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Abstract

Costeffective wearable sensors to measure movement have gained traction as research and
clinical tools. The potential to quantify movement with a portable and inexpensive way could provide
benefits to patient populations (e.g. amputees) to supplemestlace current clinical evaluations. For
example, characterization of frontal plane kinematic outcome measures is a relevant movement pattern to
a complex amputee population. The ability to capture such movements could have important therapeutic
opportunites. The current research worked towards characterizing frontal plane compensatory movement
patterns with kinematic outcome measures described by inertial measurement units (IMU) data in healthy
adults. This was an initial step towards developing a futagkit that could characterize normal and

aberrant movement patterns in clinical populations.

The thesis is comprised of two related studies. The first study set out to evaluate the numerical
accuracy of IMU estimated spatial measures when comparegbtd atandard system. Six subjects
completed six different movement tasks while instrumented with optical motion capture and IMUs. Each
movement task probed the accuracy of specific deviations (e.g. vertical deviation). The hypothesis was
that outcome mesaires would be strongly associated (r>0.8) and mean error would not be significantly
different from zero and the coefficient of repeatability would be within priori set limits of agreement (x18
mm). Kinematic outcome measures had small mean error biasoeuno gold standard measures and
range of subject specific mean errors showed minimal differences. Task specific differences were evident
when movement patterns exhibit large transverse rotafidrese results showed the devices have a level

of accuracythat may be suitable to characterize changes in movement patterns clinically.

The second study aimed to utilize the same techniques from study 1 to describe compensatory
kinematic outcome measures during a clinical obstacle avoidance task to differentiate between
compensatory and normal movement patterns. Twelve subjects wore |Mtdsally on the ankles and

on the belt above the right hip. An off the shelf orthotic knee brace was used to restrict lower limb knee



joint kinematics (reduce range of motion). Participants completed 15 walking trials for three different
brace condition§No Brace, Unlocked Brace, Locked Brace) amd obstacle task conditionsé€izel
GroundWalking andObstacleAvoidance) to elicit a comparison of normal and compensatory

movements. During the walking task, IMUs were able to characterize compensatoryantsvgpical

of the amputee population. Lateral deviation of the swinging foot was significantly larger during obstacle
crossing with a locked brace compared to no brace. Maximum elevation of the limb was significantly
larger while crossing obstacles comgmhto level ground walking and was precise enough to discern
elevation differences of No Brace elevatfoom both Unlocked and Locked Brace conditions. Hip hiking
was also significantly larger in the locked brace obstacle crossingfrénace obstaclerossing. Swing

time was longer when the limb was braced and during obstacle crossing when compared to level ground
walking. Healthy subjects had no significant changes to double support time compared those exhibited by

amputees during walking.

Overall, dfferences between IMU and gold standard measures are present. Mean error
differences are present for certain tasks and criteria for agreeability between devices is not satisfied.
Descriptive analysis of low subject mean error ranges across the majdaitkeindicate a potential
utility in these measures to distinguish between movement patterns. During the clinical task, when knee
mobility was manipulated compensatory movements were significantly different across conditions. This
study provides evidender the utility of IMU devices to support clinical gait analysis with quantifiable

measures.



Acknowledgements

First, | would like to thankny supervisoDr. Bill Mcllroy, his ability tochallengeand encourage
me throughout the entirety of this thesis projecttieeninstrumentain the development my scientific
thinking and motivationl would alsolike to acknowledge Dr. Stephen Prentigis,supportduringboth
my graduate and undergraduaterlvbasallowed me to explore research with a unique perspedtara

forevergrateful for the opportunity to studayith the guidance from both of these professors

Second, | would like to thank my examination committee, Dr. Andrew Laing and Dr. Steve
Fischer. Their support never wavered throughout the duration of this project and their unique perspectives
on this project helped strengthen the end reddlisng my timeat the University of Waterloo, | have
also had therivilegeto have interactions with Drs. Nancy Theberge, Jim Frank, and Ron McCarville, all
who have mentored and supported me in one waypather To all my friends within the Kinesiology
department, you have been instrumental in my success and | am happy tetaloped such strong
friendships within the department. In particular, |1 would like to recognize Benoit, Jordan, Jeff, Maureen,

and Gary for the support in the early years

Last, | would like to thank my family. Cheryl and James, for their continuepaost throughout
these past yearsknow you are as thrilled as | am for this part of my journey to be finished and | am
happy to share that success with you. To Valerie Bigelow, for constantly supporting me in every decision
| make and always approachidifficult situations with optimism. Your personality is inspiring and | am

lucky to have you by my side.



Tabl e of Content s

LISt O FIQUIES. ...ttt erea et e e e e e e e e e mens s s e e et e e e e e e e e s s enenr e e e viii
IS 0 ) =0 [ X
1] 0o [8 o ({0 o F PP T PRPR P 1
Chapter 1 : LILErature REVIEWL........uuiiiiiiieiiiiiieeee sttt e e e e e e e e e e e e e e e e e e s mnessnb s n e e e e e eeeeas 3
1.1 Prevalence of Amputee Population and Scope of the RiSING.ISSUE............ccoviicceeiiiiiiiinnee. 3
1.2 Factors Contributing to Gait Deviations in the Amputee Population..................ccccecoinvnnnnnnd 4
1.3 Clinical Gait ANAIYSIS.......ccoiiiiiiiiiee e e et e e e e e e e e e s ae e s e e e e e e e e e e e aaaaaaaaas 7
1.3.1 THE GAIL CYCIB....eeeeiiiiieiie it ieee e et e e e e e e e enens e r e e e e e e e e e e annnes 10
1.4 Inertial MeasUremMENT UNILS.........uuiiiiiieiiiiiieees sttt e e e e e e s s ne e e e e e e e e e s s nn e nsneeeees 12
O oot =1 (= 0 0 =3 (= OO PRPPPPR 13
R €Y (0ol 0] o] =P O PP POPPPPPTPPTPTRPPN 14
1.5 Accuracy of Data Acquisition Using Inertial Measurement Units..................cooceeeeiinnnnnnns 14
1.5.1 Error Types in MEMS Accelerometers and Rate GYroSCOPES.............ccvvvieemrivvrreeeeenns. 15
1.5.2Environmental influence on data quality..................ooi i ieeeiiiiiic e 16
1.5.3 Estimating Spatial Measurements from Acceleration Data..................ccceeevvevviiviinnnnns 17
1.6 Application to Human Movement ANAIYSIS..........uuuiiiiiiiiiiieeeeeeeeeeeeeeeee e e e e eeeeneneanaaes 21
1.7 Thesis Objectives and RaAtiONAIE..............uuuiiiiiiie e e 22
Chapter 2 : Investigating the Agreeability between InekMiehsurement Units and 3D Motion Capture
during Isolated MOVEMENT TASKS.........cocueiiiiiiiie et e et eeeet et e e e e e e e e e smme e e e e e e e 24
2.1 Spatially Derived Estimates (IMU) compared to Galandard Measures...........ccccvvvvvvvvveenn.. 24
2.1.1 Other applications of IMU and their Clinical Significance...........ccccccvvvvvieeeeiiiieiieneennnnn. 25
2.2 Rationale, Objective, and HYPOTNESIS.........coiiiiiiiiieee e e 27
pZ0C 301V =1 1 T To LRSS 28
PG TR o= T4 (o o = g1 T OUUPPPPRRPt 28
P2 T [ 11 1 U 0T 17> ) o PP 28
2.3.3 COllECHION PrOtOCOL.....ciii i ittt e e e e e e e e e e e emme e e e e e e e annnes 30
2.3.4 DALtA ANAIYSIS. ....eeiiiiieiiiiiiite ettt et e e e e e et ennnr e e e e e e e e e e nnnrnees 34
2.3.5 OULCOME IMEASUIES.......iieeititi et eeeee ettt e e e et ettt mmoteee bt e e e e e e e eesbban s smmmne e e eeeeeenne 37
2.3.6 STALISTICAI ANGIYSIS ... .eiiiiiiiiieei e e ee bbb e e e e e e e s s e enass bbb e eeeaeeas 37
A =] 1 £ 38
2.4.1 Concurrent Validity of IMU Spatial Estimates and Optical Motion Capture.................. 39
B I =T o1 1= o o 53
Chapter 3 Characterizing the Variability of Compensatory Movement Strategies in Healthy Subjects
Using Inertial MeasuremMent UNILS........ccooiiiiiiiin s ceeeie s r et e e e e e eeree e s e e e et s s e e e e e e e e eenmmmeeeeenanes 62
K 700 11 To [ o 1o o PSS PRRURRRRSPRS 62



3.1.1 Defining the Gait Cycle with Instrumentation...................oo oo 63

3.1.2 Spatiotemporal Measures Change for Obstacle Avoidance..........ccccccveeeeiiiiiiieniennnnn. 64
3.1.3 Exploring obstacle negotiation strategies in healthy subjects with movement manipugions
3.1.4 Support measures to praability i healthy and compromised..............ccccvvviiieeennnenn. 68
3.1.5 Detecting changes kinematic outcome measures with.IMUS.............cccoovvcccevvvvvveennnnn 20
3.1.6 Rationale, Objective, and HYPOtNESIS.........cciiiiiiiieee e 73
G V11 o o ST P PRSP RRTT PP 74
T R o T[] 0 = g 74
10 702222 0o | L= o1 1 0] o N = o' o Lo o 75
3.2.3 INSITUMENTALION. .....eviiiiiiee e e ee ettt e e e e e eea bbbt e e e e e e e e s s bbb bennas bbb aeeeeeeeeeeeans 77
3.2.4 DALA PrOCESSING. .. uteeeiiieeiiiiiiiitineeiittee ettt e e e e e s s s b reeas bbb s e e e et e e e e s e s s bbb ennassbbnnreeeeeeeeeans 79
3.2.5 OULCOME IMEBASUIRS. ... ..ceeiiitiu e ettt ieeee e ettt e e e et e ettt bt e e bbb s e e e et e eeebba s smmnsa e e eeeeeennes 82
3.2.6 StAtiStICAl ANAIYSIS ... ...eeiiieiiiiie et e e e e e e e e e as 82
GRS 1L £ OO PPRPPPERPRP 83
3.3.1 Gait Event Detection AlQOrthm...........oooviviiiiiiiii e 83
3.3.2 Effect of Unlocked and Locked Brace Conditions on Normal Unrestricted Movement Patterns
.............................................................................................................................................. 84
3.3.3 Main Effect of Brace and Obstacle ConditiQn................ueviiiieemiieeeeiniiiieeee e 85
3.2 DISCUSSIONN....ceeiiiiiiititeeeee e e e et e e e e e e ettt et e e e e s smme e e e e e s bbbt b et et e e e e e e s ammne e e s anssbbeeeeeeeeeeeennmnnnsannd 94
(O F=T o] (=] g @0 [od [V =] o] o R 102
=] (=] = o SRR 104

Vii



Li st of Figures

Figure 1. Shimmer3 Inertial Measurement Unit (Shimmer Sensing Inc., Dublin, Ireland) with factory
calibrated local coordinate system deNOLE...........ovvvviiiiiiiies e 13
Figure 2. Rigid body and IMU placement on lower limb (4 cm above lateral malleolus). The rigid body is
instrumented with four smart IRED markers and setup to allow IMU attachment over rigid body

(o0 01511 £ U (o110 o TP PRSP PPPPPRPPPRRPR 29
Figure 3. Block diagram outlining collection sequence for Study #1 with all 6 tasks.................. 30
Figure 4. Sequence of movements for Task 1. Subject complete sagittal plane hip range of motion,
starting at and retUrNiNg 10 FESL........coi oo e e e e e e e e e e e e e e e aesrerer s e e e e e eaaeeas 31
Figure 5. Sequence of movement for Task 2. Subject start at rest, hip abduction laterally deviates the leg,
and they return to reSting POSITIQN. ........cooiiiiiiie e ieeer e e errer e e e e e s e e e e eerreeeaeeees 31
Figure 6. Sequence of movements for Task 3. Subjects start at rest, lift their knee towards their chest (hip
and knee flexion) and retUIMN ROST............ooooii oo rrre e e e e e e e eaeeeaaaeeaaeeeeananrennnes 32

Figure 7. Sequence of movements for Task 4. Subjects start at rest, flex their knee and return to resting
01051 (o o PP 32
Figure 8. Sequence of movements for task 5. Subjects start in a staggered foot position (left in front of
right), complete single isolated step and volitionally induce hip circumductian......................eeee. 33
Figure 9. Sequence of movements for task 6. Subjects stast@wggered foot position (left in front of

right), complete a single step and volitionally induce hip circumduction and hip rotatian............ 33
Figure 10. BlaneéAltman plot of differences between IMU spatial estimate and motion capture
measurement for anterior deviation during sagittal plane hip range of motion task.................... 40
Figure 11. BlanéAltman plot of differences between IMU spatial estimate and motion capture
measurement for posterior deviation during sagittal plane hip range of motion task................... 42
Figure 12. BlaneéAltman plot of differences between IMU spatial estimate and motion capture
measurement for lateral deviatidaring isolated hip abduction task...............ccccvviiiieees 44
Figure 13. BlanéAltman plot of differences between IMU spatial estimate and motion eaptur
measurement for vertical deviation during hip and knee flexion.task..............cccccvvieeeinins 46
Figure 14. BlaneAltman plot of differences between IM§patial estimate and motion capture
measurement for vertical deviation during knee flexion task..............ccccooviieeeiiiiiiiiicieccceee e 48

Figure 15. BlanéAltman plot d differences between IMU spatial estimate and motion capture
measurement for lateral deviation during swing phase of stepping with hip circumduction.task.50
Figure 16. BlanéAltman plot of differences between IMU spatial estimate and motion capture
measurement for lateral deviation during swing phase of stepping with hip circumduction and rotation
1= 1S U PTURTRRR P 52
Figure 17. Trajectory of both lead and trail limb during obstacle crossing conditions (solid, fragile, no
obstacle). Different toe and hip trajectorae evident from tracings of lead versus trail as they cross the

obstacle. Image from (Patla et al., 1996)...........uuuiiiiiiiiiie e 65
Figure 18. Comparigoof toe trajectory during obstacle clearance with increased limb flexion and hip
hiking movement strategies (Patla & Rietdyk, 1993)........cccooiiiiiiiii e 66
Figure 19. Block diagram outlining collection block details and sequence for Study #2.............. 75

Figure 20. (a) CTI® OTS KneBrace (Ossur (UK) Ltd, Stockport, UK) used on the present study. (b)
Flexion Stops (Ossur (UK) Ltd, Stockport, UK) used as the locking mechanism for the knee brace to
LT0 (B ToT N =T 1 1o 76

Figure 21. Gait task walkway. Obstacle was placed halfway between the start and end sections and was
removed on level ground walking tasks. Beam breakers were start up at start, end andf wialétlgay

to synchronize step counts within a certain distance and obstacle crossing timing..................... 77
Figure 22. IMU placement on lowBmb (4 cm above lateral malleolus). Footswitches were secured with
Hypafix® tape to the bottom of the heel and forefoot for gait event confirmatian........................ 78

viii



Figure 23. Lateral deviation of the right limb during clinical gait tasks comparing the lateral deviation that
is present during obstacle avoidance and level ground walking with three different brace conditions (no
brace, urdcked, locked brace). Negative values represent movement to the right (laterally) for the right
limb. Significant differences (*) and not significant differences) are denoted on figure................ 86
Figure 24. Lateral deviation of the left limb during clinical gait tasks comparing the lateral deviation that
is present during obstacle avoidance and level ground walking with threerditfeaee conditions (no

brace, unlocked, locked brace). Negative values represent movement to the right (medially) for the left
limb. Significant differences (*) and not significant differences) are denoted on figure................ 87
Figure 25. Hip hiking measures of the right hip during clinical gait task comparing hip vertical deviation
during obstacle avoidance and level ground walkirth three different brace conditions (no brace,
unlocked, locked brace). Significant differences (*) and not significant differenssate denoted on

Figure 26. Right limb swing time during clinical gait task comparing swing time during obstacle
avoidance and level ground walking with three different beaclitions (no brace, unlocked, locked

brace). Significant differences (*) and not significant differenoes) @re denoted on figure............. 92
Figure 27. Left limb swing time during clinical gait task comparing swing time during obstacle avoidance
and level ground walking with three different brace conditions (no brace, unlocked, locked brace).
Significant differences (*) and not sificant differencesi{.s) are denoted on figure....................... 93



Li st of Tabl es

Table 1. List of commoamputee gait deviations, outline in th#éas of limb prosthetics: surgical,
prosthetic, and rehabilitation principlgBowker et al., 1992).........cccoieiiiiiiiiii i e 5
Table 2. Clinical tasks and objectives for Amputee Mobility Predictor (Gailey et al., 2002).......... 9
Table 3. Example of task description from Amputee Mobility Predictor (Gailey et al., 2002)........ 10
Table 4. Mean error (SD) reported by Jamiello et al., (2015) for step length estimates in four different
populations using OFDRI techniques todiédt, calculate, compare spatial measurements from IMUS,

AN PrESSUNE SENSON MAL.. . .uiiieieeeiiiiieerinrestreeereeeeeeeassssstesanaasssseereeeeeessaansssssesamanssnseeeaeeesssnnssssnes 25

Table 5. Summary and definition of each outcome variable.................coo e, 34

Table 6. Subject specific IMU calculated and optical motion capture measured spatial anterior deviation
during a sagittal plane hip range of motion MOVEMENL.............c.uuiiiiiieeeieie e 39

Table 7. Subject specific IMU calculated and optical motion capture measured spatial posterior deviation
during a sagittal plee hip range of Motion MOVEMENL...............ovviiiiiiiiice e, 41

Table 8. Subject specific IMU calculated and optical motion capture measured spatiafi&tiatadn

during an isolated hip abdUCLION tASK...........c.ooeiiiiiiiieeei e 43

Table 9. Subject specific IMU calculated and optical motion capture meagatéad gertical deviation

during an isolated hip and knee flexion task............cccccoiiiiiccc i AD

Table 10. Subject specific IMU calculated and optimation capture measured spatial vertical deviation
during an isolated knee flexXion task...............coo i i e AT

Table 11. Subject specific IMtalculated and optical motion capture measured spatial lateral deviation
during swing phase of an isolated step with volitional hip circumduction..............ccccccieeeeeeeeenn.. 49

Table 12. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation
during swing phase of an isolated step with volitional hip circumduction and rotatian................. 51

Table 13. Measerror, confidence interval (95%) and coefficient of repeatability for all outcome variables
UIING EACKN TASK. ...ttt e ettt e e et e e e e e e e e mnns b e e et e e e e e e s e nnnns e s enensreees 52

Table 14. Clinical significance determined by correlation coefficients and error analysis for all subjects
and tasks. Cells highlighted in green show a significant agreeurtikzihg the outlined technique, while

red shows a significant differENCe.............uiiiii e 61

Table 15. Participant anthropometric and desempitiformation for Study #2............coevvvvvvvivvvieenn.. 75

Table 16. Brace Sizing QUIAEIINE.........uuuieiiiiimme et eeee e s e e e e e e e e s smmmeeeeeeeeaes 76

Table 17. Outcome measure description to characterize compensatory movements typically seen in the
AMPULEE POPUIALION. .....coi i eeee ettt e bbb rrnreeeeeeeaaaaaaaeaaaaeeassenans 82

Table 18. Results from correlations of gait event detection using IMU algorithm compared to the timing
from footswitches on the DOttOM Of fEEL..........ooii e e 83

Table 19. Summary of results of PRE and POST brace condition outcome measures............... 84

Table 20. Mean, SD and ANOVA results summarizing spatial measures during clinical gait.tasR1



| ntdu ot i on

In clinical settingscompensatory behaviours are quantified using visual observations and basic
task evaluation (e.g. Can the patient complete the taSkfician abilities to detect aberrant movements
are valuable however, limited whegnantitativeanalysis is require(Ong, Hillman, & Robb, 2008)

Clinical assessment tools ageickto administer but subject tbceiling effect thatandecrease the
sensitivityof assessmestin contrast, incorporating wearable sensors to provide information about the
complexities of compensation (sagittal and frontal plane) could be used to @owimte meaningfudait
evaluationto guide clinical decision making in a manner that is efficénd simple to administer.
Understanding thapplication ofinertial measurement unitd{Us) to deteccompensatory movements

in alternateanatomicaplaneshas the potential teupport the application and implementatadrihese

tools to a clinical setting.

The longterm objective of this work is to progress towards the development of a clinically
relevanttook i t t hat quant i f patternagingpveatablecirmertiad sensofo thee me n t
initial stepsthe current thesis explores the ability of wearable inertial sensorsasurespecific lower
limb movement characteristicompensationi healthy adultshatare ofterassociated with clioal gait
characteristicsThe firststudyprovided acompaison ofestimated spatial measurements derived from the
linear acceleration values of the inertial measurement agitmst gold standard kinematic
measurementSubjects completed a series aflesded movement tasks focusing on movements in the
frontal plane and those movements that may reveal themselves during compensatory tsovemen
Comparing two measurement todidU derived spatial estimatemdmotion capturespatial
measurements, outliséghe precision and peatabilityof derived spatial measurements when compared to
researckgrade measurement tools. The secstody utilizedinertial measurement units to determihe
derived spatial measurements from IMUs seasitie to distinguish bateen normal and compensatory
kinematic outcine measuredndividuals completed an obstacle avoidance task wioitenal walking

patternsveremanipulated with the use of a mechanical device (i.e. commercially available functional



knee brace) that limits tremount of attainable knee flexiohhe study airad to distinguish adopted
crossing strategiemmployed by young healthy adults during this difficult task comparbegeline

avoidance strategies.



Chapterl:Li t erature Review

Throughout the day, humans depend on an adaptable walking pattern to move around in their
surroundings. The robust nature of our movement allows us to navigate complex environments and avoid
potential hazards; as we encounter hazards, we are able toimstialdlity and continue with forward
progressionWhen components of our control system are altered (e.g. paghateghanical
perturbations, or injuries) the flexibility of our system is revealed. The loss of a functionaigoint
amputationis an exanple ofadisruption to the intact locomotor systéHill et al., 1997) Amputation is
the surgical removal of a part of or an entire limb segment or extréButyker, Michael, & American
Academy of Orthopaedic Surgeons, 1992)e removal of a limb segment is associated with mechanical
(e.g.functional joint) and semsy dysfunction €.g.afferent information) related to normal movement
patterngPitkin, 2010) Assessing movement patternghie amputee populan isimportant for assistive
device prescription and rehabilitation intervention. Quantitative assessment can be difficult because each
amputation is unique in its own way (e.g. level of amputation, individual abilities prior to amputation,
length of reglual limb, etc.). Among other difficulties, the dispersion of these individuals across
geographical regions decreases the likelinmothptureof access to fully equipped clinics or laboratories
for robust analysis of movement patterns. The accessitalfiprtableanalysis tools is importaifor
improving patient assessmente#fable sensor systems have gained widespread usage in human

movementnalysishowever have been limited to sagittal plane movement description.

1.1 Prevalence of Amputee Populatiorand Scope of the Rising Issue

In Canada, 5342 patients underwent lower limb amputation between 2006 and 2009; this dataset
was limited to acquired loss of limb, therefore did not include pediatric or trauma related amputations
(Kayssi, de Mestral, Forbes, & RoeNagle, 2016)Among these amputees; 29% were abavee
amputations, 65% belcknee, and 6% were ankieot or toe amputations and th&in cause for these

amputations were diabetic complications (81% of reported amputatitegsi et al., 2016)n larger



populations, such as the United States, an estimated 185 000 persons undergo amputation of an extremity
each yar (upper or lower). A main cause for amputation are complications arising from diabetes mellitus
or vascular disease. Due to the prevalence and rise of diabetes, the number of amputations associated with
vascular complications continues to r{gallingham, Pezzin, & MacKenzie, 2002; Ziegi&raham,
MacKenzie, Ephraim, Traviso&, Brookmeyer, 2008)Improvement of prescribed devices and surgical
practice has improved care for those living with amputations; however, these improvements have not
eliminated secondary complications associated within the amputee population

In the Lhited States, amputation associated complications are prevalent in therlong
prosthetic userEphraim, Wegener, MacKenzie, Dillingham, & Pezzin, 200Besecomplications
include phantom, residualy intact limb pain, and lower back pain. For traumatic amputees, lower back
pain was recorded as being equally comparable to phantom limb pain, and was more prevalent in above
knee amputees than in belduvee amptees(Kulkarni, Gaine, Buckley, Rankine, & Adams, 2005)
Anatomical issues, such as unbalanced hypertrophy of the psoas muscle, can be a contributing factors in
back pain. Likewise, biomechanical issues such as, decreased stargitiabgleading to increase
impulse forces), slower walking sped#silkarni et al., 2005pr greater transverse plane rotational
excursions of the lumbar spifgorgenroth et al., 2010hay contributdo pain or be maladaptive
movements as a result of pain. These are also secondary issues to the amputation procedure and are in
part, caused by our adaptation to the prosthetic device or due to our rehabilitation procedure. Accurate
and robust movement dgsis (i.e. motion capture, force plates, etc.) of individuals would be necessary in
order to determine root cause of secondary @din.utility of accurate and portable wearable gait

analysis system prove to be valuadbfel satisfy many of these issues

1.2 Factors Contributing to Gait Deviations in the Amputee Population

Current clinical examination of amputees involves a battery of functional tasks to assess the
ability of the amputee with their new device. FromAltlas of Limb Prosthetics: Surgicdtrosthetic,

and Rehabilitation Principlea full description of these tests are availgBlewker et al., 1992(Table



1). The definition of a gait deviation is as any movenpattern that is diffemt from that seen in a

healthyintact population. Common deviations in amputee populations can be tgusaidalignment or

dimensions of the prosthetic, restricted range of motion at a specific joint, lavuseakness or

contractires,habits and fear of fallingBowker et al., 1992)

Table 1. List of common amputee gait deviations, outline inAllas of limb prosthetics: suical,
prosthetic, and rehabilitation principlg8owker et al., 1992)

Movement Deviations

Descriptions

Causes

Lateral Trunk Bend

Wider Step Width

Hip CircumductiorDuring

Swing

Vaulting with Intact Limb

Swing Phase Whips

Foot Rotation at Heel
Strike
Foot Slap

Uneven Heel Rise

Terminal Impact

Uneven Step Length

Exaggerated Lordosis

1 Leaning towards the T

prosthetic limb during stance
phase

Increased size of base of 1
support with abduction at the
hips

Amputated limb follows a 1
laterally curved trajectory
during swing phase

Increase in height of the 1
entire body by employing
plantar flexion with the stanc
limb

Medial and lateral movemen'
of the toe immediately after
toe-off

Lateral movement of the fooi
at heel strike

After heel strike the foot 1
plantar flexes uncontrollably
Uneven heel rise refers to th
height the heel reaches after
toe-off occurs while the knee q
flexes during early swing
phase

At heel strike the prosthetic
limb enter full extension

Asymmetry exists between
the limb step lengths 1

Posterior lean of the trunk
during stance phase q

Amputee may bend laterally du
to weakness or pain indicators
from their amputation or when
an individual walks with an
abducted gait

Contracted hip abductors or
insecurity in
ability to maintain stability
Insufficient knee flexion, knee
lock (decreasing knee flexion),
foot set in plantar flexion
Insufficient knee flexion, knee
lock (decreasing knee flexion),
foot set in plantar flexion

Mainly due to alignment and
functionalfeatures of the
prosthetic
Heel cushion issues with
prosthetic foot
Plantarf | e x i on
provide enougffriction
Insufficient heel rise:

o Prosthetic device knee loct
Excessive heel rise:

o Tension within the

prosthetiadevice

Fear of buckling, therefore
conservative walking pattern
adopted
Pain or insecurity with prostheti
Restriction to hip range of
motion
Contractures to hip flexors
Weakness to hip extensors or
abdominal muscles

bunm




Transtibial amputeemay experience gait deviatiodse functionahbilities of the individual
aftersurgery Bi-articular musclesspaming two joints are uniquely impacted by amputatidivo
examples of these muscles are the rectus femoris in the quadriceps group and gastrocnemius in the
posterior compartment of the shaitke rectus femorimuscle provides extension at the knee and
supports hip flexion. The gastrocnemius plantar flekesankle and assists the hamstrings and popliteus
during knee flexiorfMoore, Dalley, & Agur, 2006)Damages to these musctkging amputatiorcan
effect strength at the knee and may cause change to their action or increase stiffness at the proximal joint
(e.g. increase stiffness at the hip joint). In early stance, the transtibial amputees can experience excessive
knee flexion due to inappropreatlignment of the socket and the prosthetic foot or inability produce
sufficient knee stiffness. On the contrary, absent or decreased knee flexion during early stance may occur
in response to weakness of the quadriceps m(Bolgker et al., 1992)Commonly, the quadriceps
muscle of the residual limb experiences muscle atrophy after tlearzamputation. Quadriceps atrophy
decreases the ability of the knee extensors to batteenal knee flexor moments during early stance
and weight acceptance phases of the gait ¢Rdevers, Rao, & Perry, 1998; Schmalz, Blumentritt, &
Reimers, 2001)Adopting a stiff knee gait pattern is an adaptation that decreases the need for a powerful
eccentric contraction by the quadriceps muscles during early sRowers et al., 1998)

Adaptations to pain and discomfort are also glent in amputees. To avoid pain, the amputee
mayadoptshort steps with the affected linobb increase sway in the trudkiring walking. At midstance,
the timing of knee flexion can occur earlier or later than required and lower the height of the amputee
during stanc€Bowker et al., 1992)During swing phase, foot whips can occuréaponse to reduce knee
flexion, movement control and prosthetic alignmenttfanstibial amputees. Foot whips occur whies
prosthetic foot moves medially or laterally during swing arelassociatedith trippingin amputees
during walking(Seymour2002) Movement pattern changes can occur in order to avoid discomfort at the

intact joints or at the sockéib interface.



1.3 Clinical Gait Analysis

Analysis of gait in clinical settings is focused on both primary and secondary gait deviations.
Primarygait deviations are those that are directly associated with the impairment or change in control
where secondary gait deviations can be considered adaptive or compensatory to primary d&Viaions.
patient populations are severely impaired tbgn rel on suchcompensatory movements to travel
among their environment (Wiext, 1991). lower limb amputeesequire the use of compensatory
movements and assistive devicegmprove their dayto-day lives(Pitkin, 2010) In special populations,
such as amputeasiovement patterns are associated with large bands of variability because the level of
mechanical and neurological control is unique to eswputationLocal and confined laboratory space
may limit the ability capture the variability necessary for comprehensive understanding of population
wide gait deviations. This pitfall to laboratory confined movement analgsieases the potential for
evidence based practice interventions and device manipulations in the final stages of rehal@iglion
2009) Limited access to quantitative tools has impacted amputee research as the majority of current
studies with sufficient power mainly repaelif-reported qualitative resul{€ondie, Scott, & Treweek,
2006) The application of portable wearable devices for quantitative clinical gait assessuidnt ¢

improve the comprehension of movement pattern characterization for patient populations.

Essentiato successful management arehtment is the identification of primary or secondary
gait deviationsQuantifying meaningful measures of movement charistics are also beneficial to
patients with respect to evaluating rehabilitation and/or device f{{@iote, Durham, & Ewins, 2008)
The combination oftterapistknowledge of concepts and current challerayedcosteffective toolscan
increase the impact of rehabilitatidn most caseglinicians have a difficult time implementirspme of
the more advared tools due to training amdst(Geil, 2009) Thereis a continuing need to develop new

methals to quantify movement that will be more successfully translated to clinical practice

Of the available tools used clinicalipovemeniscreeningools arequick and inexpensive

methods to evaluate mobility and movement characteristics of patient popsifatiese tools arsubject



to ratererrorandcommonly report inaccuracies whassessing severe gait deviations or when accurate
guantified measures are required (e.g. joint ar(@e) Pilar et al., 2016; Maathuis, van der Schans, van
Iperen, Rietman, & Geertzen, 2008)ith advancing technology in human movement science, accurate
assessment @irogressiomwill help improve the quality of devices and rehabilitation interventions. In an
optimal scenario, clinical use of 3D gait analysis to drive interventions would be common pfaasice.

effective tools provide a potential utility to meet these speciain@ments.

The Edinburgh Visual Gait Analys{EVGS) and the Amputee Mobility Predictor (AMP) are two
assessment tools used to evaluate patient populations who could have severe gait dEviations.
experienced clinicians (10+ yearsgitgdeviations are detectabéth observational assessment and
screening tool¢Del Pilar et al., 2016Read, Hazlewood, Hillman, PrescdtRobb, (2002) developed
the EVGSto evaluate joint and segment angles at gait events of children with cerebral palsy.
Discrepancies across and within raters arises when quantitative (e.g. joint angle, lateral deviation)
evaluation is required for the progress of rehabilitation or assistive débiekRilar et al., 2016;

Maathuis et al., 2005)Reasons for discrepancies acrosers was due to joint angle estimation
technique. A main difference in quality of results de@rdthe experience of the raters. Reliability is
larger in those that had extensive gait analysis experience and when reviewing children with higher
function(Del Pilar & al., 2016; Ong et al., 2008)he variable nature and difficulty of visually estimating
guantitative measurements indicates the potential for unreliable examinations with visual gait analysis and
movement screenindhe Amputee Mobility Predictor eustes amputee performance of 20 different
tasks with and without their assistive deviteassess mobility (i.dalance, turning, obstacle avoidance,
and stairs(Table J (Gailey et al., 2002)Clinicians are required to evaluate the walking pattern by
analyzing certain characteristics, such as: foot height during swing, variable cadence, dieprdraiep
width (Gailey et al., 2002). Quantitative assessment of these specific tasks can help provide fall
prevention or identify patterns that are associated with increase faBaskk, Wagenaar, & Holt, 2006)

Clinicians evaluate the amput2eatng, svheeelzérdscotey t o c o mp



represents inability to complete and a two score represents completion without assistaiocesble
interruptions (Table B(Gailey et al., 2002). Gailey et al., (2002) proved to have highiater reliability

(r = 0.99), the examiners were all taught concurrently in a single session, with one instructor. Therefore,
the transfer of knowledge was not difat between examiners. Additionally, the tested AMP tasks were
not extensive assessments and need little description or quantitative output from the examinaternnter

reliability is lower when tests are more extensive and include reporting of gtiamtiteeasures.

Table 2. Clinical tasks and objectives for Amputee Mobility Predictor (Gailey et al., 2002)

Item Task

1 Sitting balance

2 Sitting reach

3 Chair to chair transfer

4 Arises from a chair

5 Attempts to arise from ehair
6
7
8
9

Immediate standing balance
Standing balance
Singlelimb standing balance
Standing reach

10 Nudge test (balance reaction)
11 Eyes closed standing balance
12 Picking up objects off the floor
13 Sitting down

14 Initiation of gait

15 Step length and height

16 Step continuity

17 Turning

18 Variable cadence

19 Stepping over obstacle (4 inches or ~10 cm)
20 Stairs

21 Assistive device selection




Table 3. Example of task description from Amputee MobilRyedictor (Gailey et al., 2002)

Score Description of Variable Cadence

The examiner instructs the patient to walk a distance of 12ft fast as safely possible 4 tim
a total of 48ft (14.63m). Speeds may vary from slow to fast and fast to slow, \Gagenge.
his task may also be completed with an assistive device although care must be taken th:
patient is not extended beyond his/her capabilities.

The patient is unable to vary cadence in a controlled manner.

The patient asymmetricallpcrease his/her cadence in a controlled manner st
that step length markedly differs between legs, and/or balance must be re
established with each step.

2 The patient symmetrically increases his/her cadence in a controlled manner
that step lengths asxjual and balance is maintained.

= O

Although these assessments require minimal time to adminisér ifinutes) (Maathuis et al.,
2005) and provide information in a simplistic manner, the inability to produce reliable assessments
increases theoncernof singularly relying on these elements for proper rehabilitation and assessment of
interventions. The tests can also provide inaccur
as seen with the reliability across examiners (Del Pilar ,e2@L6; Maathuis et al., 2005; Ong et al.,
2008). Associated with movement screening tools are patient reported outcome measures. Pain and
subject perception influence these reported meag8tegendapsley, Schenkman, & Dayton, 2011)
Using tools to quantify movement patterns provide more objectivitypared to selfeporting scores

that can be influence by perception.

1.3.1The Gait Cycle
The gait cycle is defined as the period between two heel strikes of the ipsilater@Mimhér,

1991) There are two distinct periods within thait cycle, stance and swing (68% and 4239%

respectively) which indicate whether the foot is in contact with the ground ondidoainded by heel

strike (HS)and toeoff (TO) gait events. Heel strike (HS) is the moment at which the foot touches the
ground regardless of the anatomical landmark. In pathological gait, these events are also known as initial
contact and final contact because events may not align with anatomical definitions. Final contact is the

instance at which the limb finishes stancegghand enters swing phase. The use of experimental
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equipment to determine heel strike is important for stride definition and step characteristics. Explicit
definitions for these gait events help define the event for clinical practice. Measuring humarentovem
with force plates, heel strike and to# are defined when the force signal passes the threshold of 20 N
(Johnson, Buckley, Scally, & Elliott007; Kiss, 2010; Zeni, Richards, & Higginson, 2008hen force

plates are not used, kinematic data can define these gait events. When individuals are walking, the foot
oscillates around the pelvis. The heel marker is maximally anterior to the pesiey @t heel strike. The

toe marker is maximally posterior to the pelvis cluster abfb€Zeni et al., 2008)During overground
walking, usingthe optoelectronic technique provided 98% of gait events within two data frames (0.0334
s) of the ground reaction force technique used in the same trial, providing an accurate determination of

gait events with optoelectronic techniqgeni et al., 2008)

Spatialmeasureslefine gait characteristics using measurement of distance (e.g. meters,
millimeters). Temporal measures of gait describe the monepadtern using measurement of time (e.g.
seconds). A step is the distance between the same gait events on contralateral limbs. For example, the left
step period is between the RHS of the right foot to the LHS of the left foot. Between these two epents st
length and step time are calculated. Stride time and distance defined by two consecutive gait events (e.qg.
RHS to RHS) of the ipsilateral limb. Stance time, double support time, single leg support and swing time
are all temporal measures that add quative value to the amount of time individuals spend in certain
support phase@inter, 1991) Changes to spatiotemporal measurements can reveal control in support,
forward progression, and the implias of impairment on walking patterns in patient population during
level ground walking (e.g. asymmetrical gait, cadence/stride length relatio(tdalp)vVan Dieén, et al.,

2013) Obstacle avoidance threatens an individual 6s
clearance required during swinggse. Modifications to level ground walking kinematics are needed to
overcome barriers in our walking path, and have been well documented for lj@éaktiy, Garrett, &

Bohannon, 1999; Huang, Lu, Ché&ang, & Chou, 2008; Sparrow, Shinkfield, Chow, & Begg, 1996)

elderly (H.-C. Chen, AhtorrMiller, Alexander, & Schultz, 1991; Hahn & Chou, 2004; Hill et al., 1999;

11



Lu, Chen, & Chen, 2006and impaired walking conditiorfgvangelopoulou, Twiste, & Buckley, 2016;
a. H. Vrieling et al., 2007; A. H. Vrieling et al., 200@hangeso spatiotemporal and kinematic outcome

measures can probe control strategies for obstacle avoidance.

1.4 Inertial Measurement Units

Theportable and lightweight natuoé wearable sensodiversifies their application to a variety
of scenariosExtracing valuable informatiorusesdifficult computational techniqudbatlimits the
expansion of these measurement devices to widespread clinical use without proprietary software and
expensive user subscriptions. These compact and lightweight tools providewextiaia relative to a
fixed axes system built within the IMU. Some of these manufactured devices can stream data via
Bluetooth devices or log with dmoard storage. This allows data collection in any natural environment
suitable for the participant andrflong periods without constraining them to a laboratory setting.

Inertial Measurement Units (IMUs) are typically comprised exial accelerometers and
gyroscopes. The inclusion of these three tools describes movement with 6 degrees of freedom. Curre
IMU systems typically act as strap down systems that each have their own local coordinate system (LCS)
(Figurel). The IMU components (i.e. accelerometers, gyroscopes) are commonlymaichined
electromechanical systems (MEMS). One example of aridhereasuremdrunit is the Shimmer3 IMU

(Shimmer Sensindublin, Ireland)(Figure 1)
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Figure 1. Shimmer3 Inertial Measurement Unit (Shimmer Sensing Inc., Dublin, Ireland) with factory

calibrated local coordinate systet@noted

1.4.1Accelerometer

Accelerometers measure linear acceleration along the three axes of the local coordinate system.
Combination of gyroscope measurements and trigonometry techicapleslp define acceleration in the
global coordinate system and define vectors that exist along two different axes.

Mechanical accelerometers have a physical load suspended by a series and sequence of springs.
When movement occurs, the displacement expeee by the load is proportional to the force acting on
the load Acceleration is calculated with the second law of motion

0O do (@D)

Solid-stateaccelerometers work using surface acoustic waves (SAW). The accelercomsists
of a long beansuppoted at one end and a mass at the other. When the beam bends there is a change in
wave frequency produced by the beam and this change is proportional to acceleration.

MEMS accelerometettsavepiezo resistive, capacitiwensingand piezoelectric componisior
movement sensingyEMS have many advantages compared to traditional accelerometers making them
the preferred method for todayod6s devices:

9 Lightweight and small

9 Durable
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1 Long lasting battery life
1 Inexpensive
9 Portable devices

1 Low maintenance (i.e. caliéting, repairs, etc.)

1.4.2Gyroscope

A gyroscope is a tool used to measure the rate of angular velocity of an object in space. The
number of axes available for the gyroscopes indicates how many orientation angles are measurable with
the device. Current MEMS tds typically have traxial gyroscopes that can measure rotations about all
three local axes. The positive advantages of these gyroscopes are similar to those mentioned regarding
accelerometers.

Classic mechanical gyroscopes were tools that containeel timgs that twisted about gimbals
that defined the ringbés axes of rotation. These m
three rings. Angles between these adjacent rings output the amount of rotation that occurred when an
object moved. fie most accurate gyroscope mechanism uses optical deviielh usdight interference
to measure angular velocit@urrent MEMS gyroscopes use the Cori@lffectto measure angular rate
movement. Vibrating elements within the device measure the Caffdist which records a force that is
explained in a Aframe of r ew),amasartgvath aveldcivy{)i ng at an
ex per i en (Moodmanf2007)the vibrating devices can range from a whee tuning fork, or

a mass that will vibrate along an axis, or MEMS technology.

1.5 Accuracy of Data Acquisition Using Inertial Measurement Units

Systematic errors due to calibration sequences, calculations or issues with model application
during processingan affect entire data collection sessions. Random errors occur from uncontrollable
events such as, electronic noise or marker flickering (Chiari, Della Croce, Leardini, & Cappozzo, 2005)
Environmental factors and processieguirementsre among the nrasources of error when estimating
position from IMU data.
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1.5.1Error Types in MEMS Accelerometers and Rate Gyroscopes

Errorthat affects MEMS devicasomesfrom different sourcesategorizednto two themes:

random error and systematic@trRandom error ignavoidable andnpredictable error sources that can
affect the outcome of data but is typically small and capturedpnittessing techniques statistical
models. Systematic eraremethodological, operator, or instrumental esourcegEvans, Goldie, &
Hill, 1997; Litman,2015) Methodological errors are present when proper protocol is not used during
collection or processing of raw data. Operator errors occur when recorded signals are contaminated or
erroneous due to equipment misussirumental error occurs when eri® present due to errors in the
instrumentation. These can be due to misaligned axes of sensors, invalid calibration, or errors to the
calibration constants/formulas. Many hardware companies provide systematic process for calibrating and
configuring devies to an acceptable range, however understanding the propettiebatdware is
important for quality data collection. The environment where the MEMS device is used can also affect
instrumental error. Ferrous metals and magnetic fields within viafitlye IMU affect the accuracy and
precision of the devicg®icerno, Cereatti, & Cappozzo, 201Rjcerno et al., (201Xompared the
accuracy of inter and intra MEMS precision and found that calibration validity determines treecyadu
current MEMS performancén addition to previous error|ectromechanical systems are subject to both
electrical and theral-based noise contamination. Allowing sensors to adapt to their environment reduces
temperature effeci{gle Pasquale & Soma, 201These eors can appear idifferent forms, such as:

9 Constant bias

1 Thermemechanical white noise

9 Flicker noise/bias stability

1 Temperature effects

i Calibration errors

Constant biags an offset in the output signal (from the accelerometer or rate gyroscope) causing an

error in integrated orientation data that grows quadratically over(¥Woedman, 2007)
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Thermemechanical white noise the contamination of a signal output through the thermo
mechanical interference. Imgfeation of the interfering white noise can cause random walk and increased
variability of the position estimatiofywoodman, 2007)

Flicker noiseor bias stability which is an effect of theonstant biasmentioned earlier.

Flickering can cause tta@nstant biaso change over time. This complicates the removal of bias which
can affect integration techniqu@&/oodman, 2007)

Temperature effecre changes to the temperature of the recording device. These changes can
also affect theonstant biasnentioned earlier and complication the integration tegles(\WWoodman,
2007)

Calibration errors are bias errorsalculated during calibration process. These are errors in scale
factors, axes alignment and the calibration of the output value in correspondent to the raw voltage
(Woodman, 2007)

Bias errorpresent in the signal can appear as a drift of the signal. When drift is presamnt, usi
integration techniques to obtain position/orientation data will cause error in the velocity and position

estimationgWoodman, 2007and correction factors need to be utilized

1.5.2Environmental influence on data quality

Structural elements of buildings (i.e. ferrous metals, elevattryjnfluence IMU data and
orientation estimatiorAn evaluation of the microelectronic measuring IMUs in both static and dynamics
environments allows for an understanding of these potential affects. Karen Litman (2008) tesffiedtthe
of environmental andictural influence oishimmer2r Inertial Measurement Units (Shimmer Sensing,
Dublin, Ireland) dat&ollection quality. Different conditions (i.e. rural and clinical settings, influence of
large amount of ferrous metal and an acrylic box) compared thigyqpfadaw IMU data (e.g.
acceleration and gyroscope) and orientation informaton acrylic box measurements, a spirit level
hel ped align the acrylic cube axis with gravity.

aligned vertical accelation with gravity vector and were considered accurate if percent error was within
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predetermined 1% magni t ubdaageqirGnvirdnmeatr(rdral gdica@lpddn o r ,
not affect the static accelerometer and magnetometer data, but ctwalogasion within a building did

affect both magnetometer and accelerometer data. Magnetometer measurements were unaffected by
location of the cube; however, changes to the location (inside or outside of acrylic cube) of the IMU
influenced the accuracyf measured acceleration. IMU location inside the cube were not statistically
significant when compared to the calibrated 1.0000 g, while outside the cube was statistically different.
When located outside the cube difficulty balancing on the edges of thedlging could have caused

variability of axis alignment compared to using the secured equipment within the box. The variability that
may exist in the casing structure outside the box compared to the secured nature of the IMU in the box
could have been trmource of this error and statistical difference. In dynamic scenario, the angular

velocity of the long axis (¥axis) of the IMU was statistically different from the turntable values and

could be due to the instability of the orientation used to measeiNé-altis angular velocitylitman,

2015) Ferrous metals, often used in building materials, can affect data acquisition by a magnetometer in a
clinical setting(de Vries, Veeger, Baten, & van der Helm, 2009is is important when considering the
implications of erroneous magnetometer data and sensor fusion algorithms. Shimmer Sensing Inc.
(Dublin, Ireland) have incorporated both nine and six degseé&gedom orboard algorithms to

determine the accuracy of recorded ddMadgwick, Harrison, & Vaidyanathan, 2011)sing sixdegrees

of freedom boycotts the influence of magnetometer data and relies on the accuracy afl acquire
acceleration and rate gyroscope data to predict the next iteration of the dataset. Careful setup needs to be
attended to when securing IMU devices to align with anatomical reference frames and the development of
inertial reference frames needs specialsideration due to the errors that can occur with local frame data

acquisition.

1.5.3Estimating Spatial Measurements from Acceleration Data

The effects of low frequency noise during double integration acceleration data has been well

documente@Pezzack, Norman, & Winter, 1977; Ryo Takeda et al., 2014; Thong, Woolfson, Crowe,
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HayesGill, & Jones, 2004; Thong, Woolfson, Crowe, Hayal, & Challis, 2002; D.A. Winter, 2009)

IMU users have adopted sevetethniques to reduce the effect of low frequency noise when integrating
rate gyroscope measure to calculate orientation of the IMU and accelerometer to obtain position data.
These major steps when deriving position data from acceleration are as folloreprésenting data in a
known coordinate system, (2) divide irgloorter andnown segments of data, and (3) remove integration

drift by updating segmented data to knovatues

1.5.3.1Creating MotofTask Coordinate Systems

Calibration processes create a lamadrdinate system (LCS) aligned to the casihtMUs. The
LCS may not aligrwithin axes of interest when the IMU moves and rotates during movement (i.e.
anteriorposterior axis may be measuring vertical acceleration components). Magnetic north
(magnetomaetdrs), the gravity vector (accelerometer) and their cross product can create a global coordinate
system (GCSjMcGinnis & Perkins, 2012)Building material interference can cause large errors with
respect to qualityfanagnetometer data collection; therefore representing these data based on orientation
change from GCS may not be practicable. Securing IMUs with anatomical relevance allows a
representation of the limb movement through space, often referred to as tmiealdtame(Cappozzo,
Della Croce, Leardini, & Chiari, 2005Representing data in these frames allows accurate amaanter
subject reliability and evaluating segment movements with respect to anatomical planes of movement. A
task specific frame ofeference (motor task coordinate system (MTCS)) is often recommended and used
during human locomotion analygiSappozzo et al., 2005; Wu et al., 2002 orthogonal coordinate
system typically has the direction of progression as the anterior posterior-axis)(vertical (yaxis),
and medidateral axis (zaxis) during gait analysi€appozzo et al., 200%rojaniello, Cereatti, & Croce,
2014) A strideby-stride analysisllows for flexible updating of the MTCS to align with gait progression.
Using ankleworn IMUs varying the swing time windows altered the estimated mean differences in
direction of progressimaverage of 15 degrees durimgalthy and mile¢raumatic brainnjury populations

(Trojaniello et al., 2014)The estimation of foot displacement had more variation and larger discrepancies
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across these different heading directions when compared to motion qd@pbjaeiello et al., 2014)

Using discrete periods of swing time and suceesgait cycles may not be applicable to patients with

altered swing phase characteristics or large gait deviations. An anatomical relevant frame of reference
relying on principle component of sagittal plane angular vel¢€ityn et al., 20163lso has the potential

to be influenced by aberrant swing phase movement patterns. An alternatieel mauld be to develop

an inertialframe referace system that uses gravity and projects tlad yaxis onto a horizontal plane

(Cain et al., 2016; KGinnis & Perkins, 2012)The representation of accelerometer signals in a known
orientation will allow calculable clinical gait parameters to evaluate movement patterns and behaviours in

both healthy and pathological gait regardless of movement pattern

1.5.3.2Segmenting Data for Short Integration Intervals

Low frequency noise can introduce inaccuracies when integrating accelerometer(Bignzdsk
et al., 1977; Thong et al., 2004)hen quantifying segment angles using unilateral gyroscajpes; &
Granat (1999)sed two different drift correction methods. Qeehnique was to reset the original
inclination angle when drift occurs and another was to apply agagh filter with a 0.3 Hz cuiff.
Correlations for joint angle and inclination angle were strong when compared across shank gyroscope
locations (r = ®4) and when compared to motion analysis system (r > 0.90). The application-of high
pass filters and resetting to known values has proved to be valuable when integrating accelerometer
signals. The goal of high pass filtering is to create a drift/noisesigeal for integration over time to
estimate positiofiThong et al., 2004)The length of integration time and the netemtaminated signals
are the main influencers of inaccuracies associated with position estilffdimnyg et al., 2004, 2002)
Integration drift is assumed &zt as a linear function during short integration inter{@&tk, Mazza, &
Della Croce, 2004)Difficulties exist when selecting the window of integration to capture human
movement of interest. Efforts to increase the accuracy of position estimation focused on imprdving pos
processing of accelerometer signals and techniques to outline accurate and shorter integration time

periods.
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Segmenting the time series data into known time intervals, $tyidéride analysis, is one
common technique to reduce the integration intefMails segmentation technique divides larger time
series data into smaller segments between two known points within the gait cycle. Although the foot
continuously moves during gait, instances of assumedvatogity are advantageous because it allows
for an assumed known removal of integration drift over the short time pé&tisa, Cereatti, & Della
Croce, 2012; Peruzzi, Della Croce, & Cereafiil 2, Sabatini, MartelloniScapellato, & Cavallo, 2005;
Trojaniello et al., 2014)Different definitions have described zero foot velocity: the entirety stance phase
(Sabatini et al., 2005}liscrete sectiondRebula, Ojeda, Adamczyk, & Kuo, 20138nd specific instances
(Trojaniello et al., 20149f the stance phase. Although the zeetocity assumption is commonly used
there are inaccuracies embedded into algorithms when this assumption is used. Derived velocity data
from different optical motion capture locations revealed errors in stridehlesgtmations when zero
velocity was assumgdPeruzzietal.,, 2011) Dependi ng participantds gait s
movement tracking device there are differences inestédgth estimation (fron0.07to -3.3 percent
differences) and timing of minimum velocity (31:957% stance pls& durationPeruzzi et al., 2011)
Errors associated with derivation may influence erranittome measumomparisor(Peruzzi et al.,
2011) Understanding the influence of these differences between measures for clinical utility is unclear.
Incorporating these limitations to the evaluation of IMU spatial accuracy is importanvfaml@some

understanding of the limitations to these integrated estimations.

1.5.3.3Removing Noise and Drift Contamination

Removing signal noise has underwent phases of filtering techniquespatgHilters are
commonly used to remove low frequency noise with a range of frequenoff€ftom 0.025 0.1 Hz
(Boonstra et al2006; Kose et al., 201Zrojaniello et al., 2014)The Optimally Filtered Direct and
Reverse Integration (OFDRI), an expansion to the Optimal Filtered ditergOFI) technique, filters
data with a series of higbass frequency cff values to determine an optimal @it frequency. The

cut-off frequency that produces minimum error in the final known data point, aftephgghfiltering and
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single integréon, is deemed the optimal eotf frequency(Cereatti, Trojaniello& Croce,2015; Kose et
al., 2012;Trojaniello et al., 2014; Zok et al., 2004 weighted average between a forward and reverse
integrated acceleration is used to calculate afigé velocity estimatiofKose et al., 2012frojaniello

et al., 2014)Without correcting for time to peak amplitude or the weighted function, this teehoan
attenuate peaks of interest, which ultimately affect the estimation of positon. Implication of signal
attenuation could alter maxima when time series data is not symmetrical. Assuming linear drift is
unaffected by temporal alignment and correctecity measures creating a dfffee estimationRebula,
Ojeda, Adamczyk, & Kuo, (2013}ssumed linear drift over short time periods to remove drift from the
velocity estimate over time. This simpler method assumes the differetveedn the beginning and final
integration accumulates to the amount of drift during the integration process. Results indicated
comparable estimations of stride length (within 1% error) and estimated directional change in stride
variability (RMS within 4%for step width and length variability) when walking with their eyes closed
(Rebula et al., 2013A variety of drift removal and estimation techniques corrects estimations of velocity
and position from acceleration. Error prone estimations may be inevitable but understanding the
implicationsand assumptions surrounding each technique will mitigate compgLeror when

extracting conclusions.

1.6 Application to Human Movement Analysis

Inertial measurement units (IMUs) are gaining momentum as a mogasuring device because
thar lightweight and coseffectivenature Onboard sensor fusion exists with these devices providing
valuabl e and accurate information about the senso

Harrison, & Vaidyanathan, 2011; Mazza, Donati, Mccamfagerno, & Cappozzo, 2012).

Inertial measurement units (IMUs) can accurately detect and measuesents and stride
definitionswhen compared tmstrumented gait mats (Trojaniello et al., 201¥)U data has successfully
defined @it event definitiosin amputee population (Selles, Formanoy, Bussmann, Janssens, & Stam,

2005). Thepattern of foot to ground contact is uniquespecial populations (e.g. amputee gait).
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Amputations at the ankle or higher can remove or limidearticulationsin thesescenarios, initial
contactspatiallycoincides withinal contactand phasesuch aflat foot, heel rocker and heeff are

missing Due to these changes, gait event algorithm development dwalgplicable tthe population

of interest rather than apithg generaheuristicsacrossall populationsCombination of the gyroscope

and accelerometers used for healtidividualshas proved to be robust enough for healthy populations as
well as some neurodegenerative plagions when detecting initial and éihcontact event§lrojaniello et

al., 2014).

In the amputee population, spatiotemporal and kinematic gait deviations are not restricted to the
sagittal plane. Significant gait deviations can occur in the frontal plane (e.g. lateral foot deviation) during
the swing phase of the gait cycle. When foot clearance is challenged (i.e. stepping up onto a raised surface
or over an obstacle), these deviations become a major contributor to clearancéHitletal., 1997)

Obstacle avoidanagccurs many times in a single day amsdves as valuable task when evaluating
movement patterndVhen crossing obstacles complex multiplane compensations maintain stability and
increase limb movement, specifically when normal movements are unattainable, and therefore is sensitive

to reveal aberrant mement patternahenmobility deficiencies are present

1.7 Thesis Objectives and Rationale

The first objective of this thesis e determine the agreement between spatial measures using
costeffective wearable sensors and a motion capture system when célogleinematic outcome
measuresThese kinematic outcome measures quantify compensatory movements (in both frontal and
sagittal planes) during simple isolated movement tasks. A key focus is to detern@bdithan
revealing specific frontal plane movents relevant to gait compensatidasted in healthy adults but
simulate those movemerarticular to thause of prosthetics (e.g. lateral foot deviatjons

The second objective, of this thegidl be focused on the use of wearable sengonsvestigate
compensatory movement patterns in the during normal and restricted limb movement conditions

during an obstacle avoidance tasRrincipally the objective is to determine if the desicandetect
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kinematic characteristics of provokedmpensatgr movemerg. Subsequently, an objective will be to
outline variabilityof temporal and spatial outcome meastogsrovide an initial indication of the

potential to reveatarialility of compensatory strategiel the current study, healthy adults will lwa

under different task conditions with and without a unilateral limb constragwdkecompensatory
behavior in response to simulatiorfglte movement dilenges imposed by amputation gwdsthetic

use. The simulation of a movement restriction se¢hdramputee population (e.g. decreased knee range
of motion) applied to the healthy population vgilirve as a first attempt to differentiate between
normative and compensatory movement patteetessary fofuture evaluation in an amputee

population. Tks information can help support defining gait deviations and development ofkittool

available for future clinical use.
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Chapter2.l nvestigating t hel mMagrrteiealbi |
Measurement Units amdr3bgMdtsiodbmt

Movement Tas ks

2.1 Spatially Derived Estimates (IMU) compared to Gold StandardMeasures

Current position estimations from IMU data are comparable to gold standard measurements,
howeverresults are confounded wigssumptionsinderlyingaccuracyclaims Inertial measuremeninits
(IMU) analyze humamovement in a spatial manner. During selfected levegjround walking, ertical
center of mass movemedérivedfrom inertial measurement data iglabal reference frameompared to
gold standard measuremernitéean vertical diglacement error betwedlklU and motion-capture MC)
datawas-0.047 = .060m across all subjects, with a range-@fL287 0.06 m across subject&sser,

Dawes, Collett, & Howells, 2009Accuracy of COM vertical displacementiisprove when velocity rad
positional datas dedrifted. De-drifting requires the last temporally known integrated valhéh is
typically assumed zero and applies zeetocity updating techniqu&UPT) to dedrift between these
time points Utilizing the ZUPT can affect striidlengths estimations b§.3% error for foot worn IMUs
and rises t63.3% error for shank worn IMU®eruzzi et al., 2011Evaluation of the ZUPWas
completed on derived motion capture data and in a global frame of ref@Pemaezi et al., 2011¥ptride
lengthestimations are strgnwhen the ZUPT and optimal filtering techniques are appBadie length
errors from a single hip worn IMU compared to MC are 0.009 + 0.017 m for the right leg (ipsilateral to
the IMU) and-0.008 + 0.016 m for the left Idgontralateral side)These deved stride lengthsindergo
correction methods to reduce the influence of pelvic rotatiohip worn IMUs(Kose et al., 2012)MU
sensors placed bilaterally on the féeebula et al., 2013)r lower shank segmen{§rojaniello et al.,
2014)can remove the pogirocessing and assumptions regdifrom a sigle hip mountedMean stride
length parameters agreed within 1% error wb@mparing estimations from foot moedtIMU to a
portable MC devicéRebula et al., 2013Mean error of stride length errors range fro1®% stride length

for five different populations when comparing shank mourtédd and instrumented walkways (e.g.
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healthy, elderly, hemiparetic, parkinsonian, and chof&igjaniello et al., 2014)Reporting mean error
can decrease the perceived error between two devices, however range of datavided Bland
Altman plots (Table 4haslow variability error estimate@ess than £5 cm(Trojaniello et al., 2014)
Vertical displacement of the COM during walking weell defined using IMU datéEsser et al., 2009)
Using similar data vertical displacement of the foot can be recorded using ankle or foot nhidlustebh
elderly and Parkinsodiseaseatients, differences between MC and IMU vertical estimates were not
significantly different during over ground walking or obstacle crossing {@skganiello, Cereatti, &
Della Croce, 2015)The variability of erroreomparingMC and IMU is greater than stride length data
reported early using identical methods (vertical meraor: elderly (1 £ 10 mm),[P(2 £ 20 mm))
indicatingchanges to movement patterns or larger amounts of varialiétyeral distinction of
movement patterns was the fo@ursl pecision of the devices were not discus$tgsearch revolves
around the appiation and utility of these devices during walking and balance tasks. Little research
focuses on the precision between the gold standard MC and the spatial estimations from IMU data with

focus on the movements in the frontal plane and excursion througjplmplanes of motion.

Table 4. Mean erro(SD) reported by Trojaniello et al., (2015) for step length estimates in four different
populations using OFDRI techniques todidt, calculate, compare spatial measurements from IMUSs,
and pressure sensor mat

Population Mean Error (m) +2 SD (m) -2SD (m)
Elderly -0.001 0.043 -0.046
Hemiparetic 0.008 0.062 -0.046
Parkinson -0.002 0.043 -0.047
Choeric 0.01 0.077 -0.58

2.1.10ther applications of IMU and their Clinical Significance

Instrumented gait analysis using wearable sensors may support clinical dewgiogbecause
of ceiling effects and inaccuracies associated with movement screening tools. Many wearable toolkits for
clinical evaluation are on the marK&oetenberg, Luinge, & Slycke, 200&)d proprietary to laboratory
use(Cuitti et al., 2010; Yang, Zheng, Wang, McClean, & Newell, 20E2aluation outside the developer

centers test the reliability across environmental settings andsamcerrorsLeardini et &, (2014)

compared RiabloE (CoRehab, Trento, Italy) to opti
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thorax angles during clinical tasks. Mean error between devices falls within clinical acceptable range
(£5°) for knee flexion and extermi but extends to the limits of clinical acceptance range for lunges and
squatting. Although mean error falls within the acceptable boundaries maximum error sizes consistently
fall outside the acceptable range. Similar resuéisereported for thorax angs during functional tasks
(lunges, squattingBolink et al., (2016¥tudied frontal and sagittal pelvis angles during fdifferent

clinical tasks (gait, sito-stand, and stepping onto a block) using IMU and optical motion capture. Frontal
and sagittal plane pelvis angles have strong agreement for correlation measures (IGG >88)0,For

the majority of individuals and clinical tasks reported mean errors are within the suggested clinical
agreement (error less than 9.9MU outcome measures have reported spatiotemporal and trunk and
pelvis range of motion differences betwdwralthy and OA populations during these clinical outcome
measure$Bolink, Van Laarhoven, Lipperts, Heyligers, & Grnm2012) Using the combination of
accelerometer and gyroscope signals two dimensional sagittal plane thorax, pelvis and upper leg angles
correlate highly to the optical motion capture system .Q) and indicated low RMS values for segment
angle erro(RMS error < 3.9 (Boonstra et al., 2006Evaluating lower limb joint angles with IMUs in

both the sagittal and frontal planes also report high correlation V@lakseda, Tadano, Naigawa,

Todoh, & Yoshinari, 2009aMeasurement tools have high agreement for hip and knee flexiension

joint angles ( > .85) but variability between subjects influences the agreement for hip abduction and
adduction { = .89,r = .62,r = .64).Error in hip abductionadduction measuregereattributed to error in

the internalexternal rotation at the hip. Reported measurement error magnitudes are borderline clinically
acceptable when evaluating measurement error (HE#-57), Hip Ab-Ad (3.30), Knee FE (4.65)),

however standard deviations and variability of individual trials are not expressel limits our ability

to make claims about clinical significance using an error andlyaleda, Tadano, Natorigawa, Todoh,

& Yoshinari, 2009b) The application of more IMUs to a segment increases the available information for
segment angles. A 3D reconstruction of foot angles using fiduUs lattached to the foot produced

significant detail about foot orientatigRouhani, Favre, Crevoisier, & Aminian, 2012Jthough mean

errors for all subjects and gait cycles was clinically acceptabt®rding to correlation strengthere
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were no variability and subject specific degported. Nonetheless, IMUs were on average reporting
correlations values € .93), which are considered clinically significant. In a clinical setting joint angle
descriptions were able to distinguish between ankle osteoarthritis groups and healthyogrjoigs

range of motion in all movements of interéRbuhani et al., 2012Y his section reflects upon somkthe

current validation and reliability studies using IMUs to detect specific kinematics during clinical tasks.
Strong correlation values are reported (.85) but most studies do not report measurement error as a
reliability or validation tool. Deterimation of tool accuracy incorporating error measurement

encompasses random and systematic error and allows for an interpretable understanding of accuracy for
clinicians(Vaz, Falkmer, Passmore, Parsons, & Andreou, 20113)erstanding #error associated with
wearable tool implementation help build the base knowledge for these devices and their potential
application to clinical settings. Initiating the
movement patterns is a secbpillar for these devices to gain momentum and to excel our knowledge
about advantages and disadvantages in these ta@kitsito, 2005)Past research and application of

tools suggest operational acceptance in a clinical setting.

2.2 Rationale, Objective, and Hypothesis

To advance use of IMUs to assess human movement in clinical settings there needs to be
continued worko determine thagreement betweegold-standard measures of motiand spatially
derived IMU movement trackingVhile proprietary wearable systems (e.g. APDM, XSENS) have
undergone the rigor of reliability and validity studi@shin their respective t&s. The objective of this
first study is to understand tlagreement between spatially derived movements, measured with
commercially available and cesffectivelMUs, in contrast ta gold standarcheasuremer(pptical
motion capture)Contrastingthe pe& deviationduringa series of isolated movements will explore the

differences between these two devicks analyze this objective:

(1) It is hypothesized thapatially derivedIMU) and spatially measurgdptical motion

system)movements will be highly eeelated(r>0.8)for all peak amplitudes calculated
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(2) Itis hypothesized that @an error between devicedlvwhave high agreemertbpecifically
high agreement will be determined if no significant error bias exists, a 95% confidence
interval encompasses thiee of equality (zero error), araimount of error variabilityvill be
low, thecoefficient of repeatability (CRof all errors measured will fall within the a prioats

limits of agreement (18 mm).

Accepting these hypothesegyuld suggest that agreemdretween the two devices is acceptable and

spatially derived movements would &&tisticallyaccurate compared to optical motion capture.

2.3 Methods

2.3.1Patrticipants

Six young healthy adultebsent of neurological or mechanical dysfungtiwere recruited for
this study University of Waterloo Office of Research and Ethiemgewed the study protocdhll subjects
provided informed consent prior to participati®articipantanthropometric dta (SD) wasgollectedand

summarizedmean age 233 (1.2) years height1.70(0.04 m, weight75.92(12.42 kg.

2.3.2Instrumentation

2.3.2.1Motion Capture

Particpants were instrumented with motion capture and inertial measuremensuniertus
Optotrakmotion capturesensorgNDI, Waterloo, Ontariojecorded movement oigid bodyattached to
the lower leg4 cm above the lateral malleol{iggure 2, duringsix isolated movement task€ustom
lower limb rigid bodiesaccommodatda singleShimmer3 IMU fastened dirdly onto the rigid body
Hypafix (BSN Medical Canada, Laval, Quebadjuble sided tape, and a hook and loop band were used
to fasten the rigid bsdodershank. dotibntaptuteibectionfrequepcyr t i ci p a
was 100 Hz and global axis system was created sedkis mas mediolateral,-axis vertical, and saxis

anteriorposterior
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Anterior Posterior

. Rigid Body . Inertial Measurement Unit

Figure 2. Rigid body and IMU placement on lower limb (4 cm above lateral malledlhs)iigid bodyis
instrumented with four smart IRED markers and setup to allow IMU attachment over rigid body
construction.

2.3.2.2Inertial Measurement Unit

Shimmer3 inertial measurement unit (Shimmer Sensing Inc., Dublin, Ireland) recorded movement
during six isolated task¥he Shimmer IMU was fixed to the center of the rigid badi/calibration
sequences followed Shimmer Sendimgfructionsand utilizes an API LabVIEWNI, Texas, U.S.A.)
program9-Degrees of Freedom (Shimmer Sensing Inc., Dublin, Irelandthe local @ordinate sy®m
orientation is outlined ifrigurel. All configurationsettingswere completed using proprietary software
ConsensysPRO (Shimmer Sensing Inc., Dublin, Ireléltiimmer3 IMUwere configured with both low
noise (£2g) and wideange (+4g) aaerometers, gyroscope (x1000 degrees per second), magnetometer
(1.3 kPa) andtimestamped wittUNIX clock time Shimmer3 IMU units streamed via Bluetooth for

visual purposes andhta for processing wésgged onto a 32 GB SD card for data analgsigposeto
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avoid missing data points lost durisggeamirg. IMU collection frequency was st a priori available

frequency determined byshimmer Sensing Inc., at 102.4 Hz.

2.3.2.3Data Synchronization

A sync pulse output from NDI First Principles Motion Gapt Software (NDI, Waterloo,
Ontario, Canada) synchronize@tion capture and Shimmer3 IMU units. Apfh output cable sends a
step pulse from the First Principles softwaréh®s resistance amplifier sensgra Shimmer3 Bridge
Amplifier+ Unit (Shimmer Sensing, Dublin, Irelandjaa 3.5 mmAUX cable,that was sitting on a
table Sync pulse had a magnitude of 5V and indicated the start and end of each collected trial. UNIX
timestamps from both IMUs aligned Shirar8 IMU dataand using the sync pulse data wasdowed

into collection trials aligning with motion capture

2.3.3Collection Protocol

During data collectiojparticipants completed twenfive repetitions of six different movement
patterngFigure 3) The rightlimb completed bkmovement patternand participantsvere provided with
ample rest timelsolated movement patterns were selected to probe the accuracy of spatial measures
along a single axis (e.g. maximum A/P deviation, eicd represerd deviated movement that amputees

may exhibit Seven different outcome measucakculatedrom all isolated movement patter(igable 5)

circumduction
- 5 repetitions

Task #1 Task #2 Task #3 Task #4 Task #5 Task #6

- Sagittal plang - Frontal plane| - Hip and knee| - Isolated kneg| - Isolated - Isolated

hip ROM hip ROM flexion flexion stepping with | stepping with
- 5 repetitions | - 5 repetitions | -5 repetitions | - 5 repetitions | volitional hip | volitional hip

circumduction
and rotation
- 5 repetitions

Repearandomized order 5x (25 repetitions/task)

Figure 3. Block diagram outlining collection sequence for Study #1 with all 6 tasks.

At the beginning of each task, subjects maimdihseconds of quiet standimgquired for IMU

initial orientation Collected trials included five repetitions of eanbvementstarting and endingith a

stationary anatomical positioRarticipants freely selected speed of movement for each task and

30




repetition.Prior to collections, gecific instrictionswere explainedior each task anchovement practice
was compleed. During collection subjectto-subjectand triatto-trial variability wascaptured by
allowing subjectso naturallyvary their movement patterns.
Task 1 & 2: Hip Range of Motion

Sagittal plane ip range of motiorghip flexion-extension) evaluated anterior and posterior
deviationfrom rest(Figure 4. Frontal planehip range of motiorfabduction-adduction}ested théateral
deviationfrom rest(Figure 5. Hip ROM tests will recordhe maximum amplitude within the plane of
movement (i.e. maximum anterior deviation of the foot when hip flexion occurs) starting from the zero

velocity instance.

Figure 4. Sequence of movements for TaslSubject complete sagittal plane hip range of motion,
starting at and returning to rest.

Figure 5. Sequencef movement for Task Bubject start at rest, hip abduction laterally deviates the leg,
and they return to resting paen.
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Task 3: Vertical Translatioilip and Knee Flexion Task

To assess verticdeviation from restsubjectdift edtheir limb in a standing positiotknee
flexion and hip flexion)Figure §. Thismovementissessd height displacemerf{thaximum elevation)
during higher than normal trajectories in the vertical directioth replicatd the movement of the lead

limb clearingobstacles

Figure 6. Sequence of movements for TaslS8bjects start at rest, lift théinee towards their chest (hip
and knee flexion) and return to rest.

Task 4: Heel Ris&golatedKnee Flexion
To assess differences seen in heel rising measurements, sfiéjecttheir knee during standing
(Figure . This assesglthe ability of the IMU to measure height of the fdoting knee flexion

(maximum elevationo replicate the height of the trailing limb during obstacle clearance

Figure 7. Sequence of movements for TaslSdibjects start akst, flex their kneand return to resting
position.

Task 5: Stepping with Lateral Deviation of Fgbip circumduction)
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Volitional lateral deviations of the foot during swing phase during a single step with the right leg
replicates hip circumduction (peak lateral deviatidrije participants will begin by standing with their
right foot slightly behind their left leg. When instructed, subjects will step with their right leg and include

volitional hip circumductior{Figure8).

Figure 8. Sequence of movements for taskSbibjects start in a staggered foot position (left in front of
right), complete a single isolated step and volitionally induce hip circumduction.

Task 6: Stepping with Foot Whiffsip circumductiorand rotation)

Clinically, foot whips characteristics amngernal or external rotation of the foot during swing
phase. Foot whips are defined as medial or lateral whip of the footaifff tdowker et al., 1992)
Subjectamimic a foot whip €xternal transverse rotatiafi the IMU) during their stepping pattemwith
volitional hip circumduction andotationand peak lateral deviation is calculat&tepping instructions
will be similar to those in th8tepping with Lateral Deviation of Fottsk Researchers visually

confirmedthe presence of foethips;trials without adequate attempts wadt be includedFigure 9)

Figure 9. Sequence of movements for taskS@ibjects start in a staggered foot position (left in front of
right), complete a single step and volitionally induce hip circumduction and hip rotation.

33



Table 5. Summary and definition afach outcome variable.

Task Description of Qutcome Measure
Sagittal Plane Hip ROM Maximum anterior/posterior displacement

Frontal Plane Hip ROM Maximum abduction displacement

Hip and Knee Flexion Maximum elevation of ankle joint from verticihnslation
Isolated Knee Flexion Maximum elevation of ankle joint from knee flexion
Step withLateral Foot Peak lateral foot movement during stepping

Deviation
Stepwith Foot Whips Peak lateral foot movement during stepping with foot whips

2.3.4Data Analysis

2.3.4.1Motion Capture

Motion capture data was processed using custom Matlab script (Mathworks Inc., MA, USA).
Missing data points were interpolated with a third order cubic sfiiegnen, Muir, & Rietdyk, 2012)
Missing data interpolation was limited to 10 data points 6rrB8 of datdHowarth & Callaghan, 201Q)

A dual pass ? order Butterworthow-pass filter removed high frequency noise. Lpass frequency cut
off was determinedsing previous literature and was set at 1(tijnen et al., 2012; Winter, 2009)

Outcome measures are the maximum deviatiom frest andn the global coordinate system.

2.3.4.2Inertial Measurement Units

Collection trials completed by all individuals were accepteejected duringnalysis
procedureAn onboard SD card logged all movement tridlke first step to data analysis was to window
all IMU recorded data into the appropriatlectiontrials. Using a threshold crossing method, when sync
pulse data crossed a 2.5 V threshold (half the magnitude of the sync pulse) with a positjvediaped
collection startand with a negative slop@dicated collection endrhese time markeislowed temporal
alignment forall IMUs and data was windadto correspond to the manually recorded collection details,

each windowed time period included firepetitions of a single movement pattern.
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Accelerometer signals are rotated into an inefteahe that is relative to gravitgllowing
techniques used WicGinnis & Pekins (2012)and Cain et al., (2016Iitial orientation was determined
during the first 0.5 seconds of each collection thlrmalizedmagnitude of acceleratiaiuring thefirst
0.5 seconds to determine thertical vectorof our initial orientationaligned withgravity during quiet
standingIn this phase, the accelerometer acts as an inclinometer tonaetehe orientation and relation

to a global frame of referen¢€ain et al., 2016)

@ )

World aligned Yaxis is a cross product of the gravity vector aptojection ofa temporararerior-

posterior axigCain et al., 2016)The anterioiposterior axis is redefined tmwnfirm orthogonality

AR ©)

AP Wy O (4)

All movement completed by participant is recorded by a local IMU reference frame and rotated into a
inertial frame(Cain et al., 2016; McGinnis & Perkins, 201Rptations begin at the initial orientation and
continuefor the duratiorof the trial. Direction cosine matrix (DCM) is a resultant of an adaptation to
integrating the angular velocity recorded at LCS lelesleloped bycGinnis & Perking2012 and

applied by Cain et al., (2016)he adaptation allows for numerical approximatiéthe change in
orientation after integrating the angular velocitie resultant is a time varying DCM that describes the
movement of thedcal coordinate syste(r). Rotating the accelerometer signals by their DCM wiill
represent data intask reference framavhich aligns gravity vertically and projects two horizontal
vectors for ML and ARMcGinnis & Perkins, 2012After inertial frame was established, gravity was

removed algebraically.

35



@ R0 (5)

14 ) o) p (6)

Data was dual=pass filtered with & @rder Butterworth filter with a padsand between 0.0518 Hz
(Trojaniello et al., 2014; Winter, 2009)hresholds applied timertial frame magnitude acceleration data
and gyroscope data windowed repetitiongor integration When magnitude of acceldion was larger
than 0.065 mA(Kingma, 2005)and angular velocity was larger than 0.17 rafis&dl & McCloskey,
1983)for greater than 200 mmitentional human movemerdccurred These threshold crossig
sectionedsD logged IMU data into repetitiomsmdperiodsfor integration Sensitivity of movement
detection is alisadvantage of generic threshold applications. When resultant accelerometer and
gyroscope data was below threshold during known movement p@tgrat peakieviatior), the

repettion was removed from analysis.

® ® W W (7

W o0 Q X T (8)

Drift contaminated velocity was estimated by integrating inertial frame acceleration values using
trapezoidal integration betwe#mreshold crossingéezzack eal., 1977) During short periods of
integration, drift is assumed to be linear, therefore linear drift removal was used to remove drift effects

and correct velocity estimatiqRebula et al., 2013)

V) 0 B Yo 9
0 N (10)
V] 0 0 (12)

Int egr ati ng t hfer eceodr)r estiveatedgosi{ioiffter eachtrepetitiorthe foot returned

to the groundMax deviationoccurred wherhe footwas moving not during static ground recording.
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Difference betweemaximum flight period and position at rest (beginning of réipaii is the deviation
during each isolated movement pattddaring isolatedstepping step width was consideredgtigible

and therefore swing deviation was measured from initial rest not ending rest(paioghi et al., 2010)

2.3.50utcome Measures

One outcome measudeiring each isolated movement pattern and each movexegrt a single
global axisis calculatedDuring Task 1: Sagittal Plane Hip ROM peak anterior and postenriatibe

from rest were derived
00 i AQ pklw8e 1 p (12
00 i ER pkiw8e 1 p (13)

Peak lateral deviatiois the main outcome of intereduiring Task 2Task 5, and Task, whichprobed

the accuracy of laterakgiationwhile the foot moves through different motions

00 i Ag plto8: 17 p (14)
Peak vertical deviation of the foot from résthe main outcome measuneTask 3 and Task 4. Each
movement pattern evaluateertical deviation with emphasis on different movement patigrigh versus

low rotation) The trailing limb primarily relies on knee flexion (Task 4) to elevate over obstacles while

the lead limb primarily relies on hip flexion (Task 3).
©wOoYY | A@ pilo8e 1 p (15)

2.3.6Statistical Analysis

All statistical calculations ane@s$ts were performed using SPS&tistics(IBM Corporation,
Armonk, New York, United States). Concurrent validityldfJ spatial estimates and optical motion
capture is evaluated using Pearson correlatipandlinear regression analysis. Pearson coieffitswere
considered significant whare> .80 (Shrout & Fleis, 1979; Vaz et al., 2013repeated measures allowed

subjectspecific statistical evaluation to view the within and between subject variability and its impact on
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the agreement between two measurement tbolserror analysis Blandltman plots were w=d to

visuaize error within and between subjedBland & Altman, 1986)Mean error bias was compared to
the line of equality (LOE) to determine if significant bias existethdf95% confidence interval (Cl) of
the mean erroencompassedhé LOE, a significant biasainotexist;if LOE was outside th€l then a
significant erroiasexiss. The coefficient of repeatability (CR)orrected for repeated measures,
describé variability of error between the devicasd subjectand was related to the limits of agreement
descrbed by Bland & Altman (1986)o determine variability quality CR measuoesnpareo a priori

set agreement limits. In previously reported stgjdiride length distancesserage +18 mm error

between GAITRIte and IMU estimations mean, therefore therdiffes expected within this study

should fall within the range boundéthe CR range is within these bounds the agreement is considered
narrow (low variability) and if it is larger than these bounds it is considered to have a wide agreement

(high variability) .

i R S (16)

8'Y pgog (17)

2.4 Results

Subjects completetbtal 150repetitions of movementross theix tasks totaling 175 peak
amplitude measurememer subjectTasks were repeated when obvious movement mistadaesred,
however this study allogd individualmovement selection to be a factor in movement execution.
Unacceptable movement trials occurred when acceleration and gyroscope data detectecgbirgro
during known movement pekbc.From the total pdaamplitudes 102797.8%) of repetitions were

acceptable and contributeddorrelation regressionand erroanalysis
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2.4.1Concurrent Validity of IMU Spatial Estimates and Optical Motion Capture

2.4.1.1Task #1:Peak Anterior and Posterior Deviatidaring SagittaPlane Hip ROM Task

Sagittal plane hip range of motion outputs two peak amplitudes, the maximum anterior and
maximum posteriodeviation from rest (quiet standindjverage aterior deviatiorestimateddouble
integrated)wvith IMU data(n = 139,M = 0.659m, SD= 0.(6) is lowerthan peak amplitude measured
with optical motion capturén = 139,M = 0.685 m SD = 0.®). For all subjectinearregressionMU
spatial estimations significantly pretlioptical motion capture measured deviatj@id, b = .379, t(15)=
3.102,p< .05, 002 b =790, t(22) = 7.127 p < .05, 003 b = .763 t(23) = 7.681, p < .05, 004 b = 456,

t(21) =5.86Q p< .05, 005 b = .828,t(23) = 14.139 p < .05, 006, b = .248 t(23) = 7.338p < .05 Inertial
measurement spatiastimatiors alsoexplained significant amount of variance in optical motion capture
measurement dat@01, R® = .397 F(1,15) = 9.623 p< .05, 002 R* = .698 F(1,22) =5.78§ p < .05, 003

R =719 F(1,23) =58.996 p < .05, 004R% = 612, F(1,21)=34.343 p < .06, 005 R? = 897, F(1,23) =

199.902p < .05, 006 R = .175 F(1,23) = 4.875 p < .05 (Table 6).

Table 6. Subject specific IMU calculated and optical motion capture measured spatial anterior deviation
during asagittal plane hip range of motion movement.

N IMU _Spatial Optical Motion Capture Pears_on
Estimate Measurement Correlation

ek e i o i o r
001 17 0.608 £ 0.04 0.720 + 0.02 .625*
002 24 0.676 £ 0.03 0.681 + 0.04 .835*
003 25 0.632 £ 0.05 0.651 £ 0.04 .848**
004 23 0.707 £ 0.07 0.697 £ 0.04 .788**
005 25 0.599 + 0.07 0.571 + 0.06 947
006 25 0.733 £ 0.03 0.788 £ 0.02 418*
TOTAL/MEAN 139 0.659 = 0.05 0.685 £ 0.06

* represents significant Pearson correlation(pG5.

** represents significant Pearson correlation p < 0.01
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Difference between anterior peak measurements hazba error 0.086 m, a loweraverage
spatial estimation with IMU devices compared to optical motion cafimare 10) No significant error
bias exists becauseeline of equality falls within the 95% confidence inter¢#&l.015- 0.066m) of the
overall mean error The coefficient of repeatability is@ater than the priori acceptable error range (=
0.018 m)(Trojaniello et al., 2014thereforethe agreemnt between measurements has a wide range
Mean error differences have a small absolute range across subjects (rang®).0T0@smallest subject

mean error is 08 m and the largestibject mean error isXL17m.

0.2
T gy
—_ - . L]
= 01 o
= . e O 1

. ® L]

o -oo s a o® S ae o
= . e RN
— 0 . ‘s . . . - -
e s : 5 C v
=} - .
i . . SR o
= I U
s
2-0.1- o
c L]
<

-0.2

0.3 T T T T T T T T T !

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Reference System (Anterior Optotrak Position) (m)

001 e« 004 —Mean Error
+ 002 ¢ 005---+/-2SD
003 e« 006 - Limits of Agreement

Figure 10. Bland-Altman plot of differences betweellU spatial estimate and motion capture
measurement for anterior deviation during sagittal plane hip range of motion task.

Average posterior deviation estimated by IMU data ((39,M =-0.577 m,SD= 0.09) has a
lower magnitude than peak amplitude measured by optical motion captura dataq,M =-0.604 m,
SD=0.08). Linear IMU spatial estimations significantly predict measured spatial movements by optical
motion capture, 00 = .402 t(23) =3.250,p < .05, 002hb = .790 t (23) = 11.229p < .05, 003p =
957t (23) = 18.682p < .05, 004b = 396, t (23) = 2.223p < .05, 005ph = .807, t (23) = 8.759p < .05,
006,b=.810t(23) = 8.617p < .05. Inertial measurement spatial estimation explained significant

amount of variance in optical motion capture measurement dateR081315,F(1,23) = 10.566p <
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.05, 0022 = .851,F (1,23) = 126.091p < .05, 0032 = .938,F (1,23) = 348.999 < .05, 004 =
177,F (1,23) = 4.941p < .05, 005R = .769,F (1,23) = 76.712p < .05, 0062 = .764,F (1,23) =

74.256,p < .05 (Table 7)

Table 7. Subject specific IMU calculated and optical motion capture measpigal posterior deviation
during a sagittal plane hip range of motion movement.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Bgséﬁgﬁtenor o YO o YO ;
001 25 -0.495 £ 0.04 -0.542 £ 0.03 .561*
002 24 -0.675 £ 0.05 -0.679 £ 0.04 .923**
003 25 -0.597 £ 0.07 -0.597 £ 0.07 .969**
004 25 -0.688 £ 0.07 -0.718 £ 0.07 A421*
005 25 -0.440 £ 0.05 -0.474 £ 0.05 B77**
006 25 -0.566 + 0.06 -0.614 £ 0.06 874**
TOTAL/MEAN 149 -0.577 £ 0.09 -0.604 £ 0.08

* represents significant Pearson correlation p < 0.05.
** represents significant Pearson correlation p < 0.01

Difference between posterior peak measurements had a meat® €231l m, since the deviation

was negative direction lower average spatial egion with IMU devices compared to optical motion

capture was completd@igure 11) Error bias is significant because the line of equality is outside the

95% confidence interval from the mean erbalfle 13. Measurement repeatability is also poor beeaus

the coefficient of repeatability is greater than the a priori acceptable error range (+ 0(Q18jamiello

et al., 2014)Mean error differences have a small absolute range across subjects (range: 0.069 m). The

smallest subject mean error-8650003 m and the largest subject mean errd).@72 m.
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Figure 11. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement for posterior deviation during sagittal plane hip range of motion task.

2.4.1.2Task#2: Lateral Deviation during Frontal Plane Hip ROM Task

Frontal plane hip ROM tasks output a single peak amplitude measures of lateral deviation from
guiet standing. Average lateral deviation estimated with IMU detal65,M = 0.537 m,SD= 0.05) is
lower than peak amplitude measured with optical motion cat= 155,M = 0.553 m, SD = 0.05).
Linear spatial estimations derived from IMU measurements significantly predicted the spatial
measurements by optical motion capture, ®04,679,t(23) = 6.342p < .05, 002p = 1.014 t(23) =
9.599,p < .05, 003p = 1.059 t(23) = 17.127p < .05, 004p = .829 t(23) = 15.927p < .05, 005p =
.925 t(23) = 13.381p < .05, 006p = .964, t(28) = 19.914p < .05. IMU estimations also explain
significant amounts of the variation within optical motion capture measents, 001R? = .636,F(1,23)
= 40.215p < .05, 002 = .80, F(1,23) = 92.135p < .05, 003 R = .927, F(1,23) = 293.320p < .05,
004,R? = .92,F(1,23) = 253.673p < .05, 005 = .89,F(1,23) = 179.064p < .05, 006 R = .93,

F(1,28) = 396.558) < .05.(Table 8)
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Table 8. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation
during an isolated hip abduction task.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Lateral Deviation o YO o YO r
001 25 0.510+0.03 0.554 + 0.03 .798**
002 25 0.596 + 0.02 0.610 + 0.03 .895**
003 25 0.527 £ 0.05 0.560 + 0.05 .963**
004 25 0.582 + 0.05 0.559 + 0.06 .958**
005 25 0.454 +0.03 0.454 + 0.03 .941**
006 30 0.551 + 0.04 0.578 + 0.04 .966**
TOTAL/MEAN 155 0.537 £ 0.05 0.553 + 0.05

* represents significant Pearson correlation p < 0.05.
** represents significant Pearson correlation p < 0.01

All repetitions (n = 155) werncluded in the analysis, mean error had a positive bias, 0.0233 m.
Error bias is significant because the line of equality falls outside the confidéealirof the mean error
(Figure 12) The repeatability of the spatial estimation is poor because the coefficient of repeatability is
larger than the a priori acceptable error range (+ 0.01@ rojaniello et al., 2014)The subject mean
errors have small absolute rangesfe:0.0429 m). The lowest absolute subject mean error is 0.00017

m and the highest abstdusubject mean error is 0.04305 m.
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Figure 12. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement fdateraldeviation during isolated hip abduction task.

2.4.1.3Task #3: Vertical Displacemedtrring Hip and Knee Flexion Task

Peak vertical displacement is measured during simultaneous hip and knee flexion. Estimated
spatial deviation from IMU datanE= 144,M = 0.4635 mSD= 0.02) is slightly lower than measured
spatial deviation using opticadotion capture from reshE 144,M = 0.4639 mSD= 0.01). Linear
spatial estimates from IMU data significantly predicted measured deviations using optical motion capture,
001,b=.757,t(23) = 9.100p < .05, 002p = .730,t(21) = 10.116p < .05, 003b = .909,t(21) = 16.734,
p < .05, 004p = .898,t(17) = 18.615p < .05, 005p = .836,t(22) = 14.370p < .05, 006p = .817,t(28)
=8.974,p < .05. IMU estimations also explain significant amounts of the variation of optical motion
capture measurements, 08 = .636,F(1,23) = 40.215p < .05, 002R? = .830,F(1,21) = 102.338p <
.05, 003 R =.930,F(1,21) = 280.021p < .05, 0042 = .93, F(1,17) = 346.508p < .05, 005 = .904,

F(1,22) = 206.487p < .05, 006 R = .742,F(1,28) = 80.538p < .05(Table 9.
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Table 9. Subject specific IMU calculated and optical motion capture measured sgatiedl deviation
during a isolatechip and knee flexionask.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Vertical Deviation o YO o YO r
001 25 0.464 + 0.02 0.464 + 0.01 .885**
002 25 0.596 + 0.02 0.610 + 0.03 .911**
003 23 0.535+0.02 0.528 + 0.03 .964**
004 19 0.560 + 0.04 0.560 + 0.04 .976**
005 24 0.445 + 0.04 0.459 + 0.03 .951**
006 30 0.613 + 0.02 0.623 + 0.02 .861**
TOTAL/MEAN 146 0.536 + 0.06 0.541 + 0.06

* represents significant Pearsoorrelation p < 0.05.
** represents significant Pearson correlation p < 0.01

All repetitions (n = 144) were included in the analysis and mean error, 0.0038 m, has a positive
bias. The error bias was not significant because the confidence interval essesiihe line of equality
(Figure 13) The repeatability of the spatial estimation is not considered significant because the range of
coefficient of repeatability is wider than the a priori acceptable error range (x 0.{I8afaniello et al.,
2014) however, the coefficient of repeatability is lower than the a priori lifi€,72 m. The range of
absolute subject mean errors is also low when considering the characteristics of the agraegeent (

0.014 m). The lowest magnitude subject mean err@.@0043 m and the highest magnitude subject

mean error is 0.01390 m.
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Figure 13. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement for vertical deviation during hip and knee flexion task.

2.4.1.4Task #4: Vertical Displacement during Isolated Knee Flexion Task

Isolated knee flexion raises the foot in a fimear fashion, this task revealed a single vertical
deviation measurement from rest. Estimated spatial deviation from rest using IMW daitdq{,M =
0.5085 mSD= 0.034) is slightly lower than the measured deviation from optical motion captare (
147,M = 0.5095 mSD= 0.034). IMU spatial estimations significantly predicted optical motion capture
measurements, 00k = .847,1(23) = 17.841p < .05, 002p = .575,1(23) = 6.823p < .05, 003p = .909,
t(23) = 6.088p < .05, 004p = .849,t(20) = 14.954p < .05, 005p = 1.039(23) = 35.129p < .05, 006,
b=.764,(23) = 8.937p < .05. IMU spatial estimates significantly explain the variance of optiction
capture measures, 00, = .933,F(1,23) = 318.314p < .05, 002 = .669,F(1,23) = 46.560p < .05,
003,R? = .617,F(1,23) = 37.060p < .05, 0042 = .918,F(1,20) = 223.615p < .05, 0052 = .982,

F(1,23) = 1234.026p < .05, 006 R = .776,F(1,23) = 79.862p < .05 (Table 1Q)
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Table 10. Subject specific IMU calculated and optical motion capture measured spatial vertical deviation
during an isolated knee flexion task.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Vertical Deviation o YO o YO r
001 25 0.490 + 0.02 0.498 + 0.02 .966**
002 25 0.499 + 0.02 0.503 +0.01 .818**
003 25 0.523+0.01 0.512 +0.02 .786**
004 22 0.490 + 0.02 0.490 + 0.02 .958**
005 24 0.476 £ 0.03 0.475+0.03 .991**
006 25 0.579 £ 0.02 0.579 + 0.02 .881**
TOTAL 146 0.5085 + 0.034 0.5095 + 0.034

* represents significant Pearson correlation p < 0.05.
** represents significant Pearson correlation p < 0.01

All repetitions (n = 147) were included in the analysis, mean error across subjects was not equal
to zero and had a slight negative bi@00098 m. Error bias is not significant because the 95%
confidence interval encompasses the line of equ@igure14). Repeatability of spatial estimates is
significant because the coefficient of repeatability of less than a priori acceptable error range (£ 0.018 m)
(Diana Trojaniello et al., 2014pifferences across subject mean errors have a range of 0.0113 m. The
lowest magnitude subject mean errot0€00381 m and the highest magnitude subject mean error is

0.01088 m.
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Figure 14. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement for vertical deviation during knee flexion task.

2.4.1.5Task #5: Lateral Deviation during Isolated Stepping with Volitional Hip Circumduction

During isolated stepping with hip circumduction the foot deviates laterally during swing phase.
Peak lateral deviation during swing is detected and used to characterise the movement pattern. Average
lateral deviation of the foot calculated by IMU measifres 150,M = 0.304 mSD= 0.08) is lower than
average measured lateral deviation by optical motion capturd $0,M = 0.315 m,SD= 0.07). IMU
spatial estimations significantly predicted optical motion capture measurements =0@D96,t(23) =
5.047,p < .05, 002p = .731,t(23) = 5.483p < .05, 003p = 1.133(23) = 24.025p < .05, 004p =
1.1344(23) = 48.936p < .05, 005p = 1.111t(28) = 26.444p < .05, 006p = .931,4(18) = 7.101p <
.05. IMU spatial estimates significantly show the variance of optical motion capture measur®=001,
.525,F(1,23) = 25.470p < .05, 002 = .548,F(1,23) = 30.064p < .05, 0032 = .960,F(1,23) =
577.203p < .05, 004R = .990,F(1,23) = 234.756,p < .05, 005 = .960,F(1,28) = 699.288p < .05,

006,R? = .737,F(1,18) = 50.430p < .05(Table 11)
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Table 11. Subject specific IMU calculated and optical motion capture measured spatial lateral deviation
during swingphase of an isolated step with volitional hip circumduction.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Lateral Deviation o YO o YO r
001 25 0.378 +0.03 0.337+0.03 7125
002 25 0.252 + 0.06 0.304 +0.06 .753**
003 25 0.203 + 0.08 0.202 + 0.09 .981**
004 25 0.370+0.18 0.397 £ 0.20 .995**
005 30 0.232+£0.04 0.249 + 0.05 .981**
006 20 0.390 + 0.05 0.403 + 0.06 .858**
TOTAL 150 0.304 £ 0.08 0.315 + 0.07

* represents significant Pearsoorrelation p < 0.05.

** represents significant Pearson correlation p < 0.01

Error analysis was completed on all repetitiams (L50), mean error was not equal to zero and

had a slight positive bias, 0.0113 m. Error bias is not significantly different from zero because the 95%

confidence interval encorapses the line of equality (Figure)1bhe agreement is considered to have

wide variability because the coefficient of repeatability is larger than a priori acceptable error range (£

0.018 m). Differences in mean subject error contribute to variability of outcome measures, as the range of

subject errors is 0.0515 m. The lowest dlnsosubject mean errori8.000429 m and the highest

absolute subject mean error is 0.0511 m.
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Figure 15. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement for lateral deviation durBwing phase of stepping tiihip circumduction task.

2.4.1.6Task #6: Lateral Deviation during Isolated Stepping with Volitional Hip Circumduction and
Rotation

Isolated stepping with hip circumduction and hip rotation causes a rotation and lateral translation
of the IMU to peak lateral deviation during swing. During isolated stepping, the peak lateral deviation
calculated from IMU datan(= 142,M = 0.266 m,SD= 0.06) is smaller than the peak deviation measured
but optical motion capture data£ 142,M = 0.314 m,SD= 0.08). Not all IMU prediction models
predict optical motion capture significantly, O@ls .760,t(20) = 6.081p < .05, 002p = .257,t(19) =
1.571,p> .05, 003p = .986,t(22) = 7.642p < .05, 004p = 1.037,t(23) = 16.013p < .05, M5, b = .985,

t(23) = 23.827p < .05, 006p = 1.075t(23) = 12.525p < .05. Similar results are found when analyzing
IMU models accounting for variance of optical motion capture measuresR081649,F(1,20) =
36.975,p< .05, 0022 = .115,F(1,19) = 2.469p > .05, 003R* = .726,F(1,22) = 58.399% < .05, 004,

R = .918,F(1,23) = 256.410p < .05, 005 = .961,F(1,23) = 567.715p < .05, 006 R = .867,F(1,23)

= 156.865p < .05 (Table 12)
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Table 12. Subjectspecific IMU calculated and optical motion capture measured spatial lateral deviation
during swing phase of an isolated step with volitional hip circumduction and rotation.

N IMU _Spatial Optical Motion Capture Pearspn
Estimate Measurement Correlation

Lateral Deviation o YO o YO r
001 22 0.181 + 0.05 0.212+0.04 .806**
002 21 0.267 £ 0.05 0.362 + 0.04 .339
003 24 0.220 £ 0.03 0.245 + 0.04 .852**
004 25 0.382 +0.08 0.449 + 0.09 .958**
005 25 0.265 + 0.07 0.287 + 0.07 .980**
006 25 0.281 + 0.05 0.331 + 0.05 .934**
TOTAL 142 0.266 + 0.06 0.314 + 0.08

* represents significant Pearson correlation p < 0.05.
** represents significant Pearson correlation p < 0.01

All repetitions 6 = 150) were included in the analysis of error, mean error across subjects was

not equal to zero and is positively bias, 0.04857 m. Error bias is not significantly different from zero

because the 95% confidence interval encompasses the line of e(ftiglitg 16) The repeatability of the

spatial estimate is not significant because the coefficient of repeatability is larger than a priori acceptable

error range (x 0.018 m). Range of differences across subject mean errors is larger than other isolated

movement taskgdnge:0.07288 m)A specific subject, 002, had no significant Pearson correlation and

hadhighest absolute subject mean error is 0.0948thioh contributes to larger mean error and

variability. The lowest subject magnitude mean error.62097 m
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Figure 16. Bland-Altman plot of differences between IMU spatial estimate and motion capture
measurement for lateral deviation dgriswing phase of stepping willip circumduction and rotation
task.

Table 13. Meanerror, confidence interval (95%) and coefficient of repeatability for all outcome variables
duringeachtask.

Mean Error (m) Confidence Interval  Coefficient of Repeatability

o YO -95% ClI  +95% ClI  Lower bound Upper bound
Task #1 Anterior 0.026 + 0.05 -0.015 0.066 -0.03 0.0811
Task #1 Posterior -0.026 £ 0.02 -0.043 -0.011 -0.058 0.004
Task #2 Lateral 0.023+0.01 0.011 0.035 -0.002 0.0485
Task #3 Vertical 0.0038 + 0.00€ -0.002 0.010 -0.013 0.021
Task #4 Vertical  -0.00098 #0.007 -0.007 0.005 -0.018 0.0158
Task #5 Lateral 0.011 £ 0.03 -0.013 0.036 -0.027 0.0501
Task #6 Lateral 0.049 + 0.028 0.026 0.071 0.0068 0.0904
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2.5 Discussion

The purpose of this study was to continue to build towards understandinghofieecal
accuracyof IMU spatial estimateas compared tmotion captureneasurement dinematic for
realizing thefuture potential application in clinical settingEhestudy set out tadetermine the accuracy
between IMU calculated measurements and motion mpiaasured spatial dataross specific
movementsEach movement was desapito test the accuracy of spatial measuresgadoringle axis of
motion (e.gvertical displacement during isolated knee flexion) and understan@s$tonatedkinematic
outcome measures could characterize movement patt@adse 14 summarizes the maibservations
from study 1This table highlights maikearning points from the comparison between two measurement
devices (1) specific tasks have high accurdeg. hip and knedlexion and isolated knee flexiof)
statistical approach (correlation vs. error analysis) influences the agreement between the twaddvices
(3) across subject differences are prominent compartgtdevces or the analysi§hebetween subject
differences may be associated with how tasks are perfoattest than the processing techniques

utilized.

As naed, the study revealethat IMUs can be very accurate when examining certain axes of
movement in an inertial frame of referenel®wever this levieof accuracy is not as strong for all planes
or types of motionkor example, tasks that vertically translated the IMU (hip and knee flexien,
0.0038 m, and isolated knee flexione=-0.00098 m), compared to increase transverse rotation
(stepping wih hip circumduction and rotatiome= 0.049 n), had smaller mean differencédthough
the majority of tasks did not have mean errors that were significantly different froptlescoefficients
of repeatabilityindicate low repeatabilitfor all planes or types of motiofasks with less transverse
rotation (hip and knee flexio§GR range= 0.034 m, and isolated knee flexiddR range= 0.0338 m),
report smaller coefficient of repeatability ranges compared to more transverse rotatiendipos
deviation during sagittal plane hip ROKR range= 0.062 m, stepping with hip circumduction and

rotation,CRrange=0.0836 m) (Table 13).
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The first objective of this study was to investigassociation of these toddy evaluating peak
amplitudeoutcome measures from two differenéthods of measuremeiihe majority (75%) of subject
and task comparisons are statistically and clinically significant (r >Th&)seconabjectivefocused on
the error between the two measurement devesaluateheagreemenof these deviceS he
agreement between these two deviaasaveragewas not significantly different to the line efjuality.
However, the variability omeasurement errovas larger than thegreement boundaries during majority
of movemen patternsFindings from these two tests indicdtere is a level obtatisticallyaccuracy
comparing théMU to thegold standardhowever;it may not be clinically acceptabtiie to repeatability
criteria Across all movementssted the specifimsk g@als and movement pattern execution appear to

the main influencen accuracyather tharbetweersubjects.

With respect tahe association between IMU and optical measurement of kinematics the study
relied in part,ona criteria of r>0.8, which wasxceeedin 75% of tasks (across each subject).
Correlation values greater than .75 have been typically used to determine clinical significance when
evaluating measurement associa(ihrout & Fleiss, 1979; Vaz et al., 201Bhese evaluations suggest
good agreeance between the two measurement devices to estimatergzeurementgiowever the
measure bassociation alamis not suffident to determine accuracy ardaluation of clinical measures
and comparisons including error terms have been ad@igeret al., 2013)Examiningthe measurement
error with the mean errors and the coefficient of repeatability (limits of agreeismardje apficable in
this scenari@Bland & Altman, 1986; Vaz et al., 2013)he correlation coefficients, measuremerrbr,
and the coefficient of repeatability are tools used to evaluate the significance of association between two
measurement devices. Correlation coefficients accept the agreement between devices with less scrutiny
compared to the error analysis with BiBAltman techniqguesMeasurement error and the coefficient of
repeatability are used to evaluate the association between two measuremen{Blewide® Altman,
1986) Measurement error (mean, confidence intervals) can help outline whether a significant bias exists

within the eror data while the coefficient of repeatability compared to a priori established limits of
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agreement can outline the characteristics of the agreement (wide versus narrow ag(Btameng)
Altman, 1986; Giavarina, 2015; Vaz et al., 2018)ile 75% of coditions (tasks and subjects) met
correlationcriteria, only 50% of subjectean errorsdl within previously set acceptable error band
outlined.These a priori limits were referenced from a mean error value during a comparison of stride
length measures between IMU estimates andifT&®Ae generated report3iojaniello et al.2014) As a
result, it was deemed important to emphasize the assessment of agreement baseayomsimple
correlation but also measurement error and coefficierdgpatability.

The results of the current study revealed similar overall repefjaifibutcomes as reported
previous studiesTtojaniello et al., 2014 However, what is of interest are ttiéferences across tasks
andspecific factors that may have influenc&till accuracy. One factor that appeared to impact accuracy
was the specificmovement The measurement of posterior deviation during the sagittal plane hip range of
motionand lateral deviation during frontal plane hip ROM and stepping with hip circumduction and
rotation are thenly mean bias that is considered significantly défer(i.e. line of equality is outside
1+95% CI from meanjGiavarina, 2015)Measurements during all tasks have some magnitude of
systematic error because no mean bias are equal to/een. testing the vertical dedion of the IMU
devices, mean error biasas very small (less than 3.8 mrivjovement patternsvaluating lateral and
anteriorposterior movements were larger in magnitude in all compar{ams 11 to 49 mm)Vertical
displacement tasks (TaskHip andknee flexion& Task 5 Isolated knee flexigrhave the smallest mean
errorwhen comparing accuracy between IMU and OPTO measures. TBskt2rior deviation during
sagittal plane hip ROM 3 (Hip abduction) and 6(Stepping with hip circumduction and ation)
performed similarly when comparing clinical significance and error measurement, they also have similar
magnitude of ranges between maximum and minimum subject eneariThe largest significant
discrepancies occur witlask 6 (stepping with hip @umduction and rotatignThis taskhaslarge
amounts of measurement error within their estimates and the majority of subjects have strong agreement
based on their Ralues. Tasks that involved more transverse rotation in the local frame (yaw) of the IMU
appear to have more error than those that domothermore, the repeatability of each task varies and
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depends on similar issues discussed above. Tasks that may have larger transverse rotation exhibit larger
ranges betweentleR6 s u p p er a n dhedediffeeenceshndotinnoean.error @Rlindicate
that movement patterns with more transverse rotation may by less precise and less repeatable.

In addition to task (movement differences), thereegeme influences associated withbgect
error. Indegendent of taskb0% ofsubjectmean errors fall within previously set acceptable error band
outlinedcompared to 75% ofvalues These a priori limits were referenced from a mean error value
during a comparison of stride length measures between IMU estimates and GAITRite generated reports
(Trojaniello et al., 2014)As a group, these acceptance rates produce similar conclaamn® one
subject consistently contradicts agreeability of the two deviesng simple, uniplanar taskall
subjectameet agreeability standards with respedrtoranalysisband andhearly allmeasuresre highly
correlated (r > 0.80When tasks are mulfilanar, marked differences become more evident. Differences
arise die to subject specific movement patterns and devices begin to show statistical and biological
differences with respect to error and correlation analysis.

A possible source for theggaccuracies is attributable to data acquisition and processing and
specifically (1) contamination integration drift when estimating change in local frame orientation
(Pezzack et al., 197@nd (2) inaccurate orientation of the recorded (Rit@erno et al., 2011 here are
many technigues to correct for integration drift during position estimétiose et al., 2012; Blzza et al.,
2012; Peruzzi et al., 2011; Rebula et al., 20D&ft removal techniques are similar for all axes of
movement; therefore, error due to inaccuracies in estimated drift removal should be consistent across all
axes of movemenHowever,orientation errors will not be accounted for and will cause errors in derived
spatial informationAccuracy of data captured is reliant and a product of manufacturing error. IMUs local
coordinate systems align with anatomical reference to recortheaslure kiematic outcomegrror in
manufacturing sensor alignment may affect the assumptions imposed when creating specific reference
frames after movement. Typical application of IMU data requires a stationary period prior to task
completion or development of a reference fromrdpdata collection (e.g. direction of progression,
angular velocity measure€}ain et al, 2016;Trojaniello et al., 2014)All collections and inertial frame
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creation followed the same mathematical techniques and all stationary periods were sufficient for
reference frame creation. Howevemnptherpotential reason for the error may d&sociatedavith the
calibration algorithms thatreate local coordinate systerfsctory calibration techniquese a

combination of gravity and perceived magnetometer vector (north). Errors with heading direction (reliant
on magnetometer accuracy) during calibration are subject to interference fromtiodgp(Brodie,
Walmsley, & Page, 2008la)nd structural environmefde Vries et al., 2009 he kinematic outcome
measures that have the largest biaswamidbility involve movement along the mediolateral or
anteroposterior axis. These thoxal axes are developed using data that is capture and reliant on the
absolute heading direction and potentially influenced during calibration sequencing. Wherireytieat
absolute orientation (global frame) of several IMUs error maximums ranged23d. 2 when using

factory calibration settingdBrodieet al., 2008h)Orientations were evaluated in 24 different orthogonal
orientations on a custemade rig. Evaluating the relative orientation of IMUs to a known orientation can
also produce large errors in orientation estimates (maQ; %Bh the lagest errors occurring in

transverse rotation (yaw), 2882, compared to 0.92.2 for other component angles. Recalibration of
the IMU improved the accuracy of orientation estimations but in every iteration the heading error
(transverse rotation) had the largest associated @rodie et al., 2008b)The effects of recalibration
created maximum errors of 1215°, however these results were recorded from static IMUs. During
dynamic movement on a swinging pendulum, thygliaation of a new fusion algorithm performed better
than a proprietary Kalman filter output different orientation accuracy r€8utigie, Walmsley, & Page,
2008a) The fusion algorithm had a lower RMS error range;1038 compared to the RMS error output

by the proprietary Kalman filter, 851.7, with the maximum error occurring around thexs
(longitudinal/yaw). Furthe these errors are larger when the magnitude of acceleration is large. Errors in
static orientation may cause errors to globally measured accelerations be exacerbated when these larger
accelerations are recordé@odie et al., 2008a)nter-IMU spotchecking found that the different sensed
orientations exist for each individual IMU, because the sensed global coordinate systems during
calibration sequences waiferent between IMUgPicerno et al., 2011Puring single IMU consistency
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spot checking errors were statistically larger for transverse rotation (yaw) corpah pitch and roll
anglegPicerno et al., 2011Ricci, Taffoni, & Formica, (2016also recorded larger error about the yaw
axis when chddng orientaion of the IMU. Larger error iattributed to error in the heading direction or
rotation about the yaw axis because of the ability for IMUs to sssweatechanges in to the magnetic
field during calibration sequences. Usinglmard quatefion information, the orientation of an IMU
compared to a measure angular deviation of turntable device were compaagide, Miller, &
Kaufman,2017) Angular movement derived from dimard orientation information reported minimal
differences across small (0.2 + 0.1°) and larger angular magnitudes (0.6 £ 0.1°), these magnitude of
differences are also seen in previous studies that also utidilaive reference framéBrodie et al.,
2008b) These data are more accurate because of the relative reference frame and methodsleggcally
considered to improve accuracy (consistent recalibration techni{assdr et al., 2017)Without
recalibration sensors exposure to rapid movements and high acceleratiatecrease the accuracy of
the original predicted orientation from calibrati@rodie et al.2008b, 2008ayvhich could ultimately
affect the outcome data. The algoritimthe present study associateidhithe Shimmer3 units outputs
the orientation information of the IMU as it moves compared to the initial calibrated orientation. Reported
RMS error rates are also largest in the yaw direction (about vertical) at a magnitude of average of ~1.5
but at least twice as large as any other axis estim@ladgwick et al., 2011)This may be one
potentially significant contributor to error in kinematic outcome measures since largest amounts of error
variability occurwhenlarger transverse rotations be recorded.

Other possibleource oferror, specffically linked to betweesubject differencegould bethe
movementharacteristiceach subjegberformedduring the tasksin tasksone(sagittal plane hip range
of motion),two (hip abductiol, and five(stepping with hip circumductionljttle to no transverse
rotation is requed. If lower limb rotation was variable between subjects then significant error between
devices may be present in some subjects but not offfexsnfluence of speed has already been discussed
and could influence data outcomBgtween subject movemepittern differenceare factors inherent to
clinical assessment and for IMU data to describe human movement with kinematic outcome measures it
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needgo be robust enough to distinguish between these factors. Although these errors exist within the
current seof data, in most cases the differences are small for the majority of thesdriesbarch
indicateserrors up td° difference can lead tmisinterpretation for clinical interventigiBolink et al.,

2016) error rates for kinematic outcome measures are unknown. However, if the intended purpose is to
detect difference between movement patteimesnmore research needs to be conddtd determine if

the IMUs are precise and repeatable enough to distinguish compensatory and normal movement patterns
in the frontal plane.

Some noted limitations to this study are variability associated with movement execution, the
approximate estimatioof both angular movement (during rotation sequences) and drift removal, and the
lack of clarity surrounding clinically detectable differences between two kinematic outcome measures.
Instruction and practice were given to each participant prior to coledtawever, during collection
variability of individual movement patterns were unrestricted. There is benefit to include this variability
because inherently during movement execution variability will always exist within and between subjects.
When dtemptirg to outline the agreeance between deviaesdricting movement patterns to meet very
specific standards could eliminate the variability associated within individual movement pattern
execution. A second limitation is the estimation of linear drift duniggration (from low frequency
noise) and the approximation of angulawvementduring rotational sequencing. Approximation allows a
certain level of assumption within the processing steps, and in turn allows certain levels of assumption to
confound theesults. Computational techniques to remove drift and estimate orientation changes receives
a lot of discussion and attention. Currently, assumption need to be accepted and understood when
interpreting results, however in the future it is recommendedtasae tassumptions are outlined and
interpretable in comparison with results for clinical awareness and understanding. The third noted
limitation are unclear standards for clinically detectable change for kinematic outcome measures. Without
clearly definedimits of agreement is difficult to determine if these devices are numerically accurate
enough to distinguish between compensatory movements during a clinical task. Research should focus on
detectable change with t hment@eviationsinorderto engeestdndihe al |
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accuracy and benefit of combining both experimental tools and clinical judgement to improve care and
rehabilitation.

In summary]MUs are used to characterize movement patterns in clinical and research settings.
Little research has examuhthe ability to detect frontal plane movements, which is important when
characterizing many mulplanar and compensatory movemefsgerall, results reveahat IMU spatial
measures are not significantly different from measdeadations both statistically and clinically
however, task and subject facttask influence thesdifferencesNext stepswill needto disentangle the
error characteristiasicluding (1) investigaing how the size of error is associated with timing of peak
deviation within segmented data and amount of recorded angular velocity at peak deviation and (2)
determine if IMUs are precise enough to distinguish between normabammknsatory movementbhe
second study will focus on the ability to characterize compensatory movement patterns during a clinical

obstacle avoidance task
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Table 14. Clinical significance determined by correlation coefficients and error analysid sabgcts and task€ells highlighted in green show
a significant agreement utilizing the outlined technique, while red shows a significant difference.

Isolated step Isolated step

Movement Se;]gi]gtglgl\lﬂane S?]?gtgloPl\lﬂane Hip Abduction Klznlgii/:rip Knee Flexion Cir\‘/:vith Hip _ Cir\évtijtrt;gigtion
umduction and rotation
Me:;il;red Anterior Posterior Lateral Vertical Vertical Lateral Lateral
Clinical Significance WRT Pearson ( > .80)
001 0.63 0.56 0.80 0.89 0.97 0.73 0.81
002 0.84 0.92 0.90 0.91 0.82 0.75 0.34
003 0.85 0.97 0.96 0.96 0.79 0.98 0.85
004 0.79 0.42 0.96 0.98 0.96 1.00 0.96
005 0.95 0.88 0.94 0.95 0.99 0.98 0.98
006 0.42 0.87 0.97 0.86 0.88 0.86 0.93
Zgg‘;%?é g 17% 67% 83% 100% 67% 67% 67%
Clinical Significance WRT Measurement Error (-95% Cl me < LOE < +95% CI nmje
001 0.112 -0.047 0.044 0 0.008 -0.041 0.031
002 0.005 -0.004 0.014 0.014 0.004 0.052 0.095
003 0.019 0 0.033 -0.007 -0.011 -0.001 0.025
004 -0.01 -0.03 -0.023 0 0 0.027 0.067
005 -0.028 -0.034 0 0.014 -0.001 0.017 0.022
006 0.055 -0.048 0.027 0.01 0 0.013 0.05
ig;‘;%’t‘é ; 33% 33% 33% 100% 100% 50% 0%
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Chapter3:Characterizing the Variability

0"

Strategies in Healthy Subjects Using

3.1 Introduction

Compensatory movements are a change in movement patterns in response to dysfunction of an
intact control systenProsthéic fit (e.g. discomfort, misalignment), design, and amputation level (e.qg.
transtibial, transfemoral) are sources of compensations in the amputee population. The origin of these
asymmetries dictates the ability clinicians have to restore normal moveattathp usingehabilitation
techniquesSome researchers view these compensatory movements as adaptations by the control system
to new mechanical abilities of the limb and are inherently the new movement pattern édaktadn
Dieén, varder Wurff, & Houdijk, 2014;Winter & Sienko, 1988)The effect of these asymmetries and
their relationship with secondary injuries (e.g. lower back pain) are unknown. This suggests that adaptive
movement patterns may be optimized for gait progression while simultaneously being injurious to the
amputegDevan, Hendrick, Ribeird{ale, & Carman, 2014)

Walking is attainable with assistive prosthetic devices after the loskaka limb functional
joint. Transtibial amputatigrabove the ankle and below the knee, is an example of loss of a single joint.
Deviations from their original walking pattern can vcehen fitted with a prosthetic device which is
absent of the mechanical and sensory advantage of a functionéBjoiviter et al., 1992)One of these
deviations comes in ¢hform of asymmetrical gait, where amputees experience differences between their
amputated and intact limbs. When an amputee has more control (e.g. transtibial amputees versus
transfemoral) asymmetries may be minimal because of increased sensory andaalexbratnol.

Detecting these asymmetries and compensations become increasingly difficult when patients have more
control because the deviations become less prominent. Assistance of wearable devices could help increase
detection and accuracy of these déwizgs and compensations from normal walking patterns. Moving

outside the laboratory setting is much more difficult, however many researchers have begun the

application of IMUs to elderly, hemiparetic, amputee, and osteoarthritic populations to characterize
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movement patterns and help understand control strat@dies-de-la-Herran, Garci&apirain, &

MéndezZorrilla, 2014; Shull, Jirattigalachote, Hunt, Cutkosky, & Delp, 200rdjaniello et al. 2014.

3.1.1Defining the Gait Cycle with Instrumentation

Outside of the laboratory, gait eveare detected using IMU data and algorithms with explicit
searching steps. Gait events have been detected using a single IMU located on the lower back or hip
(Bugan® et al ., 2tiateatly orStieejloder imbgminiaa ét al., 2002;0AMiGian,
Najafi, Blla, Leyvraz, & Robert, 2002; Salarian, Burkhard, Vingerhoets, Jolles, & Aminian, 2048k
(Greene, McGrath, Foran, Doheny, & Caulfield, 20d&nlon & Anderson, 200F;rojaniello et al.,

2014) shank and fe¢McGrath, Greene, Walsh, & Caulfield, 2011; Rouhani et al., 2GiR) feet

(Dadashi et al., 2013; Rebula et al., 2013)e motivation to alter sensor configurations allows the ability
to apply different detection methods that may be suitable for patient population or variables of interest.
Impulse dampening is one challenge associated with different sensor configurations. The impulse
detected by IMUs is smaller when the IMU is farther yivam the location of heel strike (e.g. the hip
compared to foot). To overcome these difficulties several algorifkose et al., 2012frojaniello et al.,
2014), thresholdgGreene et al., 2011; Hanlon & Anderson, 2009; McGrath et al., 2011; Rebula et al.,
2013)and wavelet analysigminian et al., 2002; Millor, Lecumberri, Gbmez, MartifiRamirez, &
Izquierdo, 2014)echniques have been used for event detecliajaniello et al., (2014dleveloped a
heuristic algorithm model to detect gait events usitaeleration and gyroscopes attached bilaterally
above the ankle joints for healthy, elderly, hemiparetic, parkinsonian, and choreic gait. The heuristic
model outlined event search windows by removing known swing time intervals (threshold of peak
angular elocity during swing phase). Within the respective search window, initial contact is the
maximum AP acceleration and final contact is as the minimum ML angular velocity. These gait event
detections showed small mean average error for initial contact Sraimdyfinal contact timings when

compared to footswitch data for all populations inclufl@djaniello et al., 2014)Defining these gait

events, as part of a personf)s movement pattern,

63



evaluate the quality of gait or the effects of intervention (e.g. stride lengtrg §wie, support times).
These measurements are dalins spatiotemporal measurements as they relate to both spatial position of

the steps as well as timing of events that outline the step taken.

3.1.2Spatiotemporal Measures Change for Obstacle Avoidance

3.1.2.1Effects obstacle properties on clearance strategy

Fundamental obstacle avoidance research reveals the effect visual information and obstacle
properties has on obstacle avoidance strategies. Visually guided foot placement is necessary for
successful obstacle adance, further, foot placement prior to obstacle avoidance is highly tuned for
successful obstacle crossifRptla & Greig, 2006)Obstacle siz€Patla & Rietdyk, 1993and perception
of obstale fragility (Patla, Rietdyk, Martin, & Prentice, 199%8¥luence clearance strategies.dithy
subjects tend to scale up their toe clearance and scale down their crossing speed and foot velocity values
when stepping over the taller obstacle. Intuitively, when stepping over wider objects (increase depth)
stride length increases but not wheradieg taller object¢H.-C. Chen et al., 1991, Patla & Rietdyk,
1993) Crossing fragile obstacles, the lead limb increases toe clearance andrggbhikihere are no
affects to the trailing limb clearan¢Batla et al., 1996Kinematic differences exist temporally and
spatially between limbs for obsia clearance. Trailing limb toe height driven by knee flexion during
obstacle clearance whereas hip flexion and hip hiking drives lead limb toe height prior to obstacle
clearanceRigure 17 & 18. These differences are evident when comparing changdastanpgles during
level ground walking and examining maximum toe height characteristics of limb avo{tatieeet al.,
1996) Lead limb clearance has therefit of realtime visual information whereas exteroceptive
information (information of environmental characteristics) drives the trailing limb movéirajote,
Bloomfield, Nelson, Suh, & Marigold, 2012)ifferences between limb clearance strategies appear to
mitigate the risk of falling. Lead limb obstacle contact has greater risk to the stability of the wistem
compared to trail limb contact because COM movement during lead limb crossing is away foasethe

of support (BOSyvhile trail limb clearance moves towards the BOS. The control system reduces the risk
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of lead limb contact by decreasing foot velp@tver obstacle, increasing toe clearance and increasing hip
hiking. These compensations are unneeded for trail limb clearance because the movement of COM is
towards BOS and a more stable position.

Leading Limb

100

Y fem)

0 200

Trailing Limb
100

Y (om)

0 X {em) 200

Figure 17. Trajectory of both lead and trail limb during obstacle crossing conditions (solid, fragile, no
obstacle). Different toe and hip trajectories are evident from tracings of lead versus trail as they cross the
obstacle. Image frorfPatla et al., 1996)

3.1.2.2Effects impairments have on obstacle avoidance strategies

Compensatory movement patterns overcome obstacles when neurological disorders or
mechanical constraints cgmomise the intact system. The state of the system dictates the adopted
movement strategies utilized to maintain primary locomotion goals (e.g. upright posture, adequate
clearance, forward progression). The amputee population has both a mechanicédbmestiicteduced
peripheral sensory information. The amputee population is at a greater risk of falling and the majority of
falls occur during ambulatiofpbe Asha & Buckley, 2014 During selfselected walking, amputee
populations reduce walking speedsl @aaopt asymmetrical spatiotemporal patterns to maintain posture
stability and reduce the likelihood and consequence of tripping. At faster velocities, minimum clearance is

unaffected in prosthetic limbs when compared to intact limbs, suggestifmfiegankle motion
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controls margin of safety in response to gait sff@edAsha & Buckley, 2014 Healthy individuals

increase safety margin of clearance under conditions with greater risk of tripminéaéter velocity,

talleror fragile obstacles). Leddi mb mi ni mum cl earance is similar be
affected limb however crossing speed decreases during amputee obstacle @rdssingl., 1997;

Vrieling et al., 2007)Slower walking speeds over obstacles could reflect an increase control of COM
movement over the obstacle when control is constrained.

Amputees compensate for reduce knee and ankle control by increasing the work at the stance
ankle joint and maintain the loweg strategy by modifying the swing limb hip joint work during clearing
(Hill et al., 1999) These power profiles attribute to toe clearance by using-plaliar movements or
other compensatory movements such as: vaulBogvker et al., 19929r ipsilateral hip hikindPatla et
al., 1996) Amputeesalso utilize a hip circumduction strategy to aid in the increase toe clearance during
walking (Vrieling et al., 2007)Hip circumduction increases lateral deviation of the fooinducrossing
and aids in foot elevation. Patients with knee osteoarthritis and total knee replacements utilize the frontal
plane to accommodate knee dysfunction, avoid onset of pain, or increase stability while clearing the

obstaclgByrne & Prentice, 2003; H.. Chen, Lu, Wang, & Huang, 2008; Levinger et al., 2012)

t]

__L ,.-!illl = - T‘Er ."ll

Elgvation of ipsilatéral pelvii Inereated ipsilateral limb flexion

Figure 18. Comparison of toe trajectory during obstacle clearance with increased limb flexion and hip
hiking movement strategi¢Ratla & Rietdyk, 1993)

3.1.3Exploring obstacle negotiation strategies in healthy subjects with movement manipulations

Investigating patient populations increases the awareness of compensatory movements utilized by

their assoiated restriction but is confounded by variable factors. Toe clearance is required for successful

66



obstacle avoidance and is a product of the lower limb joint angles and biased swing leg trafPetiiries
& Rietdyk, 1993:Winter, 1992) Restricting movement in a single lower limb joint examines the
contribution of isolated kinematic properties absent of severe confounding variables. Change in
movement pattern, as a response to single joint manipigatioa healthy population help further our
understanding of joint contribution and compensatory movement adoption. Usingaotdethotic
devices (AFQO), healthy subjects can replicate bekoee amputee impairments such as ankle
immobilization. Toe hgjht increases during obstacle avoidance with restricted ankle mobility
(Evangelopoulou et al., 2016; Landy, 20lwever the clearance height decreases compared to
unrestricted obstacle avoidan@angelopoulou et al., 2016)ssistive devices can also increase the
lower limb mass of an amputee compared to healthy individuals. Immédisgases in ankle
dorsiflexion are responsible for significant contribution to safe clearance when an external mass affects
knee joint kinematicéNoble & Prentice, 2006)Ankle dorsiflexion appears to be critical for finened
adjustments to toe clearance in both weight limb and joint restriction s{&si@sgelopoulou et al.,
2016) After adaptation to the new segmental properties of the limb (increased shank segigient w
knee flexion and ankle dorsiflexion change towards normal walking conditions in response to the change
of work conducted at knee and hip joi{f#oble & Prentice, 2006)Walking with mechanical (i.e.
mobility restricting knee brace) and physiological (i.e. quadriceps external stimulation) interventions are
two different ways to impose stikneegait pattern and decrease attainable knee flexion during walking.
In response to mechanical knee restriction hip hiking influence toe clearance whereas, a combined hip
circumduction and hip hike strategy responds to physiologically controlledistiéf g (Lewek,
Osborn, & Wutzke, 2012)n both imposed restriction techniquiglividuals decreased their stance time
on their affect limb as strategy to increase stance on limb with more control. Overall, healthy subjects are
able to adapt to new movement patterns in response to perturbations to normal walking patterns.
Asymmetriescan arise to control for stability and avoid potentially instable postures.

Distance of focbff prior to obstacle clearance is another tightly controlled spatiotemporal
measurement in obstacle avoida(ieatla & Greig, 2006)Foot placement around the obstacle also
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changes in response to ankle restriction. Without full ankle mobility, foot placement indvefsesthe
obstacle to provide more time to increase the limb height for appropriate clearance. Trail limb placement
before the obstacle increases and lead limb placement after the obstacle decreases, simultaneous change
of these placements counteractarades to the stride lengtBvangelopoulou et al., 201@)ecrease in

foot placement after the obstacle is also seemiputee populations when crossing with their prosthetic
limb (Hill et al., 1999) Decrease in foot placement after obstacle clearance allows for control of the
center of mass clearing the obstacle and safe comfortabledqadin decrease ground reaction force) of

the affected limb. During early stance, the lower limbs act as a dampening tool to absorb the shock from
the ground reaction forand weight acceptan€@/inter,1991) Duringamputee gajtthe lower limb

decreases ground reaction peak force and loading rate after obstacle clgueakiesy, De Asha,

Johnson, & Beggs, 2013)his is a similar compensatory movement seen in amputees and compensates
for inability to utilize jointrange of motion for support loading agbund reaction forcegRP

dampening. Conservative control and placement of the limb indicated by decreased peak force and
loading rate in ampute€Buckley et al., 2013)ecreased step length past obstacle in restricted ankle
mobility (Evangelopoulou et al., 201,6nd decreased foot velocity prior to foot contact after clearing tall
obstaclegPatla & Rietdyk, 19933ould lead to investigation increased control of stability during obstacle

clearance.

3.1.4 Support measures to probe stabilityi healthy and compromised

Base of support (BOS) size relates to the balance during walking, larger base of support is more
stable. Base of support changes betwmrbleandsingle leg support. Double leg supp@twhen two
feet are in contact with the ground and is often the most stable portion of the gait cycle because the BOS
is largest. Total double support time makes wW22% of the gait cycléWinter, 199). Single leg
supportis the period when one limb supports body weight while the contralateral limb is above the
ground to prepare for the next step. The center of pressure is the summation of all the ground reaction

forces acting on the body. Duringmmal gait, the center of pressure corrals the center of mass to
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maintain dynamic stability as the base of support changes state and size. Dynamic stability during
walking to avoid falling is important for healthy and special populations. Compensatioosetase

stability or confidence in walking pattern can be common for amputees and include reduce walking speed,
increase step width, and increase double support(Kmedell, Lemaire, Kofman, & Dudek, 2015)

Analysis of center of mass movement with respect to the center of pressure during obstacle avoidance
(Huang et al., 2008 nd volitional and reactive stepping respor(§#sger, Mcllroy, & Prentice, 2014;

Singer, Prentice, & Mcllray, 2013)robe the dynamic stability of the motor control system. Oldeltad

tend to decrease the distance between their center of mass and center of pressure during obstacle crossing,
level ground walking, and the restabilisation phase of volitional stedimang et al., 2008; Lugade,

Lin, & Chou, 2011; Singer et al., 20149)Ider adults have lower COM control by exemplifying larger

COM excursions when compared to the final resting center of mass position after volitional stepping
(Singer et al., 2013Analysis of the COM and COP in a laboratory setting allow for robust descriptions

of dynamic stability, however are not applicable outside of the laboratory settingoiedmeasure of

gait, double support time, can provide insight to the stability control of the motor system. The BOS is
larger and encompasses the COM during double support, whereas the BOS is smaller and the COM may
exist outside the BOS during single popt. Unilateral transfemoral amputees, increase their double

support time when transitioning into affected single leg stance when compared to transitioning onto their
intact limb(Schaarschmidt, Lipfert, Meigbratz, Scholle, & Seyfarth, 2012; Schmid, Beltrami,

Zambarbieri, &/erni, 2005) Single leg stance times are also shorter for the amputated limb compared to
the intact limb(Hof, van Bockel, Schoppen, & Postema, 2007; Schaarschmidt et al., Z822g two

temporal control features reduce the risk of falling by increasing control of the COM miovewards a

less stable limb and reduce the time of single leg support with a less stabediha al.,2007;

Schaarschmidt et al., 201Z)ouble support phases are asymmetric when evaluating a range of gait
velocities produces. Change in asymmetrical pattern is driven by changes to the intact limb required to
achieve gait velocity (decrease double supaond single leg support times), rather than a change in

affected limb pattern, indicating a preference/reliance of intact limb movd®emarschmidt et al.,
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2012) Healthy individuals increase their double support time bilaterally when their normal swing phase is
perturbed with decreased knee range ofiom (Temel, Rudolph, & Agrawal, 2010however, limited

studies have examined the change in stability/support times in locomotor adaptation of healthy
individuals.

Spatiotemporal parameters can probe the stability of locomottnotbg evaluating step width
(Owings & Grabiner, 2004)n the amputee population, increases in double support time when
transferring to the affected limb and step width are techniques employed to increase stability during
walking (Hak, Van Dieén, et al., 2013; Hak, Houdijk, Beek, & Van Dieé&, 20@Banges to double
support time detected wiitan IMU have evaluated the stability of movement patterns with and without
external maséCain et al., 2016)Walking with a weighted lekpack significantly increases double
support time of stride and stride time increases to provide more stability for the locomotor(Satest
al., 2016) IMUs have yet to examine the difference between double support phases with constrained
walking in healthy adults to probe changestabiity of the walking pattern as an indicator an potential

tool for compromised gait patterns.

3.1.5Detecting changes kinematic outcome measures with IMUs

The benefits of inertial measurement units in a clinical scenario provide valuable feedback for
clinician decision making during gait assessments or haptic and sensory feedback during $tairireg
al., 2014) Audio biofeedback has provided increase postural control in patients with mobility and balance
control problemgChiari et al., 2005and has the potential to outline compensatory or aberrant
movements in patients with motor control problems. Sensors can track personnel walking direction and
location without r&/ing on GPS measuremef@jeda & Borenstein, 2007Llinical application of these
devices is a smaller scale but requires more detail compared to larger scahg.t@oki particular gait
analysis method, stridey-stride analysis, has proven to be suitable for spatiotemporal gait analysis using
inertial measurement unif$rojaniello et al., 2014)Evaluation of the ability to detect changes to

spatiotemporal characteristics of walking are important for clinical assessment. Stride length and width
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estimates both increased when young healthy adults walked with their eyes closed compared to.eyes open
Simultaneous collected motion capture data also distinguished between vision conditions and reported a
low percenterror between goldtandard MC and IMU estimation spatial d@@&bula et al., 2013)
Tripping is main mechanism for falling in elderly and the amputee population and ihetaliktect
minimum ground clearance and the variability associated with minimum clearance can be explored with
inertial measurement uni8ariani, Rochat, Bila, & Aminian, 2012¥patiotemporal measures have
evaluated elderly and neurological disorders with association to fall risk. Comparing stride length (SL),
foot clearance (FC), and stride velocity (SV) to a motion capture system slghweohielation values in
both elderly and healthy adults while walking along a figgigit walkway (SL (ICC = 0.91), FC (ICC =
0.96), SV (ICC = 0.93)Mariani et al., 2010)Stride length and stride velocity measures derived from
inertial sensors were not sensitive enough to distinguish between young and elderly adults, however that
variability associated with consistent direction changes and accelgshtisas may confound those
differences. Elderly adults exhibited lower foot clearance values measured with inertial sensors compared
to young healthy adults during straight walking and turning. Minimum clearance distinguished between
populations bumagnitude ofangular velocity at minimum foot clearance was not significantly different
between ages showing the utility for deriving spatial meag@eene et al., 2011; McGrath et al., 2011)
Detecting vertical displacement of the foot can evaluate the ability to avoidlesstaeveryday life.
Increases in height of the foot during obstacle crossing is detectable with IMU devices and not
significantly different than goldtandard measuré&rojaniello et al.2015) Due to surgical outcomes,
the amputee population can have difficulty increasing their foot during swing phase, which increases their
risk of tripping. There has been little work applying IMUs to describe vertical displacements in foot
elevationto distinguish between normal and compensatory movements. The ability to detect changes in
vertical displacement of the foot expands the utility of wearable sensors to examine different tasks and
populations.

Inertial sensors applied to the amputee pdmrieexplore asymmetries, step lengths, and walking
speed. Integrating acceleration from a singlaxtial accelerometer on the lower back was able estimate
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step lengths in healthy and amputee subj@dggor, Raghavan, & Gard, 2013 stimates of step lertgt

in the healthy controls showed mean errot0of (17.1) percent of the gold standard measure, while
amputee mean errors increasedlt@ (15.3) percent of gold standard. Differences between the devices
were step dependent. Initial steps were signifigdarger when estimated from accelerometry compared
to motion capture, while subsequent steps appear to underestimate ste(Mejtlet al., 2015)The

large amount of variability associated with the step length error are attributed to common initial step
outl i er &8s h o wneostkkely eaist ibfirsasteps werairéntbved due to consistent
underestimation. Placement of IMU is most likely to attribute to these differences. Event detection from
trunk worn IMUs extrapolates acceleration for event detection causing error in teenmonts of gait

(Zijlstra & Hof, 2003) accelerometers attached closer to the event of interest mayditarg it event
detectiondue to the impulse of the ground reaction force. Error in event detection can cause exacerbated
differences in spatial estimation after double integration. Aniden IMUs have been shown to produce
accurate event detection agamriable gait patterr(3rojaniello et al., 2014)which is important fothe
accuracy of temporal measures. ZUPT technique calculate$rdeftelocity under the assumption that
zeravelocity occurs at certain time points in the gait cyBleruzzi et al., 201X9r foot orientation such

as flat foot(Kitagawa & Ogihara, 2016; Mariani, Rouhani, Crevoisier, & Aminian, 2013; Rebula et al.,
2013) During level ground walking, with negligible change in vertical height of the walkway, removing
drift in the second iteration of integration can improve theigdoclearance estimatigiitagawa &

Ogihara, 2016)Stride length measurements have similar error rates to other studies estimating stride
length lut improved the estimation of vertical trajectory from -2Dmm(Mariani et al., 2010, 20129

2 + 7 mm(Kitagawa & Ogihara, 2016)mprovements to vertical trajectory tracking during obstacle
avoidance are also shown with ankle worn IMUs in elderly (1 = 10 mm) and PD paier2 fnm)
whencompared to motion captu€rojaniello et al., 2015)ittle research has begun investigating the
frontal plane kinematics with inertial sensors. Lateral swing parameters between genders is not different
when calculated using inertial sensors attached to théDaokashiet al., 2013)During level ground

walking, mean lateral deviation is estimated at 0.04 (0.01) m. Determining differences between groups
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during compensatory movements is unclear. Frontal plane kinematic outcome measures are topical for
populations witHower limb mechanical dysfunction (e.g. amputees, knee replacement, etthpsad

who adopt frontal plane movemer(Bowker et al., 1992; Byrne & Prentic2003; Hill et al., 1997;

Vrieling et al., 2007)If IMU devicescancharacterizérontal plane compensatory movements,
assessment and quality of care for these populatimuld utilize quantifiable measures to improve the

care of these patients

3.1.6Rationale, Objective, and Hypothesis

Theclinical useof wearable sensors could improve intervention and rehabilitation by providing
guantitative measurée better guide clinical decision makings revealed in study 1 of this thesis,
inertial sensors came used, unobtrusively, tuantify kinematic outcoemmeasurements to characterize

human movement. The ability to distinguish specific lower limb movement characteristics is unknown.

Themainobjective of this study is to determinesatial and temporal features of movement
kinematics can be determined frékdU -based outcome measures by companimgnal and
compensatory movements when obstacle avoidance and mechanical restriction challenge healthy
individuals.Compensatory movementarnihg obstacle stepping tasks were evokedemlthy population
who worea range limiting knee brac€&ask conditions replicatemputeeanovement restrictionand
reveal the utility of orthotic devices as a ttmresearch the amputee community. Specifjcéihe study
set out to determine if it was possible to measure lateral limb movement, hip hiking, and limb clearance
during knee joint constraint conditions (mechanical bracing) during stepping over ob#acieted,
these task challengese initially tested in this study ipoung healthy adult& anattempt to evoke the
types of gait adaptations expected among individuals with restriction occurring due to disease or

prosthetic interventian

(1) It is hypothesized that spatially deriviidematic meases from IMUs during braced knee
conditions will be characterize by increased lateral end point deviation comparddadiced
and no brace conditions for obstacle crossing and level ground walking. Further, there will
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only be a significant difference ftine obstacle condition when the subjeas restricted
range of motion (locked brace)

(2) Itis hypothesized that spatially derivieidematic measures from IMW$ maxmum
endpointimb elevation will have a main effect of obstacle condition. Obstaolesing limb
elevation will be significantly different from level ground walking for all brace conditions.

(3) Itis hypothesized that spatially derivieiddematic measures from IMUs bip hiking will
have a main effect of braeed obstacleondition. Lockedrace hip hiking will be
significantly different from both no and unlocked brace conditibasther, increase of hip

hiking will occur during obstacle avoidance compared to level ground walking.

3.2 Methods

3.2.1Patrticipants

Twelve young healthy adults, absefnheurological or mechanical dysfunction, were recruited
for this study and provided informed consent. This project was reviewed and approved by University of
Waterloo Office of Research and Ethics. Exclusion criteria included: (1) if participants hamiprevee
injury and were accustom to a external frame knee brace, (2) had current lower limb injury that caused
movement deviation from their normal pattern, (3) lower limb injury within the last 6 months that caused
tissue damage, or (4) had any heatimplications that may interfere with exerciBarticipant
anthropometric data was collected at the beginning of each collection: mean (SD) age 23.17 (4.17) years,
height 1.73 (0.13) m, weight 78.32 (21.04) kg, right leg length 0.92 (0.07), left leg leng(l® @-BRand

leg dominance (Table 15)
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Table 15. Participant anthropometric and descriptive information for Study #2.

Subject Age Gender Height Weight Right LeftLeg Leg Brace Size
(years) (cm) (kg) Leg Length Dominance
Length (cm)
(cm)
001 22 M 1.84 91.4 0.96 0.97 Right L
002 26 F 1.66 57.4 0.84 0.84 Right M
003 25 M 193 105.6 1.01 1.01 Right XL
004 27 M 1.57 88.4 0.86 0.86 Right L
005 19 F 1.63 54.9 0.84 0.83 Right M
006 19 F 1.59 107 0.88 0.88 Left M
007 20 M 1.81 48.6 0.99 0.98 Right L
008 23 M 1.90 87 0.98 0.98 Right L
009 24 M 1.89 88.6 0.99 0.99 Right L
010 33 M 1.70 93.2 0.92 0.91 Right XL
011 19 F 1.67 58.5 0.90 0.90 Right M
012 21 F 1.62 59.2 0.83 0.84 Right M

3.2.2Collection Protocol

Participants completed 15 level ground and obstacle avoidance trials under three different brace
conditions for the duratioof this collection (Figure 19 An orthotic offthe-shelf knee brace was used to
manipulate the attainable knee flexion, in speddcked brace trials, with the goal to replicate movement
patterns irpathological gait (Figure 20In total, participants were to complete 45 successful level ground
walking and 45 obstacle avoidance walking trials during this collection (15dfa#eh brace conditign
Trials were excluded if participant cleared the obstacle with their rightdsrthe lead limfaripped the
obstacle, false starts, or any stumbling during starBagticipant starting position adjustments ensure
lead limb consistacy across all brace and obstacle conditions. No brace walking conditions were
completed as the first and last block of conditions. Dividing this condition ensured that learning effects of

compensatory movements did not linger into normal walking patterns.

Block 1- NB PRE Block 2- UB Block 3- LB Block 4- NB POST

- 7 Level ground - 15 Level ground - 15 Level ground - 8 Level ground
walking trials walking trials walking trials walking trials

- 8 Obstacle avoidancg - 15 Obstacle avoidang - 15 Obstacle avoidang - 7 Obstacle avoidance
- No knee brace - Unlocked knee brace| - Locked knee brace | - No knee brace

Figure 19. Block diagram outlining collection block details and sequence for Study #2.
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(®)

Figure 20. (a) CTI® OTS kee Brace (Ossur (UK) Ltd, Stockport, UK) used on the present gh)dy
Flexion Stops (Ossur (UK) Ltd, Stockport, UK) usedhaslbcking mechanism for the knee brace to
reduce knee flexion.

Baseline leveground and obstacle avoidance movement patterns were collected with participants
under normal walking conditions. The brace with full range of motion (unlocked brace) was affixed to the
participantds right | i mb (si t)(rage 1f and Wwas fitteddor sugge st
comfort of the participant. Participants completed walking trials with unlocked knee brace to determine if
there was an affect of unlocked knee brace (passive restriction) to level ground and obstacle avoidance
strategiesLastly, flexion stops atkd to the knee brace to lintlite attainable knee flexion and examine

the ability to detect compensatory kinematic outcome measures during level ground and obstacle

avoidance walking trials.

Table 16. Brace sizing guideline.

Size Caliper Measurement (Knee Width)
Small 907 100 mm
Medium 1007 115 mm
Large 1157 120 mm
X-Large 1207 130 mm
XX-Large 13071 145 mm

3.2.2.1Walking Path

The walking path was 1.25 metre wide and six metres in length. Participeretsible to walk

both ways on the walking patfherefore at the end participants were given instruction to turn around to
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prepare for the subsequent trial. Instructions were read at the beginning of each block when the brace

condition changed:

fi T h e ofgthisdalsk is to walk at a comfortable speed, down the walkway and just past the end line. It is

not necessary to stop directly at the end line but you can stop when you are comfortable after the line. At

the beginning of each trial please try to starsistill as possible and you can start walking on my cue.

When you stop at the end, pl ease remain stil!l unt

During the obstacle avoidance trails an obstacle was setup at the three metre maai,duadfv
the walkway. The obstacle was square wooden bar (1.25 m length x 0.04 m wide x 0.04 m height). The
obstacle was set up to be 0.14 m high measured to the top edge and was placed on top of two blocks that
were 1.25 metre apart. The obstacle was s&tuthat if a participant was unable to clear the obstacle, the

bar would fall to the ground={gure 2.

aNI/LHvIS
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essssss  Obstacle

Figure 21. Gait task walkway. Obstacle was placed halfway between the start and end sections and was
removed on level grouhwalking tasks. Beam breakers were start up at start, end and middle of walkway
to synchronize step counts within a certain distance and obstacle crossing timing.

3.2.3Instrumentation

3.2.3.1Inertial Measurement Units

Shimmer3 Bridge Amplifier+ IMUs attached bilaterally to the ankles and Shimmer3 IMU
attached to a belt above the right hip recorded human movement. A comfortable strap wrapped around the
ankle and secured the IMU 0.04 m above the lateral malleolus. Hddk@msecured the hip worn IMU

to a fabric belt around the subjectds waist (idea
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IMUs were calibrated follommg the same protocol in Study 1. Uniinfigurations were completed using
proprietary stiware ConsensysPRO (Shimmer Sensing Inc., Dublin, Ireland). Shimmer3 IMUs were
configured with both lownoise (+2g) and wideange (+8g) accelerometers, gyroscope (1000 degrees
per second), magnetometer (1.3 kPa), quaternion orientatiand%degreeof freedom), the resistance
amplifier, and a UNIX time stamp. Shimmer3 IMU units streamed via Bluetooth for visual purposes and
logged data onto a 32 GB SD card for data analysis purposes to avoid missing data points lost in the
streaming system. IMU cattion frequency was set to a priori available frequencies, determined by

Shimmer Sensing Inc., at 102.4 Hz.

3.2.3.2Foot Switches

Participants were fitted with foot switches on the heel pad and forefoot of both right and left feet.
Hypafix® tape managed wire mlament and secured footswitches to bottoms of feet. An amplifier box is
attached to the participantds waist belt that

resistance channel that will be used to confirm foot fall detection algorithméMiitlyenerated signals.

O

/ F\

Anterior Posterior

@ Inertial Measurement Unit @ Footswitch

Figure 22. IMU placement on lower limb (4 cm above lateral malleolus). Footswitches were secured with
Hypafix® tape to the bottom of the heel and forefoot for gait event confirmation.
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3.2.3.3Data Synchronization

Three beam breakers were setup at each end of the walking path and at the location of the
obstacle, 2 metre across the walking path. When the beam is interrupted, a 3.5 V square wave is recorded
onto a single Shimmer3 Bridge Amplifier+ unit sitting tfé side of the walking path. The 3.5 V square
wave indicates when participants are stepping over the obstacle and would be used to capture the crossing
stride characteristics to describe compensatory movement while participants were stepping over the
obshcle Figure 2). The single IMU also receives signals when the start and end beams are broken,

which indicate the beginning and ending of each walking trial.

UNIX timestamp recorded at the leading and last edge of the square wave recorded from the
beam beakers along the walking path synchronized the Shimmer3 IMU units. Using the corresponding

timestamps, data was sectioned into window of walking trial data.

3.2.4Data Processing

Inertial measurement units were filtered using a dual gdssder Butterworth bangass filter.
Low-pass frequency cutff was determined with a residual analy®tinter, 2009)and highpass cut
offs were determined from previous conthttresearch studi€rojaniello et al., 2014; Zok et al., 2004)
Bandpass filterhad a passband of 008 Hz Data wasiftered using the Matldbfiltfilt function for
dual pass filtering.

After processing and windowing data into walking trials from SD log data, three distinct steps are
used to output kinematic outcome measures: (1) stride segmentation, (2) rotationsfjiidld into

motor task frame of reference, and (3) double integration and drift removal of acceleration signals.

3.2.4.1Stride Segmentation

Walking trials are segmented into strblg-stride analysis that allows definition of walking
characteristics per strigend reduce integration drift effect. For drift removal, the final integration value
known. Instances of assumed zero velocity have been previously usedrift estimated velocity

signals after acceleration. Periods of zeetocity are not common dimg walking, however when the
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foot comes in contact with the ground, it is assumed no movement occurs unless there is a slip or
shuffling gait pattern. Under this assumption instances ofwdawity have been assumed as the whole
stance perio@Rebula et al., 2013)r specific instancesuch as 40% of stance phase, which was used for
this study(Peruzzi et al., 201 T;rojaniello et al. 2014) To segment walking trials to stride data

consecutive footfall dates determinedTrojaniello et al. (2014)leveloped a footfall detection algorithm

to detect footfall events in healthy, elderly, choreic, hemiparetic, and parkinsonian gait patterns. The
algorithm utilizes angular velocity and éiar acceleration waveforms to detect initial and final contact
instances and relies on outlining periods of known stance and swing phases according to these sensors.
Swing phase was defined as a period of angular velocity that is greater 30% of localmaxigular

velocities recorded in the sagittal plane (about thgig). During swing phase the contralateral limb is
assumed to be in contact with the ground. Two minimum duration thresholds are applied to known swing
and stance phases to accommodateasidgopout or quick oscillations around a previously used

threshold. Detected swing periods had to be at least 100 ms in duration and time between consecutive
swing phases minimum time duration was 20Q(Tmejaniello et al., 2014)After determining swing and
stance phases footfall search windows are definedoffaearch widow is the period of time between
stance phase and swing phase, while heel strike search window is between the swing and stance phases.
Final contact is defined as the minimum mediolateral angular velocity in FC search window. Initial
contact is definedsathe minimum anterior posterior acceleration in the IC search wi(diana

Trojaniello et al., 2014)These footfall deiction methods were applied to all walking trials to segment

the data, walking trials were segmented into strides with final contact events as stride definition

boundaries.

Footswitch data confirmed gait event detection with IMU algorithm. Square watvewadoh
data was used to detect initial and final contact using a threshold crossing. FSW threshold was calculated
as the average of the signal recorded by the resistance amplifier received from the footswitch on ankle

worn IMUs. Threshold crossing withpmsitive slope indicated initial contact and a negative slope
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indicated final contact. After confirmation, 40% stance phase was calculated and usedriibindehe

velocity and position estimations

3.2.4.2Rotation to Task Frame of Reference

Local frame aceleration vectors are rotated into a global frame of reference using methods
described in Study McGinnis & Perkins, 2012)nertial frame of reference was created such that, the x
axis was anterior posterior withe direction of progression measuring positive, tHasig was vertical
and aligned with gravity, and theaxis was the mediolateral axis with positive values pointing to the
right of the participant. With this reference frame, all rightwards movemesrtesrecorded as positive

and all leftwards movements were recorded and negative.

3.2.4.3Double Integration and Drift Removal

Position data was estimated by double integrating accelerometer data in the global reference
frame and removing drift with linear funoti subtraction, similastudy 1 During walking trials,
integration period occurred between assumedvelarity instances within each gait cycle (at 40%

stance phase).

With the advantage afmall time intervals, linear drift is assumed during stridegration time
periods (between 40% stance). Linear drift removal was applied to vertical and mediolateral acceleration
signals. Drift removal to vertical acceleration signals assumes the foot returns to the level ground after
swing phase. Since walking pats assumed to be level ground (any change in walking surface is
negligible) this linear drift removal technique is considered acceptable. Frontal plane swing
characteristics are improved significantly when data idrdfeed in a similar fashion alonge¢hML axis as
conducted on the vertical axiglariani et al., 2010)Therefore, dalrifting techniques were applied to

both vertical and mediolateral acaeigon signals.
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3.2.50utcome Measures

Kinematic outcome measures derived from double integrated, drift corrected accelerometer
signals describe the movement pattern adopted to overcome obstacles. Maximum peak elevation of the
foot during swing phase represetite change in height of foot to clear theund or obstacle when
walking. Maximum lateral deviation of foot during swing phase represents the frontal plane movement of
the swinging foot during level ground and obstacle clearance. Hip hiking is theeitedl displacement
of the hip during ipsilateral swing phase. Temporal measures of interest are defined by the gait events
detected with the IMU footfall algorithm. Swing time is the time in seconds between the final contact
(foot leaves the ground) the initial contact of the ipsilateral limb (foot is in contact with ground).
Doubl e support time is the time betwee-wnfflehe | i mbo
double support time is between the left heel strike and the riglofftoghile right double support time is

between the righheels trike and left teeff.

Table 17. Outcome measure description to characterize compensatory movements typically seen in the
amputee population.

Outcome IMU Sensor Definition
Measure
Maximum Bilateral Shank 1 Maximum vertical distance attained within the swil
Elevation mounted phase of gait
Peak Lateral Bilateral Shank T Maximum lateral deviation of the swinging foot
Deviation mounted
Hip Hiking Hip 1 Maximum change imeight of hip during swing
phase

Double Support Bilateral Shank I Time spent with two feet on the ground
Time mounted 1 Right DST:

o Time (s) from RHS to LTO

1 Left DST:

o Time (s) from LHS to RTO

Swing Time Bilateral Shank 1 Time between final and initiaontact of ipsilateral

mounted

limb

3.2.6Statistical Analysis

All statistical tests performed in SPSS Statistics (IBM Corporation, Armonk, New York, United States)

and significance was evaluated at p = OF¥arson ® correlation determined the association of footfall
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