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BUDGET-CONSTRAINED OPTIMAL INSURANCE
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Abstract. In a problem of Pareto-efficient insurance contracting (bilateral risk sharing) with expected-
utility preferences, Gollier [28] relaxes the nonnegativity constraint on indemnities and argues that the
existence of a deductible is only due to the variability in the cost of insurance, not the nonnegativity
constraint itself. In this paper, we find support for a similar statement in problems of budget-constrained
optimal insurance (i.e., demand for insurance). Specifically, we consider a setting of ambiguity (unilateral
and bilateral) and a setting of belief heterogeneity. We drop the nonnegativity constraint and assume
no cost (or a fixed cost) to the insurer, and we derive closed-form solutions to the problems that we
formulate. In particular, we show that optimal indemnities no longer include a deductible provision;
and they can be negative for small values of the loss, or in case of no loss.
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1. Introduction

The literature on budget-constrained optimal insurance design follows Arrow’s [4] classical formula-
tion of the insurance demand problem. In the latter, an Expected-Utility (EU) maximizing decision
maker (DM) is subject to an insurable random loss. He seeks an insurance indemnification against
this loss so as to maximize his expected utility of terminal wealth, subject to the constraint that, in
each state of the world, the indemnity is nonnegative and does not exceed the value of the loss, and
subject to a budget constraint. The latter is typically formulated as a premium constraint: the price
of insurance (measured through a premium principle) is at most equal to the DM’s available insurance
budget (Π ą 0, fixed ex ante). Arrow [4] shows that, for the expected value premium principle, if
the DM and the insurer share the same probabilistic beliefs about the realizations of the random loss,
then an optimal indemnification schedule for a risk-averse EU-maximizing DM is a linear deductible
schedule1.

The subsequent actuarial literature on budget-constrained optimal insurance or reinsurance extended
this classical model in several directions. For instance, Goovaerts, Van Heerwaarden, and Kaas [29], as
well as Denuit and Vermandele [18], show that under the expected-value premium principle and a fixed
budget constraint, a deductible contract is still optimal for a large class of stop-loss-order preserving
preferences for the DM. Cai and Wei [10] extend the results of Denuit and Vermandele [18] to account
for dependence between individual risks in an insurance portfolio. Young [53] provides an analytical
characterization of the optimal indemnity, in a problem of maximizing expected utility of wealth with
a fixed total insurance budget, but with a Wang premium principle (that is, a Choquet integral with
respect to a concave distortion function - Definition 2.8). Gajek and Zagrodny [21, 22] and Kaluszka
[33, 34, 35] study a problem of optimal reinsurer with a fixed total insurance budget, in which the
premium principle is a mean-and-variance premium principle, and the optimization criterion relates to
minimizing a convex risk measure of the insurer’s retained risk. Kaluszka and Okolewski [36] extend
Arrow’s result to the case of a fixed total insurance budget and a maximal-possible-claims premium
principle. Cheung et al. [12] extend the setting of Kaluszka and Okolewski [36] to the case of a fixed
total insurance budget and when the DM’s behaves according to Disappointment theories of choice,
rather than expected-utility theory. Bernard and Tian [6] consider a setting similar to that of Kaluszka
[33, 34, 35], with a fixed insurance budget, but assuming different optimization criteria related to trail
risk measures. Bernard and Tian [7] extend Arrow’s setting to account for an additional regulatory
constraint related to insurer insolvency, while assuming a fixed insurance budget. Zhou et al. [54] and
Cai et al. [9] consider Arrow’s setting, with a fixed insurance budget, but impose in addition a fixed
upper limit on the indemnity function. Tan et al. [48] examine the problem of determining the indemnity
function that minimizes the conditional tail expectation (CTE) risk measure of the insurer’s total risk,
assuming a fixed total reinsurance budget and an expected-value premium principle. Sung et al. [47]
extend Arrow’s setting to the case of a fixed total insurance budget and an expected-value premium
principle, but where the DM behaves according to Cumulative Prospect Theory [32, 49]. Bernard et al.
[5], Xu et al. [51], and Ghossoub [24] extend Arrow’s setting to the case of a fixed total insurance budget
and an expected-value premium principle, but where the DM behaves according to Rank-Dependent
Expected-Utility [42, 52]. Amarante et al. [3] and Amarante and Ghossoub [2] consider the case of a
fixed total insurance budget and an EU-maximizing DM, but distortion premium principles and more
general Choquet premium principles. Cui et al. [16], Zhuang et al. [55], Cheung et al. [11], Cheung and

1Note that Arrow’s work and the subsequent literature on budget-constrained optimal (re)insurance focused on a budget
constraint given by the expected value premium principle because, by the Law of Large Numbers, an insurer with EU
preferences is essentially asymptotically risk neutral with vanishing risk premia. As shown in Knispel, Laeven, and
Svindland [37], this broadly remains true for an insurer with ambiguity-averse preferences. I am grateful to the Associate
Editor for pointing this out.
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Lo [13], and Lo [38, 39] examine the problem of minimizing a distortion risk measure of the insurer’s
retained risk, with a fixed reinsurance budget, and under a distortion reinsurance premium principle.

Raviv [43] re-examines Arrow’s [4] problem, but in a setting of bilateral risk-sharing, rather than
a setting of demand for insurance indemnification. He concludes that the presence of a deductible is
due to both the nonnegativity constraint on the indemnification function and the variability in the
cost of insurance. In an effort to test this statement, Gollier [28] relaxes the nonnegativity constraint
and argues that the existence of a deductible is due to the variability in the cost of insurance, not the
nonnegativity constraint. In this paper, we ask a similar question, but in a setting of budget-constrained
optimal insurance design (that is, a problem of demand for insurance indemnification), rather than a
setting of Pareto-optimal bilateral risk sharing. Specifically, we ask the following question: If we relax
both the nonnegativity constraint on indemnities and the variability in the cost to the insurer (by
assuming a fixed cost, or - without loss of generality - no cost), is it true that an optimal indemnity no
longer includes a deductible provision? It turns out that the answer is positive, in several settings.

We first consider a setting where the DM is a Rank-Dependent Expected-Utility (RDEU)-maximizer
(as in [42, 52]), who distorts the true probability distribution of the random loss, due to some ambiguity
on his side, and where the premium principle is an expected-value premium principle. We relax the
nonnegativity constraint and we assume that there are no costs associated with handling an insurance
claim2. This allows us to test whether the existence of a deductible is due to the variable cost of
insurance under ambiguity on the side of the DM. We give an analytical characterization of the optimal
indemnity and find that if the DM distorts the true probabilities then the optimal indemnity for the
DM does not include a deductible provision when there are no (or constant) insurance costs and no
nonnegativity constraint. Moreover, the optimal indemnity can be negative for small values of the loss,
or in case of no loss. This, as Gollier [28] notes, can be intuitively understood as the DM agreeing to
pay an additional premium in case of no loss or small losses.

We then examine some special cases. In particular, we find that when the DM is ambiguity-averse,
having a convex distortion function, the optimal indemnity is a linear function of the realizations of
the random loss, and does not include a deductible provision. Moreover, the optimal indemnity can
take negative values for small losses, but it is bounded below by a constant that depends on the
DM’s distortion function and on the difference between the premium and the expected loss under the
insurer’s belief. When this difference is zero, full insurance is optimal and hence the optimal indemnity
is nonnegative. This result essentially implies that when the DM is risk-averse, full insurance is optimal
in the absence of insurance cost, that is, that Mossin’s Theorem [41] holds in our setting. Indeed, in
RDEU, strong risk aversion (i.e., aversion to mean-preserving increases in risk) is jointly characterized
by a concave utility function and a convex distortion function (e.g., [14]), whereas in EUT concavity
of the utility function fully characterizes risk-aversion. In the case of an ambiguity seeking DM, with a
concave distortion function, the optimal indemnity function is a nonlinear function of the realizations
of the random loss, but does not include a deductible provision. Depending on the curvature of the
distortion function at zero and one, the optimal indemnity function could be full insurance (and hence
nonnegative), it could fully insure only small losses, or it could never fully insure losses of any value.
In the case of ambiguity-neutrality, i.e., when the DM does not distort probabilities, the optimal
indemnity is a linear function of the realizations of the random loss, taking negative values, but it does
not include a deductible provision and it is bounded below by a constant that depends only on the
difference between the premium and the expected loss under the insurer’s belief. When this difference
is zero, full insurance is optimal and hence the optimal indemnity is nonnegative.

2This assumption could be replaced with an assumption of constant cost of insurance, without changing any of this paper’s
results.
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We subsequently extend the previous setup to a problem with a distortion premium principle, with
a different distortion function than that of the DM. Under no additional assumptions on the prob-
ability distortion functions used, we give a closed-form characterization of the optimal retention in
the absence of the nonnegativity constraint. We then examine several special cases, and in particular
the case in which the two probability distortion functions coincide. In the latter case, we find that if
this common distortion function is convex (indicating ambiguity aversion on both sides), the optimal
retention is a constant function of the random loss that is not equal to the realized loss. Moreover, if
the premium is equal to the distorted expected loss, then a zero retention (full insurance) is optimal.
This, again, is intuitive in light of Mossin’s Theorem, since strong risk aversion in RDEU is jointly
characterized by a concave utility function and a convex distortion function. If the premium is less
than the distorted expected loss, then the optimal retention can take values higher than the realized
loss (optimal indemnity can take negative values). In the case of a common distortion function that
is concave (indicating ambiguity seeking on both sides), the optimal retention function is a nonlinear
function of the realizations of the random loss that we characterize in closed form.

Finally, we consider a setting with no ambiguity but belief heterogeneity, in which the DM and the
insurer have non-ambiguous but diverging beliefs about the realizations of the insurable loss X, repre-
sented by two different probability measures on the underlying space. Under no additional assumptions
(in particular, no monotonicity assumptions) about the likelihood ratio, we provide an analytical char-
acterization of the optimal indemnity function, and we show how it does not include a deductible
provision. As a special case, we examine the case of belief homogeneity and show that the optimal
indemnity is a linear function of the realized loss, but does not include a deductible provision.

Outline. The rest of this paper is organized as follows. Section 2 provides the setup for the problems
examined in this paper, as well as the necessary technical background. In Section 3, we examine the
problem in the presence of ambiguity on the DM’s side, first with an expected value premium principle,
and second with a distortion premium principle. Section 4 studies the problem in case of no ambiguity
on either side, but with differing beliefs about the realizations of the insurable loss. Finally, Section 5
concludes. Omitted proofs can be found in the Appendices.

2. Setup and Preliminaries

2.1. Setup. Let S be a nonempty collection of states of the world equipped with a σ-algebra F of
events. The DM is facing a random loss represented by a random variable X on the measurable space
pS,Fq. Let Σ “ σtXu be the sub-σ-algebra of F on S generated by X. We assume that the measurable
space pS,Σq is endowed with a probability measure P , such that the image measure of X under P is
nonatomic3 on the range of X with Borel σ-algebra, and such that X is essentially bounded.

Assumption 2.1. We make the following assumptions on X:

(1) X P L8 pS,Σ, P q; and

(2) X is a continuous random variable4 for P . That is, the Borel probability measure P ˝X´1 is
nonatomic.

3A finite nonnegative measure η on a measurable space pΩ,Aq is said to be nonatomic if for any A P A with η pAq ą 0,
there is some B P A such that B Ĺ A and 0 ă η pBq ă η pAq.

4This assumption can be dropped, but one would have to use the Distributional Transform approach of Rüschendorf [44].
All the results of this paper would still hold, with adequate modifications.
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Let B pΣq denote the vector space of all bounded, R-valued, and Σ-measurable functions on pS,Σq,
and B` pΣq its positive cone. When endowed with the supnorm5, B pΣq is a Banach space [19, IV.5.1].
By Doob’s measurability theorem [1, Theorem 4.41], for any Y P B pΣq there exists a bounded, Borel-
measurable map I : RÑ R such that Y “ I ˝X. Moreover, Y P B` pΣq if and only if the function I is
nonnegative.

The DM has access to a competitive insurance market in which he can transfer the risk associated
with the random loss X by purchasing insurance indemnification against X, for a premium Π ą 0
determined by the insurer, based on his beliefs about the realizations of X. An indemnity function is
a random variable Y “ I pXq on pS,Σq, for some bounded, Borel-measurable map I : X pSq Ñ R that
pays off the amount I pX psqq P R in state of world s P S. By Doob’s measurability theorem, we will
hereafter identify the collection of possible indemnity functions with B pΣq.

The DM has initial wealth W0 ą Π and his total state-contingent wealth is the Σ-measurable,
R-valued and essentially bounded function on S defined by

W psq :“W0 ´Π´X psq ` Y psq , @s P S.
We assume that the DM expects the loss to be less than his initial wealth. This can be interpreted
as stating that the DM is well-diversified so that the particular loss exposure X against which he is
seeking an insurance coverage is expected to be sufficiently small compared to his total initial wealth.

Assumption 2.2.
ş
XdP ďW0.

Note that Assumption 2.2 is weaker than similar-type assumptions used in the literature, such as in
[5, 51], for instance.

Additionally, as in Arrow’s [4] framework, we suppose that the DM is risk averse, having a utility
index u that satisfies the following.

Assumption 2.3. The DM’s utility function u is strictly increasing, strictly concave, continuously
differentiable, and satisfies lim

xÑ`8 pu
1q´1 pxq ď 0.

Remark 2.4. Assumption 2.3 is weaker than the usual Inada-type assumptions, commonly used in the
literature. Assuming that u is strictly concave and continuously differentiable implies that u1 is both
continuous and strictly decreasing. This then implies that pu1q´1 is continuous and strictly decreasing,
by the Inverse Function Theorem. Moreover, the continuity of u implies that u is bounded on every
closed and bounded subset of R.

The DM’s problem is that of finding an indemnity function that maximizes a functional of the form
V : B pΣq Ñ R that represents the DM’s expected utility of terminal wealth, or a distorted expected
utility (in the sense of CEU), etc., subject to a premium constraint and the constraint that the indemnity
does not exceed the total loss.

2.2. Probability Distortions and the Choquet Integral.

Definition 2.5. A probability distortion (or weighting) function is a strictly increasing function T :
r0, 1s Ñ r0, 1s such that T p0q “ 0 and T p1q “ 1.

5Any Y P B pΣq is bounded, and its supnorm is defined by }Y }sup :“ supt|Y psq| : s P Su ă `8.
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Definition 2.6. Let pS,Σ, P q be a probability space and T a distorting function. Define the set
function υ “ T ˝P by υ pAq “ T pP pAqq for all A P Σ. Then υ is called a distorted probability measure.

Proposition 2.7. Let pS,Σ, P q be a probability space and υ “ T ˝P a distorted probability measure on
pS,Σq. Then:

(1) υ p∅q “ 0 and υ pSq “ 1;

(2) υ is monotone: for any A,B P Σ, A Ď B ñ υ pAq ď υ pBq.
(3) υ is additive if and only if T is linear.

Definition 2.8. Let pS,Σ, P q be a probability space and υ “ T ˝ P a distorted probability measure
on pS,Σq. The Choquet integral with respect to υ of an integrable random variable Y is defined by

ż
Y dυ :“

ż `8

0
υ pts P S : Y psq ě tuq dt`

ż 0

´8
rυ pts P S : Y psq ě tuq ´ 1s dt,

where the integrals are taken in the sense of Riemann.

When the function T is the identity function, so that υ “ P , the Choquet integral coincides with
the usual Lebesgue integral. Some properties of the Choquet integral are listed below.

Proposition 2.9. Let υ “ T ˝ P be a distorted probability measure on pS,Σq.
(1) If A P Σ then

ş
1A dυ “ υ pAq.

(2) If a ě 0, then
ş
a Y dυ “ a

ş
Y υ; and,

(3) If Y1 ď Y2, then
ş
Y1 dυ ď

ş
Y2 dυ.

(4) If Y1 and Y2 are comonotonic6, then
ş pY1 ` Y2q dυ “

ş
Y1 dυ `

ş
Y2 dυ.

In particular, if Y ě 0 then
ş
Y dυ ě 0, and

ş pY ` cq dυ “ ş
Y dυ ` c for all c P R. We refer to

Denneberg [17] and Marinacci and Montrucchio [40] for proofs and additional results.

2.3. Robust Representation of the Choquet Integral. Let ba pΣq denote the linear space of all
bounded finitely additive set functions on pS,Σq, endowed with the usual mixing operations. When
endowed with the variation norm }.}v, ba pΣq is a Banach space. By a classical result [19, IV.5.1],
pba pΣq , }.}vq is isometrically isomorphic to the norm-dual of the Banach space pB pΣq , }.}supq via the
duality ăφ, λą “ ş

φ dλ, @λ P ba pΣq , @φ P B pΣq. Consequently, we can endow ba pΣq with the weak˚
topology σ pba pΣq , B pΣqq. If ca pΣq denotes the collection of all countably additive elements of ba pΣq,
then ca pΣq is a }.}v-closed linear subspace of ba pΣq. Hence, ca pΣq is }.}v-complete, i.e. pca pΣq , }.}vq
is a Banach space. Henceforth, a collection of probability measures will be called weak˚-compact if it
is compact in the topology σ pba pΣq , B pΣqq.

By a classical result of Huber and Strassen [31] and Schmeidler [45, 46], we have the following
representations of the Choquet integral.

Proposition 2.10. Let υ “ T ˝ P be a distorted probability measure on pS,Σq.

6Two functions Y1, Y2 P B pΣq are said to be comonotonic if
”
Y1 psq ´ Y1

`
s1
˘ ı”

Y2 psq ´ Y2

`
s1
˘ ı ě 0, for all s, s1 P S. For

instance any Y P B pΣq is comonotonic with any c P R. Moreover, if Y1, Y2 P B pΣq, and if Y2 is of the form Y2 “ I ˝ Y1,
for some Borel-measurable function I, then Y2 is comonotonic with Y1 if and only if the function I is nondecreasing.
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(1) If T is convex, then there exists a non-empty, convex, and weak˚-compact collection Π Ă ca pΣq
of probability measures, called the core of ν, such that for all Y P B pΣq,

ż
Y dυ “ min

µPΠ

ż
Y dµ.

(2) If T is concave, then there exists a non-empty, convex, and weak˚-compact collection A Ă ca pΣq
of probability measures, called the anti-core of ν, such that for all Y P B pΣq,

ż
Y dυ “ max

µPA

ż
Y dµ.

(3) If T is linear, then T is the identity function and Π “ A “ tP u. In this case, for all Y P B pΣq,
ż
Y dυ “

ż
Y dP.

In Schmeidler’s [46] CEU model, a DM’s ambiguous beliefs are represented by a nonadditive set
function υ on the state space. In the special case where υ “ T ˝ P , for some probability weighting
function T , ambiguity aversion (resp., ambiguity seeking) is equivalent to convexity (resp., concavity)
of the distortion function T . Hence, in light of Proposition 2.10, ambiguity aversion (resp., ambiguity-
seeking) implies a worst-case (resp., best-case) expectation with respect to a collection of (additive)
priors. Ambiguity-neutrality is equivalent to linearity of the distortion function T and therefore yields
the classical EU-representation of preferences.

3. Relaxing the Non-Negativity Constraint on Indemnities: Probability Weighting

In this section, we examine the problem of optimal insurance design when the DM has ambiguous
beliefs represented by a distortion of the physical probability measure P , and in the absence of the
nonnegativity constraint on indemnities. We first consider the case of a standard premium constraint
of the form

ş
Y dP ď Π, or equivalently, a retention constraint of the form

ş
RdP ě R0. We then

consider the case of a more general retention constraint of the form
ş
RdT2 ˝P ě rR0 for some distortion

function T2 that is not necessarily identical to that of the DM.

3.1. Ambiguity on the DM’s Side. We now consider the case in which the insurer experiences no
ambiguity about the realizations of the insurable loss X, but the DM does and hence distorts the
probability measure P . Specifically, the DM’s problem, is the following.

Problem 3.1.

sup
Y PBpΣq

"ż
u
´
W0 ´Π´X ` Y

¯
dT ˝ P : Y ď X,

ż
Y dP ď Π

*
.

Letting R :“ X ´ Y be the retention random variable, the problem can now be restated as

Problem 3.2.

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dT ˝ P : R ě 0,

ż
RdP ě R0 :“

ż
XdP ´Π

*
,
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Clearly, R˚ is optimal for Problem (3.2) if and only if Y ˚ “ X ´ R˚ is optimal for Problem (3.1).
Therefore, we focus on solving Problem (3.2). Now, the monotonicity of the Lebesgue integral implies
that for each R ě 0,

ş
RdP ě 0. Consequently, if R0 ă 0, then the feasibility set of Problem (3.2) is

empty. Thus, we will make the following assumption in order to rule out trivial situations.

Assumption 3.3. R0 ě 0.

Hence, Assumption 2.2 and Assumption 3.3 imply that 0 ď R0 ďW0 ´Π.

Recall7 that for a continuous real-valued function f on a non-empty convex subset of R containing
the interval r0, 1s, the convex envelope of f on the interval r0, 1s is an absolutely continuous real-valued
function g such that:

(1) g p0q “ f p0q and g p1q “ f p1q;
(2) g is convex on r0, 1s;
(3) For all x P r0, 1s, g pxq ď f pxq; and,

(4) g is affine on tx P r0, 1s : g pxq ă f pxqu.
Moreover,

(5) If f is increasing, then so is g;

(6) If f is differentiable on p0, 1q, then g is continuously differentiable on p0, 1q.

The following result gives an analytical characterization of the optimal solution to Problem (3.1)
under very mild assumptions on the DM’s distortion function T .

Theorem 3.4. The function Y ˚ :“ X ´ q˚
ˆ
T
´

1 ´ FX pXq
¯˙

is optimal for Problem (3.1) and

comonotonic with X, where:

‚ For all t P r0, 1s, q˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚δ1 ptq

˙
;

‚ δ is the convex envelope of v “ T´1 on r0, 1s; and,

‚ λ˚ is chosen such that
ş1
0 q
˚ ptq v1 ptq dt “ R0.

Theorem 3.4 holds regardless of the ambiguity aversion or ambiguity seeking attitude of the DM.
The following two results examine these special cases.

Corollary 3.5. If the DM is either ambiguity neutral (T is the identity function) or ambiguity averse
(T is convex), then an optimal solution for Problem (3.1) is given by Y ˚ “ X ´ R0, where R0 “ş
XdP ´Π P R`. Hence, in particular:

‚ Both Y ˚ and X ´ Y ˚ are comonotonic with X;

‚ If the premium is equal to the expected loss, then full insurance is optimal;

‚ If the premium is less than the expected loss, then the optimal indemnity can take negative
values, but it is bounded below by the constant R0.

7See, for instance, He et al. [30, Appendix B].
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Note that Corollary 3.5 essentially implies that when the DM is risk-averse, full insurance is optimal
in the absence of insurance cost, that is, that Mossin’s Theorem [41] holds in our setting. Indeed, in
RDEU, strong risk aversion (i.e., aversion to mean-preserving increases in risk) is jointly characterized
by a concave utility function and a convex distortion function (e.g., [14]), whereas in EUT concavity of
the utility function fully characterizes risk-aversion.

Corollary 3.6. If the DM is ambiguity seeking (T is concave), then an optimal solution for Problem
(3.1) that is comonotonic with X is given by

Y ˚ “ X ´max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

T 1 p1´ FX pXqq
˙
,

where λ˚ is chosen such that
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

T 1 pT´1 ptqq
˙ˆ

1

T 1 pT´1 ptqq
˙
dt “ R0.

Moreover,

(1) If λ˚
u1pW0´Πq ą T 1 p0q, then

!
s P S : Y ˚ psq “ X psq

)
“ ∅, and so full insurance is never optimal.

(2) If λ˚
u1pW0´Πq ă T 1 p1q, then

!
s P S : Y ˚ psq “ X psq

)
“ S. In other words, full insurance is

optimal.

(3) If λ˚
u1pW0´Πq P rT 1 p1q , T 1 p0qs, then

!
s P S : Y ˚ psq “ X psq

)
“

!
s P S : X psq ď L

)
, where

L :“ F´1
X

ˆ
1´ pT 1q´1

´
λ˚

u1pW0´Πq
¯˙

ě 0. In other words, small losses are fully insured, and the

optimal indemnity is nonnegative.

Bernard et al. [5], Xu et al. [51], and Ghossoub [24] study the problem of optimal insurance design
with a retention constraint and in the presence of the nonnegativity constraint on indemnities, and with
ambiguity on the side of the DM, represented by a distortion T of the probability measure P . Bernard
et al. [5] and Ghossoub [24] show that when the DM is ambiguity averse (T is convex), the optimal
indemnity is a straight (linear) deductible contract. Moreover, when the DM is ambiguity-seeking (T
is concave), the optimal indemnity is a variable deductible schedule, with a state-contingent deductible
that depends on the state of the world only through the distortion function. Additionally, when the
DM’s distortion function is inverse S-shaped, Ghossoub [24] provides a closed-form characterization of
the optimal indemnity and shows that it is a linear deductible schedule up to a cut-off loss severity,
beyond which the optimal indemnity is a disappearing variable deductible schedule. Corollary 3.5 and
Corollary 3.6 show that in the absence of variable insurance costs to the insurer, the straight deductible
indemnity schedule in the case of ambiguity aversion and the variable deductible indemnity schedule
in the case of ambiguity seeking are no longer optimal when we relax the nonnegativity constraint on
indemnities.

An Illustration. We now consider a simple numerical example to illustrate the previous results.
Suppose that the DM’s distortion function T is given by an inverse S-shaped distortion function, such
as the one used in Cumulative Prospect Theory [32, 49]. That is, for all t P r0, 1s,

(3.1) T ptq “ tγ

ptγ ` p1´ tqγq1{γ
.
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We take γ “ 0.5, so that for all t P r0, 1s, T ptq “
?
t´?

t`
?
p1´tq

¯2 . Then T is strictly increasing on r0, 1s.
Moreover, one can easily verify that there is a point t0 « 0.3845 such that T is strictly concave on r0, t0s
and strictly convex on rt0, 1s. Therefore, T´1 is strictly increasing on r0, 1s, strictly convex on r0, t0s,
and strictly concave on rt0, 1s. Let δ be the convex envelope of v “ T´1 on r0, 1s. Then v p0q “ δ p0q “ 0
and v p1q “ δ p1q “ 1. Moreover, since δ is affine on the set tt P r0, 1s : δ ptq ă v ptqu, there exists some
z0 P p0, t0q such that δ is given by

δ ptq “
#
v ptq if t ď z0;

v pz0q `
´
vpz0q´1
z0´1

¯
pt´ z0q if t ě z0.

Note that since δ is continuously differentiable by continuity of v, we have v1 pz0q “ vpz0q´1
z0´1 . Numerical

computation gives z0 « 0.17215, T pz0q « 0.2364, v pz0q “ δ pz0q « 0.06654, vpz0q´1
z0´1 « 1.12757, T pt0q «

0.31429, v pt0q « 0.58312,and δ pt0q « 0.30597. Figure 1 plots the graph of the functions T , v, and δ.

Figure 1. This graph plots the function T (solid red line), the function v “ T´1 (dashed blue
line), and the convex envelope δ of v (solid dark green line). The dotted vertical black line is the
graph of the function f ptq :“ t0, and the dotted vertical orange line is the graph of the function
g ptq :“ z0.

We will assume that the loss random variable X follows a truncated exponential distribution on the

interval r0,M s, with a probability density function fX given by fX pxq “ ηe´ηx
1´e´ηM , for x P r0,M s, where

η and M are constants. Then the expected value of X under P is given by

ErXs “
ż
XdP “ 1´ p1` ηMq e´ηM

η p1´ e´ηM q ,

the cumulative distribution function of X is given by FX pxq “ 1´e´ηx
1´e´ηM , for x P r0,M s, and the quantile

of X is given by
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F´1
X ptq “ ´1

η
ln
`
1´ t “1´ e´ηM ‰˘

,

for t P r0, 1s. We take W0 “ 50, Π “ 5, M “ 1, 000, and η “ 0.1, so that ErXs “ 10 and R0 “
ErXs ´ Π “ 5. Hence, 0 ď R0 ď W0 ´ Π and so Assumption 2.2 and Assumption 3.3 hold. Now,
assume that u pxq “ xα, and take α “ 0.5. Then u satisfies the conditions of Assumption 2.3, and

pu1q´1 pxq “ 1
4x2 . Consequently, an optimal indemnity that is comonotonic with X is given by

Y ˚ “ X ´ q˚
ˆ
T
´

1´ FX pXq
¯˙

,

where the function q˚ is given by

q˚ ptq “

$
’’’’’’&
’’’’’’%

max

„
0,W0 ´Π´ 1

p2λ˚q2pv1ptqq2


if t ď z0;

max

»
–0,W0 ´Π´ 1

p2λ˚q2
ˆ
vpz0q´1

z0´1

˙2

fi
fl if t ě z0;

and λ˚ is chosen such that
ş1
0 q
˚ ptq v1 ptq dt “ R0. Figure 2 below illustrates the optimal indemnity and

retention in this simple example. In this case, with an inverse-S-shaped distortion function for the DM,
it turns out that the optimal indemnity function does not include a deductible provision, but mandates
a negative reimbursement for small values of the loss. This can be intuitively understood as the DM
agreeing to pay an additional premium in case of no loss or small losses. Moreover, indemnification is
a linearly increasing function of the loss, and medium to high severity losses are fully insured.
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Figure 2. This graph plots the optimal indemnity function IpXq (blue line) and the optimal
retention function RpXq (red line).
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3.2. Ambiguity on the DM’s and the Insurer’s side. We now consider the case of a more general

retention constraint of the form
ş
RdT2 ˝P ě rR0 for some distortion function T2 that is not necessarily

identical to that of the DM. This reflects that fact that the insurer also experiences some ambiguity
about the realizations of the insurable loss X, and such ambiguity is represented by a distortion of the
baseline probability measure P .

Let R :“ X ´ Y be the retention random variable, and consider the following problem.

Problem 3.7.

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dT1 ˝ P : R ě 0,

ż
R dT2 ˝ P ě rR0 :“

ż
XdT2 ˝ P ´Π

*
.

Here, instead of Assumption 2.2 and Assumption 3.3, we use the following assumptions.

Assumption 3.8.
ş
XdT2 ˝ P ďW0.

Assumption 3.9. rR0 ě 0.

Hence, Assumption 3.8 and Assumption 3.9 imply that 0 ď rR0 ď W0 ´ Π. By a proof similar to that
of Theorem 3.4, we obtain the following result.

Theorem 3.10. The function R˚ :“ q˚
ˆ
T1

´
1´ FX pXq

¯˙
is optimal for Problem (3.7), where:

‚ For all t P r0, 1s, q˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚δ1 ptq

˙
;

‚ δ is the convex envelope on r0, 1s of the function Ψ defined on r0, 1s by

Ψ ptq :“
ż t

0

˜
T 12

`
1´ T´1

1 pxq˘

T 11
`
T´1

1 pxq˘
¸
dx “ 1´ T2

`
1´ T´1

1 ptq˘ ;

‚ λ˚ is chosen such that
ş1
0 q
˚ ptqΨ1 ptq dt “ rR0.

Theorem 3.10 gives a analytic characterization of the optimal solution to Problem (3.7) under very
mild assumptions about the distortion functions T1 and T2. The following two corollaries examine some
special cases of interest.

Corollary 3.11. If the distortion functions T1 and T2 are such that, for all t P r0, 1s,
(3.2)

T 22 p1´ tq
T 12 p1´ tq

ě ´T
2
1 ptq
T 11 ptq

,

then an optimal solution for Problem (3.7) is given by the constant function R˚ “ rR0, where rR0 “ş
XdT2 ˝ P ´Π P R`. Hence, in particular:

‚ Both R˚ and X ´R˚ are comonotonic with X;

‚ If the premium is equal to the distorted expected loss (under the insurer’s distortion function),
then a zero retention (full insurance) is optimal;
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‚ If the premium is less than the distorted expected loss (under the insurer’s distortion function),
then the optimal retention can take values higher than the realized loss (i.e., the indemnity can
be negative).

One immediate case in which eq. (3.2) holds is when T1 and T2 are both linear or both convex.

Corollary 3.12. If the distortion functions T1 and T2 are such that, for all t P r0, 1s,
(3.3)

T 22 p1´ tq
T 12 p1´ tq

ď ´T
2
1 ptq
T 11 ptq

,

then an optimal solution for Problem (3.7) is given by the function

R˚ :“ max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

ˆ
T 12 pFX pXqq

T 11 p1´ FX pXqq
˙˙

,

where λ˚ is chosen such that

rR0 “
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 12

`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
¸˙˜

T 12
`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
¸
dt.

One immediate case in which eq. (3.3) holds is when T1 and T2 are both linear or both concave.

Amarante and Ghossoub [2] study the problem of optimal insurance design with a retention constraint
and in the presence of the nonnegativity constraint on indemnities, but with ambiguity only on the side
of the insurer, represented by a distortion T2 of the probability measure P . Ghossoub [24] extends the
setting of Amarante and Ghossoub [2] to also account for ambiguity on the side of the DM, represented
by a distortion T1 of the probability measure P . He shows that the optimal indemnity is a variable
deductible schedule, with a state-contingent deductible that depends on the sate of the world only
through T1 and T2. The above results show that in the absence of ambiguity on the DM’s side (T1

is the identity function) and variable insurance costs to the insurer, the variable deductible indemnity
schedule is no longer optimal when we relax the nonnegativity constraint on indemnities.

Theorem 3.10, Corollary 3.11, and Corollary 3.12 characterize of the optimal solution to Problem (3.7)
when the DM and the insurer have different distortions of the baseline probability. As an immediate
implication of Theorem 3.10, we obtain the following result, which characterizes the optimal solution
in case the DM and insurer have the same distortion function T :“ T1 “ T2.

Corollary 3.13. If T1 “ T2 :“ T , then the function R˚ :“ q˚
ˆ
T
´

1´FX pXq
¯˙

is optimal for Problem

(3.7), where:

‚ For all t P r0, 1s, q˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚δ1 ptq

˙
;

‚ δ is the convex envelope on r0, 1s of the function Ψ defined on r0, 1s by

Ψ ptq :“
ż t

0

˜
T 1

`
1´ T´1pxq˘

T 1 pT´1pxqq

¸
dx “ 1´ T `

1´ T´1 ptq˘ ;

‚ λ˚ is chosen such that
ş1
0 q
˚ ptqΨ1 ptq dt “ rR0, where rR0 “

ş
XdT2 ˝ P ´Π P R`.

Corollary 3.13 holds regardless of the concavity/convexity of T . The following two results examine
these special cases.



14 MARIO GHOSSOUB

Corollary 3.14. If the distortion function T :“ T1 “ T2 is either linear or convex, then an optimal

solution for Problem (3.7) is given by the constant function R˚ “ rR0. Hence, in particular:

‚ Both R˚ and X ´R˚ are comonotonic with X;

‚ If the premium is equal to the distorted expected loss, then a zero retention (full insurance) is
optimal;

‚ If the premium is less than the distorted expected loss, then the optimal retention can take values
higher than the realized loss (i.e., the indemnity can be negative).

Note that Corollary 3.14 essentially implies that full insurance is optimal in the absence of insurance
cost, when the DM is risk averse. This is intuitive in light of Mossin’s Theorem [41], since strong risk
aversion in RDEU is jointly characterized by a concave utility function and a convex distortion function
[14].

Corollary 3.15. If the distortion function T :“ T1 “ T2 is concave, then an optimal solution for
Problem (3.7) is given by the function

R˚ :“ max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

ˆ
T 1 pFX pXqq

T 1 p1´ FX pXqq
˙˙

,

where λ˚ is chosen such that

rR0 “
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 1

`
1´ T´1

1 ptq˘

T 1
`
T´1

1 ptq˘
¸˙˜

T 1
`
1´ T´1 ptq˘

T 1 pT´1 ptqq

¸
dt.

An Illustration. We now consider a simple numerical example to illustrate the previous results.
Suppose, as in the example of Section 3.1, that the DM’s distortion function T1 is given by an inverse
S-shaped distortion function, such as the one used in Cumulative Prospect Theory [32, 49]. That is,
for all t P r0, 1s,
(3.4) T1 ptq “ tγ

ptγ ` p1´ tqγq1{γ
,

withe γ “ 0.5. Similarly, we assume that the insurer’s distortion function T2 is inverse S-shaped, with

(3.5) T2 ptq “ tζ
´
tζ ` p1´ tqζ

¯1{ζ ,

for all t P r0, 1s, with ζ “ 0.6. Then one can easily verify that there is t0 P r0, 1s such that the function
Ψ defined on r0, 1s by Ψ ptq :“ 1´ T2

`
1´ T´1

1 ptq˘, is convex on the interval r0, t0s and concave on the
interval rt0, 1s. Let δ be the convex envelope of Ψ on r0, 1s. Then Ψ p0q “ δ p0q “ 0 and Ψ p1q “ δ p1q “ 1.
Moreover, since δ is affine on the set tt P r0, 1s : δ ptq ă Ψ ptqu, there exists some z0 P p0, t0q such that
δ is given by

δ ptq “
#

Ψ ptq if t ď z0;

Ψ pz0q `
´

Ψpz0q´1
z0´1

¯
pt´ z0q if t ě z0.

Note that since δ is continuously differentiable by continuity of Ψ, we have Ψ1 pz0q “ Ψpz0q´1
z0´1 . Numerical

computation gives z0 « 0.02414. Figure 3 plots the graph of the functions T1, T2, ψ, and δ.
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Figure 3. This graph plots the function T1 (solid red line), the function T2 (solid orange line),
the function Ψ (dashed blue line), and the convex envelope δ of Ψ (solid dark green line). The
dotted vertical burgundy line is the graph of the function g ptq :“ z0.

Assuming, as in the example of Section 3.1, that W0 “ 50, Π “ 5, and the loss random variable
X follows a truncated exponential distribution on the interval r0, 1000s, with a probability density

function fX given by fX pxq “ ηe´ηx
1´e´1,000η , for x P r0, 1000s, where η “ 0.1, we have ErXs “ 10 and the

cumulative distribution function of X is given by FX pxq “ 1´e´ηx
1´e´1,000η , for x P r0, 1000s. Therefore,

ż
XdT2 ˝ P “

ż `8

0
T2 ˝ P pts P S : X psq ě tuq dt “

ż `8

0
T2 rP pts P S : X psq ą tuqs dt

“
ż `8

0
T2 r1´ FX ptqs dt “

ż `8

0
T2

ˆ
e´ηt ´ e´1,000η

1´ e´1,000η

˙
dt

“
ż `8

0

´
e´0.1t´e´100

1´e´100

¯0.6

ˆ´
e´0.1t´e´100

1´e´100

¯0.6 `
´

1´e´0.1t

1´e´100

¯0.6
˙1{0.6 dt

« 12.047176.

Thus, rR0 “
ş
XdT2 ˝ P ´ Π « 7.047176, and so 0 ď rR0 ď W0 ´ Π. Thus, Assumption 3.8 and

Assumption 3.9 hold. Now, assume that u pxq “ xα, and take α “ 0.5. Then u satisfies the conditions

of Assumption 2.3, and pu1q´1 pxq “ 1
4x2 . Consequently, an optimal retention is given by

R˚ “ q˚
ˆ
T1

´
1´ FX pXq

¯˙
,

where the function q˚ is given by
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q˚ ptq “

$
’’’’’’&
’’’’’’%

max

„
0,W0 ´Π´ 1

p2λ˚q2pΨ1ptqq2


if t ď z0;

max

»
–0,W0 ´Π´ 1

p2λ˚q2
ˆ

Ψpz0q´1

z0´1

˙2

fi
fl if t ě z0;

and λ˚ is chosen such that
ş1
0 q
˚ ptqΨ1 ptq dt “ rR0. Figure 4 below illustrates the optimal indemnity

and retention in this simple example. In this case, with an inverse-S-shaped distortion function for the
DM and for the distortion premium principle, it turns out that the optimal indemnity function does
not include a deductible provision, but mandates a negative reimbursement for small values of the loss.
This can be intuitively understood as the DM agreeing to pay an additional premium in case of no loss
or small losses. Moreover, indemnification is a linearly increasing function of the loss, and medium to
high severity losses are fully insured.
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Figure 4. This graph plots the optimal indemnity function IpXq (blue line) and the optimal
retention function RpXq (red line).

4. Relaxing the Non-Negativity Constraint on Indemnities: Belief Heterogeneity

In this section, we examine the problem of optimal insurance design in the absence of the nonneg-
ativity constraint on indemnities, when the DM and the insurer experience no ambiguity about the
realizations of the insurable loss X, but they disagree about the probability distribution of X. Specifi-
cally, we assume that the DM has a subjective probability measure P on the measurable space pS,Σq,
whereas the insurer has a subjective probability measure Q on the same space. The DM’s problem can
then be formulated as follows.
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Problem 4.1.

sup
Y PBpΣq

"ż
u
´
W0 ´Π´X ` Y

¯
dP : Y ď X,

ż
Y dQ ď Π

*
.

Letting R :“ X ´ Y be the retention random variable, the problem can now be restated as

Problem 4.2.

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dP : R ě 0,

ż
RdQ ě R0 :“

ż
XdQ´Π

*
.

Here, instead of Assumption 2.2 and Assumption 3.3, we use the following assumptions.

Assumption 4.3.
ş
XdQ ďW0.

Assumption 4.4. R0 ě 0.

Note that Assumption 4.4 implies that the feasibility set of Problem (4.2) is non-empty.

Now suppose that the probability measure Q is absolutely continuous8 with respect to P . Then,
by the Radon-Nikodým Theorem [1, Theorem 13.20] there exists a P -a.s. unique, Σ-measurable, and
P -integrable function h : S Ñ r0,`8q such that Q pCq “ ş

C h dP , for all C P Σ. Moreover, since

h : S Ñ r0,`8q is Σ-measurable and P -integrable, there exists a Borel-measurable and P ˝ X´1-
integrable map Γ : X pSq Ñ r0,`8q such that h “ dQ{dP “ Γ ˝X. The function h can be interpreted
as a likelihood ratio. We will assume that the Radon-Nikodým derivative h is continuous for P :

Assumption 4.5. Q ! P , with Radon-Nikodým derivative h “ dQ{dP such that P ˝h´1 is nonatomic9.

Assumption 4.5 then implies that the random variable U “ Fh phq is uniformly distributed on r0, 1s,
where Fh is the CDF of h under P . The Radon-Nikodým derivative h can be interpreted as a likelihood
ratio. Note that in this section we do not make use of the assumption of nonatomicity of P ˝ X´1.
Problem 4.2 can now be restated as follows.

Problem 4.6.

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dP : R ě 0,

ż
RhdP ě R0

*
.

The following result gives an analytical characterization of the optimal solution to Problem (4.1)
under no additional assumptions (in particular, no monotonicity assumptions) about the likelihood
ratio h.

8Let µ1 and µ2 be two probability measures on a measurable space pΩ,Gq. The probability measure µ2 is said to be
absolutely continuous with respect to the probably measure µ1 (denoted by µ2 ! µ1) if for all C P G with µ1 pCq “ 0,
one has µ2 pCq “ 0. This does not rule out the existence of some D P G such that µ2 pDq “ 0 but µ1 pDq ą 0.

9The assumption of nonatomicity of P ˝ h´1 can be dropped, but one would have to use the Distributional Transform
approach of Rüschendorf [44]. All the results of this section would still hold, with adequate modifications. Moreover, the
assumption of absolute continuity of Q with respect to P can be dropped, and one can use the technique developed in
Ghossoub [23, 26] and Amarante and Ghossoub [2], based on a Lebesgue decomposition of P with respect to Q.
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Theorem 4.7. The function Y ˚ :“ X ´ f˚
´
Fh phq

¯
is optimal for Problem (4.1), where:

‚ For all t P r0, 1s, f˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚F´1

h ptq
˙

;

‚ λ˚ is chosen such that
ş1
0 f

˚ ptqF´1
h ptq dt “ R0.

That is,

Y ˚ “ min

„
X,X ´

´
W0 ´Π´ `

u1
˘´1 pλ˚hq

¯
.

As a special case, the following result characterizes the optimal solution assuming a monotone like-
lihood ratio.

Corollary 4.8. Assuming a monotone likelihood ratio (MLR), i.e. that the function Γ in h “ Γ ˝X is

nonincreasing, the optimal solution Y ˚ “ X ´ f˚
´
Fh phq

¯
given in Theorem 4.7 is comonotonic with

X.

Proof. The function f˚ defined on r0, 1s by f˚ ptq “ max
”
0,W0 ´Π´ pu1q´1 `λ˚F´1

h ptq˘
ı

is nonde-

creasing. If Γ is nonincreasing, then ´f˚ pFh phqq is nondecreasing in X. Hence, Y ˚ is comonotonic
with X. �

The problem of optimal insurance design with belief heterogeneity was studied by Ghossoub [23, 26,
27], Boonen [8], and Chi [15], in the presence of the nonnegativity constraint on indemnities. Among
other results, Ghossoub [27] shows that when the likelihood ratio is monotone, the optimal indemnity
is a variable deductible schedule, with a state-contingent deductible given by the random variable
d :“ W0 ´ Π ´ pu1q´1 pλ˚hq, where h is the (monotone) likelihood ratio and λ˚ is chosen so that
the constraint binds. Under a condition of compatibility between the two beliefs, Ghossoub [26] fully
characterizes the class of all optimal indemnity schedules that are nondecreasing in the loss, in terms
of their distribution under the DM’s probability measure, and he obtains Arrow’s classical result as
well as one of the results of Ghossoub [27] as corollaries. However, Ghossoub [26] does not provide a
closed-form characterization of the optimal indemnity in the general case, which is done by Ghossoub
[23]. The latter does not impose conditions on the type or level of disagreement about probabilities. He
characterizes the optimal indemnity for any type or level of belief heterogeneity, and shows that it has
a simple two-part structure: full insurance on an event to which the insurer assigns zero probability,
and a variable deductible on the complement of this event. Chi [15] considers a similar setting to
Ghossoub [26, 27] but imposes the no sabotage condition. That is, he restricts the set of admissible
indemnities to those that are such that the indemnity and the retention function are both nondecreasing
functions of the loss. Under an assumption of a Monotone Hazard Ratio (MHR), which is weaker than
the MLR assumption, he shows optimality of a linear deductible schedule. Boonen [8] provides an
implicit characterization of the optimal indemnity that relies on the hazard ratio, similarly to Chi [15].
Theorem 4.7 and Corollary 4.8 show that in the absence of variable insurance costs to the insurer, the
optimal indemnity no longer contains a variable deductible provision when we relax the nonnegativity
constraint on indemnities.

As a special case of Theorem 4.7, the following result characterizes the solution in the absence of
belief heterogeneity.
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Corollary 4.9. In the absence of belief heterogeneity, i.e. when P “ Q, an optimal solution to Problem
(4.1) is given by

Y ˚ “ min

„
X,X ´ d


,

where d “W0 ´Π´ pu1q´1 pλ˚q and λ˚ is chosen such that the retention constraint binds.

Proof. If P “ Q then h is the constant function equal to 1 for each s P S. The rest follows from
Theorem 4.7. �

Corollary 4.9 shows that, in the absence of variable insurance costs to the insurer, a deductible
indemnity schedule is not optimal when we relax the nonnegativity constraint on indemnities in Arrow’s
classical setting.

5. Conclusion

In this paper, we dropped the nonnegativity constraint on indemnities in several problems of budget-
constrained optimal insurance (i.e., insurance demand). Specifically, we assumed no cost (or a fixed
cost) to the insurer and considered three different settings: (i) a problem in which the DM experi-
ences ambiguity about the realizations of the insurable loss, and distorts the underlying probability
distribution while the insurer does not; (ii) a setting in which both the DM and the insurer experience
ambiguity and distort the underlying probability measure using different distortion functions; and (iii)
a setting in which the DM and the insurer experience no ambiguity but differ in their beliefs about the
realizations of the insurable loss, and hence assign different probability distributions to that loss.

In all three settings, we derived closed-form analytical solutions to the problems that we formulated,
and we showed that an optimal indemnity no longer includes a deductible provision. This is in line
with the intuition behind Gollier’s [28] finding in the case of belief homogeneity and no ambiguity, but
in a setting of Pareto-efficient insurance contracting (bilateral risk sharing).

Future work on this topic will address the question of determining the optimal indemnity in the
absence of the nonnegativity constraints on indemnities in each of the aforementioned three settings,
but in a context of Pareto-optimal insurance design, in which the joint determination of the premium
and the indemnity is required. Moreover, various cost structures for the insurer will be accounted for.
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Appendix A. Proof of Theorem 3.4

Recall Problem (3.2):

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dT ˝ P : R ě 0,

ż
R dP ě R0 :“

ż
XdP ´Π

*
.

Clearly, R˚ is optimal for Problem (3.2) if and only if Y ˚ “ X ´ R˚ is optimal for Problem (3.1).
Therefore, we focus on solving Problem (3.2).

Let U :“ 1 ´ FX pXq and V :“ FX pXq. By assumption of nonatomicity of P ˝X´1, U and V are
uniformly distributed random variables on p0, 1q [20, Lemma A.25]. Now, for all R P B pΣq, the fact
that u is increasing and U is uniformly distributed implies that

ż
u pW0 ´Π´Rq dT ˝ P “

ż
T 1 p1´ UqF´1

upW0´Π´Rq pUq dP “
ż
T 1 p1´ Uqu

´
F´1
W0´Π´R pUq

¯
dP

“
ż
T 1 p1´ Uqu `W0 ´Π` F´1

´R pUq
˘
dP

“
ż
T 1 p1´ Uqu `W0 ´Π´ F´1

R p1´ Uq˘ dP

“
ż
T 1 pUqu `W0 ´Π´ F´1

R pUq˘ dP “
ż 1

0
T 1 ptqu `W0 ´Π´ F´1

R ptq˘ dt.

Moreover, ż
RdP “

ż
F´1
R pUq dP “

ż 1

0
F´1
R ptq dt,

and R ě 0 whenever F´1
R ptq ě 0, for all t P p0, 1q .

Let Q denote the collection of all quantile functions, and let Q˚ denote the collection of all quantile
functions f that satisfy f ptq ě 0, for all t P p0, 1q. Then

Q “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
,

and

(A.1) Q˚ “
!
f P Q : f ptq ě 0, for each 0 ă t ă 1

)
.

Consider the following problem:

Problem A.1.

sup
fPQ˚

"ż 1

0
u
´
W0 ´Π´ f ptq

¯
T 1 ptq dt :

ż 1

0
f ptq dt ě R0

*
.

Lemma A.2. If f˚ is optimal for Problem (A.1), then both R1̊ :“ f˚ p1´ FX pXqq and R2̊ :“
f˚ pFX pXqq are optimal for Problem (3.2). Moreover, R1̊ is anti-comonotonic with X and R2̊ is
comonotonic with X.
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Proof. Let f˚ be optimal for Problem (A.1). Then, by definition of Q˚, f˚ is the quantile function
of some Z P B pΣq such that Z ě 0. By assumption of nonatomicity of P ˝ X´1, U “ 1 ´ FX pXq
and V “ FX pXq are uniformly distributed random variables on p0, 1q [20, Lemma A.25]. Therefore,
R1̊ “ f˚ pUq “ F´1

Z pUq is the nonincreasing equimeasurable rearrangement of Z with respect to X,
and hence R1̊ ě 0 and FR˚1 “ FZ (see Ghossoub [25] and references therein). Similarly, R2̊ “ f˚ pV q “
F´1
Z pV q is the nondecreasing equimeasurable rearrangement of Z with respect to X, and hence R2̊ ě 0

and FR˚2 “ FZ . Moreover,
ż
R1̊ dP “

ż
f˚ pUq dP “

ż
f˚ pV q dP “

ż
R2̊ dP “

ż 1

0
f˚ ptq dt ě R0,

where the last inequality follows from the feasibility of f˚ for Problem (A.1). Hence, both R1̊ and R2̊

are feasible for Problem (3.2).

To show optimality of R1̊ and R2̊ for Problem (3.2), let R by any other feasible solution for Problem
(3.2) and F´1

R its quantile function. Then F´1
R is feasible for Problem (A.1), and hence

ż
u pW0 ´Π´Rq dT ˝ P “

ż 1

0
T 1 ptqu `W0 ´Π´ F´1

R ptq˘ dt

ď
ż 1

0
u
´
W0 ´Π´ f˚ ptq

¯
T 1 ptq dt “

ż 1

0
u
´
W0 ´Π´ F´1

Z ptq
¯
T 1 ptq dt

“
ż 1

0
u
´
W0 ´Π´ F´1

R˚1
ptq

¯
T 1 ptq dt “

ż
u pW0 ´Π´R1̊q dT ˝ P

“
ż 1

0
u
´
W0 ´Π´ F´1

R˚2
ptq

¯
T 1 ptq dt “

ż
u pW0 ´Π´R2̊q dT ˝ P.

Therefore, R1̊ and R2̊ are optimal or Problem (3.2). �

Now, letting v ptq “ T´1 ptq and using the change of variable z “ v´1 ptq gives

ż 1

0
u
´
W0 ´Π´ f ptq

¯
T 1 ptq dt “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dT ptq “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dv´1 ptq

“
ż 1

0
u
´
W0 ´Π´ f pv pzqq

¯
dz “

ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt,

where q ptq :“ f pv ptqq, for all t P p0, 1q. Moreover,

ż 1

0
f ptq dt “

ż 1

0
f pv pzqq dv pzq “

ż 1

0
q ptq dv ptq “

ż 1

0
q ptq v1 ptq dt.

Consider the following problem:

Problem A.3.

sup
qPQ˚

"ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt :

ż 1

0
q ptq v1 ptq dt ě R0

*
.

Lemma A.4. If q˚ is optimal for Problem (A.3), then f˚ :“ q˚ ˝ T is optimal for Problem (A.1).
Moreover, Y1̊ :“ X ´ f˚ p1´ FX pXqq is optimal for Problem (3.1) and comonotonic with X, and
Y2̊ :“ X ´ f˚ pFX pXqq is optimal for Problem (3.1) and anti-comonotonic with X.
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Proof. Suppose q˚ is optimal for Problem (A.3), and let f˚ :“ q˚ ˝ T . Then q˚ ptq “ f˚ pv ptqq, for all
t P p0, 1q. Since q˚ is feasible for Problem (A.3), we have that for all t P p0, 1q, q˚ ptq ě 0 and q˚ is
nondecreasing and left-continuous. Therefore, since T is increasing and continuous, it follows that f˚ is
nondecreasing and left-continuous. That is, f˚ P Q. Moreover, for all t P p0, 1q, f˚ ptq “ q˚ pT ptqq ě 0.
Hence, f˚ P Q˚. Furthermore,

ż 1

0
f˚ ptq dt “

ż 1

0
f˚ pv pzqq dv pzq “

ż 1

0
q˚ pzq v1 pzq dz ě R0,

where the last inequality follows from the feasibility of q˚ for Problem (A.3). Therefore, f˚ is feasible
for Problem (A.1).

To show optimality of f˚ for Problem (A.1), let f be any other feasible solution for Problem (A.1).
Then:

ż 1

0
u
´
W0 ´Π´ f ptq

¯
T 1 ptq dt “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dT ptq “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dv´1 ptq

“
ż 1

0
u
´
W0 ´Π´ f pv pzqq

¯
dz “

ż 1

0
u
´
W0 ´Π´ q pzq

¯
dz,

where q :“ f ˝ v. Therefore, to show optimality of f˚ for Problem (A.1), it remains to show that q is
feasible for Problem (A.3). Since f is feasible for Problem (A.1), it is nondecreasing, left-continuous,
and satisfies, for all t P p0, 1q, f ptq ě 0. Therefore, since v is increasing and continuous (by the inverse
function theorem), q is nondecreasing, left-continuous, and satisfies, for all t P p0, 1q, q ptq “ f pv ptqq ě 0.
Therefore, q P Q˚. Furthermore,

ż 1

0
q˚ ptq v1 ptq dt “

ż 1

0
f˚ pv ptqq dv ptq “

ż 1

0
f pzq dz ě R0,

where the last inequality follows from the feasibility of f for Problem (A.1). Thus, q is feasible for
Problem (A.3), which concludes the proof that f˚ is optimal for Problem (A.1).

We now show that Y1̊ :“ X ´ f˚ p1´ FX pXqq is optimal for Problem (3.1) and comonotonic with
X. Since FX is increasing, Y1̊ is clearly comonotonic with X. To show that Y1̊ is optimal for Problem
(3.1), it suffices to show that R1̊ :“ f˚ p1´ FX pXqq is optimal for Problem (3.2). Since f˚ is optimal
for Problem (A.1), it is optimal for Problem (A.1) (by monotonicity of u). The rest follows from Lemma
A.2.

We now show that Y2̊ :“ X ´ f˚ pFX pXqq is optimal for Problem (3.1) and anti-comonotonic with
X. Since FX is increasing, Y2̊ is clearly anti-comonotonic with X. To show that Y2̊ is optimal for
Problem (3.1), it suffices to show that R2̊ :“ f˚ pFX pXqq is optimal for Problem (3.2). Since f˚ is
optimal for Problem (A.1), it is optimal for Problem (A.1) (by monotonicity of u). The rest follows
from Lemma A.2. �

In light of Lemma A.4, we turn our attention to solving Problem (A.3). In order to do that, we will use
a similar methodology to the one used by Xu [50], but adapted to the present setting. Recall that for
a continuous real-valued function f on a non-empty convex subset of R containing the interval r0, 1s,
the convex envelope of f on the interval r0, 1s is an absolutely continuous real-valued function g such
that:

(1) g p0q “ f p0q and g p1q “ f p1q;
(2) g is convex on r0, 1s;
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(3) For all x P r0, 1s, g pxq ď f pxq; and,

(4) g is affine on tx P r0, 1s : g pxq ă f pxqu.
Moreover,

(5) If f is increasing, then so is g;

(6) If f is differentiable on p0, 1q, then g is continuously differentiable on p0, 1q.

Lemma A.5. Let δ be the convex envelope of v “ T´1 on r0, 1s. Then for any q P Q˚,
ż 1

0
q ptq v1 ptq dt ď

ż 1

0
q ptq δ1 ptq dt.

Proof. Let δ be the convex envelope of the function v “ T´1 on r0, 1s. Since δ ptq ď v ptq, for all
t P r0, 1s, and v p1q “ δ p1q, it follows from Fubini’s Theorem that

0 ě
ż 1

0
rpv p1q ´ δ p1qq ´ pv pyq ´ δ pyqqs dq pyq “

ż 1

0

ż 1

y

“
v1 pxq ´ δ1 pxq‰ dx dq pyq

“
ż 1

0

ż x

0

“
v1 pxq ´ δ1 pxq‰ dq pyq dx “

ż 1

0

„ż x

0
dq pyq

 “
v1 pxq ´ δ1 pxq‰ dx “

ż 1

0
q pxq “v1 pxq ´ δ1 pxq‰ dx.

�

Now consider the following problem:

Problem A.6.

sup
qPQ˚

"ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt :

ż 1

0
q ptq δ1 ptq dt ě R0

*
.

We first solve Problem (A.6) and then show that the solution is also optimal for Problem (A.3).

Lemma A.7. If q˚ P Q˚ satisfies:

(1)
ş1
0 δ
1 ptq q˚ ptq dt “ R0; and,

(2) There exists some λ ě 0 such that for all t P p0, 1q,

q˚ ptq “ arg max
yě0

"
u pW0 ´Π´ yq ` λyδ1 ptq

*
,

then q˚ is optimal for Problem (A.6).

Proof. Let q˚ P Q˚ be such that the two conditions above are satisfied. Then q˚ is feasible for Problem
(A.6). To show optimality, let q P Q˚ be any feasible solution for Problem (A.6). Then, by definition
of q˚, it follows that for each t,

u
´
W0 ´Π´ q˚ ptq

¯
´ u

´
W0 ´Π´ q ptq

¯
ě λ

“
δ1 ptq q ptq ´ δ1 ptq q˚ ptq‰ .
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Hence,
ż 1

0
u
´
W0 ´Π´ q˚ ptq

¯
dt´

ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt ě λ

„ż 1

0
δ1 ptq q ptq dt´

ż 1

0
δ1 ptq q˚ ptq dt



“ λ

„ż 1

0
δ1 ptq q ptq dt´R0


ě 0.

Therefore,
ş1
0 u pW0 ´Π´ q˚ ptqq dt ě ş1

0 u pW0 ´Π´ q ptqq dt. �

Lemma A.8. For each λ ě 0, define the function qλ̊ by

(A.2) qλ̊ ptq :“ max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λδ1 ptq

˙
.

Then:

(1) For each λ ě 0, qλ̊ P Q˚;

(2) There exists λ˚ ě 0 such that
ş1
0 δ
1 ptq qλ̊˚ ptq dt “ R0; and

(3) For all t P p0, 1q, qλ̊ ptq “ arg maxyě0

"
u pW0 ´Π´ yq ` λyδ1 ptq

*
.

Proof. Follows from Remark 2.4, from the monotonicity and continuity properties of δ1, from Assump-
tion 2.2 and Assumption 3.3, and from the Intermediate Value Theorem. �

Therefore, lemmata A.5, A.7, and A.8 imply that for any λ ě 0 and any q P Q˚,
ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptq v1 ptq

ı
dt “

ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt` λ

ż 1

0
q ptq v1 ptq dt

ď
ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt` λ

ż 1

0
q ptq δ1 ptq dt

“
ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptq δ1 ptq

ı
dt

ď
ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptq δ1 ptq

ı
dt,

where qλ̊ is as in eq. (A.2). Now, for all λ ě 0, since qλ̊ is monotone, it is differentiable a.e., and we
have:

qλ̊ ptq “
"

0 if W0 ´Π´ pu1q´1 pλδ1 ptqq ď 0,

W0 ´Π´ pu1q´1 pλδ1 ptqq if 0 ăW0 ´Π´ pu1q´1 pλδ1 ptqq ,
and

(A.3) dqλ̊ ptq “
#

0 if W0 ´Π´ pu1q´1 pλδ1 ptqq ď 0,

´λ
´
pu1q´1

¯1 pλδ1 ptqq dδ1 ptq if 0 ăW0 ´Π´ pu1q´1 pλδ1 ptqq ,

Now, define the subsets A and B of r0, 1s by

A :“
!
t P r0, 1s : δ ptq “ v ptq

)
and B :“

!
t P r0, 1s : δ ptq ‰ v ptq

)
“

!
t P r0, 1s : δ ptq ă v ptq

)
.
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Then for any λ ą 0,

ż 1

0
rv ptq ´ δ ptqs dqλ̊ ptq “

ż

A
rv ptq ´ δ ptqs dqλ̊ ptq `

ż

B
rv ptq ´ δ ptqs dqλ̊ ptq “

ż

B
rv ptq ´ δ ptqs dqλ̊ ptq .

But, since δ is affine on B, dδ1 “ 0 on B, and it follows from eq. (A.3) that dqλ̊ ptq “ 0 on B.
Consequently,

ż 1

0
rv ptq ´ δ ptqs dqλ̊ ptq “ 0.

Therefore, applying Fubini’s theorem as in the proof of Lemma A.5 gives

0 “
ż 1

0
rv ptq ´ δ ptqs dqλ̊ ptq “

ż 1

0
rpv p1q ´ δ p1qq ´ pv pyq ´ δ pyqqs dqλ̊ pyq “

ż 1

0

ż 1

y

“
v1 pxq ´ δ1 pxq‰ dx dqλ̊ pyq

“
ż 1

0

ż x

0

“
v1 pxq ´ δ1 pxq‰ dqλ̊ pyq dx “

ż 1

0

„ż x

0
dqλ̊ pyq

 “
v1 pxq ´ δ1 pxq‰ dx “

ż 1

0
qλ̊ pxq

“
v1 pxq ´ δ1 pxq‰ dx.

Consequently,
ş1
0 qλ̊ ptq v1 ptq dt “

ş1
0 qλ̊ ptq δ1 ptq dt. Therefore, for all λ ě 0 and all q P Q˚,

ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptq v1 ptq

ı
dt ď

ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptq δ1 ptq

ı
dt

“
ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptq v1 ptq

ı
dt.

Hence, if λ˚ is chosen such that
ş1
0 qλ̊˚ ptq v1 ptq dt “ R0, then the optimal solution to Problem (A.3) is

given by qλ̊˚ . Thus, By lemmata A.4, A.7, and A.8, the function Y1̊ :“ X ´ q˚
ˆ
T
´

1 ´ FX pXq
¯˙

is

optimal for Problem (3.1) and comonotonic with X, and the function Y2̊ :“ X ´ q˚
ˆ
T
´
FX pXq

¯˙
is

optimal for Problem (3.1) and anti-comonotonic with X, where:

‚ For all t P r0, 1s, q˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚δ1 ptq

˙
;

‚ δ is the convex envelope of v “ T´1 on r0, 1s; and,

‚ λ˚ is chosen such that
ş1
0 q
˚ ptq v1 ptq dt “ ş1

0 q
˚ ptq δ1 ptq dt “ R0.

This concludes the proof of Theorem 3.4. l

Appendix B. Proof of Corollary 3.5

If the DM is ambiguity neutral, that is, T ptq “ t, for all t P r0, 1s, then T´1 ptq “ v ptq “ δ ptq “ t, for
all t P r0, 1s, and so δ1 ptq “ v1 ptq “ 1. If the DM is ambiguity averse, that is, T is convex (and strictly
increasing) on r0, 1s, then T´1 is concave and strictly increasing on r0, 1s, and so δ is affine on r0, 1s.
Since T p0q “ 0 and T p1q “ 1, this implies that δ ptq “ t, for all t P r0, 1s. Consequently, δ1 ptq “ 1 on
r0, 1s.
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In both cases, Theorem 3.4 implies that the function Y ˚ “ X ´ max

„
0,W0 ´ Π ´ pu1q´1 pλ˚q


is

optimal for Problem (3.1) and comonotonic with X, where λ˚ is chosen such that

(B.1)

ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1 pλ˚q


dt “ R0.

If R0 “ 0, that is Π “ ş
XdP , then eq. (B.1) implies that λ˚ ď u1 pW0 ´Πq. For this choice of λ˚,

the retention is zero, and so Y ˚ “ X (full insurance) is optimal. If R0 ą 0, then eq. (B.1) implies that

W0 ´Π´ pu1q´1 pλ˚q ą 0, and that R0 “W0 ´Π´ pu1q´1 pλ˚q. Hence, Y ˚ “ X ´R0. l

Appendix C. Proof of Corollary 3.6

Suppose that the DM is ambiguity seeking, that is, T is concave (and strictly increasing) on r0, 1s.
It then follows that T´1 is convex and strictly increasing on r0, 1s, and so δ ptq “ T´1 ptq “ v ptq,
for all t P r0, 1s. Consequently, for all t P r0, 1s, δ1 ptq “ 1

T 1pT´1ptqq . Therefore, Theorem 3.4 implies

that the function Y ˚ “ X ´max

„
0,W0 ´Π´ pu1q´1

´
λ˚

T 1p1´FXpXqq
¯

is optimal for Problem (3.1) and

comonotonic with X, where λ˚ is chosen such that

R0 “
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

T 1 pT´1 ptqq
˙
v1 ptq dt

“
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

T 1 pT´1 ptqq
˙
δ1 ptq dt

“
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

T 1 pT´1 ptqq
˙ˆ

1

T 1 pT´1 ptqq
˙
dt

Now, for any s P S, Y ˚ psq “ X psq if and only if max

„
0,W0 ´ Π ´ pu1q´1

´
λ˚

T 1p1´FXpXpsqqq
¯

“ 0,

that is, if and only if W0 ´ Π ´ pu1q´1
´

λ˚
T 1p1´FXpXpsqqq

¯
ď 0. Hence, by strict concavity of u and T ,

Y ˚ psq “ X psq if and only if

(C.1) 1´ `
T 1
˘´1

ˆ
λ˚

u1 pW0 ´Πq
˙
ď FX pX psqq .

Therefore, since FX pX psqq P r0, 1s, for all s P S, it follows that:

(1) If pT 1q´1
´

λ˚
u1pW0´Πq

¯
ă 0, i.e., if λ˚

u1pW0´Πq ą T 1 p0q, then
!
s P S : Y ˚ psq “ X psq

)
“ ∅. In

other words, the optimal indemnity is always less than full insurance.

(2) If pT 1q´1
´

λ˚
u1pW0´Πq

¯
ą 1, i.e., if λ˚

u1pW0´Πq ă T 1 p1q, then FX pX psqq ą 1 ´ pT 1q´1

ˆ
λ˚

u1pW0´Πq

˙
,

for all s P S, and so
!
s P S : Y ˚ psq “ X psq

)
“ S. In other words, full insurance is optimal.
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(3) If pT 1q´1
´

λ˚
u1pW0´Πq

¯
P r0, 1s, i.e., if λ˚

u1pW0´Πq P rT 1 p1q , T 1 p0qs, then eq. (C.1) yields X psq ě
F´1
X

ˆ
1 ´ pT 1q´1

´
λ˚

u1pW0´Πq
¯˙

, and so
!
s P S : Y ˚ psq “ X psq

)
“

!
s P S : X psq ď L

)
, where

L :“ F´1
X

ˆ
1´ pT 1q´1

´
λ˚

u1pW0´Πq
¯˙

ě 0. In other words, small losses are fully insured.

This concludes the proof of Corollary 3.6. l

Appendix D. Proof of Theorem 3.10

Recall Problem (3.7):

sup
Y PBpΣq

"ż
u
´
W0 ´Π´R

¯
dT1 ˝ P : R ě 0,

ż
R dT2 ˝ P ě rR0

*
.

Now, for all R P B pΣq, the fact that u is increasing and U “ FX pXq is uniformly distributed implies
that

ż
u pW0 ´Π´Rq dT1 ˝ P “

ż
T 11 pUqu

`
W0 ´Π´ F´1

R pUq˘ dP “
ż 1

0
T 11 ptqu

`
W0 ´Π´ F´1

R ptq˘ dt.

Moreover, ż
RdT2 ˝ P “

ż
T 12 p1´ UqF´1

R pUq dP “
ż 1

0
T 12 p1´ tqF´1

R ptq dt,
and R ě 0 whenever F´1

R ptq ě 0, for all t P p0, 1q .

As before, let Q denote the collection of all quantile functions and let Q˚ be as in eq. (A.1). That
is, Q˚ denotes the collection of all quantile functions f that satisfy f ptq ě 0, for all t P p0, 1q. Consider
the following problem:

Problem D.1.

sup
fPQ˚

"ż 1

0
u
´
W0 ´Π´ f ptq

¯
T 11 ptq dt :

ż 1

0
T 12 p1´ tq f ptq dt ě rR0

*
.

By a proof similar to that of Lemma A.2, we obtain the following result.

Lemma D.2. If f˚ is optimal for Problem (D.1), then both R1̊ :“ f˚ p1´ FX pXqq and R2̊ :“
f˚ pFX pXqq are optimal for Problem (3.7). Moreover, R1̊ is anti-comonotonic with X and R2̊ is
comonotonic with X.

Now, letting v ptq “ T´1
1 ptq and using the change of variable z “ v´1 ptq gives

ż 1

0
u
´
W0 ´Π´ f ptq

¯
T 11 ptq dt “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dT1 ptq “

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dv´1 ptq

“
ż 1

0
u
´
W0 ´Π´ f pv pzqq

¯
dz “

ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt,

where q ptq :“ f pv ptqq, for all t P p0, 1q. Moreover,
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ż 1

0
f ptqT 12 p1´ tq dt “

ż 1

0
f pv pzqqT 12 p1´ v pzqq dv pzq “

ż 1

0
q pzqT 12 p1´ v pzqq v1 pzq dz

“
ż 1

0
q ptqT 12

`
1´ T´1

1 ptq˘ `T´1
1

˘1 ptq dt “
ż 1

0
q ptq

«
T 12

`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
ff
dt

“
ż 1

0
q ptqΨ1 ptq dt,

where the function Ψ is defined on r0, 1s by

(D.1) Ψ ptq :“
ż t

0

«
T 12

`
1´ T´1

1 pxq˘

T 11
`
T´1

1 pxq˘
ff
dx “ 1´ T2

`
1´ T´1

1 ptq˘ .

Now, consider the following problem:

Problem D.3.

sup
qPQ˚

"ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt :

ż 1

0
q ptqΨ1 ptq dt ě rR0

*
.

By a proof similar to that of Lemma A.4, we obtain the following result.

Lemma D.4. If q˚ is optimal for Problem (D.3), then f˚ :“ q˚ ˝ T1 is optimal for Problem (D.1).

In light of Lemma D.4, we turn our attention to solving Problem (D.3). By a proof similar to that of
Lemma A.5, we obtain the following result.

Lemma D.5. Let δ be the convex envelope of Ψ on r0, 1s. Then for any q P Q˚,
ż 1

0
q ptqΨ1 ptq dt ď

ż 1

0
q ptq δ1 ptq dt.

Now, consider the following problem.

Problem D.6.

sup
qPQ˚

"ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt :

ż 1

0
q ptq δ1 ptq dt ě rR0

*
.

We first solve Problem (D.6) and then show that the solution is also optimal for Problem (D.3). By a
proof similar to that of Lemma A.7, we obtain the following result.

Lemma D.7. If q˚ P Q˚ satisfies:

(1)
ş1
0 δ
1 ptq q˚ ptq dt “ rR0; and,

(2) There exists some λ ě 0 such that for all t P p0, 1q,
q˚ ptq “ arg max

yě0

"
u pW0 ´Π´ yq ` λyδ1 ptq

*
,
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then q˚ is optimal for Problem (D.6).

By a proof similar to that of Lemma A.8, we obtain the following result.

Lemma D.8. For each λ ě 0, define the function qλ̊ by

(D.2) qλ̊ ptq :“ max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λδ1 ptq

˙
.

Then:

(1) For each λ ě 0, qλ̊ P Q˚;

(2) There exists λ˚ ě 0 such that
ş1
0 δ
1 ptq qλ̊˚ ptq dt “ rR0; and

(3) For all t P p0, 1q, qλ̊˚ ptq “ arg maxyě0

"
u pW0 ´Π´ yq ` λyδ1 ptq

*
.

Therefore, lemmata D.5, D.7, and D.8 imply that for any λ ě 0 and any q P Q˚,
ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptqΨ1 ptq

ı
dt “

ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt` λ

ż 1

0
q ptqΨ1 ptq dt

ď
ż 1

0
u
´
W0 ´Π´ q ptq

¯
dt` λ

ż 1

0
q ptq δ1 ptq dt

“
ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptq δ1 ptq

ı
dt

ď
ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptq δ1 ptq

ı
dt,

where qλ̊ is as in eq. (D.2). Now, for all λ ě 0, since qλ̊ is monotone, it is differentiable a.e., and we
have:

qλ̊ ptq “
"

0 if W0 ´Π´ pu1q´1 pλδ1 ptqq ď 0,

W0 ´Π´ pu1q´1 pλδ1 ptqq if 0 ăW0 ´Π´ pu1q´1 pλδ1 ptqq ,
and

(D.3) dqλ̊ ptq “
#

0 if W0 ´Π´ pu1q´1 pλδ1 ptqq ď 0,

´λ
´
pu1q´1

¯1 pλδ1 ptqq dδ1 ptq if 0 ăW0 ´Π´ pu1q´1 pλδ1 ptqq ,

Now, define the subsets A and B of r0, 1s by:

A :“
!
t P r0, 1s : δ ptq “ Ψ ptq

)
and B :“

!
t P r0, 1s : δ ptq ‰ Ψ ptq

)
“

!
t P r0, 1s : δ ptq ă Ψ ptq

)
.

Then for any λ ą 0,
ż 1

0
rΨ ptq ´ δ ptqs dqλ̊ ptq “

ż

A
rΨ ptq ´ δ ptqs dqλ̊ ptq `

ż

B
rΨ ptq ´ δ ptqs dqλ̊ ptq “

ż

B
rΨ ptq ´ δ ptqs dqλ̊ ptq .

But, since δ is affine on B, dδ1 “ 0 on B, and it follows from eq. (D.3) that dqλ̊ ptq “ 0 on B.
Consequently, ż 1

0
rΨ ptq ´ δ ptqs dqλ̊ ptq “ 0.
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Therefore, applying Fubini’s theorem, as in the proof of Lemma A.5, gives

0 “
ż 1

0
rΨ ptq ´ δ ptqs dqλ̊ ptq “

ż 1

0
rpΨ p1q ´ δ p1qq ´ pΨ pyq ´ δ pyqqs dqλ̊ pyq “

ż 1

0

ż 1

y

“
Ψ1 pxq ´ δ1 pxq‰ dx dqλ̊ pyq

“
ż 1

0

ż x

0

“
Ψ1 pxq ´ δ1 pxq‰ dqλ̊ pyq dx “

ż 1

0

„ż x

0
dqλ̊ pyq

 “
Ψ1 pxq ´ δ1 pxq‰ dx “

ż 1

0
qλ̊ pxq

“
Ψ1 pxq ´ δ1 pxq‰ dx.

Consequently,
ş1
0 qλ̊ ptqΨ1 ptq dt “ ş1

0 qλ̊ ptq δ1 ptq dt. Therefore, for all λ ě 0 and all q P Q˚,
ż 1

0

”
u
´
W0 ´Π´ q ptq

¯
` λq ptqΨ1 ptq

ı
dt ď

ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptq δ1 ptq

ı
dt

“
ż 1

0

”
u
´
W0 ´Π´ qλ̊ ptq

¯
` λqλ̊ ptqΨ1 ptq

ı
dt.

Hence, if λ˚ is chosen such that
ş1
0 qλ̊˚ ptqΨ1 ptq dt “ rR0, then the optimal solution to Problem (D.3)

is given by qλ̊˚ . Thus, By lemmata D.2, D.4, D.7, and D.8, the function R1̊ :“ f˚ p1´ FX pXqq “
q˚ pT1 p1´ FX pXqqq is optimal for Problem (3.7) and anti-comonotonic with X, and the function
R2̊ :“ f˚ pFX pXqq “ q˚ pT1 pFX pXqqq is optimal for Problem (3.7) and comonotonic with X, where:

‚ For all t P r0, 1s, q˚ ptq “ max

„
0,W0 ´Π´ pu1q´1

ˆ
λ˚δ1 ptq

˙
;

‚ δ is the convex envelope of Ψ on r0, 1s; and,

‚ λ˚ is chosen such that
ş1
0 q
˚ ptqΨ1 ptq dt “ rR0.

This concludes the proof of Theorem 3.10. l

Appendix E. Proof of Corollary 3.11

Suppose that for each t P r0, 1s, we have

T 22 p1´ tq
T 12 p1´ tq

ě ´T
2
1 ptq
T 11 ptq

.

Then, for each each t P r0, 1s, we have

T 22
`
1´ T´1

1 ptq˘

T 12
`
1´ T´1

1 ptq˘ ě ´
T 21

`
T´1

1 ptq˘

T 11
`
T´1

1 ptq˘ .

Consequently, for each each t P r0, 1s, we have

T 11
`
T´1

1 ptq˘T 22
`
1´ T´1

1 ptq˘` T 12
`
1´ T´1

1 ptq˘T 21
`
T´1

1 ptq˘ ě 0.

Therefore, for each each t P r0, 1s, we have

Ψ2 ptq “ ´
˜
T 11

`
T´1

1 ptq˘T 22
`
1´ T´1

1 ptq˘` T 12
`
1´ T´1

1 ptq˘T 21
`
T´1

1 ptq˘
“
T 11

`
T´1

1 ptq˘‰3

¸
ď 0,

That is, Ψ is concave on r0, 1s, and hence δ is affine on r0, 1s. Since Ψ p0q “ 0 and Ψ p1q “ 1, this
implies that δ ptq “ t, for all t P r0, 1s. Consequently, δ1 ptq “ 1 on r0, 1s.
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Theorem 3.10 then implies that the function R˚ “ max

„
0,W0´Π´pu1q´1 pλ˚q


is optimal for Problem

(3.7) and comonotonic with X, where λ˚ is chosen such that

(E.1)

ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1 pλ˚q


dt “ rR0.

If rR0 “ 0, that is Π “ ş
XdP , then eq. (E.1) implies that λ˚ ď u1 pW0 ´Πq. For this choice of λ˚, the

retention is zero: R˚ “ 0. If rR0 ą 0, then eq. (E.1) implies that W0 ´ Π ´ pu1q´1 pλ˚q ą 0, and that
rR0 “W0 ´Π´ pu1q´1 pλ˚q. Hence, in this case, R˚ “ rR0 ą 0, a constant. l

Appendix F. Proof of Corollary 3.12

Suppose that for each t P r0, 1s, we have

T 22 p1´ tq
T 12 p1´ tq

ď ´T
2
1 ptq
T 11 ptq

.

Then, for each each t P r0, 1s, we have

T 22
`
1´ T´1

1 ptq˘

T 12
`
1´ T´1

1 ptq˘ ď ´
T 21

`
T´1

1 ptq˘

T 11
`
T´1

1 ptq˘ .

Consequently, for each each t P r0, 1s, we have

T 11
`
T´1

1 ptq˘T 22
`
1´ T´1

1 ptq˘` T 12
`
1´ T´1

1 ptq˘T 21
`
T´1

1 ptq˘ ď 0.

Therefore, for each each t P r0, 1s, we have

Ψ2 ptq “ ´
˜
T 11

`
T´1

1 ptq˘T 22
`
1´ T´1

1 ptq˘` T 12
`
1´ T´1

1 ptq˘T 21
`
T´1

1 ptq˘
“
T 11

`
T´1

1 ptq˘‰3

¸
ě 0,

That is, Ψ is convex on r0, 1s, and hence δ “ Ψ on r0, 1s. Consequently, for all t P r0, 1s,

δ1 ptq “ Ψ1 ptq “ T 12
`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘ .

Theorem 3.10 then implies that the function R˚ :“ max

„
0,W0 ´ Π ´ pu1q´1

ˆ
λ˚

´
T 12pFXpXqq
T 11p1´FXpXqq

¯˙
is

optimal for Problem (3.7), where λ˚ is chosen such that

rR0 “
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 12

`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
¸˙

Ψ1 ptq dt

“
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 12

`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
¸˙˜

T 12
`
1´ T´1

1 ptq˘

T 11
`
T´1

1 ptq˘
¸
dt.

l
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Appendix G. Proof of Corollary 3.14

If T is linear, then T ptq “ t for all t P r0, 1s, and so Ψ ptq “ 1´ T `
1´ T´1 ptq˘ “ t, for all t P r0, 1s.

Therefore, Ψ “ δ and so δ1 ptq “ Ψ1 ptq “ 1, for all t P r0, 1s. Similarly, if T is convex, then Ψ is concave
on r0, 1s, and hence δ is affine on r0, 1s. Since Ψ p0q “ 0 and Ψ p1q “ 1, this implies that δ ptq “ t, for
all t P r0, 1s. Consequently, δ1 ptq “ 1 on r0, 1s.

Corollary 3.13 then implies that the function R˚ “ max

„
0,W0´Π´pu1q´1 pλ˚q


is optimal for Problem

(3.7) and comonotonic with X, where λ˚ is chosen such that

(G.1)

ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1 pλ˚q


dt “ rR0.

If rR0 “ 0, that is Π “ ş
XdT2 ˝ P , then eq. (G.1) implies that λ˚ ď u1 pW0 ´Πq. For this choice of λ˚,

the retention is zero: R˚ “ 0. If rR0 ą 0, then eq. (G.1) implies that W0 ´ Π ´ pu1q´1 pλ˚q ą 0, and

that rR0 “W0 ´Π´ pu1q´1 pλ˚q. Hence, in this case, R˚ “ rR0 ą 0, a constant. l

Appendix H. Proof of Corollary 3.15

If T is concave, then Ψ is convex on r0, 1s, and hence δ “ Ψ on r0, 1s. Consequently, for all t P r0, 1s,

δ1 ptq “ Ψ1 ptq “ T 1
`
1´ T´1 ptq˘

T 1 pT´1 ptqq .

Corollary 3.13 then implies that the function R˚ :“ max

„
0,W0 ´ Π ´ pu1q´1

ˆ
λ˚

´
T 1pFXpXqq
T 1p1´FXpXqq

¯˙
is

optimal for Problem (3.7), where λ˚ is chosen such that

rR0 “
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 1

`
1´ T´1 ptq˘

T 1 pT´1 ptqq

¸˙
Ψ1 ptq dt

“
ż 1

0
max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λ˚

˜
T 1

`
1´ T´1 ptq˘

T 1 pT´1 ptqq

¸˙˜
T 1

`
1´ T´1 ptq˘

T 1 pT´1 ptqq

¸
dt.

l

Appendix I. Proof of Theorem 4.7

Recall Problem (4.2):

sup
RPBpΣq

"ż
u
´
W0 ´Π´R

¯
dP : R ě 0,

ż
RdQ ě R0 :“

ż
XdQ´Π

*
.

Clearly, R˚ is optimal for Problem (4.2) if and only if Y ˚ “ X ´ R˚ is optimal for Problem (4.1).
Therefore, we focus on solving Problem (4.2).

Proposition I.1. For any R P B pΣq that is feasible for Problem (4.2), there exists rR P B pΣq, also
feasible for Problem (4.2) such that:

‚ rR is comonotonic with h;
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‚ ş
u pW0 ´Π´Rq dP “ ş

u
´
W0 ´Π´ rR

¯
dP ; and,

‚ ş rRdQ ě ş
RdQ.

Proof. Let U :“ Fh phq, where h “ dQ{dP . By Assumption 4.5, U is a uniformly distributed random
variable on p0, 1q and h “ F´1

h

`
U
˘
, P -a.s. [20, Lemma A.25]. Now, for all R P B pΣq, the random

variable rR :“ F´1
R

`
U
˘

is the nondecreasing rearrangement of R with respect to h (see Ghossoub [25]

and references therein), and hence R and rR are identically distributed under P . Therefore, for all
R P B pΣq, we have

ż
u pW0 ´Π´Rq dP “

ż
u
`
W0 ´Π´ F´1

R pUq˘ dP

“
ż 1

0
u
`
W0 ´Π´ F´1

R ptq˘ dt “
ż
u
´
W0 ´Π´ rR

¯
dP.

Moreover, by the Hardy-Littlewood inequality (e.g., [20, Theorem A.28]), we have for all R P B pΣq
that are feasible for Problem (4.2),

R0 ď
ż
RdQ “

ż
RhdP ď

ż
F´1
R

`
U
˘
F´1
h

`
U
˘
dP “

ż
F´1
R

`
U
˘
hdP “

ż
rRdQ,

and R ě 0 whenever F´1
R ptq ě 0, for all t P p0, 1q . �

Hence, in light of Proposition I.1, we can focus on obtaining solutions to Problem (4.2) that are of the
form f

`
U
˘
, where f is a quantile function of some random variable R P B` pΣq. We denote by Q˚ the

collection of all such quantile functions. That is,

Q˚ “
!
f P Q : f ptq ě 0, for each 0 ă t ă 1

)
,

where Q denotes the collection of all quantile functions. That is,

Q “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
.

Consider the following problem:

Problem I.2.

sup
fPQ˚

"ż 1

0
u
´
W0 ´Π´ f ptq

¯
dt :

ż 1

0
f ptqF´1

h ptq dt ě R0

*
.

Lemma I.3. If f˚ is optimal for Problem (I.2), then R˚ :“ f˚
`
U
˘

is optimal for Problem (4.2) and
comonotonic with h.

Proof. Let f˚ be optimal for Problem (I.2). Then, by definition of Q˚, f˚ is the quantile function
of some Z P B pΣq such that Z ě 0. By assumption of nonatomicity of P ˝ h´1, U “ Fh phq is
uniformly distributed random variable on p0, 1q and h “ F´1

h

`
U
˘
, P -a.s. [20, Lemma A.25]. Therefore,
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R˚ “ f˚
`
U
˘

is the nondecreasing equimeasurable rearrangement of Z with respect to h, and hence
R˚ ě 0 and FR˚ “ FZ (e.g., [25]). Moreover,

ż
R˚dQ “

ż
R˚hdP “

ż
f˚

`
U
˘
F´1
h

`
U
˘
dP “

ż 1

0
f˚ ptqF´1

h ptq dt ě R0,

where the last inequality follows from the feasibility of f˚ for Problem (I.2). Hence, both R˚ is feasible
for Problem (4.2).

To show optimality of R˚ for Problem (4.2), let R by any other feasible solution for Problem (4.2)
and F´1

R its quantile function. then F´1
R P Q˚, and the Hardy-Littlewood inequality implies that

ż 1

0
F´1
R ptqF´1

h ptq dt “
ż
F´1
R

`
U
˘
F´1
h

`
U
˘
dP

ě
ż
RF´1

h

`
U
˘
dP “

ż
RhdP “

ż
RdQ ě R0,

where the last inequality follows form the feasibility of R for Problem (4.2). Thus, F´1
R is feasible for

Problem (I.2), and hence
ż
u pW0 ´Π´Rq dP “

ż 1

0
u
`
W0 ´Π´ F´1

R ptq˘ dt

ď
ż 1

0
u
´
W0 ´Π´ f˚ ptq

¯
dt “

ż 1

0
u
´
W0 ´Π´ F´1

Z ptq
¯
dt

“
ż 1

0
u
´
W0 ´Π´ F´1

R˚ ptq
¯
dt “

ż
u pW0 ´Π´R˚q dP.

Therefore, R˚ is optimal or Problem (4.2). �

Lemma I.4. If f˚ P Q˚ satisfies:

(1)
ş1
0 F

´1
h ptq f˚ ptq dt “ R0; and,

(2) There exists some λ ě 0 such that for all t P p0, 1q,
f˚ ptq “ arg max

yě0

"
u pW0 ´Π´ yq ` λyF´1

h ptq
*
,

then f˚ is optimal for Problem (I.2).

Proof. Let f˚ P Q˚ be such that the two conditions above are satisfied. Then f˚ is feasible for Problem
(I.2). To show optimality, let f P Q˚ be any feasible solution for Problem (I.2). Then, by definition of
f˚, it follows that for each t,

u
´
W0 ´Π´ f˚ ptq

¯
´ u

´
W0 ´Π´ f ptq

¯
ě λ

“
F´1
h ptq f ptq ´ F´1

h ptq f˚ ptq‰ .
Hence,
ż 1

0
u
´
W0 ´Π´ f˚ ptq

¯
dt´

ż 1

0
u
´
W0 ´Π´ f ptq

¯
dt ě λ

„ż 1

0
F´1
h ptq f ptq dt´

ż 1

0
F´1
h ptq f˚ ptq dt



“ λ

„ż 1

0
F´1
h ptq f ptq dt´R0


ě 0.

Therefore,
ş1
0 u pW0 ´Π´ f˚ ptqq dt ě ş1

0 u pW0 ´Π´ f ptqq dt. �
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Lemma I.5. For each λ ě 0, define the function fλ̊ by

(I.1) fλ̊ ptq :“ max

„
0,W0 ´Π´ `

u1
˘´1

ˆ
λF´1

h ptq
˙
.

Then:

(1) For each λ ě 0, fλ̊ P Q˚;

(2) There exists λ˚ ě 0 such that
ş1
0 F

´1
h ptq fλ̊˚ ptq dt “ R0; and

(3) For all t P p0, 1q, fλ̊˚ ptq “ arg maxyě0

"
u pW0 ´Π´ yq ` λyF´1

h ptq
*
.

Proof. Follows from Remark 2.4, from the monotonicity and continuity properties of the quantile func-

tion F´1
h , from Assumption 4.3 and Assumption 4.4, from the fact that

ş1
0 F

´1
h ptq dt “ ş

hdP “ 1, and
from the Intermediate Value Theorem. �

Hence, by lemmata I.4 and I.5, if λ˚ is chosen such that
ş1
0 fλ̊˚ ptqF´1

h ptq dt “ R0, then the optimal
solution to Problem (I.2) is given by fλ̊˚ , defined as in eq. (I.1). Consequently, by Lemma I.3, the

function R˚ :“ fλ̊˚
´
rU
¯
“ fλ̊˚ pFh phqq is optimal for Problem (4.2) and comonotonic with h. This

concludes the proof of Theorem 4.7. l
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[20] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time – 4th ed. Walter de Gruyter,

2016.
[21] L. Gajek and D. Zagrodny. Insurer’s Optimal Reinsurance Strategies. Insurance Mathematics and Economics,

27(1):105–112, 2000.
[22] L. Gajek and D. Zagrodny. Optimal Reinsurance under General Risk Measures. Insurance Mathematics and Eco-

nomics, 34(2):227–240, 2004.
[23] M. Ghossoub. Budget-Constrained Optimal Insurance with Belief Heterogeneity. mimeo (2018).
[24] M. Ghossoub. Optimal Insurance under Rank-Dependent Expected Utility. mimeo (2018).
[25] M. Ghossoub. Equimeasurable Rearrangements with Capacities. Mathematics of Operations Research, 40(2):429–445,

2015.
[26] M. Ghossoub. Optimal Insurance with Heterogeneous Beliefs and Disagreement about Zero-Probability Events.

Risks, 4(3):29, 2016.
[27] M. Ghossoub. Arrow’s Theorem of the Deducible with Heterogeneous Beliefs. North American Actuarial Journal,

21(1):15–35, 2017.
[28] C. Gollier. The Design of Optimal Insurance Contracts without the Nonnegativity Constraint on Claims. The

Journal of Risk and Insurance, 54(2):314–324, 1987.
[29] M.J. Goovaerts, A.E. Van Heerwaarden, and R. Kaas. Optimal Reinsurance in Relation to Ordering of Risks.

Insurance: Mathematics and Economics, 8(1):11–17, 1989.
[30] X. He, R. Kouwenberg, and X.Y. Zhou. Rank-Dependent Utility and Risk Taking in Complete Markets. SIAM

Journal on Financial Mathematics, 8(1):214–239, 2017.
[31] P.J. Huber and V. Strassen. Minimax Tests and the Neyman-Pearson Lemma for Capacities. The Annals of

Statistics, 1(2):251–263, 1973.
[32] D. Kahneman and A. Tversky. Prospect Theory: An Analysis of Decision Under Risk. Econometrica, 47(2):263–291,

1979.



BUDGET-CONSTRAINED OPTIMAL INSURANCE WITHOUT THE NONNEGATIVITY CONSTRAINT 37

[33] M. Kaluszka. Optimal Reinsurance under Mean-Variance Premium Principles. Insurance: Mathematics and Eco-
nomics, 28(1):61–67, 2001.

[34] M. Kaluszka. An Extension of Arrow’s Result on Optimality of a Stop Loss Contract. Insurance: Mathematics and
Economics, 35(3):527–536, 2004.

[35] M. Kaluszka. Optimal Reinsurance under Convex Principles of Premium Calculation. Insurance: Mathematics and
Economics, 36(3):375–398, 2005.

[36] M. Kaluszka and A. Okolewski. An Extension of Arrow’s Result on Optimal Reinsurance Contract. Journal of
Risk and Insurance, 75(2):275–288, 2008.

[37] T. Knispel, R.J.A. Laeven, and G. Svindland. Robust Optimal Risk Sharing and Risk Premia in Expanding Pools.
Insurance Mathematics and Economics, 70:182–195, 2016.

[38] A. Lo. A Unifying Approach to Risk-Measure-Based Optimal Reinsurance Problems with Practical Constraints.
Scandinavian Actuarial Journal, 2017(7):584–605, 2016.

[39] A. Lo. A Neyman-Pearson Perspective on Optimal Reinsurance with Constraints. ASTIN Bulletin, 47(2):467–499,
2017.

[40] M. Marinacci and L. Montrucchio. Introduction to the Mathematics of Ambiguity. In I. Gilboa (ed.), Uncertainty
in Economic Theory: Essays in Honor of David Schmeidlers 65th Birthday, pages 46–107. Routledge, London, 2004.

[41] J. Mossin. Aspects of Rational Insurance Purchasing. The Journal of Political Economy, 76(4):553–568, 1968.
[42] J. Quiggin. A Theory of Anticipated Utility. Journal of Economic Behavior, 3(4):323–343, 1982.
[43] A. Raviv. The Design of an Optimal Insurance Policy. The American Economic Review, 69(1):84–96, 1979.
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