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Abstract

In this paper, we investigate the optimal time-consisten. mver cment-reinsurance strategies for
an insurer with state dependent risk aversion and Value-at-1 isk (VaR) constraints. The insurer
can purchase proportional reinsurance to reduce i insu..uace risks and invest its wealth in a
financial market consisting of one risk-free asset .« vue risky asset, whose price process follows
a geometric Brownian motion. The surplus prc ~~< of tue insurer is approximated by a Brownian
motion with drift. The two Brownian motiors in " e insurer’s surplus process and the risky asset’s
price process are correlated, which describe thL~» ce.relation or dependence between the insurance
market and the financial market. We intro -ice the VaR control levels for the insurer to control
its loss in investment-reinsurance strs ... =s, which also represent the requirement of regulators on
the insurer’s investment behavior. nder he mean-variance criterion, we formulate the optimal
investment-reinsurance problem wit’.in a game theoretic framework. By using the technique of
stochastic control theory and olvin, t'ie corresponding extended Hamilton-Jacobi-Bellman (HJB)
system of equations, we deiive 1.~ closed-form expressions of the optimal investment-reinsurance
strategies. In addition, ~ve i ustrate the optimal investment-reinsurance strategies by numerical
examples and discuss t.1e im, ~ct of the risk aversion, the correlation between the insurance market

and the financial ma."e’, an . the VaR control levels on the optimal strategies.
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1 Introduction

An insurer can manage its assets by investment and reduce its insurance .i1sks by reinsurance.
Optimal investment and reinsurance problems for an insurer have attractea mucn ~ttention in the
actuarial literature. The optimization criteria commonly used in thes. op imal investment and
reinsurance problems include maximizing the expected utility of the te. mina. -vealth of an insurer
and minimizing the ruin probability of an insurer. Some recent vor = related to these criteria
can be found in Browne (1995), Schmidli (2002), Liu and Yang (. '04), Promislow and Young
(2005), Yang and Zhang (2005), Liang et al. (2011), Bi and G o (201."), and so on. In an optimal
investment problem, there is a trade-off between the exper..d rc.wun of the investment and the
risk of the investment over a fixed time horizon. In the t.~ .ameatal work of Markowitz (1952),
the risk of a portfolio is measured by the variance of its rev.n in a single-period model, and the
mean-variance criterion is used to seek the best alle-atio. of wealth among a variety of securities
so as to achieve the optimal trade-off between th~ ~=--+ d return of the investment and its risk
over a fixed time horizon. The mean-variance criterio.. has become one of the important criteria
used in optimal investment problems. This criter: » is also useful in insurance/reinsuarnce decision
problems, as pointed out in Béuerle (2005). So.me ~cent applications of the mean-variance criterion
in insurance/reinsurance problems can be [~nnu .n Bai and Zhang (2008), Zeng and Li (2011), Bi
and Guo (2013), Zeng et al. (2013). Ti and Li (2013), Wu and Zeng (2015), Zhang and Liang
(2017), and references therein.

It is well known that an or.im-l investment-reinsurance problem under the mean-variance
criterion in a multi-period or ¢ intiu. "ov, time framework lacks of the iterated-expectation property,
which leads to time-inconsi tein. investment-reinsurance problems in the sense that the Bellman
optimality principle does aou hold for such optimal control problems. One of the important ways
to deal with the time in<ons. tency in the optimization problem is to study the optimization problem
within a game theorr <ic “-am work, in which a decision-maker’s preferences change in a temporally
inconsistent way . vume gces by, and the mean-variance optimization problem is viewed as a game,
where the players ~re the future incarnations of the decision-maker’s own preferences. The decision-
maker looks or a s bgame perfect Nash equilibrium point for this game. The first paper to treat
the time incon.‘=te ¢y in more general frameworks by the game theoretic approach was Bjork and
Murgoci (2110, in which they considered a general class of time-inconsistent objective functions and

a general conti blled Markov process and derived an extension of the standard dynamic programming



equation in the form of a system of equations. Since then, the game theoretic approach has been
applied in different optimization problems. For instance, Zeng et al. (2013) considered the optimal
investment-reinsurance problem with one risky asset followed by a geome ...~ Brownian motion
(GBM) in a compound Poisson risk model. Bjork et al. (2014) studied the ... an-variance problems
with a state dependent risk aversion and assumed that the risk aversion 1 pends dynamically on
current wealth. Li and Li (2013) extended the work of Bjork et al. (2011) to " he optimal investment-
reinsurance problem, in which the surplus process is approximate « by a aufusion process. Under
the same criterion, Zhang and Liang (2016) discussed the optin .u porttciio selection problem with
one risk-free asset and two jump-diffusion risky assets, where th. two r'sky asset price processes are
correlated through a common shock. Further work about t .me “... »nsistent problem was discussed
in Zeng and Li (2011) and Wu and Zeng (2015).

When we consider a continuous time mean-varic nce invi stment problem, the wealth of an
investor over any time period in the investment horizo. and the terminal wealth may occur huge
loss. To prevent investors from extremely dangerou. nositions in the market, it is helpful if we can
use risk measures to limit the risk exposures .» v —arket. The risk measure of Value-at-Risk
(VaR) is often used to describe the market r. - of & trading portfolio. Generally speaking, the VaR
of a portfolio is the maximum possible Jn<s ot ‘he portfolio at a given confidence level. Indeed,
in practice, in order to fulfill the regulation .~quirements, an insurance company or a financial
institution has to control the VaR of .cs pu tfolio. Hence, it is an interesting topic if we consider an
investment-reinsurance problem with >R _onstraints. Recently, Chen et al. (2010) and Ye and Li
(2012) have investigated the oy ‘im'.l in" estment-reinsurance problems for an insurance company
with VaR constraints under che criverion of minimizing the probability of ruin and the mean-
variance criterion, respectively. lher works about optimal investment or optimal reinsurance
problems with VaR cons rair s can be found in Yiu (2004), Zhang et al. (2016), Chen et al. (2018)
and the references thr ceir

Optimal time-incou.. ste ¢ investment-reinsurance problems have been extensively studied in the
literature. Howe er, ver, few of these contributions deal with the problems under VaR constraints.

In this paper v~ arc __.ng to study the optimal time-inconsistent investment-reinsurance problem

under VaR ¢onstrai ts with state dependent risk aversion for an insurer. The insurer’s surplus
process ic rnroximated by a Brownian motion with drift. The risky asset’s process follows a

geometric b. »wnian motion. This paper extends the work of Li and Li (2013) in two ways. On



the one hand, the two Brownian motions in the insurer’s surplus process and the risky asset’s price
process are correlated with a correlation coefficient. This makes our model more flexible but makes
the extended HJB system of equations in our paper more complicated. On tF - +her hand, the VaR
constraints on the future net loss over any time period with a fixed time "C.. ~th is incorporated in
the model. This provides us an opportunity to observe the effect of VaR ¢~ traints on the optimal
investment-reinsurance strategies. To the best of our knowledge, this mape. < the first one to study
optimal time-consistent strategies with dependent insurance and ave: cment risks as well as VaR
constraints.

This paper is organized as follows. In Section 2, we give t. @ moc 2l settings consisting of the
insurance risk process, the price processes of the risk-free sset .. d the risky asset, as well as the
corresponding wealth process with investment and rein. 'ranc~ In Section 3, we formulate the
optimization problem within a game theoretic frame vork wi hout VaR constraints. By solving
an extended HJB system of equations, the closed-forn. ~xpressions of the equilibrium investment-
reinsurance strategies and the corresponding equilin. ‘'nm value function for the problem are derived.
In Section 4, we consider the optimization probi m v . VaR constraints and solve the optimization
problem using the results derived in Section © In 'action 5, we illustrate our results by numerical

examples. Finally, Section 6 concludes ov~ resu.‘s.

2 Model settings and p.ob. m formulations

Let (Q2,F,P) be a probability pac: equipped with a filtration {F;},c(o ) satisfying the usual
conditions, i.e., {F;}sc[o,7] 18 ":ght .~n muous and P complete, and containing the information of
the market available up to ¢cime * T > 0 is a fixed time horizon. In addition, we assume that
there is no consumption. .10 1 1come, no transaction cost and no tax in the financial market or the
insurance market, and traa.. ~ takes place continuously.

2.1 Reserve p~>ces. Jf an insurer and the financial market

The dynamic of ti.~ ress ;ve process { R(t)};>0 of an insurer is modeled by
N(t)
dR(t) = cdt —d )Y, (2.1)
i=1

where the c..stant ¢ > 0 is the premium rate, {N(¢)};+>0 is a Poisson process with intensity A > 0

representing the number of claims occurring in time interval [0, ¢], and Y; is the size of the ith claim.
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In addition, {Y;,7 > 1} is assumed to be an i.i.d sequence of random variable and be independent of
{N(t)}+>0. The compound Poisson process Zi]\;(f) Y; represents the cumulative amount of claims in
time interval [0,¢]. Let Y be a generic random variable which has the same d’s. “hution as Y;,7 > 1.
Let Fy (-) denote the cumulative distribution function of Y. Denote the ex . *ation and the second
moment of Y by E(Y) = u; > 0 and E(Y?) = ps > 0, respectively. A *.ne that the insurance
premium rate at time ¢ is calculated by the expected value principle, that .. ¢ = (14n)A\u1, where
1 > 0 is the safety loading.

Due to the jumps in the reserve process { R(t)};>0, it is not “casible v solve the mean-variance
optimal investment-reinsurance problem directly under the re erve 7 rocess {R(t)}t>0. As most
studies on the mean-variance optimal investment-reinsura ice » .. blem (see, for example, Browne
(1995), Bai and Zhang (2008), Liang and Yuen (2016), .nd s~ -a), we can consider the problem
under the diffusion approximation of the reserve proc ss {R(t }+>0. According to Grandell (1991)

(pages 15-17), the diffusion approximation {R(t)}+>0 o’ the reserve process {R(t)}s>o is given by
dR(t) = cdt — M dt + [/ Apg AW (1),

where Wi (t) is a standard Brownian motion
Now, suppose that the insurer with an im.ia1 vealth Xy > 0 is able to invest its wealth in a
financial market consisting of one risk-free a. et and one risky asset, which are traded continuously

on a finite time horizon [0,7]. The p~'.. nrocess of the risk-free asset is given by
{ dr,'t) - - roPo(t)dt, t € [O,T],
] PO(,/) = Po,

where 7o(> 0) is the interest . “te of the risk-free asset.

The price of the risky .. =t is modeled by the following stochastic differential equation (SDE)

COPL(t) = PL(t) [radt + odWa(t)], £ € [0,T],

1 P(0) = p1,
where r1(> 79) i, the . opreciation rate, o is the volatility coefficient, and Ws(t) is a standard
Brownian motion. The rownian motion Wi (t) in the approximated reserve process { R(t)};>0 and
the Brownia. motic Wa(t) in the risky asset are possibly correlated with correlation coefficient
p € [-1,1 whicu represents the dependence between the stock market and the insurance market.
This kind 0. lependence may be due to an extreme event (such as a natural disaster) which has

the common impact on both the financial and insurance markets.



Let X; denote the insurer’s total wealth at time ¢ and u(t) denote the total market value of
the insurer’s wealth in the risky asset at time t. Then X; — wu(t) is the value of the insurer’s
wealth in the risk-free asset. Assume u(t) > 0, i.e., the short-selling of the s’ .- is prohibited. Let
q(t)(> 0) represent the retention level of new business (reinsurance) acquirs . . t time ¢, which means
that the insurer pays ¢(¢)Y of a claim occurring at time ¢ and the new ™ isinessman (reinsurer)
pays (1 — ¢(t))Y. Suppose that the reinsurance premium is also calemlate” by the expected value
principle. For this business, the reinsurance premium is paid at ~ate 1 — ¢(¢))(1 + 0)Au1, where
0(> n) is the safety loading of the reinsurer and the condition ¢” v > 7 1. required for avoiding the
insurer’s arbitrage. Note that for the insurance company, ¢(t) ¢ [0,1] - orresponds to a reinsurance
cover and ¢(t) > 1 would mean that the company can take an r .. a insurance business from other
companies (i.e., act as a reinsurer for other cedents).

A strategy 7w(t) = (q(t),u(t)) is said to be admiss™™le if g( ), u(t) are Fi-predictable processes,
and satisfy ¢(t) > 0, u(t) > 0, E[fg q?(s)ds] < oo and I' [y u?(s)ds] < oo for all t > 0. We denote
the set of all admissible strategies by II. Let X" acote the insurer’s total wealth at time ¢ under

the strategy m(t) = (q(t),u(t)). Then, the dyna uc - Y[ is given by
dX[ = {roX[ + Mu10q(t) + (r1 — ro)u(t) + 012 — 0) } dt+q(t)/ ApedWi (t)+u(t)odWsa(t). (2.2)

Note that due to the diffusion approxin.. *ion, the wealth process X[ satisfying (2.2) is not
always positive, which is a quite cc.un. m situation when a compound Poisson risk process is
approximated by a diffusion process. Tn o.r model, the total amount invested in the risky asset
at time ¢ satisfies u(t) > 0 or s’.ort selling is prohibited. As pointed out at the end of Section 2
of the celebrated paper of Bv owne (**95), the situation that X" < 0 (or in general u(t) > X[ in
this paper) means that the investe */company is borrowing money to invest long in the risky asset.
In fact, Section 3 of Bwe wne (1995) has studied the negative wealth case and derived the optimal
investment strategy t'.at ma. ‘mizes the expected utility of the investor/company at a terminal
time when a wealth 1.~ ess s allowed to be negative. In practice, if the wealth process is negative
or the company s in (=ficit, the company may need inject capital to keep the wealth process
positive. This is a. int _resting question, but is not considered in this paper. In this paper, from
the perspect: 7e of r1. k management, besides maximizing the expected mean-variance utility of the
terminal vealth av the terminal time, we also want to control the VaR of the loss of the company
over any tin < period prior to the terminal time. That is the novel point of our paper. The studies

of the negative wealth cases with capital injections in the context of optimal investments, optimal



portfolio sections, optimal dividend payments, and optimal reinsurances can be found in Zhou and
Yuen (2012, 2015), Zhu and Yang (2016), Zhao, Chen and Yang (2017), Zhao, Jin and Wei (2018),

and the references therein.

2.2 Value-at-Risk constraints for the investment-reinsurz ~ce strategy

Under the investment-reinsurance strategy m(t) = (q(t), u(t)), the ing= =r’s v, ~alth process { X7, ¢ >
0} is a risk process. As discussed before in Section 1, the insurer m. > o has to use the risk measure
of VaR to control its wealth for avoiding huge loss. For time “.atervel |1, + h] with a small time
step h > 0, assume that the investment-reinsurance strategy dc ~s not change over this short time
period, i.e., w(l) = w(t), | € [t,t+ h]. This assumption is re 1sor .. > because in practice the insurer

usually adjust its investment-reinsurance policy on a mo.."hly { aarterly, yearly) basis. Thus, the

—

loss of the insurer in time interval

t,t+h| can be exprc ~ed as AX[, = X[ eroh — X[\ - According

to the It6’s formula, the SDE (2.2) admits a solution

~—

s

Xr= XFeoG= [ eroG=2) hifg(z) - (1 — ro)u(z) + Aua(n — 0)] dz

s

—

—i—/ ero(s=2) [q(z)\/z\/% S+ u(z)odWa(z) | . (2.3)
¢
Thus,
eroh 1
AXiw =~ - e 9a®) + (re = roJu(t) + A (n — 0)]

t+h
[T R e) + ()] (2.4

One feasible way for the i surer tc control its wealth risk is to control the VaR of AX;r ,, for any
t € [0,7] with a small fixed time s.~p h, say h = 1/365 (any day), h = 1/12 (any month), h = 1/4
(any quarter), and h =1 (an  year).

For a given risk lrvel » € /0,1) and a time step h, we denote the conditional VaR of AXt’fh

conditioning on F; by “aR?" "™, namely,
VaRP™™ .= inf{L € R; P(AX], > L| F) < p}. (2.5)

In other wor: s, Vak ™™ is the maximum possible loss over the next time period of length h at the
confidence level 1 — p. We point out that P(AX], > L|F;) in (2.5) is the conditional expectation
of E [1{ AXT, > L}]}}] which is a random variable. However, as we see from (6.1) in the proof of

Lemma 2.1 in Appendix A that given 74, the conditional probability P(AX], > L|F;) is almost

7



surely equal to the normal distribution function (6.1). This is due to the well-known fact that
given F;, the stochastic integral (6.2) has a normal distribution with mean zero and variance (6.3).
Hence, P(AX[, > L|F;) is almost surely a deterministic function (6.1). Thi », VaRy T defined by
(2.5) is almost surely a deterministic function, which is given in Lemma ...

In this paper, we will derive the optimal strategy = under the constrai.” “nat the investor wants

to limit the VaR of its loss over any time period of length h at a conetant 2R, that is to say that

at any time ¢ € [0, T, the strategy m(¢) should satisfy
VaRP"™ < VaR. (2.6)
To derive the optimal strategy in Section 4, we first gi* e th . « pression of VaRF"™™.

Lemma 2.1. Given risk level p € (0,1) and time length h — 2, we have

- eroh -1 .
VaRP!T = == Dynfa(t) + (1 = o) () + A (1 = 0)]

1 627’0]1 _ 1

~07(p)y) Sy [ A2(4) + 02u2(t) + 2p )\ugaq(t)u(t)], (2.7)
0

where ®~1(-) = inf{x € R : ®(x) > p} is the u. erse function of the cumulative standard normal

distribution function ®(x) = [*_ %ﬂe"f e
Proof. See Appendix A. O

2.3 Problem formulation

In this subsection, we will f rmulate the problem within a game theoretic framework, which is
developed by Bjork and Murgoci (2010). We consider an optimization problem for the insurer
to maximize the expecte | m an-variance utility of its terminal wealth, i.e., the objective function

which we want to ma- (mize 15 given by

x
J(t,z,m) = By o XF] — 7(2) Vary o[ XF], (2.8)
where z is the ‘nitial _upital of the investor at the initial time ¢, E; ,[-] = E[-|X] = z], Var,,[-] =

Vars o[-| X7 = z]. Fu thermore, we let y(x) = 1. It is known that y(z) = I is a suitable choice of
the state . rondent risk aversion function. It was suggested by Bjork et al. (2014) and has been
studied by L. and Li (2013), Zhang and Liang (2017), and so on. The detailed discussion for this



choice of the state dependent risk aversion function y(z) was given in Bjork et al. (2014). We
added these comments after (2.8).

Due to the fact that this objective functional (2.8) involves with a non-I' .. > function Var ;]
and the current wealth x at current time ¢, the optimization problem is tir . Mconsistent. We solve

'« ok for Nash subgame

this time-inconsistent problem within a game theoretic framework ana
perfect equilibrium solutions.

For convenience, we rewrite the function (2.8) as
T(t,2,m) = B [XF = L(XD?] + - [Bea (XD = B AP (e, 7)) + G, Eeal XF)

with F(z,y) =y — %yg and G(z,y) = %yz.
Now we recall the following definition of an equilibriu..- cor'- JI and equilibrium value function,

which is from Bjork and Murgoci (2010).

Definition 2.1. Given a control law 7*, which ca» »> *~*- mally viewed as a candidate equilibrium
law. Choose a fired m € 11, a fixed real number | > v ~nd a fixed arbitrarily chosen initial point

(t,y) € [0,T] x R. Construct a control law m; by

(e ), t Ts<t+l,y€eR,
7Tl(8,y) =
™(s,y), 1+1<s<T,yeR.

If

T *)
‘Lmiﬂf\—f x, %) — J(t, z,m)
«—0 l

>0

for allm € 11 and (t,z) € [0,7| x K, 2 say that 7 is an equilibrium control law. The equilibrium
value function is defined by

W(t,xz)=J(t, z,7").

Based on the de’.nition above, the equilibrium strategy is time-consistent, the equilibrium
strategy is thus the opu. 2. time-consistent strategy. Our goal is to find an equilibrium strategy
7* and the corre: pondin ; equilibrium value function.

Before giviuyg the extended HJB system of equations and the verification theorem, we define
a infinitesimz" gene ator. Let C2([0,T] x R) denote the space of the bivariate functions ¢(t, z)
such that v, . and its derivatives ¢;(t,x), ¢u(t,x), ¢dza(t, ) are continuous on [0,7] x R. For

any function (¢,z) € C%2([0,7] x R) and any fixed 7 € II, the usual infinitesimal generator A for



process (2.2) is defined by

1
A"(t, ) = ¢r+[rox + Aunbg + (11 — ro)u + Api(n — 0)] ¢+ 3 Ap2q” + o*u’ + 2poy )\M2qu} P
(2.9)

Theorem 2.1. (Verification Theorem). For the Nash equilibrium proble,. .f there exist functions

V(t,z), f(t,z,y) and g(t,x) satisfying the following conditions: ¥(t,”) € | T] x R and y € R,

sup {A”V(t,x) —A"f(t,z,x) + A" f(t,x) — AT (Gog)(t,x + HWﬁ(t,x)} =0,0<t<T,
mell

A" fY(tx) =0, 0<t<T,

A" g(t,z) =0, 0<t<T, 2.10)
V(T,z) = F(x,z) + G(x, z),

(T, z,y) = F(y, ),

g(T,x) =z,

and

" =argsup { A"V (t,2) — ATf(t, 2} + ATt @) = AT(Gog)(t,x) + Hg(t 2)},

mell
then W (t,xz) = V(t,x), i.e., V(t,x) is *’.. »quilibrium value function, 7 is the equilibrium reinsurance-

mvestment strateqy and

2,y = Eo [y, X7)] = Eea | XF = (X7
2y (2.11)

g(t7'7) - TEt,Z‘ [X’;:*] )

where the operators f¥, G oy ~s well as H™g are defined as follows:

/

fy(tvx) = f(taxvy)a
Gog(t? l’) - G(m,g(t,x)),
Hg(t,x) = Gy(z,g(t,z)) x A"g(t,x),

oG
Gy(xa y) = aiy(x7y)

Equation (2..1) is also called the extended HJB system of equations.
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Proof. The derivation of the extended HJB system of equations (2.10) and the proof of the
verification theorem can be obtained by using the standard arguments similar to those used in
Section 4 of Bjork and Murgoci (2010). We just give a sketch of the deria. ~n of the extended
HJB system of equations (2.10) and the proof of Theorem 2.1 and omit t’.c letailed proof here.
The derivation of the extended HJB system of equations (2.10) can b. < erived in the following
way: First, we discretize the continuous time problem and obtain a discre. ~ad recursion for 7* by
using the results of Bjork and Murgoci (2010) for discrete time ¢ mtr  theory. Then, letting the
time step tend to zero, we obtain the continuous time extensir.: of the HJB system of equations
(2.10). The proof of Theorem 2.1 consists of two steps: First, us'mg the martingale approach, it can
be proved that V (¢, x) is the value function corresponding t« 7* - ..." that the functions f(t, z,y) and
g(t, ) have the probabilistic interpretations (2.11). Secc. 1. apr', ing the discretization method, it

*

can be proved that n* is indeed an equilibrium contrc' law. O

3 Solution to the optimization pr.blem without VaR constraints

In this section, we first solve the optimal investme ¢-reinsurance problem under the mean-variance

criterion for state dependent risk aversion witiou., VaR constraints. Note that by (2.11), we have

V (tam) = J(tal‘aﬂ-*) = “Et,ft[‘(%*] - 2’71, vartﬂc[“(%*]
_ Yyt 2} 8l [ . r
= F .| X} — X E; (X
WT 2x(T) +2x to(XT )

= I+ g (ta). (3.1)

First, after detailed calcu’ *ions, we obtain the following result about the extended HJB system

of equations and the equil’*-ium strategy.

Proposition 3.1. Ths exic. ded HJB system of equations (2.10) is reduced to the following system

11



of equations:

(

fi+ ggt + sup { [rox + A10g + (11 — ro)u + Api(n — 6)] x [fz ’ & lggx}
(q,u)€ell x

+ % [)‘MQQ + o2u? + 2p0 )\ugqu] X [fm + —Zgb 4 } =0,
fe(t,z,y) + [rox + A 0g* + (r1 — ro)u™ + Apr(n — 0)] fz(t, x, )

+ % {)\,ug(q*)2 + 02 (u*)? + 2po\/Miag* L*J ot y) =0,
g¢(t,z) + [rox + )\u10q + (r1 —ro)u™ + A (n —6)] g."-, )

t3 {/\,uz(q*)2 + o (u*)? + 2,00\/X,u:"*u*} Gzz(t, ) =0,

and the equilibrium strateqy is given by

A — — o2\ 0 e Lgg,
q*:{PU\/ pa(ri—ro) —o*Amb  fao . 399 }vo,

o2 pa(1 — p?) For? L9G0n
o {po’\/)\m)\m@ —Apa(ri —ro)  frt+ 1ggs } Vo
0'2)\,[1,2(1 — ,02) Joa + %ggmc '
Here f, = at) p _ lay) p _ Ffen o Sglta) o PaltD) gpg g et g
the partial derivatives of f(t,x,y) and g(t,x).
Proof. See Appendix B. O

Next, we give the explicit solutior .. *he equilibrium strategy in the following theorem.

Theorem 3.1. The equilibrium strate, : optimal time-consistent strategy) of the extended HJB

system of equations (2.10) is gi. n oy

(3.2)
W (t) = [ea(t)z + ka(£)] V0,

where

t

t

12



and

A = ro+ )\M1061 (t) + (7’1 — 7"0)62 (t); (3.4)
Et = )\m@kl (t) + (7’1 — To)kg(t) + )\Ml (77 — 9) — )\ugcl (t)kl (t)
—a%co(t)ka(t) — po/Mugcr (t)ka(t) — po/Auaca(t)k (1), (3.5)

E, = 1o+ Mubei(t) + (r1 —ro)ca(t) + )\ugc%(t) + 0203(75) L ‘Zp\,/‘iwgacl (t)ea(t); (3.6)
o o PV Ape(r1 — ro) —2 O'A/,Lle; (3.7)
oApz(l — p?)
PO/ Apa A0 — Apa(ry — o)
a?Apz(1 — p?) '

Proof. See Appendix C. g

]
|
—~
@
oo
~—

Remark 3.1. We point out that when p = 0, the results in "heorem 3.1 recover the results of Li

and Li (2013). So, in this section, we extend the rec -arci ~* Li and Li (2013).

Next we consider the equilibrium value function. Recause of the constraints of ¢(-) > 0, u(-) > 0,

we need to discuss the following four cases:
Case A: =0, H <0,
Case L G <0, H>0,

Cuse C: G >0, H<O,

\b\“\eT/:GZO,f_IZO.

We only give the detail discussic.® f,r Case A in the following theorem. The results in other cases

can be derived similarly.

Theorem 3.2. For Cas: A if the initial reserve x at the initial time t satisfies
/. (_iefftTFSds_i_ . _eftTASdseftTFsds}
L -
+ :_—e‘ftT Feds o /T s Adzp s + /T e It deZE’Sds] <0, (3.9)
t ¢
the equilibrius . valve function of the extended HJB system of equations (2.10) is given by
vLa) = a [Pl(t) + %Pf(t) - %PQ(t)}

FQi(1) — 3 Qa(t) + PO (1) + - [QF(0) — ()] (3.10)

13



where Pi(t), Q1(t), Pa(t), Q2(t) and R(t) are given in (6.10), (6.11), (6.12), (6.13) and (6.14)
respectively.

Otherwise, if the initial reserve x at the initial time t satisfies

X [_16— [ Fuds 11— eftT Asds ,— Ir Fsds:|
>0, (3.11)
the equilibrium value function of the extended HJB system of equatio..~ (2.10) is given by

V(t,x) = ero(T=t) . 4 M {ero(f*t) — L} i (3.12)

To

Proof. See Appendix D. O
In the following theorem, we show that the system of 1.°egral equations (3.3) has a unique

global solution.

Theorem 3.3. The system of integral equations (5.7) admits a unique solution c;(t), ca(t), ki(t),

kao(t) € C[0,T), where C[0,T] is the space of co. tin‘.vus functions defined on [0,T].

Proof. The theorem can be obtained easily by a1 'ments similar to those used in Li and Li (2013)
(or Bjork and Murgoci 2010, Bjork et al. 2014 and Zhang and Liang 2016). Thus, we omit its

proof. O

4 The equilibrium strategies under VaR constraints

In this section, we will use ..~ results in Section 3 to solve the optimal investment-reinsurance

problem with VaR constrs"..*s (2.6). To do so, we make the following assumption.

Assumption 4.1. W assu. ~2 that

eroh _ 1

VaR > A1 (0 —n) (4.1)

To

and ®~1(p) < 0 o1 ~aui- alently p < 1/2.

We point ~ut th .t the conditions of Assumption 4.1 are mild ones. To see that, note that the
VaR cont. . ' VaR is a given constant and usually is a large value. With small time step h, the

right hand sic = of (4.1) is small, in fact, the right hand side of (4.1) converges to zero as h — 0. So

14



with a big VaR or a small h, (4.1) can hold easily. In addition, in practice, the risk level for VaR
is a small value such as p = 0.01,0.05. Hence the condition p < 1/2 can be also satisfied easily.

In the following proposition, we give an equivalent expression for the Ve '\ ~onstraints (2.6).

Proposition 4.1. Under Assumption 4.1, the VaR constraints (2.6) or Val f’h’w < VaR is equiv-

alent to
Ag?(t) + Bu?(t) + Cq(t)u(t) + Dq(t) + Eu(t) -t <0, (4.2)
where

~ 2roh __ 1 e?“oh -1 \2
A = @ ') — Al

(@7 (p))" =5, w2 Ly
~ 2roh _ 1 e?"oh _ 1 -2
B = (& '(p)?E 2 _ P .

(@710 o - [T
_ 627‘0h -1 /eroh -1 2
C = (@ '(p)’ T POV Apz - 2| To) Ap16(r1 —70);
5 roh _ 1 roh _ 1
D = -2 A1 6 [e )\pl’n—e)—FVaR] ;

ro
5 roh __ 1 ro. _
FE = —26 (r1 — o) [e —Api(n—0)+ VaR] ;
To L To
~ eroh — 1 7
F = — [ . Api(n -0 ’aR] . (4.3)
0

Proof. By (2.7), we see that

VaRPM™ < Va'¢

— —@_1(1?)\/;'21;0_1 Pﬂ2q2(t)+02u2(t)+2;0 Aqu(t)u(t)] < VaR

fE "A1g(t) + (1 = ro)u(t) + Aui(n = 0)]
p2roh _
= @e) 5 [szf(t) +o%u?(t) +2p )‘”2"‘1(““@)} =
;roh _ 2
[Vah | m1 Mg (t) + (ra = roJult) + A (n — 9)}}

— A1, + Bu*(t) + Cq(t)u(t) + Dq(t) + Eu(t) + F < 0.
In the above -alcula ion, we use Assumption 4.1. O

Remark 4 1 Note that F' < 0, so there exists at least one strategy (q(t),u(t)) = (0,0) that satisfies

(4.2). Then tre control space defined in Proposition 4.1 is not empty.
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Remark 4.2. After a simple calculation, we see that if
C? —4AB <0,
which is equivalent to

T 2 S~ ’
[(I)—l( )]2 (%) {[)\,ug(rl —10) — oA10)® + 2(1 — p)ov/Ap_ Nugv () — ro)}
)] > ok )
S0 Lo A (1 — p?)

2rg

(4.4)

then, the control space of the strategy (q(-),u(-)) is the first quad==nt o, an ellipse; otherwise, it is
the first quadrant of a parabolic.

Note that ®~1(p) — —oco as p — 0. Hence, [®1(p)]? — oc us; — 0. Thus, the condition (4.4)
will hold for a small value of p and the control space of the “travcgy (g(-),u(-)) is the first quadrant
of an ellipse for the small p.

Now, we can solve the optimization problem (2.8, mbjected to (2.2) and (2.6), as well as
q(t) >0, u(t) > 0. We denote the optimal solution o. *his problem by 73, if it exists.

According to Theorem 3.1 and Proposition 4 1, *ae equilibrium strategy under VaR constraints

should satisfy

q(t) = 0, (4.5)

Alg()]? 2 Rlu(t)]* + Cq(t)u(t) + Dq(t) + Fu(t) + F <0,

where ¢1(t), ca(t), ki(t) ko't) are given in (3.3), and A, B, C, D, E, F are given in (4.3).
The first two equatiors in 1.5) are the equilibrium strategy without any constraint. The third
and fourth inequalit'>s i« (4 5) present the nonnegative constraints on the strategy, and the fifth
inequality in (4.5" uenotes the VaR constraint. The last three inequalities in (4.5) constitute the
control space, wh.~h is t ie first quadrant of an ellipse or a parabolic (see Remark 4.2).

If the str tegy ( *(t),u(t)) defined in the first and second equations in (4.5) or the equilibrium
strategy witho.* =~y constraint satisfies the last three inequalities in (4.5) or locates in the control
space for a. v € |0, T, then the strategy (q(t), u(t)) is also a solution with the constraints, namely

(q(t),u(t)) = 13y,g- Otherwise, if the strategy (q(t),u(t)) defined in the first and second equations
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in (4.5) or the equilibrium strategy without any constraint does not satisfy the last three inequalities
in (4.5) or does not locate in the control space for some t € [0,7], we consider the following two
situations. First, if the strategy (q(t),u(t)) defined in the first and secons. .-mations in (4.5) is
outside the control space at the initial time ¢ = 0, then the equilibriur . vestment-reinsurance
strategy is just the boundary of the control space. Second, if the strategy [~ t),u(t)) defined in the
first and second equations in (4.5) is inside the control space at the iritiai ‘me ¢ = 0, but it leaves

the control space at sometime before T', we define the first exit tir ‘e ¢ Jf tue control space as

t:= inf{t > 0: Aley(H)x + k()] + Blea(t)z + kz )2 + Ter(t)z + k1(t)] x
[ca(t)z + ka(t)] 4+ Dler(t)a + k1 (t)] + Zcol )z + ka(t)] + F > 0,

or c1(t)z + ki(t) <0, or ca(t)x + bo(z) < f}.

Then, under the VaR constraints, the optimal time-co. iste'.t strategy (equilibrium strategy) is

WtfaR(t) = (Qik/aR(t%ut/aR(t)) with

. ca(t)r+ 0, te[0,tAT],
Tar(t) = ) (4.6)
Cl(t_)'i‘ l'klk‘\7 te(t/\TﬂT]v

and

[ tt)a+ kot), t € [0,EAT]
whn6) = 2 @)

co(t' r+ ko(t), te (AT, T].

/—/\

Remark 4.3. We can extend wur nod [ and results to the financial market model with multiple
risky assets which are correl ted. As.ume that there are m risky assets (stocks), and their price

processes Pi(t),i =1,2,--- m, sav.fy the following SDEs

m
J (‘Pi(t) e Dl(t> r1;dt + ZO’ideQj(t) , te [O,T],
j=1
\ kab/:pla i:172a"'>m7
where 1 := (T11.7,_ ~+ ,T1m) |, T1i > 710, i = 1,2,--- ,m, is the appreciation rate, o = (T45) s

is the volatil ty coefy cient, Wa(t) := (Way(t), Waa(t),- -+, Wan (t)) T is a standard {F;}s>o-adapted
m-dimensional Lrownian motion, with the superscript T means the transpose of a matrix or a
vector. The 3rownian motion Wi(t) in the approzimated reserve process of the insurer and the

m-dimensional Brownian motion Wa(t) in the risky asset are possibly correlated with correlation
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coefficient p == (p1,pas--+ s pm) ", pi € [-1,1], i = 1,2,--- ,m, which represents the dependence
between the stock market and the insurance market. Let u;(t), i = 1,2,--- ,m, denote the total mar-
ket value of the insurer’s wealth in the i-th risky asset at time t. u(t) := (u- o) us(t), -, um(t))"
1s the investment strategy.

All the main results about the equilibrium strategies presented in Prop. ~ .ion 3.1, Theorem 3.1,
Theorem 3.2, and (4.5) can be obtained by the same arguments used n th.. maper for the financial
market model with multiple risky assets. To show the results can e ercenued the financial market
model with multiple risky assets, we give the equilibrium strat gy for u.e financial market model
with multiple risky assets as follows:

. {|21| " fet 299:
%[ fer + 2990 )

q b,

(4.8)
* __ 2] Jo + %ggx
ur =4 2l 797 v,
2] Jee + 2 94a.
where
5 A2 /Apzp’o
‘ V2o o olo
5 —Ap b Vnap'o
1:=
—(r, —7rol) oo
_ / z Y.
\ STy —(ri—rol)
are (m + 1) x (m + 1) matrice., ¥ | m ans the determinant of matriz ¥, and 1 := (1,1,---,1)7

roi

is a m-dimensional vector. " e strategy (4.8) extends the equilibrium strategy of Proposition 3.1.

We omit the proof of (4.8' ~ince the proof is similar to that for Proposition 3.1.

We will study the iripac. ~f the parameters on the control space and the equilibrium investment-
reinsurance strategic ' ur der vaR constraints in the following section through some numerical ex-

amples.

5 Num 'rica, examples

In this sec10n .. . illustrate the results obtained in Sections 3 and 4 by numerical examples.
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5.1 The equilibrium investment-reinsurance strategies without VaR constraints

In this subsection, we numerically show the impact of the risk aversion an< the correlation be-
tween the financial market and the insurance market on the equilibrium ¢crate_es without VaR
constraints, which have been derived explicitly in (3.2) and (3.3) in The sren 3.1. In doing so, we
set the model parameters of the insurer’s reserve process and the fina: ~ial .. tket in Table 1 with

x=0.6 and T = 2 (years).

A pr g2 o 1o om0
1 01 02 01 02 06 0. 0.5

Table 1: Parameters of the insurance market and .... financial market.

e First, we keep the correlation coefficient p = C 2 and ‘alculate the equilibrium strategies
(g*(t),u*(t)) by using (3.2) and (3.3) for differen. risk aversion parameters of v =1, 2, 3.
The equilibrium strategies are shown in Figuic 1. From Figure 1, we see that for a given risk
aversion -, both the optimal reinsurance 1 ~ter .o levels of ¢*(¢) and the optimal investment
amounts of u*(t) to the risky asset i, ~ase as t increases, which means that the insurer
should retain more and more insure~~e ris.’s and invest more and more money into the risky
asset if it has no VaR constraints. Morec . er, at a given time ¢, both the optimal reinsurance
retention levels and the optim .l inve ‘tment amounts to the risky asset are decreasing while
~ increases, which are reasciabic he ause a large value of v means that the insurer is more
risk averse. Such an inst -er mo e risk averse) would like to retain less proportion of the

insurance risk and to ir rest less money into the risky asset.

e Second, we keep the ris. aversion v = 1 and calculate the equilibrium investment-reinsurance
strategies (q*(t),«*(¢, by using (3.2) and (3.3) for different correlation coefficients of p =
0, 0.15, 0.3. " he :quilibrium investment-reinsurance strategies (¢*(t),u*(¢)) are shown in
Figure 2. Fr .. Figu. @ 2, we can see that at a given time ¢, both ¢*(¢) and u*(¢) are decreasing
while p inci1 »ases. [hese findings are also reasonable because a large value of p means both
the fins acial i ~arket and the insurance market are more risky, so the insurer will retain less
proportic ~ of Jhe insurance risks and invest less money into the risky asset. In addition, for
a giv n -orrelation coefficient p, both the optimal reinsurance retention levels of ¢*(¢) and

the optiv.al investment amounts of u*(¢) to the risky asset increase as ¢ increase, which again
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0.1 0.16
— 1 — V1
,,,yzz 0.14 f*fyzz
0.08 / y=3 0.12 / V=3 |
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0O 05 1 15 2 O 03 1+ 15 2
t t

Figure 1: ¢*(¢t) and u*(t) for x = 0.6, p = 0.3; ~ =1, = 3 without VaR constraint.

means that the insurer should retain more -~ ____¢ insurance risks and invest more and

more money into the risky asset if it has no VaKk (onstraints.

5.2 The equilibrium investment-reins rance strategies with VaR constraints

In this subsection, we numerically illustrate the influence of VaR constraints in the equilibrium
investment-reinsurance strategies w.th Vai.' constraints, which have been presented explicitly in
Section 4.
We use the model paramete. = Jf tF e insurer’s reserve process and the financial market as in
Table 1 with p = 0.3 and co' .. Jer the VaR control levels VaR as well as the risk levels p for three
1

different cases/combinatic .. as in Table 2, where the time interval & is equal to 15 (one month),

and the VaR control leve.. i VaR are set so that (4.1) holds.

e First, we show ..~ offer . of VaR constraints on the control space. By using (4.2) of Proposition
4.1, we pre ent thh numerical solutions of the control space with the VaR constraints under
the model se.*»= n Figure 3. From Figure 3 (Cases 1-2), we see that for fixed p, a bigger
value ¢ * VaR | or a relaxed requirement on VaR control level) means a bigger control area.
For Sved var, a higher risk level p (or a lower confidence level) means a bigger control area,

see Ca s 2-3 in Figure 3.
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0.16

—— p=0
0.14 - 7 ps015
p=0.3
0.12 ~
'k; / _ ~
0.1 -~
0.08
0.06
o 05 1 15

Figure 2: ¢*(¢t) and u*(t) for x = 0.6, v =1; p =0, 0.15 0.3 without VaR constraint.

0.17
——p=0
0.16 — — —9=0.15
0.15 p-3
- /
- 0.14 .
-k: )
0.13 >
0.12 _ -
0.11} .
0.1
0 0~ . 15

o
Case 1 | Case 2 « Tase 3
VaR | 0.05 0.1 0.1
P 0.01 ‘ r.01 0.05

Table 2: VaR control levels and 1.7k . vels with time interval h = 1/12.

0.4

0.3

0.1

-u.
|
—0.3T

-0.4

oK KK ‘--_A

Case 1
—— Case 2
* Case3

-0.5

0
q

0.5

Figure 3: The control space under the VaR constraints in Cases 1-4.
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e Second, for the VaR control level VaR and risk level p given in Case 1 of Table 2, time interval
h= % and the model parameter values given in Table 1 with z = 0.6, and T' = 2, we illustrate
the impact of the VaR constraints on the equilibrium investment-rei .~ +ance strategies by
calculating the equilibrium investment-reinsurance strategies, respe _.. ely, for different risk

aversion parameters and different correlation coefficients by using * ¢) and (4.7).

We keep the correlation coefficient p = 0.3, and obtain the equil .. ‘um .. vestment-reinsurance
strategies for different risk aversion parameters of v =1, 2, < w.ich are presented in Figure
4. From Proposition 4.1, we know that the control space i0es nt depend on . The equilib-
rium reinsurance strategy ¢3,(t) and the equilibrium inv.~tme.t strategy w3, (t) have the
upper bounds 0.0609 and 0.0978, respectively, for d’ fer-.at alues of v, over the investment
period. For v = 2 or 3, the equilibrium reinsuranc - stiacegy ¢i,g(t) and the equilibrium
investment strategy ui,g(t) with VaR constrain. are t.e same as ¢*(t) and w*(t) without
VaR constraint, because they do not exceed the . ~ner bounds 0.0609 and 0.0978 over the
whole investment period. For v = 1, because ¢ ‘#) and u*(¢) without VaR constraint exceed
the upper bounds 0.0609 and 0.0978 at th. in ciau time, the equilibrium reinsurance strategy
@,r (t) and the equilibrium investment s.ate y ui,p(t) with VaR constraint are 0.0609 and
0.0978, respectively, over the whol. '..<t.nent period. The result can be seen in Figure 1

and Figure 4.

Moreover, we keep the risk av’ rsion p: rameter v = 1, and obtain the equilibrium investment-
reinsurance strategies for .afferent correlation coefficients of p = 0, 0.15, 0.3, which are
presented in Figure 5. ¥re.  Proposition 4.1, we know that the value of p influences C,
so the control space cep.nds on p. The equilibrium reinsurance strategy ¢y, (t) and the
equilibrium investm v “trategy u3, (t) have the different upper bounds for different values of
p. When p = 0, the v, »er bounds of the equilibrium reinsurance strategy and the equilibrium
investment strr cegr are 0.0888 and 0.0987, respectively. When p = 0.15, the upper bounds
of the equili’ . am :. nsurance strategy and the equilibrium investment strategy are 0.0748
and 0.0982, respec.ively. When p = 0.3, the upper bounds of the equilibrium reinsurance
strateg” and the equilibrium investment strategy are 0.0609 and 0.0978, respectively. For p =
0, 0.15, ™ 3. Fecause ¢*(t) and u*(t) without VaR constraint exceed the upper bounds at the
initic' ti ne, so the equilibrium reinsurance strategy ¢y, (t) and the equilibrium investment

strategy ui,p(t) equal to the upper bounds over the whole investment period. The result can
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Figure 4: The equilibrium strategies under the Vai. ~onstraints for different v (Case 1).

be seen in Figure 2 and Figure 5.

e Third, we illustrate the impact of the Va.¢ ( ~ns.raints on the equilibrium investment-reinsurance
strategies by calculating the equilil. ... ** restment-reinsurance strategies in Cases 1 and 2

of Table 2, respectively, for different initial capitals of x by using (4.6) and (4.7).

Case 1 of Table 2: For the Va * contr: 1 level VaR and risk level p given in Case 1 of Table 2,
time interval h = % and tbh > mc del parameter values given in Table 1 with p = 0.3, v =1 and
T = 2, by using (4.6) an 1 (4. ). *.e obtain the equilibrium investment-reinsurance strategies
for different initial car ta.. of x = 0.3, 0.4, 0.5, 0.6, which are presented in Figure 6. Under
the VaR constraint ,, a a given time ¢, both the equilibrium reinsurance strategy ¢y, (t)
and the equilibrium vestment strategy uy,p(t) are increasing while the initial capital x
increases. It "+ a rceas mable result because when the insurer has a bigger initial wealth
x, the insur_.. woulu like to retain a bigger proportion of its insurance risks and to invest
more mone, into he risky asset. Moreover, the equilibrium reinsurance strategy ¢3,p ()
and the equill>rium investment strategy u3,p(t) have the upper bounds 0.0609 and 0.0978,
respectiv. ' fr different values of x, over the investment period. The upper bounds represent
the e.%ec. ot the VaR constraints on the equilibrium strategies, which implies that to limit the

loss of ti.e insurer at the VaR control level VaR, the insurer has to limit both the amounts
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Figure 5: The equilibrium strategies under the Var, ~onstraints for different p (Case 1).

invested into the risky asset and the reta. . ~~~rance risks.

Case 2 of Table 2: For the VaR control 1 'y *! VaR and risk level p given in Case 2 of Table 2, the
time interval h = % and the model _~~me er values given in Table 1 with p = 0.3, v =1 and
T = 2, by using (4.6) and (4.7), we obtaw. the equilibrium investment-reinsurance strategies
for different initial capitals of x = .3, 0.4, 0.5, 0.6, 1.0, which are presented in Figure
7. In this case, the equilibriim rci»<irance strategy ¢y, (t) and the equilibrium investment
strategy u3, g (t) have the orer Founds 0.1293 and 0.2076, respectively, for different values
of z. By comparing Fir ‘re 6 with Figure 7, we see that the upper bounds of the equilibrium
reinsurance strategy -* ;(t) and the equilibrium investment strategy u3,(t) in Case 2 are
bigger than those .~ C'ase 1, which means that the insurer can invest more money into the
risky asset and - atai 1 more insurance risks in Case 2 than in Case 1. This finding is consistent
with the fact thay "he mnsurer has a tougher VaR control level of 0.05 in Case 1 than that the

VaR contrc level v 1 in Case 2.
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Figure 6: The equilibrium strategies under the Var. ~onstraints for different = (Case 1).
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Figu.~ 1: ..e equilibrium strategies under the VaR constraints for different = (Case 2).
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6 Concluding remarks

This paper studies the insurer’s optimal time-consistent investment-reinsur nce strategies (equi-
librium strategies) under the mean-variance criterion with state dependent risk a.-rsion and VaR
constraints and discuss the impact of the risk aversion, the correlation b .twe n the insurance mar-
ket and the financial market, the risk level, and the VaR control level on “he 11, 2stment-reinsurance
strategies for an insurer. The results suggest that the more risk a- ers ~» an insurer has, the less
insurance risks it will retain and the less money it will invest into a1 -isky asset, and that if there
is a stronger correlation between the insurance market and the inancic ! market, the insurer should
retain less insurance risks and invest less money into risky ~._sets. I, there is a VaR constraint on
the loss of the insurer, it has to limit both the retained i1~ .anc risk and the amounts invested
into the risky assets. These results and findings are consiste 't with the practices of an insurer in

investment-reinsurance decisions.

Appendix A: The proof of Lemma 2..

Proof. We have

P(AXT), > LIF) =P(i e " - X[\, > L|F)
t+h F
= P(/ e o(t+h—2) Lji“\\/)\ugdwl )UdWQ( )}
t
eron |

<-L-7<

D pn0q(t) + (r1— ro)u(t) + A (n — 0)] ’ ft)

}p( JEER erolt D) [ ) Nigd Wi (2) + u(t)odWa(2)]

\/62*2?’0; Nugg?(t) + o2u2(t) + QpWGQ( Ju(t)]
—1 — 5= nbg(t) + (r1 = ro)u(t) + A (n - 6)] )E)

VS [\aag? () + o2 (1) + 207/ Mizog(£)u(t)]

_ &S =L v Bg(t) + (1 — ro)u(t) + M (n — 9)]>’ (6.1)
\/quMwo+aw@+mW@@@wm

where the last equ. 'itv ‘ollows from the fact that the random variable

/;Me o(t-+h— [ () Mazd W1 (2) + u(t)odWa (2 )} (6.2)

conditiona'ly r u one filtration F3, is normally distributed with mean zero and variance

e?roh _

T [ (0) + % (0) + 200 Nzoa(tyu)] (6.3)
0o
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Thus

P(XTeroh — X, , > L|F) <p

—L — <=L \ufg(t) + (1 — ro)ult) + M (n — )]

— — -] <
VS [\uag? (1) + 02 (1) + 207/ Mizog(£)r \1)]
eroh 1

— L>- Ap10q(t) + (r1 — ro)u(t) + Apg(n — M

1 e?’roh -1 77

-2 (p) Torg [)\quz(t) +o?u?(t) + 2py ‘u20Q(t)U(t)]
According to the definition (2.5), we obtain (2.7). O

Appendix B: The proof of Proposition 2.1

Proof. Recall the wealth process and the infinitesin.~1 ge.._.ator given in (2.2) and (2.9), respec-

tively, we have

A"V (t,x) = Vi+[rox+Aubg+ (ri —r)0u + Aap(n —0)] Vs

—I-% [)\;LQQQ +o2u® + 2po \/ﬁgqu] Vi
A"f(t,x,x) = filt,z, )+ [rox + A "7+ 1 — ro)u + A (n — 0)] x [fo(t,z,2) + fy(t, z,2)]

—|—% [Auqu + 02 - 2p0 /\ugqu} X [ foa(t,x,2) + fyy(t,z,2) + 2 f2y(t, z, )] ;

AT fE(t,x) = fi(t,x,x) + [rox * A dg+ (r1 —ro)u+ Apui(n — 0)] f2(t, x, x)
+% [)\ugq7 + ¢ “u? +2po )\ugqu} fax(t, x, 2);

AT(Gog)(t,z) = A"G(z. 't ,x)) = Gygr + [rox + Au10g + (r1 — ro)u + A (n — )] x (G + Gygs))
+ ; [X,ugq2 +o2u? + 2pa\/)\7,u2qu] X [Gaa + Gy + Gy + 2G1y92] ;
Hg(t,z) = G.(x,. t,x)) x A"g(t, )
= 2L g4 frow + Muba + (r = ro)u+ A (= 0)] g,

(N

L 5 /\,u,gq2 +o2u? + 2p0 )\,UQCZU] gwx}%

where G is ev aluated at G(x, g(t,z)) and g is evaluated at g(¢, ).

Thus the « -tend :d HJB system of equations (2.10) can be rewritten as the following system of
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equations:

"z
Vi + Sug { [rox + Ap10q + (r1 — ro)u + Apr(n — )] x [Vx — fy— 7(2)92}
S

1
9 [)\M2q2

" T \
+ o?u® + 2po\/Miaqu] x [Vm — fyy — 2fay — 7 ; )92 —29( )y 1 — ’y(x)gg:| } =0,
ft(ta :I:vy) + [7"033‘ + A/J’leq* + (Tl - TO)U* + )\Nl(n - 0)] fx(tvl‘a y) (64)

1 k * kok
+3 [)\,ug(q )2+ a2 (u*)? + 2po\/ Apagtu } foa(t,2,y) = 05

9¢(t, ) + [rox + Aunbq” + (r1 — ro)u” + A (n — 0)] g (¢, @)

1
+ 5 | Miz(a)? + 02 () + 200 Mg u* | gialt ) - 0.
Note that y(z) = I with v'(z) = — %, 7"(z) = i—g and
_ T2
V(t,x) = f(t,z,z) + L9 (t, ).

Thus we have

i = ft‘f‘%ggt,
_ T2 0
Vo = fx+fy_2xgg +;b¢u
o Y v v v
Vacac = fxac+fyy+2fmy_" f«.’jr) 'ﬁggx_igggac+*g;%+*gg;rzy
X X X X X

where f and its derivatives are eval .atea 2t (¢,x,z), while g and its derivatives are evaluated at

(t,z). Using these expressions, the fii." eg .ation of the system (6.4) becomes
2 ) g
fet S99+ sup ) 1o+ Amba + (r1 = ro)u+ Apa(n — 0)] x {fz + ;ggaz}
q?ﬁ
1 2 2,2 v
+§ {)\uoq 4+ o u” + 2po /\,ugqu} X [fm + Eggm} =0. (6.5)
Let

H(q, = [rox + Mg + (11 — ro)u + Apr(n — 0)] x [fz + %gg:p}

1
5 [)\,ugq2 + ou? + 2,00'\/)\7,U2QU:| X |:f:m + %ggx:p} .
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Differentiating the function H(q,u) with respect to ¢ and u respectively, we obtain

‘5”{(‘;’“) = (Mi2q + pov/Nizu) | fra+ Lggie |+ Muab | £+ L)
({g (,m@q to u) [fm + Eggm} + (r1 — 7o) [f' . ;gga:J ;
a( W [fm + %ggm} ;

M;fg’“) . [fm + %ggm} ;

% = po\/ Ao |:fxx + %ggm} :

The Hessian matrix is

2 H2
ao( 2 R)( e wmm)( s,
0 arew  arw | T BT 2 e
dqou ou2 PO\ AU2 o

Because of
2 2 gl 2
[H| = 0" Aua(1 = p7) (Jau + ;gg:v:c> >0,
it is easy to see that the maximizer (¢, %) of (6.5, i, the solution of the equations
B . Y _
A2q + por/ Mg ) | far + jyf'”ca:J + A0 | fo + Egga: =0

(poMq + anu> [fm - ;’gm} + (r1 —70) |:fx - %ggx} = 0.

That is,
. oV ua(r, —ro) —odul  fo+ 299
VTS Ml e e
2 1Y xx xggzx (6 6)
fo paAp18 — Apa(ry — o) " fe+ 299.
72)\M2(1 — p2) f:z:a: + %ggxz '
This completes the proc O

Appendix C: 1.~ uroof of Theorem 3.1

Proof. From the “orm Jf 7@ = (¢, @) in (6.6), we conjecture that ¢ and u are affine form of z. So

we guess tha

Gg=ci(t)x+ ki(t);
(6.7)
U = co(t)x + ka(t);
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for some deterministic functions ¢1, ¢z, k1 and ko. In this case, the wealth process (2.2) becomes
axi = {lro+ Mmber(t) + (11 = ro)ea(D] X7 + bk (8) + (r1 = ro)ka(t, + A (n — )] e
/s [cl(t)xf + k:l(t)} dWi(t) + o [02(t)Xf + k:z(t)} AW (1)
- (AtXf n Bt) dt + (éltxf n Dlt) AW (1) + (@txf + Day AW (1),
with A; given in (3.4) and
By = MuOki(t) 4 (r1 —ro)ka(t) + A (n - 9),
Ciy = Vuzal(t),
Diy = /Augka(t),

CQt = UCQ(t),
Next we calculate E;,[X7] and E;,[(X7)?]. Te "~ == ve construct the following exponential

martingale:
dps = p [(—At + O+ Col ;f?ltuf,) dt — CydWi (t) — (jgtsz(t)} :
or equivalently,
p=me{ [ [(-2.4 300 0t +001.00) ds = Cuawi(s) - Coamato)] |

and then

Tre o 1.1 - _ _
& = exp {/ [(As — 4 315 — JQi — ,0013025) ds + Clsdwl(s) + OQdeQ(S):| } . (6.8)
¢ 4

~

Applying the generalized It6’s rormula to p; X7 yields
d (ﬁtXf)
= thrdﬁt +, d)/t‘f‘ 4 thr,ﬁt >
~ / — — — — — —
= Xtﬂ—ﬁt [\—At N (/1? + Cgf + 2p01t02t> dt — Cltdwl(t) — CQtdWQ(t):|
+pt (‘Lefrfr ' Bt) dt + pt (éltXf + Du) dWi(t) + pe <C72tXt7Ar + D2t> dWa(t)
- [ﬁlt (C:ltXf + Du) + pCay (éltXf + Du) + pChy (é2tX;r + D2t)
- Cy (Ctif + D%) ]ﬁtdt
= pt (By — C1yD1y — CoyDyy — pChy Doy — pCay Dry) dt + py [D1,dWi (t) + DoydWo(t)] .
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Integrating from ¢ to T on the above equation and rearranging it, we have
D S T .
X%rw —x + / 7*8 [Esds + Dlsdwl(s) + DQSdWQ( )] (6.9)
pT t PT
with 2 = X[ and
Ey = By — C1yD1y — CoyDyy — p C1y Doy — p Coy Dy
Note that E ( 4 > . Asds, then we have Et,x[X%} Pi(t)x + @1 t) wih
Py(t) = eli Asds (6.10)
and
T T 7 —
Q1(t) = / els A2 F - (6.11)
t
By (6.9), we have
2 [Pt Pt S 5
(XT) - <p) 2 / DlSdW1 (3) + DQSdWQ(S)]
_ 2
{ % E dS+D1 Avv -, —|—D23dW2( )]} y
which implies E; ,[(XX)?] = Po(t)2? + Qa(t)z - 1./*) with
Py(t) = N (AstFa)ds, (6.12)
Q2 _ () / L AzdzefST(Az+Fz)dZE dS (613)
! r pT 2
R(t) =K L/ E.ds + DlsdI/Vl(s) + DQdeQ( )):| , (6.14)
t o
where
Ay + 61? + 62? + 2pC1,Co;.
We recall that

Fltow,9) = Bua X | = B [(XF )] = Pult)a+ @ule) — 5 [Po(t)a® + Qalt)e + R, (615)
g(t, ) = Ei [Xg;] = Pi(t)z + Qu(t). (6.16)
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Then we have

filtay) = Pitz+ Qi) - o= [Pah)a® + Qalt)r + RO

2y
falbiz,y) = Pi(0) = 5 [2P(0) + Qa(0)]
fealtsy) = = Palt);
ge(t,z) = Pi(t)z+ Qu(t);
9:(t,z) = Pi(t);
Guz(t,x) = 0.
Thus
fot+299:  Pi(t) — o5 2P (D) + Q2(t)) - I[P (H)x + Q1(1)] P (t)
fa:r + %ggzaj N _%1’2 :*\
@ [P(t) = yPa(t) + b O+ PU)Q1(E) — 3Q2(t)
B -/ P(1) ’

where f and its derivatives are evaluated at (¢,x,.' while g and its derivatives are evaluated at

(t,x).
Comparing (¢, %) in (6.6) and (6.7), we 1. . =
_ AV (=) = Ame Pi(t) = yPo(t) +yPE(Y)

c1(t ,
1) (1~ ) (D)
(0 = L7V (s = o) | Pi(t) = Palt) + 1 PR
oM (1= 1) —7Py(t) ’
k() = pVAp2(r — 1o, = sAu0 " P(t)Q1(t) — $Q2(t)
o pa(” = r?) —Py(t) ’
ity = 27N Nl =) | PAOQ:H) — 30
x A2 (1 — p?) —Py(t) ‘
Note that
Pi(t) -y 0 +oPEt) 1 PE) . PR
— Py, v Pa(t) Py(t)
_ LT Ras T Ads - [ R
and
PiH)Q1( ) — 30a(t) oS Asds /T [ gt [Felt Aedz o[l (At Fe)dz g
— =~ —mr e s T Eyds ——
—1\() ol (AstFo)ds [, ‘ oJi (AstFy)ds
T T T x — T s & —
= —e Ju Fuds x/ els AzdzESds—i—/ e Je Fdzp ds.
t t
Thus, we obtain (3.3) and finish the proof. O
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Appendix D: The proof of Theorem 3.2

Proof. If (3.9) is satisfied, we have c1(t)x + k1(t) > 0; ca(t)z + ka(t) > 0. Inserting (6.15) and
(6.16) into (3.1), we get the equilibrium value function

Vit,z) = f(t,x,x)+%g2(t,x)

= Pi(t)z+ Qi(t) — % [P(t)2® + Q2(t)z + R(1)] . d (1) + Q1))

=
Then we obtain (3.10).
Otherwise, if (3.11) holds, we have c¢1(t)z + k1(t) < 0 and  5(t)z + ka(t) < 0. The equilibrium

strategy is ¢*(-) = 0, u*(-) = 0, the wealth process is
dX¢ = [ToXt + )\,Ul(’n — L:/\]fh,

then we have

Xp=eoTNX, + Ap (= 2 '[em(T—t) _ 1] :
7o

which implies that E[X7] = e"o(T—t g 4 A (=t, Jgri = 8) _ 1] and Var[Xy] = 0, hence,

T0

V(t,x) = ]E[XT] = eTo(be/‘v, + M [eTO(Tft) _ 1] .
To

The proof is finished. O
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Highlights:

e The optimal time-consistent investment-reinsurance strategies f.- @ 1 insurer with

state dependent risk aversion are considered.

e The Value-at-Risk control levels for the insurer are introduce. ro control its loss in

investment-reinsurance strategies.

e The optimal investment-reinsurance problem is form 1lat .u wvithin a game theoretic

framework.
e An extended Hamilton-Jacobi-Bellman system ~f eq. ~..ions is solved.

e The closed-form expressions of the optimal 1. -stment-reinsurance strategies are

derived.
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