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ABSTRACT. In a problem of Pareto-efficient insurance contracting (bu. teral risk sharing) with expected-
utility preferences, Gollier [28] relaxes the nonnegativity coun. -aint o . indemnities and argues that the
existence of a deductible is only due to the variability in e cos. of insurance, not the nonnegativity
constraint itself. In this paper, we find support for a similar stav. ~ent in problems of budget-constrained
optimal insurance (i.e., demand for insurance). Specific. ‘v, we consider a setting of ambiguity (unilateral
and bilateral) and a setting of belief heterogeneity. We dic > the nonnegativity constraint and assume
no cost (or a fixed cost) to the insurer, and we d ... '~<ed-form solutions to the problems that we
formulate. In particular, we show that optimal indc w7 .ties no longer include a deductible provision;
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1. INTRODUCTION

The literature on budget-constrained optimal insurance design follows Arrow s [4] < ~ssical formula-
tion of the insurance demand problem. In the latter, an Expected-Utility (F o, maximizing decision
maker (DM) is subject to an insurable random loss. He seeks an insuran  » in .emnification against
this loss so as to maximize his expected utility of terminal wealth, subjec* to .o constraint that, in
each state of the world, the indemnity is nonnegative and does not exceed ti. value of the loss, and
subject to a budget constraint. The latter is typically formulated as a prei-**m constraint: the price
of insurance (measured through a premium principle) is at most equal .~ t'.e DM’s available insurance
budget (II > 0, fixed ex ante). Arrow [4] shows that, for the exp~-*ed v.'ue premium principle, if
the DM and the insurer share the same probabilistic beliefs about  he rea ‘zations of the random loss,
then an optimal indemnification schedule for a risk-averse EU-ma. ‘mizin ; DM is a linear deductible
schedule’.

The subsequent actuarial literature on budget-constrained op.’- .al ir surance or reinsurance extended
this classical model in several directions. For instance, Goovac. *s, vV Heerwaarden, and Kaas [29], as
well as Denuit and Vermandele [18], show that under the expectea value premium principle and a fixed
budget constraint, a deductible contract is still optimal fo1  lar e class of stop-loss-order preserving
preferences for the DM. Cai and Wei [10] extend the resuliw. of Denuit and Vermandele [18] to account
for dependence between individual risks in an insure .. .o.wolio. Young [53] provides an analytical
characterization of the optimal indemnity, in a problem ¢ maximizing expected utility of wealth with
a fixed total insurance budget, but with a Wang | «...’ = principle (that is, a Choquet integral with
respect to a concave distortion function - Definition ? ). Gajek and Zagrodny [21, 22] and Kaluszka
[33, 34, 35] study a problem of optimal reinsw. - wit, a fixed total insurance budget, in which the
premium principle is a mean-and-variance premiut. pi.aciple, and the optimization criterion relates to
minimizing a convex risk measure of the ins. - - ained risk. Kaluszka and Okolewski [36] extend
Arrow’s result to the case of a fixed total insura..~e budget and a maximal-possible-claims premium
principle. Cheung et al. [12] extend the <~**ing of Kaluszka and Okolewski [36] to the case of a fixed
total insurance budget and when the T.M’s b. haves according to Disappointment theories of choice,
rather than expected-utility theory. Beru. ~d ar d Tian [6] consider a setting similar to that of Kaluszka
[33, 34, 35], with a fixed insurance I «dgrt, but assuming different optimization criteria related to trail
risk measures. Bernard and Tian 7] xter 4 Arrow’s setting to account for an additional regulatory
constraint related to insurer inso'vency, v iile assuming a fixed insurance budget. Zhou et al. [54] and
Cai et al. [9] consider Arrow’s e."ing, with a fixed insurance budget, but impose in addition a fixed
upper limit on the indemnity function. Tan et al. [48] examine the problem of determining the indemnity
function that minimizes the onc itional tail expectation (CTE) risk measure of the insurer’s total risk,
assuming a fixed total reins ra.ce budget and an expected-value premium principle. Sung et al. [47]
extend Arrow’s setting tr the c« 2 of a fixed total insurance budget and an expected-value premium
principle, but where the DM bebaves according to Cumulative Prospect Theory [32, 49]. Bernard et al.
[5], Xu et al. [51], and Gho. "ou? [24] extend Arrow’s setting to the case of a fixed total insurance budget
and an expected-val .e prevnium principle, but where the DM behaves according to Rank-Dependent
Expected-Utility [4: 52]. ¢ marante et al. [3] and Amarante and Ghossoub [2] consider the case of a
fixed total insurarce v 7~ _¢ and an EU-maximizing DM, but distortion premium principles and more

general Choque’ prem: 'm principles. Cui et al. [16], Zhuang et al. [55], Cheung et al. [11], Cheung and

INote that Ars w's .._". and the subsequent literature on budget-constrained optimal (re)insurance focused on a budget
constraint given 'y the expected value premium principle because, by the Law of Large Numbers, an insurer with EU
preferences is esse tially asymptotically risk neutral with vanishing risk premia. As shown in Knispel, Laeven, and
Svindland [37], this broadly remains true for an insurer with ambiguity-averse preferences. I am grateful to the Associate
Editor for pointing this out.
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Lo [13], and Lo [38, 39] examine the problem of minimizing a distortion risk mes sure of the insurer’s
retained risk, with a fixed reinsurance budget, and under a distortion reinsurans ¢ . ~mium principle.

Raviv [43] re-examines Arrow’s [4] problem, but in a setting of bilateral ».sn sharing, rather than
a setting of demand for insurance indemnification. He concludes that the 1 ~ese'.ce of a deductible is
due to both the nonnegativity constraint on the indemnification functior anu *he variability in the
cost of insurance. In an effort to test this statement, Gollier [28] relaxes the .. ~mnegativity constraint
and argues that the existence of a deductible is due to the variability ir the ~ost of insurance, not the
nonnegativity constraint. In this paper, we ask a similar question, but i.. = ¢ .tting of budget-constrained
optimal insurance design (that is, a problem of demand for insuranc~ indac. -nification), rather than a
setting of Pareto-optimal bilateral risk sharing. Specifically, we asl the fo 'owing question: If we relax
both the nonnegativity constraint on indemnities and the variabi ‘ty in .he cost to the insurer (by
assuming a fixed cost, or - without loss of generality - no cost), *, .t true cthat an optimal indemnity no
longer includes a deductible provision? It turns out that the a \sw . is positive, in several settings.

We first consider a setting where the DM is a Rank-Depena. t E._ected-Utility (RDEU)-maximizer
(as in [42, 52]), who distorts the true probability distribution of the random loss, due to some ambiguity
on his side, and where the premium principle is an expeci. '-val" e premium principle. We relax the
nonnegativity constraint and we assume that there are no « ~sts associated with handling an insurance
claim?. This allows us to test whether the existenc- _ . l.ductible is due to the variable cost of
insurance under ambiguity on the side of the DM. We giv. an analytical characterization of the optimal
indemnity and find that if the DM distorts the tr . | ~habilities then the optimal indemnity for the
DM does not include a deductible provision when t. ¢ e are no (or constant) insurance costs and no
nonnegativity constraint. Moreover, the optimai . lem. ity can be negative for small values of the loss,
or in case of no loss. This, as Gollier [28] notes, c.n w2 intuitively understood as the DM agreeing to
pay an additional premium in case of no loss ~r ...~ " losses.

We then examine some special cases. In particuiar, we find that when the DM is ambiguity-averse,
having a convex distortion function, the op. mal indemnity is a linear function of the realizations of
the random loss, and does not include a dedu tible provision. Moreover, the optimal indemnity can
take negative values for small losses, bu. *t .s bounded below by a constant that depends on the
DM'’s distortion function and on tbh . dif erence between the premium and the expected loss under the
insurer’s belief. When this differencc < zerr , full insurance is optimal and hence the optimal indemnity
is nonnegative. This result essen’ ally im, .ies that when the DM is risk-averse, full insurance is optimal
in the absence of insurance cor ., 1..°t is, that Mossin’s Theorem [41] holds in our setting. Indeed, in
RDEU, strong risk aversion (  aversion to mean-preserving increases in risk) is jointly characterized
by a concave utility functic « an « a convex distortion function (e.g., [14]), whereas in EUT concavity
of the utility function fullv ci. acterizes risk-aversion. In the case of an ambiguity seeking DM, with a
concave distortion funct’ m, *he optimal indemnity function is a nonlinear function of the realizations
of the random loss, bu. de s n’ ¢ include a deductible provision. Depending on the curvature of the
distortion function at 7~ro «. < one, the optimal indemnity function could be full insurance (and hence
nonnegative), it cov d fully insure only small losses, or it could never fully insure losses of any value.
In the case of amb.ruity-r sutrality, i.e., when the DM does not distort probabilities, the optimal
indemnity is a lir _or funcuon of the realizations of the random loss, taking negative values, but it does
not include a d :ductib = provision and it is bounded below by a constant that depends only on the
difference betwee ~ the premium and the expected loss under the insurer’s belief. When this difference
is zero, full * . ~ance is optimal and hence the optimal indemnity is nonnegative.

2This assumption could be replaced with an assumption of constant cost of insurance, without changing any of this paper’s
results.
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We subsequently extend the previous setup to a problem with a distortion pre:iium principle, with
a different distortion function than that of the DM. Under no additional assv .np.‘ons on the prob-
ability distortion functions used, we give a closed-form characterization of th~ optimal retention in
the absence of the nonnegativity constraint. We then examine several specis. ca: 2s, and in particular
the case in which the two probability distortion functions coincide. In the la. <. case, we find that if
this common distortion function is convex (indicating ambiguity aversion o. botu sides), the optimal
retention is a constant function of the random loss that is not equal to .. reau.ed loss. Moreover, if
the premium is equal to the distorted expected loss, then a zero reter 1on  tu.. insurance) is optimal.
This, again, is intuitive in light of Mossin’s Theorem, since strong risk version in RDEU is jointly
characterized by a concave utility function and a convex distortio . tunctiou. If the premium is less
than the distorted expected loss, then the optimal retention can t ke vali es higher than the realized
loss (optimal indemnity can take negative values). In the case of a .~ aon distortion function that
is concave (indicating ambiguity seeking on both sides), the o ,tim- . ‘etention function is a nonlinear
function of the realizations of the random loss that we characte "_e in :losed form.

Finally, we consider a setting with no ambiguity but belief hc ~rogeneity, in which the DM and the
insurer have non-ambiguous but diverging beliefs about ti.~ realize sions of the insurable loss X, repre-
sented by two different probability measures on the unde. 7ing . _uce. Under no additional assumptions
(in particular, no monotonicity assumptions) about the likeli.. od ratio, we provide an analytical char-
acterization of the optimal indemnity function, and .~ show how it does not include a deductible
provision. As a special case, we examine the case of belic” homogeneity and show that the optimal
indemnity is a linear function of the realized loss, b. 't ¢ bes not include a deductible provision.

Outline. The rest of this paper is organized as 1.-uc 7s. Section 2 provides the setup for the problems
examined in this paper, as well as the neces~rv te hnical background. In Section 3, we examine the
problem in the presence of ambiguity on the Dn.’< siae, first with an expected value premium principle,
and second with a distortion premium principle. Section 4 studies the problem in case of no ambiguity
on either side, but with differing beliefs «oo." the realizations of the insurable loss. Finally, Section 5
concludes. Omitted proofs can be four ! in the Appendices.

> CETU? AND PRELIMINARIES

2.1. Setup. Let S be a nonem ty colleccion of states of the world equipped with a o-algebra F of
events. The DM is facing a rar dom '~ss represented by a random variable X on the measurable space
(S, F). Let X = o{X} be the ."-c-algebra of F on S generated by X. We assume that the measurable
space (S,X) is endowed wit 1 a ", robability measure P, such that the image measure of X under P is
nonatomic® on the range ~f A vith Borel o-algebra, and such that X is essentially bounded.

Assumption 2.1. We ~a'e th: following assumptions on X :
(1) X e L*(S,¥,P); rmd

(2) X is a contn “ous - andom variable* for P. That is, the Borel probability measure P o X1 is
nonatom c.

3A finite nonneg. ¢ ve measure 7 on a measurable space (£2, A) is said to be nonatomic if for any A € A with 5 (A) > 0,
there is some B € .1 such that B < A and 0 < 5 (B) < n(A4).

AThis assumption can be dropped, but one would have to use the Distributional Transform approach of Riischendorf [44].
All the results of this paper would still hold, with adequate modifications.
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Let B (X) denote the vector space of all bounded, R-valued, and ¥-measurable functions on (S, X),
and BT () its positive cone. When endowed with the supnorm®, B (2) is a Bar ac.. “nace [19, IV.5.1].
By Doob’s measurability theorem [1, Theorem 4.41], for any Y € B (X) there evists a bounded, Borel-
measurable map I : R — R such that Y = I o X. Moreover, Y € BT (%) if ar « op y if the function I is
nonnegative.

The DM has access to a competitive insurance market in which he can tra. ~fer the risk associated
with the random loss X by purchasing insurance indemnification aga’ast ¥ for a premium II > 0
determined by the insurer, based on his beliefs about the realizations . € ¥. An indemnity function is
a random variable Y = I (X) on (S, X), for some bounded, Borel-me~~ura.’» map I : X (S) — R that
pays off the amount 7 (X (s)) € R in state of world s € S. By Dor b’s me »surability theorem, we will
hereafter identify the collection of possible indemnity functions wit. B (3.

The DM has initial wealth Wy > II and his total state-contir_ mt wealth is the 3-measurable,
R-valued and essentially bounded function on S defined by

Wi(s):=Wy—TI—X(s)+Y(s), VseS.

We assume that the DM expects the loss to be less than n. ini’ial wealth. This can be interpreted
as stating that the DM is well-diversified so that the parv. mlar loss exposure X against which he is
seeking an insurance coverage is expected to be suffic’ .y swall compared to his total initial wealth.

Assumption 2.2. { XdP < Wj.

Note that Assumption 2.2 is weaker than simil. - “vpe assumptions used in the literature, such as in
[5, 51], for instance.

Additionally, as in Arrow’s [4] framework, w ~ suppose that the DM is risk averse, having a utility
index u that satisfies the following.

Assumption 2.3. The DM’s utility = wnction w is strictly increasing, strictly concave, continuously
differentiable, and satisfies liIJrrl (W)t (a, <
Tr—+00

Remark 2.4. Assumption 2.3 is veakc t!an the usual Inada-type assumptions, commonly used in the
literature. Assuming that u is v *~tly concave and continuously differentiable implies that v’ is both
continuous and strictly decreasing. 1.3 then implies that (v’ )71 is continuous and strictly decreasing,
by the Inverse Function Throre. 1. Moreover, the continuity of w implies that u is bounded on every
closed and bounded subset . € F.

The DM’s problem is ¢ha’ of finding an indemnity function that maximizes a functional of the form
V : B(X) — R that reprc >nts the DM’s expected utility of terminal wealth, or a distorted expected
utility (in the sense 0" C£U), evc., subject to a premium constraint and the constraint that the indemnity
does not exceed the total lc s.

2.2. Probabilit y Dis‘ortions and the Choquet Integral.

Definition 2.5. A pr bability distortion (or weighting) function is a strictly increasing function 7" :
[0,1] = [0,7" =<h that T'(0) = 0 and 7' (1) = 1.

5Any Y € B (%) is bounded, and its supnorm is defined by |[Y |sup := sup{|Y (s)| : s € S} < +c0.
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Definition 2.6. Let (S,X, P) be a probability space and T a distorting func’.on. Define the set
function v = ToP by v (A) = T (P (A)) for all A€ X. Then v is called a distort d , bability measure.

Proposition 2.7. Let (S, X, P) be a probability space and v = T o P a distor ed y obability measure on
(S,X). Then:

(1) v(@) =0 and v (S) =1;

(2) v is monotone: for any A,Be¥, A< B=uv(A) <v(B).

(3) v is additive if and only if T is linear.

Definition 2.8. Let (S, %, P) be a probability space and v = T ¢ P a di torted probability measure
on (S,3). The Choquet integral with respect to v of an integrable ra. '~ variable Y is defined by

+00 0
deU:zJ v({seS: Y (s) > 1) dt+f [ S Y (s)> 1)) —1] dt,
0 —00

where the integrals are taken in the sense of Riemann.

When the function T is the identity function, so that . = r, the Choquet integral coincides with
the usual Lebesgue integral. Some properties of the C"h~~--* _tegral are listed below.

Proposition 2.9. Let v =T o P be a distorted prehability . 1easure on (S,X).
(1) If Ae X then (14 dv = v (A).
(2) Ifa=0, then {a Y dv=a (Y v; and,
(3) If Y1 < Ya, then (Y1 dv < (Vs du.
(4) If Y1 and Yo are comonotonic®, then § (1, + Y2) dv = (Y dv + (Y2 dv.

In particular, if Y > 0 then {Y dv > J, anc {(Y +¢) dv = [Y dv + ¢ for all ¢ € R. We refer to
Denneberg [17] and Marinacci and Mow. -ncchi , [40] for proofs and additional results.

2.3. Robust Representation of che Ch'.quet Integral. Let ba (X) denote the linear space of all
bounded finitely additive set fun tion. or (S5,X), endowed with the usual mixing operations. When
endowed with the variation no .~ |.|,, ba (¥) is a Banach space. By a classical result [19, IV.5.1],
(ba (2),]|.lv) is isometrically isomoryic to the norm-dual of the Banach space (B (X), ||.|sup) via the
duality <¢, A> = [ ¢ dX\, VA v (2), V¢ € B(X). Consequently, we can endow ba (X) with the weak*
topology o (ba (X), B (X)). fecc (%) denotes the collection of all countably additive elements of ba (¥),
then ca (X)) is a ||.|l,-close I line. = subspace of ba (X). Hence, ca () is ||.||,-complete, i.e. (ca(X),]|.|,)
is a Banach space. Hen’ efor h, a collection of probability measures will be called weak*-compact if it
is compact in the topolog - o (b.(X), B (¥)).

By a classical re-alt of Huber and Strassen [31] and Schmeidler [45, 46], we have the following
representations of tl » Choc 1et integral.

Proposition 2 10. L ‘v =T o P be a distorted probability measure on (S, ).

6Two functions Y1,V2 € B(X) are said to be comonotonic if [Y1 () — "1 (s’) } [YQ (s) —Ya (s’) } >0, for all 5,5’ € S. For
instance any Y € B (X) is comonotonic with any ¢ € R. Moreover, if Y1,Y> € B (X2), and if Y2 is of the form Y, = I o Y7,
for some Borel-measurable function I, then Y2 is comonotonic with Y7 if and only if the function I is nondecreasing.
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(1) If T is convez, then there exists a non-empty, conver, and weak*-compact ollection IT < ca (X)
of probability measures, called the core of v, such that for allY € B ().

Jde = min f Ydu.
pell
(2) IfT is concave, then there exists a non-empty, convex, and weak*-con. act collection A < ca (X)
of probability measures, called the anti-core of v, such that for o', . € b\ %),

deU = maxJYd,u.
peA

(3) If T is linear, then T is the identity function and I = A = P}. In ‘this case, for allY € B (%),

JYdU = JYdP.

In Schmeidler’s [46] CEU model, a DM’s ambiguous heliefs a; > represented by a nonadditive set
function v on the state space. In the special case whe e v T o P, for some probability weighting
function 7', ambiguity aversion (resp., ambiguity seeking) 15 ~quivalent to convexity (resp., concavity)
of the distortion function 7'. Hence, in light of Propo. -wu z.10, ambiguity aversion (resp., ambiguity-
seeking) implies a worst-case (resp., best-case) expectatic ~ with respect to a collection of (additive)
priors. Ambiguity-neutrality is equivalent to linear.'v v ' = distortion function 7" and therefore yields
the classical EU-representation of preferences.

3. RELAXING THE NON-NEGATIVITY CONS. >AIN1 ON INDEMNITIES: PROBABILITY WEIGHTING

In this section, we examine the problem of optimal insurance design when the DM has ambiguous
beliefs represented by a distortion of t'.e phy.ical probability measure P, and in the absence of the
nonnegativity constraint on indemnities. We f st consider the case of a standard premium constraint
of the form {YdP < II, or equival ntlv, a .ctention constraint of the form {RdP > Ry. We then
consider the case of a more general =te tior constraint of the form SRdTg oP > EO for some distortion
function T5 that is not necessari) idewn. - .t to that of the DM.

3.1. Ambiguity on the DM~ Side. We now consider the case in which the insurer experiences no
ambiguity about the realiz: .tior , of the insurable loss X, but the DM does and hence distorts the
probability measure P. Sneci.” ally, the DM’s problem, is the following.

Problem 3.1.

I

soff U «(WO—H—X+Y) dToP:Y<X,deP<H}.
YeL %)

Letting R := X — Y be the retention random variable, the problem can now be restated as

Problem 3. -.

sup UU(WO—H—R) dToP:R)O,JRdP)RO :=JXdP—H},
ReB(X)
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Clearly, R* is optimal for Problem (3.2) if and only if Y* = X — R* is optims. for Problem (3.1).
Therefore, we focus on solving Problem (3.2). Now, the monotonicity of the Le} esy - integral implies
that for each R > 0, { RdP > 0. Consequently, if Ry < 0, then the feasibility ~et of F.oblem (3.2) is
empty. Thus, we will make the following assumption in order to rule out triv.al s tuations.

Assumption 3.3. Ry = 0.

Hence, Assumption 2.2 and Assumption 3.3 imply that 0 < Ry < Wy - 1.

Recall” that for a continuous real-valued function f on a non-emntv co. ex subset of R containing
the interval [0, 1], the convex envelope of f on the interval [0, 1] is ¢ 1 absc tely continuous real-valued
function g such that:

(1) 9(0) = £(0) and g (1) = f (1)
(2) g is convex on [0, 1];
(3) For all z € [0,1], g () < f (x); and,
(4) g is affine on {x € [0,1] : g (x) < f (x)}.
Moreover,
(5) If f is increasing, then so is g;
(6) If f is differentiable on (0,1), then g is contii 1 usly differentiable on (0,1).

The following result gives an analytical charac. rization of the optimal solution to Problem (3.1)
under very mild assumptions on the DM’s di. 21 wies function T

Theorem 3.4. The function Y* := 3 — * <T(1 — Fx (X))) is optimal for Problem (3.1) and
comonotonic with X, where:

o Forallte[0,1], ¢ (t) = m x [f,w/ — 10— ()" <)\*5’ (t))];

e 0 is the convex envelope fv =1""* on [0,1]; and,

e \* is chosen such that \é q* (v, (t)dt = Ry.

Theorem 3.4 holds regai.'es of the ambiguity aversion or ambiguity seeking attitude of the DM.
The following two results exami..~ these special cases.

Corollary 3.5. If the . is e ther ambiguity neutral (T is the identity function) or ambiguity averse
(T is convex), then an optimal solution for Problem (3.1) is given by Y* = X — Ry, where Ry =
§XdP — 11 e RY. Fnce, ir particular:

e Both Y* und X — Y™ are comonotonic with X ;
o [f the pr mium .s equal to the expected loss, then full insurance is optimal;

o If tF . ~~mium is less than the expected loss, then the optimal indemnity can take negative
values, b it it is bounded below by the constant Ry.

See, for instance, He et al. [30, Appendix B].
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Note that Corollary 3.5 essentially implies that when the DM is risk-averse, full mnsurance is optimal
in the absence of insurance cost, that is, that Mossin’s Theorem [41] holds in car . ~tting. Indeed, in
RDEU, strong risk aversion (i.e., aversion to mean-preserving increases in risk) s jointly characterized
by a concave utility function and a convex distortion function (e.g., [14]), whrreas in EUT concavity of
the utility function fully characterizes risk-aversion.

Corollary 3.6. If the DM is ambiguity seeking (T is concave), then ar o, timas solution for Problem
(3.1) that is comonotonic with X is given by

Y* = X — max [O,WO—H— (u/)il (

where \* is chosen such that

Ll max {o, Wo— 1 — (u) ™" <M>] ([ (ml 1t))> dt = Ry.

Moreover,
(1) Ifu,(w)}i(in) > T"(0), then {s €S5:Y*(s) =X (s) { - 7, and so full insurance is never optimal.

(2) If 1#(1/‘)\/7:—1_1) < T'(1), then {s eS:Y*(s) — X(s/} = S. In other words, full insurance is

optimal.

(3) If sy € [T' (1), T (0)], then {s e VHE(s) = X(s)} - {s €8 :X(s) < L}, where

u/ (Wo—II)
optimal indemnity is nonnegative.

L:= F)}l <1 — (T’)f1 ()‘*>> = u. In ocher words, small losses are fully insured, and the

Bernard et al. [5], Xu et al. [51], and Chossoub [24] study the problem of optimal insurance design
with a retention constraint and in th . prrsence of the nonnegativity constraint on indemnities, and with
ambiguity on the side of the DM, 1. ~re sent d by a distortion T' of the probability measure P. Bernard
et al. [5] and Ghossoub [24] sho'/ that ~ien the DM is ambiguity averse (7' is convex), the optimal
indemnity is a straight (linear) ac.'mictible contract. Moreover, when the DM is ambiguity-seeking (7'
is concave), the optimal indemnity is a variable deductible schedule, with a state-contingent deductible
that depends on the state ¢. th: world only through the distortion function. Additionally, when the
DM’s distortion function is .. v rse S-shaped, Ghossoub [24] provides a closed-form characterization of
the optimal indemnity a'.d show. that it is a linear deductible schedule up to a cut-off loss severity,
beyond which the optir al i-.der aity is a disappearing variable deductible schedule. Corollary 3.5 and
Corollary 3.6 show that in . ‘.osence of variable insurance costs to the insurer, the straight deductible
indemnity schedule ‘a the -~ase of ambiguity aversion and the variable deductible indemnity schedule
in the case of ambig 1ity see <ing are no longer optimal when we relax the nonnegativity constraint on
indemnities.

An TIllustratior. W¢ now consider a simple numerical example to illustrate the previous results.
Suppose tha .- DM’s distortion function 7" is given by an inverse S-shaped distortion function, such
as the one use ' ‘o Cumulative Prospect Theory [32, 49]. That is, for all ¢ € [0, 1],

Y

"+ (1=t

(3.1) T(t) =
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We take v = 0.5, so that for all t € [0,1], T'(¢) = — ¥Vt Then T is strictl" increasing on [0,1].
(Virvao)

Moreover, one can easily verify that there is a point tg ~ 0.3845 such that T is strictly co.icave on [0, tg]

and strictly convex on [tg, 1]. Therefore, 7! is strictly increasing on [0, 1], stric :ly convex on [0, to],

and strictly concave on [to, 1]. Let & be the convex envelope of v = T~1 on [0,." <hen v (0) =4 (0) =0

and v (1) = § (1) = 1. Moreover, since § is affine on the set {t € [0,1] : (¢, ~ v (¢,}, there exists some

20 € (0,t9) such that § is given by

v () itt < 2o
5@){ v(zo)+(v(z?7:1> (t—20) if " 2.

Note that since § is continuously differentiable by continuity of v we ~av- v/ (zg) = Ug’zo%zl Numerical

computation gives zo ~ 0.17215, T (z0) ~ 0.2364, v (z0) = 8 (20 ~ ".u 354, "2l ~ 112757, T'(to) ~
0.31429, v (tp) ~ 0.58312,and ¢ (tp) ~ 0.30597. Figure 1 plots the grara of the functions T', v, and 4.

1.07
0.9+
0.8+
0.7
0.6
0.5
0.4+
0.3 1

0.2 1

0.1

FIGURE 1. This grar a plr is the function T (solid red line), the function v = T—! (dashed blue
line), and the convex en. - ope 0 of v (solid dark green line). The dotted vertical black line is the
graph of the functi n f (t) := ¢, and the dotted vertical orange line is the graph of the function
g (t) := 2.

We will assume th.+ the .oss random variable X follows a truncated exponential distribution on the
interval [0, M], -vith a »nrobability density function fx given by fx (z) = %, for x € [0, M], where
n and M are co stants Then the expected value of X under P is given by
— (1 +nM)e 1M

n(l—eM) 7

E[X] = fXdP: !

the cumulative distribution function of X is given by Fx (z) = 11__:%:;,, for z € [0, M], and the quantile
of X is given by
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Fel () = ‘771111 (1—t[1—e ™)),

for t € [0,1]. We take Wy = 50, IT = 5, M = 1,000, and n = 0.1, so tb « F X] = 10 and Ry =
E[X] —1I = 5. Hence, 0 < Ry < Wy — II and so Assumption 2.2 and Assuw ~tion 3.3 hold. Now,
assume that u(xz) = x®, and take o = 0.5. Then w satisfies the conditions  Assumption 2.3, and
(u )71 (x) = ﬁ. Consequently, an optimal indemnity that is comonote dc * “*h X is given by

Y*z;X—wf<T(1—Pk(X))>,

where the function ¢* is given by

max 07WO_H_(2>\*)21(U,(t))2—’ 1ft<Z0,

q* (t) =« i !
max |0, Wy — II — - if t > 2p;
(2>\*)2(;“);1)

z0-

\ L

and \* is chosen such that S(l) q* (t)v' (t)dt = Ry. Figure 2 =low illustrates the optimal indemnity and
retention in this simple example. In this case, with . n 1 ... se-S-shaped distortion function for the DM,
it turns out that the optimal indemnity function does ot include a deductible provision, but mandates
a negative reimbursement for small values of the w <. This can be intuitively understood as the DM
agreeing to pay an additional premium in case of n~ loss or small losses. Moreover, indemnification is
a linearly increasing function of the loss, and .. ~diuui to high severity losses are fully insured.

100 T T

90 - b

80 - B
70 1

60 - b

"7
I

40

FIGURE . This graph plots the optimal indemnity function I(X) (blue line) and the optimal
retention function R(X) (red line).
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3.2. Ambiguity on the DM’s and the Insurer’s side. We now consider the case «“ a more general
retention constraint of the form SRdTg oP > EO for some distortion function "5 hat is not necessarily
identical to that of the DM. This reflects that fact that the insurer also ex >eri nces some ambiguity
about the realizations of the insurable loss X, and such ambiguity is repre: "teu v a distortion of the
baseline probability measure P.

Let R:= X — Y be the retention random variable, and consider the rollc w11, problem.

Problem 3.7.

sup UU(WO—H—R) dTloP:RZOJRdTgoP f ATy o P — H}
ReB(Y)

Here, instead of Assumption 2.2 and Assumption 3.3, we *se the fr.lowing assumptions.

Assumption 3.8. { XdT) o P < W.

Assumption 3.9. }NEO =0

Hence, Assumption 3.8 and Assumption 3.9 imply ...’ ® < Ry < Wy — 11 By a proof similar to that
of Theorem 3.4, we obtain the following result.

Theorem 3.10. The function R* := ¢* (Tl (1 EF.-(X) )) is optimal for Problem (3.7), where:

o Forallte0,1], ¢* (t) = max [0, W — 11— (u/) ) (A*y (t)>];

e 0 is the convex envelope on [0, 1, of the functzon U defined on [0,1] by

( J0-T, >)>dx:1_T2(1—T11(t))s

\T)

o \* s chosen such that ,jq* W' (t)dt = Ry.

Theorem 3.10 gives a an yti- characterization of the optimal solution to Problem (3.7) under very
mild assumptions about t»e dis. ~rtion functions 77 and 7. The following two corollaries examine some
special cases of interest.

Corollary 3.11. If .. disic ion functions Ty and Ty are such that, for all t € [0,1],
-y _ T
T,(1—t) ~ T{(t)’

(3.2)
then an optima soluticn for Problem (3.7) is given by the constant function R* = ﬁo, where ﬁo =
§XdIboP—1le ™t dence, in particular:

e Both ?* inu X — R* are comonotonic with X ;

o If the prc mium is equal to the distorted expected loss (under the insurer’s distortion function),
then a zero retention (full insurance) is optimal;
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o If the premium is less than the distorted expected loss (under the insurer’s distortion function),
then the optimal retention can take values higher than the realized loss (“.e., *he indemnity can
be negative).

One immediate case in which eq. (3.2) holds is when 7} and T» are both linea. ~r both convex.

Corollary 3.12. If the distortion functions Ty and Ty are such that, for '1te [9,1],
Y-t _ T ()
T;1-t) T

then an optimal solution for Problem (3.7) is given by the functior

* L n—1 * Té (FXiY\\
R ,_max[O,Wo—H_(“) (A <T1’/L—rA(X)) ,

where \* is chosen such that

B f - [07 Wy 1T ()" <Xk <T2' (-1 () )] <T2' (17" <t>)> W

(3.3)

0 T (T () T (T (#)

One immediate case in which eq. (3.3) holds is when 1, and 75 are both linear or both concave.

Amarante and Ghossoub [2] study the problem of ... ~~linsurance design with a retention constraint
and in the presence of the nonnegativity constraint o, i idemnities, but with ambiguity only on the side
of the insurer, represented by a distortion T5 of ..~ orc¢hability measure P. Ghossoub [24] extends the
setting of Amarante and Ghossoub [2] to also account Jur ambiguity on the side of the DM, represented
by a distortion T} of the probability measui. « . ™ shows that the optimal indemnity is a variable
deductible schedule, with a state-contingent dea. ~tible that depends on the sate of the world only
through 77 and Ts. The above results sh~w that in the absence of ambiguity on the DM’s side (7}
is the identity function) and variable ir ;urancc costs to the insurer, the variable deductible indemnity
schedule is no longer optimal when we 1.'~x tF 2 nonnegativity constraint on indemnities.

Theorem 3.10, Corollary 3.11, anc Cor ollary 3.12 characterize of the optimal solution to Problem (3.7)

when the DM and the insurer have ' fere'.t distortions of the baseline probability. As an immediate

implication of Theorem 3.10, we obtain ..e following result, which characterizes the optimal solution
in case the DM and insurer ha e ti. same distortion function T := T} = T5.
Corollary 3.13. If Ty = T+ := ", then the function R* := ¢* (T(l—FX (X) )) 1s optimal for Problem
(3.7), where:

e Forallte0,1], ¥ (t) - - max [O, Wo—T— (u)! </\*6’ (t)>],

e § is the con:ex enve ope on [0,1] of the function VU defined on [0, 1] by

v [((TOA-T") 1T (1T ().
(t).—J( T T 1(0)) )d =1-T(1-T""(@t));

0

o \* i <.~ such that Sé ¢* (t) V' (t)dt = Ry, where Ry = { XdTy 0 P — Tl € R*.

Corollary 3.15 holds regardless of the concavity/convexity of 7. The following two results examine
these special cases.
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Corollary 3.14. If the distortion function T := Ty = Ty is either linear or con ex, then an optimal
solution for Problem (3.7) is given by the constant function R* = Ry. Hence, ir pu. “cular:

e Both R* and X — R* are comonotonic with X ;

o If the premium is equal to the distorted expected loss, then a zero rete. :on (full insurance) is
optimal;

e [f the premium is less than the distorted expected loss, then the o tim - ~etention can take values
higher than the realized loss (i.e., the indemnity can be negativ.

Note that Corollary 3.14 essentially implies that full insurance is « ptimal ‘n the absence of insurance
cost, when the DM is risk averse. This is intuitive in light of Mossu ’s T* sorem [41], since strong risk
aversion in RDEU is jointly characterized by a concave utility fr actic~ and a convex distortion function
[14].

Corollary 3.15. If the distortion function T := T} = Ty is cu rcave, then an optimal solution for
Problem (3.7) is given by the function

o107 (0 T )|

where \* is chosen such that
. not ([T ST ) T (1-T71 (1))
Ry = J;) max [0, Wo —1I — (U ) <)\ \ T (;1—1 (t)) > >} ( T/ (T (t)) dt.

An Illustration. We now consider a simple numerical example to illustrate the previous results.
Suppose, as in the example of Section 2 1, the* the DM’s distortion function 7} is given by an inverse
S-shaped distortion function, such as .. » one sed in Cumulative Prospect Theory [32, 49]. That is,
for all ¢ € [0, 1],

Y
(7 + @ -t
withe v = 0.5. Similarly, we as,ume “hat the insurer’s distortion function 75 is inverse S-shaped, with
S

(€ + (- t)é‘)l/“

for all t € [0,1], with ¢ - 0.". T".en one can easily verify that there is ty € [0, 1] such that the function
¥ defined on [0,1] by W (¢, =.—T (1 —1T; " (t)), is convex on the interval [0,%y] and concave on the
interval [to, 1]. Let ¢ pe the ~onvex envelope of ¥ on [0,1]. Then ¥ (0) = (0) =0and ¥ (1) =4 (1) = 1.
Moreover, since 0 is ~ffine ¢ a the set {t € [0,1] : § (¢) < ¥ ()}, there exists some 2y € (0,tg) such that
¢ is given by

(3.4) -

(3.5) T3 (t) =

U (t) if t < 2o;
0B =3 ¥ () + (%) (t—z) ift> 2.
Note that since ¢ ‘s continuously differentiable by continuity of ¥, we have ¥’ (zy) = % Numerical

computation gives zg ~ 0.02414. Figure 3 plots the graph of the functions 71, T5, v, and J.



BUDGET-CONSTRAINED OPTIMAL INSURANCE WITHOUT THE NONNEGATIVITY CONSTRAINT 15

0.81: P
0.61: y
041

0.24:

O T T T 1
0 0.2 0.4 0.0 J.8 1

X

FIGURE 3. This graph plots the function 73 (solia . ~d line), the function T, (solid orange line),
the function ¥ (dashed blue line), and the convex envew e § of ¥ (solid dark green line). The
dotted vertical burgundy line is the graph of th. tun w1 g (t) := zo.

Assuming, as in the example of Section 3.., thay. Wy = 50, II = 5, and the loss random variable
X follows a truncated exponential distribution on the interval [0,1000], with a probability density

e "

function fx given by fx (z) = = =0, tor .= € [0,1000], where 1 = 0.1, we have E[X] = 10 and the

cumulative distribution function of X 15 ~iven »y Fy (x) = %, for x € [0,1000]. Therefore,

+00 +00
fXdeop:f TyoP{{se S X (s) > ) dtzf Ty[P({seS: X (s) > t})] dt
0 0
+00 +o0 e~ _ 671,00077
= o — Fx &) dt = | —————————— | dt
Jo 2 X \0)] L 2 < 1 — ¢—1,000n )

—0.1t_ 100 0-6
J*” (%) ;
= — t
4 o 9.1t_g—1000-6 1—e-0.1: )96 o6
( (’ 1—e—100 ) + (1—@*100)
2 12.0.7176.

Thus, Ry = § a1y, o P —1I ~ 7.047176, and so 0 < Ry < Wy — 1L Thus, Assumption 3.8 and
Assumption 3.9 hold. I ow, assume that u () = 2%, and take o = 0.5. Then u satisfies the conditions
of Assumption 2.,, >~ u (v )_1 (x) = ﬁ. Consequently, an optimal retention is given by

R =q*<T1(1—FX (X)>)7

where the function ¢* is given by
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1 : 4
max 07W0_H_(2/\*)2(\Iﬂ(t))2:| lft<2b7
q" () = 1 -

max |0, Wy —TT— — L i Mgz
i (v (M)

and \* is chosen such that Sé ¢* () V' (t)dt = Ro. Figure 4 below il * ates the optimal indemnity
and retention in this simple example. In this case, with an inverse-S L..apea istortion function for the
DM and for the distortion premium principle, it turns out that tl e optin al indemnity function does
not include a deductible provision, but mandates a negative reimbui. ~mer, for small values of the loss.
This can be intuitively understood as the DM agreeing to pay . ad*tional premium in case of no loss
or small losses. Moreover, indemnification is a linearly increas. "o .unc ion of the loss, and medium to
high severity losses are fully insured.

100 T

90 - 1

80 - b
70 1
60 - 1

50 - b

: 4 |
%

FIGURE 4. This rap' plots the optimal indemnity function I(X) (blue line) and the optimal
retention functioi. R('.) (v :d line).

4. RELAXING "7E Ino.v-NEGATIVITY CONSTRAINT ON INDEMNITIES: BELIEF HETEROGENEITY

In this sectio ', we e: amine the problem of optimal insurance design in the absence of the nonneg-
ativity constraint - ‘ademnities, when the DM and the insurer experience no ambiguity about the
realizations «* v © surable loss X, but they disagree about the probability distribution of X. Specifi-
cally, we assun. - that the DM has a subjective probability measure P on the measurable space (5, Y),
whereas the insu. >r has a subjective probability measure @ on the same space. The DM’s problem can
then be formulated as follows.
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Problem 4.1.

sup {fu(WO—H—X+Y) dP:YgX,deQgH}.
YeB(X)

Letting R := X — Y be the retention random variable, the problem can nc — be . stated as

Problem 4.2.

sup UU(WO—H—R) dP:R>o,fRdQ>RO:: l)gm—n}.
ReB(%) J

Here, instead of Assumption 2.2 and Assumption 3.3, we use *"e 1..' ..ing assumptions.

Assumption 4.3. { XdQ < W,.

Assumption 4.4. R > 0.

Note that Assumption 4.4 implies that the feasibility set of  ~blem (4.2) is non-empty.

Now suppose that the probability measure @ is abso.. *ely continuous® with respect to P. Then,
by the Radon-Nikodym Theorem [1, Theorem 13..%); .. -~~~ exists a P-a.s. unique, X-measurable, and
P-integrable function h : S — [0,400) such that ¢, * ) = §,h dP, for all C' € ¥. Moreover, since
h : S — [0,+00) is X-measurable and P-integ.«.'e, Jiere exists a Borel-measurable and P o X ~!-
integrable map I' : X (S) — [0, +o0) such that h = 1¢J,dP =T o X. The function h can be interpreted
as a likelihood ratio. We will assume that the <auc..-Nikodym derivative h is continuous for P:

Assumption 4.5. Q « P, with Radon-N"" ~dijm derivative h = dQ/iP such that Poh~! is nonatomic®.

Assumption 4.5 then implies that tb: ranu . variable U = F}, (h) is uniformly distributed on [0, 1],
where F}, is the CDF of h under P. (he Radon-Nikodym derivative h can be interpreted as a likelihood
ratio. Note that in this section ve  no’ make use of the assumption of nonatomicity of P o X1,
Problem 4.2 can now be restater as follows.

Problem 4.6.

sup r"(WOHR)dP:RZQJthP)RO}‘
ReB(Y)

The following resv' gives ~.n analytical characterization of the optimal solution to Problem (4.1)
under no additiona’ assum tions (in particular, no monotonicity assumptions) about the likelihood
ratio h.

8Let p1 and po be two pre pability measures on a measurable space (€2,G). The probability measure po is said to be
absolutely continuou. ...ch respect to the probably measure p1 (denoted by pe « 1) if for all C € G with p; (C) = 0,
one has 2 (C = 77 is does not rule out the existence of some D € G such that us (D) = 0 but u1 (D) > 0.

9The assumption <. nonatomicity of P o ™! can be dropped, but one would have to use the Distributional Transform
approach of Riisch ndorf [44]. All the results of this section would still hold, with adequate modifications. Moreover, the
assumption of absolute continuity of ) with respect to P can be dropped, and one can use the technique developed in
Ghossoub [23, 26] and Amarante and Ghossoub [2], based on a Lebesgue decomposition of P with respect to Q.
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Theorem 4.7. The function Y* := X — f* (Fh (h)) is optimal for Problem (4.1 . where:

e Forallte0,1], f*(t) = max [O, Wo— 11— (u/)7! (/\*Fh_1 (t))],
e \* is chosen such that Sé 5 () F,H (t)dt = Ro.
That is,

Y* = min [X,X— (WO_H_ (u/)—l (/\*h))]

As a special case, the following result characterizes the optir .. soluwion assuming a monotone like-
lihood ratio.

Corollary 4.8. Assuming a monotone likelihood ratio (MLR), ..~ that the function T in h =T o X is

nonincreasing, the optimal solution Y* = X — f*( Fy, (h) ) ~iven n Theorem /.7 is comonotonic with
X.

Proof. The function f* defined on [0,1] by f*(¢) - max |rJ, Wo — T — (u/)! (A F, ! (t))] is nonde-

creasing. If I' is nonincreasing, then — f* (F}, (h)) is vondecreasing in X. Hence, Y* is comonotonic
with X. -

The problem of optimal insurance design w."n v il f heterogeneity was studied by Ghossoub [23, 26,
27], Boonen [8], and Chi [15], in the presence of 1. 2 nonnegativity constraint on indemnities. Among
other results, Ghossoub [27] shows that 1. = the likelihood ratio is monotone, the optimal indemnity
is a variable deductible schedule, wit} a stai-contingent deductible given by the random variable
d = Wy — 11 — («/)"' (A\*h), where h 1 +he (monotone) likelihood ratio and A* is chosen so that
the constraint binds. Under a cond’.ior of compatibility between the two beliefs, Ghossoub [26] fully
characterizes the class of all optim.' ir demr aity schedules that are nondecreasing in the loss, in terms
of their distribution under the I M’s p. ~"ability measure, and he obtains Arrow’s classical result as
well as one of the results of GFos. b [27] as corollaries. However, Ghossoub [26] does not provide a
closed-form characterization of the opi..mal indemnity in the general case, which is done by Ghossoub
[23]. The latter does not imr ose onditions on the type or level of disagreement about probabilities. He
characterizes the optimal inc "~ nity for any type or level of belief heterogeneity, and shows that it has
a simple two-part struct’ re: fun nsurance on an event to which the insurer assigns zero probability,
and a variable deducti’ le ca t} e complement of this event. Chi [15] considers a similar setting to
Ghossoub [26, 27] but im} <es the no sabotage condition. That is, he restricts the set of admissible
indemnities to those .hat a < such that the indemnity and the retention function are both nondecreasing
functions of the loss Under an assumption of a Monotone Hazard Ratio (MHR), which is weaker than
the MLR assumr+*ion, > shows optimality of a linear deductible schedule. Boonen [8] provides an
implicit charact rizatic 1 of the optimal indemnity that relies on the hazard ratio, similarly to Chi [15].
Theorem 4.7 an Coro! ary 4.8 show that in the absence of variable insurance costs to the insurer, the
optimal indenity uo longer contains a variable deductible provision when we relax the nonnegativity
constraint on ‘uc :muities.

As a special ¢ se of Theorem 4.7, the following result characterizes the solution in the absence of
belief heterogeneity.
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Corollary 4.9. In the absence of belief heterogeneity, i.e. when P = Q, an optimc  solution to Problem
(4.1) is given by

Y* = min [X,X — d],
where d = Wo — T — (u/) "1 (A\*) and \* is chosen such that the retention . ~stra.. * binds.

Proof. If P = @ then h is the constant function equal to 1 for eact s € S. The rest follows from
Theorem 4.7. U

Corollary 4.9 shows that, in the absence of variable insurance costs t) the insurer, a deductible
indemnity schedule is not optimal when we relax the nonnegativit= cow. = .nt on indemnities in Arrow’s
classical setting.

5. CONCLUSIO:.

In this paper, we dropped the nonnegativity constraint o1 ‘ndemnities in several problems of budget-

constrained optimal insurance (i.e., insurance demar. ".. speuifically, we assumed no cost (or a fixed
cost) to the insurer and considered three different setti._<: (i) a problem in which the DM experi-
ences ambiguity about the realizations of the insu -au.. '~s, and distorts the underlying probability

distribution while the insurer does not; (ii) a setting .~ which both the DM and the insurer experience
ambiguity and distort the underlying probability .. ~asu e using different distortion functions; and (iii)
a setting in which the DM and the insurer experiewn e 1o ambiguity but differ in their beliefs about the
realizations of the insurable loss, and hence a. "eu . Terent probability distributions to that loss.

In all three settings, we derived closed-f~~m analytical solutions to the problems that we formulated,
and we showed that an optimal indem ity no longer includes a deductible provision. This is in line
with the intuition behind Gollier’s [28] 1. ling n the case of belief homogeneity and no ambiguity, but
in a setting of Pareto-efficient insurs.ace conu.acting (bilateral risk sharing).

Future work on this topic wil' adu. ~ss the question of determining the optimal indemnity in the
absence of the nonnegativity cc . *raints on indemnities in each of the aforementioned three settings,
but in a context of Pareto-optimal in. "rance design, in which the joint determination of the premium
and the indemnity is require .. 1 ‘oreover, various cost structures for the insurer will be accounted for.
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APPENDIX A. PROOF OF THEOREM 3.4

Recall Problem (3.2):

sup UU(WO—H—R) dToP:R}O,JR dP > Ry := wa— 11}.
ReB(%)

Clearly, R* is optimal for Problem (3.2) if and only if Y* = X — R* is «_ “imal for Problem (3.1).
Therefore, we focus on solving Problem (3.2).

Let U :=1— Fx (X) and V := Fx (X). By assumption of non: comici*y of Po X1, U and V are
uniformly distributed random variables on (0,1) [20, Lemma A.25 Now for all R € B (X), the fact
that u is increasing and U is uniformly distributed implies that

Ju(WO—H—R)dToPfT’(l—U)FM;VO_H_R)(U)dP l’l“’\l—U)u(FI;,O - R(U))dP

u(Wo—IL+F 1)) P

1
T (U)u (Wo =TI — - (o)) dP = JT’ u (Wo — T — F' (1)) dt.
0

=[ra
JT’ u(Wo -1 T (+—U))dP
Jro

Moreover,

1
fRdP: JFR1 ”/)uPzL Fpt(t)dt,
and R > 0 whenever Fjgl (t) =0, foral' cc 19,1).

Let @ denote the collection of all ¢ uam..~ f .nctions, and let @* denote the collection of all quantile
functions f that satisfy f(¢) >0, fc al' ¢ € (0,1). Then
Q= { f:(0 Y>R ‘ f is nondecreasing and left—continuous},
and

(A.1) ”’*:{feQ:f(t)>0, foreach0<t<1}.

Consider the following | o} .em-
Problem A.1.

[ <W0—H f())T’ t)dt: ff 0}-

fen* JQ

Lemma A.. J j s optimal for Problem (A.l), then both Rf := f*(1—Fx (X)) and RS :=
[*(Fx (X)) a1 optimal for Problem (3.2). Moreover, RY is anti-comonotonic with X and R is
comonotonic with X .
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Proof. Let f* be optimal for Problem (A.1). Then, by definition of Q*, f* is t.1e quantile function
of some Z € B (X) such that Z > 0. By assumption of nonatomicity of Po = I/ = 1 — Fx (X)
and V = Fx (X) are uniformly distributed random variables on (0,1) [20, Lema A..5]. Therefore,

¥ = f*(U) = F;'(U) is the nonincreasing equimeasurable rearrangement of .~ with respect to X,
and hence Rf > 0 and Fgx = Fiz (see Ghossoub [25] and references therein). ~iilarly, R3 = f* (V) =

F 1(V) is the nondecreasing equimeasurable rearrangement of Z with respec. “o X, and hence R} = 0
and Fps = Fz. Moreover,

JR’{ dP:ff*(U)dP:ff*(V)dP:fR; dP:J"j (N dt > Ry,

0
where the last inequality follows from the feasibility of f* for Prob am (A .). Hence, both R} and R}
are feasible for Problem (3.2).

To show optimality of R} and Rj for Problem (3.2), let R by ~~.y ot! er feasible solution for Problem
(3.2) and Fj"' its quantile function. Then F,! is feasible for 2vobli. (A.1), and hence

1
fu(WOHR)dTonf T (t)u (Wo =TT — F5' (o) dt
0

1 R 1
<f u(WO—H—f* " (t)dtj u(WO—H—Fg1 (t))T’(t)dt
0 0

1
:f u(Wo—HfFI;,; ’t\)T'(t)dtzju(WoHR’f)dToP
0 1

1
:J u(Wo —TL— B! (1) )T (1) dt = Ju(Wo M- R dToP.
0 23
Therefore, R} and Rj are optimal or Problem (.2} O

Now, letting v (t) = T~ () and usin , the c1 ange of variable z = v~ (¢) gives

Llu(wo S ()T (1) dt - [l o(Wo— 11— £ (1) ) (1) = f:u(WO ST (1) ) ()

= LAukWO—H—f(U(z)))dz =J u<W0—H—Q(t)>dt7

0
where ¢ (t) := f (v (t)), for al'’ v - (0,1). Moreover,

1 1 1 1
fof<f,dt=f0f(v(z))dv<z>=f0q(t)dv<t>=Lq<t>v/<t>dt.

Consider the followine »rob. *.:

Problem A.3.
r rl 1
sp U u(Wo—H—q(t)>dt:J q(t)v’(t)dt}Ro}.
0 0

ges ¥

Lemma A.a [ ¢" is optimal for Problem (A.3), then f* := ¢* oT is optimal for Problem (A.1).
Moreover, Y* : - X — f*(1 — Fx (X)) is optimal for Problem (3.1) and comonotonic with X, and
Y5' =X — f*(Fx (X)) is optimal for Problem (3.1) and anti-comonotonic with X .
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Proof. Suppose ¢* is optimal for Problem (A.3), and let f* := ¢* o T. Then ¢* (*, = f* (v (t)), for all
t € (0,1). Since ¢* is feasible for Problem (A.3), we have that for all ¢t € (0,1, ¢" /%) > 0 and ¢* is
nondecreasing and left-continuous. Therefore, since T is increasing and continu~s, it fouows that f* is
nondecreasing and left-continuous. That is, f* € Q. Moreover, for all t € (0, "), f (t) = ¢* (T (t)) = 0.
Hence, f* € Q*. Furthermore,

1 1 1
Lf (t)dtJOf (U(z))dv(z)foq () (2) 7= = Ro,

where the last inequality follows from the feasibility of ¢* for Problem (.° 3). Therefore, f* is feasible
for Problem (A.1).

To show optimality of f* for Problem (A.1), let f be any other 1 asible solution for Problem (A.1).
Then:

J1u<W0—H—f(t))T’(t)dt=J

0 0

=f1u<WQ—H—f(1)(z;,‘)dz :J

0 0

1u(Wo - f(t))dm(z) - JC u(Wg - f(t))dv_l (1)
1u<WO —H—q(z))dz,

where g := f owv. Therefore, to show optimality of f* = ™= lem (A.1l), it remains to show that ¢ is
feasible for Problem (A.3). Since f is feasible for Probi..m (A.1), it is nondecreasing, left-continuous,
and satisfies, for all t € (0,1), f (t) = 0. Therefore, .. -~ » is increasing and continuous (by the inverse
function theorem), ¢ is nondecreasing, left-continuous o d satisfies, for all t € (0,1), ¢ (¢t) = f (v (¢)) = 0.
Therefore, ¢ € @*. Furthermore,

[eovoa=[cewn=[ 1@,

0 0

where the last inequality follows from the feasibility of f for Problem (A.1). Thus, ¢ is feasible for
Problem (A.3), which concludes the preof tha f* is optimal for Problem (A.1).

We now show that Y* := X — f*/1 — .7 -( ()) is optimal for Problem (3.1) and comonotonic with
X. Since Fx is increasing, Y|* is cle aly :omonotonic with X. To show that Y}* is optimal for Problem
(3.1), it suffices to show that R} := * (1 - Fx (X)) is optimal for Problem (3.2). Since f* is optimal
for Problem (A.1), it is optimal f r Probic.a (A.1) (by monotonicity of u). The rest follows from Lemma
A.2.

We now show that Y5* := X - f* (Fx (X)) is optimal for Problem (3.1) and anti-comonotonic with
X. Since Fx is increasing, ¥~ 1s clearly anti-comonotonic with X. To show that Y5* is optimal for
Problem (3.1), it suffices to sho.- that RS := f* (Fx (X)) is optimal for Problem (3.2). Since f* is
optimal for Problem (2.1), .t is optimal for Problem (A.1) (by monotonicity of w). The rest follows

from Lemma A.2. O

In light of Lemma A 4, we t (rn our attention to solving Problem (A.3). In order to do that, we will use
a similar method-" /gy . he one used by Xu [50], but adapted to the present setting. Recall that for
a continuous re J-value 1 function f on a non-empty convex subset of R containing the interval [0, 1],
the convex enve. e of f on the interval [0, 1] is an absolutely continuous real-valued function g such
that:

(1) g(0) =, (0) and g (1) = f (1);
(2) g is convex on [0,1];
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(3) For all z € [0,1], g (z) < f (x); and,
(4) g is affine on {x € [0,1] : g () < f (x)}.

Moreover,

(5) If f is increasing, then so is g;

(6) If f is differentiable on (0,1), then g is continuously differential e 0 = (2 1).

Lemma A.5. Let & be the convex envelope of v =T~ on [0,1]. Ten for any qe QF,

1 1
J q(t)v' (t)dt <J q(t)d ().

0 0

Proof. Let § be the convex envelope of the function v = 7~ ¢ 1 [0,1]. Since § (t) < v (¢), for all
t€[0,1], and v (1) = § (1), it follows from Fubini’s Theor. ™ tiicw

e
[ | (@) = &' (x)] dz dq (y)

1

Jr dn (y)-i W (@) = (x)] do = J q(z) [V (z) — &' (z)] da.

0 0

0> fo [(v(1) = 8(1) — (v(y) — 6 (¥)]dq (y) = fo
:J:fzp%@—d%@hw@ﬁdx=fl[

0 0
0

Now consider the following problem:

Problem A.6.

Jlu(Wo —H—qu))dt:qu(t)é’(t)dt>Rg}.

sup {
qe@Q* LJO

We first solve Problem (A.6) aud the show that the solution is also optimal for Problem (A.3).
Lemma A.7. If ¢* € OQ* s tisf :s:

(1) §20'(t)g* (t)dt = Re and,

(2) There exists some .. > 4 such that for all t € (0,1),

q* (t) = argmax {u (Wo —I1 — y) + \yd’ (t) },
y=0

then q* is optir al for .’roblem (A.6).

Proof. Let ¢* = O* pe such that the two conditions above are satisfied. Then ¢* is feasible for Problem

(A.6). To shc v « ptimality, let ¢ € Q* be any feasible solution for Problem (A.6). Then, by definition
of ¢*, it follows “hat for each t,

uow—n—faw—qu—n—ﬂw)>nywqw—yumwm.
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Hence,
L1u<WO—H—q*(t))dt—Llu<Wo—H—q(t))dt>)\[Llé’(t)q(t)dt- vf?é’(t,q*(t)dt]
A“ld’(t)q(t}rlt— Dq] > 0.
0
Therefore, ) u(Wo — I — ¢* (£)) dt = §u (Wo — 11 — g (t)) dt. O

Lemma A.8. For each A = 0, define the function g5 by

(A.2) g3 (t) := max [0, Wo—T1— (u) " //\é" o )J.
Then:

(1) For each A >0, ¢5 € Q*;

(2) There exists \* = 0 such that Sé 8" (t) @3« (t) dt = n, - and

(3) For allte (0,1), g} (t) = argmax,> {u (Wo — 11 -y) + Ayd' (t) }

Proof. Follows from Remark 2.4, from the monc ' ~nici. - and continuity properties of ¢, from Assump-
tion 2.2 and Assumption 3.3, and from the Intern =u.~te Value Theorem. [l

Therefore, lemmata A.5, A.7, and A.8 imply tha. ‘or any A > 0 and any ¢ € @,

Jl [U(Wo—ﬂ—q(t)> + g (t) /<t)J L'*=J1

O 0u(Wo—H—q(t))dtJr)\J:q(t)v’(t)dt

1

gfu(Wo—H—q(t))dHAf q(t)d (t)dt

0 0

:f [u(Wo—T1—q(6)) + 2 ()& (1)) it

0

< [ [u(wo-n-a ) < 2at 05 0]

where ¢} is as in eq. (A 2). Now, for all A > 0, since ¢ is monotone, it is differentiable a.e., and we
have:

‘(1) F0 it Wo—1II— (/)" (M (1) <0,
RO Wem— @) 08 @) it 0<Wo—TI— ()L (00 (1),
and
A 0 it Wo—I— ()P (\ (1)) <0,
(A.3) dgi = { A ((u’)_l)/ A () dd' (t)  if 0 < Wo—TII— ()" (A (1)),

Now, define 1 e subsets A and B of [0, 1] by
A= {te[O,l]:é(t)zv(t)}and B:= {te[O,l]:é(t);év(t)}={te[0,1]:6(t)<v(t)}.
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Then for any A > 0,

r
Js

But, since 0 is affine on B, dé’ = 0 on B, and it follows from eq. (A..} tha. dg¥ (t) = 0 on B.
Consequently,

f [0 (t) — & (1)) da () = L[v@)—a(mdq; <t>+jB [0 (8) — 8 (O] dat (8) = | o(8) — 6 (0)] g (1)

0

1
| e -sras o o

0

Therefore, applying Fubini’s theorem as in the proof of Lemma A.. gives
1

of[vm 5 (8)] da (1) = f[( (1) = 6(1) = (v () — 6 (5) 1drs &) fj (2)] dr da} (4)
jf (@) - & ()] da} (v) dx—j UO dq;*(y)][ () — o w)]da:—fom>['<x>—5’<x>]dx.

Consequently, So g () (t)dt = Xo g ()0’ (t)dt. The [ic, wr all A >0 and all g € Q¥,

Ll [u(Wo - q(t)) g ()0 (t)] dt < J'(; |_L(y/0 By (t)) G ()Y (t)] dt
~1

= 1 u(Wo—TT—gf (1) ) + Mgk (1)’ (0] .

v

Hence, if \* is chosen such that Sé Qs (8" 1) dt = Ry, then the optimal solution to Problem (A.3) is
given by ¢}x. Thus, By lemmata A.4, * 7, anc A.8, the function Y7* := X — ¢* (T(l — Fx (X) )) is

optimal for Problem (3.1) and com nofonic with X, and the function Y5* := X — ¢* <T(FX (X) )> is

optimal for Problem (3.1) and a’ ¢i-comc - otonic with X, where:

.
e For all t € [0,1], ¢* (¢ - max [u, Wy — 11— (u’)_1 ()\*5' (t) )],
e § is the convex enve ~ne of v = T~ ! on [0,1]; and,

e \* is chosen such the’ §; ¢ (t) v/ (¢) dt = SO q* (t)d' (t) dt = Ry.

This concludes the pr-~f ot ™ eorem 3.4. O

APrPENDIX B. PROOF OF COROLLARY 3.5

If the DM ‘= ambiguity neutral, that is, 7' (t) = ¢, for all £ € [0,1], then T~! (t) = v (t) = § (t) = t, for
all t € [0,1], «nd 50 o' (t) = v/ (t) = 1. If the DM is ambiguity averse, that is, T is convex (and strictly
increasing) on | 1], then 7! is concave and strictly increasing on [0,1], and so ¢ is affine on [0, 1].
Since T'(0) = 0 and T' (1) = 1, this implies that 0 (t) = ¢, for all ¢ € [0,1]. Consequently, ¢’ () = 1 on
[0, 1].
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In both cases, Theorem 3.4 implies that the function Y* = X — max [0, Wo T—(@)™! ()\*)] is

optimal for Problem (3.1) and comonotonic with X, where A* is chosen such that

(B.1)

If Ry = 0, that is IT = { XdP, then eq. (B.1) implies that \* <
the retention is zero, and so Y* = X

Wy —1I — (u')

[

0

“1(A*) > 0, and that Ry = Wy —II

— ()

max {o, Wo — T — (u) " (A%) ]dt = Ry.

uw ("Vp - 11,. For this choice of \*,

(full insurance) is optimal. If Ry > ¢ then eq. (B.1) implies that
L (\*). Heace, Y* =

X — Ry. U

APPENDIX C. PROOF OF COP"LLARY .6

Suppose that the DM is ambiguity seeking, that is, 7" ‘s concax > (and strictly increasing) on [0, 1].

It then follows that 7!
for all ¢t € [0,1].

that the function Y* = X — max |0, Wy — I — («/) " (

is convex and strictly increasing o
Consequently, for all ¢ € [0,1], §' (t) =

S
(1 X (X))

comonotonic with X, where A* is chosen such that

1 _
Ry =J max
0

1

:J max
0
1

J. max
0

Now, for any s € S, Y*(s) = X (s) 1 and only if max [O, Wo—I1— (u)7! (

that is, if and only if Wy — IT — (/) (

Y*(s) = X (s) if and only i’

(C.1)

Therefore, since Fx ‘X (s))

() 1) (s, 1

°)1], and so 6 (t) = T~
1

O O)N

) ] is optimal for Problem (3.1) and

L) = (),

Therefore, Theorem 3.4 implies

O,WO—H—(u’)" > V' (t) dt
0,Wo —1I— (u') \T, T T ) & (t)dt
0= 0™ (e )| ()

) <0, ie., if

T'(1-Fx (X(s)))

Ak
u/ (Wo—II)

)\*

)\*

> T7(0), then

A* —
ooy ] =0

) < 0. Hence, by strict concavity of u and T,

1- ()" (U,(WO_H)> < Fx (X ().

= [0,1], for all s €S, it follows that:

{seS:Y*(s)zX(s)}zg. In

other wo. 's. tF: optimal indemnity is always less than full insurance.

*

@) 1f (7"," Km) > 1, ie.,

for all s €S, and so {seS:Y*(s)=

u/(Wo IT)

A*

< T'(1), then Fx (X (s)) > 1— (1)~ (m)

X (s) } = S. In other words, full insurance is optimal.
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(3) If (T") " (m) € [0,1], ie. if sy € [7/(1), 77 (0)], then eq. C.1) yields X (s) >
Ft <1 — (! (M(VI)}:H))>, and so {s eS:Y*(s) = X(s)} = {s FS:X (s) < L}, where

L:= F)}l <1 — (T )71 (WU")}:—IT))) > 0. In other words, small losses a. rully insured.

This concludes the proof of Corollary 3.6. O

APPENDIX D. PROOF OF THEOREM 3.10

Recall Problem (3.7):

sup UU<WO—H—R) dTioP: R >0, (n 1ho )>§0}.
YeB(X)

v

Now, for all R € B (X), the fact that u is increasing and U - Fx X) is uniformly distributed implies
that

fu(WOHR)dTlonfT{(U) (Wo =TI — Fg* ({\N)dP = f L) u(Wo — 11— Fg' (b)) dt.
0

Moreover,
1
fRdTgoP_JTZ'u—U)FR ’o:'fP—j TH(1— ) F (1) dt
0

and R > 0 whenever Fp! (t) > 0, for all t € (0, ).

As before, let Q denote the collectior ot a.’ quantile functions and let Q* be as in eq. (A.1). That
is, @* denotes the collection of all quai. ile func ;ions f that satisfy f (¢) > 0, for all ¢ € (0,1). Consider
the following problem:

Problem D.1.
1 ) )
sup {L u(Wo - T f(t))T{ (t)dt: f Té (1—1t)f(t)dt > RO} '

feQ* 0

By a proof similar to that o0 7 mma A.2, we obtain the following result.

Lemma D.2. If f* i op.imc for Problem (D.1), then both Rf := f*(1— Fx (X)) and R :=
[*(Fx (X)) are optimal jo- "roblem (3.7). Moreover, RY is anti-comonotonic with X and R is
comonotonic with X .

Now, letting © (., = 1; - (t) and using the change of variable z = v™! (¢) gives
1 1
f u(WO—H— ;@)T{(t)dt:J (WU—H f t) dT1 f u WO—H—f(t)>dv’1(t)
0 0 0
1 1
:f (WO—H f v JUWO— —q(t))dt
0 0

where ¢ (t) := f (v(t)), for all t € (0,1). Moreover,
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1

1 1
f f(t)Tz’(l—t)dt=J0 f<v<z>>T4<1—v<z>>dv<z>=f ¢ TLA -0 (210 (2) d

0 0

[T =T )
—Lq(t)Tz (1= (1) (T )(t)dt—foq(t)[ T 17 (1)) ]dt

:fq<t>@/<t>dt,

0

where the function ¥ is defined on [0, 1] by
L1-T @)
T (17 (@)

(D.1) U (t) = Jt

]dwl—Tg( — Ty (t).

Now, consider the following problem:

Problem D.3.
1

1
sup {J u(Wg—H—q(t))dt:f g’t)&"*fdt}Ro}.
qeQ* 0 0

By a proof similar to that of Lemma A.4, we obtain the fo. »wing result.

Lemma D.4. If ¢* is optimal for Problem (D.?). the « f* := ¢* o Ty is optimal for Problem (D.1).

In light of Lemma D.4, we turn our attentior *~ so. ing Problem (D.3). By a proof similar to that of
Lemma A.5, we obtain the following result.

Lemma D.5. Let § be the convex envel pe "W on [0,1]. Then for any q € QF,

1 1
I J(t)&,{/)dtﬁj q(t)d (t)dt.

0

Now, consider the following » ro>lem.
Problem D.6.

((" 7 NE , N
sup (Jr u\VO—H—q(t)>dt.JOq(t)5 (t)dt>R0}.

We first solve Probl m (D.") and then show that the solution is also optimal for Problem (D.3). By a
proof similar to thav of Ler ma A.7, we obtain the following result.

AL

Lemma D.7. fq* e " satisfies:

(1) S(l) § W a* (t) at = Ro; and,

(2) There .~ usts some X = 0 such that for all t € (0,1),

q* (t) = argmax {u (Wo =TI — y) + \yd’ (t) },
y=0
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then q* is optimal for Problem (D.6).

By a proof similar to that of Lemma A.8, we obtain the following result.

Lemma D.8. For each A > 0, define the function g3 by

.
(D.2) gx (t) := max [O, Wy — 11— (u/)71 <)\5/ (t)\J
Then:

(1) For each A =0, q5 € Q*;

(2) There exists \* = 0 such that Sé 8" (t) @3 (t) dt = Ro; an”

(3) For allte (0,1), g}« (t) = argmax, {u (Wo —I1 — ) + Ayd' &) }

Therefore, lemmata D.5, D.7, and D.8 imply that for an A . 0 #.d any q € Q%,
1

f [u(WO—H—q(t))+Aq(t)\1ﬂ(t)]dt:f oo J—q(t))dH—)\f g ()W (t)dt

0 0 0
<JO u\/wu—H—q(t)>dt+)\L ¢ (0) 5 (t) dt
~l
= 1 u(Wo - 11-g () + xg ()9 (8)] de

< [s(m-m—g o) + 208 0]

where ¢ is as in eq. (D.2). Now, for o' A > (, since ¢} is monotone, it is differentiable a.e., and we
have:

-1 it W~ 11— ()~ (W (1) <0,
DY =3 Wo—T )y 0 (1) if 0<Wo—T— @) (A (1)),

and
0 it Wo—TI— (/)" (A (1) <0,
0.3) dak (1 :{ 0 (u')"" (N (1)) <

—\wtl)'(w ()ds' (1) if 0<Wo—T— )" (A (1)),

Now, define the subseu. 4 ard B of [0, 1] by:
A= {te[o,u Ly (t) = T!(t)} and B := {te[O,l]:d(t)sé\I/(t)} - {te[O,l]:d(t)<\Il(t)}.
Then for any A > 7,
| o -5 - | we-s@ids o | o -solae - | [ve-solso.
0 A B B

But, since 0 ‘s .hune on B, dé’ = 0 on B, and it follows from eq. (D.3) that dg} (t) = 0 on B.
Consequently,

f (W () — 6 (1)) da? (£) = 0.

0
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Therefore, applying Fubini’s theorem, as in the proof of Lemma A.5, gives
1

1 1 1
0| - 5()]dQ>\(t):J (1) =5 (1) = () - 5@ dai ) = [ L [V (@)~ & ()] do da3 ()

0 JJg

[V (2) — & (2)] daf (y) da = dgt )| [V @) = & @)]do = | .5 @) [ (@) - & (@)] da.
-J [ Jo L[ oot ] o [

Consequently, So g ()W (t)dt = Sé ¢ (t) &' (t) dt. Therefore, for all A2 0 <ad all ¢ € QF,
1

Ll MWO —H—q(t)) IO % (t)] dt <L [u(WO ST g (8 A (1) (t)] dt
:r [U(Wof - (t)) FAGE ()T (t)] dt.

0

Hence, if \* is chosen such that Sé Gis () W' () dt = Ry, then the optimal solution to Problem (D.3)
is given by ¢}s. Thus, By lemmata D.2, D.4, D.7, and L.” the function R} := f*(1 — Fx (X)) =
¢* (Th (1 — Fx (X))) is optimal for Problem (3.7) and a..“*-comonotonic with X, and the function
R3 = f*(Fx (X)) = ¢* (T1 (Fx (X))) is optimal for P~ "1__.. 3.7) and comonotonic with X, where:

e For all t € [0, 1], ¢* () = max [O,Wg —I- O AR (1) )],
\
e ¢ is the convex envelope of ¥ on [0, 1]; end,

e \* is chosen such that Sé g () () dt = 1.

This concludes the proof of Theorem 3.10. O

APPENDTX .= ProoOF OF COROLLARY 3.11

Suppose that for each t € [0,1], - 7e b we

: @)
Ty(1=t) — T{(t)

Then, for each each ¢ € [0,1", we have

-1 ) (T (1)
Ty =Ty ) T T (T )

Consequently, for eac’. cach v - [0, 1], we have
()T (=TT @) + T (=T () T (T ()
Therefore, for e ch each t € [0, 1], we have
A\ (T{ (T @) 1 (-1 ) + T3 (-1 (1) 7Y (17 <t>)> 0
_ 3 = Yy
(77 (T (1)) ]

That is, ¥ is concave on [0, 1], and hence ¢ is affine on [0,1]. Since ¥ (0) = 0 and ¥ (1) = 1, this
implies that ¢ () = ¢, for all ¢ € [0, 1]. Consequently, ¢’ (¢£) = 1 on [0, 1].

0.

\%
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Theorem 3.10 then implies that the function R* = max [0, Wo—II—(u/) " (A%) ] i aptimal for Problem

(3.7) and comonotonic with X, where A\* is chosen such that

(E.1) Ll max {0, Wo—T1— (u)" (A*)]dt = Ry.

If Ry = 0, that is IT = § XdP, then eq. (E.1) implies that A\* </ (Wy -II) > this choice of \*, the
retention is zero: R* = 0. If By > 0, then eq. (E.1) implies that Wy — .7 — (u’)_1 (A*) > 0, and that
Ry = Wy —II— («/) " (\*). Hence, in this case, R* = Ry > 0, a co stant O

APPENDIX F. PROOF OF COROL ATy 3.12

Suppose that for each t € [0, 1], we have

(-1 T

7

-t _ T

Then, for each each ¢ € [0, 1], we have

Ty (1-T7 () _ ViR
T-T7 G, T(T

~—
~—

~—
~—~—

Consequently, for each each t € [0, 1], we hax

Therefore, for each each t € [0, 1], we b we

y T(T7 )) 0 — a7 @) + T3 (1 =T (1) TY (T (1)
v =-{———— /(-1 3
[T (17 (1)) ]

That is, ¥ is convex on [0, 1], and he. ~e § = ¥ on [0, 1]. Consequently, for all ¢ € [0, 1],

Theorem 3.10 then imnlies “hs ¢ the function R* := max [0, Wo— 11— (o) <)\* (%) >] is
1

optimal for Problen (3.7), ‘here A* is chosen such that

b - (o (B

) fl Ry {0, WoT1— (u)"" (A* (Tz' (-7 <t>)> >] (Té (-1 (t))) "

T (T (1) T (T (1)
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APPENDIX G. PROOF OF COROLLARY 3.14

If T is linear, then T'(t) =t for all t € [0,1], and so W (t) =1 —T (1 =T"'(t)) = ¢, ~rall t € [0,1].
Therefore, ¥ = § and so ¢’ (t) = W' (¢t) = 1, for all t € [0, 1]. Similarly, if 7" is conv x, then ¥ is concave
on [0,1], and hence § is affine on [0, 1]. Since ¥ (0) = 0 and ¥ (1) = 1, this "mr.ies that ¢ (¢) = ¢, for
all t € [0,1]. Consequently, §' (t) =1 on [0, 1].

Corollary 3.13 then implies that the function R* = max [0, Wo—TI—(u) (0 ] is optimal for Problem
(3.7) and comonotonic with X, where A* is chosen such that

1
(G.1) f max [0, Wy —1II— (u’)_1 (A%) ]dt - Ry.

0

If Ry = 0, that is IT = § XdT» o P, then eq. (G.1) implies that . * .« Wy — II). For this choice of A\*,
the retention is zero: R* = 0. If Ry > 0, then eq. (G.1) impes t' o Wy —IT — (u’)f1 (A*) > 0, and
that Ry = Wy — I — («/) " (A*). Hence, in this case, R* = Ry > U a constant. O

APPENDIX H. PROOF 0. ‘' OROLLARY 3.15

If T is concave, then W is convex on [0, 1], and L ‘uce © = W on [0, 1]. Consequently, for all ¢ € [0, 1],
T\ =T (1))
S(t)=9'(t) - — —~.
TTH(D)
Corollary 3.13 then implies that the function &k = max [0, Wo—II— (u/)* <)\* (%) )] is

optimal for Problem (3.7), where A* is ¢’.osc ~ such that

o Lomfom 0o () oo

[P 7 (v (T, 0 )()w)) ) (T' « (;T[(lt;)t))) .

A, PENDIX I. PROOF OF THEOREM 4.7

Recall Problem (4.2):

sup ! l.u(LYO—H—R) dP:R?O,fRdQ)RO :JXdQ—H}.
REB(E) \

Clearly, R* is (otimal ‘or Problem (4.2) if and only if Y* = X — R* is optimal for Problem (4.1).
Therefore, we foc. ~ o~ solving Problem (4.2).

Proposition . «. For any R € B(X) that is feasible for Problem (4.2), there exists R € B (%), also
feasible for Prob, m (4.2) such that:

e R is comonotonic with h;
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. gu(Wo—H—R)dP:SU(WO—H—E) dP; and,
o (RAQ > (RQ.

Proof. Let U := Fy, (h), where h = dQ/ap. By Assumption 4.5, U is a uni-mly listributed random
variable on (0,1) and h = F, ' (U), P-as. [20, Lemma A.25]. Now, f. 1l I - B(X), the random

variable R := F n ! (U) is the nondecreasing rearrangement of R with -esp .ct to h (see Ghossoub [25]

and references therein), and hence R and R are identically distrib*=d w. der P. Therefore, for all
R e B(X), we have

Ju(Wo—H—R)dpzJU(WO—H—F;(U))HH

:Llu(WO—H_FRI(t))m—_Jru(wo—n—ﬁ)dp.

Moreover, by the Hardy-Littlewood inequality (e.g., [20, Thec..m A.28]), we have for all R € B (%)
that are feasible for Problem (4.2),

Ry < JRdQ = thdP < JF; (O)F 1 (U)ur = JF; (U) hdP = fﬁde,

and R > 0 whenever Fp' (t) > 0, for all ¢ € (0, O

Hence, in light of Proposition I.1, we can focus . obtaining solutions to Problem (4.2) that are of the
form f (U), where f is a quantile function of some random variable R € BT (X). We denote by Q* the
collection of all such quantile functions. rha. is,

Q*:{feg, f()=0, f01rea(;h0<t<1}7
where Q denotes the collection of all  *an ile functions. That is,
Q= { f:(ul)—-m ‘ f is nondecreasing and left—continuous}.

Consider the following probic. -
Problem 1.2.

js-:.Q}; {Jb u Wo —H—f(t))dt : Jolf(t) Fl(t)at >R0}.

Lemma 1.3. I f* is wtimal for Problem (1.2), then R* := f* (U) is optimal for Problem (4.2) and
comonotonic wi." h.

Proof. Let f* v~ optimal for Problem (I.2). Then, by definition of Q*, f* is the quantile function
of some Z € B(£) such that Z > 0. By assumption of nonatomicity of P o h™!, U = F, (h) is
uniformly distributed random variable on (0,1) and h = F;, ! (U) , P-a.s. [20, Lemma A.25]. Therefore,
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f* ( ) is the nondecreasing equimeasurable rearrangement of Z with resr ect to h, and hence
0 an

R > d Fr+ = Fz (e.g., [25]). Moreover,

JR*dQ fR*th ff* (U U)dP = ff* )F, M ()dt = Ry,

where the last inequality follows from the feasibility of f* for Problem (I.2). Hencc both R* is feasible
for Problem (4.2).

To show optimality of R* for Problem (4.2), let R by any other fea. *hl* solution for Problem (4.2)
and Fp Uits quantile function. then Fr e 90*, and the Hardy-Little~ ~od 1. ~quality implies that

[ ret 0 mt = [ r7 @ 57 @)ar
0
> (e @ap = [ 00 = [Rag =T,

where the last inequality follows form the feasibility of R “r Prol .em (4.2). Thus, Fj, " is feasible for
Problem (1.2), and hence

1
Ju(WO—H—R)szj u(Wo =TI — Fpp* (1)) dt
0

< flu(WO —I—,* 1) )dt = fu(WO ~II-rF,! (t))dt
O1 0
=j u(WO— m— (t))dt Ju(Wo—H—R*)dP.

0
Therefore, R* is optimal or Problem (4.2). 0

Lemma 1.4. If f* € Q* satisfies:

(1) So (t)dt = Ry; an .
(2) There exists some X =0 “uch . =t jor all t € (0,1),

ffl)=a Ynax{u(Wo — Il —y) + \yF, ' () },
=0

then f* is optimal for Prot -m [.2).

Proof. Let f* € Q* be sv ch thiat tue two conditions above are satisfied. Then f* is feasible for Problem

(I.2). To show optimali. - 1t f = Q* be any feasible solution for Problem (I.2). Then, by definition of
f*, it follows that for ~ch v,

w(Wo— W=7 (&) ) —u(Wo —TL— £ (&) ) = A[F; 1 (0) £ (&) = By (1) £ ()]

Hence,
1

L1“<W° — I (")>dt— Llu(Wo — 11— f(t))dt > A UO Ey () f(t)dt — Ll E () f* (t)dt]
IRGRICEE AR

_ A
Therefore, So (Wo —1IL— f*(t))dt S u(Wo —II— f(t)) dt. O
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Lemma I.5. For each A = 0, define the function f5 by

(L.1) I3 (t) := max [0, Wo —1I — (1/)71 ()\Fh_l (t))]
Then:
(1) For each A =0, fy e Q%;

(2) There exists \* = 0 such that Sé F,1(t) £ (t) dt = Ro; and

(3) For allte (0,1), f{« (t) = argmax,> {u (Wo—TL—gy)+ X7, (¢) } .

Proof. Follows from Remark 2.4, from the monotonicity and continui. - = uperties of the quantile func-
tion Fh_l, from Assumption 4.3 and Assumption 4.4, from the act ..t Sé Fh_1 (t)dt = Sth =1, and
from the Intermediate Value Theorem. O

Hence, by lemmata 1.4 and 1.5, if A\* is chosen such that (}\ e (@ Fh_1 (t)dt = Ry, then the optimal
solution to Problem (I1.2) is given by f}, defined as ir eq. (' 1. Consequently, by Lemma 1.3, the

~

function R* := f} (U) = f¥ (Fp (h)) is optimal for Probn m (4.2) and comonotonic with h. This
concludes the proof of Theorem 4.7. 0
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