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Abstract

In this paper, we investigate the optimal time-consistent investment-reinsurance strategies for

an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer

can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a

financial market consisting of one risk-free asset and one risky asset, whose price process follows

a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian

motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s

price process are correlated, which describe the correlation or dependence between the insurance

market and the financial market. We introduce the VaR control levels for the insurer to control

its loss in investment-reinsurance strategies, which also represent the requirement of regulators on

the insurer’s investment behavior. Under the mean-variance criterion, we formulate the optimal

investment-reinsurance problem within a game theoretic framework. By using the technique of

stochastic control theory and solving the corresponding extended Hamilton-Jacobi-Bellman (HJB)

system of equations, we derive the closed-form expressions of the optimal investment-reinsurance

strategies. In addition, we illustrate the optimal investment-reinsurance strategies by numerical

examples and discuss the impact of the risk aversion, the correlation between the insurance market

and the financial market, and the VaR control levels on the optimal strategies.
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1 Introduction

An insurer can manage its assets by investment and reduce its insurance risks by reinsurance.

Optimal investment and reinsurance problems for an insurer have attracted much attention in the

actuarial literature. The optimization criteria commonly used in these optimal investment and

reinsurance problems include maximizing the expected utility of the terminal wealth of an insurer

and minimizing the ruin probability of an insurer. Some recent works related to these criteria

can be found in Browne (1995), Schmidli (2002), Liu and Yang (2004), Promislow and Young

(2005), Yang and Zhang (2005), Liang et al. (2011), Bi and Guo (2013), and so on. In an optimal

investment problem, there is a trade-off between the expected return of the investment and the

risk of the investment over a fixed time horizon. In the fundamental work of Markowitz (1952),

the risk of a portfolio is measured by the variance of its return in a single-period model, and the

mean-variance criterion is used to seek the best allocation of wealth among a variety of securities

so as to achieve the optimal trade-off between the expected return of the investment and its risk

over a fixed time horizon. The mean-variance criterion has become one of the important criteria

used in optimal investment problems. This criterion is also useful in insurance/reinsuarnce decision

problems, as pointed out in Bäuerle (2005). Some recent applications of the mean-variance criterion

in insurance/reinsurance problems can be found in Bai and Zhang (2008), Zeng and Li (2011), Bi

and Guo (2013), Zeng et al. (2013), Li and Li (2013), Wu and Zeng (2015), Zhang and Liang

(2017), and references therein.

It is well known that an optimal investment-reinsurance problem under the mean-variance

criterion in a multi-period or continuous time framework lacks of the iterated-expectation property,

which leads to time-inconsistent investment-reinsurance problems in the sense that the Bellman

optimality principle does not hold for such optimal control problems. One of the important ways

to deal with the time inconsistency in the optimization problem is to study the optimization problem

within a game theoretic framework, in which a decision-maker’s preferences change in a temporally

inconsistent way as time goes by, and the mean-variance optimization problem is viewed as a game,

where the players are the future incarnations of the decision-maker’s own preferences. The decision-

maker looks for a subgame perfect Nash equilibrium point for this game. The first paper to treat

the time inconsistency in more general frameworks by the game theoretic approach was Björk and

Murgoci (2010), in which they considered a general class of time-inconsistent objective functions and

a general controlled Markov process and derived an extension of the standard dynamic programming
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equation in the form of a system of equations. Since then, the game theoretic approach has been

applied in different optimization problems. For instance, Zeng et al. (2013) considered the optimal

investment-reinsurance problem with one risky asset followed by a geometric Brownian motion

(GBM) in a compound Poisson risk model. Björk et al. (2014) studied the mean-variance problems

with a state dependent risk aversion and assumed that the risk aversion depends dynamically on

current wealth. Li and Li (2013) extended the work of Björk et al. (2014) to the optimal investment-

reinsurance problem, in which the surplus process is approximated by a diffusion process. Under

the same criterion, Zhang and Liang (2016) discussed the optimal portfolio selection problem with

one risk-free asset and two jump-diffusion risky assets, where the two risky asset price processes are

correlated through a common shock. Further work about time inconsistent problem was discussed

in Zeng and Li (2011) and Wu and Zeng (2015).

When we consider a continuous time mean-variance investment problem, the wealth of an

investor over any time period in the investment horizon and the terminal wealth may occur huge

loss. To prevent investors from extremely dangerous positions in the market, it is helpful if we can

use risk measures to limit the risk exposures to the market. The risk measure of Value-at-Risk

(VaR) is often used to describe the market risk of a trading portfolio. Generally speaking, the VaR

of a portfolio is the maximum possible loss of the portfolio at a given confidence level. Indeed,

in practice, in order to fulfill the regulation requirements, an insurance company or a financial

institution has to control the VaR of its portfolio. Hence, it is an interesting topic if we consider an

investment-reinsurance problem with VaR constraints. Recently, Chen et al. (2010) and Ye and Li

(2012) have investigated the optimal investment-reinsurance problems for an insurance company

with VaR constraints under the criterion of minimizing the probability of ruin and the mean-

variance criterion, respectively. Other works about optimal investment or optimal reinsurance

problems with VaR constraints can be found in Yiu (2004), Zhang et al. (2016), Chen et al. (2018)

and the references therein.

Optimal time-inconsistent investment-reinsurance problems have been extensively studied in the

literature. However, very few of these contributions deal with the problems under VaR constraints.

In this paper we are going to study the optimal time-inconsistent investment-reinsurance problem

under VaR constraints with state dependent risk aversion for an insurer. The insurer’s surplus

process is approximated by a Brownian motion with drift. The risky asset’s process follows a

geometric Brownian motion. This paper extends the work of Li and Li (2013) in two ways. On
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the one hand, the two Brownian motions in the insurer’s surplus process and the risky asset’s price

process are correlated with a correlation coefficient. This makes our model more flexible but makes

the extended HJB system of equations in our paper more complicated. On the other hand, the VaR

constraints on the future net loss over any time period with a fixed time length is incorporated in

the model. This provides us an opportunity to observe the effect of VaR constraints on the optimal

investment-reinsurance strategies. To the best of our knowledge, this paper is the first one to study

optimal time-consistent strategies with dependent insurance and investment risks as well as VaR

constraints.

This paper is organized as follows. In Section 2, we give the model settings consisting of the

insurance risk process, the price processes of the risk-free asset and the risky asset, as well as the

corresponding wealth process with investment and reinsurance. In Section 3, we formulate the

optimization problem within a game theoretic framework without VaR constraints. By solving

an extended HJB system of equations, the closed-form expressions of the equilibrium investment-

reinsurance strategies and the corresponding equilibrium value function for the problem are derived.

In Section 4, we consider the optimization problem with VaR constraints and solve the optimization

problem using the results derived in Section 3. In Section 5, we illustrate our results by numerical

examples. Finally, Section 6 concludes our results.

2 Model settings and problem formulations

Let (Ω, F , P) be a probability space equipped with a filtration {Ft}t∈[0,T ] satisfying the usual

conditions, i.e., {Ft}t∈[0,T ] is right continuous and P complete, and containing the information of

the market available up to time t. T > 0 is a fixed time horizon. In addition, we assume that

there is no consumption, no income, no transaction cost and no tax in the financial market or the

insurance market, and trading takes place continuously.

2.1 Reserve process of an insurer and the financial market

The dynamic of the reserve process {R̄(t)}t≥0 of an insurer is modeled by

dR̄(t) = cdt − d

N(t)∑

i=1

Yi, (2.1)

where the constant c > 0 is the premium rate, {N(t)}t≥0 is a Poisson process with intensity λ > 0

representing the number of claims occurring in time interval [0, t], and Yi is the size of the ith claim.
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In addition, {Yi, i ≥ 1} is assumed to be an i.i.d sequence of random variable and be independent of

{N(t)}t≥0. The compound Poisson process
∑N(t)

i=1 Yi represents the cumulative amount of claims in

time interval [0, t]. Let Y be a generic random variable which has the same distribution as Yi, i ≥ 1.

Let FY (·) denote the cumulative distribution function of Y . Denote the expectation and the second

moment of Y by E(Y ) = µ1 > 0 and E(Y 2) = µ2 > 0, respectively. Assume that the insurance

premium rate at time t is calculated by the expected value principle, that is, c = (1+ η)λµ1, where

η > 0 is the safety loading.

Due to the jumps in the reserve process {R̄(t)}t≥0, it is not feasible to solve the mean-variance

optimal investment-reinsurance problem directly under the reserve process {R̄(t)}t≥0. As most

studies on the mean-variance optimal investment-reinsurance problem (see, for example, Browne

(1995), Bai and Zhang (2008), Liang and Yuen (2016), and so on), we can consider the problem

under the diffusion approximation of the reserve process {R̄(t)}t≥0. According to Grandell (1991)

(pages 15-17), the diffusion approximation {R̂(t)}t≥0 of the reserve process {R̄(t)}t≥0 is given by

dR̂(t) = cdt − λµ1dt +
√

λµ2 dW1(t),

where W1(t) is a standard Brownian motion.

Now, suppose that the insurer with an initial wealth X0 > 0 is able to invest its wealth in a

financial market consisting of one risk-free asset and one risky asset, which are traded continuously

on a finite time horizon [0, T ]. The price process of the risk-free asset is given by




dP0(t) = r0P0(t)dt, t ∈ [0, T ],

P0(0) = p0,

where r0(> 0) is the interest rate of the risk-free asset.

The price of the risky asset is modeled by the following stochastic differential equation (SDE)




dP1(t) = P1(t) [r1dt + σdW2(t)] , t ∈ [0, T ],

P1(0) = p1,

where r1(> r0) is the appreciation rate, σ is the volatility coefficient, and W2(t) is a standard

Brownian motion. The Brownian motion W1(t) in the approximated reserve process {R̂(t)}t≥0 and

the Brownian motion W2(t) in the risky asset are possibly correlated with correlation coefficient

ρ ∈ [−1, 1], which represents the dependence between the stock market and the insurance market.

This kind of dependence may be due to an extreme event (such as a natural disaster) which has

the common impact on both the financial and insurance markets.
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Let Xt denote the insurer’s total wealth at time t and u(t) denote the total market value of

the insurer’s wealth in the risky asset at time t. Then Xt − u(t) is the value of the insurer’s

wealth in the risk-free asset. Assume u(t) ≥ 0, i.e., the short-selling of the stock is prohibited. Let

q(t)(≥ 0) represent the retention level of new business (reinsurance) acquired at time t, which means

that the insurer pays q(t)Y of a claim occurring at time t and the new businessman (reinsurer)

pays (1 − q(t))Y . Suppose that the reinsurance premium is also calculated by the expected value

principle. For this business, the reinsurance premium is paid at rate (1 − q(t))(1 + θ)λµ1, where

θ(> η) is the safety loading of the reinsurer and the condition of θ > η is required for avoiding the

insurer’s arbitrage. Note that for the insurance company, q(t) ∈ [0, 1] corresponds to a reinsurance

cover and q(t) > 1 would mean that the company can take an extra insurance business from other

companies (i.e., act as a reinsurer for other cedents).

A strategy π(t) = (q(t), u(t)) is said to be admissible if q(t), u(t) are Ft-predictable processes,

and satisfy q(t) ≥ 0, u(t) ≥ 0, E[
∫ t
0 q2(s)ds] < ∞ and E[

∫ t
0 u2(s)ds] < ∞ for all t ≥ 0. We denote

the set of all admissible strategies by Π. Let Xπ
t denote the insurer’s total wealth at time t under

the strategy π(t) = (q(t), u(t)). Then, the dynamic of Xπ
t is given by

dXπ
t = {r0X

π
t + λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)} dt+q(t)

√
λµ2dW1(t)+u(t)σdW2(t). (2.2)

Note that due to the diffusion approximation, the wealth process Xπ
t satisfying (2.2) is not

always positive, which is a quite common situation when a compound Poisson risk process is

approximated by a diffusion process. In our model, the total amount invested in the risky asset

at time t satisfies u(t) ≥ 0 or short-selling is prohibited. As pointed out at the end of Section 2

of the celebrated paper of Bwowne (1995), the situation that Xπ
t < 0 (or in general u(t) > Xπ

t in

this paper) means that the investor/company is borrowing money to invest long in the risky asset.

In fact, Section 3 of Bwowne (1995) has studied the negative wealth case and derived the optimal

investment strategy that maximizes the expected utility of the investor/company at a terminal

time when a wealth process is allowed to be negative. In practice, if the wealth process is negative

or the company is in deficit, the company may need inject capital to keep the wealth process

positive. This is an interesting question, but is not considered in this paper. In this paper, from

the perspective of risk management, besides maximizing the expected mean-variance utility of the

terminal wealth at the terminal time, we also want to control the VaR of the loss of the company

over any time period prior to the terminal time. That is the novel point of our paper. The studies

of the negative wealth cases with capital injections in the context of optimal investments, optimal
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portfolio sections, optimal dividend payments, and optimal reinsurances can be found in Zhou and

Yuen (2012, 2015), Zhu and Yang (2016), Zhao, Chen and Yang (2017), Zhao, Jin and Wei (2018),

and the references therein.

2.2 Value-at-Risk constraints for the investment-reinsurance strategy

Under the investment-reinsurance strategy π(t) = (q(t), u(t)), the insurer’s wealth process {Xπ
t , t ≥

0} is a risk process. As discussed before in Section 1, the insurer may or has to use the risk measure

of VaR to control its wealth for avoiding huge loss. For time interval [t, t + h] with a small time

step h > 0, assume that the investment-reinsurance strategy does not change over this short time

period, i.e., π(l) = π(t), l ∈ [t, t+h]. This assumption is reasonable because in practice the insurer

usually adjust its investment-reinsurance policy on a monthly (quarterly, yearly) basis. Thus, the

loss of the insurer in time interval [t, t+h] can be expressed as ∆Xπ
t,h := Xπ

t er0h −Xπ
t+h. According

to the Itô’s formula, the SDE (2.2) admits a solution

Xπ
s = Xπ

t er0(s−t) +

∫ s

t
er0(s−z) [λµ1θq(z) + (r1 − r0)u(z) + λµ1(η − θ)] dz

+

∫ s

t
er0(s−z)

[
q(z)

√
λµ2dW1(z) + u(z)σdW2(z)

]
. (2.3)

Thus,

∆Xπ
t,h = −er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

−
∫ t+h

t
er0(t+h−z)

[
q(t)

√
λµ2dW1(z) + u(t)σdW2(z)

]
. (2.4)

One feasible way for the insurer to control its wealth risk is to control the VaR of ∆Xπ
t,h for any

t ∈ [0, T ] with a small fixed time step h, say h = 1/365 (any day), h = 1/12 (any month), h = 1/4

(any quarter), and h = 1 (any year).

For a given risk level p ∈ (0, 1) and a time step h, we denote the conditional VaR of ∆Xπ
t,h

conditioning on Ft by VaRp,h,π
t , namely,

VaRp,h,π
t := inf{L ∈ R; P(∆Xπ

t,h ≥ L | Ft) ≤ p}. (2.5)

In other words, VaRp,h,π
t is the maximum possible loss over the next time period of length h at the

confidence level 1 − p. We point out that P(∆Xπ
t,h ≥ L|Ft) in (2.5) is the conditional expectation

of E
[
1{∆Xπ

t,h≥L}|Ft

]
which is a random variable. However, as we see from (6.1) in the proof of

Lemma 2.1 in Appendix A that given Ft, the conditional probability P(∆Xπ
t,h ≥ L|Ft) is almost
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surely equal to the normal distribution function (6.1). This is due to the well-known fact that

given Ft, the stochastic integral (6.2) has a normal distribution with mean zero and variance (6.3).

Hence, P(∆Xπ
t,h ≥ L|Ft) is almost surely a deterministic function (6.1). Thus, VaRp,h,π

t defined by

(2.5) is almost surely a deterministic function, which is given in Lemma 2.1.

In this paper, we will derive the optimal strategy π under the constraint that the investor wants

to limit the VaR of its loss over any time period of length h at a constant VaR, that is to say that

at any time t ∈ [0, T ], the strategy π(t) should satisfy

VaRp,h,π
t ≤ VaR. (2.6)

To derive the optimal strategy in Section 4, we first give the expression of VaRp,h,π
t .

Lemma 2.1. Given risk level p ∈ (0, 1) and time length h > 0, we have

VaRp,h,π
t = −er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

−Φ−1(p)

√
e2r0h − 1

2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
, (2.7)

where Φ−1(·) = inf{x ∈ R : Φ(x) ≥ p} is the inverse function of the cumulative standard normal

distribution function Φ(x) =
∫ x
−∞

1√
2π

e− z2

2 dz.

Proof. See Appendix A. 2

2.3 Problem formulation

In this subsection, we will formulate the problem within a game theoretic framework, which is

developed by Björk and Murgoci (2010). We consider an optimization problem for the insurer

to maximize the expected mean-variance utility of its terminal wealth, i.e., the objective function

which we want to maximize is given by

J(t, x, π) = Et,x[Xπ
T ] − γ(x)

2
Vart,x[Xπ

T ], (2.8)

where x is the initial capital of the investor at the initial time t, Et,x[·] = E[·|Xπ
t = x], Vart,x[·] =

Vart,x[·|Xπ
t = x]. Furthermore, we let γ(x) = γ

x . It is known that γ(x) = γ
x is a suitable choice of

the state dependent risk aversion function. It was suggested by Björk et al. (2014) and has been

studied by Li and Li (2013), Zhang and Liang (2017), and so on. The detailed discussion for this
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choice of the state dependent risk aversion function γ(x) was given in Björk et al. (2014). We

added these comments after (2.8).

Due to the fact that this objective functional (2.8) involves with a non-linear function Vart,x[·]
and the current wealth x at current time t, the optimization problem is time-inconsistent. We solve

this time-inconsistent problem within a game theoretic framework and look for Nash subgame

perfect equilibrium solutions.

For convenience, we rewrite the function (2.8) as

J(t, x, π) = Et,x

[
Xπ

T − γ

2x
(Xπ

T )2
]

+
γ

2x
[Et,x(Xπ

T )]2 = Et,x[F (x,Xπ
T )] + G(x, Et,x[Xπ

T ])

with F (x, y) = y − γ
2x y2 and G(x, y) = γ

2x y2.

Now we recall the following definition of an equilibrium control and equilibrium value function,

which is from Björk and Murgoci (2010).

Definition 2.1. Given a control law π∗, which can be informally viewed as a candidate equilibrium

law. Choose a fixed π ∈ Π, a fixed real number l > 0 and a fixed arbitrarily chosen initial point

(t, y) ∈ [0, T ] × R. Construct a control law πl by

πl(s, y) =





π(s, y), t ≤ s < t + l, y ∈ R,

π∗(s, y), t + l ≤ s ≤ T, y ∈ R.

If

lim
l→0

inf
J(t, x, π∗) − J(t, x, πl)

l
≥ 0

for all π ∈ Π and (t, x) ∈ [0, T ] × R, we say that π∗ is an equilibrium control law. The equilibrium

value function is defined by

W (t, x) = J(t, x, π∗).

Based on the definition above, the equilibrium strategy is time-consistent, the equilibrium

strategy is thus the optimal time-consistent strategy. Our goal is to find an equilibrium strategy

π∗ and the corresponding equilibrium value function.

Before giving the extended HJB system of equations and the verification theorem, we define

a infinitesimal generator. Let C1,2([0, T ] × R) denote the space of the bivariate functions ϕ(t, x)

such that ϕ(t, x) and its derivatives ϕt(t, x), ϕx(t, x), ϕxx(t, x) are continuous on [0, T ] × R. For

any function ϕ(t, x) ∈ C1,2([0, T ] × R) and any fixed π ∈ Π, the usual infinitesimal generator A for
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process (2.2) is defined by

Aπϕ(t, x) = ϕt+[r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] ϕx+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]
ϕxx.

(2.9)

Theorem 2.1. (Verification Theorem). For the Nash equilibrium problem, if there exist functions

V (t, x), f(t, x, y) and g(t, x) satisfying the following conditions: ∀(t, x) ∈ [0, T ] × R and y ∈ R,





sup
π∈Π

{
AπV (t, x) − Aπf(t, x, x) + Aπfx(t, x) − Aπ(G ⋄ g)(t, x) + Hπg(t, x)

}
= 0, 0 ≤ t ≤ T,

Aπ∗
fy(t, x) = 0, 0 ≤ t ≤ T,

Aπ∗
g(t, x) = 0, 0 ≤ t ≤ T,

V (T, x) = F (x, x) + G(x, x),

f(T, x, y) = F (y, x),

g(T, x) = x,

(2.10)

and

π∗ = arg sup
π∈Π

{
AπV (t, x) − Aπf(t, x, x) + Aπfx(t, x) − Aπ(G ⋄ g)(t, x) + Hπg(t, x)

}
,

then W (t, x) = V (t, x), i.e., V (t, x) is the equilibrium value function, π∗ is the equilibrium reinsurance-

investment strategy and





f(t, x, y) = Et,x

[
F (y, Xπ∗

T )
]

= Et,x

[
Xπ∗

T − γ

2y
(Xπ∗

T )2
]

,

g(t, x) = Et,x

[
Xπ∗

T

]
,

(2.11)

where the operators fy, G ⋄ g as well as Hπg are defined as follows:





fy(t, x) = f(t, x, y),

G ⋄ g(t, x) = G(x, g(t, x)),

Hπg(t, x) = Gy(x, g(t, x)) × Aπg(t, x),

Gy(x, y) =
∂G

∂y
(x, y).

Equation (2.10) is also called the extended HJB system of equations.
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Proof. The derivation of the extended HJB system of equations (2.10) and the proof of the

verification theorem can be obtained by using the standard arguments similar to those used in

Section 4 of Björk and Murgoci (2010). We just give a sketch of the derivation of the extended

HJB system of equations (2.10) and the proof of Theorem 2.1 and omit the detailed proof here.

The derivation of the extended HJB system of equations (2.10) can be derived in the following

way: First, we discretize the continuous time problem and obtain a discretized recursion for π∗ by

using the results of Björk and Murgoci (2010) for discrete time control theory. Then, letting the

time step tend to zero, we obtain the continuous time extension of the HJB system of equations

(2.10). The proof of Theorem 2.1 consists of two steps: First, using the martingale approach, it can

be proved that V (t, x) is the value function corresponding to π∗ and that the functions f(t, x, y) and

g(t, x) have the probabilistic interpretations (2.11). Second, applying the discretization method, it

can be proved that π∗ is indeed an equilibrium control law. 2

3 Solution to the optimization problem without VaR constraints

In this section, we first solve the optimal investment-reinsurance problem under the mean-variance

criterion for state dependent risk aversion without VaR constraints. Note that by (2.11), we have

V (t, x) = J(t, x, π∗) = Et,x[Xπ∗
T ] − γ

2x
Vart,x[Xπ∗

T ]

= Et,x

[
Xπ∗

T − γ

2x
(Xπ∗

T )2
]

+
γ

2x

[
Et,x(Xπ∗

T )
]2

= f(t, x, x) +
γ

2x
g2(t, x). (3.1)

First, after detailed calculations, we obtain the following result about the extended HJB system

of equations and the equilibrium strategy.

Proposition 3.1. The extended HJB system of equations (2.10) is reduced to the following system
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of equations:





ft +
γ

x
ggt + sup

(q,u)∈Π

{
[r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] ×

[
fx +

γ

x
ggx

]

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]

×
[
fxx +

γ

x
ggxx

] }
= 0,

ft(t, x, y) + [r0x + λµ1θq
∗ + (r1 − r0)u

∗ + λµ1(η − θ)] fx(t, x, y)

+
1

2

[
λµ2(q

∗)2 + σ2(u∗)2 + 2ρσ
√

λµ2q
∗u∗

]
fxx(t, x, y) = 0,

gt(t, x) + [r0x + λµ1θq
∗ + (r1 − r0)u

∗ + λµ1(η − θ)] gx(t, x)

+
1

2

[
λµ2(q

∗)2 + σ2(u∗)2 + 2ρσ
√

λµ2q
∗u∗

]
gxx(t, x) = 0,

and the equilibrium strategy is given by





q∗ =

{
ρσ

√
λµ2(r1 − r0) − σ2λµ1θ

σ2λµ2(1 − ρ2)
× fx + γ

xggx

fxx + γ
xggxx

}
∨ 0,

u∗ =

{
ρσ

√
λµ2λµ1θ − λµ2(r1 − r0)

σ2λµ2(1 − ρ2)
× fx + γ

xggx

fxx + γ
xggxx

}
∨ 0.

Here ft = ∂f(t,x,y)
∂t , fx = ∂f(t,x,y)

∂x , fxx = ∂2f(t,x,y)
∂x2 , gt = ∂g(t,x)

∂t , gx = ∂g(t,x)
∂x and gxx = ∂2g(t,x)

∂x2 are

the partial derivatives of f(t, x, y) and g(t, x).

Proof. See Appendix B. 2

Next, we give the explicit solution of the equilibrium strategy in the following theorem.

Theorem 3.1. The equilibrium strategy (optimal time-consistent strategy) of the extended HJB

system of equations (2.10) is given by





q∗(t) = [c1(t)x + k1(t)] ∨ 0,

u∗(t) = [c2(t)x + k2(t)] ∨ 0,
(3.2)

where




c1(t) = Ḡ ×
[
−1

γ
e−

∫ T
t F̄s ds + 1 − e

∫ T
t (Ās−F̄s)ds

]
,

c2(t) = H̄ ×
[
−1

γ
e−

∫ T
t F̄s ds + 1 − e

∫ T
t (Ās−F̄s) ds

]
,

k1(t) = Ḡ ×
[
−e−

∫ T
t F̄s ds ×

∫ T

t
e
∫ T

s Āz dz Ēs ds +

∫ T

t
e−

∫ s
t F̄z dz Ēs ds

]
,

k2(t) = H̄ ×
[
−e−

∫ T
t F̄s ds ×

∫ T

t
e
∫ T

s Āz dz Ēs ds +

∫ T

t
e−

∫ s
t F̄z dz Ēs ds

]
,

(3.3)
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and

Āt = r0 + λµ1θc1(t) + (r1 − r0)c2(t); (3.4)

Ēt = λµ1θk1(t) + (r1 − r0)k2(t) + λµ1(η − θ) − λµ2c1(t)k1(t)

−σ2c2(t)k2(t) − ρσ
√

λµ2c1(t)k2(t) − ρσ
√

λµ2c2(t)k1(t); (3.5)

F̄t = r0 + λµ1θc1(t) + (r1 − r0)c2(t) + λµ2c
2
1(t) + σ2c2

2(t) + 2ρ
√

λµ2σc1(t)c2(t); (3.6)

Ḡ =
ρ
√

λµ2(r1 − r0) − σλµ1θ

σλµ2(1 − ρ2)
; (3.7)

H̄ =
ρσ

√
λµ2λµ1θ − λµ2(r1 − r0)

σ2λµ2(1 − ρ2)
. (3.8)

Proof. See Appendix C. 2

Remark 3.1. We point out that when ρ = 0, the results in Theorem 3.1 recover the results of Li

and Li (2013). So, in this section, we extend the research of Li and Li (2013).

Next we consider the equilibrium value function. Because of the constraints of q(·) ≥ 0, u(·) ≥ 0,

we need to discuss the following four cases:





Case A: Ḡ < 0, H̄ < 0,

Case B: Ḡ < 0, H̄ ≥ 0,

Case C: Ḡ ≥ 0, H̄ < 0,

Case D: Ḡ ≥ 0, H̄ ≥ 0.

We only give the detail discussion for Case A in the following theorem. The results in other cases

can be derived similarly.

Theorem 3.2. For Case A, if the initial reserve x at the initial time t satisfies

x ×
[
−1

γ
e−

∫ T
t F̄sds + 1 − e

∫ T
t Āsdse−

∫ T
t F̄sds

]

+

[
−e−

∫ T
t F̄sds ×

∫ T

t
e
∫ T

s ĀzdzĒsds +

∫ T

t
e−

∫ s
t F̄zdzĒsds

]
< 0, (3.9)

the equilibrium value function of the extended HJB system of equations (2.10) is given by

V (t, x) = x
[
P1(t) +

γ

2
P 2

1 (t) − γ

2
P2(t)

]

+Q1(t) − γ

2
Q2(t) + γP1(t)Q1(t) +

γ

2x

[
Q2

1(t) − R(t)
]
, (3.10)
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where P1(t), Q1(t), P2(t), Q2(t) and R(t) are given in (6.10), (6.11), (6.12), (6.13) and (6.14)

respectively.

Otherwise, if the initial reserve x at the initial time t satisfies

x ×
[
−1

γ
e−

∫ T
t F̄sds + 1 − e

∫ T
t Āsdse−

∫ T
t F̄sds

]

+

[
−e−

∫ T
t F̄sds ×

∫ T

t
e
∫ T

s Ā(z)dzĒsds +

∫ T

t
e−

∫ s
t F̄zdzĒsds

]
≥ 0, (3.11)

the equilibrium value function of the extended HJB system of equations (2.10) is given by

V (t, x) = er0(T−t)x +
λµ1(η − θ)

r0

[
er0(T−t) − 1

]
. (3.12)

Proof. See Appendix D. 2

In the following theorem, we show that the system of integral equations (3.3) has a unique

global solution.

Theorem 3.3. The system of integral equations (3.3) admits a unique solution c1(t), c2(t), k1(t),

k2(t) ∈ C[0, T ], where C[0, T ] is the space of continuous functions defined on [0, T ].

Proof. The theorem can be obtained easily by arguments similar to those used in Li and Li (2013)

(or Björk and Murgoci 2010, Björk et al. 2014 and Zhang and Liang 2016). Thus, we omit its

proof. 2

4 The equilibrium strategies under VaR constraints

In this section, we will use the results in Section 3 to solve the optimal investment-reinsurance

problem with VaR constraints (2.6). To do so, we make the following assumption.

Assumption 4.1. We assume that

VaR ≥ er0h − 1

r0
λµ1(θ − η) (4.1)

and Φ−1(p) < 0 or equivalently p < 1/2.

We point out that the conditions of Assumption 4.1 are mild ones. To see that, note that the

VaR control level VaR is a given constant and usually is a large value. With small time step h, the

right hand side of (4.1) is small, in fact, the right hand side of (4.1) converges to zero as h → 0. So
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with a big VaR or a small h, (4.1) can hold easily. In addition, in practice, the risk level for VaR

is a small value such as p = 0.01, 0.05. Hence the condition p < 1/2 can be also satisfied easily.

In the following proposition, we give an equivalent expression for the VaR constraints (2.6).

Proposition 4.1. Under Assumption 4.1, the VaR constraints (2.6) or VaRp,h,π
t ≤ VaR is equiv-

alent to

Ãq2(t) + B̃u2(t) + C̃q(t)u(t) + D̃q(t) + Ẽu(t) + F̃ ≤ 0, (4.2)

where

Ã = (Φ−1(p))2
e2r0h − 1

2r0
λµ2 −

(
er0h − 1

r0
λµ1θ

)2

;

B̃ = (Φ−1(p))2
e2r0h − 1

2r0
σ2 −

[
er0h − 1

r0
(r1 − r0)

]2

;

C̃ = (Φ−1(p))2
e2r0h − 1

r0
ρσ

√
λµ2 − 2

(
er0h − 1

r0

)2

λµ1θ(r1 − r0);

D̃ = −2
er0h − 1

r0
λµ1θ

[
er0h − 1

r0
λµ1(η − θ) + VaR

]
;

Ẽ = −2
er0h − 1

r0
(r1 − r0)

[
er0h − 1

r0
λµ1(η − θ) + VaR

]
;

F̃ = −
[
er0h − 1

r0
λµ1(η − θ) + VaR

]2

. (4.3)

Proof. By (2.7), we see that

VaRp,h,π
t ≤ VaR

⇐⇒ −Φ−1(p)

√
e2r0h − 1

2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
≤ VaR

+
er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

⇐⇒ (Φ−1(p))2
e2r0h − 1

2r0

[
λµ2q

2(t) + σ2u2(t) + 2ρ
√

λµ2σq(t)u(t)
]

≤
{

VaR +
er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

}2

⇐⇒ Ãq2(t) + B̃u2(t) + C̃q(t)u(t) + D̃q(t) + Ẽu(t) + F̃ ≤ 0.

In the above calculation, we use Assumption 4.1. 2

Remark 4.1. Note that F̃ ≤ 0, so there exists at least one strategy (q(t), u(t)) ≡ (0, 0) that satisfies

(4.2). Then the control space defined in Proposition 4.1 is not empty.
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Remark 4.2. After a simple calculation, we see that if

C̃2 − 4ÃB̃ < 0,

which is equivalent to

[
Φ−1(p)

]2
>

(
er0h−1

r0

)2 {
[λµ2(r1 − r0) − σλµ1θ]

2 + 2(1 − ρ)σ
√

λµ2λµ1θ(r1 − r0)
}

e2r0h−1
2r0

σ2λµ2(1 − ρ2)
, (4.4)

then, the control space of the strategy (q(·), u(·)) is the first quadrant of an ellipse; otherwise, it is

the first quadrant of a parabolic.

Note that Φ−1(p) → −∞ as p → 0. Hence, [Φ−1(p)]2 → ∞ as p → 0. Thus, the condition (4.4)

will hold for a small value of p and the control space of the strategy (q(·), u(·)) is the first quadrant

of an ellipse for the small p.

Now, we can solve the optimization problem (2.8) subjected to (2.2) and (2.6), as well as

q(t) ≥ 0, u(t) ≥ 0. We denote the optimal solution of this problem by π∗
VaR if it exists.

According to Theorem 3.1 and Proposition 4.1, the equilibrium strategy under VaR constraints

should satisfy





q(t) = c1(t)x + k1(t),

u(t) = c2(t)x + k2(t),

q(t) ≥ 0,

u(t) ≥ 0,

Ã[q(t)]2 + B̃[u(t)]2 + C̃q(t)u(t) + D̃q(t) + Ẽu(t) + F̃ ≤ 0,

(4.5)

where c1(t), c2(t), k1(t), k2(t) are given in (3.3), and Ã, B̃, C̃, D̃, Ẽ, F̃ are given in (4.3).

The first two equations in (4.5) are the equilibrium strategy without any constraint. The third

and fourth inequalities in (4.5) present the nonnegative constraints on the strategy, and the fifth

inequality in (4.5) denotes the VaR constraint. The last three inequalities in (4.5) constitute the

control space, which is the first quadrant of an ellipse or a parabolic (see Remark 4.2).

If the strategy (q(t), u(t)) defined in the first and second equations in (4.5) or the equilibrium

strategy without any constraint satisfies the last three inequalities in (4.5) or locates in the control

space for any t ∈ [0, T ], then the strategy (q(t), u(t)) is also a solution with the constraints, namely

(q(t), u(t)) = π∗
VaR. Otherwise, if the strategy (q(t), u(t)) defined in the first and second equations
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in (4.5) or the equilibrium strategy without any constraint does not satisfy the last three inequalities

in (4.5) or does not locate in the control space for some t ∈ [0, T ], we consider the following two

situations. First, if the strategy (q(t), u(t)) defined in the first and second equations in (4.5) is

outside the control space at the initial time t = 0, then the equilibrium investment-reinsurance

strategy is just the boundary of the control space. Second, if the strategy (q(t), u(t)) defined in the

first and second equations in (4.5) is inside the control space at the initial time t = 0, but it leaves

the control space at sometime before T , we define the first exit time t̄ of the control space as

t̄ := inf

{
t > 0 : Ã[c1(t)x + k1(t)]

2 + B̃[c2(t)x + k2(t)]
2 + C̃[c1(t)x + k1(t)] ×

[c2(t)x + k2(t)] + D̃[c1(t)x + k1(t)] + Ẽ[c2(t)x + k2(t)] + F̃ > 0,

or c1(t)x + k1(t) < 0, or c2(t)x + k2(t) < 0

}
.

Then, under the VaR constraints, the optimal time-consistent strategy (equilibrium strategy) is

π∗
VaR(t) = (q∗

VaR(t), u∗
VaR(t)) with

q∗
VaR(t) =





c1(t)x + k1(t), t ∈ [0, t̄ ∧ T ],

c1(t̄)x + k1(t̄), t ∈ (t̄ ∧ T, T ],
(4.6)

and

u∗
VaR(t) =





c2(t)x + k2(t), t ∈ [0, t̄ ∧ T ],

c2(t̄)x + k2(t̄), t ∈ (t̄ ∧ T, T ].
(4.7)

Remark 4.3. We can extend our model and results to the financial market model with multiple

risky assets which are correlated. Assume that there are m risky assets (stocks), and their price

processes Pi(t), i = 1, 2, · · · ,m, satisfy the following SDEs





dPi(t) = Pi(t)


r1idt +

m∑

j=1

σijdW2j(t)


 , t ∈ [0, T ],

Pi(0) = pi, i = 1, 2, · · · ,m,

where r1 := (r11, r12, · · · , r1m)⊤, r1i > r0, i = 1, 2, · · · ,m, is the appreciation rate, σ := (σij)m×m

is the volatility coefficient, W2(t) := (W21(t), W22(t), · · · ,W2m(t))⊤ is a standard {Ft}t≥0-adapted

m-dimensional Brownian motion, with the superscript ⊤ means the transpose of a matrix or a

vector. The Brownian motion W1(t) in the approximated reserve process of the insurer and the

m-dimensional Brownian motion W2(t) in the risky asset are possibly correlated with correlation
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coefficient ρ := (ρ1, ρ2, · · · , ρm)⊤, ρi ∈ [−1, 1], i = 1, 2, · · · ,m, which represents the dependence

between the stock market and the insurance market. Let ui(t), i = 1, 2, · · · ,m, denote the total mar-

ket value of the insurer’s wealth in the i-th risky asset at time t. u(t) := (u1(t), u2(t), · · · , um(t))⊤

is the investment strategy.

All the main results about the equilibrium strategies presented in Proposition 3.1, Theorem 3.1,

Theorem 3.2, and (4.5) can be obtained by the same arguments used in this paper for the financial

market model with multiple risky assets. To show the results can be extended the financial market

model with multiple risky assets, we give the equilibrium strategy for the financial market model

with multiple risky assets as follows:





q∗ =

{ |Σ1|
|Σ| × fx + γ

xggx

fxx + γ
xggxx

}
∨ 0,

u∗ =

{ |Σ2|
|Σ| × fx + γ

xggx

fxx + γ
xggxx

}
∨ 0,

(4.8)

where

Σ :=


 λµ2

√
λµ2ρ

⊤σ
√

λµ2σ
⊤ρ σ⊤σ




Σ1 :=


 −λµ1θ

√
λµ2ρ

⊤σ

−(r1 − r01) σ⊤σ




Σ2 :=


 λµ2 −λµ1θ

√
λµ2σ

⊤ρ −(r1 − r01)




are (m + 1) × (m + 1) matrices, |Σ| means the determinant of matrix Σ, and 1 := (1, 1, · · · , 1)⊤

is a m-dimensional vector. The strategy (4.8) extends the equilibrium strategy of Proposition 3.1.

We omit the proof of (4.8) since the proof is similar to that for Proposition 3.1.

We will study the impact of the parameters on the control space and the equilibrium investment-

reinsurance strategies under VaR constraints in the following section through some numerical ex-

amples.

5 Numerical examples

In this section, we illustrate the results obtained in Sections 3 and 4 by numerical examples.

18



5.1 The equilibrium investment-reinsurance strategies without VaR constraints

In this subsection, we numerically show the impact of the risk aversion and the correlation be-

tween the financial market and the insurance market on the equilibrium strategies without VaR

constraints, which have been derived explicitly in (3.2) and (3.3) in Theorem 3.1. In doing so, we

set the model parameters of the insurer’s reserve process and the financial market in Table 1 with

x = 0.6 and T = 2 (years).

λ µ1 µ2 r0 r1 σ η θ

1 0.1 0.2 0.1 0.2 0.6 0.3 0.5

Table 1: Parameters of the insurance market and the financial market.

• First, we keep the correlation coefficient ρ = 0.3 and calculate the equilibrium strategies

(q∗(t), u∗(t)) by using (3.2) and (3.3) for different risk aversion parameters of γ = 1, 2, 3.

The equilibrium strategies are shown in Figure 1. From Figure 1, we see that for a given risk

aversion γ, both the optimal reinsurance retention levels of q∗(t) and the optimal investment

amounts of u∗(t) to the risky asset increase as t increases, which means that the insurer

should retain more and more insurance risks and invest more and more money into the risky

asset if it has no VaR constraints. Moreover, at a given time t, both the optimal reinsurance

retention levels and the optimal investment amounts to the risky asset are decreasing while

γ increases, which are reasonable because a large value of γ means that the insurer is more

risk averse. Such an insurer (more risk averse) would like to retain less proportion of the

insurance risk and to invest less money into the risky asset.

• Second, we keep the risk aversion γ = 1 and calculate the equilibrium investment-reinsurance

strategies (q∗(t), u∗(t)) by using (3.2) and (3.3) for different correlation coefficients of ρ =

0, 0.15, 0.3. The equilibrium investment-reinsurance strategies (q∗(t), u∗(t)) are shown in

Figure 2. From Figure 2, we can see that at a given time t, both q∗(t) and u∗(t) are decreasing

while ρ increases. These findings are also reasonable because a large value of ρ means both

the financial market and the insurance market are more risky, so the insurer will retain less

proportion of the insurance risks and invest less money into the risky asset. In addition, for

a given correlation coefficient ρ, both the optimal reinsurance retention levels of q∗(t) and

the optimal investment amounts of u∗(t) to the risky asset increase as t increase, which again
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Figure 1: q∗(t) and u∗(t) for x = 0.6, ρ = 0.3; γ = 1, 2, 3 without VaR constraint.

means that the insurer should retain more and more insurance risks and invest more and

more money into the risky asset if it has no VaR constraints.

5.2 The equilibrium investment-reinsurance strategies with VaR constraints

In this subsection, we numerically illustrate the influence of VaR constraints in the equilibrium

investment-reinsurance strategies with VaR constraints, which have been presented explicitly in

Section 4.

We use the model parameters of the insurer’s reserve process and the financial market as in

Table 1 with ρ = 0.3 and consider the VaR control levels VaR as well as the risk levels p for three

different cases/combinations as in Table 2, where the time interval h is equal to 1
12 (one month),

and the VaR control levels of VaR are set so that (4.1) holds.

• First, we show the effect of VaR constraints on the control space. By using (4.2) of Proposition

4.1, we present the numerical solutions of the control space with the VaR constraints under

the model setting in Figure 3. From Figure 3 (Cases 1-2), we see that for fixed p, a bigger

value of VaR (or a relaxed requirement on VaR control level) means a bigger control area.

For fixed VaR, a higher risk level p (or a lower confidence level) means a bigger control area,

see Cases 2-3 in Figure 3.
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Figure 2: q∗(t) and u∗(t) for x = 0.6, γ = 1; ρ = 0, 0.15, 0.3 without VaR constraint.

Case 1 Case 2 Case 3

VaR 0.05 0.1 0.1

p 0.01 0.01 0.05

Table 2: VaR control levels and risk levels with time interval h = 1/12.
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Figure 3: The control space under the VaR constraints in Cases 1-4.
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• Second, for the VaR control level VaR and risk level p given in Case 1 of Table 2, time interval

h = 1
12 and the model parameter values given in Table 1 with x = 0.6, and T = 2, we illustrate

the impact of the VaR constraints on the equilibrium investment-reinsurance strategies by

calculating the equilibrium investment-reinsurance strategies, respectively, for different risk

aversion parameters and different correlation coefficients by using (4.6) and (4.7).

We keep the correlation coefficient ρ = 0.3, and obtain the equilibrium investment-reinsurance

strategies for different risk aversion parameters of γ = 1, 2, 3, which are presented in Figure

4. From Proposition 4.1, we know that the control space does not depend on γ. The equilib-

rium reinsurance strategy q∗
VaR(t) and the equilibrium investment strategy u∗

VaR(t) have the

upper bounds 0.0609 and 0.0978, respectively, for different values of γ, over the investment

period. For γ = 2 or 3, the equilibrium reinsurance strategy q∗
VaR(t) and the equilibrium

investment strategy u∗
VaR(t) with VaR constraint are the same as q∗(t) and u∗(t) without

VaR constraint, because they do not exceed the upper bounds 0.0609 and 0.0978 over the

whole investment period. For γ = 1, because q∗(t) and u∗(t) without VaR constraint exceed

the upper bounds 0.0609 and 0.0978 at the initial time, the equilibrium reinsurance strategy

q∗
VaR(t) and the equilibrium investment strategy u∗

VaR(t) with VaR constraint are 0.0609 and

0.0978, respectively, over the whole investment period. The result can be seen in Figure 1

and Figure 4.

Moreover, we keep the risk aversion parameter γ = 1, and obtain the equilibrium investment-

reinsurance strategies for different correlation coefficients of ρ = 0, 0.15, 0.3, which are

presented in Figure 5. From Proposition 4.1, we know that the value of ρ influences C̃,

so the control space depends on ρ. The equilibrium reinsurance strategy q∗
VaR(t) and the

equilibrium investment strategy u∗
VaR(t) have the different upper bounds for different values of

ρ. When ρ = 0, the upper bounds of the equilibrium reinsurance strategy and the equilibrium

investment strategy are 0.0888 and 0.0987, respectively. When ρ = 0.15, the upper bounds

of the equilibrium reinsurance strategy and the equilibrium investment strategy are 0.0748

and 0.0982, respectively. When ρ = 0.3, the upper bounds of the equilibrium reinsurance

strategy and the equilibrium investment strategy are 0.0609 and 0.0978, respectively. For ρ =

0, 0.15, 0.3, because q∗(t) and u∗(t) without VaR constraint exceed the upper bounds at the

initial time, so the equilibrium reinsurance strategy q∗
VaR(t) and the equilibrium investment

strategy u∗
VaR(t) equal to the upper bounds over the whole investment period. The result can
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Figure 4: The equilibrium strategies under the VaR constraints for different γ (Case 1).

be seen in Figure 2 and Figure 5.

• Third, we illustrate the impact of the VaR constraints on the equilibrium investment-reinsurance

strategies by calculating the equilibrium investment-reinsurance strategies in Cases 1 and 2

of Table 2, respectively, for different initial capitals of x by using (4.6) and (4.7).

Case 1 of Table 2: For the VaR control level VaR and risk level p given in Case 1 of Table 2,

time interval h = 1
12 and the model parameter values given in Table 1 with ρ = 0.3, γ = 1 and

T = 2, by using (4.6) and (4.7), we obtain the equilibrium investment-reinsurance strategies

for different initial capitals of x = 0.3, 0.4, 0.5, 0.6, which are presented in Figure 6. Under

the VaR constraints, at a given time t, both the equilibrium reinsurance strategy q∗
VaR(t)

and the equilibrium investment strategy u∗
VaR(t) are increasing while the initial capital x

increases. It is a reasonable result because when the insurer has a bigger initial wealth

x, the insurer would like to retain a bigger proportion of its insurance risks and to invest

more money into the risky asset. Moreover, the equilibrium reinsurance strategy q∗
VaR(t)

and the equilibrium investment strategy u∗
VaR(t) have the upper bounds 0.0609 and 0.0978,

respectively, for different values of x, over the investment period. The upper bounds represent

the effect of the VaR constraints on the equilibrium strategies, which implies that to limit the

loss of the insurer at the VaR control level VaR, the insurer has to limit both the amounts
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Figure 5: The equilibrium strategies under the VaR constraints for different ρ (Case 1).

invested into the risky asset and the retained insurance risks.

Case 2 of Table 2: For the VaR control level VaR and risk level p given in Case 2 of Table 2, the

time interval h = 1
12 and the model parameter values given in Table 1 with ρ = 0.3, γ = 1 and

T = 2, by using (4.6) and (4.7), we obtain the equilibrium investment-reinsurance strategies

for different initial capitals of x = 0.3, 0.4, 0.5, 0.6, 1.0, which are presented in Figure

7. In this case, the equilibrium reinsurance strategy q∗
VaR(t) and the equilibrium investment

strategy u∗
VaR(t) have the upper bounds 0.1293 and 0.2076, respectively, for different values

of x. By comparing Figure 6 with Figure 7, we see that the upper bounds of the equilibrium

reinsurance strategy q∗
VaR(t) and the equilibrium investment strategy u∗

VaR(t) in Case 2 are

bigger than those in Case 1, which means that the insurer can invest more money into the

risky asset and retain more insurance risks in Case 2 than in Case 1. This finding is consistent

with the fact that the insurer has a tougher VaR control level of 0.05 in Case 1 than that the

VaR control level 0.1 in Case 2.
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Figure 6: The equilibrium strategies under the VaR constraints for different x (Case 1).
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Figure 7: The equilibrium strategies under the VaR constraints for different x (Case 2).
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6 Concluding remarks

This paper studies the insurer’s optimal time-consistent investment-reinsurance strategies (equi-

librium strategies) under the mean-variance criterion with state dependent risk aversion and VaR

constraints and discuss the impact of the risk aversion, the correlation between the insurance mar-

ket and the financial market, the risk level, and the VaR control level on the investment-reinsurance

strategies for an insurer. The results suggest that the more risk aversion an insurer has, the less

insurance risks it will retain and the less money it will invest into an risky asset, and that if there

is a stronger correlation between the insurance market and the financial market, the insurer should

retain less insurance risks and invest less money into risky assets. If there is a VaR constraint on

the loss of the insurer, it has to limit both the retained insurance risk and the amounts invested

into the risky assets. These results and findings are consistent with the practices of an insurer in

investment-reinsurance decisions.

Appendix A: The proof of Lemma 2.1

Proof. We have

P(∆Xπ
t,h ≥ L|Ft) = P(Xπ

t er0h − Xπ
t+h ≥ L

∣∣ Ft)

= P
( ∫ t+h

t
er0(t+h−z)

[
q(t)

√
λµ2dW1(z) + u(t)σdW2(z)

]

≤ −L − er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

∣∣∣ Ft

)

= P
( ∫ t+h

t er0(t+h−z)
[
q(t)

√
λµ2dW1(z) + u(t)σdW2(z)

]
√

e2r0h−1
2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]

≤
−L − er0h−1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

√
e2r0h−1

2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
∣∣∣Ft

)

= Φ

(−L − er0h−1
r0

[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]
√

e2r0h−1
2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
)

, (6.1)

where the last equality follows from the fact that the random variable
∫ t+h

t
er0(t+h−z)

[
q(t)

√
λµ2dW1(z) + u(t)σdW2(z)

]
(6.2)

conditionally on the filtration Ft, is normally distributed with mean zero and variance

e2r0h − 1

2r0

[
λµ2q

2(t) + σ2u2(t) + 2ρ
√

λµ2σq(t)u(t)
]
. (6.3)
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Thus

P(Xπ
t er0h − Xt+h ≥ L|Ft) < p

⇐⇒ Φ

(−L − er0h−1
r0

[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]
√

e2r0h−1
2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
)

< p

⇐⇒ L > −er0h − 1

r0
[λµ1θq(t) + (r1 − r0)u(t) + λµ1(η − θ)]

−Φ−1(p)

√
e2r0h − 1

2r0

[
λµ2q2(t) + σ2u2(t) + 2ρ

√
λµ2σq(t)u(t)

]
.

According to the definition (2.5), we obtain (2.7). 2

Appendix B: The proof of Proposition 3.1

Proof. Recall the wealth process and the infinitesimal generator given in (2.2) and (2.9), respec-

tively, we have

AπV (t, x) = Vt + [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] Vx

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]
Vxx;

Aπf(t, x, x) = ft(t, x, x) + [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] × [fx(t, x, x) + fy(t, x, x)]

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]

× [fxx(t, x, x) + fyy(t, x, x) + 2fxy(t, x, x)] ;

Aπfx(t, x) = ft(t, x, x) + [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] fx(t, x, x)

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]
fxx(t, x, x);

Aπ(G ⋄ g)(t, x) = AπG(x, g(t, x)) = Gygt + [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] × (Gx + Gygx))

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]

×
[
Gxx + Gyyg

2
x + Gygxx + 2Gxygx

]
;

Hπg(t, x) = Gy(x, g(t, x)) × Aπg(t, x)

= Gy

{
gt + [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] gx

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]
gxx

}
;

where G is evaluated at G(x, g(t, x)) and g is evaluated at g(t, x).

Thus the extended HJB system of equations (2.10) can be rewritten as the following system of
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equations:





Vt + sup
π∈Π

{
[r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] ×

[
Vx − fy − γ′(x)

2
g2

]
+

1

2

[
λµ2q

2

+ σ2u2 + 2ρσ
√

λµ2qu
]
×

[
Vxx − fyy − 2fxy − γ′′(x)

2
g2 − 2γ′(x)ggx − γ(x)g2

x

] }
= 0;

ft(t, x, y) + [r0x + λµ1θq
∗ + (r1 − r0)u

∗ + λµ1(η − θ)] fx(t, x, y)

+
1

2

[
λµ2(q

∗)2 + σ2(u∗)2 + 2ρσ
√

λµ2q
∗u∗

]
fxx(t, x, y) = 0;

gt(t, x) + [r0x + λµ1θq
∗ + (r1 − r0)u

∗ + λµ1(η − θ)] gx(t, x)

+
1

2

[
λµ2(q

∗)2 + σ2(u∗)2 + 2ρσ
√

λµ2q
∗u∗

]
gxx(t, x) = 0.

(6.4)

Note that γ(x) = γ
x with γ′(x) = − γ

x2 , γ′′(x) = 2γ
x3 and

V (t, x) = f(t, x, x) +
γ

2x
g2(t, x).

Thus we have

Vt = ft +
γ

x
ggt,

Vx = fx + fy − γ

2x2
g2 +

γ

x
ggx,

Vxx = fxx + fyy + 2fxy +
γ

x3
g2 − γ

x2
ggx − γ

x2
ggx +

γ

x
g2
x +

γ

x
ggxx,

where f and its derivatives are evaluated at (t, x, x), while g and its derivatives are evaluated at

(t, x). Using these expressions, the first equation of the system (6.4) becomes

ft +
γ

x
ggt + sup

q,u

{
[r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] ×

[
fx +

γ

x
ggx

]

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]

×
[
fxx +

γ

x
ggxx

] }
= 0. (6.5)

Let

H(q, u) = [r0x + λµ1θq + (r1 − r0)u + λµ1(η − θ)] ×
[
fx +

γ

x
ggx

]

+
1

2

[
λµ2q

2 + σ2u2 + 2ρσ
√

λµ2qu
]

×
[
fxx +

γ

x
ggxx

]
.
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Differentiating the function H(q, u) with respect to q and u respectively, we obtain





∂H(q, u)

∂q
=

(
λµ2q + ρσ

√
λµ2u

) [
fxx +

γ

x
ggxx

]
+ λµ1θ

[
fx +

γ

x
ggx

]
;

∂H(q, u)

∂u
=

(
ρσ

√
λµ2q + σ2u

) [
fxx +

γ

x
ggxx

]
+ (r1 − r0)

[
fx +

γ

x
ggx

]
;

∂H2(q, u)

∂q2
= λµ2

[
fxx +

γ

x
ggxx

]
;

∂H2(q, u)

∂u2
= σ2

[
fxx +

γ

x
ggxx

]
;

∂H2(q, u)

∂q∂u
= ρσ

√
λµ2

[
fxx +

γ

x
ggxx

]
.

The Hessian matrix is

H =




∂H2(q,u)
∂q2

∂H2(q,u)
∂q∂u

∂H2(q,u)
∂q∂u

∂H2(q,u)
∂u2


 =


 λµ2 ρσ

√
λµ2

ρσ
√

λµ2 σ2




[
fxx +

γ

x
ggxx

]
.

Because of

|H| = σ2λµ2(1 − ρ2)
(
fxx +

γ

x
ggxx

)2
≥ 0,

it is easy to see that the maximizer (q̂, û) of (6.5) is the solution of the equations





(
λµ2q + ρσ

√
λµ2u

) [
fxx +

γ

x
ggxx

]
+ λµ1θ

[
fx +

γ

x
ggx

]
= 0

(
ρσ

√
λµ2q + σ2u

) [
fxx +

γ

x
ggxx

]
+ (r1 − r0)

[
fx +

γ

x
ggx

]
= 0.

That is,





q̂ =
ρ
√

λµ2(r1 − r0) − σλµ1θ

σλµ2(1 − ρ2)
× fx + γ

xggx

fxx + γ
xggxx

,

û =
ρσ

√
λµ2λµ1θ − λµ2(r1 − r0)

σ2λµ2(1 − ρ2)
× fx + γ

xggx

fxx + γ
xggxx

.

(6.6)

This completes the proof. 2

Appendix C: The proof of Theorem 3.1

Proof. From the form of π̂ = (q̂, û) in (6.6), we conjecture that q̂ and û are affine form of x. So

we guess that





q̂ = c1(t)x + k1(t);

û = c2(t)x + k2(t);
(6.7)
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for some deterministic functions c1, c2, k1 and k2. In this case, the wealth process (2.2) becomes

dX π̂
t =

{
[r0 + λµ1θc1(t) + (r1 − r0)c2(t)] X

π̂
t + [λµ1θk1(t) + (r1 − r0)k2(t) + λµ1(η − θ)]

}
dt

+
√

λµ2

[
c1(t)X

π̂
t + k1(t)

]
dW1(t) + σ

[
c2(t)X

π̂
t + k2(t)

]
dW2(t)

=
(
ĀtX

π̂
t + B̄t

)
dt +

(
C̄1tX

π̂
t + D̄1t

)
dW1(t) +

(
C̄2tX

π̂
t + D̄2t

)
dW2(t),

with Āt given in (3.4) and

B̄t = λµ1θk1(t) + (r1 − r0)k2(t) + λµ1(η − θ),

C̄1t =
√

λµ2c1(t),

D̄1t =
√

λµ2k1(t),

C̄2t = σc2(t),

D̄2t = σk2(t).

Next we calculate Et,x[X π̂
T ] and Et,x[(X π̂

T )2]. To do so, we construct the following exponential

martingale:

dρ̄t = ρ̄t

[(
−Āt + C̄1

2
t + C̄2

2
t + 2ρC̄1tC̄2t

)
dt − C̄1tdW1(t) − C̄2tdW2(t)

]
,

or equivalently,

ρ̄t = ρ̄0 exp

{∫ t

0

[(
−Ās +

1

2
C̄1

2
s +

1

2
C̄2

2
s + ρC̄1sC̄2s

)
ds − C̄1sdW1(s) − C̄2sdW2(s)

]}
,

and then

ρ̄t

ρ̄T
= exp

{∫ T

t

[(
Ās − 1

2
C̄1

2
s − 1

2
C̄2

2
s − ρC̄1sC̄2s

)
ds + C̄1sdW1(s) + C̄2sdW2(s)

]}
. (6.8)

Applying the generalized Itô’s formula to ρ̄t X π̂
t yields

d
(
ρ̄tX

π̂
t

)

= X π̂
t dρ̄t + ρ̄tdX π̂

t + < X π̂
t , ρ̄t >

= X π̂
t ρ̄t

[(
−Āt + C̄1

2
t + C̄2

2
t + 2ρC̄1tC̄2t

)
dt − C̄1tdW1(t) − C̄2tdW2(t)

]

+ρ̄t

(
ĀtX

π̂
t + B̄t

)
dt + ρ̄t

(
C̄1tX

π̂
t + D̄1t

)
dW1(t) + ρ̄t

(
C̄2tX

π̂
t + D̄2t

)
dW2(t)

−
[
C̄1t

(
C̄1tX

π̂
t + D̄1t

)
+ ρC̄2t

(
C̄1tX

π̂
t + D̄1t

)
+ ρC̄1t

(
C̄2tX

π̂
t + D̄2t

)

+C̄2t

(
C̄2tX

π̂
t + D̄2t

)]
ρ̄tdt

= ρ̄t

(
B̄t − C̄1tD̄1t − C̄2tD̄2t − ρC̄1tD̄2t − ρC̄2tD̄1t

)
dt + ρ̄t

[
D̄1tdW1(t) + D̄2tdW2(t)

]
.
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Integrating from t to T on the above equation and rearranging it, we have

X π̂
T =

ρ̄t

ρ̄T
x +

∫ T

t

ρ̄s

ρ̄T

[
Ēsds + D̄1sdW1(s) + D̄2sdW2(s)

]
(6.9)

with x = X π̂
t and

Ēt = B̄t − C̄1tD̄1t − C̄2tD̄2t − ρ C̄1tD̄2t − ρ C̄2tD̄1t.

Note that E
(

ρ̄t

ρ̄T

)
= e

∫ T
t Āsds, then we have Et,x[X π̂

T ] = P1(t)x + Q1(t) with

P1(t) = e
∫ T

t Āsds (6.10)

and

Q1(t) =

∫ T

t
e
∫ T

s ĀzdzĒsds. (6.11)

By (6.9), we have

(X π̂
T )2 =

(
ρ̄t

ρ̄T

)2

x2 + 2x
ρ̄t

ρ̄T

∫ T

t

ρ̄s

ρ̄T

[
Ēsds + D̄1sdW1(s) + D̄2sdW2(s)

]

+

{∫ T

t

ρ̄s

ρ̄T

[
Ēsds + D̄1sdW1(s) + D̄2sdW2(s)

]}2

,

which implies Et,x[(X π̂
T )2] = P2(t)x

2 + Q2(t)x + R(t) with

P2(t) = e
∫ T

t (Ās+F̄s)ds; (6.12)

Q2(t) = 2

∫ T

t
e
∫ s

t Āzdze
∫ T

s (Āz+F̄z)dzĒsds; (6.13)

R(t) = E

{[∫ T

t

ρ̄s

ρ̄T

(
Ēsds + D̄1sdW1(s) + D̄2sdW2(s)

)]2
}

, (6.14)

where

F̄t = Āt + C̄1
2
t + C̄2

2
t + 2ρC̄1tC̄2t.

We recall that

f(t, x, y) = Et,x

[
Xπ∗

T

]
− γ

2y
Et,x

[
(Xπ∗

T )2
]

= P1(t)x+Q1(t)−
γ

2y

[
P2(t)x

2 + Q2(t)x + R(t)
]
, (6.15)

g(t, x) = Et,x

[
Xπ∗

T

]
= P1(t)x + Q1(t). (6.16)

31



Then we have

ft(t, x, y) = Ṗ1(t)x + Q̇1(t) − γ

2y

[
Ṗ2(t)x

2 + Q̇2(t)x + Ṙ(t)
]
;

fx(t, x, y) = P1(t) − γ

2y
[2P2(t)x + Q2(t)] ;

fxx(t, x, y) = −γ

y
P2(t);

gt(t, x) = Ṗ1(t)x + Q̇1(t);

gx(t, x) = P1(t);

gxx(t, x) = 0.

Thus

fx + γ
xggx

fxx + γ
xggxx

=
P1(t) − γ

2x [2P2(t)x + Q2(t)] +
γ
x [P1(t)x + Q1(t)]P1(t)

−γ
xP2(t)

=
x

[
P1(t) − γP2(t) + γP 2

1 (t)
]
+ γP1(t)Q1(t) − γ

2Q2(t)

−γP2(t)
,

where f and its derivatives are evaluated at (t, x, x), while g and its derivatives are evaluated at

(t, x).

Comparing (q̂, û) in (6.6) and (6.7), we have




c1(t) =
ρ
√

λµ2(r1 − r0) − σλµ1θ

σλµ2(1 − ρ2)
× P1(t) − γP2(t) + γP 2

1 (t)

−γP2(t)
,

c2(t) =
ρσ

√
λµ2λµ1θ − λµ2(r1 − r0)

σ2λµ2(1 − ρ2)
× P1(t) − γP2(t) + γP 2

1 (t)

−γP2(t)
,

k1(t) =
ρ
√

λµ2(r1 − r0) − σλµ1θ

σλµ2(1 − ρ2)
× P1(t)Q1(t) − 1

2Q2(t)

−P2(t)
,

k2(t) =
ρσ

√
λµ2λµ1θ − λµ2(r1 − r0)

σ2λµ2(1 − ρ2)
× P1(t)Q1(t) − 1

2Q2(t)

−P2(t)
.

Note that

P1(t) − γP2(t) + γP 2
1 (t)

−γP2(t)
= −1

γ

P1(t)

P2(t)
+ 1 − P 2

1 (t)

P2(t)

= −1

γ
e−

∫ T
t F̄sds + 1 − e

∫ T
t Āsds e−

∫ T
t F̄sds,

and

P1(t)Q1(t) − 1
2Q2(t)

−P2(t)
= − e

∫ T
t Āsds

e
∫ T

t (Ās+F̄s)ds

∫ T

t
e
∫ T

s ĀzdzĒsds +

∫ T
t e

∫ s
t Āzdze

∫ T
s (Āz+F̄z)dzĒsds

e
∫ T

t (Ās+F̄s)ds

= −e−
∫ T

t F̄sds ×
∫ T

t
e
∫ T

s ĀzdzĒsds +

∫ T

t
e−

∫ s
t F̄zdzĒsds.

Thus, we obtain (3.3) and finish the proof. 2
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Appendix D: The proof of Theorem 3.2

Proof. If (3.9) is satisfied, we have c1(t)x + k1(t) ≥ 0; c2(t)x + k2(t) ≥ 0. Inserting (6.15) and

(6.16) into (3.1), we get the equilibrium value function

V (t, x) = f(t, x, x) +
γ

2x
g2(t, x)

= P1(t)x + Q1(t) − γ

2x

[
P2(t)x

2 + Q2(t)x + R(t)
]
+

γ

2x
[P1(t)x + Q1(t)]

2.

Then we obtain (3.10).

Otherwise, if (3.11) holds, we have c1(t)x + k1(t) < 0 and c2(t)x + k2(t) < 0. The equilibrium

strategy is q∗(·) = 0, u∗(·) = 0, the wealth process is

dXt = [r0Xt + λµ1(η − θ)]dt,

then we have

XT = er0(T−t)Xt +
λµ1(η − θ)

r0

[
er0(T−t) − 1

]
,

which implies that E[XT ] = er0(T−t)x + λµ1(η−θ)
r0

[
er0(T−t) − 1

]
and Var[XT ] = 0, hence,

V (t, x) = E[XT ] = er0(T−t)x +
λµ1(η − θ)

r0

[
er0(T−t) − 1

]
.

The proof is finished. 2
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Highlights:

• The optimal time-consistent investment-reinsurance strategies for an insurer with

state dependent risk aversion are considered.

• The Value-at-Risk control levels for the insurer are introduced to control its loss in

investment-reinsurance strategies.

• The optimal investment-reinsurance problem is formulated within a game theoretic

framework.

• An extended Hamilton-Jacobi-Bellman system of equations is solved.

• The closed-form expressions of the optimal investment-reinsurance strategies are

derived.
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