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Abstract 

Cost-effective wearable sensors to measure movement have gained traction as research and 

clinical tools. The potential to quantify movement with a portable and inexpensive way could provide 

benefits to patient populations (e.g. amputees) to supplement or replace current clinical evaluations. For 

example, characterization of frontal plane kinematic outcome measures is a relevant movement pattern to 

a complex amputee population. The ability to capture such movements could have important therapeutic 

opportunities. The current research worked towards characterizing frontal plane compensatory movement 

patterns with kinematic outcome measures described by inertial measurement units (IMU) data in healthy 

adults. This was an initial step towards developing a future toolkit that could characterize normal and 

aberrant movement patterns in clinical populations.  

 The thesis is comprised of two related studies. The first study set out to evaluate the numerical 

accuracy of IMU estimated spatial measures when compared to a gold standard system. Six subjects 

completed six different movement tasks while instrumented with optical motion capture and IMUs. Each 

movement task probed the accuracy of specific deviations (e.g. vertical deviation). The hypothesis was 

that outcome measures would be strongly associated (r>0.8) and mean error would not be significantly 

different from zero and the coefficient of repeatability would be within priori set limits of agreement (±18 

mm). Kinematic outcome measures had small mean error bias compared to gold standard measures and 

range of subject specific mean errors showed minimal differences. Task specific differences were evident 

when movement patterns exhibit large transverse rotations. These results showed the devices have a level 

of accuracy that may be suitable to characterize changes in movement patterns clinically. 

The second study aimed to utilize the same techniques from study 1 to describe compensatory 

kinematic outcome measures during a clinical obstacle avoidance task to differentiate between 

compensatory and normal movement patterns. Twelve subjects wore IMUs bilaterally on the ankles and 

on the belt above the right hip. An off the shelf orthotic knee brace was used to restrict lower limb knee 
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joint kinematics (reduce range of motion). Participants completed 15 walking trials for three different 

brace conditions (No Brace, Unlocked Brace, Locked Brace) and two obstacle task conditions (Level 

Ground Walking and Obstacle Avoidance) to elicit a comparison of normal and compensatory 

movements. During the walking task, IMUs were able to characterize compensatory movements typical 

of the amputee population. Lateral deviation of the swinging foot was significantly larger during obstacle 

crossing with a locked brace compared to no brace. Maximum elevation of the limb was significantly 

larger while crossing obstacles compared to level ground walking and was precise enough to discern 

elevation differences of No Brace elevation from both Unlocked and Locked Brace conditions. Hip hiking 

was also significantly larger in the locked brace obstacle crossing from no brace obstacle crossing. Swing 

time was longer when the limb was braced and during obstacle crossing when compared to level ground 

walking. Healthy subjects had no significant changes to double support time compared those exhibited by 

amputees during walking.  

Overall, differences between IMU and gold standard measures are present. Mean error 

differences are present for certain tasks and criteria for agreeability between devices is not satisfied. 

Descriptive analysis of low subject mean error ranges across the majority of tasks indicate a potential 

utility in these measures to distinguish between movement patterns. During the clinical task, when knee 

mobility was manipulated compensatory movements were significantly different across conditions. This 

study provides evidence for the utility of IMU devices to support clinical gait analysis with quantifiable 

measures. 
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Introduction 

In clinical settings, compensatory behaviours are quantified using visual observations and basic 

task evaluation (e.g. Can the patient complete the task?). Clinician abilities to detect aberrant movements 

are valuable however, limited when quantitative analysis is required (Ong, Hillman, & Robb, 2008). 

Clinical assessment tools are quick to administer but subject to a ceiling effect that can decrease the 

sensitivity of assessments. In contrast, incorporating wearable sensors to provide information about the 

complexities of compensation (sagittal and frontal plane) could be used to provide a more meaningful gait 

evaluation to guide clinical decision making in a manner that is efficient and simple to administer. 

Understanding the application of inertial measurement units (IMUs) to detect compensatory movements 

in alternate anatomical planes has the potential to support the application and implementation of these 

tools to a clinical setting.  

The long-term objective of this work is to progress towards the development of a clinically 

relevant tool-kit that quantifies a patientôs movement patterns using wearable inertial sensors. As the 

initial steps, the current thesis explores the ability of wearable inertial sensors to measure specific lower 

limb movement characteristics/compensations in healthy adults that are often associated with clinical gait 

characteristics. The first study provided a comparison of estimated spatial measurements derived from the 

linear acceleration values of the inertial measurement units against gold standard kinematic 

measurements. Subjects completed a series of isolated movement tasks focusing on movements in the 

frontal plane and those movements that may reveal themselves during compensatory movements. 

Comparing two measurement tools, IMU derived spatial estimates and motion capture spatial 

measurements, outlines the precision and repeatability of derived spatial measurements when compared to 

research-grade measurement tools. The second study utilized inertial measurement units to determine if 

derived spatial measurements from IMUs are sensitive to distinguish between normal and compensatory 

kinematic outcome measures. Individuals completed an obstacle avoidance task while normal walking 

patterns were manipulated with the use of a mechanical device (i.e. commercially available functional 
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knee brace) that limits the amount of attainable knee flexion. The study aimed to distinguish adopted 

crossing strategies employed by young healthy adults during this difficult task compared to baseline 

avoidance strategies.
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Chapter 1: Literature Review 

Throughout the day, humans depend on an adaptable walking pattern to move around in their 

surroundings. The robust nature of our movement allows us to navigate complex environments and avoid 

potential hazards; as we encounter hazards, we are able to maintain stability and continue with forward 

progression. When components of our control system are altered (e.g. pathology, mechanical 

perturbations, or injuries) the flexibility of our system is revealed. The loss of a functional joint via 

amputation is an example of a disruption to the intact locomotor system (Hill et al., 1997). Amputation is 

the surgical removal of a part of or an entire limb segment or extremity (Bowker, Michael, & American 

Academy of Orthopaedic Surgeons, 1992). The removal of a limb segment is associated with mechanical 

(e.g. functional joint) and sensory dysfunction (e.g. afferent information) related to normal movement 

patterns (Pitkin, 2010). Assessing movement patterns in the amputee population is important for assistive 

device prescription and rehabilitation intervention. Quantitative assessment can be difficult because each 

amputation is unique in its own way (e.g. level of amputation, individual abilities prior to amputation, 

length of residual limb, etc.). Among other difficulties, the dispersion of these individuals across 

geographical regions decreases the likelihood to capture of access to fully equipped clinics or laboratories 

for robust analysis of movement patterns. The accessibility to portable analysis tools is important for 

improving patient assessment. Wearable sensor systems have gained widespread usage in human 

movement analysis; however have been limited to sagittal plane movement description. 

1.1 Prevalence of Amputee Population and Scope of the Rising Issue 

In Canada, 5342 patients underwent lower limb amputation between 2006 and 2009; this dataset 

was limited to acquired loss of limb, therefore did not include pediatric or trauma related amputations 

(Kayssi, de Mestral, Forbes, & Roche-Nagle, 2016). Among these amputees; 29% were above-knee 

amputations, 65% below-knee, and 6% were ankle-foot or toe amputations and the main cause for these 

amputations were diabetic complications (81% of reported amputations) (Kayssi et al., 2016). In larger 
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populations, such as the United States, an estimated 185 000 persons undergo amputation of an extremity 

each year (upper or lower). A main cause for amputation are complications arising from diabetes mellitus 

or vascular disease. Due to the prevalence and rise of diabetes, the number of amputations associated with 

vascular complications continues to rise (Dillingham, Pezzin, & MacKenzie, 2002; Ziegler-Graham, 

MacKenzie, Ephraim, Travison, & Brookmeyer, 2008). Improvement of prescribed devices and surgical 

practice has improved care for those living with amputations; however, these improvements have not 

eliminated secondary complications associated within the amputee population.  

In the United States, amputation associated complications are prevalent in the long-term 

prosthetic users (Ephraim, Wegener, MacKenzie, Dillingham, & Pezzin, 2005). These complications 

include phantom, residual, or intact limb pain, and lower back pain. For traumatic amputees, lower back 

pain was recorded as being equally comparable to phantom limb pain, and was more prevalent in above-

knee amputees than in below-knee amputees (Kulkarni, Gaine, Buckley, Rankine, & Adams, 2005). 

Anatomical issues, such as unbalanced hypertrophy of the psoas muscle, can be a contributing factors in 

back pain. Likewise, biomechanical issues such as, decreased shock absorption (leading to increase 

impulse forces), slower walking speeds (Kulkarni et al., 2005) or greater transverse plane rotational 

excursions of the lumbar spine (Morgenroth et al., 2010) may contribute to pain or be maladaptive 

movements as a result of pain. These are also secondary issues to the amputation procedure and are in 

part, caused by our adaptation to the prosthetic device or due to our rehabilitation procedure. Accurate 

and robust movement analysis (i.e. motion capture, force plates, etc.) of individuals would be necessary in 

order to determine root cause of secondary pain. The utility of accurate and portable wearable gait 

analysis system prove to be valuable and satisfy many of these issues.  

1.2 Factors Contributing to Gait Deviations in the Amputee Population  

Current clinical examination of amputees involves a battery of functional tasks to assess the 

ability of the amputee with their new device. From the Atlas of Limb Prosthetics: Surgical, Prosthetic, 

and Rehabilitation Principles a full description of these tests are available (Bowker et al., 1992) (Table 
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1). The definition of a gait deviation is as any movement pattern that is different from that seen in a 

healthy intact population. Common deviations in amputee populations can be caused by: misalignment or 

dimensions of the prosthetic, restricted range of motion at a specific joint, muscular weakness or 

contractures, habits and fear of falling (Bowker et al., 1992).  

Table 1. List of common amputee gait deviations, outline in the Atlas of limb prosthetics: surgical, 

prosthetic, and rehabilitation principles (Bowker et al., 1992) 

Movement Deviations Descriptions Causes 
Lateral Trunk Bend ¶ Leaning towards the 

prosthetic limb during stance 

phase 

¶ Amputee may bend laterally due 

to weakness or pain indicators 

from their amputation or when 

an individual walks with an 

abducted gait 

Wider Step Width ¶ Increased size of base of 

support with abduction at the 

hips 

¶ Contracted hip abductors or 

insecurity in the individualôs 

ability to maintain stability 

Hip Circumduction During 

Swing 
¶ Amputated limb follows a 

laterally curved trajectory 

during swing phase 

¶ Insufficient knee flexion, knee 

lock (decreasing knee flexion), 

foot set in plantar flexion 

Vaulting with Intact Limb ¶ Increase in height of the 

entire body by employing 

plantar flexion with the stance 

limb 

¶ Insufficient knee flexion, knee 

lock (decreasing knee flexion), 

foot set in plantar flexion 

Swing Phase Whips ¶ Medial and lateral movement 

of the toe immediately after 

toe-off 

¶ Mainly due to alignment and 

functional features of the 

prosthetic 

Foot Rotation at Heel 

Strike 
¶ Lateral movement of the foot 

at heel strike 

¶ Heel cushion issues with 

prosthetic foot 

Foot Slap ¶ After heel strike the foot 

plantar flexes uncontrollably  

¶ Plantar-flexion bumper doesnôt 

provide enough friction 

Uneven Heel Rise ¶ Uneven heel rise refers to the 

height the heel reaches after 

toe-off occurs while the knee 

flexes during early swing 

phase 

¶ Insufficient heel rise:  

o Prosthetic device knee lock 

¶ Excessive heel rise: 

o Tension within the 

prosthetic device 

Terminal Impact ¶ At heel strike the prosthetic 

limb enter full extension 

¶ Fear of buckling, therefore 

conservative walking pattern 

adopted 

Uneven Step Length ¶ Asymmetry exists between 

the limb step lengths 

¶ Pain or insecurity with prosthetic  

¶ Restriction to hip range of 

motion 

Exaggerated Lordosis ¶ Posterior lean of the trunk 

during stance phase 

¶ Contractures to hip flexors 

¶ Weakness to hip extensors or 

abdominal muscles 
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Transtibial amputees may experience gait deviations due functional abilities of the individual 

after surgery. Bi-articular muscles, spanning two joints, are uniquely impacted by amputation. Two 

examples of these muscles are the rectus femoris in the quadriceps group and gastrocnemius in the 

posterior compartment of the shank. The rectus femoris muscle provides extension at the knee and 

supports hip flexion. The gastrocnemius plantar flexes the ankle and assists the hamstrings and popliteus 

during knee flexion (Moore, Dalley, & Agur, 2006). Damages to these muscles during amputation can 

effect strength at the knee and may cause change to their action or increase stiffness at the proximal joint 

(e.g. increase stiffness at the hip joint). In early stance, the transtibial amputees can experience excessive 

knee flexion due to inappropriate alignment of the socket and the prosthetic foot or inability produce 

sufficient knee stiffness. On the contrary, absent or decreased knee flexion during early stance may occur 

in response to weakness of the quadriceps muscle (Bowker et al., 1992). Commonly, the quadriceps 

muscle of the residual limb experiences muscle atrophy after below-knee amputation. Quadriceps atrophy 

decreases the ability of the knee extensors to balance external knee flexor moments during early stance 

and weight acceptance phases of the gait cycle (Powers, Rao, & Perry, 1998; Schmalz, Blumentritt, & 

Reimers, 2001). Adopting a stiff knee gait pattern is an adaptation that decreases the need for a powerful 

eccentric contraction by the quadriceps muscles during early stance (Powers et al., 1998).  

Adaptations to pain and discomfort are also prevalent in amputees. To avoid pain, the amputee 

may adopt short steps with the affected limb or increase sway in the trunk during walking. At mid-stance, 

the timing of knee flexion can occur earlier or later than required and lower the height of the amputee 

during stance (Bowker et al., 1992). During swing phase, foot whips can occur in response to reduce knee 

flexion, movement control and prosthetic alignment for transtibial amputees. Foot whips occur when the 

prosthetic foot moves medially or laterally during swing and are associated with tripping in amputees 

during walking (Seymour, 2002). Movement pattern changes can occur in order to avoid discomfort at the 

intact joints or at the socket-limb interface.  
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1.3 Clinical Gait Analysis 

Analysis of gait in clinical settings is focused on both primary and secondary gait deviations. 

Primary gait deviations are those that are directly associated with the impairment or change in control 

where secondary gait deviations can be considered adaptive or compensatory to primary deviations. When 

patient populations are severely impaired they often rely on such compensatory movements to travel 

among their environment (Winter, 1991). Lower limb amputees require the use of compensatory 

movements and assistive devices to improve their day-to-day lives (Pitkin, 2010). In special populations, 

such as amputees, movement patterns are associated with large bands of variability because the level of 

mechanical and neurological control is unique to each amputation. Local and confined laboratory space 

may limit the ability capture the variability necessary for comprehensive understanding of population-

wide gait deviations. This pitfall to laboratory confined movement analysis decreases the potential for 

evidence based practice interventions and device manipulations in the final stages of rehabilitation (Geil, 

2009). Limited access to quantitative tools has impacted amputee research as the majority of current 

studies with sufficient power mainly report self-reported qualitative results (Condie, Scott, & Treweek, 

2006). The application of portable wearable devices for quantitative clinical gait assessment could 

improve the comprehension of movement pattern characterization for patient populations. 

Essential to successful management and treatment is the identification of primary or secondary 

gait deviations. Quantifying meaningful measures of movement characteristics are also beneficial to 

patients with respect to evaluating rehabilitation and/or device fitting (Cole, Durham, & Ewins, 2008). 

The combination of therapist knowledge of concepts and current challenges and cost-effective tools can 

increase the impact of rehabilitation. In most cases, clinicians have a difficult time implementing some of 

the more advanced tools due to training and cost (Geil, 2009). There is a continuing need to develop new 

methods to quantify movement that will be more successfully translated to clinical practice. 

Of the available tools used clinically, movement-screening tools are quick and inexpensive 

methods to evaluate mobility and movement characteristics of patient populations. These tools are subject 
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to rater-error and commonly report inaccuracies when assessing severe gait deviations or when accurate 

quantified measures are required (e.g. joint angle) (Del Pilar et al., 2016; Maathuis, van der Schans, van 

Iperen, Rietman, & Geertzen, 2005). With advancing technology in human movement science, accurate 

assessment of progression will help improve the quality of devices and rehabilitation interventions. In an 

optimal scenario, clinical use of 3D gait analysis to drive interventions would be common practice. Cost-

effective tools provide a potential utility to meet these special requirements.  

The Edinburgh Visual Gait Analysis (EVGS) and the Amputee Mobility Predictor (AMP) are two 

assessment tools used to evaluate patient populations who could have severe gait deviations. For 

experienced clinicians (10+ years), gait deviations are detectable with observational assessment and 

screening tools (Del Pilar et al., 2016). Read, Hazlewood, Hillman, Prescott, & Robb, (2002), developed 

the EVGS to evaluate joint and segment angles at gait events of children with cerebral palsy. 

Discrepancies across and within raters arises when quantitative (e.g. joint angle, lateral deviation) 

evaluation is required for the progress of rehabilitation or assistive devices (Del Pilar et al., 2016; 

Maathuis et al., 2005). Reasons for discrepancies across raters was due to joint angle estimation 

technique. A main difference in quality of results depends on the experience of the raters. Reliability is 

larger in those that had extensive gait analysis experience and when reviewing children with higher 

function (Del Pilar et al., 2016; Ong et al., 2008). The variable nature and difficulty of visually estimating 

quantitative measurements indicates the potential for unreliable examinations with visual gait analysis and 

movement screening. The Amputee Mobility Predictor evaluates amputee performance of 20 different 

tasks with and without their assistive devices to assess mobility (i.e. balance, turning, obstacle avoidance, 

and stairs) (Table 2) (Gailey et al., 2002). Clinicians are required to evaluate the walking pattern by 

analyzing certain characteristics, such as: foot height during swing, variable cadence, step length, and step 

width (Gailey et al., 2002). Quantitative assessment of these specific tasks can help provide fall 

prevention or identify patterns that are associated with increase fall risk (Barak, Wagenaar, & Holt, 2006). 

Clinicians evaluate the amputeeôs ability to complete the task with a 0-2 rating, where zero score 
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represents inability to complete and a two score represents completion without assistance and no visible 

interruptions (Table 3) (Gailey et al., 2002). Gailey et al., (2002) proved to have high inter-rater reliability 

(r = 0.99), the examiners were all taught concurrently in a single session, with one instructor. Therefore, 

the transfer of knowledge was not different between examiners. Additionally, the tested AMP tasks were 

not extensive assessments and need little description or quantitative output from the examiner. Inter-rater 

reliability is lower when tests are more extensive and include reporting of quantitative measures. 

Table 2. Clinical tasks and objectives for Amputee Mobility Predictor (Gailey et al., 2002) 

Item Task 

1 Sitting balance 

2 Sitting reach 

3 Chair to chair transfer 

4 Arises from a chair 

5 Attempts to arise from a chair 

6 Immediate standing balance 

7 Standing balance 

8 Single-limb standing balance 

9 Standing reach 

10 Nudge test (balance reaction) 

11 Eyes closed standing balance 

12 Picking up objects off the floor 

13 Sitting down 

14 Initiation of gait 

15 Step length and height 

16 Step continuity 

17 Turning 

18 Variable cadence 

19 Stepping over obstacle (4 inches or ~10 cm) 

20 Stairs 

21 Assistive device selection 
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Table 3. Example of task description from Amputee Mobility Predictor (Gailey et al., 2002) 

Score Description of Variable Cadence 

 
The examiner instructs the patient to walk a distance of 12ft fast as safely possible 4 times for 

a total of 48ft (14.63m). Speeds may vary from slow to fast and fast to slow, varying cadence. 

his task may also be completed with an assistive device although care must be taken that the 

patient is not extended beyond his/her capabilities. 

 

0 The patient is unable to vary cadence in a controlled manner. 

1 The patient asymmetrically increase his/her cadence in a controlled manner so 

that step length markedly differs between legs, and/or balance must be re-

established with each step. 

2 The patient symmetrically increases his/her cadence in a controlled manner so  

that step lengths are equal and balance is maintained. 

 

Although these assessments require minimal time to administer (5-25 minutes) (Maathuis et al., 

2005) and provide information in a simplistic manner, the inability to produce reliable assessments 

increases the concern of singularly relying on these elements for proper rehabilitation and assessment of 

interventions. The tests can also provide inaccurate or variable data about the patientôs movement pattern, 

as seen with the reliability across examiners (Del Pilar et al., 2016; Maathuis et al., 2005; Ong et al., 

2008). Associated with movement screening tools are patient reported outcome measures. Pain and 

subject perception influence these reported measures (Stevens-lapsley, Schenkman, & Dayton, 2011). 

Using tools to quantify movement patterns provide more objectivity compared to self-reporting scores 

that can be influence by perception.  

1.3.1 The Gait Cycle 

The gait cycle is defined as the period between two heel strikes of the ipsilateral limb (Winter, 

1991). There are two distinct periods within the gait cycle, stance and swing (58-61% and 42-39% 

respectively) which indicate whether the foot is in contact with the ground or not and bounded by heel 

strike (HS) and toe-off (TO) gait events. Heel strike (HS) is the moment at which the foot touches the 

ground regardless of the anatomical landmark. In pathological gait, these events are also known as initial 

contact and final contact because events may not align with anatomical definitions. Final contact is the 

instance at which the limb finishes stance phase and enters swing phase. The use of experimental 
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equipment to determine heel strike is important for stride definition and step characteristics. Explicit 

definitions for these gait events help define the event for clinical practice. Measuring human movement 

with force plates, heel strike and toe-off are defined when the force signal passes the threshold of 20 N 

(Johnson, Buckley, Scally, & Elliott, 2007; Kiss, 2010; Zeni, Richards, & Higginson, 2008). When force 

plates are not used, kinematic data can define these gait events. When individuals are walking, the foot 

oscillates around the pelvis. The heel marker is maximally anterior to the pelvis cluster at heel strike. The 

toe marker is maximally posterior to the pelvis cluster at toe-off (Zeni et al., 2008). During over-ground 

walking, using the optoelectronic technique provided 98% of gait events within two data frames (0.0334 

s) of the ground reaction force technique used in the same trial, providing an accurate determination of 

gait events with optoelectronic techniques (Zeni et al., 2008). 

Spatial measures define gait characteristics using measurement of distance (e.g. meters, 

millimeters). Temporal measures of gait describe the movement pattern using measurement of time (e.g. 

seconds). A step is the distance between the same gait events on contralateral limbs. For example, the left 

step period is between the RHS of the right foot to the LHS of the left foot. Between these two events step 

length and step time are calculated. Stride time and distance defined by two consecutive gait events (e.g. 

RHS to RHS) of the ipsilateral limb. Stance time, double support time, single leg support and swing time 

are all temporal measures that add quantitative value to the amount of time individuals spend in certain 

support phases (Winter, 1991). Changes to spatiotemporal measurements can reveal control in support, 

forward progression, and the implications of impairment on walking patterns in patient population during 

level ground walking (e.g. asymmetrical gait, cadence/stride length relationship) (Hak, Van Dieën, et al., 

2013). Obstacle avoidance threatens an individualôs stability with increased risk of tripping by altering the 

clearance required during swing phase. Modifications to level ground walking kinematics are needed to 

overcome barriers in our walking path, and have been well documented for healthy (Austin, Garrett, & 

Bohannon, 1999; Huang, Lu, Chen, Wang, & Chou, 2008; Sparrow, Shinkfield, Chow, & Begg, 1996), 

elderly (H.-C. Chen, Ashton-Miller, Alexander, & Schultz, 1991; Hahn & Chou, 2004; Hill et al., 1999; 



12 

 

Lu, Chen, & Chen, 2006), and impaired walking conditions (Evangelopoulou, Twiste, & Buckley, 2016;  

a. H. Vrieling et al., 2007; A. H. Vrieling et al., 2009). Changes to spatiotemporal and kinematic outcome 

measures can probe control strategies for obstacle avoidance. 

1.4 Inertial Measurement Units  

The portable and lightweight nature of wearable sensors diversifies their application to a variety 

of scenarios. Extracting valuable information uses difficult computational techniques that limits the 

expansion of these measurement devices to widespread clinical use without proprietary software and 

expensive user subscriptions. These compact and lightweight tools provide extensive data relative to a 

fixed axes system built within the IMU. Some of these manufactured devices can stream data via 

Bluetooth devices or log with on-board storage. This allows data collection in any natural environment 

suitable for the participant and for long periods without constraining them to a laboratory setting.  

Inertial Measurement Units (IMUs) are typically comprised of tri-axial accelerometers and 

gyroscopes. The inclusion of these three tools describes movement with 6 degrees of freedom. Current 

IMU systems typically act as strap down systems that each have their own local coordinate system (LCS) 

(Figure 1). The IMU components (i.e. accelerometers, gyroscopes) are commonly micro-machined 

electromechanical systems (MEMS). One example of an inertial measurement unit is the Shimmer3 IMU 

(Shimmer Sensing, Dublin, Ireland) (Figure 1).  
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Figure 1. Shimmer3 Inertial Measurement Unit (Shimmer Sensing Inc., Dublin, Ireland) with factory 

calibrated local coordinate system denoted. 

1.4.1 Accelerometer 

 Accelerometers measure linear acceleration along the three axes of the local coordinate system. 

Combination of gyroscope measurements and trigonometry techniques can help define acceleration in the 

global coordinate system and define vectors that exist along two different axes.  

 Mechanical accelerometers have a physical load suspended by a series and sequence of springs. 

When movement occurs, the displacement experienced by the load is proportional to the force acting on 

the load. Acceleration is calculated with the second law of motion: 

Ὂ άὥᴆ    (1) 

 Solid-state accelerometers work using surface acoustic waves (SAW). The accelerometer consists 

of a long beam supported at one end and a mass at the other. When the beam bends there is a change in 

wave frequency produced by the beam and this change is proportional to acceleration.  

 MEMS accelerometers have piezo resistive, capacitive sensing, and piezoelectric components for 

movement sensing. MEMS have many advantages compared to traditional accelerometers making them 

the preferred method for todayôs devices: 

¶ Lightweight and small 

¶ Durable 
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¶ Long lasting battery life 

¶ Inexpensive 

¶ Portable devices 

¶ Low maintenance (i.e. calibrating, repairs, etc.) 

1.4.2 Gyroscope 

A gyroscope is a tool used to measure the rate of angular velocity of an object in space. The 

number of axes available for the gyroscopes indicates how many orientation angles are measurable with 

the device. Current MEMS tools typically have tri-axial gyroscopes that can measure rotations about all 

three local axes. The positive advantages of these gyroscopes are similar to those mentioned regarding 

accelerometers.  

Classic mechanical gyroscopes were tools that contained three rings that twisted about gimbals 

that defined the ringôs axes of rotation. These mechanical gyroscopes had an object centered within the 

three rings. Angles between these adjacent rings output the amount of rotation that occurred when an 

object moved. The most accurate gyroscope mechanism uses optical devices, which use light interference 

to measure angular velocity. Current MEMS gyroscopes use the Coriolis Effect to measure angular rate 

movement. Vibrating elements within the device measure the Coriolis effect which records a force that is 

explained in a ñframe of reference rotating at an angular velocity (w), a mass (m) with a velocity (v) 

experience a forceò (Woodman, 2007). The vibrating devices can range from a wheel to a tuning fork, or 

a mass that will vibrate along an axis, or MEMS technology. 

1.5 Accuracy of Data Acquisition Using Inertial Measurement Units 

Systematic errors due to calibration sequences, calculations or issues with model application 

during processing can affect entire data collection sessions. Random errors occur from uncontrollable 

events such as, electronic noise or marker flickering (Chiari, Della Croce, Leardini, & Cappozzo, 2005). 

Environmental factors and processing requirements are among the main sources of error when estimating 

position from IMU data. 
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1.5.1 Error Types in MEMS Accelerometers and Rate Gyroscopes 

 Error that affects MEMS devices comes from different sources categorized into two themes: 

random error and systematic error. Random error is unavoidable and unpredictable error sources that can 

affect the outcome of data but is typically small and captured with processing techniques or statistical 

models. Systematic errors are methodological, operator, or instrumental error sources (Evans, Goldie, & 

Hill, 1997; Litman, 2015). Methodological errors are present when proper protocol is not used during 

collection or processing of raw data. Operator errors occur when recorded signals are contaminated or 

erroneous due to equipment misuse. Instrumental error occurs when error is present due to errors in the 

instrumentation. These can be due to misaligned axes of sensors, invalid calibration, or errors to the 

calibration constants/formulas. Many hardware companies provide systematic process for calibrating and 

configuring devices to an acceptable range, however understanding the properties of the hardware is 

important for quality data collection. The environment where the MEMS device is used can also affect 

instrumental error. Ferrous metals and magnetic fields within vicinity of the IMU affect the accuracy and 

precision of the devices (Picerno, Cereatti, & Cappozzo, 2011). Picerno et al., (2011) compared the 

accuracy of inter and intra MEMS precision and found that calibration validity determines the accuracy of 

current MEMS performance. In addition to previous error, electromechanical systems are subject to both 

electrical and thermal-based noise contamination. Allowing sensors to adapt to their environment reduces 

temperature effects (de Pasquale & Somà, 2010). These errors can appear in different forms, such as: 

¶ Constant bias 

¶ Thermo-mechanical white noise 

¶ Flicker noise/bias stability 

¶ Temperature effects 

¶ Calibration errors 

Constant bias is an offset in the output signal (from the accelerometer or rate gyroscope) causing an 

error in integrated orientation data that grows quadratically over time (Woodman, 2007).  
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Thermo-mechanical white noise is the contamination of a signal output through the thermo-

mechanical interference. Integration of the interfering white noise can cause random walk and increased 

variability of the position estimation (Woodman, 2007). 

Flicker noise or bias stability, which is an effect of the constant bias, mentioned earlier. 

Flickering can cause the constant bias to change over time. This complicates the removal of bias which 

can affect integration techniques (Woodman, 2007).  

Temperature effects are changes to the temperature of the recording device. These changes can 

also affect the constant bias mentioned earlier and complication the integration techniques (Woodman, 

2007).  

Calibration errors are bias errors calculated during calibration process. These are errors in scale 

factors, axes alignment and the calibration of the output value in correspondent to the raw voltage 

(Woodman, 2007).  

Bias error present in the signal can appear as a drift of the signal. When drift is present, using 

integration techniques to obtain position/orientation data will cause error in the velocity and position 

estimations (Woodman, 2007) and correction factors need to be utilized.  

1.5.2 Environmental influence on data quality 

Structural elements of buildings (i.e. ferrous metals, elevators, etc.) influence IMU data and 

orientation estimation. An evaluation of the microelectronic measuring IMUs in both static and dynamics 

environments allows for an understanding of these potential affects. Karen Litman (2008) tested the effect 

of environmental and structural influence on Shimmer2r Inertial Measurement Units (Shimmer Sensing, 

Dublin, Ireland) data collection quality. Different conditions (i.e. rural and clinical settings, influence of 

large amount of ferrous metal and an acrylic box) compared the quality of raw IMU data (e.g. 

acceleration and gyroscope) and orientation information. For acrylic box measurements, a spirit level 

helped align the acrylic cube axis with gravity. A transformation of IMU signals to match the cubeôs axis 

aligned vertical acceleration with gravity vector and were considered accurate if percent error was within 
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predetermined 1% magnitude (Gill and OôConnor, 1997). Changes in environment (rural vs clinical) did 

not affect the static accelerometer and magnetometer data, but changes to location within a building did 

affect both magnetometer and accelerometer data. Magnetometer measurements were unaffected by 

location of the cube; however, changes to the location (inside or outside of acrylic cube) of the IMU 

influenced the accuracy of measured acceleration. IMU location inside the cube were not statistically 

significant when compared to the calibrated 1.0000 g, while outside the cube was statistically different. 

When located outside the cube difficulty balancing on the edges of the IMU casing could have caused 

variability of axis alignment compared to using the secured equipment within the box. The variability that 

may exist in the casing structure outside the box compared to the secured nature of the IMU in the box 

could have been the source of this error and statistical difference. In dynamic scenario, the angular 

velocity of the long axis (Y-axis) of the IMU was statistically different from the turntable values and 

could be due to the instability of the orientation used to measure the Y-axis angular velocity (Litman, 

2015). Ferrous metals, often used in building materials, can affect data acquisition by a magnetometer in a 

clinical setting (de Vries, Veeger, Baten, & van der Helm, 2009). This is important when considering the 

implications of erroneous magnetometer data and sensor fusion algorithms. Shimmer Sensing Inc. 

(Dublin, Ireland) have incorporated both nine and six degrees-of-freedom on-board algorithms to 

determine the accuracy of recorded data (Madgwick, Harrison, & Vaidyanathan, 2011). Using six-degrees 

of freedom boycotts the influence of magnetometer data and relies on the accuracy of acquired 

acceleration and rate gyroscope data to predict the next iteration of the dataset. Careful setup needs to be 

attended to when securing IMU devices to align with anatomical reference frames and the development of 

inertial reference frames needs special consideration due to the errors that can occur with local frame data 

acquisition.  

1.5.3 Estimating Spatial Measurements from Acceleration Data 

 The effects of low frequency noise during double integration acceleration data has been well 

documented (Pezzack, Norman, & Winter, 1977; Ryo Takeda et al., 2014; Thong, Woolfson, Crowe, 
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Hayes-Gill, & Jones, 2004; Thong, Woolfson, Crowe, Hayes-Gill, & Challis, 2002; D.A. Winter, 2009). 

IMU users have adopted several techniques to reduce the effect of low frequency noise when integrating 

rate gyroscope measure to calculate orientation of the IMU and accelerometer to obtain position data. 

These major steps when deriving position data from acceleration are as follows: (1) representing data in a 

known coordinate system, (2) divide into shorter and known segments of data, and (3) remove integration 

drift by updating segmented data to known values.  

1.5.3.1 Creating Motor Task Coordinate Systems 

Calibration processes create a local coordinate system (LCS) aligned to the casing of IMUs. The 

LCS may not align within axes of interest when the IMU moves and rotates during movement (i.e. 

anterior-posterior axis may be measuring vertical acceleration components). Magnetic north 

(magnetometers), the gravity vector (accelerometer) and their cross product can create a global coordinate 

system (GCS) (McGinnis & Perkins, 2012). Building material interference can cause large errors with 

respect to quality of magnetometer data collection; therefore representing these data based on orientation 

change from GCS may not be practicable. Securing IMUs with anatomical relevance allows a 

representation of the limb movement through space, often referred to as the anatomical frame (Cappozzo, 

Della Croce, Leardini, & Chiari, 2005). Representing data in these frames allows accurate intra- and inter-

subject reliability and evaluating segment movements with respect to anatomical planes of movement. A 

task specific frame of reference (motor task coordinate system (MTCS)) is often recommended and used 

during human locomotion analysis (Cappozzo et al., 2005; Wu et al., 2002). An orthogonal coordinate 

system typically has the direction of progression as the anterior posterior axis (x-axis), vertical (y-axis), 

and medio-lateral axis (z-axis) during gait analysis (Cappozzo et al., 2005; Trojaniello, Cereatti, & Croce, 

2014). A stride-by-stride analysis allows for flexible updating of the MTCS to align with gait progression. 

Using ankle-worn IMUs varying the swing time windows altered the estimated mean differences in 

direction of progression average of 15 degrees during healthy and mild-traumatic brain injury populations 

(Trojaniello et al., 2014). The estimation of foot displacement had more variation and larger discrepancies 
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across these different heading directions when compared to motion capture (Trojaniello et al., 2014). 

Using discrete periods of swing time and successive gait cycles may not be applicable to patients with 

altered swing phase characteristics or large gait deviations. An anatomical relevant frame of reference 

relying on principle component of sagittal plane angular velocity (Cain et al., 2016) also has the potential 

to be influenced by aberrant swing phase movement patterns. An alternative method could be to develop 

an inertial frame reference system that uses gravity and projects the x- and y-axis onto a horizontal plane 

(Cain et al., 2016; McGinnis & Perkins, 2012). The representation of accelerometer signals in a known 

orientation will allow calculable clinical gait parameters to evaluate movement patterns and behaviours in 

both healthy and pathological gait regardless of movement pattern. 

1.5.3.2 Segmenting Data for Short Integration Intervals 

Low frequency noise can introduce inaccuracies when integrating accelerometer signals (Pezzack 

et al., 1977; Thong et al., 2004). When quantifying segment angles using unilateral gyroscopes, Tong & 

Granat (1999) used two different drift correction methods. One technique was to reset the original 

inclination angle when drift occurs and another was to apply a high-pass filter with a 0.3 Hz cut-off. 

Correlations for joint angle and inclination angle were strong when compared across shank gyroscope 

locations (r = 0.94) and when compared to motion analysis system (r > 0.90). The application of high-

pass filters and resetting to known values has proved to be valuable when integrating accelerometer 

signals. The goal of high pass filtering is to create a drift/noise free signal for integration over time to 

estimate position (Thong et al., 2004). The length of integration time and the noise-contaminated signals 

are the main influencers of inaccuracies associated with position estimation (Thong et al., 2004, 2002). 

Integration drift is assumed to act as a linear function during short integration intervals (Zok, Mazzà, & 

Della Croce, 2004). Difficulties exist when selecting the window of integration to capture human 

movement of interest. Efforts to increase the accuracy of position estimation focused on improving post-

processing of accelerometer signals and techniques to outline accurate and shorter integration time-

periods.  
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Segmenting the time series data into known time intervals, stride-by-stride analysis, is one 

common technique to reduce the integration interval. This segmentation technique divides larger time 

series data into smaller segments between two known points within the gait cycle. Although the foot 

continuously moves during gait, instances of assumed zero-velocity are advantageous because it allows 

for an assumed known removal of integration drift over the short time period (Kose, Cereatti, & Della 

Croce, 2012; Peruzzi, Della Croce, & Cereatti, 2011; Sabatini, Martelloni, Scapellato, & Cavallo, 2005; 

Trojaniello et al., 2014). Different definitions have described zero foot velocity: the entirety stance phase 

(Sabatini et al., 2005), discrete sections (Rebula, Ojeda, Adamczyk, & Kuo, 2013), and specific instances 

(Trojaniello et al., 2014) of the stance phase. Although the zero-velocity assumption is commonly used 

there are inaccuracies embedded into algorithms when this assumption is used. Derived velocity data 

from different optical motion capture locations revealed errors in stride length estimations when zero-

velocity was assumed (Peruzzi et al., 2011). Depending participantôs gait speed and the location of the 

movement tracking device there are differences in stride length estimation (from -0.07 to -3.3 percent 

differences) and timing of minimum velocity (31% - 57% stance phase duration) (Peruzzi et al., 2011). 

Errors associated with derivation may influence error in outcome measure comparison (Peruzzi et al., 

2011). Understanding the influence of these differences between measures for clinical utility is unclear. 

Incorporating these limitations to the evaluation of IMU spatial accuracy is important for a wholesome 

understanding of the limitations to these integrated estimations.  

1.5.3.3 Removing Noise and Drift Contamination 

Removing signal noise has underwent phases of filtering techniques. High-pass filters are 

commonly used to remove low frequency noise with a range of frequency cut-offs from 0.025 ï 0.1 Hz 

(Boonstra et al., 2006; Kose et al., 2012; Trojaniello et al., 2014). The Optimally Filtered Direct and 

Reverse Integration (OFDRI), an expansion to the Optimal Filtered Integration (OFI) technique, filters 

data with a series of high-pass frequency cut-off values to determine an optimal cut-off frequency. The 

cut-off frequency that produces minimum error in the final known data point, after high-pass filtering and 
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single integration, is deemed the optimal cut-off frequency (Cereatti, Trojaniello, & Croce, 2015; Kose et 

al., 2012; Trojaniello et al., 2014; Zok et al., 2004). A weighted average between a forward and reverse 

integrated acceleration is used to calculate a drift-free velocity estimation (Kose et al., 2012; Trojaniello 

et al., 2014). Without correcting for time to peak amplitude or the weighted function, this technique can 

attenuate peaks of interest, which ultimately affect the estimation of positon. Implication of signal 

attenuation could alter maxima when time series data is not symmetrical. Assuming linear drift is 

unaffected by temporal alignment and corrects velocity measures creating a drift-free estimation. Rebula, 

Ojeda, Adamczyk, & Kuo, (2013) assumed linear drift over short time periods to remove drift from the 

velocity estimate over time. This simpler method assumes the difference between the beginning and final 

integration accumulates to the amount of drift during the integration process. Results indicated 

comparable estimations of stride length (within 1% error) and estimated directional change in stride 

variability (RMS within 4% for step width and length variability) when walking with their eyes closed 

(Rebula et al., 2013). A variety of drift removal and estimation techniques corrects estimations of velocity 

and position from acceleration. Error prone estimations may be inevitable but understanding the 

implications and assumptions surrounding each technique will mitigate compounding error when 

extracting conclusions. 

1.6 Application to Human Movement Analysis  

Inertial measurement units (IMUs) are gaining momentum as a motion-measuring device because 

their lightweight and cost-effective nature. Onboard sensor fusion exists with these devices providing 

valuable and accurate information about the sensorôs local reference frame (Faragher, 2012; Madgwick, 

Harrison, & Vaidyanathan, 2011; Mazza, Donati, Mccamley, Picerno, & Cappozzo, 2012).  

 Inertial measurement units (IMUs) can accurately detect and measure gait events and stride 

definitions when compared to instrumented gait mats (Trojaniello et al., 2014). IMU data has successfully 

defined gait event definitions in amputee population (Selles, Formanoy, Bussmann, Janssens, & Stam, 

2005). The pattern of foot to ground contact is unique in special populations (e.g. amputee gait). 
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Amputations at the ankle or higher can remove or limit ankle articulations. In these scenarios, initial 

contact spatially coincides with final contact and phases such as flat foot, heel rocker and heel-off are 

missing. Due to these changes, gait event algorithm development should be applicable to the population 

of interest rather than applying general heuristics across all populations. Combination of the gyroscope 

and accelerometers used for healthy individuals has proved to be robust enough for healthy populations as 

well as some neurodegenerative populations when detecting initial and final contact events (Trojaniello et 

al., 2014). 

In the amputee population, spatiotemporal and kinematic gait deviations are not restricted to the 

sagittal plane. Significant gait deviations can occur in the frontal plane (e.g. lateral foot deviation) during 

the swing phase of the gait cycle. When foot clearance is challenged (i.e. stepping up onto a raised surface 

or over an obstacle), these deviations become a major contributor to clearance values (Hill et al., 1997). 

Obstacle avoidance occurs many times in a single day and serves as a valuable task when evaluating 

movement patterns. When crossing obstacles complex multiplane compensations maintain stability and 

increase limb movement, specifically when normal movements are unattainable, and therefore is sensitive 

to reveal aberrant movement patterns when mobility deficiencies are present. 

1.7 Thesis Objectives and Rationale 

The first objective of this thesis is to determine the agreement between spatial measures using 

cost-effective wearable sensors and a motion capture system when calculating kinematic outcome 

measures. These kinematic outcome measures quantify compensatory movements (in both frontal and 

sagittal planes) during simple isolated movement tasks. A key focus is to determine the ability in 

revealing specific frontal plane movements relevant to gait compensations tested in healthy adults but 

simulate those movements particular to the use of prosthetics (e.g. lateral foot deviations).  

The second objective, of this thesis will be focused on the use of wearable sensors to investigate 

compensatory movement patterns in the during normal and restricted limb movement conditions 

during an obstacle avoidance task. Principally the objective is to determine if the devices can detect 
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kinematic characteristics of provoked compensatory movements. Subsequently, an objective will be to 

outline variability of temporal and spatial outcome measures to provide an initial indication of the 

potential to reveal variability of compensatory strategies. In the current study, healthy adults will walk 

under different task conditions with and without a unilateral limb constraint to evoke compensatory 

behavior in response to simulations of the movement challenges imposed by amputation and prosthetic 

use. The simulation of a movement restriction seen in the amputee population (e.g. decreased knee range 

of motion) applied to the healthy population will serve as a first attempt to differentiate between 

normative and compensatory movement patterns necessary for future evaluation in an amputee 

population. This information can help support defining gait deviations and development of a tool-kit 

available for future clinical use.
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Chapter 2: Investigating the Agreeability between Inertial 

Measurement Units and 3D Motion Capture during Isolated 

Movement Tasks 

2.1 Spatially Derived Estimates (IMU) compared to Gold Standard Measures 

 Current position estimations from IMU data are comparable to gold standard measurements, 

however results are confounded with assumptions underlying accuracy claims. Inertial measurement units 

(IMU) analyze human movement in a spatial manner. During self-selected level-ground walking, vertical 

center of mass movement derived from inertial measurement data in a global reference frame compared to 

gold standard measurements. Mean vertical displacement error between IMU and motion-capture (MC) 

data was -0.047 ± .060 m across all subjects, with a range of -0.128 ï 0.06 m across subjects (Esser, 

Dawes, Collett, & Howells, 2009). Accuracy of COM vertical displacement is improve when velocity and 

positional data is de-drifted. De-drifting requires the last temporally known integrated value which is 

typically assumed zero and applies zero-velocity updating technique (ZUPT) to de-drift between these 

time points. Utilizing the ZUPT can affect stride lengths estimations by -0.3% error for foot worn IMUs 

and rises to -3.3% error for shank worn IMUs (Peruzzi et al., 2011). Evaluation of the ZUPT was 

completed on derived motion capture data and in a global frame of reference (Peruzzi et al., 2011). Stride 

length estimations are strong when the ZUPT and optimal filtering techniques are applied. Stride length 

errors from a single hip worn IMU compared to MC are 0.009 ± 0.017 m for the right leg (ipsilateral to 

the IMU) and -0.008 ± 0.016 m for the left leg (contralateral side). These derived stride lengths undergo 

correction methods to reduce the influence of pelvic rotation on hip worn IMUs (Kose et al., 2012). IMU 

sensors placed bilaterally on the feet (Rebula et al., 2013) or lower shank segments (Trojaniello et al., 

2014) can remove the post-processing and assumptions required from a single hip mounted. Mean stride 

length parameters agreed within 1% error when comparing estimations from foot mounted IMU to a 

portable MC device (Rebula et al., 2013). Mean error of stride length errors range from 1-3% stride length 

for five different populations when comparing shank mounted IMUs and instrumented walkways (e.g. 
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healthy, elderly, hemiparetic, parkinsonian, and choreic) (Trojaniello et al., 2014). Reporting mean error 

can decrease the perceived error between two devices, however range of data from provided Bland-

Altman plots (Table 4) has low variability error estimates (less than ±5 cm) (Trojaniello et al., 2014). 

Vertical displacement of the COM during walking was well defined using IMU data (Esser et al., 2009). 

Using similar data vertical displacement of the foot can be recorded using ankle or foot mounted IMUs. In 

elderly and Parkinson disease patients, differences between MC and IMU vertical estimates were not 

significantly different during over ground walking or obstacle crossing tasks (Trojaniello, Cereatti, & 

Della Croce, 2015). The variability of errors comparing MC and IMU is greater than stride length data 

reported early using identical methods (vertical mean error: elderly (1 ± 10 mm), PD (2 ± 20 mm)) 

indicating changes to movement patterns or larger amounts of variability. General distinction of 

movement patterns was the focus and precision of the devices were not discussed. Research revolves 

around the application and utility of these devices during walking and balance tasks. Little research 

focuses on the precision between the gold standard MC and the spatial estimations from IMU data with 

focus on the movements in the frontal plane and excursion through multiple planes of motion.  

Table 4. Mean error (SD) reported by Trojaniello et al., (2015) for step length estimates in four different 

populations using OFDRI techniques to de-drift, calculate, compare spatial measurements from IMUs, 

and pressure sensor mat. 

Population Mean Error (m)  +2 SD (m) - 2 SD (m) 

Elderly -0.001 0.043 -0.046 

Hemiparetic 0.008 0.062 -0.046 

Parkinson -0.002 0.043 -0.047 

Choeric 0.01 0.077 -0.58 

2.1.1 Other applications of IMU and their Clinical Significance 

Instrumented gait analysis using wearable sensors may support clinical decision-making because 

of ceiling effects and inaccuracies associated with movement screening tools. Many wearable toolkits for 

clinical evaluation are on the market (Roetenberg, Luinge, & Slycke, 2009) and proprietary to laboratory 

use (Cutti et al., 2010; Yang, Zheng, Wang, McClean, & Newell, 2012). Evaluation outside the developer 

centers test the reliability across environmental settings and end-user errors. Leardini et al., (2014) 

compared RiabloÊ (CoRehab, Trento, Italy) to optical motion capture to evaluate the reliability knee and 
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thorax angles during clinical tasks. Mean error between devices falls within clinical acceptable range 

(±5o) for knee flexion and extension but extends to the limits of clinical acceptance range for lunges and 

squatting. Although mean error falls within the acceptable boundaries maximum error sizes consistently 

fall outside the acceptable range. Similar results were reported for thorax angles during functional tasks 

(lunges, squatting). Bolink et al., (2016) studied frontal and sagittal pelvis angles during four different 

clinical tasks (gait, sit-to-stand, and stepping onto a block) using IMU and optical motion capture. Frontal 

and sagittal plane pelvis angles have strong agreement for correlation measures (ICC > .90, r > .85). For 

the majority of individuals and clinical tasks reported mean errors are within the suggested clinical 

agreement (error less than ± 5o). IMU outcome measures have reported spatiotemporal and trunk and 

pelvis range of motion differences between healthy and OA populations during these clinical outcome 

measures (Bolink, Van Laarhoven, Lipperts, Heyligers, & Grimm, 2012). Using the combination of 

accelerometer and gyroscope signals two dimensional sagittal plane thorax, pelvis and upper leg angles 

correlate highly to the optical motion capture system (r > .9) and indicated low RMS values for segment 

angle error (RMS error < 3.9o) (Boonstra et al., 2006). Evaluating lower limb joint angles with IMUs in 

both the sagittal and frontal planes also report high correlation values (Takeda, Tadano, Natorigawa, 

Todoh, & Yoshinari, 2009a). Measurement tools have high agreement for hip and knee flexion-extension 

joint angles (r > .85) but variability between subjects influences the agreement for hip abduction and 

adduction (r = .89, r = .62, r = .64). Error in hip abduction-adduction measures were attributed to error in 

the internal-external rotation at the hip. Reported measurement error magnitudes are borderline clinically 

acceptable when evaluating measurement error (Hip F-E (6.57o), Hip Ab-Ad (3.30o), Knee F-E (4.65o)), 

however standard deviations and variability of individual trials are not expressed which limits our ability 

to make claims about clinical significance using an error analysis (Takeda, Tadano, Natorigawa, Todoh, 

& Yoshinari, 2009b). The application of more IMUs to a segment increases the available information for 

segment angles. A 3D reconstruction of foot angles using four IMUs attached to the foot produced 

significant detail about foot orientation (Rouhani, Favre, Crevoisier, & Aminian, 2012). Although mean 

errors for all subjects and gait cycles was clinically acceptable, according to correlation strength, there 
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were no variability and subject specific data reported. Nonetheless, IMUs were on average reporting 

correlations values (r = .93), which are considered clinically significant. In a clinical setting joint angle 

descriptions were able to distinguish between ankle osteoarthritis groups and healthy groups for joint 

range of motion in all movements of interest (Rouhani et al., 2012). This section reflects upon some of the 

current validation and reliability studies using IMUs to detect specific kinematics during clinical tasks. 

Strong correlation values are reported (r >  .85) but most studies do not report measurement error as a 

reliability or validation tool. Determination of tool accuracy incorporating error measurement 

encompasses random and systematic error and allows for an interpretable understanding of accuracy for 

clinicians (Vaz, Falkmer, Passmore, Parsons, & Andreou, 2013). Understanding the error associated with 

wearable tool implementation help build the base knowledge for these devices and their potential 

application to clinical settings. Initiating the investigation of wearable sensorôs ability to discriminate 

movement patterns is a second pillar for these devices to gain momentum and to excel our knowledge 

about advantages and disadvantages in these toolkits (Bonato, 2005). Past research and application of 

tools suggest operational acceptance in a clinical setting. 

2.2 Rationale, Objective, and Hypothesis 

 To advance use of IMUs to assess human movement in clinical settings there needs to be 

continued work to determine the agreement between gold-standard measures of motion and spatially 

derived IMU movement tracking. While proprietary wearable systems (e.g. APDM, XSENS) have 

undergone the rigor of reliability and validity studies within their respective tasks. The objective of this 

first study is to understand the agreement between spatially derived movements, measured with 

commercially available and cost-effective IMUs, in contrast to a gold standard measurement (optical 

motion capture). Contrasting the peak deviation during a series of isolated movements will explore the 

differences between these two devices. To analyze this objective:  

(1) It is hypothesized that spatially derived (IMU)  and spatially measured (optical motion 

system) movements will be highly correlated (r>0.8) for all peak amplitudes calculated. 
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(2) It is hypothesized that mean error between devices will  have high agreement. Specifically 

high agreement will be determined if no significant error bias exists, a 95% confidence 

interval encompasses the line of equality (zero error), and amount of error variability will be 

low, the coefficient of repeatability (CR) of all errors measured will fall within the a priori set 

limits of agreement (±18 mm). 

Accepting these hypotheses, would suggest that agreement between the two devices is acceptable and 

spatially derived movements would be statistically accurate compared to optical motion capture.  

2.3 Methods 

2.3.1 Participants 

Six young healthy adults, absent of neurological or mechanical dysfunction, were recruited for 

this study. University of Waterloo Office of Research and Ethics reviewed the study protocol. All subjects 

provided informed consent prior to participation. Participant anthropometric data (SD) was collected and 

summarized, mean age 27.33 (1.2) years, height 1.70 (0.04) m, weight 75.92 (12.42) kg.  

2.3.2 Instrumentation 

2.3.2.1 Motion Capture 

Participants were instrumented with motion capture and inertial measurement units. Six Certus 

Optotrak motion capture sensors (NDI, Waterloo, Ontario) recorded movement of rigid body attached to 

the lower leg, 4 cm above the lateral malleolus (Figure 2), during six isolated movement tasks. Custom 

lower limb rigid bodies accommodated a single Shimmer3 IMU fastened directly onto the rigid body. 

Hypafix (BSN Medical Canada, Laval, Quebec), double sided tape, and a hook and loop band were used 

to fasten the rigid body and IMU to the participantôs lower shank. Motion capture collection frequency 

was 100 Hz and global axis system was created so the z-axis was mediolateral, y-axis vertical, and x-axis 

anterior-posterior.  
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Figure 2. Rigid body and IMU placement on lower limb (4 cm above lateral malleolus). The rigid body is 

instrumented with four smart IRED markers and setup to allow IMU attachment over rigid body 

construction. 

2.3.2.2 Inertial Measurement Unit 

 Shimmer3 inertial measurement unit (Shimmer Sensing Inc., Dublin, Ireland) recorded movement 

during six isolated tasks. The Shimmer IMU was fixed to the center of the rigid body. All calibration 

sequences followed Shimmer Sensing instructions and utilizes an API LabVIEW (NI, Texas, U.S.A.) 

program 9-Degrees of Freedom (Shimmer Sensing Inc., Dublin, Ireland) and the local coordinate system 

orientation is outlined in Figure 1. All configuration settings were completed using proprietary software 

ConsensysPRO (Shimmer Sensing Inc., Dublin, Ireland). Shimmer3 IMU were configured with both low-

noise (±2g) and wide-range (±4g) accelerometers, gyroscope (±1000 degrees per second), magnetometer 

(1.3 kPa), and timestamped with UNIX clock time. Shimmer3 IMU units streamed via Bluetooth for 

visual purposes and data for processing was logged onto a 32 GB SD card for data analysis purposes to 
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avoid missing data points lost during streaming. IMU collection frequency was set to a priori available 

frequency, determined by Shimmer Sensing Inc., at 102.4 Hz.  

2.3.2.3 Data Synchronization 

 A sync pulse output from NDI First Principles Motion Capture Software (NDI, Waterloo, 

Ontario, Canada) synchronized motion capture and Shimmer3 IMU units. A 9-pin output cable sends a 

step pulse from the First Principles software to the resistance amplifier sensor of a Shimmer3 Bridge 

Amplifier+ Unit (Shimmer Sensing, Dublin, Ireland), via a 3.5 mm AUX cable, that was sitting on a 

table. Sync pulse had a magnitude of 5V and indicated the start and end of each collected trial. UNIX 

timestamps from both IMUs aligned Shimmer3 IMU data and using the sync pulse data was windowed 

into collection trials aligning with motion capture. 

2.3.3 Collection Protocol 

During data collection, participants completed twenty-five repetitions of six different movement 

patterns (Figure 3). The right limb completed all movement patterns and participants were provided with 

ample rest time. Isolated movement patterns were selected to probe the accuracy of spatial measures 

along a single axis (e.g. maximum A/P deviation, etc.) and represent a deviated movement that amputees 

may exhibit. Seven different outcome measures calculated from all isolated movement patterns (Table 5). 

Task #1 

- Sagittal plane 

hip ROM 

- 5 repetitions 

Task #2 

- Frontal plane 

hip ROM 

- 5 repetitions 

Task #3 

- Hip and knee 

flexion 

-5 repetitions 

Task #4 

- Isolated knee 

flexion 

- 5 repetitions 

Task #5  

- Isolated 

stepping with 

volitional hip 

circumduction 

- 5 repetitions 

Task #6  

- Isolated 

stepping with 

volitional hip 

circumduction 

and rotation 

- 5 repetitions 

Repeat randomized order 5x (25 repetitions/task) 

Figure 3. Block diagram outlining collection sequence for Study #1 with all 6 tasks. 

At the beginning of each task, subjects maintained 2 seconds of quiet standing required for IMU 

initial orientation. Collected trials included five repetitions of each movement, starting and ending with a 

stationary anatomical position. Participants freely selected speed of movement for each task and 
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repetition. Prior to collections, specific instructions were explained for each task and movement practice 

was completed. During collection, subject-to-subject and trial-to-trial variability was captured by 

allowing subjects to naturally vary their movement patterns.  

Task 1 & 2: Hip Range of Motion 

Sagittal plane hip range of motion (hip flexion-extension) evaluated anterior and posterior 

deviation from rest (Figure 4). Frontal plane hip range of motion (abduction-adduction) tested the lateral 

deviation from rest (Figure 5). Hip ROM tests will record the maximum amplitude within the plane of 

movement (i.e. maximum anterior deviation of the foot when hip flexion occurs) starting from the zero-

velocity instance.  

 

Figure 4. Sequence of movements for Task 1. Subject complete sagittal plane hip range of motion, 

starting at and returning to rest.  

 

Figure 5. Sequence of movement for Task 2. Subject start at rest, hip abduction laterally deviates the leg, 

and they return to resting position. 
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Task 3: Vertical Translation/Hip and Knee Flexion Task 

 To assess vertical deviation from rest, subjects lift ed their limb in a standing position (knee 

flexion and hip flexion) (Figure 6). This movement assessed height displacement (maximum elevation) 

during higher than normal trajectories in the vertical direction and replicated the movement of the lead 

limb clearing obstacles.  

 

Figure 6. Sequence of movements for Task 3. Subjects start at rest, lift their knee towards their chest (hip 

and knee flexion) and return to rest.  

 

Task 4: Heel Rise/Isolated Knee Flexion 

 To assess differences seen in heel rising measurements, subjects flexed their knee during standing 

(Figure 7). This assessed the ability of the IMU to measure height of the foot during knee flexion 

(maximum elevation) to replicate the height of the trailing limb during obstacle clearance.  

 

Figure 7. Sequence of movements for Task 4. Subjects start at rest, flex their knee and return to resting 

position.  

 

Task 5: Stepping with Lateral Deviation of Foot (hip circumduction) 
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 Volitional lateral deviations of the foot during swing phase during a single step with the right leg 

replicates hip circumduction (peak lateral deviation). The participants will begin by standing with their 

right foot slightly behind their left leg. When instructed, subjects will step with their right leg and include 

volitional hip circumduction (Figure 8).  

 

Figure 8. Sequence of movements for task 5. Subjects start in a staggered foot position (left in front of 

right), complete a single isolated step and volitionally induce hip circumduction.  

 

Task 6: Stepping with Foot Whips (hip circumduction and rotation) 

Clinically, foot whips characteristics are internal or external rotation of the foot during swing 

phase. Foot whips are defined as medial or lateral whip of the foot at toe-off (Bowker et al., 1992). 

Subjects mimic a foot whip (external transverse rotation of the IMU) during their stepping pattern with 

volitional hip circumduction and rotation and peak lateral deviation is calculated. Stepping instructions 

will be similar to those in the Stepping with Lateral Deviation of Foot task. Researchers visually 

confirmed the presence of foot whips; trials without adequate attempts were not be included (Figure 9).  

 

Figure 9. Sequence of movements for task 6. Subjects start in a staggered foot position (left in front of 

right), complete a single step and volitionally induce hip circumduction and hip rotation. 
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Table 5. Summary and definition of each outcome variable. 

Task Description of Outcome Measure 

Sagittal Plane Hip ROM Maximum anterior/posterior displacement 

Frontal Plane Hip ROM Maximum abduction displacement 

Hip and Knee Flexion Maximum elevation of ankle joint from vertical translation 

Isolated Knee Flexion Maximum elevation of ankle joint from knee flexion 

Step with Lateral Foot 

Deviation 

Peak lateral foot movement during stepping 

Step with Foot Whips Peak lateral foot movement during stepping with foot whips  

2.3.4 Data Analysis 

2.3.4.1 Motion Capture 

Motion capture data was processed using custom Matlab script (Mathworks Inc., MA, USA). 

Missing data points were interpolated with a third order cubic spline (Heijnen, Muir, & Rietdyk, 2012). 

Missing data interpolation was limited to 10 data points or 200 ms of data (Howarth & Callaghan, 2010). 

A dual pass 2nd order Butterworth low-pass filter removed high frequency noise. Low-pass frequency cut-

off was determined using previous literature and was set at 10 Hz (Heijnen et al., 2012; Winter, 2009). 

Outcome measures are the maximum deviation from rest and in the global coordinate system. 

2.3.4.2 Inertial Measurement Units 

Collection trials completed by all individuals were accepted or rejected during analysis 

procedure. An on-board SD card logged all movement trials. The first step to data analysis was to window 

all IMU recorded data into the appropriate collection trials. Using a threshold crossing method, when sync 

pulse data crossed a 2.5 V threshold (half the magnitude of the sync pulse) with a positive slope, indicated 

collection start, and with a negative slope, indicated collection end. These time markers allowed temporal 

alignment for all IMUs and data was windowed to correspond to the manually recorded collection details, 

each windowed time period included five repetitions of a single movement pattern.  
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Accelerometer signals are rotated into an inertial frame that is relative to gravity following 

techniques used by McGinnis & Perkins (2012) and Cain et al., (2016). Initial orientation was determined 

during the first 0.5 seconds of each collection trial. Normalized magnitude of acceleration during the first 

0.5 seconds to determine the vertical vector of our initial orientation, aligned with gravity during quiet 

standing. In this phase, the accelerometer acts as an inclinometer to determine the orientation and relation 

to a global frame of reference (Cain et al., 2016).  

ὣ  
Ͻ

   (2) 

World aligned Y-axis is a cross product of the gravity vector and a projection of a temporary anterior-

posterior axis (Cain et al., 2016). The anterior-posterior axis is redefined to confirm orthogonality. 

ὤȾ  
  

   

   (3) 

ὢȾ  ὤȾ ὣ     (4)  

All movement completed by participant is recorded by a local IMU reference frame and rotated into a 

inertial frame (Cain et al., 2016; McGinnis & Perkins, 2012). Rotations begin at the initial orientation and 

continue for the duration of the trial. Direction cosine matrix (DCM) is a resultant of an adaptation to 

integrating the angular velocity recorded at LCS level developed by McGinnis & Perkins (2012) and 

applied by Cain et al., (2016). The adaptation allows for numerical approximation of the change in 

orientation after integrating the angular velocity. The resultant is a time varying DCM that describes the 

movement of the local coordinate system (ɤ). Rotating the accelerometer signals by their DCM will 

represent data in a task reference frame, which aligns gravity vertically and projects two horizontal 

vectors for ML and AP (McGinnis & Perkins, 2012). After inertial frame was established, gravity was 

removed algebraically. 
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ὥ   ɤὥ    (5) 

ὥ  ὥ ωȢψρ    (6) 

Data was dual=pass filtered with a 2nd order Butterworth filter with a pass-band between 0.05 ï 18 Hz 

(Trojaniello et al., 2014; Winter, 2009). Thresholds applied to inertial frame magnitude acceleration data 

and gyroscope data to windowed repetitions for integration. When magnitude of acceleration was larger 

than 0.065 m/s2 (Kingma, 2005) and angular velocity was larger than 0.17 rads/s (Hall & McCloskey, 

1983) for greater than 200 ms, intentional human movement occurred. These threshold crossings 

sectioned SD logged IMU data into repetitions and periods for integration. Sensitivity of movement 

detection is a disadvantage of generic threshold applications. When resultant accelerometer and 

gyroscope data was below threshold during known movement pattern (e.g. at peak deviation), the 

repetition was removed from analysis. 

ὥ  ὥ  ὥ  ὥ     (7) 

ὥὥ πȢπφυ ǪǪ  πȢρχ π   (8) 

Drift contaminated velocity was estimated by integrating inertial frame acceleration values using 

trapezoidal integration between threshold crossings (Pezzack et al., 1977). During short periods of 

integration, drift is assumed to be linear, therefore linear drift removal was used to remove drift effects 

and correct velocity estimation (Rebula et al., 2013). 

ὺ  ὸ  В Ўὸ
 

  (9) 

ὺ
 
Ўὸ     (10) 

ὺ  ὺ   ὺ   (11) 

Integrating the corrected (ñdrift-freeò) velocity estimated position. After each repetition, the foot returned 

to the ground. Max deviation occurred when the foot was moving, not during static ground recording. 
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Difference between maximum flight period and position at rest (beginning of repetition) is the deviation 

during each isolated movement pattern. During isolated stepping, step width was considered negligible 

and therefore swing deviation was measured from initial rest not ending rest period (Mariani et al., 2010).  

2.3.5 Outcome Measures 

One outcome measure during each isolated movement pattern and each movement along a single 

global axis is calculated. During Task 1: Sagittal Plane Hip ROM peak anterior and posterior deviation 

from rest were derived. 

ὃὖ ÍÁØὴ ρȟςȟσȣὲ  ὴ ρ     (12) 

ὃὖ ÍÉÎὴ ρȟςȟσȣὲ  ὴ ρ     (13) 

Peak lateral deviation is the main outcome of interest during Task 2, Task 5, and Task 6, which probed 

the accuracy of lateral deviation while the foot moves through different motions.  

ὓὒ ÍÁØὴ ρȟςȟσȣὲ  ὴ ρ     (14) 

Peak vertical deviation of the foot from rest is the main outcome measure in Task 3 and Task 4. Each 

movement pattern evaluated vertical deviation with emphasis on different movement patterns (high versus 

low rotation). The trailing limb primarily relies on knee flexion (Task 4) to elevate over obstacles while 

the lead limb primarily relies on hip flexion (Task 3).  

ὠὉὙὝ ÍÁØὴ ρȟςȟσȣὲ  ὴ ρ    (15) 

2.3.6 Statistical Analysis 

 All statistical calculations and tests were performed using SPSS Statistics (IBM Corporation, 

Armonk, New York, United States). Concurrent validity of IMU spatial estimates and optical motion 

capture is evaluated using Pearson correlation (r) and linear regression analysis. Pearson coefficients were 

considered significant when r > .80 (Shrout & Fleiss, 1979; Vaz et al., 2013). Repeated measures allowed 

subject specific statistical evaluation to view the within and between subject variability and its impact on 
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the agreement between two measurement tools. For error analysis Bland-Altman plots were used to 

visualize error within and between subjects (Bland & Altman, 1986). Mean error bias was compared to 

the line of equality (LOE) to determine if significant bias existed. If the 95% confidence interval (CI) of 

the mean error encompassed the LOE, a significant bias did not exist; if LOE was outside the CI then a 

significant error bias exists. The coefficient of repeatability (CR), corrected for repeated measures, 

described variability of error between the devices and subjects and was related to the limits of agreement 

described by Bland & Altman (1986). To determine variability quality CR measures compare to a priori 

set agreement limits. In previously reported studies, stride length distances average ±18 mm error 

between GAITRite and IMU estimations mean, therefore the differences expected within this study 

should fall within the range bounds. If the CR range is within these bounds the agreement is considered 

narrow (low variability) and if it is larger than these bounds it is considered to have a wide agreement 

(high variability)  . 

ί  ί ί ί    (16) 

ὅὙ ρȢωφϽί     (17) 

2.4 Results 

Subjects completed total 150 repetitions of movements across the six tasks, totaling 175 peak 

amplitude measurements per subject. Tasks were repeated when obvious movement mistakes occurred, 

however this study allowed individual movement selection to be a factor in movement execution. 

Unacceptable movement trials occurred when acceleration and gyroscope data detected as zero-velocity 

during known movement post-hoc. From the total peak amplitudes 1027 (97.8%) of repetitions were 

acceptable and contributed to correlation, regression, and error analysis.  
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2.4.1 Concurrent Validity of IMU Spatial Estimates and Optical Motion Capture 

2.4.1.1 Task #1: Peak Anterior and Posterior Deviation during Sagittal Plane Hip ROM Task 

Sagittal plane hip range of motion outputs two peak amplitudes, the maximum anterior and 

maximum posterior deviation from rest (quiet standing). Average anterior deviation estimated (double 

integrated) with IMU data (n = 139, M = 0.659 m, SD = 0.05) is lower than peak amplitude measured 

with optical motion capture (n = 139, M = 0.685 m, SD = 0.06). For all subject linear regressions IMU 

spatial estimations significantly predict optical motion capture measured deviations, 001, b = .379, t(15) = 

3.102, p < .05, 002, b = .790, t(22) = 7.127, p < .05, 003, b = .763, t(23) = 7.681, p < .05, 004, b = .456, 

t(21) = 5.860, p < .05, 005, b = .828, t(23) = 14.139, p < .05, 006, b = .248, t(23) = 7.338, p < .05. Inertial 

measurement spatial estimations also explained significant amount of variance in optical motion capture 

measurement data, 001, R2 = .397, F(1,15) = 9.623, p < .05, 002, R2 = .698, F(1,22) = 5.788, p < .05, 003, 

R2 = .719, F(1,23) = 58.996, p < .05, 004 R2 = .612, F(1,21) = 34.343, p < .05, 005, R2 = .897, F(1,23) = 

199.902, p < .05, 006, R2 = .175, F(1,23) = 4.875, p < .05 (Table 6). 

Table 6. Subject specific IMU calculated and optical motion capture measured spatial anterior deviation 

during a sagittal plane hip range of motion movement. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Peak Anterior 

Deviation 
 ὼӶ ὛὈ ὼӶ ὛὈ r 

001 17 0.608 ± 0.04 0.720 ± 0.02 .625**  

002 24 0.676 ± 0.03 0.681 ± 0.04 .835**  

003 25 0.632 ± 0.05 0.651 ± 0.04 .848** 

004 23 0.707 ± 0.07 0.697 ± 0.04 .788** 

005 25 0.599 ± 0.07 0.571 ± 0.06 .947** 

006 25 0.733 ± 0.03 0.788 ± 0.02 .418* 

TOTAL/MEAN  139 0.659 ± 0.05 0.685 ± 0.06  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  



40 

 

Difference between anterior peak measurements had a mean error 0.0256 m, a lower average 

spatial estimation with IMU devices compared to optical motion capture (Figure 10). No significant error 

bias exists because the line of equality falls within the 95% confidence interval (-0.015 - 0.066 m) of the 

overall mean error. The coefficient of repeatability is greater than the a priori acceptable error range (± 

0.018 m) (Trojaniello et al., 2014) therefore the agreement between measurements has a wide range. 

Mean error differences have a small absolute range across subjects (range: 0.069 m). The smallest subject 

mean error is 0.0048 m and the largest subject mean error is 0.1117 m. 

 

Figure 10. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for anterior deviation during sagittal plane hip range of motion task. 

 

Average posterior deviation estimated by IMU data (n = 139, M = -0.577 m, SD = 0.09) has a 

lower magnitude than peak amplitude measured by optical motion capture data (n = 139, M = -0.604 m, 

SD = 0.08). Linear IMU spatial estimations significantly predict measured spatial movements by optical 

motion capture, 001, b = .402, t(23) = 3.250, p < .05, 002, b = .790, t (23) = 11.229, p < .05, 003, b = 

.957, t (23) = 18.682, p < .05, 004, b = .396, t (23) = 2.223, p < .05, 005, b = .807, t (23) = 8.759, p < .05, 

006, b = .810, t (23) = 8.617, p < .05. Inertial measurement spatial estimation explained significant 

amount of variance in optical motion capture measurement data, 001, R2 = .315, F(1,23) = 10.566, p < 
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.05, 002, R2 = .851, F (1,23) = 126.091, p < .05, 003, R2 = .938, F (1,23) = 348.999, p < .05, 004, R2 = 

.177, F (1,23) = 4.941, p < .05, 005, R2 = .769, F (1,23) = 76.712, p < .05, 006, R2 = .764, F (1,23) = 

74.256, p < .05 (Table 7). 

Table 7. Subject specific IMU calculated and optical motion capture measured spatial posterior deviation 

during a sagittal plane hip range of motion movement. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Peak Posterior 

Deviation 
 ὼӶ ὛὈ ὼӶ ὛὈ r 

001 25 -0.495 ± 0.04 -0.542 ± 0.03 .561* 

002 24 -0.675 ± 0.05 -0.679 ± 0.04 .923** 

003 25 -0.597 ± 0.07 -0.597 ± 0.07 .969** 

004 25 -0.688 ± 0.07 -0.718 ± 0.07 .421* 

005 25 -0.440 ± 0.05 -0.474 ± 0.05 .877** 

006 25 -0.566 ± 0.06 -0.614 ± 0.06 .874** 

TOTAL/MEAN  149 -0.577 ± 0.09 -0.604 ± 0.08  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  

Difference between posterior peak measurements had a mean error -0.0271 m, since the deviation 

was negative direction lower average spatial estimation with IMU devices compared to optical motion 

capture was completed (Figure 11). Error bias is significant because the line of equality is outside the 

95% confidence interval from the mean error (Table 13). Measurement repeatability is also poor because 

the coefficient of repeatability is greater than the a priori acceptable error range (± 0.018 m) (Trojaniello 

et al., 2014). Mean error differences have a small absolute range across subjects (range: 0.069 m). The 

smallest subject mean error is -0.0003 m and the largest subject mean error is -0.0472 m. 
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Figure 11. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for posterior deviation during sagittal plane hip range of motion task. 

 

2.4.1.2 Task#2: Lateral Deviation during Frontal Plane Hip ROM Task 

Frontal plane hip ROM tasks output a single peak amplitude measures of lateral deviation from 

quiet standing. Average lateral deviation estimated with IMU data (n = 155, M = 0.537 m, SD = 0.05) is 

lower than peak amplitude measured with optical motion capture (n = 155, M = 0.553 m, SD = 0.05). 

Linear spatial estimations derived from IMU measurements significantly predicted the spatial 

measurements by optical motion capture, 001, b = .679, t(23) = 6.342, p < .05, 002, b = 1.014, t(23) = 

9.599, p < .05, 003, b = 1.059, t(23) = 17.127, p < .05, 004, b = .829, t(23) = 15.927, p < .05, 005, b = 

.925  t(23) = 13.381, p < .05, 006, b = .964, t(28) = 19.914, p < .05. IMU estimations also explain 

significant amounts of the variation within optical motion capture measurements, 001, R2 = .636, F(1,23) 

= 40.215, p < .05, 002, R2 = .80, F(1,23) = 92.135, p < .05, 003, R2 = .927, F(1,23) = 293.320, p < .05, 

004, R2 = .92, F(1,23) = 253.673, p < .05, 005, R2 = .89, F(1,23) = 179.064, p < .05, 006, R2 = .93, 

F(1,28) = 396.558, p < .05. (Table 8). 
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Table 8. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation 

during an isolated hip abduction task. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Lateral Deviation  ὼӶ ὛὈ ὼӶ ὛὈ r 

001 25 0.510 ± 0.03  0.554 ± 0.03  .798** 

002 25 0.596 ± 0.02 0.610 ± 0.03 .895** 

003 25 0.527 ± 0.05   0.560 ± 0.05 .963** 

004 25 0.582 ± 0.05 0.559 ± 0.06 .958** 

005 25 0.454 ± 0.03 0.454 ± 0.03 .941** 

006 30 0.551 ± 0.04 0.578 ± 0.04 .966** 

TOTAL/MEAN  155 0.537 ± 0.05 0.553 ± 0.05  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  

 

All repetitions (n = 155) were included in the analysis, mean error had a positive bias, 0.0233 m. 

Error bias is significant because the line of equality falls outside the confidence interval of the mean error 

(Figure 12). The repeatability of the spatial estimation is poor because the coefficient of repeatability is 

larger than the a priori acceptable error range (± 0.018 m) (Trojaniello et al., 2014). The subject mean 

errors have small absolute ranges (range: 0.0429 m). The lowest absolute subject mean error is 0.00017 

m and the highest absolute subject mean error is 0.04305 m. 



44 

 

 

Figure 12. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for lateral deviation during isolated hip abduction task. 

 

2.4.1.3 Task #3: Vertical Displacement during Hip and Knee Flexion Task 

Peak vertical displacement is measured during simultaneous hip and knee flexion. Estimated 

spatial deviation from IMU data (n = 144, M = 0.4635 m, SD = 0.02) is slightly lower than measured 

spatial deviation using optical motion capture from rest (n = 144, M = 0.4639 m, SD = 0.01). Linear 

spatial estimates from IMU data significantly predicted measured deviations using optical motion capture, 

001, b = .757, t(23) = 9.100, p < .05, 002, b = .730, t(21) = 10.116, p < .05, 003, b = .909, t(21) = 16.734, 

p < .05, 004, b = .898, t(17) = 18.615, p < .05, 005, b = .836, t(22) = 14.370, p < .05, 006, b = .817, t(28) 

= 8.974, p < .05. IMU estimations also explain significant amounts of the variation of optical motion 

capture measurements, 001, R2 = .636, F(1,23) = 40.215, p < .05, 002, R2 = .830, F(1,21) = 102.338, p < 

.05, 003, R2 =.930, F(1,21) = 280.021, p < .05, 004, R2 = .953, F(1,17) = 346.508, p < .05, 005, R2 = .904, 

F(1,22) = 206.487, p < .05, 006, R2 = .742, F(1,28) = 80.538, p < .05 (Table 9).  
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Table 9. Subject specific IMU calculated and optical motion capture measured spatial vertical deviation 

during an isolated hip and knee flexion task. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Vertical Deviation  ὼӶ ὛὈ ὼӶ ὛὈ r 

001 25 0.464 ± 0.02  0.464 ± 0.01  .885** 

002 25 0.596 ± 0.02 0.610 ± 0.03 .911** 

003 23 0.535 ± 0.02   0.528 ± 0.03 .964** 

004 19 0.560 ± 0.04 0.560 ± 0.04 .976** 

005 24 0.445 ± 0.04 0.459 ± 0.03 .951** 

006 30 0.613 ± 0.02 0.623 ± 0.02 .861** 

TOTAL/MEAN  146 0.536 ± 0.06 0.541 ± 0.06  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  

 

All repetitions (n = 144) were included in the analysis and mean error, 0.0038 m, has a positive 

bias. The error bias was not significant because the confidence interval encompasses the line of equality 

(Figure 13). The repeatability of the spatial estimation is not considered significant because the range of 

coefficient of repeatability is wider than the a priori acceptable error range (± 0.018 m) (Trojaniello et al., 

2014), however, the coefficient of repeatability is lower than the a priori limits, 0.0172 m. The range of 

absolute subject mean errors is also low when considering the characteristics of the agreement (range: 

0.014 m). The lowest magnitude subject mean error is -0.000043 m and the highest magnitude subject 

mean error is 0.01390 m. 
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Figure 13. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for vertical deviation during hip and knee flexion task. 

 

2.4.1.4 Task #4: Vertical Displacement during Isolated Knee Flexion Task 

Isolated knee flexion raises the foot in a non-linear fashion, this task revealed a single vertical 

deviation measurement from rest. Estimated spatial deviation from rest using IMU data (n = 147, M = 

0.5085 m, SD = 0.034) is slightly lower than the measured deviation from optical motion capture (n = 

147, M = 0.5095 m, SD = 0.034). IMU spatial estimations significantly predicted optical motion capture 

measurements, 001, b = .847, t(23) = 17.841, p < .05, 002, b = .575, t(23) = 6.823, p < .05, 003, b = .909, 

t(23) = 6.088, p < .05, 004, b = .849, t(20) = 14.954, p < .05, 005, b = 1.039, t(23) = 35.129, p < .05, 006, 

b = .764, t(23) = 8.937, p < .05. IMU spatial estimates significantly explain the variance of optical motion 

capture measures, 001, R2 = .933, F(1,23) = 318.314, p < .05, 002, R2 = .669, F(1,23) = 46.560, p < .05, 

003, R2 = .617, F(1,23) = 37.060, p < .05, 004, R2 = .918, F(1,20) = 223.615, p < .05, 005, R2 = .982, 

F(1,23) = 1234.026, p < .05, 006, R2 = .776, F(1,23) = 79.862, p < .05 (Table 10). 
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Table 10. Subject specific IMU calculated and optical motion capture measured spatial vertical deviation 

during an isolated knee flexion task. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Vertical Deviation  ὼӶ ὛὈ ὼӶ ὛὈ r 

001 25 0.490 ± 0.02  0.498 ± 0.02  .966** 

002 25 0.499 ± 0.02 0.503 ± 0.01 .818** 

003 25 0.523 ± 0.01   0.512 ± 0.02 .786** 

004 22 0.490 ± 0.02 0.490 ± 0.02 .958** 

005 24 0.476 ± 0.03 0.475 ± 0.03 .991** 

006 25 0.579 ± 0.02 0.579 ± 0.02 .881** 

TOTAL  146 0.5085 ± 0.034 0.5095 ± 0.034  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  

 

All repetitions (n = 147) were included in the analysis, mean error across subjects was not equal 

to zero and had a slight negative bias, -0.00098 m. Error bias is not significant because the 95% 

confidence interval encompasses the line of equality (Figure 14). Repeatability of spatial estimates is 

significant because the coefficient of repeatability of less than a priori acceptable error range (± 0.018 m) 

(Diana Trojaniello et al., 2014). Differences across subject mean errors have a range of 0.0113 m. The 

lowest magnitude subject mean error is -0.000381 m and the highest magnitude subject mean error is -

0.01088 m. 
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Figure 14. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for vertical deviation during knee flexion task. 

 

2.4.1.5 Task #5: Lateral Deviation during Isolated Stepping with Volitional Hip Circumduction 

During isolated stepping with hip circumduction the foot deviates laterally during swing phase. 

Peak lateral deviation during swing is detected and used to characterise the movement pattern. Average 

lateral deviation of the foot calculated by IMU measures (n = 150, M = 0.304 m, SD = 0.08) is lower than 

average measured lateral deviation by optical motion capture (n = 150, M = 0.315 m, SD = 0.07). IMU 

spatial estimations significantly predicted optical motion capture measurements, 001, b = .696, t(23) = 

5.047, p < .05, 002, b = .731, t(23) = 5.483, p < .05, 003, b = 1.133, t(23) = 24.025, p < .05, 004, b = 

1.134, t(23) = 48.936, p < .05, 005, b = 1.111, t(28) = 26.444, p < .05, 006, b = .931, t(18) = 7.101, p < 

.05. IMU spatial estimates significantly show the variance of optical motion capture measures, 001, R2 = 

.525, F(1,23) = 25.470, p < .05, 002, R2 = .548, F(1,23) = 30.064, p < .05, 003, R2 = .960, F(1,23) = 

577.203, p < .05, 004, R2 = .990, F(1,23) = 2394.756, p < .05, 005, R2 = .960, F(1,28) = 699.288, p < .05, 

006, R2 = .737, F(1,18) = 50.430, p < .05 (Table 11). 
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Table 11. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation 

during swing phase of an isolated step with volitional hip circumduction. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Lateral Deviation  ὼӶ ὛὈ ὼӶ ὛὈ r 

001 25 0.378 ± 0.03  0.337 ± 0.03  .725** 

002 25 0.252 ± 0.06 0.304 ± 0.06 .753** 

003 25 0.203 ± 0.08   0.202 ± 0.09 .981** 

004 25 0.370 ± 0.18 0.397 ± 0.20 .995** 

005 30 0.232 ± 0.04 0.249 ± 0.05 .981** 

006 20 0.390 ± 0.05 0.403 ± 0.06 .858** 

TOTAL  150 0.304 ± 0.08 0.315 ± 0.07  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01   

 

Error analysis was completed on all repetitions (n = 150), mean error was not equal to zero and 

had a slight positive bias, 0.0113 m. Error bias is not significantly different from zero because the 95% 

confidence interval encompasses the line of equality (Figure 15). The agreement is considered to have 

wide variability because the coefficient of repeatability is larger than a priori acceptable error range (± 

0.018 m). Differences in mean subject error contribute to variability of outcome measures, as the range of 

subject errors is 0.0515 m. The lowest absolute subject mean error is -0.000429 m and the highest 

absolute subject mean error is 0.0511 m. 
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Figure 15. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for lateral deviation during swing phase of stepping with hip circumduction task. 

2.4.1.6 Task #6: Lateral Deviation during Isolated Stepping with Volitional Hip Circumduction and 

Rotation 

Isolated stepping with hip circumduction and hip rotation causes a rotation and lateral translation 

of the IMU to peak lateral deviation during swing. During isolated stepping, the peak lateral deviation 

calculated from IMU data (n = 142, M = 0.266 m, SD = 0.06) is smaller than the peak deviation measured 

but optical motion capture data (n = 142, M = 0.314 m, SD = 0.08). Not all IMU prediction models 

predict optical motion capture significantly, 001, b = .760, t(20) = 6.081, p < .05, 002, b = .257, t(19) = 

1.571, p > .05, 003, b = .986, t(22) = 7.642, p < .05, 004, b = 1.037, t(23) = 16.013, p < .05, 005, b = .985, 

t(23) = 23.827, p < .05, 006, b = 1.075, t(23) = 12.525, p < .05. Similar results are found when analyzing 

IMU models accounting for variance of optical motion capture measures, 001, R2 = .649, F(1,20) = 

36.975, p < .05, 002, R2 = .115, F(1,19) = 2.469, p > .05, 003, R2 = .726, F(1,22) = 58.399, p < .05, 004, 

R2 = .918, F(1,23) = 256.410, p < .05, 005, R2 = .961, F(1,23) = 567.715, p < .05, 006, R2 = .867, F(1,23) 

= 156.865, p < .05 (Table 12). 
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Table 12. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation 

during swing phase of an isolated step with volitional hip circumduction and rotation. 

 N 
IMU Spatial 

Estimate 

Optical Motion Capture 

Measurement 

 Pearson 

Correlation 

Lateral Deviation  ὼӶ ὛὈ ὼӶ ὛὈ r 

001 22 0.181 ± 0.05  0.212 ± 0.04  .806** 

002 21 0.267 ± 0.05 0.362 ± 0.04 .339 

003 24 0.220 ± 0.03   0.245 ± 0.04 .852** 

004 25 0.382 ± 0.08 0.449 ± 0.09 .958** 

005 25 0.265 ± 0.07 0.287 ± 0.07 .980** 

006 25 0.281 ± 0.05 0.331 ± 0.05 .934** 

TOTAL  142 0.266 ± 0.06 0.314 ± 0.08  

* represents significant Pearson correlation p < 0.05. 

** represents significant Pearson correlation p < 0.01.  

 

All repetitions (n = 150) were included in the analysis of error, mean error across subjects was 

not equal to zero and is positively bias, 0.04857 m. Error bias is not significantly different from zero 

because the 95% confidence interval encompasses the line of equality (Figure 16). The repeatability of the 

spatial estimate is not significant because the coefficient of repeatability is larger than a priori acceptable 

error range (± 0.018 m). Range of differences across subject mean errors is larger than other isolated 

movement tasks (range: 0.07288 m). A specific subject, 002, had no significant Pearson correlation and 

had highest absolute subject mean error is 0.09485 m which contributes to larger mean error and 

variability. The lowest subject magnitude mean error is 0.02197 m. 
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Figure 16. Bland-Altman plot of differences between IMU spatial estimate and motion capture 

measurement for lateral deviation during swing phase of stepping with hip circumduction and rotation 

task. 

 

Table 13. Mean-error, confidence interval (95%) and coefficient of repeatability for all outcome variables 

during each task. 

  Mean Error  (m) Confidence Interval Coefficient of Repeatability 

  ὼӶ ὛὈ -95% CI +95% CI Lower bound Upper bound 

Task #1 Anterior 0.026 ± 0.05  -0.015 0.066 -0.03 0.0811 

Task #1 Posterior -0.026 ± 0.02  -0.043 -0.011 -0.058 0.004 

Task #2 Lateral 0.023 ± 0.01 0.011 0.035 -0.002 0.0485 

Task #3 Vertical 0.0038 ± 0.008 -0.002 0.010 -0.013 0.021 

Task #4 Vertical -0.00098 ± 0.007 -0.007 0.005 -0.018 0.0158 

Task #5 Lateral 0.011 ± 0.03 -0.013 0.036 -0.027 0.0501 

Task #6 Lateral 0.049 ± 0.028 0.026 0.071 0.0068 0.0904 
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2.5 Discussion 

The purpose of this study was to continue to build towards understanding of the numerical 

accuracy of IMU spatial estimates as compared to motion capture measurement of kinematics for 

realizing the future potential application in clinical settings. The study set out to determine the accuracy 

between IMU calculated measurements and motion capture measured spatial data across specific 

movements. Each movement was designed to test the accuracy of spatial measures along a single axis of 

motion (e.g. vertical displacement during isolated knee flexion) and understand how estimated kinematic 

outcome measures could characterize movement patterns. Table 14 summarizes the main observations 

from study 1. This table highlights main learning points from the comparison between two measurement 

devices: (1) specific tasks have high accuracy (i.e. hip and knee flexion and isolated knee flexion) (2) 

statistical approach (correlation vs. error analysis) influences the agreement between the two devices, and 

(3) across subject differences are prominent compared to the devices or the analysis. The between subject 

differences may be associated with how tasks are performed rather than the processing techniques 

utilized. 

As noted, the study revealed that IMUs can be very accurate when examining certain axes of 

movement in an inertial frame of reference. However this level of accuracy is not as strong for all planes 

or types of motion. For example, tasks that vertically translated the IMU (hip and knee flexion, me = 

0.0038 m, and isolated knee flexion, me = -0.00098 m), compared to increase transverse rotation 

(stepping with hip circumduction and rotation, me = 0.049 m), had smaller mean differences. Although 

the majority of tasks did not have mean errors that were significantly different from zero, the coefficients 

of repeatability indicate low repeatability for all planes or types of motion. Tasks with less transverse 

rotation (hip and knee flexion, CR range = 0.034 m, and isolated knee flexion, CR range = 0.0338 m), 

report smaller coefficient of repeatability ranges compared to more transverse rotation (posterior 

deviation during sagittal plane hip ROM, CR range = 0.062 m, stepping with hip circumduction and 

rotation, CR range = 0.0836 m) (Table 13). 
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The first objective of this study was to investigate association of these tools by evaluating peak-

amplitude outcome measures from two different methods of measurement. The majority (75%) of subject 

and task comparisons are statistically and clinically significant (r > 0.8). The second objective focused on 

the error between the two measurement devices to evaluate the agreement of these devices. The 

agreement between these two devices, on average, was not significantly different to the line of equality. 

However, the variability of measurement error was larger than the agreement boundaries during majority 

of movement patterns. Findings from these two tests indicate there is a level of statistically accuracy 

comparing the IMU to the gold standard however; it may not be clinically acceptable due to repeatability 

criteria. Across all movements tested the specific task goals and movement pattern execution appear to 

the main influence on accuracy rather than between subjects.  

 With respect to the association between IMU and optical measurement of kinematics the study 

relied, in part, on a criteria of r>0.8, which was exceeded in 75% of tasks (across each subject). 

Correlation values greater than .75 have been typically used to determine clinical significance when 

evaluating measurement association (Shrout & Fleiss, 1979; Vaz et al., 2013). These evaluations suggest 

good agreeance between the two measurement devices to estimate spatial measurements. However the 

measure of association alone is not sufficient to determine accuracy and evaluation of clinical measures 

and comparisons including error terms have been advised (Vaz et al., 2013). Examining the measurement 

error with the mean errors and the coefficient of repeatability (limits of agreement) is more applicable in 

this scenario (Bland & Altman, 1986; Vaz et al., 2013). The correlation coefficients, measurement error, 

and the coefficient of repeatability are tools used to evaluate the significance of association between two 

measurement devices. Correlation coefficients accept the agreement between devices with less scrutiny 

compared to the error analysis with Bland-Altman techniques. Measurement error and the coefficient of 

repeatability are used to evaluate the association between two measurement devices (Bland & Altman, 

1986). Measurement error (mean, confidence intervals) can help outline whether a significant bias exists 

within the error data while the coefficient of repeatability compared to a priori established limits of 
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agreement can outline the characteristics of the agreement (wide versus narrow agreement) (Bland & 

Altman, 1986; Giavarina, 2015; Vaz et al., 2013). While 75% of conditions (tasks and subjects) met 

correlation criteria, only 50% of subject mean errors fell within previously set acceptable error band 

outlined. These a priori limits were referenced from a mean error value during a comparison of stride 

length measures between IMU estimates and GAITRite generated reports (Trojaniello et al., 2014). As a 

result, it was deemed important to emphasize the assessment of agreement based on not only on simple 

correlation but also measurement error and coefficient of repeatability.  

The results of the current study revealed similar overall repeatability of outcomes as reported 

previous studies (Trojaniello et al., 2014). However, what is of interest are the differences across tasks 

and specific factors that may have influenced IMU accuracy. One factor that appeared to impact accuracy 

was the specific movement. The measurement of posterior deviation during the sagittal plane hip range of 

motion and lateral deviation during frontal plane hip ROM and stepping with hip circumduction and 

rotation are the only mean bias that is considered significantly different (i.e. line of equality is outside 

±95% CI from mean) (Giavarina, 2015). Measurements during all tasks have some magnitude of 

systematic error because no mean bias are equal to zero. When testing the vertical deviation of the IMU 

devices, mean error bias was very small (less than 3.8 mm). Movement patterns evaluating lateral and 

anterior-posterior movements were larger in magnitude in all comparisons (from 11 to 49 mm). Vertical 

displacement tasks (Task 4: Hip and knee flexion & Task 5: Isolated knee flexion) have the smallest mean 

error when comparing accuracy between IMU and OPTO measures. Task 2 (Posterior deviation during 

sagittal plane hip ROM), 3 (Hip abduction), and 6 (Stepping with hip circumduction and rotation) 

performed similarly when comparing clinical significance and error measurement, they also have similar 

magnitude of ranges between maximum and minimum subject mean error. The largest significant 

discrepancies occur with task 6 (stepping with hip circumduction and rotation). This task has large 

amounts of measurement error within their estimates and the majority of subjects have strong agreement 

based on their R-values. Tasks that involved more transverse rotation in the local frame (yaw) of the IMU 

appear to have more error than those that do not. Furthermore, the repeatability of each task varies and 
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depends on similar issues discussed above. Tasks that may have larger transverse rotation exhibit larger 

ranges between the CRôs upper and lower bounds. These differences in both mean error and CR indicate 

that movement patterns with more transverse rotation may by less precise and less repeatable.  

In addition to task (movement differences), there were some influences associated with subject 

error. Independent of tasks, 50% of subject mean errors fall within previously set acceptable error band 

outlined compared to 75% of r-values. These a priori limits were referenced from a mean error value 

during a comparison of stride length measures between IMU estimates and GAITRite generated reports 

(Trojaniello et al., 2014). As a group, these acceptance rates produce similar conclusions and no one 

subject consistently contradicts agreeability of the two devices. During simple, uniplanar tasks, all 

subjects meet agreeability standards with respect to error analysis band and nearly all measures are highly 

correlated (r > 0.80). When tasks are multi-planar, marked differences become more evident. Differences 

arise due to subject specific movement patterns and devices begin to show statistical and biological 

differences with respect to error and correlation analysis.  

A possible source for these inaccuracies is attributable to data acquisition and processing and 

specifically: (1) contamination integration drift when estimating change in local frame orientation 

(Pezzack et al., 1977) and (2) inaccurate orientation of the recorded data (Picerno et al., 2011). There are 

many techniques to correct for integration drift during position estimation (Kose et al., 2012; Mazza et al., 

2012; Peruzzi et al., 2011; Rebula et al., 2013). Drift removal techniques are similar for all axes of 

movement; therefore, error due to inaccuracies in estimated drift removal should be consistent across all 

axes of movement. However, orientation errors will not be accounted for and will cause errors in derived 

spatial information. Accuracy of data captured is reliant and a product of manufacturing error. IMUs local 

coordinate systems align with anatomical reference to record and measure kinematic outcomes. Error in 

manufacturing sensor alignment may affect the assumptions imposed when creating specific reference 

frames after movement. Typical application of IMU data requires a stationary period prior to task 

completion or development of a reference from during data collection (e.g. direction of progression, 

angular velocity measures) (Cain et al., 2016; Trojaniello et al., 2014). All collections and inertial frame 
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creation followed the same mathematical techniques and all stationary periods were sufficient for 

reference frame creation. However, another potential reason for the error may be associated with the 

calibration algorithms that create local coordinate systems. Factory calibration techniques use a 

combination of gravity and perceived magnetometer vector (north). Errors with heading direction (reliant 

on magnetometer accuracy) during calibration are subject to interference from magnetic dip (Brodie, 

Walmsley, & Page, 2008b) and structural environment (de Vries et al., 2009). The kinematic outcome 

measures that have the largest bias and variability involve movement along the mediolateral or 

anteroposterior axis. These two local axes are developed using data that is capture and reliant on the 

absolute heading direction and potentially influenced during calibration sequencing. When evaluating the 

absolute orientation (global frame) of several IMUs error maximums ranged 5.2o - 21.6o when using 

factory calibration settings (Brodie et al., 2008b). Orientations were evaluated in 24 different orthogonal 

orientations on a custom-made rig. Evaluating the relative orientation of IMUs to a known orientation can 

also produce large errors in orientation estimates (max: 9.8o), with the largest errors occurring in 

transverse rotation (yaw), 2.68-5.2o, compared to 0.92-2.2o for other component angles. Recalibration of 

the IMU improved the accuracy of orientation estimations but in every iteration the heading error 

(transverse rotation) had the largest associated error (Brodie et al., 2008b). The effects of recalibration 

created maximum errors of 1.1-2.5o, however these results were recorded from static IMUs. During 

dynamic movement on a swinging pendulum, the application of a new fusion algorithm performed better 

than a proprietary Kalman filter output different orientation accuracy results (Brodie, Walmsley, & Page, 

2008a). The fusion algorithm had a lower RMS error range, 0.8-1.3o, compared to the RMS error output 

by the proprietary Kalman filter, 8.5-11.7o, with the maximum error occurring around the Z-axis 

(longitudinal/yaw). Further, these errors are larger when the magnitude of acceleration is large. Errors in 

static orientation may cause errors to globally measured accelerations be exacerbated when these larger 

accelerations are recorded (Brodie et al., 2008a). Inter-IMU spot-checking found that the different sensed 

orientations exist for each individual IMU, because the sensed global coordinate systems during 

calibration sequences was different between IMUs (Picerno et al., 2011). During single IMU consistency 
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spot checking errors were statistically larger for transverse rotation (yaw) compared to both pitch and roll 

angles (Picerno et al., 2011). Ricci, Taffoni, & Formica, (2016) also recorded larger error about the yaw 

axis when checking orientation of the IMU. Larger error is attributed to error in the heading direction or 

rotation about the yaw axis because of the ability for IMUs to sense accurate changes in to the magnetic 

field during calibration sequences. Using on-board quaternion information, the orientation of an IMU 

compared to a measure angular deviation of turntable device were comparable (Taylor, Miller, & 

Kaufman, 2017). Angular movement derived from on-board orientation information reported minimal 

differences across small (0.2 ± 0.1°) and larger angular magnitudes (0.6 ± 0.1°), these magnitude of 

differences are also seen in previous studies that also utilized relative reference frames (Brodie et al., 

2008b). These data are more accurate because of the relative reference frame and methodologically steps 

considered to improve accuracy (consistent recalibration techniques) (Taylor et al., 2017). Without 

recalibration sensors exposure to rapid movements and high accelerations can decrease the accuracy of 

the original predicted orientation from calibration (Brodie et al., 2008b, 2008a) which could ultimately 

affect the outcome data. The algorithm in the present study associated with the Shimmer3 units outputs 

the orientation information of the IMU as it moves compared to the initial calibrated orientation. Reported 

RMS error rates are also largest in the yaw direction (about vertical) at a magnitude of average of ~1.5o 

but at least twice as large as any other axis estimation (Madgwick et al., 2011). This may be one 

potentially significant contributor to error in kinematic outcome measures since largest amounts of error 

variability occur when larger transverse rotations be recorded. 

Other possible source of error, specifically linked to between subject differences, could be the 

movement characteristics each subject performed during the tasks. In tasks one (sagittal plane hip range 

of motion), two (hip abduction), and five (stepping with hip circumduction), little to no transverse 

rotation is required. If lower limb rotation was variable between subjects then significant error between 

devices may be present in some subjects but not others. The influence of speed has already been discussed 

and could influence data outcomes. Between subject movement pattern differences are factors inherent to 

clinical assessment and for IMU data to describe human movement with kinematic outcome measures it 
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needs to be robust enough to distinguish between these factors. Although these errors exist within the 

current set of data, in most cases the differences are small for the majority of these tasks. Research 

indicates errors up to 5o difference can lead to misinterpretation for clinical intervention (Bolink et al., 

2016), error rates for kinematic outcome measures are unknown. However, if the intended purpose is to 

detect difference between movement patterns, then more research needs to be conducted to determine if 

the IMUs are precise and repeatable enough to distinguish compensatory and normal movement patterns 

in the frontal plane.  

Some noted limitations to this study are variability associated with movement execution, the 

approximate estimation of both angular movement (during rotation sequences) and drift removal, and the 

lack of clarity surrounding clinically detectable differences between two kinematic outcome measures. 

Instruction and practice were given to each participant prior to collection; however, during collection 

variability of individual movement patterns were unrestricted. There is benefit to include this variability 

because inherently during movement execution variability will always exist within and between subjects. 

When attempting to outline the agreeance between devices, restricting movement patterns to meet very 

specific standards could eliminate the variability associated within individual movement pattern 

execution. A second limitation is the estimation of linear drift during integration (from low frequency 

noise) and the approximation of angular movement during rotational sequencing. Approximation allows a 

certain level of assumption within the processing steps, and in turn allows certain levels of assumption to 

confound the results. Computational techniques to remove drift and estimate orientation changes receives 

a lot of discussion and attention. Currently, assumption need to be accepted and understood when 

interpreting results, however in the future it is recommended that these assumptions are outlined and 

interpretable in comparison with results for clinical awareness and understanding. The third noted 

limitation are unclear standards for clinically detectable change for kinematic outcome measures. Without 

clearly defined limits of agreement, it is difficult to determine if these devices are numerically accurate 

enough to distinguish between compensatory movements during a clinical task. Research should focus on 

detectable change with the óclinical eyeô in all ranges of movement deviations in order to understand the 
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accuracy and benefit of combining both experimental tools and clinical judgement to improve care and 

rehabilitation. 

In summary, IMUs are used to characterize movement patterns in clinical and research settings. 

Little research has examined the ability to detect frontal plane movements, which is important when 

characterizing many multi-planar and compensatory movements. Overall, results reveal that IMU spatial 

measures are not significantly different from measured deviations both statistically and clinically 

however, task and subject factors task influence these differences. Next steps will need to disentangle the 

error characteristics including: (1) investigating how the size of error is associated with timing of peak 

deviation within segmented data and amount of recorded angular velocity at peak deviation and (2) 

determine if IMUs are precise enough to distinguish between normal and compensatory movements. The 

second study will focus on the ability to characterize compensatory movement patterns during a clinical 

obstacle avoidance task.  
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Table 14. Clinical significance determined by correlation coefficients and error analysis for all subjects and tasks. Cells highlighted in green show 

a significant agreement utilizing the outlined technique, while red shows a significant difference. 

Movement 
Sagittal Plane 

hip ROM 

Sagittal Plane 

hip ROM 
Hip Abduction 

Knee/Hip 

Flexion 
Knee Flexion 

Isolated step 

with Hip 

Circumduction 

Isolated step 

with Hip 

Circumduction 

and rotation 

Measured 

Axis 
Anterior Posterior Lateral Vertical Vertical Lateral Lateral 

Clinical Significance WRT Pearson (r > .80) 

001 0.63 0.56 0.80 0.89 0.97 0.73 0.81 

002 0.84 0.92 0.90 0.91 0.82 0.75 0.34 

003 0.85 0.97 0.96 0.96 0.79 0.98 0.85 

004 0.79 0.42 0.96 0.98 0.96 1.00 0.96 

005 0.95 0.88 0.94 0.95 0.99 0.98 0.98 

006 0.42 0.87 0.97 0.86 0.88 0.86 0.93 

Percent 

Accepted 
17% 67% 83% 100% 67% 67% 67% 

Clinical Significance WRT Measurement Error ( -95% CI me < LOE < +95% CI me) 

001 0.112 -0.047 0.044 0 0.008 -0.041 0.031 

002 0.005 -0.004 0.014 0.014 0.004 0.052 0.095 

003 0.019 0 0.033 -0.007 -0.011 -0.001 0.025 

004 -0.01 -0.03 -0.023 0 0 0.027 0.067 

005 -0.028 -0.034 0 0.014 -0.001 0.017 0.022 

006 0.055 -0.048 0.027 0.01 0 0.013 0.05 

Percent 

Accepted 
33% 33% 33% 100% 100% 50% 0% 
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Chapter 3: Characterizing the Variability of Compensatory Movement 

Strategies in Healthy Subjects Using Inertial Measurement Units  

3.1 Introduction  

Compensatory movements are a change in movement patterns in response to dysfunction of an 

intact control system. Prosthetic fit (e.g. discomfort, misalignment), design, and amputation level (e.g. 

transtibial, transfemoral) are sources of compensations in the amputee population. The origin of these 

asymmetries dictates the ability clinicians have to restore normal movement patterns using rehabilitation 

techniques. Some researchers view these compensatory movements as adaptations by the control system 

to new mechanical abilities of the limb and are inherently the new movement pattern adopted (Hak, van 

Dieën, van der Wurff, & Houdijk, 2014; Winter & Sienko, 1988). The effect of these asymmetries and 

their relationship with secondary injuries (e.g. lower back pain) are unknown. This suggests that adaptive 

movement patterns may be optimized for gait progression while simultaneously being injurious to the 

amputee (Devan, Hendrick, Ribeiro, Hale, & Carman, 2014).  

Walking is attainable with assistive prosthetic devices after the loss of a lower limb functional 

joint. Transtibial amputation, above the ankle and below the knee, is an example of loss of a single joint. 

Deviations from their original walking pattern can occur when fitted with a prosthetic device which is 

absent of the mechanical and sensory advantage of a functional joint (Bowker et al., 1992). One of these 

deviations comes in the form of asymmetrical gait, where amputees experience differences between their 

amputated and intact limbs. When an amputee has more control (e.g. transtibial amputees versus 

transfemoral) asymmetries may be minimal because of increased sensory and mechanical control. 

Detecting these asymmetries and compensations become increasingly difficult when patients have more 

control because the deviations become less prominent. Assistance of wearable devices could help increase 

detection and accuracy of these deviations and compensations from normal walking patterns. Moving 

outside the laboratory setting is much more difficult, however many researchers have begun the 

application of IMUs to elderly, hemiparetic, amputee, and osteoarthritic populations to characterize 
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movement patterns and help understand control strategies (Muro-de-la-Herran, García-Zapirain, & 

Méndez-Zorrilla, 2014; Shull, Jirattigalachote, Hunt, Cutkosky, & Delp, 2014; Trojaniello et al., 2014).  

3.1.1 Defining the Gait Cycle with Instrumentation 

Outside of the laboratory, gait events are detected using IMU data and algorithms with explicit 

searching steps. Gait events have been detected using a single IMU located on the lower back or hip 

(Bugan® et al., 2012; Sejdiĺ et al., 2016), bilaterally on the lower limbs (Aminian et al., 2004; Aminian, 

Najafi, Büla, Leyvraz, & Robert, 2002; Salarian, Burkhard, Vingerhoets, Jolles, & Aminian, 2013), shank 

(Greene, McGrath, Foran, Doheny, & Caulfield, 2011; Hanlon & Anderson, 2009; Trojaniello et al., 

2014), shank and feet (McGrath, Greene, Walsh, & Caulfield, 2011; Rouhani et al., 2012), and feet 

(Dadashi et al., 2013; Rebula et al., 2013). The motivation to alter sensor configurations allows the ability 

to apply different detection methods that may be suitable for patient population or variables of interest. 

Impulse dampening is one challenge associated with different sensor configurations. The impulse 

detected by IMUs is smaller when the IMU is farther away from the location of heel strike (e.g. the hip 

compared to foot). To overcome these difficulties several algorithms (Kose et al., 2012; Trojaniello et al., 

2014) , thresholds (Greene et al., 2011; Hanlon & Anderson, 2009; McGrath et al., 2011; Rebula et al., 

2013) and wavelet analysis (Aminian et al., 2002; Millor, Lecumberri, Gómez, Martínez-Ramírez, & 

Izquierdo, 2014) techniques have been used for event detection. Trojaniello et al., (2014) developed a 

heuristic algorithm model to detect gait events using acceleration and gyroscopes attached bilaterally 

above the ankle joints for healthy, elderly, hemiparetic, parkinsonian, and choreic gait. The heuristic 

model outlined event search windows by removing known swing time intervals (threshold of peak 

angular velocity during swing phase). Within the respective search window, initial contact is the 

maximum AP acceleration and final contact is as the minimum ML angular velocity. These gait event 

detections showed small mean average error for initial contact timings and final contact timings when 

compared to footswitch data for all populations included (Trojaniello et al., 2014). Defining these gait 

events, as part of a personôs movement pattern, help outline specific clinical measures that can be used to 
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evaluate the quality of gait or the effects of intervention (e.g. stride length, swing time, support times). 

These measurements are defined as spatiotemporal measurements as they relate to both spatial position of 

the steps as well as timing of events that outline the step taken.  

3.1.2 Spatiotemporal Measures Change for Obstacle Avoidance 

3.1.2.1 Effects obstacle properties on clearance strategy 

Fundamental obstacle avoidance research reveals the effect visual information and obstacle 

properties has on obstacle avoidance strategies. Visually guided foot placement is necessary for 

successful obstacle avoidance, further, foot placement prior to obstacle avoidance is highly tuned for 

successful obstacle crossing (Patla & Greig, 2006). Obstacle size (Patla & Rietdyk, 1993) and perception 

of obstacle fragility (Patla, Rietdyk, Martin, & Prentice, 1996) influence clearance strategies. Healthy 

subjects tend to scale up their toe clearance and scale down their crossing speed and foot velocity values 

when stepping over the taller obstacle. Intuitively, when stepping over wider objects (increase depth) 

stride length increases but not when clearing taller objects (H.-C. Chen et al., 1991; Patla & Rietdyk, 

1993). Crossing fragile obstacles, the lead limb increases toe clearance and hip hiking but there are no 

affects to the trailing limb clearance (Patla et al., 1996). Kinematic differences exist temporally and 

spatially between limbs for obstacle clearance. Trailing limb toe height driven by knee flexion during 

obstacle clearance whereas hip flexion and hip hiking drives lead limb toe height prior to obstacle 

clearance (Figure 17 & 18). These differences are evident when comparing changes to joint angles during 

level ground walking and examining maximum toe height characteristics of limb avoidance (Patla et al., 

1996). Lead limb clearance has the benefit of real-time visual information whereas exteroceptive 

information (information of environmental characteristics) drives the trailing limb movement (Lajoie, 

Bloomfield, Nelson, Suh, & Marigold, 2012). Differences between limb clearance strategies appear to 

mitigate the risk of falling. Lead limb obstacle contact has greater risk to the stability of the system when 

compared to trail limb contact because COM movement during lead limb crossing is away from the base 

of support (BOS) while trail limb clearance moves towards the BOS. The control system reduces the risk 
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of lead limb contact by decreasing foot velocity over obstacle, increasing toe clearance and increasing hip 

hiking. These compensations are unneeded for trail limb clearance because the movement of COM is 

towards BOS and a more stable position.  

 

Figure 17. Trajectory of both lead and trail limb during obstacle crossing conditions (solid, fragile, no 

obstacle). Different toe and hip trajectories are evident from tracings of lead versus trail as they cross the 

obstacle. Image from (Patla et al., 1996) 

3.1.2.2 Effects impairments have on obstacle avoidance strategies 

Compensatory movement patterns overcome obstacles when neurological disorders or 

mechanical constraints compromise the intact system. The state of the system dictates the adopted 

movement strategies utilized to maintain primary locomotion goals (e.g. upright posture, adequate 

clearance, forward progression). The amputee population has both a mechanical restriction and reduced 

peripheral sensory information. The amputee population is at a greater risk of falling and the majority of 

falls occur during ambulation (De Asha & Buckley, 2014). During self-selected walking, amputee 

populations reduce walking speeds and adopt asymmetrical spatiotemporal patterns to maintain posture 

stability and reduce the likelihood and consequence of tripping. At faster velocities, minimum clearance is 

unaffected in prosthetic limbs when compared to intact limbs, suggesting fine-tuned ankle motion 
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controls margin of safety in response to gait speed (De Asha & Buckley, 2014). Healthy individuals 

increase safety margin of clearance under conditions with greater risk of tripping (e.g. faster velocity, 

taller or fragile obstacles). Lead limb minimum clearance is similar between an amputeeôs intact and 

affected limb however crossing speed decreases during amputee obstacle crossing (Hill et al., 1997; 

Vrieling et al., 2007). Slower walking speeds over obstacles could reflect an increase control of COM 

movement over the obstacle when control is constrained.  

Amputees compensate for reduce knee and ankle control by increasing the work at the stance 

ankle joint and maintain the lowering strategy by modifying the swing limb hip joint work during clearing 

(Hill et al., 1999). These power profiles attribute to toe clearance by using multi-planar movements or 

other compensatory movements such as: vaulting (Bowker et al., 1992) or ipsilateral hip hiking (Patla et 

al., 1996). Amputees also utilize a hip circumduction strategy to aid in the increase toe clearance during 

walking (Vrieling et al., 2007). Hip circumduction increases lateral deviation of the foot during crossing 

and aids in foot elevation. Patients with knee osteoarthritis and total knee replacements utilize the frontal 

plane to accommodate knee dysfunction, avoid onset of pain, or increase stability while clearing the 

obstacle (Byrne & Prentice, 2003; H.-L. Chen, Lu, Wang, & Huang, 2008; Levinger et al., 2012).  

 

Figure 18. Comparison of toe trajectory during obstacle clearance with increased limb flexion and hip 

hiking movement strategies (Patla & Rietdyk, 1993).  

3.1.3 Exploring obstacle negotiation strategies in healthy subjects with movement manipulations 

 Investigating patient populations increases the awareness of compensatory movements utilized by 

their associated restriction but is confounded by variable factors. Toe clearance is required for successful 
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obstacle avoidance and is a product of the lower limb joint angles and biased swing leg trajectories (Patla 

& Rietdyk, 1993; Winter, 1992). Restricting movement in a single lower limb joint examines the 

contribution of isolated kinematic properties absent of severe confounding variables. Change in 

movement pattern, as a response to single joint manipulations, in a healthy population help further our 

understanding of joint contribution and compensatory movement adoption. Using ankle-foot-orthotic 

devices (AFO), healthy subjects can replicate below-knee amputee impairments such as ankle 

immobilization. Toe height increases during obstacle avoidance with restricted ankle mobility 

(Evangelopoulou et al., 2016; Landy, 2010), however the clearance height decreases compared to 

unrestricted obstacle avoidance (Evangelopoulou et al., 2016). Assistive devices can also increase the 

lower limb mass of an amputee compared to healthy individuals. Immediate increases in ankle 

dorsiflexion are responsible for significant contribution to safe clearance when an external mass affects 

knee joint kinematics (Noble & Prentice, 2006). Ankle dorsiflexion appears to be critical for fine-tuned 

adjustments to toe clearance in both weight limb and joint restriction studies (Evangelopoulou et al., 

2016). After adaptation to the new segmental properties of the limb (increased shank segment weight) 

knee flexion and ankle dorsiflexion change towards normal walking conditions in response to the change 

of work conducted at knee and hip joints (Noble & Prentice, 2006). Walking with mechanical (i.e. 

mobility restricting knee brace) and physiological (i.e. quadriceps external stimulation) interventions are 

two different ways to impose stiff-knee gait pattern and decrease attainable knee flexion during walking. 

In response to mechanical knee restriction hip hiking influence toe clearance whereas, a combined hip 

circumduction and hip hike strategy responds to physiologically controlled stiff-knee gait (Lewek, 

Osborn, & Wutzke, 2012). In both imposed restriction techniques, individuals decreased their stance time 

on their affect limb as strategy to increase stance on limb with more control. Overall, healthy subjects are 

able to adapt to new movement patterns in response to perturbations to normal walking patterns. 

Asymmetries can arise to control for stability and avoid potentially instable postures.  

Distance of foot-off prior to obstacle clearance is another tightly controlled spatiotemporal 

measurement in obstacle avoidance (Patla & Greig, 2006). Foot placement around the obstacle also 
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changes in response to ankle restriction. Without full ankle mobility, foot placement increases before the 

obstacle to provide more time to increase the limb height for appropriate clearance. Trail limb placement 

before the obstacle increases and lead limb placement after the obstacle decreases, simultaneous change 

of these placements counteracts changes to the stride length (Evangelopoulou et al., 2016). Decrease in 

foot placement after the obstacle is also seen in amputee populations when crossing with their prosthetic 

limb (Hill et al., 1999). Decrease in foot placement after obstacle clearance allows for control of the 

center of mass clearing the obstacle and safe comfortable loading (e.g. decrease ground reaction force) of 

the affected limb. During early stance, the lower limbs act as a dampening tool to absorb the shock from 

the ground reaction force and weight acceptance (Winter, 1991). During amputee gait, the lower limb 

decreases ground reaction peak force and loading rate after obstacle clearance (Buckley, De Asha, 

Johnson, & Beggs, 2013). This is a similar compensatory movement seen in amputees and compensates 

for inability to utilize joint range of motion for support loading and ground reaction force (GRF) 

dampening. Conservative control and placement of the limb indicated by decreased peak force and 

loading rate in amputees (Buckley et al., 2013), decreased step length past obstacle in restricted ankle 

mobility (Evangelopoulou et al., 2016), and decreased foot velocity prior to foot contact after clearing tall 

obstacles (Patla & Rietdyk, 1993) could lead to investigation increased control of stability during obstacle 

clearance.  

3.1.4  Support measures to probe stability ï healthy and compromised 

Base of support (BOS) size relates to the balance during walking, larger base of support is more 

stable. Base of support changes between double and single leg support. Double leg support is when two 

feet are in contact with the ground and is often the most stable portion of the gait cycle because the BOS 

is largest. Total double support time makes up 16-22% of the gait cycle (Winter, 1991). Single leg 

support is the period when one limb supports body weight while the contralateral limb is above the 

ground to prepare for the next step. The center of pressure is the summation of all the ground reaction 

forces acting on the body. During normal gait, the center of pressure corrals the center of mass to 
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maintain dynamic stability as the base of support changes state and size. Dynamic stability during 

walking to avoid falling is important for healthy and special populations. Compensations to increase 

stability or confidence in walking pattern can be common for amputees and include reduce walking speed, 

increase step width, and increase double support time (Kendell, Lemaire, Kofman, & Dudek, 2015). 

Analysis of center of mass movement with respect to the center of pressure during obstacle avoidance 

(Huang et al., 2008) and volitional and reactive stepping responses (Singer, McIlroy, & Prentice, 2014; 

Singer, Prentice, & McIlroy, 2013) probe the dynamic stability of the motor control system. Older adults 

tend to decrease the distance between their center of mass and center of pressure during obstacle crossing, 

level ground walking, and the restabilisation phase of volitional stepping (Huang et al., 2008; Lugade, 

Lin, & Chou, 2011; Singer et al., 2014). Older adults have lower COM control by exemplifying larger 

COM excursions when compared to the final resting center of mass position after volitional stepping 

(Singer et al., 2013). Analysis of the COM and COP in a laboratory setting allow for robust descriptions 

of dynamic stability, however are not applicable outside of the laboratory setting. Temporal measure of 

gait, double support time, can provide insight to the stability control of the motor system. The BOS is 

larger and encompasses the COM during double support, whereas the BOS is smaller and the COM may 

exist outside the BOS during single support. Unilateral transfemoral amputees, increase their double 

support time when transitioning into affected single leg stance when compared to transitioning onto their 

intact limb (Schaarschmidt, Lipfert, Meier-Gratz, Scholle, & Seyfarth, 2012; Schmid, Beltrami, 

Zambarbieri, & Verni, 2005). Single leg stance times are also shorter for the amputated limb compared to 

the intact limb (Hof, van Bockel, Schoppen, & Postema, 2007; Schaarschmidt et al., 2012). These two 

temporal control features reduce the risk of falling by increasing control of the COM movement towards a 

less stable limb and reduce the time of single leg support with a less stable limb (Hof et al., 2007; 

Schaarschmidt et al., 2012). Double support phases are asymmetric when evaluating a range of gait 

velocities produces. Change in asymmetrical pattern is driven by changes to the intact limb required to 

achieve gait velocity (decrease double support and single leg support times), rather than a change in 

affected limb pattern, indicating a preference/reliance of intact limb movement (Schaarschmidt et al., 



70 

 

2012). Healthy individuals increase their double support time bilaterally when their normal swing phase is 

perturbed with decreased knee range of motion (Temel, Rudolph, & Agrawal, 2010); however, limited 

studies have examined the change in stability/support times in locomotor adaptation of healthy 

individuals.  

Spatiotemporal parameters can probe the stability of locomotor control by evaluating step width 

(Owings & Grabiner, 2004). In the amputee population, increases in double support time when 

transferring to the affected limb and step width are techniques employed to increase stability during 

walking (Hak, Van Dieën, et al., 2013; Hak, Houdijk, Beek, & Van Dieë, 2013). Changes to double 

support time detected with an IMU have evaluated the stability of movement patterns with and without 

external mass (Cain et al., 2016). Walking with a weighted backpack significantly increases double 

support time of stride and stride time increases to provide more stability for the locomotor system (Cain et 

al., 2016). IMUs have yet to examine the difference between double support phases with constrained 

walking in healthy adults to probe changes in stability of the walking pattern as an indicator an potential 

tool for compromised gait patterns. 

3.1.5 Detecting changes kinematic outcome measures with IMUs 

 The benefits of inertial measurement units in a clinical scenario provide valuable feedback for 

clinician decision making during gait assessments or haptic and sensory feedback during training (Shull et 

al., 2014). Audio biofeedback has provided increase postural control in patients with mobility and balance 

control problems (Chiari et al., 2005) and has the potential to outline compensatory or aberrant 

movements in patients with motor control problems. Sensors can track personnel walking direction and 

location without relying on GPS measurement (Ojeda & Borenstein, 2007). Clinical application of these 

devices is a smaller scale but requires more detail compared to larger scale tracking. One particular gait 

analysis method, stride-by-stride analysis, has proven to be suitable for spatiotemporal gait analysis using 

inertial measurement units (Trojaniello et al., 2014). Evaluation of the ability to detect changes to 

spatiotemporal characteristics of walking are important for clinical assessment. Stride length and width 
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estimates both increased when young healthy adults walked with their eyes closed compared to eyes open. 

Simultaneous collected motion capture data also distinguished between vision conditions and reported a 

low percent error between gold-standard MC and IMU estimation spatial data (Rebula et al., 2013). 

Tripping is main mechanism for falling in elderly and the amputee population and the ability to detect 

minimum ground clearance and the variability associated with minimum clearance can be explored with 

inertial measurement units (Mariani, Rochat, Büla, & Aminian, 2012). Spatiotemporal measures have 

evaluated elderly and neurological disorders with association to fall risk. Comparing stride length (SL), 

foot clearance (FC), and stride velocity (SV) to a motion capture system shows high correlation values in 

both elderly and healthy adults while walking along a figure-eight walkway (SL (ICC = 0.91), FC (ICC = 

0.96), SV (ICC = 0.93)) (Mariani et al., 2010). Stride length and stride velocity measures derived from 

inertial sensors were not sensitive enough to distinguish between young and elderly adults, however that 

variability associated with consistent direction changes and acceleration phases may confound those 

differences. Elderly adults exhibited lower foot clearance values measured with inertial sensors compared 

to young healthy adults during straight walking and turning. Minimum clearance distinguished between 

populations but magnitude of angular velocity at minimum foot clearance was not significantly different 

between ages showing the utility for deriving spatial measures (Greene et al., 2011; McGrath et al., 2011). 

Detecting vertical displacement of the foot can evaluate the ability to avoid obstacles in everyday life. 

Increases in height of the foot during obstacle crossing is detectable with IMU devices and not 

significantly different than gold-standard measures (Trojaniello et al., 2015). Due to surgical outcomes, 

the amputee population can have difficulty increasing their foot during swing phase, which increases their 

risk of tripping. There has been little work applying IMUs to describe vertical displacements in foot 

elevation to distinguish between normal and compensatory movements. The ability to detect changes in 

vertical displacement of the foot expands the utility of wearable sensors to examine different tasks and 

populations. 

 Inertial sensors applied to the amputee population explore asymmetries, step lengths, and walking 

speed. Integrating acceleration from a single tri-axial accelerometer on the lower back was able estimate 
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step lengths in healthy and amputee subjects (Major, Raghavan, & Gard, 2015). Estimates of step length 

in the healthy controls showed mean error of -0.1 (17.1) percent of the gold standard measure, while 

amputee mean errors increased to -1.0 (15.3) percent of gold standard. Differences between the devices 

were step dependent. Initial steps were significantly larger when estimated from accelerometry compared 

to motion capture, while subsequent steps appear to underestimate step length (Major et al., 2015). The 

large amount of variability associated with the step length error are attributed to common initial step 

outlierôs however a bias would most likely exist if first steps were removed due to consistent 

underestimation. Placement of IMU is most likely to attribute to these differences. Event detection from 

trunk worn IMUs extrapolates acceleration for event detection causing error in temporal events of gait 

(Zijlstra & Hof, 2003), accelerometers attached closer to the event of interest may have better gait event 

detection due to the impulse of the ground reaction force. Error in event detection can cause exacerbated 

differences in spatial estimation after double integration. Ankle-worn IMUs have been shown to produce 

accurate event detection across variable gait patterns (Trojaniello et al., 2014), which is important for the 

accuracy of temporal measures. ZUPT technique calculates drift-free velocity under the assumption that 

zero-velocity occurs at certain time points in the gait cycle (Peruzzi et al., 2011) or foot orientation such 

as flat foot (Ki tagawa & Ogihara, 2016; Mariani, Rouhani, Crevoisier, & Aminian, 2013; Rebula et al., 

2013). During level ground walking, with negligible change in vertical height of the walkway, removing 

drift in the second iteration of integration can improve the ground clearance estimation (Kitagawa & 

Ogihara, 2016). Stride length measurements have similar error rates to other studies estimating stride 

length but improved the estimation of vertical trajectory from ~10-20 mm (Mariani et al., 2010, 2012) to 

2 ± 7 mm (Kitagawa & Ogihara, 2016). Improvements to vertical trajectory tracking during obstacle 

avoidance are also shown with ankle worn IMUs in elderly (1 ± 10 mm) and PD patients (2 ± 20 mm) 

when compared to motion capture (Trojaniello et al., 2015). Little research has begun investigating the 

frontal plane kinematics with inertial sensors. Lateral swing parameters between genders is not different 

when calculated using inertial sensors attached to the foot (Dadashi et al., 2013). During level ground 

walking, mean lateral deviation is estimated at 0.04 (0.01) m. Determining differences between groups 



73 

 

during compensatory movements is unclear. Frontal plane kinematic outcome measures are topical for 

populations with lower limb mechanical dysfunction (e.g. amputees, knee replacement, etc.) and those 

who adopt frontal plane movements (Bowker et al., 1992; Byrne & Prentice, 2003; Hill et al., 1997; 

Vrieling et al., 2007). If IMU devices can characterize frontal plane compensatory movements, 

assessment and quality of care for these populations could utilize quantifiable measures to improve the 

care of these patients. 

3.1.6 Rationale, Objective, and Hypothesis 

The clinical use of wearable sensors could improve intervention and rehabilitation by providing 

quantitative measures to better guide clinical decision making. As revealed in study 1 of this thesis, 

inertial sensors can be used, unobtrusively, to quantify kinematic outcome measurements to characterize 

human movement. The ability to distinguish specific lower limb movement characteristics is unknown.  

The main objective of this study is to determine if spatial and temporal features of movement 

kinematics can be determined from IMU-based outcome measures by comparing normal and 

compensatory movements when obstacle avoidance and mechanical restriction challenge healthy 

individuals. Compensatory movements during obstacle stepping tasks were evoked in healthy population 

who wore a range limiting knee brace. Task conditions replicate amputee movement restrictions and 

reveal the utility of orthotic devices as a tool to research the amputee community. Specifically, the study 

set out to determine if it was possible to measure lateral limb movement, hip hiking, and limb clearance 

during knee joint constraint conditions (mechanical bracing) during stepping over obstacles. As noted, 

these task challenges are initially tested in this study in young healthy adults in an attempt to evoke the 

types of gait adaptations expected among individuals with restriction occurring due to disease or 

prosthetic intervention.  

(1) It is hypothesized that spatially derived kinematic measures from IMUs during braced knee 

conditions will be characterize by  increased lateral end point deviation compared to unlocked 

and no brace conditions for obstacle crossing and level ground walking. Further, there will 
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only be a significant difference for the obstacle condition when the subject has restricted 

range of motion (locked brace). 

(2) It is hypothesized that spatially derived kinematic measures from IMUs of maximum 

endpoint limb elevation will have a main effect of obstacle condition. Obstacle crossing limb 

elevation will be significantly different from level ground walking for all brace conditions. 

(3) It is hypothesized that spatially derived kinematic measures from IMUs of hip hiking will 

have a main effect of brace and obstacle condition. Locked brace hip hiking will be 

significantly different from both no and unlocked brace conditions. Further, increase of hip 

hiking will occur during obstacle avoidance compared to level ground walking.  

3.2 Methods 

3.2.1 Participants 

Twelve young healthy adults, absent of neurological or mechanical dysfunction, were recruited 

for this study and provided informed consent. This project was reviewed and approved by University of 

Waterloo Office of Research and Ethics. Exclusion criteria included: (1) if participants had previous knee 

injury and were accustom to a external frame knee brace, (2) had current lower limb injury that caused 

movement deviation from their normal pattern, (3) lower limb injury within the last 6 months that caused 

tissue damage, or (4) had any health complications that may interfere with exercise. Participant 

anthropometric data was collected at the beginning of each collection: mean (SD) age 23.17 (4.17) years, 

height 1.73 (0.13) m, weight 78.32 (21.04) kg, right leg length 0.92 (0.07), left leg length 0.92 (0.07) and 

leg dominance (Table 15).  
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Table 15. Participant anthropometric and descriptive information for Study #2. 

Subject Age 

(years) 
Gender Height  

(cm) 
Weight 

(kg) 

 

Right 

Leg 

Length 

(cm) 

Left Leg 

Length 

(cm) 

Leg 

Dominance 

Brace Size 

001 22 M 1.84 91.4 0.96 0.97 Right L 

002 26 F 1.66 57.4 0.84 0.84 Right M 

003 25 M 1.93 105.6 1.01 1.01 Right XL 

004 27 M 1.57 88.4 0.86 0.86 Right L 

005 19 F 1.63 54.9 0.84 0.83 Right M 

006 19 F 1.59 107 0.88 0.88 Left M 

007 20 M 1.81 48.6 0.99 0.98 Right L 

008 23 M 1.90 87 0.98 0.98 Right L 

009 24 M 1.89 88.6 0.99 0.99 Right L 

010 33 M 1.70 93.2 0.92 0.91 Right XL 

011 19 F 1.67 58.5 0.90 0.90 Right M 

012 21 F 1.62 59.2 0.83 0.84 Right M 

 

3.2.2 Collection Protocol 

 Participants completed 15 level ground and obstacle avoidance trials under three different brace 

conditions for the duration of this collection (Figure 19). An orthotic off-the-shelf knee brace was used to 

manipulate the attainable knee flexion, in specific locked brace trials, with the goal to replicate movement 

patterns in pathological gait (Figure 20). In total, participants were to complete 45 successful level ground 

walking and 45 obstacle avoidance walking trials during this collection (15 trails of each brace condition). 

Trials were excluded if participant cleared the obstacle with their right limb as the lead limb, tripped the 

obstacle, false starts, or any stumbling during starting. Participant starting position adjustments ensure 

lead limb consistency across all brace and obstacle conditions. No brace walking conditions were 

completed as the first and last block of conditions. Dividing this condition ensured that learning effects of 

compensatory movements did not linger into normal walking patterns. 

Figure 19. Block diagram outlining collection block details and sequence for Study #2. 

Block 1 - NB PRE 
- 7 Level ground 

walking trials 

- 8 Obstacle avoidance 

- No knee brace 

 

Block 2 - UB 
- 15 Level ground 

walking trials 

- 15 Obstacle avoidance 

- Unlocked knee brace 

 

Block 3 - LB  
- 15 Level ground 

walking trials 

- 15 Obstacle avoidance 

- Locked knee brace  

 

Block 4 - NB POST 
- 8 Level ground 

walking trials 

- 7 Obstacle avoidance 

- No knee brace 
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Figure 20. (a) CTI® OTS Knee Brace (Ossur (UK) Ltd, Stockport, UK) used on the present study. (b) 

Flexion Stops (Ossur (UK) Ltd, Stockport, UK) used as the locking mechanism for the knee brace to 

reduce knee flexion.  

Baseline level ground and obstacle avoidance movement patterns were collected with participants 

under normal walking conditions. The brace with full range of motion (unlocked brace) was affixed to the 

participantôs right limb (sizing followed suggestions from brace website) (Table 16) and was fitted for 

comfort of the participant. Participants completed walking trials with unlocked knee brace to determine if 

there was an affect of unlocked knee brace (passive restriction) to level ground and obstacle avoidance 

strategies. Lastly, flexion stops added to the knee brace to limit the attainable knee flexion and examine 

the ability to detect compensatory kinematic outcome measures during level ground and obstacle 

avoidance walking trials.  

Table 16. Brace sizing guideline. 

Size Caliper Measurement (Knee Width) 

Small 90 ï 100 mm 

Medium 100 ï 115 mm 

Large 115 ï 120 mm  

X-Large 120 ï 130 mm 

XX-Large 130 ï 145 mm 

3.2.2.1 Walking Path 

 The walking path was 1.25 metre wide and six metres in length. Participants were able to walk 

both ways on the walking path. Therefore, at the end participants were given instruction to turn around to 
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prepare for the subsequent trial. Instructions were read at the beginning of each block when the brace 

condition changed: 

ñThe goal of this task is to walk at a comfortable speed, down the walkway and just past the end line. It is 

not necessary to stop directly at the end line but you can stop when you are comfortable after the line. At 

the beginning of each trial please try to stand as still as possible and you can start walking on my cue. 

When you stop at the end, please remain still until I cue you to turn around and step up to the start line.ò 

During the obstacle avoidance trails an obstacle was setup at the three metre mark, halfway down 

the walkway. The obstacle was square wooden bar (1.25 m length x 0.04 m wide x 0.04 m height). The 

obstacle was set up to be 0.14 m high measured to the top edge and was placed on top of two blocks that 

were 1.25 metre apart. The obstacle was setup so that if a participant was unable to clear the obstacle, the 

bar would fall to the ground (Figure 21). 

 

Figure 21. Gait task walkway. Obstacle was placed halfway between the start and end sections and was 

removed on level ground walking tasks. Beam breakers were start up at start, end and middle of walkway 

to synchronize step counts within a certain distance and obstacle crossing timing. 

3.2.3 Instrumentation 

3.2.3.1 Inertial Measurement Units 

Shimmer3 Bridge Amplifier+ IMUs attached bilaterally to the ankles and Shimmer3 IMU 

attached to a belt above the right hip recorded human movement. A comfortable strap wrapped around the 

ankle and secured the IMU 0.04 m above the lateral malleolus. Hook and loop secured the hip worn IMU 

to a fabric belt around the subjectôs waist (ideally placed around the iliac crests of the pelvis). Shimmer 
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IMUs were calibrated following the same protocol in Study 1. Unit configurations were completed using 

proprietary software ConsensysPRO (Shimmer Sensing Inc., Dublin, Ireland). Shimmer3 IMUs were 

configured with both low-noise (±2g) and wide-range (±8g) accelerometers, gyroscope (±1000 degrees 

per second), magnetometer (1.3 kPa), quaternion orientation (9- and 6-degrees of freedom), the resistance 

amplifier, and a UNIX time stamp. Shimmer3 IMU units streamed via Bluetooth for visual purposes and 

logged data onto a 32 GB SD card for data analysis purposes to avoid missing data points lost in the 

streaming system. IMU collection frequency was set to a priori available frequencies, determined by 

Shimmer Sensing Inc., at 102.4 Hz.  

3.2.3.2 Foot Switches 

Participants were fitted with foot switches on the heel pad and forefoot of both right and left feet. 

Hypafix® tape managed wire placement and secured footswitches to bottoms of feet. An amplifier box is 

attached to the participantôs waist belt that sends a 3.5 V signal to the Shimmer3 Bridge Amplifier+ 

resistance channel that will be used to confirm foot fall detection algorithms with IMU generated signals.  

 

Figure 22. IMU placement on lower limb (4 cm above lateral malleolus). Footswitches were secured with 

Hypafix® tape to the bottom of the heel and forefoot for gait event confirmation. 
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3.2.3.3 Data Synchronization 

Three beam breakers were setup at each end of the walking path and at the location of the 

obstacle, 2 metre across the walking path. When the beam is interrupted, a 3.5 V square wave is recorded 

onto a single Shimmer3 Bridge Amplifier+ unit sitting off the side of the walking path. The 3.5 V square 

wave indicates when participants are stepping over the obstacle and would be used to capture the crossing 

stride characteristics to describe compensatory movement while participants were stepping over the 

obstacle (Figure 21). The single IMU also receives signals when the start and end beams are broken, 

which indicate the beginning and ending of each walking trial.  

UNIX timestamp recorded at the leading and last edge of the square wave recorded from the 

beam breakers along the walking path synchronized the Shimmer3 IMU units. Using the corresponding 

timestamps, data was sectioned into window of walking trial data. 

3.2.4 Data Processing 

Inertial measurement units were filtered using a dual pass 2nd order Butterworth band-pass filter. 

Low-pass frequency cut-off was determined with a residual analysis (Winter, 2009) and high-pass cut-

offs were determined from previous conducted research studies (Trojaniello et al., 2014; Zok et al., 2004). 

Band-pass filter had a passband of 0.05-18 Hz. Data was filtered using the Matlab® filtfilt  function for 

dual pass filtering.  

After processing and windowing data into walking trials from SD log data, three distinct steps are 

used to output kinematic outcome measures: (1) stride segmentation, (2) rotation of IMU signals into 

motor task frame of reference, and (3) double integration and drift removal of acceleration signals. 

3.2.4.1 Stride Segmentation 

Walking trials are segmented into stride-by-stride analysis that allows definition of walking 

characteristics per stride and reduce integration drift effect. For drift removal, the final integration value is 

known. Instances of assumed zero velocity have been previously used to de-drift estimated velocity 

signals after acceleration. Periods of zero-velocity are not common during walking, however when the 
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foot comes in contact with the ground, it is assumed no movement occurs unless there is a slip or 

shuffling gait pattern. Under this assumption instances of zero-velocity have been assumed as the whole 

stance period (Rebula et al., 2013) or specific instances, such as 40% of stance phase, which was used for 

this study (Peruzzi et al., 2011; Trojaniello et al., 2014). To segment walking trials to stride data 

consecutive footfall data is determined. Trojaniello et al. (2014) developed a footfall detection algorithm 

to detect footfall events in healthy, elderly, choreic, hemiparetic, and parkinsonian gait patterns. The 

algorithm utilizes angular velocity and linear acceleration waveforms to detect initial and final contact 

instances and relies on outlining periods of known stance and swing phases according to these sensors. 

Swing phase was defined as a period of angular velocity that is greater 30% of local maximum angular 

velocities recorded in the sagittal plane (about the z-axis). During swing phase the contralateral limb is 

assumed to be in contact with the ground. Two minimum duration thresholds are applied to known swing 

and stance phases to accommodate signal drop-out or quick oscillations around a previously used 

threshold. Detected swing periods had to be at least 100 ms in duration and time between consecutive 

swing phases minimum time duration was 200 ms (Trojaniello et al., 2014). After determining swing and 

stance phases footfall search windows are defined. Toe-off search window is the period of time between 

stance phase and swing phase, while heel strike search window is between the swing and stance phases. 

Final contact is defined as the minimum mediolateral angular velocity in FC search window. Initial 

contact is defined as the minimum anterior posterior acceleration in the IC search window (Diana 

Trojaniello et al., 2014). These footfall detection methods were applied to all walking trials to segment 

the data, walking trials were segmented into strides with final contact events as stride definition 

boundaries.  

Footswitch data confirmed gait event detection with IMU algorithm. Square wave foot switch 

data was used to detect initial and final contact using a threshold crossing. FSW threshold was calculated 

as the average of the signal recorded by the resistance amplifier received from the footswitch on ankle 

worn IMUs. Threshold crossing with a positive slope indicated initial contact and a negative slope 
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indicated final contact. After confirmation, 40% stance phase was calculated and used for de-drifting the 

velocity and position estimations.  

3.2.4.2 Rotation to Task Frame of Reference 

 Local frame acceleration vectors are rotated into a global frame of reference using methods 

described in Study 1 (McGinnis & Perkins, 2012). Inertial frame of reference was created such that, the x-

axis was anterior posterior with the direction of progression measuring positive, the y-axis was vertical 

and aligned with gravity, and the z-axis was the mediolateral axis with positive values pointing to the 

right of the participant. With this reference frame, all rightwards movements were recorded as positive 

and all leftwards movements were recorded and negative.  

3.2.4.3 Double Integration and Drift Removal 

Position data was estimated by double integrating accelerometer data in the global reference 

frame and removing drift with linear function subtraction, similar study 1. During walking trials, 

integration period occurred between assumed zero-velocity instances within each gait cycle (at 40% 

stance phase).  

With the advantage of small time intervals, linear drift is assumed during stride integration time 

periods (between 40% stance). Linear drift removal was applied to vertical and mediolateral acceleration 

signals. Drift removal to vertical acceleration signals assumes the foot returns to the level ground after 

swing phase. Since walking path is assumed to be level ground (any change in walking surface is 

negligible) this linear drift removal technique is considered acceptable. Frontal plane swing 

characteristics are improved significantly when data is de-drifted in a similar fashion along the ML axis as 

conducted on the vertical axis (Mariani et al., 2010). Therefore, de-drifting techniques were applied to 

both vertical and mediolateral acceleration signals.  
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3.2.5 Outcome Measures 

Kinematic outcome measures derived from double integrated, drift corrected accelerometer 

signals describe the movement pattern adopted to overcome obstacles. Maximum peak elevation of the 

foot during swing phase represents the change in height of foot to clear the ground or obstacle when 

walking. Maximum lateral deviation of foot during swing phase represents the frontal plane movement of 

the swinging foot during level ground and obstacle clearance. Hip hiking is the total vertical displacement 

of the hip during ipsilateral swing phase. Temporal measures of interest are defined by the gait events 

detected with the IMU footfall algorithm. Swing time is the time in seconds between the final contact 

(foot leaves the ground) to the initial contact of the ipsilateral limb (foot is in contact with ground). 

Double support time is the time between one limbôs heel strike and the contralateral limbôs toe-off. Left 

double support time is between the left heel strike and the right toe-off, while right double support time is 

between the right heels trike and left toe-off. 

Table 17. Outcome measure description  to characterize compensatory movements typically seen in the 

amputee population. 

 Outcome 

Measure 

IMU Sensor Definition 

Maximum 

Elevation 

Bilateral Shank-

mounted 
¶ Maximum vertical distance attained within the swing 

phase of gait 

Peak Lateral 

Deviation 

Bilateral Shank-

mounted 
¶ Maximum lateral deviation of the swinging foot  

Hip Hiking Hip ¶ Maximum change in height of hip during swing 

phase 

Double Support 

Time 

Bilateral Shank-

mounted 
¶ Time spent with two feet on the ground 

¶ Right DST: 

o Time (s) from RHS to LTO 

¶ Left DST: 

o Time (s) from LHS to RTO 

Swing Time Bilateral Shank-

mounted 
¶ Time between final and initial contact of ipsilateral 

limb 

 

3.2.6 Statistical Analysis 

All statistical tests performed in SPSS Statistics (IBM Corporation, Armonk, New York, United States) 

and significance was evaluated at p = 0.05. Pearson ® correlation determined the association of footfall 














































