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Abstract

Propensity score methods are increasingly being used to reduce estimation bias of treat-

ment effects for observational studies. Previous research has shown that propensity score

methods consistently estimate the marginal hazard ratio for time to event data. However,

recurrent data frequently arise in the biomedical literature and there is a paucity of re-

search into the use of propensity score methods when data are recurrent in nature. The

objective of my thesis is to extend the existing propensity score methods to recurrent data

setting. We review current propensity score methods for estimating treatment effects when

the outcome is a single time to event. Then we propose a new class of inverse probability

treatment weighting (IPTW) estimators to estimate treatment effects for recurrent data.

We illustrate our methods through both estimating equation theory and a series of Monte

Carlo simulations. The simulation results indicate that when there is no censoring, the

newly proposed IPTW estimators allow us to consistently estimate the marginal hazard ra-

tio for each event. Under administrative censoring regime, the stabilized IPTW estimator

consistently estimates the marginal hazard ratio while the conventional IPTW estimator

yields significant bias, especially when the proportion of subjects being censored is high.

For variance estimation, we incorporate the robust variance estimator and the bootstrap

variance estimator to deal with the within-subject correlation induced by weighting. In

addition, we apply our methods to a real life example. We note that although the Cox pro-

portional hazards model we used for estimating the marginal hazard ratio may be subject

to misspecification, the estimate still converges and has meaningful interpretations.
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Chapter 1

Literature Review

Causal inference is an emerging field in statistics. In medical research, we are often in-

terested in understanding the effect of treatment on an outcome. The gold standard is

to conduct an experimental study where the treatment is randomized. This guarantees

that the covariate distributions of the treatment group and control group do not differ

systematically, in which case valid causal inference can be drawn by directly comparing

the two groups. However, in reality, experimental studies are often impossible or unethical

so we have to consider the alternative: observational studies. Observational studies differ

from experimental studies in that treatment assignment is often dependent on other covari-

ates, and we refer this as selection bias. As a result, the characteristics of the treatment

and control group may be systematically different, which leads to biased estimation of the

treatment effect. In order to make valid causal inference, adjustments must be made to

balance the covariates between the two groups. Over the past several decades, different

methods for reducing bias in observational studies have been developed and there has been

an increasing interest in using the propensity score methods. In this section, we review

the past research on causal inference based on the propensity score methods, specifically

the use of inverse probability treatment weighting in reducing treatment effect estimation

bias.
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1.1 Historical Development on Propensity Score Meth-

ods

The propensity score is defined as the probability of treatment assignment conditional

on measured baseline covariates [1]. There are four propensity score methods that are

used most often in the biomedical literature: matching, stratification, inverse probability

weighting and covariate adjustment. These methods allow us to reconstruct a pseudo-

sample which mimics an experimental data setting, thus reducing or eliminating bias in

estimating the treatment effect.

In the 1980s, researchers mainly focused on bias reduction on a linear scale. Rosenbaum

and Rubin (1983) demonstrated that by dividing the sample into five mutually exclusive

equal-sized strata based on the propensity score would result in an over 90% bias reduction

[1, 2]. It was also proven that the inverse probability treatment weighting method using

the propensity score gives consistent estimates of linear treatment effects [1]. Matching

also yielded a similar performance by forming matched sets with similar values of propen-

sity score between the treatment group and control group [3]. All three propensity score

methods resulted in unbiased estimation of the treatment effect on a linear scale (i.e. when

treatment effect is a difference in mean outcome) when there was no unmeasured confound-

ing. However, little attention had been focused on other measures of treatment effects at

that time.

1.2 Propensity Score Methods with Time to Event

Data

It was not until recent years that propensity score methods for non-linear measures of treat-

ment effects received attention. Some applied researchers used propensity score methods
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to estimate non-linear treatment effects for time to event data before but the degree of bias

they incurred had not been extensively studied [4]. To this end, Austin (2007) performed

a series of Monte Carlo simulation studies to examine the degree of bias when treatment

effects are measured using a hazard ratio, odds ratio and rate ratio [4]. The simulation

results indicated that conditional on the propensity score, matching, stratification and in-

verse probability weighting all resulted in biased estimates of the true conditional hazard

ratio and odds ratio, while regression adjustment yielded unbiased estimates of both the

true conditional hazard ratio and odds ratio. Interestingly the rate ratio was consistently

estimated for all propensity score methods. This is because conditional on the propensity

score, we estimate the marginal treatment effect instead of the conditional treatment effect

[5]. A conditional effect refers to the average effect at the individual level, of removing a

subject from treated to untreated, while a marginal effect is the average effect at the pop-

ulation level, of moving the whole population from treated to untreated [5]. Austin (2007)

[4] concluded that the marginal treatment effect coincides with the conditional treatment

effect when the measure of treatment effect is a difference or rate ratio while the two effects

do not coincide in the odds ratio and hazard ratio settings.

1.3 Review of Variance Estimation Methods

When dealing with clustered data, the use of naive variance estimator often results in

biased estimation of the standard errors and poor coverage rates for confidence intervals

[6]. By weighting we artificially induce a within-subject correlation by creating a cluster

for each subject. Moreover, the fact that we inflate the sample size by weighting also

leads to underestimated standard errors [6]. Lin and Wei (1989) argued that by using

the robust variance estimator, one can eliminate the within-subject correlation induced

by weighting [7]. However, the behavior of different variance estimators had not been

extensively studied. Austin (2016) performed a series of Monte Carlo simulations using

the naive variance estimator, the robust variance estimator proposed by Lin and Wei
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and the bootstrap variance estimator [6]. The simulation results suggested that both the

robust variance estimator and the bootstrap variance estimator significantly improved the

accuracy of variance estimation with slightly better performance for the bootstrap variance

estimator. This finding provided a helpful guideline of variance estimation to researchers

in their research.

1.4 Recurrent Events

Methods for recurrent events analysis are covered extensively in Cook and Lawless (2007)

[8]. Basic analysis methodologies include Poisson process and renewal process models

where gap times are independent. The methods gained popularity because of its simplicity

and well-established theoretical results. However, the independence assumption is often

violated and to this end, cases where gap times are not independent to each other are

discussed further. Additional modelling techniques for handling recurrent data include the

Accelerated Failure Time model and the Cox proportional hazards model.

1.5 Discussion

Many observational data in real life are recurrent in nature. Though methods for making

causal inference for time to event data have been developed, there is a paucity of research

on making causal inference for recurrent data. Hence it would be desirable to extend the

propensity score framework to two events and possibly multiple events. Therefore the

objective of my thesis is to develop appropriate propensity score methods to estimate the

treatment effect in the case of recurrent events.
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Chapter 2

One Event Setting

The goal of this chapter is to draw causal inference in the case where the outcome of in-

terest is a single time to event. The chapter focuses on the case where the treatment effect

is measured using a hazard ratio. Baseline covariates, treatment assignment, outcome and

some other related terminologies are defined at the beginning. Then, model assumptions

and specifications for the treatment model and the outcome model are described. The con-

sistency and asymptotic properties of the inverse probability treatment (IPTW) estimators

are proven. Finally, a series of Monte Carlo simulations are conducted to extensively study

the behaviour of the IPTW estimators under different parameter settings. A summary of

the simulation results and trends is presented at the end of this chapter.

2.1 Notation and Model Set-up

We shall use the following notation throughout this chapter. Assume that we have a total

of n subjects i = 1, 2, ..., n. We suppress the i notation in this section. Let Z be an indicator

variable denoting treatment status, X = (1, x1, x2, ...xp−1)
T be a p-dimensional vector of

covariates, and T be the observed survival time. Define T0 to be the survival time under
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Figure 2.1: Causal graph for time to event data

control and T1 to be the survival time under treatment. In an observational data setting,

X is a confounder because it is both associated with treatment Z and is a risk factor for

outcome T . Figure 2.1 illustrates the relationship among X, Z and T . We define e to be

the propensity score, which is given by

e(x) = P (Z = 1|X = x)

The propensity score is the probability of receiving treatment conditional on observed

covariates [1]. However, in most cases the propensity score is unknown and needs to be

estimated. A common way of doing this is using a logistic regression model

log
( e

1− e

)
= XTα

whereα = (α0, α1, ...αp−1)
T is a vector of regression coefficients. Let α̂ denote the estimates

of regression coefficients from the logistic regression model. Hence the estimated propensity

score is

ê(x) = expit(XT α̂)

We define the conventional inverse probability treatment weights (IPTW) to be [9]

cw =
Z

e
+

1− Z
1− e

Hence, each subject is weighted by the inverse of the probability of treatment the subject

actually received. The IPTW weights sometimes induce extremely large weights for a few
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subjects and as a result, these subjects will dominate the analysis [6]. To this end, we

incorporate the stablized inverse probability weights, which is defined to be [10]

sw =
pZ

e
+

(1− p)(1− Z)

1− e

where p is the treatment prevalence across the sample. That is, p = P (Z = 1). Conven-

tional weights often result in a few subjects having very large weights, thus yields unstable

estimation of the marginal hazard ratio. The use of stabilized weights improves the stability

of estimation by adjusting subjects with very large weights [6].

Assume there is no censoring. We define the marginal hazard ratio to be the hazard

ratio of moving all population from treatment to control. For a given simulated dataset,

to determine the true log marginal hazard ratio βm, for each subject we simulate both

potential outcomes under treatment and control conditions T0 and T1. Then we regress

both potential outcomes on treatment indicator to obtain the log of the true marginal

hazard ratio βm [11]. To estimate the marginal treatment effect on the hazard of the

occurrence of the outcome, the following assumptions need to be satisfied [1]:

1. There is no unmeasured confounding. i.e. (T0, T1) ⊥ X|Z

2. The probability of treatment is strictly positive i.e. 0 < P (Z = z|X) < 1

We first regress treatment indicator on baseline covariates X through a logistic regres-

sion model to obtain the estimated propensity score ê(x). Then we run a weighted Cox

regression model of the form

h(t|x) = h0(t)e
βmz

where h0(t) is the baseline hazard and βm is the log of the true marginal hazard ratio. We

regress survival time T on treatment indicator Z, with both the conventional and stablized

inverse probability weights defined above to get the estimate of β̂m. For the variance

estimation of β̂m, we consider three different approaches. First we use the naive variance
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estimator from the maximum partial likelihood estimator for the Cox proportional hazards

model. Second, we use the robust variance estimator proposed by Lin [7]. The use of

the IPTW artificially creates clusters with wi copies of subject i for the ith cluster. The

covariance matrix for the ith cluster is given by

V ar(T i) = A
1
2
i (β)Ri(α)A

1
2
i (β)

where Ai(β) =


V ar(Ti1)

V ar(Ti2)
. . .

V ar(Twi
)

 and Ri(α) is the working correlation

matrix [12]. In the case where wi are not integers, we can multiply the weights by some

large constant to approximate the weights by integers. Since weighting induces a within-

subject correlation, the naive variance estimator tends to incorrectly estimate the variance.

Finally, we use the bootstrap variance estimator. We draw 200 bootstrap samples and for

each simulation sample, and we repeat the same procedures described above to obtain the

estimated log marginal hazard ratio. The standard deviation of the estimated log marginal

hazard ratio from the 200 bootstrap samples is used as the bootstrap standard error [6].

2.2 Estimating Equation Theory

Estimating equations are a useful tool for semi-parametric models. In this section, we

introduce some elementary theory regarding estimating equations and prove some key

results. Let X denote a covariate vector and θ denote a vector of unknown parameters.

Let θ0 be the true value of θ and U(X;θ) be a set of estimating equations. An unbiased

estimating equation has expectation of 0 when evaluated at the true value θ0. That is,

E[U(X;θ0)] = 0
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To estimate and make inference about θ0 in the case where dim(U) = dim(θ), we solve

the following equation to get an estimate θ̂.

1

n

n∑
i=1

U(Xi;θ) = 0

Note that the score function is an estimating equation where the model is fully specified.

Theorem 2.2.1. Under certain regularity conditions, we have the following estimating

equation properties:

1. Consistency: θ̂
p→ θ0

2. Asymptotic Normality:
√
n(θ̂ − θ0)

d→ N(0, E[∂U(θ0)
∂θT

]−1V ar(U(θ0))E[∂U(θ0)
∂θ

]−1)

The asymptotic normality property can be derived by applying Taylor expansion at

the true value θ0. We prove property 2 and the proof of property 1 can be done using the

weak law of large number [13][14].

Proof.
1√
n

n∑
i=1

Ui(θ̂) = 0

Apply Taylor expansion for Ui(θ) at θ0:

1√
n

n∑
i=1

[
Ui(θ0) +

∂Ui(θ̃)

∂θT
(θ̂ − θ0)

]
= 0

by the mean value theorem. θ̃ is between θ0 and θ̂. After some calculation, one can obtain:

1

n

n∑
i=1

∂Ui(θ̃)

∂θT
√
n(θ̂ − θ0) = − 1√

n

n∑
i=1

Ui(θ0)

Using the following facts,

1√
n

n∑
i=1

Ui(θ0)
d→ N(0, V ar(U(θ0))
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1

n

n∑
i=1

∂Ui(θ̃)

∂θT
p→ E

[∂U(θ0)

∂θT

]
one can obtain

√
n(θ̂ − θ0) = −E

[∂U(θ0)

∂θT

]−1 1

1 + op(1)

1√
n

n∑
i=1

Ui(θ0)

Since
1

1 + op(1)
= 1 + op(1)

Then we have
√
n(θ̂ − θ0) = −E

[∂U(θ0)

∂θT

]−1 1√
n

n∑
i=1

Ui(θ0) + op(1)

Hence,
√
n(θ̂ − θ0)

d→ N
(

0, E
[∂U(θ0)

∂θT

]−1
V ar(U(θ0))E

[∂U(θ0)

∂θ

]−1)

2.3 The IPTW Estimator

In this section, we construct the inverse probability treatment weighting estimator when

the treatment effect is measured using a hazard ratio as well as explore the asymptotic

properties.

Let θ̂iptw denote the conventional IPTW estimate and θ̂siptw denote the stabilized IPTW

estimate. Let ei and Zi denote the propensity score and treatment status for individual i

respectively. We obtain the estimate by solving the following weighted estimating equa-

tions:
1

n

n∑
i=1

(Zi
ei

+
1− Zi
1− ei

)
Ui(θ̂iptw) = 0

.

Assume U(X; θ) is an unbiased estimating equation. i.e. E[U(X; θ0)] = 0. The follow-

ing theorems hold.

10



Theorem 2.3.1. θ̂iptw is a consistent estimator of θ0.

Proof.

E
[(Z

e
+

1− Z
1− e

)
U(θ0)

]
= E

[
E
(Z
e

+
1− Z
1− e

)
U(θ0)|X

]
= E

[(E(Z|X)

e
+

1− E(Z|X)

1− e

)
U(θ0)

]
= E[2U(θ0)]

= 0

Then the asymptotic normality property of the IPTW estimator can be easily obtained

by applying Theorem 2.2.1.

Theorem 2.3.2.
√
n(θ̂iptw − θ0)

d→ N(0, Viptw), where

Viptw =
1

4
E
[∂U(θ0)

∂θT

]−1
E
[(1

e
+

1

1− e

)
U(θ⊗20 )

]
E
[∂U(θ0)

∂θ

]−1

Note: U(θ⊗20 ) = U(θ0)U(θ0)
T

Proof.

V ar
[(Z

e
+

1− Z
1− e

)
U(θ0)

]
= E

[(Z
e

+
1− Z
1− e

)2
U(θ⊗20 )

]
= E

[
E
(Z
e

+
1− Z
1− e

)2
U(θ⊗20 )|X

)]
= E

[(E(Z|X)

e2
+

1− E(Z|X)

(1− e)2
)
U(θ⊗20 )

]
= E

[(1

e
+

1

1− e

)
U(θ⊗20 )

]

11



E
[(Z

e
+

1− Z
1− e

)∂U(θ0)

∂θT

]
= E

[
E
(Z
e

+
1− Z
1− e

)∂U(θ0)

∂θT
|X
]

= E
[(E(Z|X)

e
+

1− E(Z|X)

1− e

)∂U(θ0)

∂θT

]
= E

[
2
∂U(θ0)

∂θT

]
= 2E

[∂U(θ0)

∂θT

]

Hence, by Theorem 2.2.1, we have

Viptw = E
[(Z

e
+

1− Z
1− e

)∂U(θ0)

∂θT

]−1
V ar

[(Z
e

+
1− Z
1− e

)
U(θ0)

]
E
[(Z

e
+

1− Z
1− e

)∂U(θ0)

∂θ

]−1
=

1

4
E
[∂U(θ0)

∂θT

]−1
E
[(1

e
+

1

1− e

)
U(θ⊗20 )

]
E
[∂U(θ0)

∂θ

]−1

We can derive properties of the stabilized inverse probability treatment weighting esti-

mator using similar techniques. Hence, we have the following theorem.

Theorem 2.3.3. Under certain regularity conditions, we have the following:

1. θ̂siptw is a consistent estimator of θ0.

2.
√
n(θ̂siptw − θ0)

d→ N(0, Vsiptw), where

Vsiptw = E
[∂U(θ0)

∂θT

]−1
E
[(p2

e
+

(1− p)2

1− e

)
U(θ⊗20 )

]
E
[∂U(θ0)

∂θ

]−1
The proof of this theorem follows the similar method as Theorem 2.3.1 and 2.3.2.
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2.4 Estimating Equations for Cox Proportional Haz-

ards Models

We define the following counting process notation. Let Y (s) = I(s ≤ w) denote the

observation process and ∆N(s) = N(s + ∆s) − N(s) denote the number of events in

[s, s + ∆s). dN(s) = I(s = w). The Cox proportional hazards model for estimating the

marginal hazard ratio takes

h(w|x, z) = h0(w)eβ
mz

where βm is the log marginal hazard ratio. We consider semi-parametric regression where

h0(w) is taken to be of no particular parametric form. The likelihood for subject i is of

the form [15]:

Li = h(wi|x, z)exp(−
∫ wi

0

h(t)dt)

The log-likelihood for li is:

li = logh(wi|x, z)−
∫ wi

0

h(t|x, z)dt

=

∫ ∞
0

dNi(t)logh(t|x, z)− Yi(t)h(t|x, z)dt

=

∫ ∞
0

Yi(t)[dNi(t)(logh0(t) + ziβ
m)− h0(t)eziβ

m

]dt

Hence

l =
n∑
i=1

aili (2.1)

=
n∑
i=1

∫ ∞
0

Yi(t)ai

[
dNi(t)(logh0(t) + ziβ

m)− h0(t)eziβ
m
]

(2.2)

where ai are the IPTW weights.

Differentiate (2.2) with respect to h0(t) we get:

∂l

∂h0(t)
=

n∑
i=1

∫ ∞
0

Yi(t)ai

[dNi(t)

h0(t)
− h0(t)zieziβ

m
]
dt (2.3)

13



Set (2.3) to be 0, we obtain:

ĥ0(t) =

∑n
i=1 Yi(t)aidNi(t)∑n
i=1 Yi(t)aie

ziβm (2.4)

Differentiate l with respect to βm we get:

∂l

∂βm
=

n∑
i=1

∫ ∞
0

Yi(t)ai[dNi(t)zi − h0(t)zieziβ
m

]dt (2.5)

Plug ĥ0(t) into (2.5), we get:

U(β̃m) =
n∑
i=1

∫ ∞
0

Yi(t)aidNi(t)
[
zi −

∑n
i=1 Yi(t)aizie

ziβ
m∑n

i=1 Yi(t)aie
ziβm

]
dt

Define S(0)(β; t) =
∑n

i=1 Yi(t)aie
ziβ

m
and S(1)(β; t) =

∑n
i=1 Yi(t)aizie

ziβ
m

Then

U(β̃m) =
n∑
i=1

∫ ∞
0

Yi(t)dNi(t)
[
zi −

S(1)(β; t)

S(0)(β; t)

]
dt

To obtain the estimate of the log marginal hazard ratio β̂m we set U(β̃m) = 0. We note

that the estimating function theory deals with the possibility of misspecification.

2.5 Simulation Settings

2.5.1 Data Generation

We perform an extensive series of Monte Carlo simulations to examine the numerical

performance of the IPTW estimator with both the conventional weights and the stablized

weights. We simulate 10 independent baseline covariatesX1, ..., X10. Of these 10 covariates,

X2, X5 and X9 follow a Bernoulli distribution with parameter equal to 0.5 and all other

14



covariates follow a standard normal distribution. The above simulation setting comes from

Austin (2013) with slight modifications [11]. We assume X1 - X7 are associated with

treatment assignment and X4 - X10 are associated with outcome. Figure 2.2 summarizes

the relationship among these variables. We allow covariates to have weak, moderate,

strong and very strong effect on treatment assignment or outcome and denote the strength

of association by αw, αm, αs and αvs, which is the log odds ratio per one unit increase

in the corresponding covariate. We set the coefficients to be log(1.25), log(1.5), log(1.75)

and log(2), respectively. We then use a logistic regression model to simulate treatment

assignment probability for the ith individual:

logit(pi) = α0 + αwx1i + αmx2i + αsx3i + αwx4i + αmx5i + αsx6i + αvsx7i

α0 is determined by using a bisection approach suggested by Austin (2016) [6] to obtain

the desired overall prevalence of treatment. We set α0 to be -1.78 to achieve an overall

prevalence of treatment of 25%. For each individual, we generate a treatment status from

a Bernoulli distribution Zi ∼ Beroulli(pi) where pi is the probability of treatment for the

ith individual generated as described above. Then, we simulate a linear predictor of the

form:

LPi = βcZi + αwx4i + αmx5i + αsx6i + αvsx7i + αwx8i + αmx9i + αsx10i

and denote it by LPi. We generate a survival time for subject i from a Cox proportional

hazard model with an exponential baseline hazard distribution with parameter λ = 1. That

is, h0(t) = 1. The generation algorithm is as follows: For each individual we generate an

independent standard uniform random variable ui ∼ U(0, 1). Then the survival time can

be generated using the inverse CDF technique: Ti =
−log(ui)

eLPi
[16]. As we can see from

the data generation process, X4 - X7 both determine treatment assignment and are risk

factors for outcome. Hence the treatment is confounded by X4 - X7 as we might expect in

an observational data setting. The above data generation process is based on a conditional

treatment effect (βc). However, the IPTW estimator estimates the marginal effect [6].

When the treatment effect is measured using a hazard ratio, the conditional effect and
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X1 −X3 X4 −X7 X8 −X10

Z T

Figure 2.2: Causal Graph for simulation setting

the marginal effect do not coincide [4]. To this end, we employ a bisection approach [6]

to determine the conditional log hazard ratio βc that results in the desired true marginal

hazard ratio. We simulate a dataset of size 10,000. For each subject, we simulate both

potential outcomes under treatment and control conditions. Then we regress the survival

outcome on treatment status to obtain the true marginal hazard ratio [11]. We note that

this is a different simulation study than the one mentioned before and the reason why we

do this is that the IPTW methods estimate the marginal treatment effect. Hence it is

necessary to obtain the true marginal treatment effect in this setting.

We allow the true marginal hazard ratio to be 1, 1.5 and 2 (no treatment effect, weak

treatment effect and strong treatment effect). For each true marginal hazard ratio, we

estimate the marginal hazard ratio using a weighted Cox proportional hazard model with

both the conventional weights and the stabilized weights. Hence, we examine a total of 6

scenarios. In each scenario, we simulate 1,000 datasets, each consisting of 10,000 subjects.

In each of the simulated datasets, we first regress the treatment status on X1 - X7

through a logistic regression model to estimate the propensity score. Then we regress the

survival outcome on the treatment status using a weighted Cox proportional hazard model

with both the conventional weights and the stabilized weights. We also incorporate three

different variance estimators discussed in Section 2.1 to estimate the variance of the log

marginal hazard ratio: the naive variance estimator, the robust variance estimator and the

bootstrap variance estimator.
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True log True marginal True conditional

marginal HR βm HR eβ
m

HR βc

0 1 0

0.4055 1.5 0.6894

0.6931 2 1.1711

HR: Hazard ratio

Table 2.1: Marginal and Conditional log hazard ratios used in simulation study

2.5.2 Simulation Results

As discussed before, our data generation process is based on a conditional treatment effect.

However, the IPTW estimator estimates the marginal treatment effect. Table 2.1 gives the

true conditional log hazard ratio generated in Section 2.5.1 for each of the three true

marginal log hazard ratios.

In each of the 1,000 simulated datasets, we record the estimated log marginal hazard

ratio β̂(j) and its naive standard error σ̂(j) from the Cox proportional hazard model

output. We first calculate the mean of the log marginal hazard ratio across the 1000

iterations: β̂iptw = 1
1,000

∑1,000
i=1 β̂(i), so the estimated marginal hazard ratio is eβ̂iptw . We

define the average bias of the log marginal hazard ratio as:
β̂iptw−βm

βm · 100% where βm is

the log true log marginal hazard ratio. Then we determine the average standard error of

the log hazard ratio across the 1,000 iterations: ASE = σ̂iptw = 1
1,000

∑1,000
i=1 σ̂(j). We also

determine the empirical standard error of the 1,000 estimated log marginal hazard ratios:

ESE = sd(β̂(j)) =

√∑1,000
i=1

(
β̂(j)−β̂iptw

)2
1000−1 [6]. If the variance of β̂iptw is correctly estimated,

the average standard error should be close to the empirical standard error. That is, we

expect the ratio ASE
ESE

to be close to 1. We summarize the simulation results with the

conventional and stabilized IPTW weights in Table 2.2.

We observe that when treatment prevalence = 25%, both conventional IPTW and
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True log True Estimated Estimated

cond mar log mar mar Avg

HR βc HR eβ
m

HR β̂iptw HR eβ̂iptw Bias ASE ESE RSE BSE

0 1 0.0011 1.0011 0.11% 0.0141 0.0377 0.0425 0.0393

0.6894 1.5 0.4085 1.5046 0.69% 0.0144 0.0443 0.0482 0.0451

1.1711 2 0.6967 2.0072 0.56% 0.0147 0.0507 0.0535 0.0505

0 1 0.0011 1.0011 0.11% 0.0232 0.0378 0.0426 0.0395

0.6894 1.5 0.4154 1.5150 2.39% 0.0234 0.0437 0.0482 0.0447

1.1711 2 0.7159 2.0460 3.33% 0.0237 0.0489 0.0530 0.0494

cond: Conditional

mar: Marginal

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

BSE: Average bootstrap standard error

Table 2.2: Simulation Results for Conventional and Stabilized IPTW Weights

stabilized IPTW result in approximately unbiased estimates of the marginal hazard ratio

across all simulation scenarios. However, stabilized IPTW actually experiences greater

bias. For variance estimation, the use of the naive variance estimator results in substantial

bias in estimating the variance of log marginal hazard ratio. Although using the stabilized

weights results in higher ASE
ESE

ratio, the improvement is not enough as the ratio is still far

removed from one. We conjecture that this is because the inflated sample size induced

by IPTW is taken into account while the within-subject correlation induced by IPTW is

not. Both the robust variance estimator and the bootstrap variance estimator significantly

reduce the bias in estimating the variance using both the conventional and the stabilized

IPTW weights.
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2.6 Discussion

The estimating equation theory shows that when the sample size goes to infinity, both the

conventional IPTW estimator and the stabilized IPTW estimator lead to unbiased estima-

tion of the marginal hazard ratio when the outcome is generated from a Cox proportional

hazards model and correct propensity score model and outcome model are used. However,

due to finite sample size of the simulated datasets, the IPTW method may yield biased

estimation of the marginal hazard ratio. The simulation results indicate that the use of the

conventional weights results in much lower bias in estimating the marginal hazard ratio

than the use of the stabilized weights. Additionally, both the robust variance estimator

and the bootstrap variance estimator provide a reasonable variance estimate. Therefore,

to minimize estimation bias, we recommend researchers use the conventional IPTW with

robust or bootstrap standard errors to estimate treatment effects in an observational data

setting when the outcome is a single time to event.
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Chapter 3

Two Events Setting

This chapter focuses on the development of propensity score methods in the setting of

two events. This setting differs from the one event setting in that for each subject the

two gap times may be correlated and as a result, the naive variance estimator often leads

to incorrect variance estimates. To this end, methods for dealing with the within-subject

correlation are discussed. Moreover, multiple propensity scores are estimated for a single

subject if treatment changes and a new class of IPTW estimators are formulated. Three

scenarios are discussed in this chapter: independent gap times, time-varying covariates

with fixed treatment and time-varing covariates and treatment. For each scenario, model

assumptions and specifications of the treatment model and the outcome model are given. A

summary of the simulation results for all scenarios are presented at the end of the chapter.

3.1 Notation and Model Setup

We use the following notation throughout this chapter. Assume there are n subjects

i = 1, 2, ..., n although we suppress i notation in this chapter. Let X(j) be a p-dimensional

vector of covariates at the start of the jth gap time and Z(j) be treatment status at the
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start of the jth gap time. Let W1 denote the first gap time and W2 denote the second gap

time. We define the propensity score for the first event e1 to be

e1 = P (Z(1) = 1|X(1) = x(1))

We define e2 to be the propensity score for the second gap time i.e. the probability

of treatment at the start of the second gap time conditional on all past covariate and

treatment history. That is,

e2 = P (Z(2) = 1|X(2) = x(2), Z(1) = z(1))

where X(j) = (X(1), X(2), ...X(j)) is the covariate history through the start of the jth

gap time and Z(j) = (Z(1), Z(2), ...Z(j)) is the treatment history through the start of the

jth gap time. Hence, the probability of treatment at the start of the first gap time and the

start of the second gap time conditional on all past history is:

e1e2 = P (Z(1) = 1, Z(2) = 1|X(2) = x(2), Z(1) = z(1))

= E(Z(1)Z(2)|X(2) = x(2), Z(1) = z(1))

Intuitively, the IPTW weights are defined to be the inverse of the probability of treat-

ment path conditional on all past treatment and covariate history. We define the conven-

tional inverse probability treatment weights for the first event to be

cw1 =
1

P (Z(1) = z(1)|X(1) = x(1))
=
Z(1)

e1
+

1− Z(1)

1− e1

and the stabilized inverse probability treatment weights to be

sw1 =
P (Z(1) = z(1))

P (Z(1) = z(1)|X(1) = x(1))
=
P (Z(1) = 1)Z(1)

e1
+
P (Z(1) = 0)(1− Z(1))

1− e1

as usual. We further define the conventional IPTW weights for the second event to be

cw2 =
1

(P (Z(1) = z(1)|X(1) = x(1))
· 1

P (Z(2) = z(2)|X(2) = x(2), Z(1) = z(1))

=
(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)
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The stabilized IPTW weights for the second event are defined to be

sw2 =
P (Z(1) = z(1))

P (Z(1) = z(1), X(1) = x(1))
· P (Z(2) = z(2)|Z(1) = z(1))

P (Z(2) = z(2)|X(2) = x(2), Z(1) = z(1))

= p11
Z(1)Z(2)

e1e2
+ p10

Z(1)(1− Z(2))

e1(1− e2)
+ p01

(1− Z(1))Z(2)

(1− e1)e2
+ p00

(1− Z(1))(1− Z(2))

(1− e1)(1− e2)

where pij = P (Z(1) = i, Z(2) = j) [17].

The reason why we consider the stabilized weights is that the conventional weights

sometimes result in extremely large weights for a few subjects. As a result, these subjects

dominate the weighted analysis, and this results in unstable estimation of the marginal

hazard ratio. The use of the conventional weights sometimes also leads to rather large

variance for the conventional IPTW estimator [17].

3.2 Estimating Equation Theory for Recurrent Events

In this section we discuss asymptotic properties of IPTW estimators in a recurrent events

data setting. Let U(X; θ) be a set of unbiased estimating equations for the second gap

time i.e. E(U(X; θ0)) = 0. To obtain the IPTW estimate for the second gap time, we solve

the following weighted estimating equations:

1

n

n∑
i=1

(Zi(1)

e1i
+

1− Zi(1)

1− e1i

)(Zi(2)

e2i
+

1− Zi(2)

1− e2i

)
Ui(θ̂) = 0

Denote the conventional IPTW estimate by θ̂iptw. Under certain regularity conditions, we

have the following theorems.

Theorem 3.2.1. θ̂iptw is a consistent estimator of θ0.
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Proof.

E
[(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)
U(θ0)

]
= E

[
E
(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)
U(θ0)|X(2), Z(1)

]
= E

[E[Z(1)Z(2)|X(2), Z(1)]

e1e2
U(θ0)

]
+ E

[E[Z(1)(1− Z(2))|X(2), Z(1)]

e1(1− e2)
U(θ0)

]
+ E

[E[(1− Z(1))Z(2)|X(2), Z(1)]

(1− e1)e2
U(θ0)

]
+ E

[E[(1− Z(1))(1− Z(2))|X(2), Z(1)]

(1− e1)(1− e2)
U(θ0)

]
= 4E[U(θ0)]

= 0

Next we derive the asymptotic variance of the conventional IPTW estimator.

Theorem 3.2.2.
√
n(θ̂iptw − θ0)

d→ N(0, Viptw), where

Viptw =
1

16
E
[∂U(θ0)

∂θT

]−1

E
[( 1

e1e2
+

1

e1(1− e2)
+

1

(1− e1)e2
+

1

(1− e1)(1− e2)

)
U(θ⊗2

0 )
]
E
[∂U(θ0)

∂θ

]−1

Proof.

V ar
[(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)
U(θ0)

]
= E

[(Z(1)

e1
+

1− Z(1)

1− e1

)2(Z(2)

e2
+

1− Z(2)

1− e2

)2
U(θ⊗20 )

]
= E

[(Z(1)Z(2)

e21e
2
2

+
Z(1)(1− Z(2))

e21(1− e2)2
+

(1− Z(1))Z(2)

(1− e1)2e22
+

(1− Z(1))(1− Z(2))

(1− e1)2(1− e2)2
)
U(θ⊗20 )

]
= E

[(E[Z(1)Z(2)|X(2), Z(1)]

e21e
2
2

+
E[Z(1)(1− Z(2))|X(2), Z(1)]

e21(1− e2)2

+
E[(1− Z(1))Z(2)|X(2), Z(1)]

(1− e1)2e22
+
E[(1− Z(1))(1− Z(2))|X(2), Z(1)]

(1− e1)2(1− e2)2
)
U(θ⊗20 )

]
= E

[( 1

e1e2
+

1

e1(1− e2)
+

1

(1− e1)e2
+

1

(1− e1)(1− e2)

)
U(θ⊗20 )

]
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E
[(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)∂U(θ0)

∂θT

]
= E

[
E
(Z(1)

e1
+

1− Z(1)

1− e1

)(Z(2)

e2
+

1− Z(2)

1− e2

)∂U(θ0)

∂θT
|X(2), Z(1)

]
= E

[E[Z(1)Z(2)|X(2), Z(1)]

e1e2

∂U(θ0)

∂θT

]
+ E

[E[Z(1)(1− Z(2))|X(2), Z(1)]

e1(1− e2)
∂U(θ0)

∂θT

]
+ E

[E[(1− Z(1))Z(2)|X(2), Z(1)]

(1− e1)e2
∂U(θ0)

∂θT

]
+ E

[E[(1− Z(1))(1− Z(2))|X(2), Z(1)]

(1− e1)(1− e2)
∂U(θ0)

∂θT

]
= 4E

[∂U(θ0)

∂θT

]
By Theorem 2.2.1, we have

Viptw = E
[( Z(1)

1− e1
+

1− Z(1)
1− e1

)(Z(2)
e2

+
1− Z(2)
1− e2

)∂U(θ0)

∂θT

]−1

V ar
[(Z(1)

e1
+

1− Z(1)
1− e1

)(Z(2)
e2

+
1− Z(2)
1− e2

)
U(θ0)

]
E
[( Z(1)

1− e1
+

1− Z(1)
1− e1

)(Z(2)
e2

+
1− Z(2)
1− e2

)∂U(θ0)

∂θ

]−1

=
1

16
E
[∂U(θ0)

∂θT

]−1

E
[( 1

e1e2
+

1

e1(1− e2)
+

1

(1− e1)e2
+

1

(1− e1)(1− e2)

)
U(θ⊗2

0 )
]
E
[∂U(θ0)

∂θ

]−1

The asymptotic distribution of the stabilized IPTW estimator θ̂siptw can be derived

using the similar method. We give the asymptotic results and omit the proof.

Theorem 3.2.3. Under certain regularity conditions,

1. θ̂siptw is a consistent estimator of θ0

2.
√
n(θ̂siptw − θ0)

d→ N(0, Vsiptw), where

Vsiptw = E
[∂U(θ0)

∂θT

]−1

E
[( p211
e1e2

+
p210

e1(1− e2)
+

p201
(1− e1)e2

+
p200

(1− e1)(1− e2)

)
U(θ⊗2

0 )
]
E
[∂U(θ0)

∂θ

]−1

3.3 Time-Fixed Treatment and Covariates

We start with the simplest case where there are two independent gap times W1 and W2 for

each subject. For simplicity we assume X is a 1-dimensional scalar. Figure 3.1 illustrates
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the relationship among X, Z, W1 and W2. Our goal is to use propensity score methods to

consistently estimate the marginal treatment effect. In this setting we assume treatment

and covariates are fixed over time, so we use Z and X without the j notation. Define e to

be the probability of treatment conditional on covariates. We regress treatment indicator

Z on X to obtain the estimated propensity score ê:

ê = expit
(
α̂0 + α̂1x

)
To estimate the marginal treatment effect, we regress the survival outcomes W1 and W2

on the treatment status Z through a weighted Cox proportional hazards model with both

the conventional and stabilized weights as defined in Section 3.1:

hj(w|x, z) = h0(w)eβ
mz

where j = 1, 2.

Z

W1 W2

X

Figure 3.1: Causal graph for time-fixed treatment and covariate

We perform a simulation study to examine the numerical performance of the IPTW

estimator with both the conventional and stabilized weights. For simplicity, we generate a

standard normal covariate x. For each subject we generate a treatment probability through

a logistic regression model:

π = expit
(
α0 + α1x

)
Then we generate a treatment status for each individual z ∼ Bernoulli(π). We set α0 to

be -1.1392 by a bisection approach to achieve an overall treatment prevalence of 25% [6].
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Here α1 represents the log odds ratio of treatment per unit increase in x and we set it to

be log(1.5). For each subject we simulate two independent gap times W1 and W2 from

a Cox proportional hazards model. We choose the baseline hazard to be an exponential

distribution with λ = 1. Hence, the hazard takes the form:

hj(w|x, z) = eβ
cz+β1x

where j =1 ,2. The association parameter between X and Wj is β1, and is set to be

log(1.5). The simulation algorithm for W1 and W2 is as follows [9]

• Simulate two independent standard uniform distribution u1 and u2

• Simulate w1 =
−log(u1)

eβcz+β1x
and w2 =

−log(u2)

eβcz+β1x

The above data generation method is based on a conditional hazard ratio eβ
c
. However,

the IPTW estimator estimates the marginal hazard ratio. To this end, we use a bisection

approach to determine βc that induces the specified marginal hazard ratio eβ
m

[6].

To estimate βm, first we obtain the estimated propensity score ê through a logistic

regression model. Then we calculate the conventional weights cw1 = Z
e

+ 1−Z
1−e and the

stabilized weights sw1 = P (Z=1)Z
e

+ P (Z=0)(1−Z)
1−e . Finally we regress the gap times on the

treatment indicator through a Cox proportional hazards model:

hj(w|x, z) = h0(w)eβ
mz

Doing this allows us to estimate the marginal treatment effect. Since weighting artificially

creates a cluster for each subject, inducing a within-subject correlation, the naive variance

estimator often fails to correctly estimate the variance of β̂m [17]. To address this issue,

we use the robust variance estimator proposed by Lin [7]. The robust variance estimator

allows us to rewrite the dependence summations in estimating equations as independent,

identical distributed summations, from which the asymptotic variance can be derived. To

implement the robust variance estimator in R, we use the following formula:

coxph(Surv(W ) ∼ Z + cluster(id), weights = weight, data = dataset)
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3.4 Time-Varying Covariates

Next we consider the case where covariates change over time while treatment remains the

same. Assume X(j) is a 1-dimensional scalar. The relationship among the variables is

illustrated in Figure 3.2. Due to the change of covariates, the marginal hazard ratio may

differ for the two gap times. The methodology for estimating the marginal hazard ratio is

as follows: First we estimate the propensity score through a logistic regression model:

ê = expit
(
α̂0 + α̂1x(1)

)
Then to estimate the marginal hazard ratio for the first and second gap time, we run a

weighted Cox proportional hazards model, whose hazard takes the form:

hj(w|x(j), z(j)) = h0j(w)eβ
mj z

where j = 1, 2.

Z(1)

W1 W2

X(1) X(2)

Figure 3.2: Causal graph for time-varying covariates

We perform the following simulation study to examine the numeric performance of the

proposed IPTW estimator. We follow the same data generation methods described in

Section 3.2 for the first gap time. Based on the first gap time W1 and the covariate X(1),

we simulate the X(2) covariate a second dependent gap time W2 as follows [9]:

• Simulate a standard uniform random variable u2
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• Simulate a random variable v ∼ N(0, 16) independent of x(1) and u2

• Set x(2) = x(1) + v

• Simulate w2 =
−log(u2)

eβcz+β1x(2)

The above data generation for the second gap time results in the same conditional

hazard ratio eβ
c

for both gap times. However, the marginal hazard ratio may not be the

same for the two gap times. Given the log of the conditional hazard ratio βc, we determine

the true marginal hazard ratio for the second event using a similar method to that discussed

in Section 3.1.

We obtain the estimated propensity score ê, along with the conventional weights and

the stabilized weights for both gap times. Then, we regress the gap time Wj on treatment

indicator Z(j) through a weighted Cox proportional hazards model with both weights for

both gap times to estimate the marginal hazard ratio.

hj(w|x(j), z) = h0j(w)eβ
mj z

where j = 1, 2. Here βmj denotes the log marginal hazard ratio for the jth gap time.

Finally, we estimate the variance of β̂m1 and β̂m2 using both the naive variance estimator

and the robust variance estimator.

3.5 Time-Varying Treatment and Covariates

We make further extensions by considering both time-varying treatment and covariates.

Assume X(j) is a 1-dimensional scalar. In such a setting, treatment status at the start

of the second gap time, Z(2), is dependent on treatment status at the beginning, Z(1),

and covariate value at the start of the second gap time X(2). Figure 3.3 illustrates the

relationship among these variables. In this setting the change of treatment results in a
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different propensity score for the second gap time, and hence we need to estimate the

IPTW weights for the second gap time as well. We estimate the propensity score for the

first and second gap time through the following logistic regression models:

ê1 = expit
(
α̂0 + α̂1x(1)

)
ê2 = expit

(
γ̂0 + γ̂1x(2) + γ̂2z(1)

)
Then we estimate the marginal hazard ratio for the first and second gap time through the

following weighted Cox proportional hazards models:

hj(w|x(j), z(j)) = h0j(w)eβ
mj z(j)

We illustrate our methodology for estimating the marginal treatment effect through a

simulation study. We use the previously discussed data generation methods for the first

gap time. We consider two dependence relationship between X(1) and X(2):

Z(1) Z(2)

W1 W2

X(1) X(2)

Figure 3.3: Causal graph for time-varying treatment and covariate

x(2) = x(1) +N(0, 16)

or

x(2) = x(1) +N(0, 1)

The correlation between X(1) and X(2) is approximately 0.24 for the first scenario

and approximately 0.71 for the second scenario. Then, for each scenario, we simulate the
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treatment status for the second gap time Z(2) as follows. First we simulate a treatment

probability through a logistic regression model:

logit(π2) = γ0 + γ1x(2) + γ2z(1)

We set γ1 to be log(1.5) and allow γ2 to be log(1.5) or log(0.25). Hence the log odds ratio

of treatment when t = 2 is 1.5 per one unit increase in X(2) keeping treatment at t = 1 the

same. We set γ0 to be 0.3338 and -0.1000 for the above two scenarios to achieve an overall

treatment prevalence of 50% at t = 2 [6]. Having set all the parameters for the treatment

model, we generate treatment status Z(2) ∼ Bernoulli(π2). We simulate the first and

second gap time W1 and W2 from a Cox proportional hazards model, whose hazard takes

the form:

hj(w|x(j), z(j)) = h0(w)eβ
cz(j)+β1x(j)

The above generation technique results in the same conditional hazard ratio eβ
c

for both

gap times. However, the marginal hazard ratio may be different. We follow the similar

method to that described in Section 3.1 to obtain the true marginal hazard ratio for both

gap times.

To estimate the marginal hazard ratio for both gap times, first we obtain the estimated

propensity score ê1 and ê2 through the following logistic regression models:

ê1 = expit
(
α̂0 + α̂1x(1)

)
and

ê2 = expit
(
γ̂0 + γ̂1x(2) + γ̂2z(1)

)
Then we regress the first gap time on treatment indicator Z(1) through a Cox proportional

hazards model using both the conventional weights cw1 and the stabilized weights sw1 from

Section 3.1 to obtain the estimated marginal hazard ratio eβ̂
m1 for the first gap time. We

run another weighted Cox proportional hazards model to regress the second gap time

on treatment indicator Z(2) using both the conventional weights cw2 and the stabilized
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weights sw2 to obtain the estimated marginal hazard ratio eβ̂
m2 for the second gap time.

The hazard takes the form:

hj(w|x(j), z(j)) = h0j(w)eβ
mj z(j)

where j = 1, 2. Finally, we estimate the variance of β̂m1 and β̂m2 using both the naive

variance estimator and the robust variance estimator.

3.6 Administrative Censoring

Often we have to deal with censored recurrent data where each subject has a different

number of recurrent events. When censoring is a time-dependent confounder, the previous

methods for estimating the marginal treatment effect without adjustments for censoring

may yield biased results. To this end we incorporate weights for censoring to consistently

estimate the marginal treatment effect. In this section we focus on the case where there

is an administrative censoring time τ . We define the censoring indicator δ1 = I(w1 ≤ τ)

and δ2 = I(w1 + w2 ≤ τ). We can treat (Z(i), δi) as a treatment vector at the start of

the ith gap time. Thus, intuitively the IPTW weights are the inverse of the probability of

treatment history the subject actually experienced.

The conventional censoring weights are defined as [17]

cw†1 =
δ1

P (δ1 = 1|x(1), z(1))

cw†2 =
δ1

P (δ1 = 1|x(1), z(1))
· δ2
P (δ2 = 1|δ1 = 1, x(2), z(2))

and the stabilized censoring weights are:

sw†1 =
P (δ1 = 1)

P (δ1 = 1|x(1), z(1))

sw†2 =
P (δ1 = 1)

P (δ1 = 1|x(1), z(1))
· P (δ2 = 1|δ1 = 1)

P (δ2 = 1|δ1 = 1, x(2), z(2))
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To estimate the marginal hazard ratio for the first and second gap time, we solve the

following weighted estimating equation

n∑
i=1

aiUi(β̃
m) = 0

where aj = cwjcw
†
j for the conventional weights and aj = swjsw

†
j for the stabilized weights

where j = 1, 2.

We incorporate an administrative censoring time τ = 1 in one of the time-varying

treatment and covariates settings described in Section 3.4 with correlation of 0.24 between

X(1) and X(2), and γ2 is set to be log(1.5). The above setting results in approximately

30% of the subjects being censored for the first gap time and approximately 60% of the

subjects being censored for the second gap time. We use both the conventional weights and

the stabilized weights defined above to estimate the marginal hazard ratio and its standard

errors for the first and second gap time. The simulation results are available in Table 3.8.

To further investigate the behaviour of the IPTW estimators, we increase the censoring

proportion by incorporating another administrative censoring time τ = 0.25. We keep

other variables in the last setting the same. This results in approximately 70% of the

subjects being censored for the first gap time and approximately 90% of the subjects being

censored for the second gap time. We record the simulation results for this setting in Table

3.9.

3.7 Simulation Results

We allow the true marginal hazard ratio for the first gap time eβ
m1 to be 1, 1.5 and 2. We

determine the corresponding βc that results in the specified marginal hazard ratios using a

bisection approach [6]. For a given βc, there is also a corresponding true marginal hazard

ratio for the second gap time eβ
m2 . We summarize the relationship in Table 3.1.
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True log True marginal True log True log True marginal

marginal HR HR conditional marginal HR HR

βm1 eβ
m1 HR βc βm2 eβ

m2

0 1 0 0 1

0.4055 1.5 0.4599 0.2085 1.2318

0.6931 2 0.7830 0.3551 1.4263

HR: Hazard ratio

Table 3.1: Marginal and conditional log hazard ratios used in simulation study

For each of the three simulation settings, we simulate 1,000 datasets, each consisting

of 10,000 subjects. In each of the 1,000 simulated datasets, we record the estimated log

marginal hazard ratio for both gap times β̂1(j) and β̂2(j), along with its naive standard

error σ̂1(j) and σ̂2(j). We record the average estimated log marginal hazard ratio β̂
mk

=∑1,000
j=1 β̂k(j) for k = 1, 2. We define the average bias of the log marginal hazard ratio

as: β̂
mj−βmj

βmj · 100% where j = 1, 2. Then we determine the average standard error of the

log hazard ratio across the 1,000 datasets: ASEk = σ̂k = 1
1,000

∑1,000
j=1 σ̂k(j) where k = 1,

2. We also determine the empirical standard error of the 1,000 estimated log marginal

hazard ratios for both gap times: ESEk =

√∑1,000
j=1

(
β̂k(j)−βmk

)2
1,000−1 where k = 1, 2 [6]. If the

variance of β̂m1 and β̂m2 are correctly estimated, the average standard error should be close

to the empirical standard error. For each of the three simulation settings, we record the

average estimated log marginal hazard ratio, along with its naive average standard error,

robust standard error and empirical standard error for both gap times. We summarize

the simulation results for the second gap time in Table 3.2 for independent gap times with

fixed treatment and covariates, Table 3.3 for time-varying covariates and Tables 3.4 - 3.7 for

time-varying treatment and covariates. The upper half of the table is for the conventional

weights and lower half for the stabilized weights.
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True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 -0.0004 0.9996 -0.04% 0.0100 0.0176 0.0196

0.4055 1.5 0.4054 1.4999 -0.01% 0.0102 0.0193 0.0209

0.6931 2 0.6939 2.0015 0.11% 0.0105 0.0211 0.0222

0 1 0.0002 1.0002 -0.02% 0.0163 0.0175 0.0196

0.4055 1.5 0.4091 1.5055 0.89% 0.0165 0.0191 0.0207

0.6931 2 0.7009 2.0156 1.13% 0.0168 0.0200 0.0216

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.2: Simulation results for independent gap times

True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0001 1.0001 0.01% 0.0142 0.0249 0.0247

0.2085 1.2318 0.2085 1.2318 0.00% 0.0142 0.0245 0.0254

0.3551 1.4263 0.3554 1.4268 0.08% 0.0143 0.0265 0.0262

0 1 -0.0004 0.9996 -0.04% 0.0231 0.0244 0.0247

0.2085 1.2318 0.2104 1.2342 0.91% 0.0232 0.0255 0.0257

0.3551 1.4263 0.3619 1.4360 1.91% 0.0232 0.0265 0.0266

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.3: Simulation results for time-varying covariates
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True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0143 1.0144 1.43% 0.0101 0.0848 0.0673

0.2085 1.2318 0.2233 1.2502 7.10% 0.0101 0.0889 0.0724

0.3551 1.4263 0.3671 1.4435 3.38% 0.0102 0.0985 0.0777

0 1 0.0041 1.0041 0.41% 0.0201 0.0483 0.0493

0.2085 1.2318 0.2161 1.2412 3.64% 0.0201 0.0557 0.0534

0.3551 1.4263 0.3581 1.4306 0.84% 0.0203 0.0615 0.0582

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.4: Simulation results for time-varying treatment and covariates,γ2 =

log(0.25),Corr(X(1),X(2)) = 0.24

True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0041 1.0041 0.41% 0.0100 0.0578 0.0556

0.2085 1.2318 0.2164 1.2416 3.79% 0.0101 0.0593 0.0593

0.3551 1.4263 0.3610 1.4348 1.66% 0.0101 0.0675 0.0637

0 1 0.0050 1.0050 0.50% 0.0201 0.0475 0.0501

0.2085 1.2318 0.2132 1.2376 2.25% 0.0201 0.0549 0.0547

0.3551 1.4263 0.3598 1.4330 1.32% 0.0203 0.0636 0.0586

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.5: Simulation results for time-varying treatment and covariates,γ2 = log(1.5),

Corr(X(1),X(2)) = 0.24
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True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0003 1.0003 0.03% 0.0100 0.0343 0.0346

0.3697 1.4473 0.3707 1.4487 0.27% 0.0101 0.0370 0.0372

0.6323 1.8819 0.6345 1.8861 0.35% 0.0104 0.0404 0.0394

0 1 0.0002 1.0002 0.02% 0.0200 0.0198 0.0222

0.3697 1.4473 0.3705 1.4485 0.22% 0.0203 0.0223 0.0238

0.6323 1.8819 0.6324 1.8821 0.02% 0.0207 0.0225 0.0252

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.6: Simulation results for time-varying treatment and covariates,γ2 = log(0.25),

Corr(X(1),X(2)) = 0.71

True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 -0.0004 0.9996 -0.04% 0.0100 0.0249 0.0273

0.3697 1.4473 0.3700 1.4477 0.08% 0.0101 0.0278 0.0291

0.6323 1.8819 0.6342 1.8857 0.30% 0.0101 0.0291 0.0310

0 1 0.0011 1.0011 0.11% 0.0200 0.0203 0.0224

0.3697 1.4473 0.3704 1.4482 0.19% 0.0203 0.0218 0.0240

0.6323 1.8819 0.6327 1.8827 0.06% 0.0208 0.0229 0.0256

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.7: Simulation results for time-varying treatment and covariates,γ2 = log(1.5),

Corr(X(1),X(2)) = 0.71
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True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm1 HR eβ
m1 HR β̂

m1

HR eβ̂
m1

bias ASE ESE RSE

0 1 -0.0006 0.9994 -0.06% 0.0178 0.0282 0.0305

0.4055 1.5 0.4258 1.5308 5.01% 0.0170 0.0280 0.0289

0.6931 2 0.7205 2.0555 3.95% 0.0167 0.0271 0.0287

0 1 -0.0002 0.0098 -0.02% 0.0231 0.0249 0.0259

0.4055 1.5 0.4087 1.5049 0.79% 0.0234 0.0252 0.0273

0.6931 2 0.7011 2.0160 1.15% 0.0238 0.0277 0.0286

True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0029 1.0029 0.29% 0.0181 0.0686 0.0723

0.2085 1.2318 0.2169 1.2422 4.03% 0.0164 0.0638 0.0689

0.3551 1.4263 0.3606 1.4341 1.55% 0.0154 0.0603 0.0671

0 1 0.0042 1.0042 0.42% 0.0201 0.0451 0.0494

0.2085 1.2318 0.2154 1.2404 3.31% 0.0202 0.0574 0.0529

0.3551 1.4263 0.3605 1.4340 1.52% 0.0203 0.0578 0.0575

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.8: Simulation results for time-varying treatment and covariates with administrative

censoring time τ = 1,γ2 = log(1.5), Corr(X(1),X(2)) = 0.24
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True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm1 HR eβ
m1 HR β̂

m1

HR eβ̂
m1

bias ASE ESE RSE

0 1 -0.0027 0.9973 -0.27% 0.0293 0.0487 0.0485

0.4055 1.5 0.4491 1.5669 10.75% 0.0269 0.0422 0.0428

0.6931 2 0.7590 2.1361 9.51% 0.0258 0.0393 0.0399

0 1 -0.0004 0.0096 -0.04% 0.0231 0.0239 0.0259

0.4055 1.5 0.4082 1.5041 0.67% 0.0234 0.0262 0.0274

0.6931 2 0.7004 2.0146 1.05% 0.0238 0.0265 0.0286

True log True Estimated Estimated

marginal marginal log marginal marginal Avg

HR βm2 HR eβ
m2 HR β̂

m2

HR eβ̂
m2

bias ASE ESE RSE

0 1 0.0202 1.0204 2.04% 0.0428 0.1861 0.1797

0.2085 1.2318 0.2620 1.2995 25.66% 0.0362 0.1850 0.1730

0.3551 1.4263 0.4400 1.5527 23.91% 0.0325 0.1705 0.1618

0 1 0.0039 1.0039 0.39% 0.0201 0.0495 0.0498

0.2085 1.2318 0.2147 1.2395 2.97% 0.0201 0.0533 0.0534

0.3551 1.4263 0.3619 1.4361 1.91% 0.0203 0.0579 0.0568

HR: Hazard ratio

ASE: Average standard error

ESE: Empirical standard error

RSE: Average robust standard error

Table 3.9: Simulation results for time-varying treatment and covariates with administrative

censoring time τ = 0.25,γ2 = log(1.5), Corr(X(1),X(2)) = 0.24
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3.8 Discussion of Simulation Results

In this section we summarize main results from the above simulation studies. From the

estimating equation theory, when there is no censoring the estimate β̂mj converges in

probability to the log of the true log marginal hazard ratio βmj when the sample size n goes

to infinity. For the above simulation scenarios with 10,000 subjects, the bias is negligible

for time-fixed treatment and covariates and time-varying covariates. For the time-varying

treatment and covariates scenarios, the use of the conventional weights tends to result in

greater bias, whereas the bias is lower when using the stabilized weights. In the presence

of censoring, the use of the conventional weights results in larger bias as the censoring

proportion increases while the use of the stabilized weights seem to result in unbiased

estimate of the marginal hazard ratio. For variance estimation, the naive variance estimator

tends to either overestimate or underestimate the variance of the IPTW estimator across

all simulation scenarios, while the robust variance estimator approximates the variance

reasonably well across all scenarios. Therefore, we recommend researchers estimate the

marginal treatment effects with the stabilized weights with the robust variance estimator

for recurrent data.

3.9 Investigation of Proportional Hazards

If the Cox model for estimating the marginal hazard ratio is correctly specified, we would

expect that the hazard ratio

hj(w|X(j) = x(j), Z(j) = 1)

hj(w|X(j) = x(j), Z(j) = 0)
= eβ

mj

To assess the proportional hazards assumption, we use the cox.zph function with iden-

tity link for both the first and second gap time with a critical p-value of 0.05. We test the

following hypothesis [15].

H0 : hj(w|x(j), z(j)) = h0j(w)eβ
mj z
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HA : hj(w|x(j), z(j)) = h0j(w)eβ
mj z+ψβmjw

where j = 1, 2. We then are simply testing if ψ = 0. For time-varying treatment and

covariates scenarios, the results show that for the first gap time the proportional hazards

assumption is violated for about 50% of the simulation samples, while for the second gap

time the proportional hazards assumption is violated for all simulation samples. The results

are not surprising because the data are simulated using a conditional model including

both treatment and covariates, whereas we fit the data using a marginal model including

only the treatment indicator. Although this is a misspecified model, the estimate still

has meaningful interpretations as the estimate converges to the log marginal hazard ratio

instead of the log conditional hazard ratio[7].

3.10 Application

We apply our methods to the pulmonary exacerbations and rhDNase treatment example in

Cook and Lawless (2007)[8]. We denote Z to be the rhDNase treatment, X be the forced

expiratory volume (fev), δ to be the censoring indicator, W1 to be the first gap time and

W2 to be the second gap time. To estimate the marginal hazard ratio for the first time and

second gap time, we estimate the propensity score for subjects who experience the first

and second gap time through the following two separate logistic regression models:

ê1 = expit
(
α̂0 + α̂1x

)
ê2 = expit

(
γ̂0 + γ̂1x

)
Then we regress the gap times W1 and W2 on the treatment status Z through a weighted

Cox proportional hazard model with the stabilized weights:

hj(w|x, z) = h0j(w)eβ
mjw

where j = 1, 2. The results show that β̂m1 = -0.362 (p = 0.005), which corresponds to a

hazard ratio of 0.70 (95% CI: 0.54, 0.90) for subjects received treatment versus subjects
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received placebo. This indicates strong positive treatment effect for the first gap time. The

estimate of the log marginal hazard ratio for the second gap time β̂m2 is 0.283 (p = 0.2).

This suggests the treatment is not significant for the second gap time. Model checking can

be carried out using the cox.zph function in R, which does not provide evidence of violation

of the proportional hazard assumption for the first gap time (p = 0.648). However, there is

evidence against the proportional hazard assumption for the second gap time (p = 0.0366).

3.11 Conclusion

In chapter 2, we showed that for observational data when the response is a time to event,

the IPTW method consistently estimated the marginal hazard ratio when there was no

unmeasured confouning [11]. We conducted a series Monte Carlo simulations to examine

the performance of the IPTW estimator with both the conventional and stabilized weights.

The results indicated that the conventional IPTW estimator resulted in lower bias than

that of the stabilized IPTW estimator. Due to the within-subject correlation induced

by weighting, the naive variance estimator failed to correctly estimate the variance of the

IPTW estimator. Both the robust variance estimator and the bootstrap variance estimator

accurately approximated the variance.

In chapter 3 we further considered settings where each subject experienced two events.

For the time-fixed treatment and covariates scenarios, the IPTW estimator consistently

estimated the overall marginal hazard ratio across two events. For the time-varying covari-

ates and time-varying covariates and treatment scenarios, the IPTW estimator consistently

estimated the marginal hazard ratio for each gap time. In the presence of censoring, we ob-

served from the simulation results that the stabilized IPTW estimator generally resulted

in unbiased estimation of the marginal hazard ratio. Whereas the conventional IPTW

estimator resulted in biased estimate of the marginal hazard ratio. Moreover, the bias in-

creases as the censoring proportion increases. We conjecture that the conventional IPTW
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estimate converges to the log of another marginal hazard ratio for the first gap time, which

is calculated given the administrative censoring time. For the second gap time it is not

clear what the conventional IPTW estimate converges to. For the variance estimation,

the robust variance estimator approximated the variance reasonably well with less than

10% bias across all scenarios. We note that we simulated the data from a conditional

model with conditional hazard ratio, and we estimated the marginal hazard ratio using a

marginal model. The misspecification of the model is what leads to the violation of the pro-

portional hazards assumption. However, the estimate still converges and has meaningful

interpretations [7].

To summarize, based on the simulation results, we recommend researchers use the con-

ventional IPTW estimator to estimate the marginal hazard ratio with the robust variance

estimator or the bootstrap variance estimator when the response is a single time to event,

and use the stabilized IPTW estimator to estimate the marginal hazard ratio with the ro-

bust variance estimator for recurrent data. Further extensions can be made to settings with

multiple events and the conventional weights and the stabilized weights can be formulated

in the similar way to that described in Section 3.1 and 3.5 [17].
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