
Aggregation of Heterogeneous Anomaly
Detectors for Cyber-Physical Systems

by

Murray Dunne

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Murray Dunne 2018

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Portions of this thesis have been adapted from other works currently submitted for peer-
review.

• Section 3.2 is co-authored by Sean Kaufmann and myself.

• The symptom examples in Section 3 were selected by Dr. Giovani Gracioli.

• The eleven anomaly scenarios in Section 7.3 were selected in a cooperation between
Shefali Sharma and myself.

• The Palisade printed circuit boards were developed by Dr. Carlos Moreno. The
Palisade firmware is entirely my own work.

• The autoencoder layout (Figure 4.2) was selected by Shailja Thakur.

• Figure 6.2 is co-authored by Dr. Carlos Moreno and myself.

All of the work in this thesis was completed under the guidance of Dr. Sebastian
Fischmeister at the University of Waterloo. He provided ideas, discussion, and reviewed
this thesis.

iii

Abstract

Distributed, life-critical systems that bridge the gap between software and hardware
are becoming an integral part of our everyday lives. From autonomous cars to smart
electrical grids, such cyber-physical systems will soon be omnipresent. With this comes a
corresponding increase in our vulnerability to cyber-attacks. Monitoring such systems to
detect malicious actions is of critical importance.

One method of monitoring cyber-physical systems is anomaly detection: the process of
detecting when the target system is deviating from expected normal behavior. Anomaly
detection is a vibrant research area with many different viable approaches. The literature
suggests many different anomaly detection methods for the diversity and volume of data
from cyber-physical systems. We focus on aggregating the result of multiple anomaly
detection methods into a final anomalous or non-anomalous verdict.

In this thesis, we present Palisade, a distributed data collection, anomaly detection,
and aggregation framework for cyber-physical systems. We discuss various methods of
anomaly detection and aggregation and include a case study of anomaly aggregation on a
cyber-physical treadmill driving demonstrator. We conclude with a discussion of lessons
learned from the construction of Palisade, and recommendations for future research.

iv

Acknowledgements

Thanks to Dr. Sebastian Fischmeister, my supervisor, for all the help, support, and
the opportunity to pursue this research.

Thanks to Dr. Carlos Moreno for helping with all my questions about hardware design.

v

Dedication

This thesis is dedicated to Kathryn, Tim, and Allie. Thank you for all your support.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 4

2.1 Anomaly Detection . 4

2.2 Ensemble Learning . 5

2.2.1 Diversification . 5

2.2.2 Diversifying Algorithms . 6

2.2.3 Combination Techniques . 8

2.2.4 Deep Learning Based Approaches 10

2.3 Collaborative Intrusion Detection Systems 12

3 Symptoms of Anomalies 13

3.1 Continuous Signal Anomaly Symptoms . 14

3.1.1 Spikes and S-waves . 14

3.1.2 Drifting . 14

3.1.3 Noise . 15

3.1.4 Clipping . 15

vii

3.1.5 Loss . 15

3.1.6 Smoothing . 16

3.1.7 Ampli�cation . 16

3.1.8 Level Change . 17

3.1.9 Frequency Change . 17

3.1.10 Echo/Re�ection . 17

3.2 Event Series Anomaly Symptoms . 19

3.2.1 Event Frequency Change . 19

3.2.2 Unexpected Event . 20

3.2.3 Periods of Silence . 20

3.2.4 Sampled Value Anomaly Symptom 20

4 Anomaly Detectors 22

4.1 Watermark Detector Example: Hash Detector 24

4.2 Statistic Detector Example: Spike Detector 25

4.3 Machine Learning Detector Example: Autoencoder 26

5 Anomaly Aggregators 29

5.1 Simple Majority Vote Aggregator . 31

5.2 Weighted Majority Vote Aggregator . 32

5.3 Logistic Regression Aggregator . 33

5.4 Probability Sum Aggregator . 34

5.5 Stacked Generalization . 35

6 Palisade: Anomaly Detection for Cyber-Physical Systems 37

6.1 Palisade Requirements . 37

6.2 Palisade Terminology . 38

6.3 Palisade Structure . 39

6.3.1 Data Acquisition Units . 40

6.3.2 Software Subsystem . 44

viii

7 Case Study 46

7.1 ADAS Demonstrator . 46

7.2 Experiment Setup . 47

7.3 Anomaly Scenarios . 48

7.3.1 CAPEC 148 - Content Spoo�ng . 48

7.3.2 CAPEC 94 - Man in the Middle . 49

7.3.3 CAPEC 248 - Command Injection 49

7.3.4 CAPEC 548 - Contaminate Resource 49

7.3.5 CAPEC 184 - Software Integrity Attack 50

7.3.6 CAPEC 125 - Flooding . 50

7.3.7 CAPEC 130 - Excessive Allocation 51

7.3.8 CAPEC 594 - Tra�c Injection . 51

7.3.9 CAPEC 607 - Obstruction . 51

7.3.10 CAPEC 176 - Con�guration Manipulation 52

7.3.11 CAPEC 441 - Malicious Logic Insertion 52

7.4 Channels . 53

8 Results and Discussion 54

8.1 Data . 54

8.2 Algorithm Selection . 55

8.3 Methodology . 57

8.4 Discussion . 57

9 Future Work and Conclusion 60

9.1 Lessons Learned . 60

9.2 Future Work . 61

9.3 Conclusion . 62

References 64

ix

List of Tables

7.1 Anomalies In ADAS Experiment . 48

7.2 Anomaly Channels for ADAS Experiment 53

8.1 Experimental Detector Results . 58

x

List of Figures

3.1 Time Series Anomaly Symptoms . 18

4.1 Spike Detector Example - Highlighted Regions are Spikes 27

4.2 Autoencoder Neural Network Layout . 28

5.1 Quantization of Aggregator Input in Time Domain 32

5.2 Stacked Generalization Neural Network Layout 36

6.1 Palisade Hardware Subsystem . 39

6.2 Current Sensor Bandwidth Reduction Method 41

6.3 DAQ Synchronization Signal . 42

6.4 Palisade Software Subsystem . 44

7.1 Abstracted ADAS Demonstrator Layout 46

8.1 ROC Curves for Aggregators . 59

xi

Chapter 1

Introduction

Cyber-physical systems are distributed, large-scale, and often life-critical systems such as
autonomous vehicles, unmanned aircraft, and smart electrical grids [1]. They are composed
of sensors, actuators, and various networking and processing equipment. From driverless
cars to medical devices, our critical infrastructure is becoming distributed as fast as such
systems can be integrated. With the rise of these systems comes a commensurate increase
in cyber attacks [1].

We can monitor the condition of cyber-physical systems by examining live data traces
and comparing them against a predetermined characterization of normal behavior. Such
a process is called anomaly detection [2]. The anomaly detection problem can be stated
as: given a stream of data representing a property of some system, determine if that
data represents normal behavior or not. This result is often given as an estimate of the
probability (or con�dence) the system is performing anomalously. The source data stream
could be an explicitly measured metric, such as the current speed of a car as collected
by a speedometer, or side-channel data, such as the power consumption of a computer
processor.

In this thesis, we consider only the detection of cyber attacks on cyber-physical systems.
This approach is called intrusion detection. Intrusion detection is divided into methods
that identify speci�c data patterns that are presumed to be malicious (called signature
detection), or approaches that recognize deviations from normal system behavior (called
anomaly detection) [3]. When we discuss intrusion detection in this thesis, we are referring
to the second type: anomaly detection.

In physical systems, evidence of an attack as it occurs is su�cient to activate automated
or manual safeguards. The objective of an anomaly detection system (or intrusion detection

1

system) is to detect cyber-attacks on the instrumented system before they are capable of
rendering harm. This adds a requirement to practical anomaly detection algorithms: they
must work on system data as it is collected, that is, they must beonline algorithms.

As cyber-physical systems grow and gain components, the number of data streams
available to anomaly detection systems increases. An anomaly system must be able to
ingest all these streams and produce a decision on the condition of the monitored system.
Thus the anomaly aggregation problem for cyber-physical systems can be stated as:

Given a set of con�dence levels from anomaly detection algorithms on multiple data
streams at a given time, determine if they monitored system as a whole is behaving normally
or anomalously at that time.

This decision may be informed by previous system state and the history of anomaly
detector con�dence levels.

A complex event processing system is a distributed system that aggregates event noti�-
cations to identify scenarios of interest [4]. A collaborative intrusion detection system is a
set of individual intrusion detection systems that cooperate to detect coordinated attacks
[5]. Collaborative intrusion detection systems are built to tackle the anomaly aggregation
problem. We can consider a collaborative intrusion detection system to be a special case of
an complex event processing system where the scenarios of interest are anomalous system
behaviour. In this thesis we present Palisade, a complex event processing system that we
use in this work for anomaly detection.

This thesis is split into three contributions. The �rst contribution is a description of
symptomsof anomalies that may manifest in data being ingested by an anomaly detection
system. We de�ne symptoms of anomalies as perturbations in the data being considered
for anomaly detection that may indicate the presence of an anomaly (see Chapter 3). The
second contribution is Palisade, a complex event processing system that we use for anomaly
detection in cyber-physical systems (Chapter 6). Palisade uses Redis [6] as a central
publish-subscribe broker, which adjudicates between data sources, anomaly detectors, and
aggregators. The �nal contribution is an evaluation of published aggregation algorithms
on the anomaly aggregation problem (Chapter 7). We use data from a cyber-physical
demonstrator platform and perform realistic cyber attacks taken from the Common Attack
Pattern Enumeration and Classi�cation (CAPEC) database.

We begin with a background review of ensemble learning, anomaly detection, and
applications for intrusion detection (Chapter 2). We then present a mathematical setup
for perturbations in data leading to anomalies, which we call symptoms (Chapter 3) which
is followed by a discussion of anomaly detection algorithms (Chapter 4) and ensemble
aggregation algorithms (Chapter 5). We discuss the construction of Palisade (Chapter

2

6) and then present a case study using an Advanced Driver-Assistance Systems (ADAS)
demonstrator (Chapter 7) and its results and lessons learned (Chapter 8). We conclude in
Chapter 9 and discuss future work.

3

Chapter 2

Background

2.1 Anomaly Detection

We have de�ned anomaly detection in the introduction (Section 1) based on Chandola et
al.'s [2] de�nition. Anomaly detection is the process of comparing data representing the
current state of the target system to a predetermined characterization of normal system
behavior. Deviations from normal behavior are considered anomalies.

Anomaly detection can be thought of as a binary classi�cation problem. Given a sam-
ple of data from the system, classify it as normal or anomalous. In an online environment,
the de�nition of what constitutes a sample that can then be classi�ed gets murky. Online
classi�cation techniques can be separated into stationary or non-stationary stream classi-
�ers [7]. Stationary classi�ers operate under the assumption that the data stream is stable.
Non-stationary classi�ers can account forconcept drift. Concept drift is the notion that
the underlying distribution of the data will change naturally with time, and this is not
an anomaly. Consequently, machine learning techniques that apply in a non-stationary
setting must be able to train (or adjust) online to not miss-classify data that has changed
as a result of concept drift [7]. Concept drift can be mitigated by continuously updating
the model as the underlying distribution of the data changes [8] or by trigger mechanisms
based on statistic change detectors [9].

In this thesis, we consider only stationary classi�ers in an anomaly detection context.
If the system is varying from its expected operating conditions, we consider it an anomaly,
not a natural process. We leave an investigation of non-stationary classi�ers in an anomaly
detection context for future work (see Section 9.2).

4

Krawczyk et al. also make a distinction between chunk-based and online classi�ers [7].
Chunk-based techniques build up a set of samples in a �xed-size bu�er before evaluating
them as a batch, which might include several iterations over the chunk. This is distinct from
Krawczyk's de�nition of an online detector, which processes each data instance separately
at arrival time [7]. This de�nition is di�cult to distinguish in practice: it may be that some
"online" classi�ers maintain a bu�er of previously seen samples as internal state, even if
they produce a classi�cation for each input. Alternatively, it could be that a chunk-based
technique keeps a �xed-size bu�er internally that may be iterated over several times and
produce a classi�cation for each sample in that bu�er. As such, we do not distinguish
classi�ers by this metric.

Anomaly detection techniques for intrusion detection are broken down by Hoang et
al. into three categories: statistical methods, data-mining methods, and machine learning
methods [10]. They consider statistical methods to be those that measure a statistic about a
system property, such as processor usage, or network packet count, and check that statistic
maintains a distribution observed during normal system behavior. Data-mining methods
extract additional features from underlying metrics. Methods such as outlier detection,
system-call sequence analysis, Bayesian belief networks, and hidden Markov models are
data-mining based methods. Finally, machine learning methods consist of more opaque
designs such as arti�cial neural networks or random forests.

2.2 Ensemble Learning

Ensemble learning is the process of making a classi�cation decision as a composite of
multiple classi�ers [11]. Ensemble learning systems may also be called: ensemble classi�ers,
composite classi�er systems, classi�er fusion, committees of neural networks, voting pool
of classi�ers, and various other names.

2.2.1 Diversi�cation

The primary bene�t of ensemble classi�ers comes from mitigating the weaknesses of the
member classi�ers such that the composition improves on the accuracy of any one member.
For such improvement to be possible, the classi�ers must bediverse [11]. Speci�cally:
as no classi�er is perfect, the member classi�ers must make di�erent errors. This can
be accomplished by training the member classi�ers on (possibly disjoint) subsets of the
training data, varying the training parameters of the classi�ers, or combining entirely
di�erent classi�cation methods (the approach we take this thesis) [11].

5

There exist a multitude of statistics for quantifying diversity. Polikar describes six of
them in his 2006 paper [11]: correlation, q-statistic, disagreement and double fault measure,
entropy, Kohavi-Wolpert variance, and measure of di�culty.

2.2.2 Diversifying Algorithms

Algorithms for ensemble learning are often structured around inducing diversity in a pop-
ulation of classi�ers built with the same algorithm [12, 13, 14, 15]. Here we discuss several
algorithms that induce diversity to construct an ensemble.

Boosting

Schapire proved in 1990 that the existence of a "weak" learner (a learner with some error
� and a lower bound on such error) can constructively be used to build a "strong" learner
(with error at most 3� 2 � 2� 3) [12]. That is, the error can be made arbitrarily small,
rather than having a �xed bound. He begins training a classi�erh1 on some subset of the
training set normally. He then trains a second classi�erh2 on a subset of the training set
composed half of samples correctly classi�ed byh1 and half of samples incorrectly classi�ed
by h1. A third classi�er h3 is trained on instances whereh1 and h2 disagree, and the �nal
classi�cation is made by majority vote ofh1, h2, and h3. This algorithm can be repeated
arbitrarily to boost the accuracy of any given classi�er, so long as the classi�er can produce
results better than random guessing for all inputs.

AdaBoost

Freund and Schapire improve on boosting with a multiplicative weight update algorithm
called AdaBoost [13]. Beginning with each training sample having equal weight, the chance
that a given sample is drawn into the training set for the next classi�er decreases multi-
plicatively for each classi�er that has previously correctly classi�ed it. The multiplicative
factor is proportional to the error of the classi�er on that iteration. That is, samples that
are "easy" to classify are selected for training less often as later classi�ers are trained. The
�nal classi�cation is produced by tallying the number of times a sample was classi�ed as
a given class across all iterations, and weighting them by the error of the classi�er at the
iteration that classi�cation was made.

There exist several variants of this algorithm [11, 16], including versions capable of
boosting accuracy for regression problems.

6

Bagging

Breiman describes a simple ensemble learning algorithm using a procedure called bootstrap
aggregating (shortened tobagging) [14]. Bagging takes the subset approach to diversi�ca-
tion and requires only one classi�cation algorithm. For a training setT of sizen, bagging
begins by drawingk replicate data sets by samplingn samples fromT with replacement.
This means that each replicate set is the same size asT, but may contain multiple copies
of some samples, and omit others. Breiman later adds a variant of bagging using smaller
subsets that selects samples that are important, similarly to Schapire [17]. Chawla et al.
show this is superior to random selection [18].

Random Forests

In 2001 Breiman developed the popular Random Forest approach to ensemble classi�cation
[15]. He begins by drawing a training set for each tree using bagging, and then feature
selection and ordering is randomized for each tree. The trees are not pruned. A plurality
vote among the trees determines the �nal classi�cation. The combination of random test set
selection, random feature selection for each tree, and random ordering of feature decision
within each tree produces signi�cant diversity between trees. Breiman shows that random
forests compare well to AdaBoost on his data sets [15].

Haeusler et al. user random forests along with seven con�dence measurement functions
to stereo vision problems [19]. They begin by sampling the training sets using bagging
[14], and then train each tree by greedily selecting a con�dence measure and associated
binary decision test with the lowest error according to the chosen measure. Final results
are decided by majority vote (they only have two classes) as described by Breiman [15].

Stacked Generalization

Wolpert suggests a method where the predictions of the ensemble classi�ers are used to
create a meta-classi�er [20]. Similarly to cross-validation, the component classi�ers are
trained on most of the data, omitting a di�erent subset for each classi�er. The classi�ers
are evaluated on these previously omitted subsets and the resulting predictions, along
with the true labels, act as input to the meta-classi�er [11]. Wolpert states that this can
be viewed as a more sophisticated version of cross-validation, and a generalization of a
winner-takes-all ensemble method [20].

7

2.2.3 Combination Techniques

Combination based techniques focus on methods of aggregating the class label results of
the member classi�ers, rather than methods varying the classi�ers themselves [11]. This
allows them to operate on an ensemble composed of classi�ers based on di�erent algorithms,
rather than varying a single algorithm in the case of diversifying techniques.

Voting

Both simple majority and weighted majority voting are reasonably e�ective under the as-
sumption that each classi�ers output is independent and su�ciently accurate [11]. Weighted
majority voting may increase the accuracy of the ensemble if some member classi�ers are
more accurate than others. For many ensembles, the assumption that the classi�er's out-
put is independent is either not true (for classi�ers trained with bagging or boosting) or
extremely di�cult to verify.

Mukkamala et al. employ majority voting in their ensemble based intrusion detection
platform [21]. They use three independent machine learning algorithms which vote on a
class for a sample of network activity.

Mixture of Experts

Similar to stacked generalization, Jacobs et al. suggest training a set of weights that are
then fed to a straightforward combination rule [22, 11]. The primary distinction here is
that the network that learns the weights for the combinator can consider the input training
samples, whereas the meta-classi�er in stacked generalization does not know about the
underlying training data.

Logistic Regression

Ho et al. use logistic regression to combine the results of multiple classi�ers in an ensemble
[23]. They convert the probabilities of each class output by a member classi�er on a sample
into a rank vector. Then for each sample, for each class, the rank of that class in each
detectors rank vector becomes a new sample class prediction vector. These vectors train a
logistic regressor that produces the ensemble classi�cation.

8

Bayesian Combination

Predictions from independent member classi�ers may be combined in a Bayesian fashion
as outlined by Buntine [24, 16]. They assign each classi�er a weight equal to its accuracy
on a given training set. This is multiplied by the classi�ers probability for each class,
and these values are summed across all member classi�ers. The highest total likelihood is
the ensemble prediction. More explicitly: for member classi�ersCi , training set T with
samplesx j and labelsyj 2 L we let:

Acc(Ci) =
�
P(Ci (x j) = yj jL (x j) = yj) 8x j 2 T

�
(2.1)

^Class(x) = arg max
lk 2 L

X

i

�
Acc(Ci)P(Ci (x) = lk jx)

�
(2.2)

Dempster-Shafer

Dempster-Shafer can also be used for combining classi�ers by giving each possible class
y 2 L a "basic probability assignment"b(y; x) for any sample instancex [16]. From there
a given belief function can be maximized subject to a normalization factor.

Online Approaches

Krayczyk et al. outline the most common structure for online approaches as a voting
ensemble with update replacement [7]. For each chunk of streamed dataD i all the classi�ers
in the pool cast a vote on the class ofD i and the winner is determined by some voting
system. Then a new classi�erCi is trained on only D i and added to the pool. If the pool
exceeds a maximum size, some classi�er is removed from the pool. This may be simply the
oldest classi�er, or the poorest classi�er according to some performance metric.

Street and Kim's approach matches Krayczyk et al.'s standard framework, but they
weight the performance of each member classi�er according to how close the vote is [25, 7].
On a correct prediction, the performance metric of that classi�er is increased in linear
proportion to the di�erence between the number of votes given to the highest voted class,
and the number of votes given to the second-highest voted class. If the highest voted class
was incorrect, this di�erence is instead the di�erence between the highest voted class and
the number of votes for the correct class. If it predicts incorrectly it's value is decreased
proportionally to the di�erence between the number of votes for the class it voted for,
and the number of votes for correct class [25]. By this metric, classi�ers may have high

9

accuracy classifying simple samples, but their inclusion would not be useful. Classifying the
simple samples correctly is only a necessary characteristic for a plurality of the classi�ers; a
classi�er must perform on the remaining samples to be a valuable inclusion in the ensemble.
Street and Kim remark that this approach performs comparably to a single classi�er for
stationary datasets (as expected). However, in the presence of concept drift, they recover
from the drift dramatically faster than a single classi�er [25].

Scholz and Klinkenberg take a similar approach to Street and Kim, but they assign
weights to each training sample and to each classi�er [26]. For each batch read, they may
choose to train a new classi�er to add to the ensemble depending on the performance of
existing classi�ers on a chunk of input. The member classi�ers are re-weighted continuously
based on the new data and the weights of the iteration of the classi�ers (Scholz and
Klinkenberg compare this to logistic regression [26]).

2.2.4 Deep Learning Based Approaches

Deep leaning based ensemble methods are a mix between varying a single classi�cation
algorithm [27, 28] and combining classi�cation results [29, 30]. They generally employ
neural networks [27, 30] to produce the ensemble classi�cation.

Meta-Classi�ers

Qui et al. employ a meta-classi�er approach similar to stacked generalization [27]. They
train a set of 20 deep belief networks (essentially deep fully-connected networks) with
varying hyperparameters. The results of those networks are collected into a matrix which
feeds a support vector regressor [31] to produce the predicted values. They compare their
results to a standalone support vector regressor, a smaller three-layer neural network, a
single deep belief network, and an ensemble technique using multiple copies of the three-
layer network. Their ensemble of deep belief networks outperforms the other options across
seven distinct datasets.

Deng and Platt employ a mixture-of-experts style linear and log-linear combination
technique to speech recognition [29]. They consider the posterior probabilities of each class
for each frame of input audio as a set of result vectors from the member classi�ers. Each
classi�er is assigned a weight matrix, which can be solved for analytically over a training set
for in both the linear and log-linear cases. They construct an ensemble involving a deep
fully-connected network, a convolutional deep network, and a recurrent network. Their

10

results show that log-linear ensembles outperform linear ensembles in the two-member and
three-member ensembles they considered. All ensembles beat any network in isolation.

Yin et al. construct an ensemble of stacked autoencoders to classify human emotions
based on physiological signals [30]. They build a stacked autoencoder by �rst training a
single autoencoder and then training the next autoencoder with the hidden representation
of the �rst network. The hidden representation of that layer is used as input for the next
layer and so on. The network ends with a two-neuron output layer that produces the target
emotion ranges. They construct a separate stacked autoencoder for each physiological
feature, which are then grouped two-by-two in a tree structure by fully connected layers.
Finally the output at the end of the tree is fed into a Bayesian model that computes the
�nal emotional verdict. This is a stacked generalization approach taken to the extreme.
Yin et al. report a 5.26% improvement over the then best existing classi�er [30].

Xu et al. use the inbuilt variability of extreme learning machines to build an ensemble
classi�er for real-time security assessment of power systems [28]. Extreme learning ma-
chines are similar to traditional feedforward neural networks, except the weights of the
hidden layers are selected randomly, and the biases are computed analytically, rather than
using various gradient descent methods. This causes extreme learning machines to have
signi�cant internal variability over the same dataset and provides the needed diversity to
implement an ensemble. Since Xu et al.'s security classi�cation is binary, the implemented
as a single result value in[� 1; 1]. They then split this range into three regions: credibly
secure, incredible, and credibly insecure. From there a vote is taken where the larger count
among the member classi�ers of credibly secure or insecure becomes the classi�cation, as
long as the number of incredible classi�cations does not exceed a threshold. Xu et al.
also consider real-valued security measures (rather than binary classi�cation). Here results
are deemed incredible if they deviate su�ciently from the median value between all the
member predictors.

Bagging Approaches

Yang et al. employ bagging as described by Breiman [14] on an ensemble of stacked
denoising autoencoders [32] to predict oil prices. Denoising autoencoders �rst corrupt
the input data intentionally and at random, then the corrupted data is fed through an
autoencoder. The hidden representation of the �rst autoencoder is used as input for the
next denoising autoencoder in the stack. The stack ends with a supervised neural network
taking input from the �nal autoencoder's hidden representation. Yang et al. then construct
replica training sets drawn randomly with replacement (as described by Breiman) and train

11

a stacked denoising autoencoder on each set. They take the average predicted price as the
ensemble prediction.

2.3 Collaborative Intrusion Detection Systems

Zhou et al. de�ne a Collaborative Intrusion Detection System (CIDS) as a set of individ-
ual Intrusion Detection Systems (IDSs) that cooperate to detect coordinated attacks [5].
Elshoush and Osman provide a general architecture for this technique in their survey of
collaborative intrusion detection systems [33]. They further re�ne this concept into Collab-
orative Intelligent Intrusion Detection Systems (CIIDSs), which performalarm correlation
on the results of the member intrusion detectors.

Elshoush and Osman's architecture splits a CIIDS into two speci�c types of subsystem:
detection units, and correlation units [33]. Correlation has a well-de�ned mathematical
de�nition from statistics. Thus, to avoid confusion, we refer to Elshoush and Osman's
correlation units asaggregation unitsin this thesis. A detection unit is a single IDS that
monitors a subsection of the target system and produces simple alerts. Detection units
are supposed to provide occasional false positives. They can a�ord to occasionally report
perturbations that may not actually be anomalous rather than avoiding reporting things
that do represent an underlying anomaly. Aggregation units then take the simple alerts
from detection units and use an alarm correlation algorithm to transform them into a
�nal intrusion verdict on a system scale. Elshoush and Osman also note the existence
of hierarchical CIIDS structures with multiple layers of aggregation units [33], but they
indicate this approach is weakened by intermediate aggregation units abstracting away
data that may be useful in producing a �nal verdict.

12

Chapter 3

Symptoms of Anomalies

We de�ne anomaly detection for cyber-physical systems (see Section 2.1) as characterizing
data representing the state of a cyber-physical system as normal or anomalous. However,
small deviations from normal behavior are to be expected on occasion and are not repre-
sentative of an anomaly alone. For example, an unusually cold reading from a temperature
sensor may mean a malicious actor has moved the sensor, or that it is just an unusually
cold day. To this end, we construct the idea of an anomaly symptom.

Symptoms represent the realization of a perturbation in an internal, unobserved state
machine. They do not prove an anomaly by their mere presence, but an anomaly may
cause one or more symptoms, hence the disease-symptom analogy. A system may be
behaving anomalously (diseased), but an anomaly detection system can only ever observe
the symptoms of that anomaly.

Therefore, this chapter does not address types of anomalies, but rather the symptoms
of underlying anomalies. The list in this section is not exhaustive but categorizes common
anomaly symptoms. This taxonomy relates to Mitre's Common Attack Pattern Enumera-
tion and Classi�cation (CAPEC) [34], in that both can be used to classify capabilities and
behaviors. They di�er substantially in that CAPEC describes possible attacks, while this
section describessymptomsof those attacks or other, non-malicious events.

These symptom de�nitions allow those developing anomaly detection systems to give
formal names to perturbations that may indicate an anomaly in the target cyber-physical
system. These identi�cations can be used to select and implement anomaly detection
algorithms that target those anomalies.

In Section 7 we use these symptoms to identify perturbations that may occur as a
result of cyber attacks we run on a target cyber-physical system. We use a Advanced

13

Driver-Assistance Systems (ADAS) demonstrator [35] to model attacks on a car driving
on a treadmill. We select anomaly detection algorithms for our case study based on the
symptoms identi�ed from the chose cyber attacks.

3.1 Continuous Signal Anomaly Symptoms

For the purposes of anomaly symptoms, we de�ne a continuous signal as a digitally sampled
signal with a constant sample rate, represented here as a time series. This signal is expected
to be the result of readings from a single sensor, not an amalgamation of many sources.
The constant sample rate means that the sample time of each value is known from its index
in the time series.

3.1.1 Spikes and S-waves

We de�ne a spike (Figure 3.1(a)) as a subsequence of contiguous samples that lie farther
than a given number of standard deviations from the current mean of the signal. To
account for signals with means that change over time, we consider the distance to the
mean of awindow of samples prior to the subsequence. More formally, given a time series
y, a window sizen, and a constant factorc, the subsequencey[p+1 ;q] is a spike i�

8yt : p < t � q; jyt � y[p� n;p]j > c � stdev(y[p� n;p]) (3.1)

We de�ne S-waves (Figure 3.1(b)) as spikes with an additional deviation in the opposite
direction immediately following the spike. S-waves can mimic spikes if the counter-spike is
su�ciently dampened.

Example: A �ooding attack in the vehicle Controller Area Network (CAN) network
indicating that the collision prevention system issued a command to engage the brakes can
cause a collision [36] and it is an example of a Spike/S-Wave symptom. Such an attack
falls under the category of CAPEC-125: Flooding [34].

3.1.2 Drifting

A drift (Figure 3.1(c)) is a slow movement of the signal mean over a period of time.
We consider only linear drift here; logarithmic and sub-linear drifts are rare, and higher
order drifting encroaches on the de�nition of level changes or spikes. Mathematically, a

14

continuous signaly is o�set by tc, wheret is the time index andc is a constant representing
the slope of the drift. Formally, given a time seriesy, a nominal version of that time series
ŷ, and a slopec, a subsequencey[p;q] has linear drift i�

8yt : p � t � q; yt = ŷt + tc (3.2)

Example: An infrared combustible sensor, when functioning over the operational tem-
perature limit, may drift or fail [37].

3.1.3 Noise

Noise (Figure 3.1(d)) is a usual part of any signal. Noise is considered a symptom of an
anomaly only when it is more pronounced than is typical. We de�ne noise as a normally
distributed o�set around the true value of the signal. Given a time seriesy, some noisiness
coe�cient n and nominal time serieŝy, a subsequencey[p;q] is noisy i�

8yt : p � t � q; yt = ŷt + N (0; n) (3.3)

Where N (0; n) is a standard normal distribution centered at zero with standard deviation
n.

Example: Compressed air in truck brakes may generate acoustical interference and
cause metallic friction noise from track vehicles in ultrasonic sensors [38].

3.1.4 Clipping

We de�ne clipping as a loss of data at the extrema of a signal range (Figure 3.1(e)), where
a signal is of a higher amplitude than is supported by the sensor or transmission medium.
Thus a clipped signal can be represented by a series of identical samples at the maximum
or minimum extent of the sample medium.

Example: A partially blinding attack on a camera of a vehicle by emitting light can
hide objects [39]. This light can exceed the input range of the camera and would appear
as clipped. This attack is an example of CAPEC-607: Obstruction [34].

3.1.5 Loss

While loss (Figure 3.1(f)) may more typically refer to high noise levels making it di�cult to
decode a signal, here we use loss to indicate a complete loss of a signal. Although trivially an

15

anomaly, a total loss of signal may be a symptom of temporary network disruption without
any more dangerous cause. We represent a total loss of signal as a sudden transition to a
�xed sample value. This can be observed as a special case of clipping, where the extrema
of the signal are identical for a short time.

Example: An attack sending a large volume of request messages over the J1939 pro-
tocol increases the computational load of the recipient ECU until it is not able to perform
regular activities like transmitting periodic messages [40]. Such an attack is an example of
CAPEC-125: Flooding [34].

3.1.6 Smoothing

We de�ne smoothing to be a reduction in the short term variance of a signal compared
to recent history. Smoothing (Figure 3.1(g)) is the rarest of the symptoms presented
here, with few natural causes. Given a constantk representing how far back the recent
historical signal variance should be considered, and the factor threshold� at which the
signal is considered smoothed, we say a subsequence ofn samplesy[t;t + n] is smoothed i�

var(y[t;t + n]) < var(y[t � (nk)� 1;t � 1])� (3.4)

Example: In an attack of a control system, the attacker may observe and record sensor
readings and then continuously repeat the recorded values during the attack [41]. This is
an example where the sensor values are smoothed. Such an attack falls under the category
of CAPEC-148: Content Spoo�ng [34].

3.1.7 Ampli�cation

Ampli�cation (Figure 3.1(h)) is a simple gain on the target signal. For ampli�cation of
an original signal we multiply every sample by some factor. Given the magnitude of the
ampli�cation � , and an unampli�ed time seriesŷ, a sampleyt is ampli�ed i�

yt = � ŷt (3.5)

Example: Analog to Digital Converters (ADCs) can be attacked by amplifying analog
signals past the dynamic range of the device. These attacks can obscure other malicious
behavior and damage hardware [42]. This type of attack is an example of CAPEC-153:
Input Data Manipulation [34].

16

3.1.8 Level Change

A level change (Figure 3.1(i)) symptom is observed when the mean of a signal changes
in a short period and then remains consistent at the new level. Slower changes may fall
under drifting. Given a time seriesy, an acceptable minimum level change threshold̀, a
minimum number of samples the mean change must persistn, a level change has occurred
over a window ofw samplesy[t;t + w� 1] i�

jy[t+ w;t + w+ n] � y[t � n� 1;t � 1]j > ` (3.6)

Example: An attack that increases the amount of code execution will increase the
power consumption of the system, which can be observed as a level change [43]. Such
an attack could be an example of CAPEC-175: Code Inclusion, or CAPEC-242: Code
Injection [34].

3.1.9 Frequency Change

A frequency change (Figure 3.1(j)) occurs when the primary frequency of a signal changes
over a short period. We say a frequency change occurs if the primary frequency in a
sliding window moves more than some threshold over some time window. Given a time
seriesy, a function P which extracts the frequency of the highest peak from a Discrete
Fourier Transform (DFT) (denoted F), a threshold � , and a minimum number of samples
the frequency change must persistn, a subsequence ofw samplesy[t;t + w� 1] experiences
frequency change i�

jP(F (y[t+ w;t + w+ n])) � P(F (y[t � n� 1;t � 1])) j > � (3.7)

It may be useful to consider more frequencies, but we restrict our de�nition to only consider
the primary frequency for simplicity.

Example: An attack inserting �ash of light into the vehicle camera may change the
frequency in which the control reacts to new environmental conditions [39]. This attack is
an example of CAPEC-607: Obstruction [34].

3.1.10 Echo/Re�ection

We consider an echo (Figure 3.1(k)) to be a duplication of a previous series of samples
on top of the underlying signal at a later position. A re�ection is identical to an echo,

17

excepting that the repeated signal is inverted. Given a time seriesy, an echo lengthe, an
echo coe�cient (the factor at which the echo is played back)q, and the nominal form of
the time seriesŷ, we consider the subsequencey[t;t + e] as the origin of the echo, we say that
the subsequencey[t0;t 0+ e] has echo i�

y[t0;t 0+ e] = ŷ[t0;t 0+ e] + y[t;t + e] � q (3.8)

Example: According to Petit et al, a relay attack on the original signal sent from the
vehicle LiDAR creates fake echoes and can make real objects appear closer or further than
their actual location, thus a�ecting the mission planning [39]. This attack is an example
of CAPEC-586: Object Injection [34].

(a) Spike (b) S-Wave (c) Drifting (d) Noise

(e) Clipping (f) Loss (g) Smoothing (h) Ampli�cation

(i) Level change (j) Frequency change (k) Echo/Re�ection

Figure 3.1: Time Series Anomaly Symptoms

18

3.2 Event Series Anomaly Symptoms

We de�ne event series as a sequence of discrete samples with no de�ned frequency. The
time between events is neither bounded nor known in advance. While a single sample
from a time series carries only a single real value, an event (sample) in an event series
may carry more complex, hierarchical information. We de�ne a single event as a tuple
(�; t; �), where� is the topic the event occurs on (also called the source, or the channel),t
is the timestamp of the event, and� is whatever information the event carries. An event
represents the advancement of the execution by a single transition of a �nite automaton.

3.2.1 Event Frequency Change

While we de�ne events to have no �xed sampling frequency, they may still exhibit periodic
or semi-periodic behaviour. This means for some event series, we can expect a reasonably
consistent inter-arrival time (or frequency). When this frequency changes suddenly or
unexpectedly, it can be a symptom of an anomaly. It is especially likely to be an anomaly
symptom when such a change is observed in multiple traces simultaneously.

We de�ne the inter-arrival time of an event as the di�erence in clock times of successive
events in the same topic (also as the inverse of the event frequency). Speci�cally, given a
trace T, a topic � , and a non-empty interval de�ned by the end pointst1; t2 : t1 < t 2, the
inter-arrival time is de�ned as interArrival (�; (t1; t2)) , ((max t : (�; t; �) 2 S) � (min t :
(�; t; �) 2 S))=(jSj � 1) whereS = f (�; t; �) 2 T : t1 � t � t2g.

Event frequency measures how often events occur for some time span. Given a trace
T, an event name� , and a non-empty interval de�ned by the end pointst1; t2 : t1 < t 2,
the event frequency of� is given aseventFreq(�; (t1; t2)) , 1=interArrival (�; (t1; t2)) .

A rapid change in event frequency can be found by taking the di�erence between suc-
cessive time intervals in the trace. If the di�erence exceeds some threshold, then the
change in event frequency may indicate an anomaly. Given a traceT, an event name
� , a window sizew, and a threshold � , an event frequency change may be de�ned as
9t1; t2; t3 : eventFreq(�; (t1; t2)) � eventFreq(�; (t2; t3)) > � .

Example: Lin and Siewiorek introduced their Dispersion Frame Technique (DFT) to
predict hardware failures [44]. From analyzing the logs of �le servers, they observed that
there exists a period of an increasing rate of intermittent errors before most hardware
failures.

19

3.2.2 Unexpected Event

In general, traces contain only a limited vocabulary of event names. While the actual
events are made unique by their clock times, the event names are repeated across many
events. An event with a never-before-seen name in a trace may be an anomaly symptom.

To remove the problem of the �rst few events in any given traces counting as anomalous
merely by being the �rst instance of a normal event, we state the de�nition in terms of the
probability of an event occurring. Given a traceT and a threshold� , an unexpected event
may be de�ned as an evente : P(e 2 T) < � .

Example: Bellovin reported receiving broadcast packets meant for local networks,
requests to unused ports, and requests to unoccupied addresses over the public Internet at
AT&T in his classic whitepaper [45]. These types of requests are examples of CAPEC-169:
Footprinting [34].

3.2.3 Periods of Silence

A period of silence is a segment of time within a trace which is entirely or nearly devoid
of events. Events generally have di�ering frequencies during normal system operation, but
nominal system behavior usually results in at least some events appearing in any given
period of time. Thus a period in the trace without events may be an anomaly symptom.

The time threshold for when an interval is considered a period of silence will vary
between systems. Accounting for these di�erences, we de�ne a minimum length of the
interval that is system dependent. Now we can de�ne a period of silence given a traceT,
a number of eventsn, and a minimum length` > 0. A period of silence is an interval with
end points t1; t2 : t2 � t1 � ` and jf (�; t; �) 2 T : t1 � t � t2gj < n .

Example: Haque et al. found that Markov Chain models performed well at detecting
missing message anomalies in High Performance Computing (HPC) logs [46].

3.2.4 Sampled Value Anomaly Symptom

When a trace is composed of events, it may still exhibit anomalies that are found in
continuous data streams as de�ned in Section 3.1. However, as events do not have a de�ned
sampling rate from which to derive a corresponding continuous data stream, we must
apply a more clever transformation. There are several well known methods for extracting

20

a continuous data stream from irregularly spaced events the Wiley/Marvasti method [47],
the Voronoi method [48], and the Adaptive Weights Method [49].

Example: Wang and Stolfo found that PAYL payload based intrusion detector was
able to achieve nearly 100% accuracy in some instances by comparing the byte frequency
patterns of network payloads to the same host and port [50]. This is an example of Sampled
Value Frequency Change.

21

Chapter 4

Anomaly Detectors

Anomaly detectors are algorithms that consider the data from a single system metric and
consider if that metric is anomalous in isolation. We introduce detectors here to set up
the discussion of anomaly aggregators in Section 5. Anomaly aggregators are constructed
from the results of multiple anomaly detectors, so we describe anomaly detectors �rst.

A single metric from a cyber-physical system performing anomalously may not warrant
a system-wide anomaly, so an anomaly detector alone is free to produce false positives if
necessary. Anomaly detectors consume one or more streams of data (that may have been
pre-processed) and produce a new stream: the expected probability of an anomaly. In this
section, we discuss the di�erent types of anomaly detectors and review existing example
detectors of each type. We do not de�ne any new anomaly detectors.

To clarify the discussion of anomaly detection algorithms, we use the following notation.
An anomaly detector is a function

f (D) 7! P(anomaly) 2 [0; 1]

wereP(anomaly) is the detector's best guess of the probability there is an anomaly within
D, a set of contiguous samples from a source data stream. A data stream is either a time
series or an event series (see Section 3), represented as an arbitrarily long vector of samples,
each with an associated time they were observed. That is, for a given window (sub-vector)
in the source data stream the anomaly detector produces a probabilityP(anomaly) 2
[0; 1] that it believes its source data stream to be anomalous within that window. It
is expected that P(anomaly) is zero for the vast majority of windows examined by the
detector. Therefore, detectors may choose not to produce any output for a window, which
will be formally interpreted as producingP(anomaly) = 0 .

22

We divide anomaly detectors into three broad groups: watermark detectors, statistic-
based detectors, and machine learning detectors. These map to Hoang et al.'s three cate-
gorizations [10] excepting that we refer to Hoang et al.'s statistical detectors as watermark
detectors, and Hoang et al.'s data-mining based detectors as statistical detectors. Water-
mark detectors are also sometimes called tripwire detectors [51]. Anomaly detectors vary
as a trade-o� between false negative rate, false positive rate, and explainability.

Explainability is the measure of how easy it is to determine why a classi�er made a
decision. It is valuable for system veri�cation, legislative compliance, and human learning
[52]. In an anomaly detection context, explainability is valuable for aggregation, in that it
makes it easier to justify reporting an anomaly, and post-mortem analysis.

Watermark detectors (also called tripwire detectors) check that a single property main-
tains a known value or range of values. These properties range from the source address of
a network packet, to the hash of an executable �le, or the current consumption of a motor.
Watermark detectors are often trivial to implement and have a low false positive rate.
Although watermark detectors are usually limited to detecting the simplest of anomalies,
occasionally they will detect more complex anomalies. Watermark detectors have high
explainability; when they detect an anomaly, it is often intuitive why it occurred. For
example there was a network packet from an unexpected network source, the executable
�le did not have the expected contents, or the motor was consuming more power than
normal.

Statistic-based detectors evaluate a well-de�ned statistic over an input window and
report an anomaly if the statistic exceeds a given threshold. This statistic may be checking
the variance of a window in the source data stream, its slope over an extended period of
time, or the time between network packets. Some statistic-based detectors will maintain
some additional state to adjustP(anomaly) depending on the state of previous windows.
They have moderate to high explainability. When an anomaly occurs, there is a reasonable
explanation of why it occurred. Examples include: the variance of the water �ow rate was
too high, or network packets are arriving with increasingly larger latencies.

Machine learning detectors can be categorized further into library-based and regression-
based detectors. Library-based machine learning detectors maintain a collection of patterns
that match normal behavior. Motif detectors [53, 54] are an example of library-based
methods. Regression-based detectors attempt to predict or reconstruct a sample given the
system is operating normally, and then compare their prediction to the true sample value.
Other machine learning detectors may attempt to predictP(anomaly) directly. Machine
learning detectors require signi�cant training. They are typically based on arti�cial neural
networks, and therefore have low explainability. A common approach is to generate an

23

intermediate transformation as the output of the machine learning algorithm, and have a
more straightforward statistic produceP(anomaly) from the result of that transform. This
can increase the explainability of a machine learning detector. Other improvements are
being made in the area of explainable deep learning, with several new techniques showing
promise [55].

Di�erent detection algorithms place varying demands on the size of input windows they
handle. A simple feed-forward neural network will have a �xed size input vector, and even
a recurrent neural network must select a size of input vector, even if it will advance it
across samples in a continuous signal. Varying this window size will a�ect the results of a
machine learning detector. Statistic detectors must also make a careful choice of window
size. In the spike detector outlined below (see Section 4.2) we measure a spike based on the
standard deviation of the signal within the current window. In all these cases the selection
of window size e�ects the result of the detector; some choices of window size will be better
than others for di�erent detectors.

As a consequence of di�erent detectors performing better at di�erent window sizes, a
single window cannot be attributed as the source of an anomaly detected by multiple de-
tectors running on the same data stream. For more complex anomalies, and for symptoms
on event series anomalies such as frequency change (Section 3.2.1) there may not be a �xed
time at which the anomaly occurs, but any detectors that report such an anomaly must
still select a window (or multiple windows) to reportP(anomaly) > 0. These factors com-
bined mean that the times at which multiple anomaly detectors report symptoms of the
same anomaly cannot be relied on to match the time of the underlying anomaly. This adds
uncertainty to the times of anomalies reported to the aggregator. For more information
on the consequences of anomaly timing uncertainty see Section 5.

4.1 Watermark Detector Example: Hash Detector

A hash detector is a watermark detector for monitoring the content of �les or network
packets. Tripwire is a popular hash detector used for monitoring �le systems [51]. When
checking network packets, hash detectors detect unexpected event anomalies (see Section
3.2.2). A hash detector is aimed at �nding simple intrusion cases where the attacker
replaces system components with their own programs or naively attempts to alter network
packets with a �xed payload, such as a system status report.

To train a hash detector for some expected input stringf , the hash detector computes
SHA-512(f) [56] and stores it, along with the information that identi�es what string f 0

24

should matchf . For �les, this is typically the location of the �le on the target �lesystem,
along with remote connection information if necessary. For network packets, this is usually
the sender, receiver, and application-speci�c identi�er of the packet expected to have �xed
content.

In operation on a �le, a hash detector polls the content of that �le at some determined
interval. The interval should be selected such that the detector does not overwhelm the �le
system with continuous reads. If �lesystem change noti�cations (such as inotify [57]) are
available on the target system, a hash detector may subscribe to them rather than polling.
When working on a network packet, the hash detector waits for a packet matching the
expected sender, receiver, and identi�er.

Upon receipt of the contents of a �le, or a network packetf 0, the hash detectors
computesSHA-512(f 0) and compares it toSHA-512(f). If they are not equal, the hash
detector reports an anomaly withP(anomaly) = 1 .

Like most watermark detectors, a hash detector is not complicated. It checks for the
most straightforward attacks only, and exchanges simplicity for accuracy. If the �le or
packet is not what was expected: there is an anomaly.

4.2 Statistic Detector Example: Spike Detector

A spike detector detects spikes according to the formula in Equation 3.1: given a time
seriesy, a window sizen, and a constant factorc, the subsequencey[p+1 ;q] is a spike i�

8yt : p < t � q; jyt � y[p� n;p]j > c � stdev(y[p� n;p]) (3.1)

Here the window size selected for the spike detector isn + q� p, a subsequence of the trace
that includes a window for computing the standard deviation and then a second window
the spike. The parameters of the spike detector are then the choice ofn, c, and q� p. See
Figure 4.1 for an example of a spike detector applied to the throttle control of a model car
(see Section 7 for details).

Fortunately we can chooseq � p = 1. We do this by observing that for su�ciently
large n the impact of any one samplêyt 2 y[p� n;p] on y[p� n;p] and stdev(y[p� n;p]) is small
(because sample mean and standard deviation have a sample count in their denominators).
Consider a sample that is an early part of a multi-sample spike. If that sample spills over
into the region of the window that is used to computey[p� n;p] and stdev(y[p� n;p]), it will
have a negligible e�ect on those measures. Any spike that is small enough that choosing

25

q� p = 1 would not detect it for su�ciently small c is not a spike as de�ned by the choice
of c. Choosing a smallerc will yield spikes as small as desired.

This leaves the choice ofc and n, which can be determined during training. Training
c is a matter of choosing an acceptable probability that a sample will be a spike based
on the sample rate and the observed distribution of the data. A non-zero spike count on
the training data is acceptable, as the aggregator makes the �nal verdict on if an anomaly
is reported (see Section 5). Selectingc is more of a selection of spike frequency than a
selection of a �nal anomaly threshold. A largerc will cause only the larger spikes to be
detected, a smallerc will detect all the spikes a largerc would detect and more. Oncec is
determined, the choice ofn is merely a case of trading memory for volatility. A largern
will require storing a larger bu�er y[p� n;p], but will yield a more stable mean and standard
deviation (as a larger sample size will yield a better approximation of the population mean
and standard deviation).

4.3 Machine Learning Detector Example: Autoencoder

An autoencoder is a form of unsupervised representation machine learning [58]. The ob-
jective of an autoencoder is to learn to represent the input in a smaller feature space. In
the case of deep learning autoencoders, this space is arbitrary and develops as a product
of training the arti�cial neural network. There is no human-understandable mapping back
from the features of this space back to real features. Autoencoders can also be viewed as
a dimensionality reduction technique.

An autoencoder is composed of an encoder functione(X) 7! R and a decoder function
d(R) 7! X [58] whereR is the lower-dimension "encoded" representation of the input. The
encoder is tasked with learning the mapping from the input to the encoded representation,
and the decoder with converting the encoded representation back to the associated input.
Together the encoder and decoder are combined into a single neural networkd(e(X)) 7! X
which can then be conveniently trained on its own input. That is, the learning process
minimizes the error between the original input and the reproduced input from the result
of the network.

While the encoded representation has many uses, in anomaly detection we are only
interested in the combined networkd(e(X)) 7! X , and speci�cally in the reconstruction
error of that network. We train the autoencoder to learn how to encode, and then decode,
only on normal data. When the autoencoder encounters anomalous data, it will have
di�culty reconstructing it because it was not trained on similar samples, and will yield a
large reconstruction error.

26

Figure 4.1: Spike Detector Example - Highlighted Regions are Spikes

27

Figure 4.2: Autoencoder Neural Network Layout

Autoencoders for anomaly detection have been well explored in the last year. Chen
et al. constructed an ensemble of autoencoders for anomaly detection using randomized
connection dropping achieve diversity [59]. Xu et al. use autoencoders to detect anomalies
in statistics from web applications [60], and Baur et al. use autoencoders for segment
anomalies in brain magnetic resonance images [61].

Out implementation of autoencoders is similar to Chen et al.'s RandNet [59] excepting
that we do not randomly disconnect some of the connections, as we are not constructing
an ensemble of varying autoencoders speci�cally. In our structure (see Figure 4.2) each
autoencoder begins with a fully connected layer that takes the input and reduces it to
a vector of size 20. Another layer reduces that vector to another vector of size 10, and
a �nal encoding layer takes it to the encoded representationR which is a vector of size
5. The process is then reversed for the decoder: a fully connected layer takes the hidden
representation and expands it to a vector of size 10, and another layer to a vector of size
20, and then a �nal layer back to the same dimension as the input.

28

Chapter 5

Anomaly Aggregators

The job of an anomaly aggregator is to collect the anomaly probabilities output from
anomaly detector nodes in the system and produce a �nal decision: should an anomaly be
reported to the system operator. We will consider aggregators as a part of the Palisade
software subsystem (see Chapter 6) and evaluate some existing ensemble learning methods
as aggregators in a case study (see Chapters 7, and 8). In this section, we expand on the
de�nition of the anomaly aggregation problem outline in Chapter 1 and provide a formal
mathematical de�nition, followed by �ve example aggregators.

We consider the result of an aggregator as a fundamentally a binary decision; we do
not consider reporting di�erent levels of anomalousness. This was an intentional design
choice: if the system is in an anomalous state, it is the operator's responsibility to engage
relevant safeguards. We do not want to add the additional overhead of determining if
the anomaly is severe enough to warrant said safeguards. Alarm fatigue occurs where
the system operator grows desensitized to alarms due to an abundance of false alerts [62].
This can cause the operator to disregard alerts that indicate a true system-wide anomaly.
Aggregation algorithms must be designed so that if the system reports an anomaly, the
anomaly will be taken seriously. We leave a discussion of how much information to show
the system operator for future work.

Anomaly aggregators can be viewed as a learning ensemble where the member classi�ers
are the anomaly detector nodes (see Section 4). However, here we come to a break from
existing literature on ensemble learning (see Section 2); we have a heterogeneous collection
of member classi�ers working on di�erent inputs and may report the same underlying
anomaly at di�erent times (as discussed in Section 4). The collection is heterogeneous
because di�erent algorithms will perform di�erently on di�erent data streams from within

29

a cyber physical system (see Section 4). This heterogeneity and the addition of a time
domain adds interesting constraints to the selection of aggregation algorithms.

To clarify the discussion of anomaly aggregation algorithms, we use the following no-
tation. An anomaly aggregation algorithm is a function

f (V) 7! f Normal; Anomalousg (5.1)

whereV is a matrix of sets where setVij contains the results of anomaly detection algorithm
i (of n total algorithms) running on input channel j (of m total channels). Each element
(p; t) 2 V ij is a tuple wherep is the probability P(anomaly) reported by the detector for
this set at time t. The result off is a single value: either the input probabilities represent an
anomaly, or they are normal behaviour. When in use in an online (see Chapter 4) anomaly
detection environmentf is reevaluated every time some anomaly detector produces a new
tuple (p; t).

Some ensemble learning methods from the literature (such as majority voting, weighted
voting, and logistic regression, see Section 2.2.3) do not explicitly include a time domain,
so we apply a time quantization approach to enable these instance-based methods. Lett0

be the time component of the last anomaly probability report tuple(p; t) in any Vij . Let
tnow be the present system time. For some time quantumq (which is typically selected as
some fraction of a second) create a new matrixVq with dimensionsn � m � d (tnow � t0)=qe.
Each entry Vq

ijk in this matrix is the the probability entry p from a tuple (p; t) in Vij where
tnow � qk � t > t now � qk � q. This makes the submatrix atk = 0 (called Vq

ij 0) the most
recent quanta within Vq. If there is more than one such tuple, it is the average of allp
from tuples satisfying the condition. If there are no such tuples,Vq

ijk is zero (in Section 4
we discuss that no output is assumed to beP(anomaly) = 0). See Figure 5.1 for a visual
example of this quantization.

If an anomaly detector reports multiple anomalies within a single quanta, we select
the average probability between all such reports.Vq

ijk represents the results of a single
anomaly detector i working on channel j during time quanta k. We are treating the
anomaly detectors contributing to the aggregators as black-box functions matching the
de�nition of an anomaly detector as de�ned in Chapter 4. If there are more than one
report from such a detector within a quanta, the aggregator has no additional information
to choose between those reports. It cannot tell if the �rst report was more representative of
the cyber-physical system state than the second, or if the second was more representative
than the �rst (and so on for more than two reports). An average is a straightforward
method of balancing these possibilities when no other information is available. Future
work may wish to consider di�erent combination methods, such as selecting the �rst or
last value in the quanta.

30

We limit the size ofVq (and V) by selecting a maximum number of quantar to maintain
history for. After r quanta have elapsed, we drop the oldest quanta from the end ofVq,
keeping the matrix a constant size. By limiting the number of quanta kept inVq we �x
the space complexity ofVq at O

�
nmr

�
.

We must also decide when to reevaluatef (Vq). There are two choices: reevaluate
f (Vq) as soon as some detector reports a new tuple(p; t) or wait one quantumq between
evaluations regardless of how many new tuples(p; t) arrive during that time. While the
�rst approach covers all the possible version ofVq during a quantum (as each new tuple
may update tnow and cause a full reconstruction ofVq), the second approach is the one
we adopt for this experiment. The second approach is made more straightforward than
the �rst approach by the ability to append a new two-dimensional matrix ontoVq for that
quantum without having to reconstruct all the other two-dimensional matrices for all past
quanta (astnow has changed by exactlyq).

Maintaining Vq only costsO
�
nm

�
per quanta elapsed, and constant time per anomaly

reported by any anomaly detector. Updating an average in one cell ofVq takes constant
time (so long as the number of entries in each cell is maintained, which adds only constant
space complexity). UpdatingVq for a new time quanta takesO

�
nm

�
time, as the submatrix

at k = r used for the oldest quanta can be �lled with zeros and reused as the newest quanta
if Vq is stored as a linked-list of quanta (which adds only a sizer overhead for linked-list
pointers, not enough to change the space complexity ofVq). We can storeVq as a linked
list of quanta because we wait one quanta every time we reevaluatef (Vq) (see above).

5.1 Simple Majority Vote Aggregator

We begin with a majority vote aggregator as described by Polikar [11]. The majority vote
aggregator usesVq as described above. It considers only one two-dimensional sub-matrix of
Vq, speci�cally the sub-matrix wherek = 0, which will be the results from detectors in the
most recent quanta. For each element, we consider it a vote for an anomaly ifVq

ij 0 � 0:5
and a vote against an anomaly otherwise. We construct the total anomaly voteX as:

X =
X

ij 2V q

(
1 if Vq

ij 0 � 0:5

� 1 otherwise
(5.2)

For some thresholdT, if X > T then we report (that is, f (Vq) produces)Anomalous,
otherwise we reportNormal. Training the simple majority vote aggregator is a matter of

31

Figure 5.1: Quantization of Aggregator Input in Time Domain

voting on each instance of the training set and selectingT to be the threshold at which no
non-anomalous instances are classi�ed as anomalous (the zero-false-positive threshold).

The simple majority vote aggregator is not intended to be accurate (see the results in
Section 8), but instead to provide a baseline against which to judge the other aggrega-
tion algorithms. Any more sophisticated algorithm should perform better than a simple
majority vote that considers no history.

5.2 Weighted Majority Vote Aggregator

The weighted majority vote aggregator works similarly to the simple majority vote aggre-
gator except that a detector's vote is weighted by its accuracy across all channels. This is
based on Polikar's description of weighted majority voting [11] were we select the weights
to be the accuracy of the detectors on the training set. We use the standard statistical
de�nition of accuracy for an anomaly detectorD i :

Acc(D i) =
true positives+ true negatives

true positives+ true negatives+ false positives+ false negatives
(5.3)

32

We again use only the most recent sub-matrix ofVq wherek = 0, and a vote for an anomaly
is counted if Vq

ij 0 � 0:5, otherwise a vote against and anomaly is counted. We can then
construct the total anomaly voteX as:

X =
X

j 2V q

X

D i

(
Acc(D i) if Vq

ij 0 � 0:5

� Acc(D i) otherwise
(5.4)

Again like the simple majority vote aggregator, we consider some thresholdT. If X > T
then we report Anomalous, otherwise we reportNormal. To train the weighted majority
vote detector, we computeX on each instance of the training set and selectT to be the
zero-false-positive threshold.

5.3 Logistic Regression Aggregator

Ho et. al. suggest a method of combining decisions from multiple classi�ers using logistic
regression [23]. We implement their technique here for a binary classi�cation of the sub-
matrix of Vq wherek = 0 (as used in the voting schemes above). Ho et al. de�neYc as 1
if the c is the correct predicted class for the ensemble on sampleY, and Yc = 0 if it is not.
From here the let P(Yc = 1jX c) = � (X c) whereX c is the vector of ranks given to classc
by the member classi�es. If a classi�eri ranks classc as the most likely class for a sample,
it will have the highest rank value. In binary classi�cation this meansX ci = 1 if classi�er
i believesc is the correct class, andX ci = 0 otherwise. Now we can de�ne� (X c). Ho et
al. let the probability that the ensemble will predict the correct class given the outputs of
the member classi�ers (here asVq

ij 0 to match our notation) be:

� (Vq
ij 0) =

exp
�
� + � Vq

ij 0

�

1 + exp
�
� + � Vq

ij 0

� (5.5)

where� is a scalar and� is a weight vector (see below) that can be determined by logistic
regression. For binary classi�cation, the values of� and � are determined for only one of
the classes (in this caseAnomalous). If the resulting probability P(anomaly) > 0:5 then
we predict Anomalous; otherwise we predictNormal.

The logistic regression aggregator is trained by splitting out each two-dimensional sub-
matrix varying on k from Vq in the training set, then �attening this matrix into a vector
(so that when multiplied by � it produces a scalar). The valuesVq

ijk are bucketed into
two buckets: if Vq

ijk > 0:5 it is bucketed to 1, otherwise it is bucketed to zero. All the

33

�attened sub-matrices (now vectors) so bucketed are fed as input to a logistic regressor (in
this case LIBLINEAR [63]). The resulting � and � are used during testing to produce the
probability of the ensemble predicting an anomaly. For some user selected thresholdT if
the result of the logistic regression� (Vq

ij 0) > T then we report Anomalous; otherwise, we
report Normal. As in voting, T is selected to be the zero-false-positive threshold.

5.4 Probability Sum Aggregator

In Section 4 we conclude that anomaly detectors may report anomalies at a di�erent
time than the anomaly actually occurred. However, detectors do report the probability
P(anomaly) that they believe an anomaly has occurred at the time they report it. Here
we must make an assumption: the time-domain error of a reported anomaly is normally
distributed around the time the underlying anomaly occurred.

There are two primary arguments against the normal distribution of time-domain errors:
you cannot detect an anomaly before it occurs so the distribution of the time domain error
cannot be symmetric, and anomalies are not instantaneous events, and so there is no �xed
point against which to measure the time-domain error.

The �rst argument is correct in that anomalies cannot be detected before they occur.
However, due to windowing, a detector may report an anomaly on a window with an
underlying anomaly near its end. Some detectors may not be able to ascertain where in
the considered window the anomaly occurred, and many detectors will default to the time
of the beginning or the middle of the window. This leaves a signi�cant gap between when
the anomaly is reported and when it occurs and provides a reasonable basis for selecting a
symmetric anomaly time-domain error distribution.

The second argument also has merit; anomalies are not instantaneous events. However,
if the underlying anomaly has a start and end time, some detectors will not be able to
ascertain when the anomaly started or ended. Consider a watermark detector working on
a slowly leaking tank: the leak (underlying anomaly) started long before the water fell
below the threshold checked by the detector. A detector looking at the tank pressure may
have detected the leak earlier, and one looking at the tank temperature may detect it
later. Since the anomaly aggregator does not know underlying physical properties of the
anomaly, assuming the time within the anomaly when the report occurs to be normal is a
fair assumption.

If we assume the time domain error is normally distributed, then we can sum the
probabilities from di�erent detectors as if they were probabilities for the same event: that

34

there is a true anomaly to report. The probability sum aggregator considers all tuples
(p; t) in V equally, regardless of the source detector. To determine if there is an anomaly
at time tnow , for some sensitivity factor� the probability sum aggregator evaluates:

S =
X

ijk 2V

� Vijk [p]

�
p

2�
e� (tnow �V ijk [t])2/ 2� 2 �

(5.6)

and reports an anomaly ifS is greater than or equal to some thresholdT selected dur-
ing training. This is just a sum of the normal probability density function for reported
anomaly probability tuple, shortened vertically depending on the probability reported by
the source detector (the factorVijk [p] in the numerator). The sensitivity factor � is the
standard deviation of the normal distribution that we assume the error in the anomaly
time prediction to take. This is a hyperparameter to be selected before training.

The probability sum aggregator is trained by evaluating it on the training data and
observing the maximum value ofS over the normal training set and the minimum value of
T over the anomalous training set.T can then be selected depending on the desired level
of sensitivity as opposed to the number of false positives. Since it is desirable to have as
few false positive as possible, selectingT to be equal to the lowest value ofS for which a
true anomaly occurs in the training set is a reasonable choice. If training only on normal
data, selectS to be slightly larger than the largest value ofS for which no true anomaly
is present in the training set (the zero-false-positive threshold).

5.5 Stacked Generalization

Wolpert describes stacked generalization as an approach for ensemble learning where a
higher-level classi�er is trained on the outputs of the member classi�ers [20] (see Section
2.2.2). Here we implement stacked generalization without cross-validation on the inputs
to the member classi�ers. The primary bene�t of this cross-validation is the ability to use
the majority fraction (in the case of 10-fold cross-validation, this fraction is9

10) to train
each of the member classi�ers, and the entirety of the training set to train the higher-
level classi�er. Our implementation of stacked generalization assumes that the member
classi�ers have already been trained on a di�erent dataset, and thus the cross-validation is
unnecessary as we can already use the entire training set on the higher-level classi�er.

We implement the higher-level classi�er as a fully connected feed-forward neural net-
work (see Figure 5.2). Neural networks are well explored for anomaly detection [64, 65,
66, 67] and are considered viable, so it is �tting to examine them here in our comparison

35

Figure 5.2: Stacked Generalization Neural Network Layout

of aggregators. The network takes the most recentr quanta from Vq to add additional
historical context to the classi�cations of the algorithm. While Wolpert's method did not
consider classi�cations of member classi�ers that vary in the time domain [20], we feel it
is a reasonable augmentation to the approach.

The network consists of three fully connected layers that reduce the input from the
sub-matrix of Vq with shapen � m � r (recall r is the number of quanta kept inVq) down
to a single output. The �rst layer increases the size of the hidden representation to the
shapen � m � nm (because in generalnm >> r , and Sietsma and Dow conclude that
small �rst hidden layers produce poor generalization performance [68]). Then we reduce
the shape ton � m � n and then down to 1. The output layer uses sigmoid activation [69],
and all the other layers use recti�ed linear activation.

Our stacked generalization method is trained on the training set using a traditional
backpropagation approach. Once the network is trained we select a thresholdT to be
the zero-false-positive threshold of the aggregator as run on the training set. We report
Anomalous in testing if the output of the �nal layer of the neural network is larger than
T; otherwise, we produceNormal. See Chapter 8 for the results of this implementation of
neural network stacked generalization.

36

Chapter 6

Palisade: Anomaly Detection for
Cyber-Physical Systems

Palisade is a complex event processing framework built for anomaly detection in cyber-
physical systems. It is divided into software and hardware subsystems. The hardware
components collect diagnostics from the target cyber-physical system and pass them to
the software components, which perform the anomaly detection and inform the system
operators of a verdict.

6.1 Palisade Requirements

The construction of Palisade was motivated by the desire to have a lightweight, e�cient,
and modular system for anomaly detection in cyber-physical systems. To accomplish this
aim, we outline a set of requirements that drive the design of Palisade.

Requirement 1: Palisade shall scale to any size of target cyber-physical system. While
presently Palisade has been installed on motor vehicles, we aim to install Palisade on larger
and more complex target systems in the future.

Requirement 2: Anomaly detectors in Palisade should support being distributed
over a network. To go with Requirement 1, we must be able to scale the computational
capability of Palisade to accommodate arbitrary computational requirements from large
cyber-physical systems.

Requirement 3: Multiple anomaly detectors shall be able to run on the same data.

37

Many detection algorithms in Palisade (see Section 4) may work with multiple data streams.
Thus, detectors must be able to share data stream for maximum e�ect.

Requirement 4: Palisade shall be able to collect side-channel data at a su�ciently
high sampling rate. The accuracy of anomaly detection algorithms on side-channel data
scales with the sampling rate of that data (to a point [70]).

6.2 Palisade Terminology

For the discussion of Palisade, we de�ne actors in the system by speci�c names de�ned
herein.

The target systemis the cyber-physical system that Palisade is set up with. This means
the Palisade hardware is installed locally along with the components of the target system,
and not operating remotely.

The system operatoris a human in charge of operating or maintaining the target system.
This would be the driver/pilot for a motor vehicle or airplane. When Palisade generates
an alert, it is the system operator's responsibility to respond to the alert and undertake
whichever safeguards are necessary. Palisade (as presented here) is strictly an anomaly
detection framework; it does not attempt to counteract malicious activity, only detect it.

A control unit is a microprocessor that controls a component of the target system. For
a car, examples of control units include the engine control unit (ECU), the infotainment
controller, the Anti-lock Braking System (ABS) controller, and many others.

We de�ne a sensoras a device that measures a physical property at a �xed point within
the target system. Examples of such properties include vibration, temperature, and electric
current. At present, the hardware implementation of Palisade uses �ve types of sensors:
microphones, accelerometers, gyroscopes, temperature sensors, and current sensors.

We de�ne a probeas a sensor that measures a digital signal travelling on a bus. Exam-
ples of such buses might include: a Controller Area Network (CAN), a Serial Peripheral
Interface (SPI), or an Inter-Integrated Circuit (I2C) bus. Palisade currently only has probe
that monitors activity on a CAN bus.

A sensor suiteis a set of sensors, one of each type Palisade includes, that measure the
characteristic of one component of the target system. A single sensor suite in Palisade
consists of a microphone, an accelerometer, a gyroscope, a temperature sensor, a current
sensor, and a CAN bus probe.

38

Figure 6.1: Palisade Hardware Subsystem

6.3 Palisade Structure

The hardware subsystem of Palisade (see Figure 6.1) is composed of separate Data Ac-
quisition Units (DAQs). Each unit records data from an attached sensor suite. Each unit
instruments a subsystem of the target system. In practical terms, this means that the
sensor suit instruments a single device and the control unit for this device. For example,
consider the engine control unit in a car. The accelerometer, gyroscope, and temperature
sensor are mounted directly to the engine block, the microphone is a�xed to the frame
near the exhaust, and the current sensor is connected to the power supply of the engine
control unit. Together this sensor suite is connected to a single DAQ. In a full installa-
tion of Palisade, there are multiple DAQs, each instrumenting a separate subsystem of the
target system. Continuing with the car analogy: there would be a DAQ for the engine,
transmission, infotainment, ABS, alternator/battery, and possibly more.

Each of these DAQ units is connected to the centralcontroller. There is only ever
one controller, which adjudicates between the hardware and the software subsystems of
Palisade. The controller runs Redis [6], (REmote DIctionary Server) as a publish-subscribe
broker. For a discussion on the choice of publish-subscribe broker, see Dunne 2018 [71].

39

	List of Tables
	List of Figures
	Introduction
	Background
	Anomaly Detection
	Ensemble Learning
	Diversification
	Diversifying Algorithms
	Combination Techniques
	Deep Learning Based Approaches

	Collaborative Intrusion Detection Systems

	Symptoms of Anomalies
	Continuous Signal Anomaly Symptoms
	Spikes and S-waves
	Drifting
	Noise
	Clipping
	Loss
	Smoothing
	Amplification
	Level Change
	Frequency Change
	Echo/Reflection

	Event Series Anomaly Symptoms
	Event Frequency Change
	Unexpected Event
	Periods of Silence
	Sampled Value Anomaly Symptom

	Anomaly Detectors
	Watermark Detector Example: Hash Detector
	Statistic Detector Example: Spike Detector
	Machine Learning Detector Example: Autoencoder

	Anomaly Aggregators
	Simple Majority Vote Aggregator
	Weighted Majority Vote Aggregator
	Logistic Regression Aggregator
	Probability Sum Aggregator
	Stacked Generalization

	Palisade: Anomaly Detection for Cyber-Physical Systems
	Palisade Requirements
	Palisade Terminology
	Palisade Structure
	Data Acquisition Units
	Software Subsystem

	Case Study
	ADAS Demonstrator
	Experiment Setup
	Anomaly Scenarios
	CAPEC 148 - Content Spoofing
	CAPEC 94 - Man in the Middle
	CAPEC 248 - Command Injection
	CAPEC 548 - Contaminate Resource
	CAPEC 184 - Software Integrity Attack
	CAPEC 125 - Flooding
	CAPEC 130 - Excessive Allocation
	CAPEC 594 - Traffic Injection
	CAPEC 607 - Obstruction
	CAPEC 176 - Configuration Manipulation
	CAPEC 441 - Malicious Logic Insertion

	Channels

	Results and Discussion
	Data
	Algorithm Selection
	Methodology
	Discussion

	Future Work and Conclusion
	Lessons Learned
	Future Work
	Conclusion

	References

