n-1}$. Note that when $n=-1$, this equation becomes $\frac{1}{\delta x}=-x^{-2}$, which is equivalent to the equation in Examples 5.19 and 5.20. In any case, p is a \mathcal{C}-internal minimal type weakly orthogonal to \mathcal{C}. Moreover, Theorem 5.12 applies and $\log \delta^{-1}(p)$ is not almost \mathcal{C}-internal unless $n=-1$.

Proof. Taking derivative on both sides of $(\delta x)^{n}=n^{n} x^{n-1}$, and we get that $n(\delta x)^{n-1} \delta^{2} x=n^{n}(n-1) x^{n-2} \delta x$, so $\delta^{2} x=\frac{n^{n-1}(n-1) x^{n-2}}{(\delta x)^{n-2}}$. Note that

$$
\begin{aligned}
\delta\left(\frac{x}{\delta x}\right) & =\frac{(\delta x)^{2}-x \delta^{2} x}{(\delta x)^{2}} \\
& =\frac{(\delta x)^{n}-x(\delta x)^{n-2} \delta^{2} x}{(\delta x)^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\delta x)^{n}-n^{n-1}(n-1) x^{n-1}}{(\delta x)^{n}} \\
& =\frac{n^{n} x^{n-1}-n^{n-1}(n-1) x^{n-1}}{n^{n} x^{n-1}} \\
& =\frac{1}{n} .
\end{aligned}
$$

If we work over $\mathbb{Q}(t)^{\text {alg }}$ where t is such that $\delta t=1$, then $\frac{x}{\delta x}=\frac{t+c}{n}$ for some $c \in \mathcal{C}$, so $x=n^{n} \frac{x^{n}}{(\delta x)^{n}}=(t+c)^{n}$. On the other hand, for every $c \in \mathcal{C},(t+c)^{n}$ is a solution to $(\delta x)^{n}=n^{n} x^{n-1}$. So we can express D as $D=\left\{x: x=(t+c)^{n}, c \in \mathcal{C}\right\}$, and there exists a t-definable map from \mathcal{C} to D that maps c to $(t+c)^{n}$. This shows us that D is strongly minimal and \mathcal{C} internal. Moreover, since $D(F)=\varnothing, p$ is weakly orthogonal to \mathcal{C}. Theorem 5.12 applies because for any $a \models p, v=\frac{a}{\delta a}$ satisfies $\delta v=\frac{1}{n}$, so $(*)$ holds.

Let $q=\log \delta^{-1}(p)$ and let u be a realization of q. If q is almost \mathcal{C} internal, then by Theorem 5.12 we can write $u=u_{1} u_{2}$ where $u_{1} \in F\langle\log \delta u\rangle$ and $d:=\log \delta u_{2} \in F$. Writing $\log \delta u=(t+c)^{n}$ with $c \in \mathcal{C}$, we have $u_{1} \in F(c, t)$. Suppose $u_{1}=s_{0} \prod_{i}\left(t-s_{i}\right)^{\ell_{i}}$ where s_{0} and all s_{i} are in $F(c)$. Then $\log \delta u_{1}=\sum_{i} \frac{\ell_{i}}{t-s_{i}}$. As $\log \delta u=\log \delta u_{1}+\log \delta u_{2}$, we have

$$
(t+c)^{n}=\sum_{i} \frac{\ell_{i}}{t-s_{i}}+d
$$

The only way the above equality will hold is when $n=-1$, in which case $d=0$, there is only one summand, $\ell_{1}=1$, and $s_{1}=-c$.

Equivalent condition (3) of Conjecture 5.4 states that there exists a nonzero ℓ such that $u^{\ell}=u_{1} u_{2}$ where u_{1}, u_{2} satisfy some conditions. Note that ℓ is equal to 1 in all of the above examples. The following example shows that this is not always the case. That is, we cannot replace "finite-to-one" with "bijective" in equivalent condition (2) of Conjecture 5.4.

Example 5.23. Let $F=\mathbb{Q}^{\text {alg }}$, and suppose p is the generic type of the definable set D defined by $\left\{x: \delta\left(\frac{1}{x}\right)=2\right\}$. Let $q:=\log \delta^{-1}(p)$. Theorem 5.12 applies, since for any $a \models p$ we have that $v:=\frac{1}{a}$ satisfies $\delta v=2 \in F$. For any $u \models q, a:=\log \delta u$ satisfies

$$
\delta a=\delta\left(\frac{1}{a^{-1}}\right)=\frac{-\delta\left(a^{-1}\right)}{a^{-2}}=-2 a^{2}
$$

So

$$
\begin{aligned}
\delta\left(u^{2} a\right) & =a \delta\left(u^{2}\right)+u^{2} \delta a \\
& =a u^{2} \log \delta\left(u^{2}\right)+u^{2} \delta a \\
& =2 a^{2} u^{2}-2 u^{2} a^{2} \\
& =0 .
\end{aligned}
$$

This means that there exists $c \in \mathcal{C}$ such that $u^{2}=\frac{c}{a}$. As $a \in F\langle\log \delta u\rangle$ and $\log \delta c=0 \in F$, this shows that p satisfies condition (3) of Conjecture 5.4. In particular, by Theorem 5.12, q is almost \mathcal{C}-internal.

We now show that $u \models q$ cannot be expressed as the product of u_{1} and u_{2} where $u_{1} \in F\langle\log \delta u\rangle$ and $c:=\log \delta u_{2} \in F$. Suppose for a contradiction that such u_{1}, u_{2} do exist. Let $a:=\log \delta u$ and $b:=\frac{1}{2 a}$. Note that $\delta b=\frac{1}{2} \delta\left(\frac{1}{a}\right)=1$. Then $\log \delta u_{1}=\log \delta u-\log \delta u_{2}=a-c=\frac{1}{2 b}-c$ for some $c \in F$. Since $u_{1} \in F\langle a\rangle=F(a)=F(b)$ as $\delta a=2 a^{2}$, we can write $u_{1}=c_{0} \prod_{i}\left(b-c_{i}\right)^{\ell_{i}}$, where the c_{i} 's are in F. Then $\log \delta u_{1}=\sum_{i} \frac{\ell_{i} \delta\left(b-c_{i}\right)}{b-c_{i}}=$ $\sum_{i} \frac{\ell_{i}{ }^{i}}{b-c_{i}}$. We thus have

$$
\sum_{i} \frac{\ell_{i}}{b-c_{i}}=\frac{1}{2 b}-c
$$

As all ℓ_{i} 's are integers, the above equation is a nontrivial equation over F satisfied by b. However, this is impossible as b is transcendental over F.

In examples 5.20 through 5.23 , condition $(*)$ was realized by finding $v \in$ $F\langle a\rangle$ with $\delta v \in F$. The following is an example where the other alternative in $(*)$ is realized; i.e., we find $v \in F\langle a\rangle$ such that $\log \delta v \in F$.
Example 5.24. Let $D=\left\{x: \log \delta\left(-\frac{x-1}{x-2}\right)=1\right\}$, which is defined over $F:=\mathbb{Q}^{\mathrm{alg}}$. For any $x \in D$, let $v=-\frac{x-1}{x-2}$. Since $\log \delta v=1$, and x is interdefinable with v, we have that $p:=\operatorname{tp}(x / F)$ is \mathcal{C}-internal. In addition, v witnesses that condition $(*)$ is satisfied. Hence Theorem 5.12 applies. In this case, $q=\log \delta^{-1}(p)$ is \mathcal{C}-internal.

Proof. Suppose u realizes q and $\log \delta u=a$. Let $v=-\frac{a-1}{a-2}$. We have

$$
\begin{aligned}
\log \delta\left(v^{2}+v\right) & =\frac{\delta\left(v^{2}+v\right)}{v^{2}+v} \\
& =\frac{2 v \delta v+\delta v}{v^{2}+v} \\
& =\frac{2 v^{2}+v}{v^{2}+v} \\
& =a
\end{aligned}
$$

so that $u=c\left(v^{2}+v\right)$ for some $c \in \mathcal{C}$. Note that $v^{2}+v \in F\langle a\rangle=F\langle\log \delta u\rangle$ and $\log \delta c=0 \in F$, so that this decomposition witnesses condition (3) of Conjecture 5.4. In particular, q is \mathcal{C}-internal.

5.4 A counterexample to (*)

We now give an example to which our theorems do not apply; namely, where $p \in S_{1}(F)$ is minimal, \mathcal{C}-internal, weakly orthogonal to \mathcal{C}, but $(*)$ fails. This serves also as a counterexample to the extension of Rosenlicht's theorem (see Theorem 6.12 of [18]; also see Corollary 5.13) to nonconstant parameters,
which had been claimed in a preprint of James Freitag but withdrawn upon my communicating to him the following counterexample.

We will make use of the following consequence of $(*)$.
Lemma 5.25. Suppose $p \in S_{1}(F)$ is the generic type of a \mathcal{C}-internal strongly minimal F-definable set D that is weakly orthogonal to \mathcal{C}. If p satisfies $(*)$, then the binding group $\operatorname{Aut}_{F}(D / \mathcal{C})$ is of Morley rank 1.

Proof. See Section 2.1 for a review of the concept of binding group. If p satisfies $(*)$, then fixing some a realizing p, there exists some $v \in F(a) \backslash F$ such that $\delta v \in F$ or $\log \delta v \in F$. Let $r:=\operatorname{tp}(v / F)$, and we have that r is \mathcal{C} internal and weakly orthogonal to \mathcal{C}. Moreover, the binding group $\operatorname{Aut}_{F}(r / \mathcal{C})$ is strongly minimal (either $\mathbb{G}_{a}(\mathcal{C})$ in the case $\delta v \in F$ or $\mathbb{G}_{m}(\mathcal{C})$ if $\log \delta v \in F$).

Since $v \in F(a)$, there is a natural surjective group homomorphism

$$
\pi: \operatorname{Aut}_{F}(p / \mathcal{C}) \rightarrow \operatorname{Aut}_{F}(r / \mathcal{C})
$$

given as follows: if $\sigma \in \operatorname{Aut}_{F}(p / \mathcal{C})$ extends to $\hat{\sigma} \in \operatorname{Aut}(\mathcal{U})$, then set $\pi(\sigma)=$ $\left.\hat{\sigma}\right|_{r(\mathcal{U})}$. That this is well-defined uses the fact that $v \in F(a):$ if $\tau_{1}, \tau_{2} \in \operatorname{Aut}(\mathcal{U})$ both extend σ, then $\tau_{1} \tau_{2}^{-1}(a)=a$ so that $\tau_{1} \tau_{2}^{-1}(v)=v$ since $v \in \operatorname{dcl}(F a)$, and hence $\tau_{1} \upharpoonright_{r(\mathcal{U})}=\tau_{2} \upharpoonright_{r(\mathcal{U})}$.

Note that π is definable. Indeed, since $v \in F(a)$, there is an F-definable function f such that $f(a)=v$. Fix $\sigma \in \operatorname{Aut}_{F}(p / \mathcal{C})$. If $v^{\prime} \models r$, then $f\left(a^{\prime}\right)=v^{\prime}$ for some $a^{\prime} \models p$, so $\hat{\sigma}\left(v^{\prime}\right)=f\left(\hat{\sigma}\left(a^{\prime}\right)\right)$ for any extension $\hat{\sigma} \in \operatorname{Aut}(\mathcal{U})$ of σ. Hence $\pi(\sigma)\left(v^{\prime}\right)=f\left(\sigma\left(a^{\prime}\right)\right)$. Since this is true for any a^{\prime} satisfying $f\left(a^{\prime}\right)=v^{\prime}$, and since the actions of $\operatorname{Aut}_{F}(p / \mathcal{C})$ on $p(\mathcal{U})$ and $\operatorname{Aut}_{F}(r / \mathcal{C})$ on $r(\mathcal{U})$ are both F-definable, this proves that the homomorphism π defined above is an F-definable homomorphism.

We now look for the kernel of π. By Lemma 2.10, an element of the binding group $\operatorname{Aut}_{F}(p(\mathcal{U}) / \mathcal{C})$ is determined by its action on a finite set of elements in $p(\mathcal{U})$, say $\left\{a_{1}, \ldots, a_{k}\right\}$. Let v_{1}, \ldots, v_{k} be such that $\operatorname{tp}\left(v_{i} a_{i} / F\right)=$ $\operatorname{tp}(v a / F)$. Suppose $\alpha \in \operatorname{ker}(\pi)$, which means any extension $\hat{\alpha}$ of α to \mathcal{U}
fixes $r(\mathcal{U})$ pointwise. As $v_{i} \in F\left(a_{i}\right) \backslash F, a_{i} \in \operatorname{acl}\left(F v_{i}\right)$, and since α fixes v_{i} for each $i, \alpha\left(a_{i}\right)$ can only be one of the finitely many conjugates of a_{i} over $F\left(v_{i}\right)$. This means that the action of α on a_{1}, \ldots, a_{k} has only finitely many possibilities, i.e., the kernel of π is finite, so the $\operatorname{Morley} \operatorname{rank}$ of $\operatorname{Aut}_{F}(p / \mathcal{C})$ is equal to that of $\operatorname{Aut}_{F}(r / \mathcal{C})$, which is 1 .

Here is a general context in which the binding group is not of Morley rank 1.

Lemma 5.26. Let

$$
\delta x=a x+b
$$

be an inhomogeneous differential equation with D as its set of solutions. Note that D is strongly minimal and \mathcal{C}-internal. Let W be defined by

$$
\delta x=a x
$$

the corresponding homogeneous differential equation. Let $F=\mathbb{Q}\langle a, b\rangle^{\text {alg }}$ be an algebraically closed δ-field of parameters, and p be the generic type of D over F. If $W(F)=\{0\}$ and $D(F)=\varnothing$, then p is weakly orthogonal to \mathcal{C} and $\operatorname{Aut}_{F}(p / \mathcal{C})$ is of Morley rank >1.

Proof. The following is clear: for any $v_{1}, v_{2} \in D, v_{1}-v_{2} \in W$; for any nonzero $w_{1}, w_{2} \in W, \frac{w_{1}}{w_{2}} \in \mathcal{C}$.

First note that W is \mathcal{C}-internal and as $W(F)=\{0\}$, Example 2.25 tells us that $\operatorname{Aut}_{F}(W / \mathcal{C})=\mathbb{G}_{m}(\mathcal{C})$ acting by multiplication on W. Also note that since $D(F)=\varnothing, p$ is an isolated type and is weakly orthogonal to \mathcal{C}.

Claim 1. There is a surjective definable group homomorphism

$$
\pi: \operatorname{Aut}_{F}(p / \mathcal{C}) \longrightarrow \mathbb{G}_{m}(\mathcal{C})=\operatorname{Aut}_{F}(W / \mathcal{C})
$$

given by

$$
\pi(\beta)=\hat{\beta} \upharpoonright_{W},
$$

where $\hat{\beta}$ is some extension of β to the universe. This does not depend on the choice of $\hat{\beta}$. Moreover, for any $v_{1} \neq v_{2} \in D$,

$$
\pi(\beta)=\frac{\beta\left(v_{1}\right)-\beta\left(v_{2}\right)}{v_{1}-v_{2}}
$$

Proof of Claim 1. We first prove that π is well-defined, i.e., it does not depend on the choice of $\hat{\beta}$. Suppose β_{1}, β_{2} are two extensions of β to the universe. We fix $v_{1} \in D$, and note that for any $w \in W, v_{1}+w \in D$. Note that
$\beta_{1}(w)=\beta_{1}\left(\left(v_{1}+w\right)-v_{1}\right)=\beta\left(v_{1}+w\right)-\beta\left(v_{1}\right)=\beta_{2}\left(\left(v_{1}+w\right)-v_{1}\right)=\beta_{2}(w)$,
for any $w \in W$, so $\beta_{1} \upharpoonright_{W}=\beta_{2} \upharpoonright_{W}$, which means that π is well-defined.
For any $\gamma \in \operatorname{Aut}_{F}(W / \mathcal{C}), \pi\left(\left.\hat{\gamma}\right|_{D}\right)=\gamma$, where $\hat{\gamma}$ is any extension of γ to $\operatorname{Aut}_{F}(\mathcal{U})$. So π is surjective.

Let $\beta_{1}, \beta_{2} \in \operatorname{Aut}_{F}(p / \mathcal{C})$, and let $\hat{\beta}_{1}, \hat{\beta}_{2}$ be any extensions of β_{1}, β_{2} to the universe, respectively. Note that $\hat{\beta}_{1} \hat{\beta}_{2}^{-1}$ is an extension of $\beta_{1} \beta_{2}^{-1}$ to the universe. Then for any $w \in W$,

$$
\pi\left(\beta_{1} \beta_{2}^{-1}\right)(w)=\left(\hat{\beta}_{1} \hat{\beta}_{2}^{-1}\right)(w)=\hat{\beta}_{1}\left(\hat{\beta}_{2}^{-1}(w)\right)=\pi\left(\beta_{1}\right) \pi\left(\beta_{2}^{-1}\right)(w)
$$

so π is a group homomorphism.
Finally, for any $\beta \in \operatorname{Aut}_{F}(p / \mathcal{C})$, let $\hat{\beta}$ be any extension of β to the universe. Note that

$$
\pi(\beta)\left(v_{1}-v_{2}\right)=\hat{\beta}\left(v_{1}-v_{2}\right)=\beta\left(v_{1}\right)-\beta\left(v_{2}\right)
$$

so $\pi(\beta)=\frac{\beta\left(v_{1}\right)-\beta\left(v_{2}\right)}{v_{1}-v_{2}}$.
This proves Claim 1.
It remains to prove:
Claim 2. If $\operatorname{Aut}_{F}(p / \mathcal{C})$ is of Morley rank 1 , then $D(F) \neq \varnothing$.

Proof of Claim 2. Let H be the connected component of $\operatorname{Aut}_{F}(p / \mathcal{C})$. Then H is strongly minimal and F-definable. Since $\pi\left(\operatorname{Aut}_{F}(p / \mathcal{C})\right)=\mathbb{G}_{m}(\mathcal{C})$ and $\mathbb{G}_{m}(\mathcal{C})$ is connected, $\pi(H)=\mathbb{G}_{m}(\mathcal{C})$. Note that for all $\beta \in H$, if $\pi(\beta) \neq 1$, then β fixes a unique $v_{\beta} \in D$. Indeed, fix $v_{1} \in D$. Since $\beta(v)-\beta\left(v_{1}\right)=\pi(\beta)\left(v-v_{1}\right)$, we have that $\beta(v)=v$ has the unique solution $v:=\frac{\beta\left(v_{1}\right)-\pi(\beta) v_{1}}{1-\pi(\beta)}$. Since $\pi \upharpoonright_{H}$ is surjective, there are infinitely many $\beta \in H$ that satisfy $\pi(\beta) \neq 1$, so there are infinitely many $\beta \in H$ that fixes a unique v_{β}. Moreover, since H is strongly minimal, all but finitely many $\beta \in H_{0}$ fix a unique v_{β}.

Fix $\alpha \in H$ such that $\pi(\alpha)=2$. Then, as $\alpha^{n}\left(v_{\alpha}\right)=v_{\alpha}$, we have $v_{\alpha^{n}}=v_{\alpha}$ for all $n>0$. Note that the α^{n} 's are distinct since $\pi\left(\alpha^{n}\right)=2^{n}$. Hence $\left\{\beta \in H: v_{\beta}=v_{\alpha}\right\}$ is infinite. By strong minimality, there is an $N>0$ such that

$$
\mid\left\{\beta \in H: \pi(\beta)=1 \text { or } v_{\beta} \neq v_{\alpha}\right\} \mid \leq N .
$$

Let $\varphi(v)$ be the formula

$$
(\delta v=a v+b) \wedge \exists^{\geq N+1} \beta(\beta \in H \wedge \beta(v)=v)
$$

which is over F. Then $\varphi(\mathcal{U})=\left\{v_{\alpha}\right\}$. So $v_{\alpha} \in F$. Therefore $D(F) \neq \varnothing$.
This proves Claim 2, and hence the lemma.
We can now describe our counterexample to ($*$). Let t be such that $\delta t=1$. We claim that the generic type of $\delta x=\left(1-\frac{\sqrt{2}}{t}\right) x+1$ over $F:=\mathbb{Q}(t)^{\text {alg }}$ fails $(*)$. Note that if we set $a:=1-\frac{\sqrt{2}}{t}$ and $b:=1$, then this equation becomes $\delta x=a x+b$ and $F=\mathbb{Q}\langle a, b\rangle^{\text {alg }}$. Hence, by Lemmas 5.25 and 5.26, it suffices to verify that $W(F)=\{0\}$ and $D(F)=\varnothing$, where D is defined by $\delta x=a x+b$ and W is defined by $\delta x=a x$.

We first prove that $W(F)=\{0\}$. Suppose $\alpha \in F$ is a non-zero solution to $\delta x=a x$. Let $\alpha_{1}=\alpha, \ldots, \alpha_{k}$ be conjugates of α over $\mathbb{Q}^{\text {alg }}(t)$, and $\beta=\prod_{i} \alpha_{i}$.

Then $\beta \in \mathbb{Q}^{\text {alg }}(t)$ and $\log \delta \beta=\sum_{i} \log \delta \alpha_{i}=k a$ (we are using $\alpha \neq 0$ here, so that $\beta \neq 0$). Suppose $\beta=e_{0} \prod_{j}\left(t-e_{j}\right)^{k_{j}}$ where $e_{j} \in \mathbb{Q}^{\text {alg }}$ and $k_{j} \in \mathbb{Z}$. Then $\log \delta \beta=\sum_{j} \frac{k_{j}}{t-e_{j}}$. So $\sum_{j} \frac{k_{j}}{t-e_{j}}=k a=k\left(1-\frac{\sqrt{2}}{t}\right)$. That is, t is a solution to the $\mathbb{Q}^{\text {alg }}$-definable equation $\sum_{j} \frac{k_{j}}{y-e_{j}}=k-\frac{k \sqrt{2}}{y}$. Note that $k \sqrt{2}$ is the only parameter that is not rational in the equation, so the equation is nontrivial, but t is transcendental over $\mathbb{Q}^{\text {alg }}$ as $\delta t=1$. This contradiction proves $W(F)=\{0\}$.

Finally, we prove that $D(F)=\varnothing$. Suppose $\gamma \in F$ is a solution to $\delta x=a x+b$. Let $\gamma_{1}=\gamma, \ldots, \gamma_{\ell}$ be conjugates of γ over $\mathbb{Q}^{\text {alg }}(t)$, and $\epsilon=\sum_{i} \gamma_{i}$. Then $\delta \epsilon=a \epsilon+\ell b$, and $\epsilon \in \mathbb{Q}^{\text {alg }}(t)$. Clearly $\epsilon \neq 0$. Suppose $\epsilon=s_{0} \prod_{j}\left(t-s_{j}\right)^{\ell_{j}}$ where $s_{j} \in \mathbb{Q}^{\text {alg }}$ and $\ell_{j} \in \mathbb{Z}$. Then $\log \delta \epsilon=\sum_{j} \frac{\ell_{j}}{t-s_{j}}$. Hence $\sum_{j} \frac{\ell_{j}}{t-s_{j}}=$ $a+\frac{\ell b}{\epsilon}=1-\frac{\sqrt{2}}{t}+\frac{\ell}{\epsilon}$. That is, t satisfies

$$
\sum_{j} \frac{\ell_{j}}{y-s_{j}}=1-\frac{\sqrt{2}}{y}+\ell s_{0}^{-1} \prod_{j}\left(y-s_{j}\right)^{-\ell_{j}}
$$

Note that $\sqrt{2}$ is the only parameter in the equation which is not rational, so the equation is nontrivial, which contradicts the fact that t is transcendental over $\mathbb{Q}^{\text {alg }}$.

5.5 A binding group analysis of condition (*)

We wish to analyse the assumption $(*)$ further so as to make precise what remains to be done to prove the conjecture.

We are given an algebraically closed δ-field F and a minimal type $p \in$
$S_{1}(F)$ that is almost \mathcal{C}-internal. By Lemma 2.7, p is algebraic over another minimal type over F that is \mathcal{C}-internal. For the sake of simplifying some of the technical and notational complications, let us assume that p itself is \mathcal{C}-internal. In this case, we can consider the (F-definable) binding group $G:=\operatorname{Aut}_{F}(p / \mathcal{C})$ together with its F-definable action on the type-definable set $S:=p(\mathcal{U})$. Moreover, by Remark 4.9 in Chapter 7 of [27], G is definably isomorphic to a group living in the constants. By the structure of definable group in ACF (see Theorem 5.7 of [17]), we have that G is definably isomorphic to $H(\mathcal{C})$ for some algebraic group H over \mathcal{C}.

Note that when p is not weakly orthogonal to \mathcal{C}, G is the trivial group. In this case, we do not require condition $(*)$ as the conjecture follows from Theorem 5.6. We assume therefore that p is weakly orthogonal to \mathcal{C} and hence G acts transitively on S (by Lemma 2.15). In particular, S is a definable set, and hence strongly minimal. So (G, S) is a definable homogeneous space.

Fact 5.27 (See Fact 6.25 of Chapter 1 of [27]). Working in a model of any stable theory, suppose (G, S) is an F-definable homogeneous space, where S is strongly minimal. Then one of the following holds:

1. G is strongly minimal and the action of G on S is regular;
2. The U-rank of the generic type of G over F is 2, and there is an F definable field structure $(K,+, \cdot)$ on S such that G is precisely the group of transformations $\{x \mapsto a x+b: a, b \in K\}$; or
3. The U-rank of the generic type of G over F is $3, S$ has the structure of $P^{1}(K)$ for some F-definable field $(K,+, \cdot)$, and G is the group $\mathrm{PSL}_{2}(K)$ of linear fractional transformations $\left\{x \mapsto \frac{a x+b}{c x+d}: a, b, c, d \in K\right\}$.
By Lemma 5.25, if p satisfies $(*)$ then G is of Morley rank 1 , so that we are in case (1). In fact, the proof of Lemma 5.25, together with Fact 5.27, implies that G is isomorphic to either $\mathbb{G}_{m}(\mathcal{C})$ or $\mathbb{G}_{a}(\mathcal{C})$. This actually characterizes condition ($*$):

Proposition 5.28. Suppose F is an algebraically closed δ-field, and $p \in$ $S_{1}(F)$ is \mathcal{C}-internal and weakly orthogonal to \mathcal{C}. Then p satisfies $(*)$ if and only if $G=\operatorname{Aut}_{F}(p / \mathcal{C})$ is F-definably isomorphic to either $\mathbb{G}_{m}(\mathcal{C})$ or $\mathbb{G}_{a}(\mathcal{C})$.

Proof. In the proof of Lemma 5.25, assuming (*), we exhibited a surjective F-definable group homomorphism $\pi: G \rightarrow \mathbb{G}_{0}(\mathcal{C})$ with finite kernel, where \mathbb{G}_{0} is either \mathbb{G}_{m} or \mathbb{G}_{a}. Since G is definably isomorphic to $H(\mathcal{C})$ for some algebraic group H over \mathcal{C}, we get a (field)-definable surjective homomorphism $\beta: H(\mathcal{C}) \rightarrow \mathbb{G}_{0}(\mathcal{C})$ with finite kernel. Note that as a consequence of Fact 5.27, G, and therefore $H(\mathcal{C})$, is connected. This forces β to be an isomorphism if $\mathbb{G}_{0}=\mathbb{G}_{a}$, and the raising to the n-th power map on \mathbb{G}_{m} when $\mathbb{G}_{0}=\mathbb{G}_{m}$. In the former case we get that π is an F-definable isomorphism between G and $\mathbb{G}_{a}(\mathcal{C})$. In the latter case we have the commuting diagram of definable group homomorphisms.

It remains to show that α is F-definable. But if α^{\prime} is an F-conjugate of α, then

$$
\begin{aligned}
\alpha^{\prime} / \alpha: G & \rightarrow \operatorname{ker}(\beta) \\
x & \mapsto \frac{\alpha^{\prime}(x)}{\alpha(x)}
\end{aligned}
$$

is a definable group homomorphism by the commutative diagram and the F-definability of β and π. By connectedness of G and finiteness of $\operatorname{ker}(\beta)$, we must have $\alpha=\alpha^{\prime}$. That is, α is F-definable.

For the converse let us fix $a \models p$. We claim first of all that the differential field $F\langle a\rangle$ admits infinitely many automorphisms fixing F pointwise. First, note that as $S:=p(\mathcal{U})$ is acted upon transitively and F-definably by a definable group in the constants, and since the induced structure on
\mathcal{C} eliminates imaginaries, we have an $F a$-definable embedding $f: S \rightarrow \mathcal{C}^{n}$ for some n. In particular, $S \cap \operatorname{acl}(F a)$ is infinite - this is because in \mathcal{C}^{n} every infinite definable set has infinitely many points in an algebraically closed parameter set. But if $b \in S \cap \operatorname{acl}(F a)$ then each coordinate of $f(b)$ is in $\operatorname{acl}(F a) \cap \mathcal{C}=(F\langle a\rangle \cap \mathcal{C})^{\text {alg }}=(F \cap \mathcal{C})^{\text {alg }}$ by Lemma 2.22. Note that $(F \cap \mathcal{C})^{\text {alg }}=F \cap \mathcal{C}$ as F is algebraically closed. So each coordinate of $f(b)$ is in F, and hence $b \in F\langle a\rangle$. That is, $S \cap F\langle a\rangle$ is infinite. Now, every element $b \in S \cap F\langle a\rangle$ induces an automorphism $\alpha_{b} \in \operatorname{Aut}_{F}(\mathcal{U})$ such that $\alpha_{b}(a)=b$. Since $b \in F\langle a\rangle=F(a, \delta a) \subseteq F(a)^{\text {alg }}$, we get $a \in F(b)^{\text {alg }}$, so $a \in \operatorname{acl}(F b)$, and hence (by symmetry, and following the same proof as above) $a \in F\langle b\rangle$. Therefore $F\langle a\rangle=F\langle b\rangle$. The restrictions $\alpha_{b} \upharpoonright_{F\langle a\rangle}$ thus give us infinitely many differential automorphisms of $F\langle a\rangle$ fixing F.

Now, because $F\langle a\rangle$ has infinitely many differential automorphisms fixing F pointwise, a theorem of Matsuda (see the main theorem of [21]) tells us that there exist v such that $F\langle v\rangle=F\langle a\rangle$ and one of the following folds:
(i) $\delta v \in F$,
(ii) $\log \delta v \in F$, or
(iii) $(\delta v)^{2}=c v\left(v^{2}-1\right)(v-e)$, where $c \in F, e \in \mathcal{C}_{F}, c \neq 0$, and $e \neq-1,0,1$.

If case (i) or (ii) holds then p satisfies (*). It remains, therefore, to rule out case (iii). Indeed, if case (iii) holds, then $r=\frac{1}{v}-\frac{1}{3 e}$ satisfies $(\delta r)^{2}=\frac{c e}{4}\left(4 r^{3}-g_{1} r-g_{2}\right)$ for some $g_{1}, g_{2} \in \mathcal{C}_{F}$, and $4 r^{3}-g_{1} r-g_{2}$ has 3 distinct roots in \mathcal{C}_{F}. We know from Section 6 of [13], where equations of this form are studied, that the the group of differential automorphisms of $F\langle r\rangle$ that fixes F is isomorphic to the \mathcal{C}_{F}-points of an elliptic curve over \mathcal{C}_{F}, and in particular, if d is a root of $4 r^{3}-g_{1} r-g_{2}$, then there exists a differential automorphism α_{d} of $F\langle r\rangle$ of order 2 that fixes F given by

$$
\alpha_{d}(r)=-d-r+\frac{4 r^{3}-g_{1} r-g_{2}}{4(r-d)^{2}}
$$

We extend α_{d} to $\hat{\alpha}_{d} \in \operatorname{Aut}_{F}(\mathcal{U} / \mathcal{C})$. Since $S \subseteq \operatorname{dcl}(F \mathcal{C} a)$, and a and r are interdefinable over $F, \hat{\alpha}_{d} \upharpoonright_{S} \in \operatorname{Aut}_{F}(p / \mathcal{C})$ is uniquely determined by α_{d} (indeed, by its action on r) and is of order 2 . Since $4 r^{3}-g_{1} r-g_{2}$ has three distinct roots, there are three different elements in $\operatorname{Aut}_{F}(p / \mathcal{C})$ of order 2. This means that $\operatorname{Aut}_{F}(p / \mathcal{C})$ is not isomorphic to either $\mathbb{G}_{m}(\mathcal{C})$ or $\mathbb{G}_{a}(\mathcal{C})$.

The counterexample to $(*)$ produced in Section 5.4 yields a binding group of U-rank 2. Anand Pillay has suggested to us ways of producing examples in DCF_{0} where the binding group is isomorphic to $\mathrm{GL}_{2}(\mathcal{C}) / \mathbb{G}_{m}(\mathcal{C})$, which is of U-rank 3.

So, in the wake of Fact 5.27, to complete the proof of Conjecture 5.4, it remains to consider the following cases: G is definably isomorphic to $H(\mathcal{C})$ where H is an elliptic curve over the constants, or G is of U-rank 2 or 3. This is something I am actively pursuing but at the time of the writing of this thesis I have not yet obtained a complete proof.

5.6 Pullbacks under the derivative map

Instead of considering $\log \delta^{-1}(D)$, it is natural to ask when $\delta^{-1}(D)$ is almost \mathcal{C}-internal for $D \subseteq \mathcal{U}$ strongly minimal and almost \mathcal{C}-internal. Note that as in the $\log \delta^{-1}(D)$ case, $\delta^{-1}(D)$ is \mathcal{C}-analysable in at most 2 steps. As the following example shows, however, $\delta^{-1}(D)$ can be \mathcal{C}-internal without decomposing into a product of \mathcal{C}-internal sets. That is, the analogue of Conjecture 5.4 fails.

Example 5.29. Let s be a differentially transcendental element over $\mathbb{Q}^{\text {alg }}$. Let $F=\mathbb{Q}(s)^{\text {alg }}$ and D be the solution set of $\delta x=s$. Then $E:=\delta^{-1}(D)$ is \mathcal{C}-internal as it is defined by the inhomogeneous linear differential equation $\delta^{2} x=s$. However, there do not exist almost \mathcal{C}-internal minimal types q_{1} and q_{2} over F, and an F-definable finite-to-one surjective map from the generic type of E to $q_{1} \otimes q_{2}$.

Proof. Let p be the generic type of D over F and q the generic type of E over F.

We first note that q is isolated by the formula $\delta^{2} x=s$. That is, $q(\mathcal{U})=E$. Note that if $a \in D$, then a is differentially transcendental over $\mathbb{Q}^{\text {alg }}$ since $\delta a=s$ is. So $a \notin F=\mathbb{Q}\langle\delta a\rangle^{\text {alg }}$ and hence $a \models p$ since D is strongly minimal. This means that p is isolated by the formula $\delta x=s$. Now let u be such that $\delta^{2} u=s$. We have just seen that δu is generic in D over F. The same argument shows that u is generic in $\delta^{-1}(\delta u)$ over $F\langle\delta u\rangle$, so u is generic in E over F and $u \models q$. Thus q is isolated by the formula $\delta^{2} x=s$.

Next, we compute the binding group $G=\operatorname{Aut}_{F}(E / \mathcal{C})$. Fix $u_{0} \in E$ and t such that $\delta t=1$ Then every $u \in E$ is of the form $u=d_{1}+d_{2} t+u_{0}$ for some $d_{1}, d_{2} \in \mathcal{C}$, and vice versa. We can therefore identify E, definably over $F\left\langle u_{0}, t\right\rangle$, with the set of column vectors $\left\{\left[\begin{array}{c}d_{1} \\ d_{2} \\ 1\end{array}\right]: d_{1}, d_{2} \in \mathcal{C}\right\}$. Now, let $U \leq \mathrm{GL}_{3}(\mathcal{C})$ be the unipotent subgroup of upper triangular matrices of the form $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$. It acts on E in the natural way:

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
d_{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
d_{1}+a d_{2}+b \\
d_{2}+c \\
1
\end{array}\right]
$$

We will show that this is isomorphic to the action of G on E.
Let $g \in G$. Since u_{0} and $u_{0}+t$ are both in E, so is $g\left(u_{0}\right)$ and $g\left(u_{0}+t\right)$. Write

$$
\begin{gathered}
g\left(u_{0}\right)=\alpha+\beta t+u_{0} \\
g\left(u_{0}+t\right)=\alpha^{\prime}+\beta^{\prime} t+u_{0}
\end{gathered}
$$

for some $\alpha, \alpha \beta, \beta^{\prime} \in \mathcal{C}$. Letting $\bar{g} \in \operatorname{Aut}_{F}(\mathcal{U})$ be any extension of g, we have

$$
\bar{g}(t)=g\left(u_{0}+t\right)-g\left(u_{0}\right)=\alpha^{\prime}-\alpha+\left(\beta^{\prime}-\beta\right) t
$$

On the other hand, $\delta \bar{g}(t)=\bar{g}(\delta t)=\bar{g}(1)=1$, so $\beta^{\prime}-\beta=1$, and $\bar{g}(t)=$ $\alpha^{\prime}-\alpha+t$. Hence, for an arbitrary $u=d_{1}+d_{2} t+u_{0} \in E$,

$$
\begin{aligned}
g(u) & =d_{1}+d_{2} \bar{g}(t)+g\left(u_{0}\right) \\
& =d_{1}+d_{2}\left(\alpha^{\prime}-\alpha\right)+d_{2} t+\alpha+\beta t+u_{0} \\
& =\left(d_{1}+\left(\alpha^{\prime}-\alpha\right) d_{2}+\alpha\right)+\left(d_{2}+\beta\right) t+u_{0}
\end{aligned}
$$

That is, g acts on E exactly as $\left[\begin{array}{ccc}1 & \alpha^{\prime}-\alpha & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right] \in U$. Since g is determined by its action on E, this gives us an embedding of G in U.

To see that this embedding is surjective, we need only show that for any $(a, b, c) \in \mathcal{C}^{3}$, the following map

$$
\begin{aligned}
g: F \cup \mathcal{C} \cup E & \rightarrow F \cup \mathcal{C} \cup E \\
u=d_{1}+d_{2} t+u_{0} & \mapsto\left(d_{1}+a d_{2}+b\right)+\left(d_{2}+c\right) t+u_{0} \\
v \in F \cup \mathcal{C} & \mapsto v
\end{aligned}
$$

is a partial elementary map, as the image of g under the embedding would be $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$. Indeed, we only need to show that

$$
\begin{aligned}
h: F \cup \mathcal{C} \cup\left\{u_{0}, t\right\} & \rightarrow F \cup \mathcal{C} \cup E \\
u_{0} & \mapsto b+c t+u_{0} \\
t & \mapsto a+t \\
v \in F \cup \mathcal{C} & \mapsto v
\end{aligned}
$$

is a partial elementary map, as it is clear that h has a unique partial elementary map extension to $\operatorname{Dom}(h) \cup E$, which we would call \hat{h}, and $\hat{h} \upharpoonright_{E}=g \upharpoonright_{E}$. In order to show this, we need to prove that $\operatorname{tp}\left(u_{0}, t / F \mathcal{C}\right)=\operatorname{tp}\left(h\left(u_{0}\right), h(t) / F \mathcal{C}\right)$. Since $u_{0}, h\left(u_{0}\right) \in E, u_{0}$ and $h\left(u_{0}\right)$ both realizes $q \in S_{1}(F)$, and since q is weakly orthogonal to \mathcal{C}, there is a unique extension of q to $F \mathcal{C}$, to which u_{0} and $h\left(u_{0}\right)$ are both realizations. Therefore $\operatorname{tp}\left(u_{0} / F \mathcal{C}\right)=\operatorname{tp}\left(h\left(u_{0}\right) / F \mathcal{C}\right)$. To show that $\operatorname{tp}\left(u_{0}, t / F \mathcal{C}\right)=\operatorname{tp}\left(h\left(u_{0}\right), h(t) / F \mathcal{C}\right)$, it suffices to show that $\operatorname{tp}\left(t / u_{0} F \mathcal{C}\right)$ is isolated by the formula $\delta t=1$. As this formula is strongly minimal, it suffices to show that there are no solutions in $\operatorname{acl}\left(u_{0} F \mathcal{C}\right)$. Suppose, towards a contradiction, that there exists some $t_{0} \in \operatorname{acl}\left(u_{0} F \mathcal{C}\right)$ such that $\delta t_{0}=1$. Note that $\operatorname{acl}\left(u_{0} F \mathcal{C}\right)=\mathcal{C}\left\langle u_{0}\right\rangle^{\text {alg }}$ as $F=\mathbb{Q}\langle s\rangle^{\text {alg }} \subseteq \mathcal{C}\left\langle u_{0}\right\rangle^{\text {alg }}$. Let $t_{0}=v_{1}, v_{2}, \ldots, v_{m}$ be conjugates of t_{0} over $\mathcal{C}\left\langle u_{0}\right\rangle$. Then $v:=\sum_{i} v_{i} \in \mathcal{C}\left\langle u_{0}\right\rangle$ satisfies $\delta v=m \in \mathbb{Z}^{+}$. Suppose $v=\eta\left(u_{0}\right)$ where $\eta \in \mathcal{C}\langle x\rangle$. Then u_{0} satisfies $\delta(\eta(x))=m$. Moreover, since $\eta \in \mathcal{C}\langle x\rangle, \eta(0) \in \mathcal{C}$, so $\delta(\eta(0)) \neq m$. Hence $\delta(\eta(x))=m$ is a nontrivial differential equation. This implies that u_{0} is differentially algebraic over \mathcal{C}, which is differentially algebraic over $\mathbb{Q}^{\text {alg }}$. By the Corollary in Section II. 8 of [14], u_{0} is differentially algebraic over $\mathbb{Q}^{\text {alg. }}$; however, we already know that u_{0} is differentially transcendental over $\mathbb{Q}^{\text {alg }}$, a contradiction. Therefore, the embedding of G in U is surjective. We now identify G with U.

We have now computed the binding group of E (equivalently, the binding group of q) to be $U=U(3, \mathcal{C})$. If the analogue of Conjecture 5.4 holds for E, then there would be an F-definable finite-to-one surjective function $f: E \rightarrow E_{1} \times E_{2}$ where E_{1}, E_{2} are strongly minimal \mathcal{C}-internal definable sets. This induces surjective F-definable group homomorphisms:

$$
\begin{aligned}
& \pi_{1}: U=\operatorname{Aut}_{F}(E / \mathcal{C}) \rightarrow \operatorname{Aut}_{F}\left(E_{1} / \mathcal{C}\right) \\
& \pi_{2}: U=\operatorname{Aut}_{F}(E / \mathcal{C}) \rightarrow \operatorname{Aut}_{F}\left(E_{2} / \mathcal{C}\right)
\end{aligned}
$$

Let $N_{1}=\operatorname{ker}\left(\pi_{1}\right)$ and $N_{2}=\operatorname{ker}\left(\pi_{2}\right)$. If N_{i} is trivial, then $\operatorname{Aut}_{F}\left(E_{i} / \mathcal{C}\right) \cong U$.

But by Fact 5.27, since the rank of U is 3 , this would force $U \cong \operatorname{PSL}_{2}(\mathcal{C})$, which is not the case as there are non-identity torsion elements in $\mathrm{PSL}_{2}(\mathcal{C})$, but U is torsion-free. Hence N_{1} and N_{2} are nontrivial normal algebraic subgroups of U. Since U is nilpotent, any nontrivial normal subgroup intersect $Z(U)$ nontrivially (see Proposition 5.2.1 of [30]). In addition, as $Z(U)=\left\{\left[\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]: b \in \mathcal{C}\right\}$ is strongly minimal and has no finite subgroups, we get that $Z(U) \subseteq N_{i}$ for each $i=1,2$. Let $g \in N_{1} \cap N_{2}$ be such that $g \neq \mathrm{id}$. Then g fixes $E_{1} \times E_{2}$ pointwise and hence preserves the fibration induced by $f: E \rightarrow E_{1} \times E_{2}$. As the fibres of f are finite and uniformly bounded, there exists $\ell>0$ such that $g^{\ell}=\mathrm{id}$. This is a contradiction as U is torsion-free. Hence no such $f: E \rightarrow E_{1} \times E_{2}$ exists.

5.7 Appendix

This section contains a general algebraic lemma that was used in the proof of Proposition 5.16.

Lemma 5.30. Let F_{1}, F_{2} be two independent field extensions of an algebraically closed field F. Let $f_{1}\left(\bar{x}, \bar{y}_{1}\right), \ldots, f_{k}\left(\bar{x}, \bar{y}_{k}\right)$ be rational functions with parameters in F. Suppose $\prod_{i} f_{i}\left(\bar{\alpha}, \bar{\beta}_{i}\right) \in F_{2} \backslash\{0\}$ for $\bar{\alpha} \in F_{1}$ and $\bar{\beta}_{i} \in F_{2}$. Then there exist a positive integer n and rational functions $g_{1}\left(\bar{y}_{1}\right), \ldots, g_{k}\left(\bar{y}_{k}\right)$ over F such that $\prod_{i} f_{i}\left(\bar{\alpha}, \bar{\beta}_{i}\right)^{n} g_{i}\left(\bar{\beta}_{i}\right)=1$.

Proof. First we drop the assumption that F is algebraically closed. We only assume the following (a consequence of F being algebraically closed and F_{1}, F_{2} being independent over $\left.F\right)$: if L / K is a finite field extension where $F \subseteq K \subseteq L \subseteq F_{1}$, then $[L: K]=\left[L F_{2}: K F_{2}\right]$.

If \bar{x} is a 0 -ary tuple (i.e., $f_{i} \in F$ does not depend on x), then let $n=1$ and $g_{i}\left(y_{i}\right)=f_{i}\left(y_{i}\right)^{-1}$ and we are done.

Suppose \bar{x} is a singleton.
If α is algebraic over F, assume $p(x)=x^{\ell}+a_{\ell-1} x^{\ell-1}+\cdots+a_{0}$ is the minimal polynomial of α over F (and over F_{2}). Then $f_{i}\left(\alpha, \bar{\beta}_{i}\right)$ is of the form $\sum_{k=0}^{\ell-1} h_{i k}\left(\bar{\beta}_{i}\right) \alpha^{k}$ where $h_{i k}$ are rational functions over F. Let d_{i} be the determinant of the linear transformation on $F_{2}(\alpha)$ over F_{2} defined by $x \mapsto$ $f_{i}\left(\alpha, \bar{\beta}_{i}\right) x$. If we use the basis $\left\{1, \alpha, \ldots, \alpha^{\ell-1}\right\}$, it is easy to see that $d_{i} \in$ $F\left(\bar{\beta}_{i}\right)$. Now let $m=\ell$ and $h_{i}\left(y_{i}\right)$ be such that $h_{i}\left(\bar{\beta}_{i}\right)=d_{i}^{-1}$, and we have that the determinant of the linear transformation $x \mapsto f_{i}\left(\alpha, \beta_{i}\right)^{m} h_{i}\left(\bar{\beta}_{i}\right) x$ is $d_{i}^{m} h_{i}\left(\bar{\beta}_{i}\right)^{m}=d_{i}^{m} d_{i}^{-m}=1$. Let $c:=\prod_{i} f_{i}\left(\alpha, \bar{\beta}_{i}\right)^{m} h_{i}\left(\bar{\beta}_{i}\right)$. Note that $c \in F_{2}$, and since we know the determinant of $x \mapsto c x$ is 1 , we get that $c^{\ell}=1$. Now let $n=\ell^{2}$ and $g_{i}(\bar{\beta})=h_{i}(\bar{\beta})^{\ell}$, and we get that $\prod_{i} f_{i}\left(\alpha, \bar{\beta}_{i}\right)^{n} g_{i}\left(\bar{\beta}_{i}\right)=c^{\ell}=1$.

If α is transcendental over F (therefore over F_{2}), then

$$
f_{i}\left(\alpha, \bar{\beta}_{i}\right)=\frac{\sum_{k=0}^{\ell_{i}} s_{i k}\left(\bar{\beta}_{i}\right) \alpha^{k}}{\sum_{k=0}^{m_{i}} t_{i k}\left(\bar{\beta}_{i}\right) \alpha^{k}}
$$

where $s_{i k}$ and $t_{t k}$ are rational functions over F. So if we let $n=1$ and $g_{i}\left(\bar{y}_{i}\right)=\frac{t_{i m_{i}}\left(\bar{y}_{i}\right)}{s_{i \ell_{i}}\left(\bar{y}_{i}\right)}$, then $\prod_{i} f_{i}\left(\bar{\alpha}, \bar{\beta}_{i}\right)^{n} g_{i}\left(\bar{\beta}_{i}\right)$ is of the form

$$
\frac{\alpha^{\ell}+s_{\ell-1} \alpha^{\ell-1}+\cdots+s_{0}}{\alpha^{m}+t_{m-1} \alpha^{m-1}+\cdots+t_{0}},
$$

where $s_{i}, t_{i} \in F_{2}$ and ℓ, m are nonnegative integers. Since $\prod_{i} f_{i}\left(\bar{\alpha}, \bar{\beta}_{i}\right)^{n} g_{i}\left(\bar{\beta}_{i}\right)$ is in F_{2}, we get that in fact $\prod_{i} f_{i}\left(\bar{\alpha}, \bar{\beta}_{i}\right)^{n} g_{i}\left(\bar{\beta}_{i}\right)=1$

Now, suppose the result holds for $(k-1)$-ary tuples. Let $\bar{\alpha}$ be a k-ary tuple. Apply the above result to $F(\bar{\alpha}), F_{2}\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)$, two field extensions of $F\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)$ that satisfy our assumption, and we get that there exists n and $g_{i}\left(x_{1}, \ldots, x_{k-1}, \bar{y}_{i}\right)$ such that $\prod_{i} f\left(\bar{\alpha}, \bar{\beta}_{1}\right)^{n} g_{i}\left(\alpha_{1}, \ldots, \alpha_{k-1}, \bar{\beta}_{i}\right)=1$. Also,
since $\prod_{i} g_{i}\left(\alpha_{1}, \ldots, \alpha_{k-1}, \bar{y}_{i}\right)=\prod_{i} f\left(\bar{\alpha}, \bar{\beta}_{1}\right)^{-n} \in F_{2}$, we apply the result again to rational functions $g_{i}\left(x_{1}, \ldots, x_{k-1}, \bar{y}_{i}\right)$ over F, and $F\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)$ and F_{2} which are field extensions of F that satisfy the assumption, and get that there exists m and $h_{i}\left(\bar{y}_{i}\right)$ such that $\prod_{i} g_{i}\left(\alpha_{1}, \ldots, \alpha_{k-1}, \bar{y}_{i}\right)^{m} h_{i}\left(\bar{\beta}_{i}\right)=1$. Thus $\prod_{i} f\left(\bar{\alpha}, \bar{\beta}_{i}\right)^{m n} h_{i}\left(\bar{\beta}_{i}\right)^{-1}=1$ and we get that the conclusion is true for k-ary tuples.

6 Two commissioned examples

In this final chapter we work out, using techniques similar to those appearing elsewhere in this thesis, two specific examples of \mathcal{C}-internality and \mathcal{C} analysability in DCF_{0}. The results here were asked for and have been cited already by other authors in published work.

6.1 A twisted D-group

The first example plays a crucial role in the study of so-called "twisted Dgroups", see $\S 3$ of [3]. In particular, the following is cited in Example 3.4 of that paper.

Fix $c \in \mathcal{C}$ and let $F:=\mathbb{Q}(c)^{\text {alg }}$. Consider the following system of differential equations:

$$
\left\{\begin{array}{l}
\delta x=x y \tag{6.1}\\
\delta y=\frac{y^{2}}{2}+c\left(1-x^{2}\right)
\end{array}\right.
$$

Let (a, b) be a generic solution over F. We show that $\operatorname{tp}(a, b / F)$ is \mathcal{C}-internal. If $c=0$, then

$$
\begin{aligned}
\delta^{3}\left(\frac{1}{a}\right) & =\delta^{2}\left(-\frac{\delta a}{a^{2}}\right) \\
& =\delta^{2}\left(-\frac{a b}{a^{2}}\right) \\
& =\delta^{2}\left(-\frac{b}{a}\right) \\
& =\delta\left(-\frac{a \delta b-b \delta a}{a^{2}}\right) \\
& =\delta\left(-\frac{\frac{1}{2} a b^{2}-a b^{2}}{a^{2}}\right) \\
& =\delta\left(\frac{b^{2}}{2 a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 a \delta\left(b^{2}\right)-b^{2} \delta(2 a)}{2 a} \\
& =\frac{4 a b \delta b-2 a b^{3}}{2 a} \\
& =\frac{2 a b^{3}-2 a b^{3}}{2 a} \\
& =0 .
\end{aligned}
$$

So $\operatorname{tp}(a / F)$ is \mathcal{C}-internal, and $\operatorname{tp}(a, b / F)$ is \mathcal{C}-internal as $b=\frac{\delta a}{a} \in \operatorname{dcl}(a)$.
If $c \neq 0$, let e be one of the square roots of $-2 c \in F, f=e a+b$, and $g=\frac{f-e}{f+e}$. We have

$$
\begin{aligned}
\log \delta g & =\log \delta \frac{f-e}{f+e} \\
& =\log \delta \frac{e a+b-e}{e a+b+e} \\
& =\log \delta(e a+b-e)-\log \delta(e a+b+e) \\
& =\frac{\delta(e a+b-e)}{e a+b-e}-\frac{\delta(e a+b+e)}{e a+b+e} \\
& =\frac{e \delta a+\delta b}{e a+b-e}-\frac{e \delta a+\delta b}{e a+b+e} \\
& =\frac{2 e}{(e a+b)^{2}-e^{2}}(e \delta a+\delta b) \\
& =\frac{2 e}{(e a+b)^{2}-e^{2}}\left(e a b+\frac{1}{2} b^{2}+c-c a^{2}\right) \\
& =\frac{2 e}{(e a+b)^{2}-e^{2}}\left(e a b+\frac{1}{2} b^{2}+c+\frac{1}{2} e^{2} a^{2}\right) \\
& =\frac{2 e}{(e a+b)^{2}-e^{2}}\left(\frac{1}{2}(e a+b)^{2}-\frac{1}{2} e^{2}\right) \\
& =e
\end{aligned}
$$

This shows that $\operatorname{tp}(g / F)$ is \mathcal{C}-internal. From $g=\frac{f-e}{f+e}$ we get $f=\frac{2 e}{1-g}-e$, so $\operatorname{tp}(f / F)$ is \mathcal{C}-internal.

We now show that $\operatorname{tp}(a / F)$ and $\operatorname{tp}(b / F)$ are \mathcal{C}-internal. Note that

$$
\begin{aligned}
\delta\left(\frac{g}{a(1-g)^{2}}\right) & =\frac{\delta g a(1-g)^{2}-\delta a(1-g)^{2} g-2 a(1-g)(-\delta g) g}{a^{2}(1-g)^{4}} \\
& =\frac{e g a(1-g)^{2}-a(f-e a)(1-g)^{2} g+2 a(1-g) e g^{2}}{a^{2}(1-g)^{4}} \\
& =\frac{e g(1-g)-(f-e a)(1-g) g+2 e g^{2}}{a(1-g)^{3}} \\
& =\frac{e g(1+g)-(f-e a)(1-g) g}{a(1-g)^{3}} \\
& =\frac{e g(1+g)-\left(\frac{2 e}{1-g}-e-e a\right)(1-g) g}{a(1-g)^{3}} \\
& =\frac{e g(1+g)-(2 e-(e+e a)(1-g)) g}{a(1-g)^{3}} \\
& =\frac{e\left(g+g^{2}-2 g+(1+a)(1-g) g\right)}{a(1-g)^{3}} \\
& =\frac{e(-g(1-g)+(g+a g)(1-g))}{a(1-g)^{3}} \\
& =\frac{e a g}{a(1-g)^{2}} \\
& =\frac{e g}{(1-g)^{2}} .
\end{aligned}
$$

So a is a solution to

$$
\delta\left(\frac{g}{x(1-g)^{2}}\right)=\frac{e g}{(1-g)^{2}}
$$

We also have

$$
\begin{aligned}
\delta\left(\frac{1}{1-g}\right) & =\frac{\delta g}{(1-g)^{2}} \\
& =\frac{e g}{(1-g)^{2}}
\end{aligned}
$$

since $\log \delta g=e$. So $\frac{g}{a(1-g)^{2}}=\frac{1}{1-g}+D$ for some $D \in \mathcal{C}$, i.e., $a=$
$\frac{g}{(1-g)(1+D-D g)}$ for some $D \in \mathcal{C}$. Since $\operatorname{tp}(D / F)$ and $\operatorname{tp}(g / F)$ are both \mathcal{C}-internal, $\operatorname{tp}(a / F)$ is \mathcal{C}-internal. In addition, $b=f-e a, \operatorname{tp}(f / F)$ is \mathcal{C} internal, and $e \in F$, so $\operatorname{tp}(b / F)$ is \mathcal{C}-internal also.

Hence, $\operatorname{tp}(a b / F)$ is \mathcal{C}-internal, as desired.

6.2 A two-step \mathcal{C}-analysis with independent fibres

In [9], an example was asked for in DCF_{0} of a two-step "analysable cover" of the constants whose fibres were "independent". We can rephrase this more concretely in our language as follows:

Working over an algebraically closed differential field $F \subset \mathcal{U}$, we seek a definable set S and a surjective F-definable function $\pi: S \rightarrow A$ such that
(1) $A \subseteq \mathcal{C}^{\ell}$ for some $\ell>0$,
(2) each fibre S_{a} is \mathcal{C}-internal, for all $a \in A$,
(3) S in not almost \mathcal{C}-internal, and
(4) Given $n>0$, distinct $a_{1}, \ldots, a_{n} \in A$, and $u_{i}, v_{i} \in S_{a_{i}}$ for each $i=$ $1,2, \ldots, n$ with $\operatorname{tp}\left(u_{i} / F \mathcal{C}\right)=\operatorname{tp}\left(v_{i} / F \mathcal{C}\right)$, we have $\operatorname{tp}\left(u_{1} \cdots u_{n} / F \mathcal{C}\right)=$ $\operatorname{tp}\left(v_{1} \cdots v_{n} / F C\right)$.

We give such an example.
Fix $t \in \mathcal{U}$ such that $\delta t=1$ and let $F=\mathbb{Q}(t)^{\text {alg }}$. Consider the F-definable set

$$
S:=\left\{x \in \mathcal{U} \backslash\{0\}: \log \delta x=\frac{1}{(t+c)^{2}} \text { for some } c \in \mathcal{C}\right\}
$$

and the F-definable function $\pi: S \rightarrow \mathcal{C}$ given by $\pi(u)=\delta\left(\frac{u}{2 \delta u}\right)-t$. Note that

$$
\delta \pi(u)=\delta^{2}\left(\frac{(t+c)^{2}}{2}\right)-1=0
$$

so that π does indeed map S to \mathcal{C}. For surjectivity, given $c \in \mathcal{C}$, let $u \in$ $\log \delta^{-1}\left(\frac{1}{(t+c)^{2}}\right)$ and you will see that $\pi(u)=c$.

Condition (1) is satisfied as in this case $A=\mathcal{C}$.
For condition (2), note that for $c \in \mathcal{C}$ the fibre is given by $S_{c}=\{x \in$ $\left.\mathcal{U} \backslash\{0\}: \log \delta x=\frac{1}{(t+c)^{2}}\right\}$, which being a translate of $\mathbb{G}_{m}(\mathcal{C})$ is \mathcal{C}-internal.

The fact that S is not almost \mathcal{C}-internal is shown in Example 5.22.
Finally, we need to show condition (4), the independence of the fibres. Note that by induction and an automorphism argument it suffices to consider the case when $n>1$ and $v_{i}=u_{i}$ for $i=2,3, \ldots, n$. We need to show that $\operatorname{tp}\left(u_{1} / F \mathcal{C} u_{2} \cdots u_{n}\right)=\operatorname{tp}\left(v_{1} / F \mathcal{C} u_{2} \cdots u_{n}\right)$. Since the fibres are strongly minimal, this will follow if $u_{1}, v_{1} \notin \operatorname{acl}\left(F \mathcal{C} u_{2} \cdots u_{n}\right)$. That is, we need to prove: Given $u_{1}, \ldots, u_{n} \in S$ with $c_{i}:=\pi\left(u_{i}\right)$ distinct for $i=1,2, \ldots, n$, we must have $u_{1} \notin \operatorname{acl}\left(F \mathcal{C} u_{2} \ldots u_{n}\right)$. This is what we now prove.

First, notice the fact that $\delta u_{i}=u_{i} \log \delta u_{i}=\frac{u_{i}}{(t+c)^{2}} \in C\left(t, u_{i}\right)$ for $i=2, \ldots, n$, so we have $\mathcal{C}(t)\left\langle u_{2}, \ldots, u_{n}\right\rangle=\mathcal{C}\left(t, u_{2}, \ldots, u_{n}\right)$. As a result, we have $\operatorname{acl}\left(F C u_{2} \cdots u_{n}\right)=\mathcal{C}\left(t, u_{2}, \ldots, u_{n}\right)^{\text {alg }}$.

Suppose, for a contradiction, that $u_{1} \notin \mathcal{C}\left(t, u_{2}, \ldots, u_{n}\right)^{\text {alg }}$. That is, there exists a nonzero $f_{0} \in C\left(t, u_{2}, \ldots, u_{n}\right)\left[x_{1}\right]$ such that $f_{0}\left(u_{1}\right)=0$. We may rewrite $f_{0}\left(x_{1}\right)=0$ as $f_{1}\left(x_{1}, u_{2}, \ldots, u_{n}\right)=0$ where $f_{1} \in C(t)\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Note that $f_{1} \neq 0$ and $f_{1}\left(u_{1}, \ldots, u_{n}\right)=0$.

Suppose $f \in C(t)\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a polynomial over $C(t)$ with minimal number of terms such that $f \neq 0$ and $f\left(u_{1}, \ldots, u_{n}\right)=0$. Such f exists because of the existence of f_{1}. Let

$$
f(\bar{x})=\sum_{\bar{k} \in I} g_{\bar{k}} \bar{x}^{\bar{k}}
$$

where I is a finite set of non-negative integer n-tuples, and $g_{\bar{k}} \in C(t)$ nonzero for $\bar{k} \in I$. As $u_{i} \neq 0$ for all i (since $\log \delta u_{i}$ is well-defined), f has at least two terms.

Applying the same argument as in the proof of Lemma 5.8, we get that there exists $g \in \mathcal{C}(t)$ and a nonzero n-tuple \bar{k} such that $g \bar{u}^{\bar{k}}=1$. Thus $\log \delta \bar{u}^{\bar{k}}=-\log \delta g$.

Note that $\log \delta \bar{u}^{\bar{k}}=\sum_{i} k_{i} \log \delta u_{i}=\sum_{i} \frac{k_{i}}{\left(t+c_{i}\right)^{2}}$. Now suppose $g=$ $e_{0} \prod_{j}\left(t-e_{j}\right)^{\ell_{j}}$ where $e_{i} \in \mathcal{C}$ and $\ell_{j} \in \mathbb{Z}$. Then $\log \delta g=\sum \frac{\ell_{j}}{t-e_{j}}$. Since $\log \delta \bar{u}^{\bar{k}}=-\log \delta g$, it is clear from the transcendence of t over \mathcal{C} that the only possibility is $\log \delta g=\log \delta \bar{u}^{\bar{k}}=0$, and specifically, $k_{i}=0$ for all i and $\ell_{j}=0$ for all j. This contradicts the fact that \bar{k} is nonzero.

We therefore have that $u_{1} \notin \operatorname{acl}\left(\mathcal{C} t u_{2} \cdots u_{n}\right)$.

References

[1] J. T. Baldwin and A. H. Lachlan. On strongly minimal sets. The Journal of Symbolic Logic, 36(1):79-96, 1971.
[2] J. Bell, S. Launois, O. León Sánchez, and R. Moosa. Poisson algebras via model theory and differential-algebraic geometry. Journal of The European Mathematical Society, 19:2019-2049, 2017.
[3] J. Bell, O. León Sánchez, and R. Moosa. D-groups and the DixmierMoeglin equivalence. Algebra \& Number Theory, 12(2):343-378, 2018.
[4] L. Blum. Differentially closed fields: a model-theoretic tour. In Contributions to Algebra, pages 37-61. Academic Press, 1977.
[5] A. Buium. Intersections in jet spaces and a conjecture of S. Lang. Annals of Mathematics, pages 557-567, 1992.
[6] Z. Chatzidakis. A note on canonical bases and one-based types in supersimple theories. Confluentes Mathematici, 4(03):1250004, 2012.
[7] Z. Chatzidakis, M. Harrison-Trainor, and R. Moosa. Differentialalgebraic jet spaces preserve internality to the constants. The Journal of Symbolic Logic, 80(3):1022-1034, 2015.
[8] Z. Chatzidakis and E. Hrushovski. Model theory of difference fields. Transactions of the American Mathematical Society, 351(8):2997-3071, 1999.
[9] L. Haykazyan and R. Moosa. Functoriality and uniformity in Hrushovski's groupoid-cover correspondence. Annals of Pure and Applied Logic, 169(8):705-730, 2018.
[10] E. Hrushovski. Kueker's conjecture for stable theories. The Journal of Symbolic Logic, 54(1):207-220, 1989.
[11] E. Hrushovski. The Mordell-Lang conjecture for function fields. Journal of the American mathematical society, 9(3):667-690, 1996.
[12] Ruizhang Jin. Constructing types in differentially closed fields that are analysable in the constants. The Journal of Symbolic Logic, 83(4):14131433, 2018.
[13] E. R. Kolchin. Galois theory of differential fields. American Journal of Mathematics, 75(4):753-824, 1953.
[14] E. R. Kolchin. Differential algebra and algebraic groups. Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 54.
[15] P. Kowalski and A. Pillay. Quantifier elimination for algebraic D-groups. Transactions of the American Mathematical Society, 358(1):167-181, 2006.
[16] S. Launois and O. León Sánchez. On the Dixmier-Moeglin equivalence for Poisson-Hopf algebra. arXiv preprint arXiv:1706.01279, 2017.
[17] D. Marker. Introduction to the model theory of fields. In Model Theory of Fields, volume 5 of Lecture Notes in Logic, pages 1-37. Association for Symbolic Logic, 1996.
[18] D. Marker. Model theory of differential fields. In Model Theory of Fields, volume 5 of Lecture Notes in Logic, pages 38-113. Association for Symbolic Logic, 1996.
[19] D. Marker. Model theory of differential fields. In Model Theory, Algebra, and Geometry, volume 39 of MSRI Publications, pages 53-63. Cambridge University Press, 2000.
[20] D. Marker. Model Theory: An Introduction, volume 217 of Graduate Texts in Mathematics. Springer Science \& Business Media, 2006.
[21] M. Matsuda. The group of automorphisms of a differential algebraic function field. Nagoya Mathematical Journal, 74:87-94, 1979.
[22] R. Moosa. A model-theoretic counterpart to Moishezon morphisms. In Models, Logics, and Higher-Dimensional Categories: A Tribute to the Work of Mihaly Makkai, pages 177-188. American Mathematical Soc., 2010.
[23] R. Moosa and A. Pillay. On canonical bases and internality criteria. Illinois Journal of Mathematics, 52(3):901-917, 2008.
[24] J. Nagloo and A. Pillay. On the algebraic independence of generic Painlevé transcendents. Compositio Mathematica, 150(4):668-678, 2014.
[25] J. Nagloo and A. Pillay. On algebraic relations between solutions of a generic Painlevé equation. Journal für die reine und angewandte Mathematik, 2017(726):1-27, 2017.
[26] D. Pierce and A. Pillay. A note on the axioms for differentially closed fields of characteristic zero. Journal of Algebra, 204(1):108-115, 1998.
[27] A. Pillay. Geometric Stability Theory. Number 32 in Oxford Logic Guides. Oxford University Press, 1996.
[28] A. Pillay and M. Ziegler. Jet spaces of varieties over differential and difference fields. Selecta Mathematica, New Series, 9(4):579-599, 2003.
[29] B. Poizat. Une théorie de Galois imaginaire. The Journal of Symbolic Logic, 48(4):1151-1170, 1983.
[30] D. J. S. Robinson. A Course in the Theory of Groups, volume 80 of Graduate Texts in Mathematics. Springer, 1982.
[31] K. Tent and M. Ziegler. A Course in Model Theory, volume 40 of Lecture Notes in Logic. Cambridge University Press, 2012.
[32] B. Zilber. Totally categorical theories: Structural properties and the non-finite axiomatizability. In Model Theory of Algebra and Arithmetic, pages 381-410. Springer, 1980.

Glossary

algebraic closure (field-theoretic) The field-theoretic algebraic closure of a set is the smallest algebraically closed field that contains the set.
algebraic closure (model-theoretic) The model-theoretic algebraic closure of a set A, denoted $\operatorname{acl}(A)$, is the set of all elements that realize a formula over A with only finitely many realizations. Elements in $\operatorname{acl}(A)$ are said to be algebraic over A.
algebraic type An algebraic type is the type of an algebraic element.
definable closure The definable closure of a set A, denoted $\operatorname{dcl}(A)$, is the set of all element that realize a formula over A with only one realization. Elements in $\operatorname{dcl}(A)$ are said to be definable over A.
elimination of imaginaries A theory admits elimination of imaginaries if, given any definable set X, any equivalence relation E on X, and any equivalence class a / E, there exists a tuple b such that a / E and b are interdefinable.
forking Suppose $B \subseteq C$. Then $\operatorname{tp}(a / C)$ does not fork over B if, intuitively, $\operatorname{tp}(a / C)$ does not have significantly fewer realizations. In ACF_{0}, for $B \subseteq C$ algebraically closed fields, $\operatorname{tp}(a / C)$ does not fork over B if the Zariski locus of a over C is equal to the Zariski locus of a over B. In DCF_{0}, for $B \subseteq C$ algebraically closed differential fields, $\operatorname{tp}(a / C)$ does not fork over B if the Kolchin locus of a over C is equal to the Kolchin locus of a over B.
minimal type A type is minimal if it has a unique non-algebraic extension to any set of parameter.
non-forking extension Let q be a type over C and p its restriction to $B \subseteq C$. We say that q is a non-forking extension of p if for some (equivalently any) realization a of q, we have $a \downarrow_{B} C$.
saturated model A model \mathcal{M} is saturated if it realizes all types whose parameter set is of size $<|\mathcal{M}|$.
stable theory A theory is κ-stable for some infinite cardinal κ if for all set A of size κ, the number of types over A is also κ. A theory is stable if it is κ-stable for some κ.
stationary type A type is stationary if it has a unique non-forking extension to any parameter set. In particular, minimal types and types over algebraically closed sets are stationary.
strong type A strong type over a set A is a type over $\operatorname{acl}(A)$.
strongly minimal set A definable set is strongly minimal if its definable subsets are either finite or cofinite.
U-rank U-rank is the foundation rank of forking extension. More specifically, algebraic types are of U-rank 0 , and a type is of U-rank $\geq \alpha+1$ for some ordinal $\alpha+1$ if it has a forking extension whose U-rank is at least α.

[^0]: ${ }^{1}$ This is a minor technical weakening of internality - see Definition 2.2 .

