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Abstract

Graphene is the first practically fabricated and stable two-dimensional material. It is an atom-

ically thin layer of graphite with a unique gapless electronic band structure which leads to the

observation of near-relativistic electron transport, 2.3% absorption of incident light, and a large

nonlinear index of refraction. The relatively easy fabrication of graphene, coupled with its excep-

tional properties and integrability, makes this system unique for use in electronic and photonic

circuits. Nonlinear optical processes in graphene stems from third-order nonlinear processes that

originate from graphene’s crystal symmetry. This nonlinearity manifests as frequency mixing, self-

refraction and self-phase modulation as light traverses through the material. In literature thus

far, this nonlinearity has been measured using different methods that probe the various nonlinear

effects to report a large discrepancy (six orders of magnitude) in the value obtained for the non-

linear index of refraction (n2). Large variations in this value disallow predictable behaviour when

designing graphene integrated photonic devices. To this end, the thesis addresses this debate by

systematically analysing the contributing factors to the variation in the nonlinear refractive index

and forming a fundamental understanding of the governing processes that lead to the observed

behaviour. Using the Z-scan technique, the effects of the wavelength and pulse-duration of the

exciting source on the value of n2 were studied. The Z-scan technique exploits light induced self-

refraction to relate the change in transmittance to the value of n2. The pulse-duration measurement

is conducted by taking a pulse and temporally stretching it with a dispersion-based prism set-up.

In addition to that, using a pump-probe integrated Z-scan scheme, the temporal evolution of this

nonlinearity is also studied. The combination of the pump-probe methodology, commonly used to

study the dynamics of a system, and the Z-scan set-up gives an insight into the dynamic processes

that contribute to the observed nonlinear behaviour. The n2 of graphene is experimentally mea-

sured to depend quadratically on the wavelength, with n2 growing larger with longer wavelengths.

This result is also theoretically corroborated under a quantum theory developed by our group. The

n2 is also shown to grow larger as the pulse-duration grows larger in the hundreds of femtoseconds

regime, a result predicted in a recent publication and shown by us. The temporal evolution of the

nonlinearity follows the dynamics of the system, peaking at the zero-delay point and relaxing on

the timescale of the effective decay of the system as dictated by the relaxation constants. The thesis

does well to resolve a prevalent debate in the field of nonlinear optics of graphene by providing a

systematic study on factors contributing to the discrepancy observed in literature, and in doing so

opens a path to tuning the nonlinear behaviour as per the requirement of the application, which is

limited in current silicon photonics.
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Chapter 1

Introduction

The discovery of graphene opened up unimaginable avenues in a diverse array of scientific research

and engineering design. This atomically thin single layer of graphite is unique because the very

possibility of its existence was deemed improbable due to the laws of thermodynamics. However, its

unique structure allows it stability making it the first practically fabricated two-dimensional mate-

rial. Since its discovery in 2004, it has research in areas spanning electronics, chemistry, biomedical

devices, mechanical devices, high-energy physics and countless others. As the dynamic of electron-

ics and computing changes with the shift towards on-chip integrated devices, the applicability of

lower dimensional materials becomes more pertinent. It is not only graphene’s exceptional proper-

ties that makes it a sought after system, but a large part of its applicability is its dimensionality

and how robust it is in that regime.

In addition to its well-known electronic properties, graphene also exhibits strong optical properties

as well. In particular, we look at the strong light-matter interaction that graphene is capable of

accommodating, which gives rise to a very strong nonlinear optical response. This is especially

interesting due to the fact that this strong effect occurs at this reduced dimensionality. The non-

linear optical response can manifest as self-refraction, frequency mixing and self-phase modulation.

Due to its integrability and strong nonlinear optical response, it makes it ideal for use in on-chip

photonic circuits.

The nonlinear optical response has been studied both theoretically and experimentally by analysing

the aforementioned phenomena. It is characterised by the parameter n2, which is the nonlinear

index of refraction or the Kerr coefficient. However, the picture remains unclear regarding the

characterisation of this nonlinearity. Depending on the method and experimental parameters, the

nonlinearity varies largely in magnitude and sign with no consensus in the field. The motivation

behind this work has been a more systematic and fundamental understanding of the effect of

experimental parameters on the observed nonlinear effect. In doing so, we can understand how to

modulate the effect in a controlled manner, if possible, and consolidate the results that have been

reported thus far. Therefore, in this work we look at how the spectral and temporal properties of

the impinging light effects the nonlinear response.

The thesis is organised to provide the reader with a self-consistent understanding of the work and
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any relevant background information. The first chapter provides a detailed overview of the core

technique of measurement, the Z-scan. After which the wavelength-dependent measurement of the

n2,eff is presented. The parameter n2 is referred to as n2,eff because we believe that the effect

observed here is not purely electronic, which is what n2 refers to. In addition to the experimental

measurement, we also provide a theoretical validation of the observed trend. The second chapter

focuses on probing the dependence on the pulse-width of the exciting source. The pulse is stretched

using a dispersion based prism-pair set-up. The stretched beams are directed back into the original

Z-scan set up. The set-up is elaborated upon and the results are presented thereafter. The third

chapter presents a pump-probe integrated Z-scan set-up which provides a temporal evolution of the

n2,eff . This provides information regarding how impinging beam introduces a change in the carrier

population resulting in the observation of nonlinear refraction. The measurement is achieved on a

fast time-scale to attempt to probe the ultrafast dynamics in graphene. The final chapter presents

succinct conclusions and future directions for the work.
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Chapter 2

Nonlinear optical phenomena

A comprehensive understanding of any phenomena in experiment or theory necessitates an under-

standing of it’s origin. Most, if not all, electronic and optical phenomena stem from the material’s

crystallographic properties. The atomic distribution as described by the classification of crystal

families and their characteristic symmetries prove fundamental in building theories that describe

the macroscopic effects that are observed during experiment. Therefore, this chapter will provide

a concise framework to provide the reader with background knowledge of the material and these

processes, aiding the understanding of the experiments and discussions of this thesis. The chapter

is divided into two primary sections. The first section presents a general discussion on the prop-

erties of graphene, placing it in perspective of the current landscape of scientific investigation and

potential. The latter section provides a concise discussion on the nonlinear optical behaviour in

graphene, with an emphasis on self-refraction, and the current state of the field. Due to graphene’s

unique structure, it’s nonlinear optical behaviour must be considered in a modified framework, while

maintaining our understanding of the nonlinear optical behaviour of semiconductors presented as

part of Appendix A.2.

2.1 Graphene

Graphene is an atomically thin two-dimensional allotrope of carbon. It is the basic constituent of all

graphitic compounds, i.e. fullerene, benzene rings, nanotubes. However fundamental its existence,

the isolation of graphene only came to fruition very recently through a stroke of curiosity [2] in

2004. The isolation of a 2D crystal had been experimentally doubted due to the Mermin-Wagner

theorem [3], which states that a crystal at this dimensionality cannot retain long-range order at

any small but non-zero temperature due to thermal fluctuations, therefore it melts. The discovery

of this new system revealed a plethora of new physics like the fact that electrons in graphene can

be viewed as massless charged fermions living in 2D space, particles that are not encountered in

our three-dimensional world, creating a bridge between solid-state physics and high-energy physics.

This new physics has invited rigorous research on this system.
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2.1.1 Crystal structure

The carbon (C) atoms in graphene form a honeycomb lattice attributed to a sp2 hybridisation

scheme. The electronic orbital configuration of an isolated C atom is (1s)2(2s)2(2p)4, in a solid-state

environment the 1s electronics remain more or less inert, but the 2s and 2p electrons hybridize. In

the sp2 hybridisation scheme, three sp2 orbitals are formed leaving over a relatively pure p-orbital.

In this case the orbitals arrange themselves in a plan at 120 deg angles, forming the honeycomb

lattice. The honeycomb lattice is not a Bravais lattice as the two neighbouring sites are not

equivalent. Both A and B sublattices are triangular Bravais lattice with a two-atom basis (A and

B), as illustrated in Figure 2.1a. The three vectors connecting a site on the A sublattice to a nn

on the sublattice B are given by vectors:

δ1 =
a

2
(
√

3ex + ey), δ2 =
a

2
(−
√

3ex + ey), δ3 = −aey (2.1)

The distance between two nearest neighbouring (nn) carbon atoms is 0.142 nm. The triangular

lattice is spanned by the basis vectors:

a1 =
√

3aex, a2 =

√
3a

2
(ex +

√
3ey) (2.2)

The modulus of the basis vectors yields the lattice spacing of ã =
√

3a = 0.24 nm, and the

area of the unit cell is Auc =
√

3ã2/2 = 0.051 nm2. The density of carbon atoms is given by

nC = 2/Auc = 39 nm−2 = 3.9× 1015 cm−2.

Figure 2.1: Graphene crystal structure. (a) Real space honeycomb lattice. The vectors δ1, δ2

and δ3 connect the nn carbon atoms, seperated by a distance of a = 0.142 nm. The vectors a1

and a2 are basis vectors of the triangular Bravais lattice. (b) The triangular lattice in reciprocal

space. Primitive lattice vectors are given by b1 and b2. The shaded region is the first Brillouin

zone (BZ), with the centre at Γ and two inequivalent points K and K’.

The reciprocal lattice, shown in Figure 2.1b, is defined with respect to the triangular Bravais lattice.

4



It is spanned by the vectors:

b1 =
2π√
3a

(ex − ey/
√

3), b2 =
4π

3a
ey (2.3)

The first Brillouin zone (FBZ), shaded region in Figure 2.1b), is defined as bounded by the planes

bisecting the vectors to the nearest reciprocal lattice points. This gives a FBZ of the same form

as the original hexagons of the honeycomb lattice, rotated with respect to them by π/2. The long

wavelength excitations are situated in the vicinity of the Γ point, in the centre of the FBZ. One

distinguishes the six corners of the FBZ, which consist of inequivalent points K and K’ represented

by the vectors:

±K = ± 4π

3
√

3a
ex (2.4)

These crystallographic points, known as the Dirac points, play an essential role in the electronic

properties of graphene.

2.1.2 Electronic structure

The electronic band structure of graphene can simply be described under a tight-binding (TB)

model considering the nn carbon atoms. The electrons in the covalent bonds form deep fully

filled valence bands, and thus their effects on the conductivity can be safely disregarded. The

unhybridized p-orbital is only slightly perturbed by the neighbouring atoms. The TB Hamiltonian

is given by [4]:

H = −t
∑
R,δ

c†R+δcR (2.5)

where R is a lattice point, and δ is the displacement to a nn lattice point. An electron at site R

can hop to any neighbouring sites, i.e. if |R〉 denotes a state with one electron which is at R we

have:

〈R + δ|H |R〉 = −t (2.6)

where t is the hopping energy between the two sites. If R and R’ are not neighbours then,

〈R’|H |R〉 = 0. Looking at eigenvalues for the Hamiltonian, we consider a state with amplitude

φR for the electron at site R. The eigenvalue equation is then:

− t
∑
δ

φR+δ = εφR (2.7)

We look for amplitudes which vary like eik·r. This is the Bloch wave function. There will be different

amplitudes ψA and ψB for sublattices A and B. An atom on sublattice A has neighbouring atoms all

on sublattice B at displacements (0,−a), (
√

3a/2, a/2) and (−
√

3/2, a/2). An atom on sublattice

B has three neighbours on sublattice A at displacements (0, a), (
√

3a/2,−a/2) and (−
√

3/2,−a/2).

So the eigenvalue ε and the amplitudes ψA and ψB are determined for each wavevector k, from the
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two equations:

−t(eikya + 2e−ikya/2 cos

√
3

2
kxa)ψA = εψB (2.8)

−t(e−ikya + 2eikya/2 cos

√
3

2
kxa)ψB = εψA (2.9)

The eigenvalues are then given by:

E = ±t | ekya + 2e−ikya/2 cos

√
3

2
kxa | (2.10)

E = ±t

[(
cos(kya) + 2 cos

(
1

2
kya

)
cos

(√
3

2
kxa

))2

+

(
sin(kya)− 2 sin

(
1

2
kya

)
cos

(√
3

2
kxa

))2] 1
2

(2.11)

There are two bands one with positive energy and the other with negative energy, and they touch

at the corners of the Brillouin zone, at the Dirac points. Due to the fact that here are two electrons

per unit cell, the lower band is completely filled and upper band is completely empty, placing the

Fermi energy at EF = 0. In order to compute the dispersion relation in the vicinity of these zone

corners where the energy tends to zero, we write; k = K + q, where K is the wavevector given

by Eq. 2.4, and we assume q is small and is the momentum measured relative to the Dirac points.

Rewriting the Hamiltonian from Eq. 2.8 for a fixed-k as:

H(k) =

[
0 F (kx, ky)

F ∗(kx, ky) 0

]
(2.12)

where F (kx, ky) = eikya+2e−ikya/2 cos
√

3
2 kxa. To obtain the lowest order in q we have, F (kx, ky) =

3
2a(qx + iqy) and therefore:

H(k) = ~νσ · q (2.13)

where the speed ν is given by: ν = 3
2
at
~ and is around 106 m/s, and σx and σy are Pauli spin

matrices. Hence the eigenvalues of H(k) are:

E = ±~νq (2.14)

This is the linear dispersion relation near the Dirac points that dictates the cone-like band structure

synonymous with graphene, shown in Figure 2.2.
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Figure 2.2: Electronic band structure of graphene. The linear dispersion relation in graphene

at a Dirac point. Intrinsic graphene has a Fermi energy, EF = 0, shown in the figure.

2.2 Nonlinear Response

The nonlinear optical response in graphene stems from strong light-matter interaction that graphene

is capable of accomodating and is characterised by the intensity dependent third order optical

conductivity, σ(3), which is the first allowed nonlinear term due to the centrosymmetric symmetry

of the lattice. In conventional nonlinear optics based on a semiconductor system, the nonlinear

responses is derived using the Taylor expansion of the electrical susceptibility in electrical field to

obtain the polarisation field vector with higher order terms. This is provided in Appendix A.2.

The derivation in terms of optical conductivity provides the same response by relating the current

density, i.e. J(ω) to the electrical field, i.e. E(ω) at a general frequency, ω. However, as shown

in the previous subsection, graphene presents a unique electronic structure where the conventional

semiconductor based nonlinear optics may not completely encompass the physics. Therefore, a

short concise description of the third order nonlinear optical phenomena in a modified framework

unique to graphene is provided here [5].

The optical response in graphene is influenced by the chiral nature of the carriers and the scale

invariance of the band structure in the low energy limit. Chirality in the context of graphene refers

to the pseudospin being locked parallel or antiparallel to the direction along which the electron

propagates. Scale-invariance refers to properties of a system that remain universal regardless of

7



the scales of length, energy or other variables. One of the consequences of these properties is that

graphene exhibits a universal optical response absorbing 2.3% of the normally incident light. An-

other consequence of these properties is the large nonlinear optical response observed in graphene

upon irradiation, which has been conclusive regardless of the framework of the formulation. To

circumvent computational and interpretive difficulties, Semiconductor Bloch Equations (SBEs) are

employed. Using SBEs the contribution of both intraband and interband dynamics can be analysed.

The SBEs introduce an effective dipole in reciprocal space that are able to reveal the peculiarities

of graphene in terms of its optical response. Under a perturbative treatment, the higher order

optical coefficients inherit a nonresolvable singularity. This singularity is a consequence of the

topological properties of the band structure and the chiral nature of the charged carriers. Follow-

ing a many-body analysis, it is revealed that under an electromagnetic field the charged carriers

in the vicinity of the Dirac points undergo ultra-fast Rabi oscillations accompanied with slower

relaxation dynamics, resulting in an unconventional saturation effect. This spontaneous saturation

effect has been revealed to be imperative in the nonlinear optical response in graphene, deviating

the behaviour from conventional semiconductor third order nonlinearity [6, 7]. The singularity is

resolved by excluding the saturated states from the solution domain.

The process of third order frequency mixing can be understood as a three-photon processes with

three complex time dependent fields, eiωpt, eiωqt and eiωrt mixing through the third-order conduc-

tivity. Different terms contribute to the conductivity tensor and therefore contribute to the mixing

via pure interband, pure intraband, and a combination of both. The intraband dynamics cause the

quasiparticles to travel along the trajectory determined by the direction of the electric field at the

graphene plane. The interband dynamics occur between the two level transition of the quasipar-

ticles predominantly around the zero detuning region. The different three-photon processes that

are possible are: (i) pure intraband, (ii) pure interband, (iii) interband-intraband, (iv) interband-

interband-intraband, (v) intraband-intraband-interband, (vi) intraband-interband-intraband, and

(vii) interband-intraband-intraband.

2.2.1 Self-Refraction

There are several effects that originate from a cubic nonlinearity such as harmonic generation,

four-wave mixing and self-phase modulation, which are applicable in their respective applications.

The focus of this work is on self-phase modulation which is observed as the self-refraction that an

optical beam undergoes as it traverses through a nonlinear medium, commonly known as the Kerr

effect. In Appendix A we developed a mathematical framework for nonlinear optical phenomena,

and now we can relate a macroscopic observable to this theory.

Keeping Eq.(A.53) in mind, we see that the contribution of n2 to the cumulative refractive action

is contingent on the intensity as described by the relation:

n = n0 + n2I (2.15)
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Considering a Gaussian beam where the intensity of the beam peaks at the center, the greatest

effect of self-refraction is seen near the center and then decreases as one moves away from the center.

This profile is similar to that of a graded-index optical fiber. Taking n2 > 0 and employing some

basic ray tracing, it would appear that the rays bend towards the optical axis, thereby increasing

the on-axis amplitude resultng in self-focusing. This results in the sample causing the beam to

diverge before the focal plane, and converge after the focal plane. This is schematically illustrated

in Figure 2.3a. Intuitively, such strong refraction would indicate an infinite on-axis amplitude,

however, the minimum beam waist is limited by diffraction. The effect of diffraction here causes

the beam to spread. Given a long interaction length, thick sample, the beam will again experience

strong refraction, until it is spread by diffraction, resulting in periodic focusing [8]. It is possible

to derive a set of beam parameters for a particular sample where refraction and diffraction can be

balanced to allow linear transmittance through the sample [9]. If n2 < 0, self-defocusing occurs,

where the sample causes convergence of the beam before the focal plane and causes divergence

after the focal plane. This is shown in Figure 2.3b. This will re-visited again in Section 3.2 in the

context of the Z-scan measurement.

Figure 2.3: Ray diagram of self-refraction in cubic nonlinear sample. A lens of focal length

fL is used to focus down the incident beam and the sample is scanned along the optic axis across

the confocal parameter (twice the Rayleigh length, (zR) centred at the focal plane. The blue ray

lines indicate the self-refraction when the sample is behind the focal plane, while the green ray lines

show self-refraction when the sample is in front of the focal plane for a nonlinear sample with (a)

n2 > 0 and (b) n2 < 0
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With self-refraction stemming from an intensity-dependent phenomenon, it intuitively follows that

there are specific conditions under which self-focusing/defocusing occurs. Two main points to

consider are the relative contributions of n0 and n2 in Eq. (2.15) to total refraction, and the

competing effects of diffraction and refraction. An expression for the critical power required for

self-refraction is dervied in Appendix A and is given by [8]:

Pcr =
cε0λ

2

8πn2
(2.16)

From this expression it is seen that the beam power must exceed this threshold, not the intensity,

for self-refraction to occur. Even if the beam is focused tighter, self-refraction will not occur as

diffraction will also increase with a reduction in beam diameter.

2.3 Nonlinear Optics of Graphene: Brief Review

The investigation of graphene’s nonlinear electrodynamic response was incepted in the theoretical

work of Mikhailov [10]. The primary result of this investigation was the expectancy of the gen-

eration of higher harmonics, i.e. third harmonic generation, with high up-conversion efficiency.

Even though this discussion will not delve into theoretical work, since this thesis is primarily an

experimental study, however, it is important to appreciate origin of this field of study as being a

theoretical demonstration. To satiate the curious reader, several theoretical works that followed,

in conjunction with experiment, have aided in our understanding of the nonlinear electrodynamic

response of graphene and can be found in these references: [11–21].

With the initial theoretical demonstration of a strong nonlinear response in graphene, Hendry

et al. [22] as part of Mikhailov’s group experimentally measured the third order susceptibility

using four-wave mixing (FWM) using 6 ps pulses. The samples in this study were obtained using

mechanical exfoliation and were deposited on a 100 µm thick glass cover slip. The principle of this

technique is the generation of mixed optical frequency harmonics ωe = 2ω1 - ω2 under irradiation

by two monochromatic waves with frequencies ω1 and ω2. Experimentally this is accomplished as

follows: two incident pump laser beams with wavelength λ1 and λ2 are focused collinearly onto a

sample and mix together to generate a third, coherent beam of wavelength λe [22]. The result of

the frequency mixing process is governed by the interplay of energy and momentum conservation,

therefore is controlled by tuning the incident pump wavelengths.

The amplitude of the emission peak showed a cubic dependence on the intensity of the pump pulses,

confirming the third-order nature of the response. The strength of the response is quantified

by the familiar parameter of the third-order susceptibility χ(3) (Eq. A.49), which relates the

polarisation per unit volume to the third power of the electric field. However, it was argued that

when considering a two-dimensional material, it is more appropriate to describe the response in

terms of a sheet current j (3) and the third-order surface dynamical conductivity σ(3). Using an

effective nonlinear susceptibility normalised with the effective thickness of a graphene layer, the
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value of |χ(3)
gr | ' 1.5 × 10−7 esu or n2 ∼ 10−9 cm2/W was obtained. All relevent values for the

linear and nonlinear parameters reported in literature are summarised at the end of this section

in Table 2.1 and Table 2.2, respectively. The large nonlinear response in graphene compared to

other materials is attributed to the fact that all vertical (interband) transitions in graphene are

resonant at all frequencies ω1, ω2 and ωe. An interesting result of sheet current formulation was

the observation that the strength of the nonlinear response in graphene has a λ4 dependence.

Krishna et al. [23] also measured the nonlinear response of graphene using FWM as part of a larger

study investigating the nonlinear optical properties of graphene-metal composite materials. They

measured a |χ(3)
gr | ' 4.2 × 10−12 using 6 ns pulses at 532 nm. The graphene sheets were placed in

a dimethylformamide (DMF) suspension. The nonlinear absorption coeffecient was also measured

using the open-aperture Z-scan method, which will be elaborated upon shortly and in detail in

Section 3.2. In the nanosecond regime, graphene shows reverse saturable absorption with a value of

β ' 9×10−7 cm/W. The parameter β quantifies the nonlinear absorption of the system. In a more

application based study, Ciesielski et al. [24] measure the near-degenerate FWM signal of graphene

as a nonlinear optical signal to determine the spectral phase profile of laser pulses in the focus

of microscope objectives. The graphene was obtained with micromechanical exfoliation and then

deposited on glass and studied using a 800 nm laser with 15 fs pulse duration. In this regime, a

value of |χ(3)
gr | ' 4.2×10−6 is obtained. The deviation from Hendry’s study [22] is attributed to the

tight focusing of the excitation pulse. The previously mentioned λ4 is also observed here showing

a 40% variation within the 100 nm spectral bandwidth of the pulse. The impact of the scaling

factor on the emitted intensity is unresolvable due to the spectral integration and the mixing of the

frequency components which leads to a broad structureless emission spectrum.

Self-phase modulation observed via the action of self-refraction is previously discussed in Section

2.2.1, is the most common means of measuring the third order optical nonlinearity using the Z-scan

measurement. This technique is the central tool of investigation in this thesis and will be explored

in detail in Section 3.2. The basic principle behind the technique is that the self-refraction ex-

perienced by an incident beam traversing through a nonlinear material can be quantified by the

transmittance observed in the far-field. The change in transmittance obtained in a closed aper-

ture configuration (CA) i.e. aperture in the far-field, is related to the nonlinear phase shift and

consequently the nonlinear refractive index, n2 as defined in Eq. A.53. Transmittance obtained

in an open-aperture configuration (OA), i.e. no aperture in the far-field, gives information re-

garding nonlinear absorption. Zhang et al. [25] used the Z-scan measurement to obtain both the

real and imaginary parts of the complex refractive index of graphene. The graphene layers were

fabricated using chemical vapour deposition (CVD) and then transferred onto a quartz substrate.

The measurement was conducted using a laser with center wavelength 1550 nm and 3.8 ps pulse

duration. The CA measurement revealed that the induced nonlinear phase shift has a power de-

pendence characteristic of saturable absorption. A value of n2 ' -10−7 cm2/W is obtained in the

low intensity regime, as n2 is observed to decrease with increasing intensity. A value of Isat = 74

MW/cm2 for saturation intensity is reported. Comparing the value obtained by Hendry et al. [22]
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in terms of n2 which is 1.5×10−9cm2/W, it is hypothesized that the discrepancy is attributed to

the measured third-order susceptibility having multiple origins. The parametric process of FWM

arises from the coherent electronic response, while the Z-scan measurement is a measure of the

cumulative nonlinear response i.e. thermal or free-carrier.

The third-order optical response of monolayer to multilayer graphene was studied in the femtosec-

ond regime by Chen et al. [26]. In particular the contribution of interlayer coupling was analysed.

The graphene samples were all grown naturally by CVD and transferred to quartz substrate. To

analyse the effect of decoupling, individual layers were transferred and stacked on top of each other,

and compared to naturally grown samples of the same thickness. The Z-scan measurement was

performed using a source centred at 733 nm with a pulse duration of 100 fs and a repetition rate

of 80 MHz. The nonlinear refraction index was found to be n2 ' 1.4×10−9 cm2/W, while the non-

linear absorption coefficient was found to be β ' 6×10−6 cm/W for monolayer samples. It should

be pointed out that in the picosecond [25] and femtosecond [26] regimes, graphene shows strong

saturable absorption in contrast to the reverse saturable absorption observed in the nanosecond

regime [23]. This is important to mention as the nonlinear effect of graphene is closely related

to the photon excited times and the dynamics of the system in particular excitation regimes. In

graphene, photoexcited electron-hole pairs thermalise via carrier-carrier scattering and phonon

emission within ∼150 fs, a timescale denoted by τ1, to reach a new Fermi-Dirac distribution. This

is followed by interband carrier relaxation and hot phonon emission on the picosecond timescale,

denoted by τ2. Returning to the main motivation of study for this article, the result of this study

was the conclusion that the intrinsic linear dispersion of monolayer graphene is imperative to ob-

taining a large nonlinearity as coupling of sheets modifies the band structure i.e. loss of linear

dispersion in bi-layer, and thereby reduces the degree of nonlinearity. With Z-scan measuring the

cumulative nonlinearity, high repetition rate sources tend to induce large thermal nonlinearities

which dominate over the electronic nonlinearities. In the case of graphene it is argued that this

issue can be ignored due to graphene being extremely heat-stable and the heat relaxation time of

graphene (∼1.4 ns) being shorter than the repetition time between pulses (12.5 ns) [26]. That is to

say that the heat accumulation injected by one pulse has enough time to dissipate before the next

pulse arrives.

Considering the λ4 dependence of the optical nonlinearity, it follows that the nonlinear response

would be larger in the mid-IR regime, compared to the visible and near-IR wavelengths used in the

aforementioned studies. To this end Miao et al. [27] used a home-made mid-IR Z-scan measurement

to identify the real and imaginary parts of the third-order susceptibility of graphene. The monolayer

graphene sample was CVD grown and transferred to quartz. A pump-probe measurement was

conducted using an 800 nm source with 100 fs pulses to reveal a fast time constant of 200 fs and a

slower time constant of 1.07 to 2.0 ps, depending on pump intensity. At higher excitation intensity,

electron relaxation creates a large quantity of optical phonons which could couple energy back into

the electron distribution, therefore slowing down the cooling rate. For the Z-scan measurement,

a laser centred at 1930 nm with pulse duration of 2.8 ps, and another source centred at 1562 nm
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with pulse duration 1.5 ps were used. Values of n2 ' 4.58×10−7 cm2/W and 1.64×10−7 cm2/W

are obtained for the two different wavelengths, respectively. The ratio of n2 at 1.93 and 1.56 µm

is about 2.8, which is a deviation from the λ4 dependence which would have a ratio of 2.3. The

deviation is attributed to experimental errors. It is emphasized that that Z-scan is a measure of all

contributions to nonlinear refraction, not just the pure electronic response.

A comparative study in mid-IR but with femtosecond pulses was performed by Demetrious et

al. [28]. The measurement was carried out using the Z-scan method at 1150, 1550, 1900 and 2400

nm with a 100-femtosecond laser source on multilayer (5-7) graphene to yield a negative values

for n2 ranging from -2.5×10−9 to -0.55×10−9 cm2/W for the respectively range of wavelengths.

The samples were CVD grown and transferred onto quartz. The study specifically points out

the intensity dependent nature of the nonlinear optical response measured by the Z-scan and the

contribution of higher order processes (i.e. χ(5),χ(7)) that would make the conventional n2 coefficient

unsuitable to describe the effect. With increasing intensities the effect of two photon absorption is

also seen in the OA profiles. A thermal analysis is provided to discount the contribution of thermal

effects, in addition to the use of a low repetition rate (1 kHz) laser source, which is unnecessary as

discussed previously [26].

In addition to FWM and Z-scan measurement, the Optical Kerr Gate (OKG) measurement is

also used to measure the third-order nonlinear susceptibility [29]. Conducted in a pump-probe

configuration, the pump induces a transient uniaxial birefringence in the medium, while the probe,

rotated 45° relative to the pump beam, undergoes optical retardance as it transverses through.

This effect is similar to that of a quarter-wave plate that transforms a linearly polarised beam to

circular polarisation, therefore, maximum OKG signal is obtained at 45° [30]. Using this method in

conjunction with the Z-scan method, Dremetsika et al. [31] investigated the sign and magnitude of

the n2 of graphene. The OKG method is advantageous over the Z-scan method as it only probes the

nonlinearity deriving from the electronic response, while the Z-scan probes the cumulative response

of the system. The excitation source for this measurement is a source centred at 1600 nm with

180 fs pulse duration.The OKG set-up is coupled to optical heterodyne detection (OKG-OHD) to

maximise the signal-to-noise ratio. A negative value of n2 ' -1.07×10−9 cm2/W is obtained using

this method. Performing the Z-scan measurement on the same sample using a source centred at 1500

nm with 3.8 ps pulse duration gives a value of n2 ' -2×10−8 cm2/W. The difference in the values

obtained with these two methods is attributed to the electronic and cumulative nonlinear responses

being probed. To complement their experimental work and the use of OKG-OHD, Dremetsika et

al. [32] developed a 2D-OHD-OKE to measure separately the time response of the two main tensor

components of the nonlinear susceptibility. They validate that the out-of-plane tensor components

are small and show that the χxyxy + χxyyx components account for the fast birefringent response

while the χxxyy component has a slower (ps) relaxation time.

OKG and Z-scan were also used together to measure the n2 of single and multi-layer graphene. In

this study Ahn et al. [33] use these methods to derive dependence of n2 on the wavelength and

fluence. The wavelengths used were 720, 800, 940 and 1230 nm, all having a pulse duration of 100
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fs. In contrast they obtain a positive value for the n2 using both methods, with the n2 increasing

as the excitation tends to longer wavelengths. Our spectrally dependent study was also presented

in a conference prior to the publication of this article [34] and revealed a similar dependence of n2

on excitation wavelength.

The argument between the plus and minus sign for the n2 value is one that cannot be unambiguously

answered. There is discrepancies in theoretical works on this depending on the method of calculation

and parameters considered. The theoretical study by Ooi et al. [12], Cheng et al. [11] and Semnani

et al. [14] conclude in their respective theoretical formulations that the value of n2 may take positive

or negative values in specific ranges of Fermi-levels. Experimentally speaking, this occurs due to

doping or electric field modulation. Therefore, difference in measurement methods, experimental

conditions, and sample preparation techniques should be considered when comparing and discussing

different studies.
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Table 2.1: Electronic and linear optical properties of Graphene

Value(s) Sample Method Experimental
Parameters

Ref.

Relaxation time, τ (ps)

τ1 = 0.2
τ2 = 1.07 - 2.0

CVD graphene trans-
ferred onto quartz

Pump-probe
spectroscopy

λpump/probe = 800 nm
τpulse = 100 fs
f = 1 kHz

[27]

τ1 = 0.07 - 0.12
τ2 = 0.4 - 1.7

Multi-layer epitaxial
graphene on SiC

Pump-probe
spectroscopy

λpump/probe = 780 nm
τpulse = 85 fs
f = 3 kHz

[35]

τ1 = 0.13 - 0.33
τ2 = 3.5 - 4.9

Graphene dispersions in
various solvents (water,
THF, DMF)

Pump-probe
spectroscopy

λpump/probe = 790 nm
τpulse = 80 fs
f = 383 Hz

[36]

τ1 = 0.2
τ2 = 2.5

Exfoliated graphene on
SiO2/Si

Pump-probe
spectroscopy

λpump/probe = 800/1300 nm
τpulse = 150 fs
f = 80 MHz

[37]

Linear Refractive Index, n

2.75 − 1.56i Graphene on SiO2 Refln 1550 nm [38]

Linear Absorption Coefficient, α (cm−1)

7.4 x 10−4 Graphene placed across
aperture

Tranmittance
and reflectance

[39]

Saturation Intensity, IS (W/cm2)

4(±1) ×109 Epitaxial graphene on
SiC

Z-scan [40]

(2.3, 2.6, 2.6)
×1010

Graphene dispersions in
various solvents (water,
THF, DMF)

Z-scan λin = 790 nm
τpulse = 80 fs
f = 383 Hz

[36]

7.4 ×107 CVD graphene trans-
ferred onto quartz

Intensity depen-
dent transmit-
tance

λin = 1550 nm
τpulse = 3.8 ps
f = 10 MHz

[25]

(4.5, 3, 2.1, 1.9)
×109

CVD graphene trans-
ferred onto quartz

Intensity depen-
dent transmit-
tance

λin = 1150, 1550, 1900, 2400
nm
τpulse = 100 fs
f = 1 kHz

[28]

(0.1, 11.7) ×107 CVD graphene trans-
ferred onto quartz

Z-scan λin = 1930, 1562 nm
τpulse = 2.8, 1.5 ps
f = 32.3, 20.8 MHz

[27]
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Table 2.2: Nonlinear optical properties of Graphene

Value(s) Sample Method Experimental
Parameters

Ref.

Third-order Susceptibility, χ(3) (esu)

Nonlinear Refractive Index, n2 (cm2/W)

|χ(3)| =
1.5×10−7

Mechanically exfoliated
graphene deposited on
100 µm glass cover slip

FWM λ1 = 670-980 nm
λ2 = 1130-1450 nm
τpulse = 6 ps

[22]

|χ(3)| =
4.2×10−12

Graphene suspension in
DMF

FWM λin = 532 nm
τpulse = 6 ns
f = 10 Hz

[23]

|χ(3)| =
4.3×10−6

Graphene suspension in
DMF

FWM λin = 800 nm
τpulse = 15 fs
f = 80 MHz

[24]

n2 = -1×10−7 CVD graphene trans-
ferred onto quartz

Z-scan λin = 1550 nm
τpulse = 3.8 ps
f = 10 MHz

[25]

n2 = 1.4×10−9 CVD graphene trans-
ferred onto quartz

Z-scan λin = 733 nm
τpulse = 100 fs
f = 80 MHz

[26]

n2 = 4.58×10−7,
1.64×10−7

CVD graphene trans-
ferred onto quartz

Z-scan λin = 1930, 1562 nm
τpulse = 2.8, 1.5 ps
f = 32.3, 20.8 MHz

[27]

n2 = -2 x 10−8 CVD graphene trans-
ferred onto quartz

Z-scan λin = 1550 nm
τpulse = 3.8 ps
f = 10 MHz

[31]

n2 = -1.07 x 10−9 CVD graphene trans-
ferred onto quartz

OKG-OHD λin = 1600 nm
τpulse = 180 fs
f = 82 MHz

[31]

n2 = -10−9 Graphene covered
silicon-on-insulator
(SOI) waveguide

Chirped-Pulse-
Pumped Self-Phase
Modulation

λin = 1550 nm [41]

|χ(3)| =
10−7 - 10−6

CVD graphene trans-
ferred onto quartz; 1,2,4
layers

Z-scan and OKG λin = 720-1230 nm
τpulse = 100 fs
f = 80 MHz

[33]

Nonlinear Absorption Coefficient, β (cm/W )

9×10−7 Graphene suspension in
DMF

Z-scan λin = 532 nm
τpulse = 6 ns
f = 10 Hz

[23]

(1.2-4.4) x 10−8 Graphene dispersions in
various solvents (water,
THF, DMF)

Z-scan λin = 790 nm
τpulse = 80 fs
f = 383 Hz

[36]

6 x 10−6 CVD graphene on quartz Z-scan λin = 733 nm
τpulse = 100 fs
f = 80 MHz

[26]

(0.38, 0.9, 1.5,
1.9) ×10−5

CVD graphene trans-
ferred onto quartz

Z-Scan λin = 1150-2400 nm
τpulse = 100 fs
f = 1 kHz

[28]
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Chapter 3

Spectral dependence of the effective

Kerr coefficient of Graphene

3.1 Introduction

The focus of this thesis is probing the spectral and temporal dependence, and evolution of the

third order susceptibility of graphene. To this end, the Z-scan measurement is the technique that is

central to the study. To probe the properties of interest, the basic measurement setup is integrated

with a prism pulse-stretching and pump-probe setup. In the first set of experiments, the Z-scan

method is used in its intrinsic form to measure the spectral dependence of the effective n2, referred

to hereinafter as n2,eff . The use of this verbiage will become more clear through the discussion

of the experimental results of this thesis. In essence, n2 refers to the pure electronic response of

system resulting in the observation of nonlinear refraction. However, given experimental conditions

and methods, the observed effect may not stem only from the electronic response, but can include

contribution from another phenomenon. Therefore, it is more appropriate to use the aforementioned

verbiage. This chapter includes three primary sections. The first section will provide a detailed

experimental background on the Z-scan technique, including a general theory of the technique and

sources of inaccuracy in measurement. The second section focuses on the experimental set-up and

beam characterisation. The quality of the beam and it’s alignment are significant contributors in

obtaining accurate measurements. The last section will present the results obtained for the spectral

dependence of n2,eff in graphene. The excitation spans 800-1050 nm, limited by the source (690-

1050 nm) and the detectors (780-1800 nm). The results show a clear dependence of n2,eff on λ,

with n2,eff increasing as the excitation tends to longer wavelengths.
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ZS.jpg

Figure 3.1: Closed aperture (CA) transmittance and self-refraction illustrated for ±n2.
The closed aperture (CA) transmittance seen in the far-field for a medium that exhibits self-phase
modulation and consequently self-refraction. A medium have an n2 >0 experiences self-focusing
resulting in decreased transmittance (a) before focus, (b) no change at focus, and (c) increased
transmittance after focus. Conversely in a medium having n2 <0, the self-defocusing effect causes
(d) increased transmittance before focus, (e) no change at focus, and (f) decreased transmittance
after focus. The peak to valley position is seperated by a factor of ∼ 1.7zR, where zR is the
Rayeleigh length, for a third order nonlinearity. The baseline in the plots is a normalised power
value for transmission in the linear regime.

3.2 Z-scan Technique

The investigation of higher order effects of any type brings with it many experimental complexities

that make their investigation non-trivial. In nonlinear optics, the experimental measurement of

the nonlinear index of refraction and nonlinear absorption may garner a similar perception in their

realisability. However, in 1989 Sheik-bahae et al. [42] reported an experimentally facile single-

beam method to measure the real and imaginary components of the third-order susceptibility with

high sensitivity. This method is referred to as the Z-scan technique. The technique is based on

the correlation of phase distortion and amplitude distortion during beam propagation through

a nonlinear medium. Both nonlinear refraction and absorption can be probed by observing the

transmittance in the far-field with a closed aperture (CA) and open aperture (OA) configuration,

respectively. This chapter will provide a detailed outline of the theoretical and experimental aspects

of the Z-scan method. Since this thesis focuses on nonlinear refraction, the derivation of the

analytical theory, basis of experimental implementation, and additional details will focus around

the CA measurement. Since the OA measurement is a necessary complementary measurement (i.e.

for the normalisation of absorption effects in the CA profile), it will be considered only in experiment

and not delved into in detail. In order to gain a more intuitive sense of how the self-refraction shown

in Figure 2.3 is probed by the Z-scan method and can be extracted using the formulation derived

in this section. Figure 3.1 illustrates the relative change in the CA transmittance profile as the

sample scans across the focal plane of the beam.
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3.2.1 Experimental Sources of Inaccuracy

The relative experimental simplicity of the Z-scan technique is contrasted by the strict control of

certain parameters that must be exercised to obtain reliable and accurate measurements [43]. These

parameters have implications on several assumptions of the analysis, and will be elucidated upon

below.

Laser Beam Profile

With a nonlinear optical phenomenon where the observable effect of refraction is related to the

magnitude of the incidient intensity, it becomes imperative to consider the intensity distribution

of the beam upon the sample. This is particularly important for the Z-scan, as the measurement

relies on the sample induced distortions in the beam profile to characterise the nonlinearity, which

necessitates the characterisation of the initial beam. In the analysis presented by Sheik-bahae et

al. in their original paper, the profile is assumed to be a TEM00 Gaussian beam, which provides a

complete description of the intensity distribution of the beam when beam waist size, on-axis irradi-

ance at focal point and ideality of the beam are considered. Several studies have been conducted to

analyse the effects of non-Gaussian beams [44, 45], such as Lorentzian, parabolic and top-hat. An

elliptical beam is a common output profile in many lasers, therefore the thin medium theory analy-

sis for elliptical Gaussian beams presented by Mian et al. [46] is a very practical tool to ensure the

accuracy in data analysis. An interesting observation that was made in this study was that under

certain conditions of ellipticity, an additional peak appears in the Z-scan profile. A non-Gaussian

beam can be characterised in terms of the M2 parameter. The M2 value is effectively the ratio of

the divergence of the beam to the divergence of a Gaussian beam of the same waist size [47]. A

Gaussian beam has the M2=1, while all other profiles have M2 > 1. The M2 can be related to the

beam divergence half-angle, θ, by the following relation:

θ = M2 λ

πw0
(3.1)

Experimentally this quantity can be measured by scanning a beam profiler along the optic axis

and measuring the beam radius at the focal plane to obtain the waist size. Following that, the

beam radii will be measured at various distances away from the focal plane to accurately obtain

the divergence angle of the beam. The divergence half-angle can simply be obtained geometrically

through the relation:

θ =
w2 − w1

z2 − z1
(3.2)

where w1(2) is the radii at position z1(2). The M2 is decomposed to its M2
x and M2

y components,

along with θx and θy, to characterise a non-circular beam. Modelling studies [48] have been per-

formed to determine the relationship between the M2 value and the transmission (T) value. Several

different types of non-ideal Gaussian beams were generated, close to what is seen in the laboratory,

and the effects of the nonlinear medium were incorporated to generate data sets for both open and
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closed aperture Z-scans. Two overarching trends were observed: (1) The scatter in the T increases

with increasing M2; (2) the value of T increases with increasing M2. The precise nature of the de-

viations depends on the particulars of the irregularities in the beam profile. However, this provides

us with a good idea about the nature of the expected deviations when M2 is far from ideal.

Temporal Characteristics of the Laser Pulse

Due to the intensity dependent nature of nonlinear optical effects, high laser powers are required

to probe them. To this effect pulsed laser are employed which are capable of delivering extremely

high peak energies. The temporal characteristics of the laser include the frequency and the pulse

width which become important parameters as it pertains to the photophysical dynamics of the

system. When the response time of the nonlinearity is much shorter than the laser pulse width, the

nonlinear effect can be assumed to depend on the instantaneous irradiance in the sample. When

the nonlinear response time is much longer than the laser pulse width, then the effects can be

assumed to be fluence-dependent rather than irradiance dependent and a time integration must

be performed as done in Eq. (A.73) in section A.3. This adds another layer of complexity to the

analysis as the effects become dependent on temporal parameters.

Power Fluctuations

The Z-scan technique is based in analysing the medium induced distortions in the beam profile.

Therefore, any external sources of distortion like those seen from fluctuations in laser output power,

can prove detrimental to the accuracy of the experiment because the finer details of the curves are

lost to noise. A common means of compensating for these fluctuations is to divide the signal of

the far-field detector by the reference detector. This produces a much cleaner Z-scan profile as it

effectively nullifies the effects of source fluctuations. However, this correction can be inadequate if

the power varies by more than a few percent. Another method of obtaining a cleaner data set is

only record a data point when the power falls within a well-defined limit. In general, the initial

method proves sufficient.

Aperture Size

The importance of the aperture size is obvious, as the size directly correlates to the degree of

isolation of the on-axis irradiance, where the medium induced distortion is most evident. In exper-

iment, the far-field aperture is generally a pinhole. The distinction between aperture and pinhole

in this context pertains to a particular assumption in the analysis which assumes that the far-field

aperture is infinitesimally small, allowing an infinitesimal amount of transmission. In reality, the

aperture is finite and with a finite linear transmission, which must be corrected for to obtain an

accurate measurement. Qualitatively, the aperture is said to reach the infinitesimal limit when the

transmission features become independent of the size, or no changes are seen in transmission if

the aperture is translated in the x− or y−direction by one to two aperture diameters. A factor of
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(1− S)0.268 can be multiplied to the ∆T relation as a means to account for a finite aperture. S is

the linear transmittance of the aperture of the Gaussian beam and is given by:

S = 1− e
−2r2a
w(z1)2 (3.3)

where ra is the radius of the finite aperture and w(z1) is the waist size at the aperture plane.

Aperture Alignment

When the goal is to measure nonlinear refraction, a pinhole or aperture is placed in front of the

far-field detector as a means to isolate the nonlinearity induced distortions. With these distortions

being most prominent on the optical axis where the intensity of the impinging Gaussian beam is the

largest, the alignment of the aperture is an important experimental factor. Since the irradiance on

the optical axis is enhanced, the irradiance in the wings is reduced, so misalignment will produce

a skewed transmittance profile in the far-field. The effects of misalignment are investigated by

Hermann and Chapple [49]. They derived an expression to model the effects of misalignment where

a misalignment parameter, ρ, is defined to be the radial displacement normalised by the beam size

at the observation plane. For ∆T to agree with the on-axis result with 1%, ρ must be less than 0.1.

Experimentally, we obtain the best alignment by mounting the aperture on an x- and y-direction

translation stage to optimize for largest transmittance in the linear regime. For a Gaussian-shaped

beam, ρ = 0.1 corresponds to a 2% drop in pinhole transmission. If the linear transmission is

reduced by 5%, the error in ∆T is 3%. This illustrates the importance of obtaining the best

alignment if error is to be minimised. In addition to that, practical alignment can be difficult if the

beam profile is asymmetric, as we associate maximum linear transmittance with on-axis alignment,

making this a non-trivial exercise.

Aperture-Waist Distance

Due to the fact that the Z-scan experiment relates nonlinearity induced spatial distortions in the

field to nonlinear refraction via change in transmittance in the far field, the distance, z1, from the

beam waist to the far field detector becomes an important parameter. This distance is ideally

approaches infinity, but practically it is a finite values. The effect of having a finite distance on the

differential transmittance (∆T ) can be obtained by differentiating Eq. (A.69) with respect to z. In

doing so we obtain the formula:

∆T (z1)

∆T (∞)
≈ 1 +

0.9

0.8 + ( z1zR )2
(3.4)

where the change in ∆T is normalised by ∆T when z1 equals to infinity. Qualitatively, as expected

we observe that as we increase the distance into the far-field the function approaches the infinity

limit. However, by simply inserting some trial distances for z1, we see that for a distance of 10

Rayleigh length ∆T is 1% greater than the value at infinite distance and for 20 Rayleigh lengths the
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variation decreases to 0.2%. Therefore, in experiment 10 Rayleigh lengths is a reasonable minimum

approximation for the distance that can be considered far-field. In addition to that, a correction

can further be made using Eq. (3.4).

Sample Thickness

The analytical simplicity of the Z-scan is primarily stems from the ”thin film” approximation, which

assumes that the path length inside the sample is not large enough to cause distortion in the beam

shape, but only presents the effects of in-medium propagation as a phase shift. It intuitively follows

that this approximation will break down after a certain sample thickness. The criterion for validity

of this approximation requires that the sample length L is much shorter than the Rayleigh length

(zR). As seen previously, the Rayleigh length factors prominently in the optics and the subsequent

analysis of the measurement. Since this parameter is a measure of the distance scale over which

the beam profile changes, it imposes a requirement on the length of the sample with the condition:

L � zR/|∆Φ0| when |∆Φ0| > 1. Experimentally, it is easy to increase (decrease) the Rayleigh

length by increasing (decreasing) the initial beam diameter incident on the focusing optic or using

a longer (shorter) focal length lens. However, for very thick samples, this may not be practical.

Defects

Since the techniques relies on relating wave distortion to nonlinear refraction, any other mecha-

nisms contributing to these distortions will work to obscure the nonlinear effect. This can occur

through physical imperfections in the sample, or beam steering caused when the sample sits non-

perpendicular to the beam as it is scanned and the beam will be moved away from the axis of the

aperture.

Etalon Effects

With samples that have not been anti-reflection coated, there is a strong possibility that they form

low-finesse Fabry-Perot etalons. Etalon refers to an optical device that contains two parallel mirrors.

It is intuitive to see that with the formation of this psuedo-cavity there will be a certain modulation

in the transmission that is seen by the FF detector. The degree of transmission change depends

on the refractive index of the medium and its optical length. In order to avoid the formation

of an etalon, an anti-reflection coating must be applied to reduce the internal reflection of the

surfaces. In addition to transmission variations, the reflections do vary with irradiance, which will

indefinitely skew the measurement of nonlinearity. Studies have been performed to observe the

effects of reflection in a self-focusing medium [50]. For low nonlinear phase shifts (∆Φ0 ≈ 0.01), the

reflectance is seen to enhance the nonlinear phase shift by a factor, when the cavity is in resonance.

For a low reflectance and moderate phase shift (R = 0.065,∆Φ0 = 0.5), the nonlinear phase shift

can push the cavity away from resonance, eradicating the symmetry in the Z-scan profile. For

moderate reflectance and large phase shifts (R ≈ 0.5,∆Φ0 = π), strong feedback effects such as
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optical switching and bistability can occur. To avoid all etalon effects, it is best to at least coat the

rear surface of the samples to reduce the formation of a cavity, especially in high refractive index

materials.
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3.3 Z-scan Experimental Set-up

The experimental set-up using in this experiment is similar to the original design as shown by

Sheik-bahae et al. [42] in their original paper. In their layout, a reference detector was placed prior

to the focusing lens to normalise for laser fluctuations. In their case the CS2 samples used displayed

negligible nonlinear and\or saturable absorption so normalising their CA scan by the OA scan was

not required. In a subsequent article, Sheik-bahae [51] presented a more detailed analysis of both

nonlinear refraction and absorption, utilising the OA configuration.

Figure 3.2: Optical set-up used for the Z-scan measurement. The path of the laser begins
at the laser (Coherent) and is allowed to pass through a high power variable attenuator comprised
of a half-wave plate (HWP) and polariser (GLP). The beam is guided to the first focusing lens
(PCX) where the beam is focused and the sample (GoQ on Stage) is translated through the focal
plane. The transmitted beam is split into two with a 50:50 beam splitter (NP-BS) into the open
aperture detector (OA), and the closed aperture detector (CA) through the pinhole. The complete
reference to the schematic is provided in Table B.1.

To optimise the data acquisition process, the closed and open aperture data is acquired simulta-

neously by splitting the far-field signal in half and directing them into their respective detectors.

Since the absorption signal needn’t be normalised by power fluctuations, the OA scan will allow
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normalisation for laser fluctuations and the usual absorption effects.

Figure 3.3: LABVIEW program used for data acquisition. LABVIEW program used for
data acquisition displaying modules to control translation stage, acquisition of continuous power
values, and Z-scan measurement.

The experimental Z-scan set-up is schematically illustrated in Figure 3.2. Each component is

marked by an identifier (i.e. PCX) which can be referenced to Table B.1 for further detail. The

source is a high power ultrafast tunable laser operating in the 690-1050 nm regime with a 75 fs

pulse width, as advertised by the manufacturer, and a 80 MHz repetition rate. The laser power

does not emit at equal power over the wavelength range, this factor is a limitation to the power

that can be accessed for measurement. The power of the laser is controlled by a standard high

power variable attenuator set-up comprising of a zero-order half wave-plate mounted on a manual

rotation mount, directed through a polariser. The zero-order half wave plate is designed to create a

phase shift that is exactly one quarter or one half of a wave, and offers relatively lower temperature

and wavelength dependence. With rotation of the wave plate the transmitted light through the

polariser is modulated with the rejected polarisation being dumped into the beam stop (STOP).

The beam is then directed to the sample by silver mirrors (M) and in particular a flip mirror (FM).

The beam is focused through a plano-convex lens (PCX) of a focal length of 70 mm. In the latter

two experiments, i.e, pulse-width dependence and pump-probe integrared Z-scan, the focusing lens

is changed to a 75 mm doublet lens to reduce aberrations. The beam is focused down and the

sample mounter on a stage (GoQ on Stage) is translated through the focal plane. The transmitted

beam is split in two using a 50:50 non-polarising beam splitter (NP-BS). The perpendicular arm

collects the entire beam and focuses it through a bi-convex lens (BCX) and directs it into the

open aperture (OA) detector. An optical density filter is placed to attenuate the beam to disallow

detector saturation. The parallel arm directs the beam through a pinhole (AP) mounted on an
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x-,y-direction translational stage and into the CA detector. The detectors were connected to the

power meter via RS-232 inputs and the power meter was interfaced with the computer using via

USB.

The data acquisition was accomplished using a custom LABVIEW program. A screen shot of the

program is shown in Figure 3.3. The module serves three primary functions: (i) control of the

sample translation stage via a Thorlabs provided controller (top-left), (ii) interface with the power

meter to obtain continuous power values from both channels as a function of time (bottom-left),

and (ii) perform the Z-scan measurement using the input parameters for relative start and stop

positions, and translation resolution (right).

3.3.1 Beam Characterisation

Characterising the incident beam is an imperative aspect of the Z-scan measurement. As mentioned

previously, a key assumption of the Z-scan technique is the use of a fundamental mode Gaussian

beam which ensures that the experimental data and the consequent analysis are as accurate as

possible. The pitfalls of deviation from this ideal profile have also been addressed in section 3.2.1.

The beam profile is measured using the Thorlabs Beam Profiler (BP209-VIS [52]) which uses a dual

scanning slit method to generate a beam profile. A photodetector is used to record data as two

orthogonal slits of the same width are scanned across the cross section of an incident laser beam. To

determine a beam’s quality and spatial characteristics, the light is sampled by the detector in two

directions, and the overall power distribution is calculated. From the resulting power distributions

in the X and Y directions, beam characteristics are analysed. The beam profiler can measure a

minimum beam diameter of 2.5 µm and a maximum diameter of 9 mm. All measurements are

obtained using a 13.5% (1/e2) clip width, which is the distance at which the intensity of the beam

is 0.135 of the maximum intensity.

As seen in Figure 3.2, the beam goes through a high power variable attenuator set-up upon exit and

is directed into the focusing lens (PCX) using a series of silver mirrors. The beam profiles shown

in Figure 3.4 are taken at 1050 nm without any optics in the path and are 45 cm apart at PCX

(Figure 3.4a) and at the CA detector (Figure 3.4b). The beam at PCX is measured to be 2.465 mm

and the beam at CA is measured to be 2.743 mm, giving a divergence of 61.77 mrad. In order to

obtain the most ideal beam profile and obtain an appropriate focusing, a 3.5 cm plano-convex and

a 60 cm plano-convex lens were used as beam expander and collimator. The beam was expanded

to 3.455 mm. However, during initial alignment attempts, it became clear that it would be very

difficult to get the lens to the perfectly perpendicular to the incident beam and to each other. The

lack of this perpendicularity will result in the beam tilting and gaining an off-axis propagation,

which makes precise alignment through multiple pinholes impossible. For the CA measurement, it

is of utmost importance to precisely probe the on-axis transmittance to obtain the most accurate

results. Considering this engineering trade-off between accuracy of the results and less than ideal

beam focus characteristics, it was appropriate to maximise accuracy of results. Therefore, the beam

expander configuration was removed and the raw beam from the laser was used. To provide minor
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Figure 3.4: Beam profiles of the beam at 1050 nm at the locations of the focusing lens
and far-field detector. Raw beam profiles at 1050 nm as measured 45 cm apart by a scanning
slit beam profile at (a) the location of the focusing lens (PCX) with a diameter of 2.465 mm and
(b) at the CA detector with a diameter of 2.743 mm

spatial filtering an iris was added prior to PCX.

The properties of the beam at the focal plane along with the corresponding Rayleigh length are

important parameters that are required for the analysis. The relationships between the focusing

optic, beam waist, wavelength and Rayleigh length are:

w0 =
2λ

π

F

D
(3.5)

zR =
πw2

0

λ
(3.6)

where w0 is the beam radius at the focal point, F is the focal length of the of focusing optic, D is

the diameter of the incoming beam before it is focused, zR is the Rayleigh length (see Appendix

A.1), and λ is the excitation wavelength. The dependence of these properties of the beam are

relatively intuitive as the lens will not focus every wavelength in a similar manner due to dispersion

effects in the lens.

The Thorlabs Beam Profiler was used to scan the beam around the focal plane to find the smallest

spot size along the translation axis. Since the experiment involves running the Z-scan with a range

of wavelengths, the beam waist measurement was performed at the chosen excitation wavelengths.

The beam measurement values are plotted in Figure 3.5. In addition to that, theoretical values

calculated using Eq. (3.5-3.6) are also provided for comparison. By looking at the theoretical

and experimental values, we do see that in practice we rarely achieve a perfect match to the

theoretical limit. In theory, the degree to which a beam of light can be focused down, assuming a
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perfectly collimated incoming beam, is imposed by the diffraction limit. Diffraction is a fundamental

phenomenon that occurs due to the wave nature of light and depends on the wavelength and the

diameter of the optic. Apart from this theoretical limit, we experience dispersion, aberrations and

other loses which contribute to less than ideal focus. We know that our beam has a divergence

of 61 mrad, as calculated previously, and focusing a slowly diverging beam will contribute to the

beam waist being larger than calculated with the same focusing lens. The quality of the beam is

relatively unaffected but the beam does not get as tightly focused, which is not problematic if we

use the experimental beam waist to calculate the on-axis irradiance.

Figure 3.5: Beam waist and Rayleigh length. Theoretical and experimentally measured (a)
beam waist and corresponding (b) Rayleigh length at excitation wavelengths
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3.4 Spectrally-dependent Z-scan measurement

The initial part of the experiments focuses on extracting the nonlinear index of refraction for

graphene over the excitation range 800-1050 nm. The range is limited by the source (690-1050 nm)

and the detectors (780-1800 nm). This section focuses on presenting and discussing the results from

the spectrally-dependent Z-scan measurement of graphene. The motivation behind this experiment

is two-fold; firstly, the discrepancy in sign and value for the nonlinear refractive index has been the

subject of debate for a few years (refer to Table 2.2), with values spanning six orders of magnitude,

therefore, this measurement will address effect of excitation wavelength on the nonlinear refractive

index to gain a fundamental understanding of the processes involved. Secondly, the cataloguing

of these values over a range of wavelengths provides a reference for n2,eff , when designing larger

graphene integrated systems where the effective nonlinear refraction is required.

The CVD fabricated graphene samples (1×1 cm2) transferred onto quartz were purchased from

ACS Materials. In order to verify the quality and monolayer nature of the sample, we perform

Raman spectroscopy, shown in Figure 3.6. The G-band, 2D-band and D-band peaks appear at

1576 cm−1, 2661 cm−1 and 1328 cm−1, respectively. The relative intensities and widths of the G

and 2D peaks confirm that the sample is single layer.

Figure 3.6: Graphene characterisation. Raman spectra of graphene sample with the G-band,

2D-band and D-band peaks appearing at 1576 cm−1, 2661 cm−1 and 1328 cm−1, confirming mono-

layer sample.
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With the phenomenon under observation being intensity dependent, it is important to consider a

normalisation between wavelengths. This is done by considering the on-axis irradiance and making

sure that at every wavelength the on-axis irradiance is close to being the same. With irradiance we

have equivalent energy impinging on a unit area, while the number of photons will differ, the order

of magnitude remains the same. With knowledge of the beam waist value for every wavelength, the

area is used to back calculate the average power required to produce the desired on-axis irradiance.

To maintain this irradiance normalisation, the maximum usable power is limited by the wavelength

with lowest maximum power (1050 nm). The measurement is performed with 50 nm increments

in wavelength. The general scheme of data acquisition is to perform the measurement at a certain

power and at a particular spot multiple times, then moving onto another spot for a few more

acquisitions. After this, the power, if allowed, is increased to perform a similar acquisition scheme.

Scanning repeatedly in multiple spots assured that any anomalous data sets are averaged out and

effects of damage, if any, are also accounted for.

As permitted by the source, the measurement is performed using on-axis irradiances of ∼ 1.6, 2.5-3,

and 4-4.9 GW/cm2. At 1050 nm, only the lowest irradiance is utilised; at 1000 nm, the two lowest

irradiances are used; and at 950-800 nm, all three irradiances are used. Once the experimental

data is obtained, it is fit to the theoretical model derived in section A.3. To be thorough with the

fitting scheme, the data is simultaneously fit with both Eq. (A.69) and (A.72). Eq. (A.69) is fit

using the nonlinear least squares algorithm, which allowed for more of a global data fit, while Eq.

(A.72) allowed for manual fitting using the peak-valley separation. In addition to that, some data

filtering is also performed for when the signal is noisy. Due to the fact that we probe the far visible

wavelengths, without isolation from ambient light there is increased noise in the data. An outlier

removal function in ORIGIN Pro. is used to reduce the noisier data points without affecting the

data set.

Figure 3.7 provides the Z-scan profiles for measurements performed at 950 nm. The figure shows

plots for the Z-scan measurement containing the OA profile, absorption normalised CA (CA/OA)

profile and the fit from which the n2,eff value is extracted. The data shown here is for measure-

ments performed with on-axis irradiances of (a) 1.621 GW/cm2, (b) 3.014 GW/cm2, and (c) 4.862

GW/cm2. The n2,eff extracted from this data is seen to range from 1.062 to 1.437×10−8 cm2/W.

This reduction of n2,eff with increasing on-axis irradiance is well-known saturation induced effect.

30



Figure 3.7: Z-scan profiles at 950 nm. Z-scan profiles performed at 950 nm with on-axis
irradiances of (a) 1.621 GW/cm2, (b) 3.014 GW/cm2, and (c) 4.862 GW/cm2. The decrease in
n2,eff is attributed to a saturation induced effect.
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Figure 3.8: Spectrally-dependent nonlinear refractive index. Spectrally-dependent nonlinear

refractive index spanning 800-1050 nm. The n2,eff values range from 9.065×10−9 - 1.757×10−8

cm2/W over this range with each point having error bars as the data has been averaged over

multiple sets

The values for the nonlinear index of refraction, n2,eff , are plotted as a function of wavelength in

Figure 3.8, which will provide a visual about the relationship between the n2,eff and its dependence

on the wavelength. The data at the mid-irradiance range are averaged and the standard deviation

is determined to compile the plot. The value of n2,eff (cm2/W) is positive in this excitation

regime. Sample Z-scan profiles measured from 800 to 1050 nm at 50 nm increments are presented

in Figure 3.9. The measurements are conducted at approximately the same on-axis irradiance (∼
2.5-3 GW/cm2) over the wavelength range, except the lowest irradiance at 1050 nm is utilised due

to the power limit of the laser. There is a large degree of noise for lower irradiances at shorter

wavelengths. This is the cumulative nonlinear refractive response. The n2,eff is seen to have a

dependence on the excitation wavelength, ranging from 9.065×10−8 to 1.757×10−8 cm2/W for a

wavelength range of 800-1050 nm. Shorter wavelengths are observed to have a n2,eff value that is

lower as compared to longer wavelengths, with approximately the same on-axis irradiance (W/cm2).
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Figure 3.9: Z-scan profiles at wavelengths spanning 800-1050 nm. Z-scan profiles containing

the OA, absorption normalised CA (CA/OA) and the fit. Plots (a-f) show the data and fits for

excitation wavelengths of 800, 850, 900, 950, 1000 and 1050 nm, respectively. With the exception

of 1050 nm, all data sets are taken at similar on-axis irradiances with the exact values and the

corresponding n2,eff values also provided.
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This dependence has been reported since the first measurements of n2 in graphene were performed

(refer to Section 2.3). It was explictly derived by Hendry et al. [22] that n2 had a λ4 on the

wavelength. However, a few reports after that have observed a power dependence but not with

a power of 4. Fitting the data shown in Figure 3.9 to a power model (n2 = a ∗ λb), a value of

b = 2.13 is obtained. It is clear that within a range of error the experimental results follow the

quadratic theoretical model rather than the quartic. Through rigourous calculation Semnani et

al. [14] developed a cohesive quantum theory to explain nonlinear optical phenomenon in graphene.

To this end, they found that the dependence is quadractic in wavelength (λ2), also shown in Figure

3.8.

It is noted that n2,eff exhibits negligible dependence on the Fermi level for a low-doped graphene

monolayer. In our case n2,eff is dominated by contributions from interband transitions and the

most relevant transitions occur at the zero detuning region where ω = 2|k|vF . Detuning is defined

as ∆k = ~ω − Ecv, where ω is the frequency of the excitation photon and Ecv is the energy of the

transition, see Figure 3.10a. The theoretical model employed in our theory use semiconductor Bloch

equations (SBEs) to describe the cooperative intra-interband dynamics of the population difference

N(k, t) (between the valence and conduction bands) and the polarisation (coherence) P(k, t) for

the Bloch state k. The phenomenological relaxation coefficients, γ1/2, account for the collective

broadening effects for the population and coherence decay, respectively. Under our theory, the

electromagnetic coupling for normal illumination is defined by Φ̂k = Eφ̂
~k , where E is the electric

field and the unit vector φ̂k is defined as φ̂k = ẑ × k/k, shown in Figure 3.10a.

Figure 3.10: Carrier relaxation in graphene leading to Kerr-type nonlinearity. (a) Band

structure of graphene showing the excitation pulse with energy ~ω, the zero detuning circle ∆k = 0,

and φ̂k is a vector in reciprocal space, (b) the evolution of the steady state population (Nst
k ) and the

equilibrium population (Neq
k ) difference upon intense illumination which disturbs the N

eq
k leading

to the observation of a Kerr-type nonlinearity in graphene. The colour bands represent relative

population differences in the schematic.

The nonlinear optical absorption has multiple origins namely bleaching effects culminating in satu-

ration, and two photon absorption. Since the graphene sample used in our experiment is low-doped
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(i.e µ � ~ω), absorption bleaching due to optically induced Pauli-blocking plays the leading role.

Bleaching refers to the phenomena where the system cannot be excited anymore due to the avail-

able states filling up. This is the same idea as Pauli blocking. This assumption is supported by

observation of the absorption drops upon high optical irradiance, refer to the OA trace in Figure

3.9. Furthermore, since the Fermi energy level is small compared to the energy of the photons,

it naturally follows that Pauli blocking around zero detuning region is widely demolished. Under

high intensity illumination in a Kerr-type material, the charged carriers undergo ultrafast Rabi

oscillations, much faster than their relaxation rate. As a consequence the steady state popula-

tion, Nst
k , is significantly modified by light, disturbing the distribution at equilibrium, N

eq
k . The

origin of the Kerr-type nonlinearity is the optically induced change to the steady-state population

difference. The relaxation dynamics as the population difference evolves is schematically sown in

Figure 3.10b. Before saturation takes place, the nonlinear contribution of the field to the popu-

lation difference around the zero detuning region is a quadratic function of the field magnitude,

Nst
k − N

eq
k ≈ −

1
γ1γ2

N
eq
k |φk|

2. The induced nonlinear current oscillating at the frequency ω is then

given by JNL =
∑

k(Nst
k −N

eq
k )φkLk(ω), where the Lorenztian Lk(ω) , 1/(γ2 + i∆k) accounts for

the interband transitions. For a small enough γ2, the Kerr-type nonlinear induced current is given

by

JNL = χ(3)(ω, ω,−ω)|E|2E ∼ β e
2

~
gsgvD

1

γ1γ2
| e
~k

E|2Neq
k |∆k=0

(3.7)

where gs and gv are the spin and valley degeneracy factors, respectively, D = 1/4π2 is the density

of states, and β ∼ π is a dimensionless quantity that arises from angular integration around the

Dirac cone. Due to low doping, Neq
k ≈ 1 over the zero detuning circle. The quadratic wavelength

dependence of the Kerr coefficient is a direct consequence of the linear energy-momentum dispersion

of the Dirac quasiparticles in graphene, simplistically given as n2 ∼ 1
ε0c
χ(3)(ω, ω,−ω) ∝ λ2.
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Chapter 4

Pulse-width dependence of the

effective Kerr coefficient of Graphene

4.1 Introduction

In the previous chapter, the effect of varying the wavelength of the excitation on the observed n2,eff

is probed. It naturally follows to investigate the temporal counter-part of this measurement. To

this end, in this chapter the dependence of n2,eff on the pulse-width of the excitation source is

investigated. The beam at 900 nm is stretched from 100 fs up to ∼ 500 fs and the stretched beam

is used as an input to the Z-scan set-up.

In general, there are several techniques to accomplish the stretching of laser pulses and are broadly

classified into four categories; (a) optical pulse stretching using a configuration of optical elements

that split the amplitude of the incident pulse, introducing optical delays between them, (b) pulse

stretching by intracavity nonlinear materials, (c) electronic pulse stretching, and (d) pulse stretching

by dispersion. Each technique finds application in niche applications due to the elements involved

and their subsequent integration into optical or electronic systems. More importantly, there are

limitations to the temporal stretching or expansion that can be achieved for certain systems. In

the case of ultrashort pulses, pulse stretching by dispersion is generally used because the spectral

bandwidth of the ultrashort pulses is very large. The dispersive pulse stretcher is a configuration

of dispersive optical elements that introduce wavelength dependent optical delays to introduce

frequency chirp for temporal stretching. The term chirp refers to the temporal arrangement of the

frequency components of the laser pulse [53].

Frequency chirping via dispersion can be achieved with propagation through optical fibers, diffrac-

tion gratings or prisms. In a medium with positive dispersion, the higher frequency (shorter

wavelengths) components of the pulse travel slower than the lower frequency (longer wavelengths)

components and the pulse becomes positively-chirped or up-chirped. In a medium with negative

dispersion, the converse effect is observed resulting in the pulse becoming negatively-chirped or

down-chirped. Long propagation distances are required to disperse the beam sufficiently in optical
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fibers. Diffraction gratings provide large stretching factors (>1000 times), but result in a huge loss

in peak power in the reflection configuration. However, using gratings in transmission allows for

the retention of peak powers with the same stretching factors. The prism-pair method provides

for robust stretching of high power pulses, but is experimentally difficult to implement due to the

need to have angular precision in the alignment of the beam as it goes through the prisms to en-

sure sufficient dispersion and recombination, resulting in no spatial chirp. In addition to that, the

degree of stretching is governed by the separation distance of the prisms, which is limited by the

available table space and adds to the difficulty of angular alignment over large distances. Given

the knowledge and resources at the time, the pulse is temporally stretched using the prism-pair

configuration. However, using gratings in transmission is objectively the better choice since it is

experimentally easier to implement and allows for larger stretching factors and retention of power

without the large separation distances.

This chapter is presented in a manner to first elucidate on the theory behind dispersion in the

context of experimental implementation, followed by the details of the set-up to achieve the desired

pulse-stretching. Considering the sensitivity of the alignment, it is imperative to characterise the

stretched pulse to confirm that the beam has undergone the desired temporal modification. This

is achieved through the use of a home-built autocorrelation set-up. A brief section is presented on

the details of operation of this set-up followed by the characterisation results. The final section

presents the results of pulse-width dependent Z-scan measurement which shows that n2,eff has

clear dependence on the pulse-width of the excitation source.
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4.2 Effect of Dispersion

In Appendix A.1, the Gaussian beam equation was derived (Eq. (A.54)). The equation is expanded

to explicitly show the spatial components of the equation, while the temporal properties are confined

within the leading term, E(t). This section will elucidate on this leading term to derive the effect

of dispersion on a Gaussian beam [54].

In time domain, the electric field of a Gaussian pulse is given by:

E(t) =

√
At exp−ln2( 2t

∆t
)2

exp−j(ω0t+θ(t))

where At is the amplitude, ω0 is the frequency, ∆t is the pulse duration, and θ(t) determines the

temporal relationship among the frequency components within the pulse envelope. Due to mathe-

matical tedium of working in time domain when considering the effects of dispersion on the pulse,

it is more convenient to consider the pulse in frequency domain via a Fourier transform. In order

to determine the pulse duration after propagation through a dispersive material, it is necessary to

solve a convolution integral when working in time domain. However, due to convolutions transform-

ing to products in Fourier space, the problem is simplified when working in the frequency domain.

Therefore, the electric field in frequency domain is given by:

E(ω) =

√
Aω exp−ln2

(
2(ω−ω0)

∆ω

)2

exp−jφpulse(ω−ω0) (4.1)

where ∆t and ∆ω are related through the uncertainty relation ∆ω∆t = 4ln(2) [55], and the

spectral phase, φ(ω), describes the relationship between the frequency components within the pulse

envelope. Both ω and ∆ω denote angular frequencies which can be converted to linear frequency,

ν, through the relation ν = ω
2π . Using this substitution, a parameter called the time-bandwidth

product, cB = ∆ν∆t = 2ln(2)
π , is defined [56]. Since this parameter is the product of a pulse’s width

in the time and frequency domain, it sets a lower limit for the pulse duration, a limit imposed by

the property of the Fourier transform. A term often used is transform limited pulses, this refers

to how short the pulse duration can be given a spectral width. If a pulse is transform limited, it

contains no chirp and therefore exhibits no effect of dispersion. For a Gaussian-shaped pulse cB ≈
0.44, which is a minimum limit.

As an input pulse, Ein(ω), traverses through a dispersive medium, the phase added by the material

is simply the product of the input field and the transfer function of the material. Therefore, the

output pulse is given by:

Eout(ω) = Ein(ω)R(ω) exp−jφmat(ω−ω0)

where φmat(ω − ω0) is the spectral phase added by the material and R(ω) is an amplitude scaling

factor which is approximated as 1 for a transparent medium. The spectral phase can be expressed
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as a Taylor expansion around the carrier frequency, ω0, of the pulse as such:

φ(ω − ω0) = φ0 + φ1 · (ω − ω0) + φ2 ·
(ω − ω0)2

2
+ φ3 ·

(ω − ω0)3

6
+ ... (4.2)

This allows for a straightforward approach to comprehending the effect of material dispersion on

the pulse. The first term in the expansion is simply φ(ω0) = k(ω0)·L, where k(ω) is the propagation

constant defined, with consideration of the linear refractive index (n) of the material, as k(ω) = ωn
c

where c is the speed of light and L is the propagation length in the medium. The group velocity

is then defined as vg = dω
dk = c

n −
kc
n2 · dndk . Here we see that if the refractive index does not vary

with frequency, dn
dk = 0, then dω

dk = c
n , which happens to be the phase velocity. Therefore, both the

group and phase velocity are independent of frequency and the material is said to be non-dispersive.

However, when both group and phase velocity vary with frequency we observe dispersion. From

this we see that the first term in Eq.(4.2) adds a constant phase. The second term is proportional

to 1
vg

and adds a delay to the pulse. The third term is referred to as the group delay dispersion

(GDD) and is proportional to d
dω ( 1

vg
). It introduces a frequency dependent delay of the different

spectral components of the pulse, therefore, inducing a temporal change in the pulse. The fourth

term is referred to as the third order dispersion (TOD) and applies a quadratic phase across the

pulse. However, for our purposes we can truncate the series to the third term. Now we can rewrite

the output pulse in terms of the expanded spectral phase:

Eout(ω) =

√
Aω exp−ln2

(
2(ω−ω0)

∆ω

)2

exp
−j
(
φ2,pulse+φ2,mat

(ω−ω0)2

2

)
(4.3)

The phases in frequency domain are additive, which is the advantage of performing these calcula-

tions in Fourier space. Performing an inverse Fourier transform, the pulse in time domain is given

by:

Eout(t) =
√
At exp

4(ln2)t2

2[∆t2+j4(ln2)φ2] (4.4)

where φ2 is the sum of the group delay dispersion of the material and the group delay of the pulse.

The output pulse duration, ∆tout, is obtained by squaring the electric field to obtain the intensity

and relating it to the general form of the Gaussian pulse:

exp
−ln2( 2t

∆tout
)2

= exp
4(ln2)t2∆t2

∆t4+16(ln2)2φ2
2

∆tout =

√
∆t4 + 16(ln2)2φ2

2

∆t
(4.5)

Isolating the GDD (φ2) and replacing the transform limited pulse duration with the time-bandwidth

product, the GDD can be expressed in terms of accessible quantities like the pulse width and

spectrum:

φ2 =
1

4(ln2)

√(cB∆tout
∆ν

)
−
( cB

∆ν

)4
(4.6)
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where ∆ν = c∆λ/λ2. By measuring the spectrum and performing an autocorrelation measurement,

the GDD can be determined. In order to estimate the GDD introduced due to propagation through

a material, the group velocity dispersion (GVD) needs to be calculated. GDD is simply the GVD

multiplied by the propagation length, L, in the medium. The GVD is given by λ3

2πc2

(
d2n
dλ2

)
. The

dependence of the refractive index on the wavelength for a specific medium is generally in the form

of a Sellmeier equation so higher order derivatives can be easily calculated. In the following section,

the derived equations will be applied to the specific prism-pair pulse stretching set-up used in this

experiment to calculate the GDD introduced to the pulse when the separation distance between

the prisms is varied.
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4.3 Prism-pair Pulse Stretching Set-up

As discussed in the introduction, through dispersion a pulse can acquire positive or negative chirp,

which means that the higher frequency components are lagging behind the lower frequency compo-

nents or the lower frequency components are lagging behind the higher ones, respectively. Positive

chirp corresponds to a positive GDD, while a negative chirp corresponds to a negative GDD. The re-

fractive index tends to be larger for shorter wavelengths and smaller for longer wavelengths making
dn
dλ always negative. A pulse experiencing dispersion always experiences a positive chirp, positive

GDD. However, angular dispersion using prisms introduces a negative GDD to the pulse, which

is generally used to eliminate the effects of dispersion and allows the pulse to reach the trans-

form limit. With a transform limited pulse, introducing positive or negative GDD will result in

equivalent stretching of the pulse-width. In a prism-pair set-up the amount of GDD is governed

primarily by the separation distance of the prisms, which is the parameter that controls the amount

of dispersion introduced. Therefore even if the pulse is not transform limited, it can be stretched

by simply increasing the separation distance between the prisms, beyond the distance required to

compensate for dispersion.

The unfolded geometry of the prism compressor/stretcher consists of a four prism single pass

sequence. The same effect can be achieved using two prisms in a double pass geometry with a

folding mirror as illustrated in Figure 4.1. Figure 4.1 schematically illustrates the set-up used in

this measurement. The beam enters the first prism near the apex at Brewster angle to maximise

transmission. The first prism disperses the beam with the blue component of the beam undergoing a

larger refraction than the red component. The second prism collimates the beam with the entrance

angle of the second prism being to the entrance angle of the first prism; this ensures collimation.

The beam is then returned through the two prisms in the same path at a different height to spatially

recombine the beam. The wavelength dependent path length, P (λ), due to dispersion is given by:

P = 2lcos(β)

where l is the distance between the apexes of the two prisms and β is the angle of the dispersed

beam after the first prism. The angle β can be estimated from, β ≈ −2dndλ∆λ. The GDD introduced

by this prism sequence is then given by [57]:

GDDprism =
( λ3

2πc2

)d2P (λ)

dλ2

GDDprism ≈
λ3

2πc2

(
4l
((d2n

dλ2
+
(

2n− 1

n3

)(dn
dλ

)2)
sin(β)− 2

(dn
dλ

)2
cos(β)

)
+ 4
(d2n

dλ2

)
(2D1/e2)

)
where D1/e2 is the diameter of the beam entering the first prism at 1/e2. However, β is relatively
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Figure 4.1: Prism-pair pulse stretching setup. Schematic illustration and an image of the
prism-pair pulse stretching setup. The input beam is coupled from the high power variable at-
tenuator in front of the laser and then subsequently couples to Z-scan set up at the output, both
illustrated in Figure 3.2. A few mirrors are used to guide the beam into the first prism which is
mounted on a gimble mount (GblMt) allowing 6 degrees of freedom. The beam is dispersed by
the first prism (PSM1) and the diverging beam is then coupled to a second prism (PSM2) where
it collimates on the other side. A hollow roof mirror (HRM) reflects the beam back exactly in the
same path, but at a height 1 cm lower than the first beam. The beam follows the same path back
and is reflected by a half pick-off mirror (POM). PSM2 is moved along the path of the beam to
change the separation distance to vary the stretching factor. The complete reference to components
in the schematic is provided in Table B.1.

small, so sin(β)� cos(β), and the above equation can be simplified to:

GDDprism ≈
λ3

2πc2

(
− 4l

(
2
(dn
dλ

)2)
+ 4
(d2n

dλ2

)
(2D1/e2)

)
(4.7)

The first term is always negative and is governed by the prism separation, l. The second term is

always positive and depends on the path length through the prism, which introduced a positive

dispersion. It is important to align the beams to enter and exit the prisms as close to the apex as
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possible to reduce positive dispersion.

The derivatives are obtained using the Sellmeier equation [58]:

n2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(4.8)

where B1,2,3 and C1,2,3 are material specific experimental Sellmeier coefficients, and λ is the wave-

length of interest.

As mentioned previously, precision in angular alignment is of fundamental importance when build-

ing this set-up. The bulk of time is spent perfecting the alignment as it affects the temporal and

spatial properties of the exiting beam. In addition to that there are a few practical points that must

be considered when building this set-up. (i) Beam size: Given an initial beam diameter, angular

dispersion will only increase the spatial size of the beam on exit. Even on return, unless perfectly

aligned, the beam diameter will be larger. Therefore, when choosing the prism size, it is important

to consider the available prism face area where the beams will be entering and exiting. This will

also limit how far the prisms can be placed as the beam will grow larger with longer distances.

(ii) Spatial chirp: Since the beam has to be dispersed and recombined, it is very likely that that

due to slight misalignment the beam is not combined correctly and there is spatial separation of

the frequency components across the beam cross-section. A simple way to check is up coupling

the beam into a spectrometer and moving the across the detector and observing changes in the

spectrum. If there are shifts in the spectra, it may mean that the wavelengths are still spatially

separated. (iii) Return mirror: In an unfolded geometry, there would be 4 prisms that would

accomplish the task of dispersion and recombination, however, for efficiency and space, 2 prisms are

used (Figure ??) with a folding mirror at the end to return the beam in the same path at a different

height. It is important to use a mirror, rather than a conventional retroreflector. A retroreflector

will invert the image of the beam rather than simply reflect it back. Use of appropriate equipment

is important.

The measurement was performed at 900 nm, where the noise of the detectors can be kept low

and there is sufficient power from the laser. Equilateral dispersive prisms made of N-SF11 flint

glass were used. The Sellmeier coefficients for this material are: B1,2,3 = 1.737, 0.3137, 1.899,

and C1,2,3 = 1.319×10−2µm2, 6.231×10−2µm2, 1.552×102µm2, respectively. Using Eq. (4.8) the

linear refractive index (n), the first-order derivative (dndλ ) and the second-order derivative (d
2n
dλ2 )

are calculated to be 1.7594, -0.0427 µm−1 and 0.121 µm−1, respectively. The spectrum obtained

for beam prior to stretching is shown in Figure 4.2. The spectral bandwidth obtained from this

spectrum is 11.96 nm. Using the time-bandwidth product the transform limited pulse duration for

the spectral bandwidth is calculated to be 99.56 fs. In the subsequent section, the results for the

autocorrelation measurement for the original and stretched beams will be presented.
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Figure 4.2: Spectrum of the unmodified beam exiting the laser at 900 nm. The spectrum
of the beam at 900 nm without pulse-stretching. A spectral bandwidth of 11.96 nm is obtained
using a Gaussian fit. The beam is measured after the power attenuation set-up at the exit of the
laser to ensure no additional optics introduce dispersion.

4.3.1 Autocorrelation characterisation

The concept of autocorrelation is prevalent in several fields of study. Intrinsically, autocorrelation

refers to the correlation of a signal with itself as a function of delay time. This general concept

is applied to the measurement of the duration of ultrashort pulses where conventional photodi-

odes and detectors are too slow to directly measure the duration. In our measurement we use

intensity autocorrelation to measure the duration of the prism-pair stretched pulses. In intensity

autocorrelation, the beam is split using a beam splitter, creating two copies of itself. One arm is

directed towards a translating mirror or a rotating mirror, as in our case, to delay of the beams.

Then both beams are focused onto a χ(2) nonlinear crystal, where a shorter wavelength signal is

generated through the mechanism of second-harmonic generation (SHG), when there is temporal

overlap of the two beams [59]. Due to particular criteria for SHG like momentum matching, near

perfect spatial overlap on the crystal and high peak power, the alignment is imperative to obtaining

a signal. A pre-built custom rotating mirror autocorrelator was used in this measurement. The

autocorrelator is shown in Figure 4.3 with beam paths shown for clarity. The nonlinear crystal

used here is BBO. There is a shortpass filter placed before the detector to isolate the harmonic
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signal (blue).

Figure 4.3: Rotating mirror autocorrelator. The rotating glass creates a relative delay between
the two beams. They appear at different heights on the output of the rotatin glass. Both beams
are focused down with a lens onto a BBO crystal. The generated SHG signal is directed towards a
detector where a shortpass filter isolates the SHG (blue) signal.

The signal read by the slow detector is given by the integral:

IM (τ) =

∫ +∞

−∞
|E(t)E(t− τ)|2dt =

∫ +∞

−∞
I(t)I(t− τ)dt (4.9)

where IM is the signal read by the detector and τ is the time delay between the two pulses. For

Gaussian pulses the pulse duration is
√

2 times longer than the full-width half maximum (FWHM)

of the autocorrelation signal.

The autocorrelation measurement was performed for different positions of prism-pair separation

distances. The autocorrelation curves and fits are presented in Figure 4.4a and the pulse durations

as a function of prism-pair separation distance is shown in Figure 4.4b. The pulse-width of the

unmodified beam is observed to be 101.74 fs, which is close to the transform limit pulse-width

for the measured spectral bandwidth, as presented in the previous section. The specifications of

the laser source state that the pulses should be 75 fs with an internal dispersion compensation

mechanism, so 75 fs should be observed at output. However, that is not what is measured and the

high-power variable power attenuator comprising of a waveplate and polariser are not sufficient to

add sufficient dispersion to expand the pulse by 25 fs. For a more detailed analysis of the introduced

GDD, a spectrum would be taken at every separation distance to complement the autocorrelation
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measurement so a time-bandwidth product can be extracted. In theory, the negative dispersion,

the negative term in Eq. (4.7), would have to be large enough to overcome the initial positive

chirp of the laser and the positive GDD introduced by the beam propagating inside the prisms.

Looking at Figure 4.4b, it is obvious that the compensation for the laser and prism introduced

dispersion is achieved within the distance of 0 and 52 cm, which is where the second data point is

located. However, for the purposes of this study only an experimental realisation of pulse-stretching

with negligible spatial chirp was required and achieved. Therefore, no further measurements or

calculations were performed beyond the ones presented in Figure 4.2 and 4.4.

Figure 4.4: Autocorrelation characterisation. (a) Autocorrelation measurement, (b) Pulse
duration as a function of prism-pair separation distance

The stretching factor of the set-up was limited by the space on the optical table where the separation

distance between the prisms could not be increased further than 103 cm. At this point a pulse-width

of 474.26 fs is achieved. For the purposes of this study, this value is sufficient as it is longer than

the time-scale of the nonlinearity of interest, which is denoted by τ1. This time-scale is reported to

range from 100-200 fs. In the subsequent chapter, these time constants will be measured.

46



4.4 Pulse-width dependent Z-scan measurement

It is well understood that the relative timescales of the excitation pulse and the system response

times determine the induced dynamics in the system. To investigate the effects of pulse duration

on nonlinear refraction, we stretch the ∼ 100 fs pulse upto ∼475 fs at 900 nm to observe the effects

in the long pulse regime; longer than the duration of the nonlinearity or relaxation time, τ1. The

beam stretched by the prism-pair pulse stretching set-up is directed into the Z-scan set-up and

measurements are performed at the different stretched pulse-widths. The cumulative results of this

measurement are shown in Figure 4.5 and a full set of Z-scan profiles for the presented data are

also provided in Figure 4.6.

Figure 4.5: Pulse-width dependence of n2,eff . The dependence of n2,eff on the excitation

pulse-width. The n2,eff is observed to increase as the pulse-width becomes longer.
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Figure 4.6: Z-scan profiles at 900 nm with pulse durations spanning 102-475 fs. Z-scan

profiles containing absorption normalised CA (CA/OA) and the fit. Plots (a-f) show the data and

fits for stretched pulse durations of 102, 154, 198, 288, 385 and 474 fs, respectively. All data sets

are taken at similar on-axis irradiances with the exact values and the corresponding n2,eff values

also provided.
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The results show a clear dependence of n2,eff on the excitation pulse duration, with n2,eff becoming

larger with increasing pulse-width. This trend was theoretically predicted by Vermeulen et al. [7]

and shown here experimentally. The n2,eff ranges from 1.02×10−8 to 1.7×10−8 cm2/W in this pulse

duration regime with a minimum between 200-300 fs. The decay constant τ1 ∼ 113 fs measured

in Figure 5.2 falls near the beginning of the data set. However, doping can modify the decay

constant values with p- and n-doping making the time constants long and shorter, respectively

[60]. This data trend coincides with previously reported Z-scan studies on graphene performed

with picosecond excitations where the n2,eff is larger than what is reported in the femtosecond

regime. In addition to this, a similar comparative analysis performed on carbon disulphide (CS2),

reference material used for calibration of Z-scan measurements, revealed a similar dependence of

the n2,eff on pulse duration [61]. In a recent publication [7], this pulse-width dependence of n2,eff

is theoretically derived for a regime when the effective decay constant is larger than the pulse

duration in Z-scan measurements. The interplay of relative carrier heating and cooling times is

said to induce a nonlinear response that may not originate only from the conventional electronic

Kerr-type nonlinearity but also from what they refer to as saturable photoexcited-carrier refraction

(SPCR). The saturability in graphene deviates from saturability in other 2D materials due to the

presence of its unique gapless band structure which facilitates spontaneous saturation near the

Dirac point even when there is no field [6]. Therefore, it is apt that we refer to the Kerr-type

nonlinearity characterised using the Z-scan method as n2,eff .
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Chapter 5

Temporal evolution of the effective

Kerr coefficient of Graphene

5.1 Introduction

Several natural processes in nature occur on very fast timescales like pico- (10−12 s) and femtosec-

onds (10−15 s). These can include atomic motion, molecular vibrations, photon absorption and

emission, and other scattering events. Due to macroscopic phenomena stemming from these fast

processes, it becomes imperative to measure and characterise them. To accurately measure ultra-

fast processes, the uncertainty in timing must be smaller than the timescale of the process under

investigation. A primary limitation of directly measuring these processes is that detectors such as

photodiodes and oscilloscopes posses temporal resolutions on the order of 10−10 s. Therefore, a

fundamentally different approach towards time-resolved measurements was developed. The tech-

nique, colloquially known as pump-probe spectroscopy, involves observing the state of a process

indirectly through the observation of a probe laser pulse. This method has become the basis of most

time-resolved measurements. This chapter focuses on studying the temporal evolution of the n2,eff

Kerr-type nonlinearity in graphene by the means of a pump-probe integrated Z-scan measurement.

The first subsection will elucidate on the methodology of the pump-probe measurement, while the

latter subsection presents the experimental set-up and the results obtained via this measurement.
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5.2 Pump-probe Spectroscopy

Experimental methods to measure dynamic properties of materials on a femtosecond timescale has

provided a window into ultrafast processes responsible for electronic and optical properties. In

a pump-probe scheme, a high-intensity optical pump pulse perturbs the system from equilibrium

and a time-delayed weak probe pulse measured the photoinduced change in either transmission or

reflection of the sample at that probe delay point. The probe is delayed with the use of a translation

stage that provides an alternative variable path for the probe pulse; the spatial translation converts

to a temporal delay via the speed of light. The technique is a sampling technique that reconstructs

the signal. The entire time domain signal is not collected all at once, but is recovered by the

change in optical properties as a function of probe delay time. Each data sample is the average

signal over many reflected or transmitted pulses at a given time delay, thus eliminating the detector

response time as a limitation of the temporal resolution. In ultrafast pump-probe spectroscopy,

the minimum time resolution is limited by the pump and probe pulse durations and the interval

between the measured time delays, which is determined by the spatial resolution of the delay stage.

Time-resolved differential transmission ∆T/T and differential reflectivity ∆R/R measurements

are both possible via this method, and both measurements together allow for the determination

of the complex refractive index, complex dielectric constant, complex conductivity, or complex

susceptibility.

When considering the experimental implementation of this technique, there are several configura-

tions that this technique can be achieved depending on requirement and equipment. In general,

the relative power of the probe beam should be less than the pump beam (pump/probe power ratio

> 10 : 1), so the probe merely samples the material properties without modifying them. Also, when

spatially overlapped at the sample, the focused spot size of the probe beam should be smaller than

that of the pump (typically a pump/probe ratio > 2 : 1) so that the probe measured an area of

the photoexcited sample that is approximately uniformly excited. The measurement can be using

degenerate pump-probe beams, which means both the pump and probe have the same wavelengths.

In this case isolating the probe beam is achieved with the use of an optical chopper and lock-in

amplifier. The pump (or probe) can be modulated at frequency fc and readily be extracted at the

detector. In the case of a nondegenerate pump-probe scheme, a wavelength filter can be used to

block the pump beam at the detector. It is common to use polarisation optics to isolate the probe

in both pump-probe schemes. a half-wave plate and polarizing beam splitter are used to prepare

the beams on entry and another polarizer is used to extinguish the pump at detection. The pump-

probe are orthogonal to each other. In polarisation sensitive measurements like in waveguides,

the former methods of probe isolation are more appropriate. The set-ups can also be made with

the pump-probe beams in collinear or non-collinear geometry, which again is chosen depending on

measurement requirements.

There are a few general considerations when piecing together a robust pump-probe experiment: (i)

Photon energy. The photon energy or the laser wavelength determines the electronic transitions
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excited by the pump pulse and sampled by the probe pulse. In semiconductor systems, the band gap

is the relevant energy scale for photon energy. An above-band-gap photon creates an electron-hole

pair, increasing the conductivity; while below-band-gap excitation, free-carrier absorption domi-

nates the response. (ii) Excitation fluence. The pulse energy per unit area defines fluence and

determines the local heating and density of quasiparticles photo-generated by the absorbed pump

pulse. The fluence must be large enough to produce a measurable change with a signal-to-noise

ration larger than 1. The fluence should also be small enough to not trigger a transition of an

alternate order, and be kept below the material’s damage threshold. (iii) Temporal resolution.

Temporal sensitivity is primarily determined by the pump and probe pulse widths and the spa-

tial resolution of the delay stage. The temporal resolution (i.e. pump pulse width) needs to be

better than the shortest temporal feature to accurately recover the various lifetimes present in the

relaxation process. (iv) Frequency bandwidth. An ultrafast optical pulse necessarily has a

finite bandwidth that can be calculated from the time domain waveform using a Fourier transform

(FT). A distribution of pump wavelengths excites a distribution of states, while a distribution of

probe wavelengths measures the electronic properties over the range of states. (v) High sensi-

tivity. Measuring minuscule changes in transmission or reflectivity can be achieved with the use

of high-repetition-rate lasers, high frequency modulation, lock-in detection, and high-sensitivity

photodiodes. The use of an optical chopper and lock-in amplifier eliminates noise that is within

the pass band of the lock-in, reducing overall noise. High-repetition-rate lasers enhance the signal-

to-noise ratio by increased counting statistics of the measured signal. Higher-repetition-rate lasers

and higher frequency chopping generally improve the overall signal-to-noise.

Detection is an imperative aspect of obtaining an accurate pump-probe measurement. The choice

of detector is primarily determined by three criteria. (i) Response time: The temporal resolution

of the system results from the path length difference between the pump and probe pulses and not

from the response time of the detector. The required detector response time is given by the chopper

modulation frequency of the pump/probe beams. For a chopper frequency of 500 Hz, the detector

response time needs to at last 2 ms. (ii) Wavelength: The detector must have responsivity at the

probe wavelength to generate a measurable signal. In semiconductor and avalance photodiodes,

the probe photon energy must be larger than the band gap of the semiconductor material. Long

wavelength detectors are frequently cooled to minimise detection of thermal blackbody radiation as

a means to reduce noise. (iii) Noise equivalent power (NEP): The NEP is the minimum optical

power needed to produce a detector signal with a signal-to-noise ratio of 1. This is the smallest

signal that can be recovered from the system and is an important figure of merit to minimize. In

addition to the detector, a lock-in detection scheme is also common to reduce noise and isolate the

desired signal. A reference signal is supplied to the lock-in amplifier using an optical chopper that

is in the path of the pump (probe). The lock-in amplifier filters the measured signal for a signal

with the optical chopper’s modulation frequency [62].

52



5.3 Pump-probe Integrated Z-scan measurement

Originally introduced by Sheik-Bahae et al. [42], the Z-scan technique proved to be an experimen-

tally facile yet sensitive method to extract the phase and magnitude of the Kerr coefficient. The

optically induced self-refraction is quantified by relating the phase modulation of the traversing

beam to the transmittance in the far-field in Closed Aperture (CA) configuration, while the Open

Aperture (OA) configuration captures the effect of absorption. This technique was modified by

Wang et al. [63] to extract the temporal evolution through the integration of a secondary time

delayed beam to obtain the time-resolved Z-scan measurement. The pump-probe integrated Z-scan

set-up (PPZS) is schematically illustrated in Figure 5.1. The set-up can be operated in multiple

modes of measurement. In the single-beam mode, the set-up is a standard Z-scan measurement.

In dual-beam mode, with the addition of a lock-in amplifier, chopper and cross-polarisation filter-

ing, the set-up can be used to perform a standard pump-probe measurement for the extraction of

relaxation time constants. When used in conjunction with the Z-scan components, the dual-beam

mode is used for the time-resolved Z-scan measurements.

5.3.1 Experimental set-up

The experimental set-up for this measurement is illustrated in Figure 5.1. The excitation source

is a high-power Ti:sapphire laser (Coherent Chameleon Vision S) delivering ∼100 fs pulses at

wavelengths tunable from 690 to 1050 nm, at a repetition rate of 80 MHz. When operating in

single beam mode, the set-up is a classic Z-scan measurement. The beam is focused onto the

sample using an anti-reflection (AR) coated achromatic doublet lens (ADL) with a focal length

of 75 mm. The beam is bisected in the far-field by an AR coated non-polarising beam splitter

(NP-BP) to obtain the OA and CA profiles. The OA is used to normalise for absorption and

laser fluctuations in the CA trace. The normalised CA transmittance is fitted to the equation:

T (x,∆Φ0) ' 1 − 4∆Φ0x
(x2+9)(x2+1)

, where x is the Rayleigh length (zR) normalised position (z/zR)

and ∆Φ0 is the nonlinearity induced phase shift. When a pulsed source is used with pulse-width

comparable to the duration of the nonlineairty, the nonlinear refractive index is extracted via

n2 =
√

2∆Φ0
k0I0Leff

, where k0 is the wave vector, I0 is the on-axis irradiance and Leff is the effective

length of the sample [43]. In dual-beam mode, we use degenerate pump and probe at 900 nm,

in a collinear configuration with a 20:1 pump/probe ratio. The pump and probe are orthogonally

polarised using a λ/2 waveplate (λ/2), polarising beam-splitter (P-BS) and polariser (Pol1) before

the sample. An analyser polariser (Pol2) placed after the sample is rotated to achieve extinction

of the pump beam.
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Figure 5.1: Pump-probe integrated Z-scan set-up (PPZS). The source is Ti:sapphire tunable

laser capable of emitting from 690 to 1050 nm at a repetition rate of 80 MHz at ∼ 100 fs. The

laser has a variable high power attenuator on exit comprising of a half-waveplate (λ/2(780)) and a

Glan-Laser polariser (GP). The beam is directed by silver mirrors (M) into another half-waveplate

(λ/2(900)) and polarising beamsplitter (P-BP) to prepare the orthogonal pump (transmitted) and

probe (reflected) beams. Both beams are then directed through the dual-frequency chopper (Chp).

The pump is directed into a small static retroreflector (Refl-S), while the probe is directed through

a polariser (Pol1) and a large retroreflector (Refl-L) that is mounted on a translation stage that

allows for one beam to be delayed relative to another. Upon return, both beams are combined at a

pellicle beamsplitter (Pel) and guided to the Z-scan set-up. Both beams are then focused using an

achromatic doublet lens (ADL) and impinge upong the graphene on quartz sample (GoQ), followed

by another polariser (Pol2) which is oriented parallel to Pol1 for extinction of the pump beam.

The beam is then bisected in the far-field by an non-polarising beamsplitter (NP-BP) with the

reflected arm directed into the Open Aperture (OA) detector and the transmitted arm directed

through an adjustable aperture (AP) into the Closed Aperture (CA) detector. For all Z-scan

based measurements, single-beam or temporal, the Power Meter is utilised for data acquisition. In

pump-probe mode the chopper and Lock-in Amplifier are used for data acquisition.

5.3.2 Temporal evolution of n2,eff

The initial measurement performed using this set-up was a temporal cross-correlation to determine

the time constant τ1 of graphene, shown in Figure 5.2. The measurement reveals a τ1 relaxation
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time constant of about ∼113 fs. In general, a complete characterisation of the relaxation dynamics

requires the extraction of τ1 and τ2, but for the purposes of our study obtaining a second time

constant at longer time-scales is not necessary.

Figure 5.2: Temporal cross-correlation in graphene. Temporal correlation measurement on

graphene with a decay constant of τ1 ∼ 113 fs.

The temporal evolution of the nonlinearity is obtained used the dual-mode PPZS set-up. A single-

beam (pump) Z-scan measurement is performed to locate the peak and valley positions of the

sample. In order to locate the zero delay position of the probe, the sample (GoQ) is placed at the

peak position and the probe is scanned until a cross-correlation signal of the pump and probe pulses

is obtained, shown in Figure 5.3a. The FWHM of the signal is 150 fs, which gives a pulse duration

of 110 fs for the probe, considering a pulse duration of 102 fs for the pump. A similar scan is run at

the valley position and both time-resolved data sets are used to extract the differential peak-valley

transmittance, ∆Tpv(td) = ±
[

T (td,Zp)
TOA(td,Zp) −

T (td,Zv)
TOA(td,Zp)

]
, where Zp/v are the positions of the peak and

valley, respectively, td is the probe delay, and TOA is the OA transmittance for normalisation. The

sign of ∆Tpv is given by the sign of Zp − Zv. The pump power used for this measurement was

200 mW, equating to an intensity of ∼ 3.5 GW/cm2. The pump to probe power ratio was kept at

20:1. In general, the far-field aperture should only allow about 1% of light transmittance to isolate

the effect of wave front distortion due to phase modulation, however, due to the weak signal of

the probe the aperture is opened to allow 10% of transmittance with additional averaging at each

acquisition point.
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Figure 5.3: Pump-probe integrated Z-scan measurement. Time-resolved degenerate Z-scan

measurement of graphene. Since ∆Tpv is proportional to n2,eff , the plot follows the evolution of the

induced phase modulation in graphene. The effect peaks at zero time delay and relaxes at longer

timescales, showing some oscillatory behaviour as it relaxes. (Inset) Temporal cross correlation of

pump and probe pulses at peak position.

The temporal evolution of the nonlinearity is shown in Figure 5.3b. The effect peaks at zero probe

delay and relaxes on the time-scale of τ1, while at longer time scales, τ2, ∆Tpv shows no discernible

variation. The symmetric shape of the figure leads us to believe that in this measurement we

are simply observing the probe following the pump signals rather than unravelling the nonlinear

phenomena hidden at shorter time scales. This is also supported by the fact that the pulse duration

of the pump and probe is similar to the measured temporal cross-correlation extracted in Figure

5.2. Therefore, we can conclude that the relaxation dynamics contributing to the observation of

the nonlinear refraction are simply too fast to be measured by our laser pulses in this manner.

The variation of ∆TP−V or the induced phase shift ∆Φ seen in Figure 5.3 relates to the Gaussian

power distribution of the pump pulse which reaches its maximum value (i.e. ∼ 3.5 GW/cm2) at

the center peak of the pulse. Therefore, according to n2,eff =
√

2∆Φ0
k0I0Leff

, the n2,eff remains constant

relatively constant at a value of 1.12×10−8 cm2/W as the increasing ∆TP−V is simply balanced

by the increasing on-axis irradiance, I0. This measurement clearly shows that on the time scale

greater than the heating and cooling times, the probe follows the pump and Kerr nonlinearity is
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tunable and controllable over this time scale. The modulation is understood through the relation

n = n0 + ∆n, where ∆n = n2,effI, and the ∆n parameter varies while n2,eff remains constant.

For the purposes of all-optical switching the on/off time of the nonlinearity is controlled by the

pulse-duration and power of pulse. If the pulse-duration is longer than the relaxation times of the

nonlinearity, then the evolution of the observed nonlinearity simply follows the Gaussian power

distribution of the pulse. In this way through modulation of the ∆n term, by changing the pulse

properties, the switch can be controlled. However, there is saturation that takes place at relatively

high intensities, leading to a deviation between the pump power within the pulse and the observed

∆n.
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Chapter 6

Conclusions

Through the systematic measurement and analysis of the effect of the spectral and temporal prop-

erties of the pulse, we were able to gain a more fundamental understanding of the parameters

governing the observed nonlinear optical effect in graphene. In general, graphene shows the ability

to have its nonlinear behaviour be modulated in both magnitude and sign, somehow that is limited

in current silicon based photonics. Until now no study has been performed explicitly addressing

this point of contention. This sheds significant light on the widespread debate in the field regarding

the large variation in the n2,eff value for graphene due to varying experimental conditions and

sample preparation techniques.

The dependence of n2,eff on the exciting wavelength revealed a quadratic (n2,eff ∝ λ2) rela-

tionship both experimentally and theoretically. Through the pulse-duration dependent measure-

ment, we were able to confirm the theoretically predicted relationship between n2,eff and the

laser pulse-duration in the hundreds of femtosecond regime, with n2,eff growing larger with longer

pulse-duration. The time-resolved Z-scan measurement revealed that the heating and cooling dy-

namics within our graphene sample are too fast to be probed using ∼ 100 fs pulses using this

method. However, this method reaveals a practical application in all-optical ultrafast switching

of the nonlinearity, completely controlled by the pulse-duration and power of the impinging laser

pulse. Throughout all our experiments, the value for n2,eff remains positive.

For future experiments, the characterisation can be extended to include Fermi level modulation via

the electric field effect with the use of gated samples. Doping is a significant contributor to the

modulation of n2,eff in graphene, as discussed extensively in theory, and an experimental charac-

terisation would significantly contribute to the understanding of this nonlinearity. In addition to

that, provide a sample tunable parameter rather than source tunable parameters, which are harder

to control and can offer little variation. This should also be conducted with common substrate

materials as substrate interactions can prove significant to what is observed from graphene.

With this study we have gained a fundamental understanding of the underlying processes governing

the nonlinear optical phenomena and parameters to modulate the effect. In doing so we can

accurately form predictable models for the purposes of photonic device design.
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Appendix A

Mathematical Derivations

A.1 Gaussian Beam Equation (GBE)

The most fundamental description of waves in electromagnetics is that of a plane wave. A plane

wave is described as having wavefronts that are infinite parallel planes. The implications of this

are that in the transverse direction relative to propagation, there is no spatial variation and the

phase is constant across the surface of the planes. However, this simplistic wave model cannot be

used to describe a laser beam, where there is evolution in the transverse plane during propagation.

In order to derive an equation to describe such a wave, the usual wave equation must be modified

to include transverse variation. In this section the GBE will be explicitly derived starting from

Maxwell equations.

Table A.1: Maxwell Equations

Name Equation Interpretation

Gauss’ flux theorem ∇ ·E = ρ
ε (A.1) The electric flux leaving an enclosed vol-

ume is proportional to the charge inside.

Gauss’ law of magnetism ∇ ·B = 0 (A.2) The total magnetic flux through a closed

surface is zero because the net of the in-

ward and outward flux is zero as magnetic

poles always comes in pairs.

Faraday’s law of induction ∇×E = −∂B
∂t (A.3) A time-varying magnetic field will produce

a circulating electric field.

Ampère’s circuital law ∇×B = µ(J + ε∂E∂t ) (A.4) A time-varying electric field and/or a cur-

rent will produce a circulating magnetic

field.

Starting from Eq. (A.3), a cross product is applied to both sides. The result is expanded using the
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double cross product identity [∇× (∇×E) = ∇(∇ ·E)−∇2E], Eq. (A.1) and Eq. (A.4):

∇× (∇×E) = −δ(∇×B)

δt

∇
(ρ
ε

)
−∇2E =

δ(µ(J + ε δEδt ))

δt

Considering solutions in a source (J) and a charge (ρ) free region, those terms are set to zero. This

results in the wav equation that considers the spatial and temporal evolution of the electric field:

∇2E =
1

c2

δ2E

δt2
; c =

1
√
µε

(A.5)

where c is the speed of light and is related to the magnetic permeability (µ0) and the electrical

permittivity (ε0) in free space. In certain classes of physical problems, the solutions can be obtained

by considering time-independent behaviour. The time-independent form of the wave equation is

colloquially known as the Helmholtz equation, which can be obtained from the wave equation derived

above by applying separation of variables. We start by considering an arbitrary time and space

dependent wave function Ψ = (r, t) = A(r)T (t). This form can then be substituted back into Eq.

(A.5), and the spatial and temporal parts can be separated:

∇2A

A
=

1

c2

d2T

dt2

Examining this equation, we can see that any spatial variation on the left depends on the temporal

variation on the right, and vice versa. For this equation to be valid , both sides of the equation

must be equal to a separation constant:

∇2A

A
= −k2 and

1

c2

d2T

dt2
= −k2 (A.6)

where k is the wave vector and has the relation k=ωc with the angular frequency ω. The separation

constant is strategically chosen in this form to ease the formulation of solutions. The constant can

be substituted to obtain purely space and time dependent wave equations:

(∇2 + k2)A = 0 and
( d2

dt2
+ ω2

)
T = 0 (A.7)

Now that the time-independent wave equation (Helmholtz) has been found, the next step towards

obtaining a suitable wave equation is the application of the paraxial approximation. The term

paraxial is used because all of the light must travel nearly parallel to the z -axis (extremely low

divergence angle) in order for the beam to have a sufficiently slow z dependence. In order to resolve

the now varying transverse components of the wave, the electric field can be written in the form

of E(x, y, z) = Ψ(x, y)e−jkz, where Ψ(x, y) describes the transverse profile and the exponential
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denotes the direction of propagation. The importance of this step is to separate the fast-varying

exponential from the slow varying transverse component. The transverse function varies slowly,

controlling the diameter and strength of a laser beam as it propagates. Substituting this equation

into the Helmholtz equation and expanding yields:

( δ2

δx2
+

δ2

δy2
+

δ2

δz2
+ k2

)
Ψ(x, y, z)e−jkz = 0(δ2Ψ

δx2
+
δ2Ψ

δy2
+
δ2Ψ

δz2
− 2jk

δΨ

δz
− k2Ψ + k2Ψ + 1

)
e−jkz = 0

The paraxial approximation originates from wave analysis in ray optics. It is determined by con-

sidering these two inequalities:∣∣∣δ2Ψ

δz2

∣∣∣� 2k
∣∣∣δΨ
δz

∣∣∣ and
∣∣∣δ2Ψ

δz2

∣∣∣� ∣∣∣δ2Ψ

δx2

∣∣∣, ∣∣∣δ2Ψ

δy2

∣∣∣ (A.8)

The first inequality tells us that the variation of propagation is slow on the scale of the wavelength,

which is to say that the amplitude (Ψ) varies slowly with z. The second inequality tells us that

the variation of propagation is slow on the scale of the transverse extent of the wave, making the

wavefronts nearly perpendicular to the z -axis. Under these conditions, Eq. (A.12) simplifies to:

[
∇2
T − 2jk

δ

δz

]
Ψ(x, y, z) =

(1

r

δ

δr

(
r
δ

δr

)
− 2jk

δ

δz

)
Ψ(r, φ, z) = 0 (A.9)

The equation derived above provides us with the paraxial wave equation (PWE) in both Cartesian

and cylindrical coordinates. There is a distinction between the transverse component denoted by

the subscript (∇T ), which includes the x,y components with z being considered the direction of

propagation. The most important result of this derivation is that the solution to this equation

are the Gaussian beam modes. Due to the geometry of Gaussian beams it is helpful to tackle the

problem in cylindrical coordinates. With this form we can now insert a trial solution of the form:

Ψ0 = exp
[
− j
(
P (z) +

kr2

2q(z)

)]
(A.10)

where the subscript (Ψ0) denotes the fundamental Gaussian mode (TEM00). Inserting this trial
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solution into the PWE gives:

(1

r

δ

δr

(
r
δ

δr

)
− 2jk

δ

δz

)
exp

[
− j(P (z) +

kr2

2q(z)

)]
= 0(1

r

δ

δr

(
− j kr

2

q(z)

)
− 2k

dP (z)

dz
+
k2r2

q2(z)

dq(z)

dz

)
Ψ0 = 0(

− j 2k

q(z)
− j kr

q(z)

δ

δr
− 2k

dP (z)

dz
+
k2r2

q2(z)

dq(z)

dz

)
Ψ0 = 0

− k
2r2

q2(z)
− j 2k

q(z)
− 2k

dP (z)

dz
+
k2r2

q2(z)

dq(z)

dz
= 0

k2

q(z)

(dq(z)
dz
− 1
)
r2 − 2k

(dP (z)

dz
+

j

q(z)

)
r = 0 (A.11)

Since the equation must hold for all r, the terms can be separated by the coefficients r2 and r, and

two differential equations are obtained:

dq(z)

dz
= 1 and

dP (z)

dz
= − j

q(z)
(A.12)

The solution to the first differential is: q(z) = q0 + z, where q0 is the constant of integration and

is the value of q at z = 0. However, q0 cannot be real or the beam would have infinite energy,

therefore, the equation can be rewritten with a new imaginary constant as:

q(z) = z + jzR (A.13)

where zR is the Rayleigh length, to be elaborated upon. The parameter q(z) is called the complex

radius of curvature, and can be rewritten with the real and complex values separated:

1

q(z)
=

1

z + jzR
=

z

z2 + z2
R

− j zR
z2 + z2

R

(A.14)

Now the second differential can be solved as:

dP (z)

dz
= − j

q(z)
= − j

z + zR

jP (z) =

∫ z

0

dz

z + jzR

jP (z) = ln
[
1− j

( z
zR

)]
exp(−jP (z)) = exp

[
− ln

(
1− j

( z
zR

))]
exp(−jP (z)) =

[
1− j

( z
zR

)]−1

exp(−jP (z)) =
[
1 +

( z
zR

)2]−1
2

exp
[
j tan−1

( z
zR

)]
(A.15)
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The final form shown in Eq. (A.15) has the amplitude and phase separated. Given these two

solutions, we first define several parameters relevant to the Gaussian beam to ease the derivation

and understanding of the final GBE.

w0 =

√
λ0zR
nπ

(A.16)

w(z) = w0

√
1 +

(
z

zR

)2

(A.17)

R(z) = z

[
1 +

(
z

zR

)2]
(A.18)

φ(z) = tan−1

(
z

zR

)
(A.19)

Eq. (A.16) defines the beam waist, w0, that is the radius of the beam at focus. Following this the

propagating spot size, w(z), is defined in Eq. (A.17). Eq. (A.18) defines the radius of curvature,

R(z), that is the radius of the propagating wavefronts, where R(z) is infinite at focus (z=0).

Finally, Eq. (A.19) defines the Guoy phase shift, φ(z), which accounts for the phase changes during

propagation. Considering the solutions found in Eq. (A.14) and Eq. (A.15), and the parameters

defined above, we can finally write out the well known Gaussian beam equation:

E(r, z, t) = E0(t)

[
w0

w(z)
exp

(
− r2

w2(z)

)
exp

(
− j kr2

2R(z)

)
exp

(
− j
(
kz − φ(z)

))]
(A.20)

With the fundamental mode GBE now derived, we can briefly discuss the important physical

implications of the parameters previously defined. It is apparent that in this form the GBE is

expanded explicitly to show the spatial part, while the temporal part is contained within the

leading term, E0(t). This leading term comes into play when focusing on the temporal properties

of the beam. To aid this, a schematic representation of a Gaussian beam is provided in A.1 with

the relevant parameters labelled. The Rayleigh length (zR) in combination with the wavelength is

sufficient to determine the Gaussian beam completely. It is given by:

zR =
πnw2

0

λ0
(A.21)

The physical meaning of this parameter is evident when z=zR is inserted in Eq. (A.17), and the

spot size is seen to be
√

2w0. This tells us that at zR around the focal plane, the Gaussian beam

is expanded by a factor
√

2. It is seen as a measure of the collimation of the beam. The longer

the Rayleigh length is, the lower the divergence angle (Θ). From Eq. (A.21) it is also evident

that the shorter zR, the smaller the beam waist. The radius of curvature (R(z)) is an essential

component when describing spherical waves. As the analysis of the Z-scan technique depends on
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Figure A.1: Schematic illustration of a Gaussian beam [1]

the distortion of wavefronts, it becomes important to be able to describe these wavefronts. The

behaviour of R(z) can be summed up by considering three different regions: (1) R(z) =∞ near the

waist, the wavefront is perpendicular to the optic axis. (2) R(z) = 2zR at z = zR, the wave is like

coming from a point source at a distance zR behind the origin. (3) R(z) = z in the far-field, the

wave is like generated by a point source at the origin and is follows a linear dependence. The Guoy

phase shift (φ(z)) is the imaginary component of the beam equation that accounts for the phase

modulation as the beam propagates. This phase is what is tracked in the thin film approximation

for the Z-scan technique. The wave experiences an intrinsic π phase shift as z is scanned through

the confocal parameter. As the beam propagates through a medium, it accumulates an additional

phase during propagation, especially when propagating through a medium.
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A.2 Anharmonic Oscillator Model

We start by considering the anharmonic oscillator model which allows us to apply classical concepts

of a driven damped mechanical oscillator to the interaction of an electromagnetic field to a dielectric

material. This model will first be used to derive the linear response (harmonic oscillator) and then

will be extended to the nonlinear regime by considering an anharmonic potential which will account

for higher order processes.Unless we indulge in particle physics, the building blocks of matter are

atoms. Each atom consists of a positively charged nucleus comprised of neutrons and protons, and

negatively charged electrons. The atom displays charge neutrality with the protons equalling the

number of electrons. The energy equilibrium resulting from the balancing of the coulombic forces

endows the dielectric material with its phase stability. In the late nineteenth century, only armed

with this knowledge of particle physics and classical mechanics, Lorentz [64] saw the problem of

atom-field interactions in terms of a spring with one large mass (nucleus) connected to a smaller

mass (the electron). Upon the impingement of an external electromagnetic field, the field couples

to the spring causing a mechanical displacement from equilibrium. This displacement of an electron

produces a dipole moment, d = ex, for the atom and an atomic polarisation, p = -ex, with the

direction of the dipole moment oriented from negative (-e) to positive charge (e). Any system

out of equillibrium will work to return to equillibrium, therefore, there are internal restoring forces

that are vectorally opposite but equal in magnitude to oppose the external field. With a qualitative

picture in mind about the process, we can start to formulate a mathematical framework to describe

this process. It is appropriate at this point to list a few important equations and quantities which

will be elaborated upon immediately after [65]:

Frestoring(x) = −mω2
0x−max2 −mbx3 + · · · (A.22)

U(x) =
1

2
mω2

0x2 +
1

3
max3 +

1

4
mbx4 + · · · (A.23)

Ẽ(t) = E1(ω1)e−jω1t + E2(ω2)e−jω2t + E3(ω3)e−jω3t + · · · =
∑
n

E(ωn)e−jωnt (A.24)

d2x

dt2
+ γ

dx

dt
+ ω2

0x + ax2 + bx3 + · · · = − e

m
E (A.25)

P(E) = ε0(χ(1)E + χ(2)EE + χ(3)EEE + · · · ) (A.26)

Eq. (A.22) provides an expression for the restoring forces of the system where ω0 is the natural

resonance frequency of the oscillator, m is the mass of the electron, and a(b) are the coefficients

that characterise the strengths of their respective term. Eq. (A.23) gives us the expression for the

anharmonic potential. This expression represents the true potential experienced by the oscillator

and is obtained by performing an integration on Eq. (A.22). The equation of motion for the

system is represented by Eq (A.25) where the external driving force of the electric field (E) and a

damping term led by the damping coefficient (γ) are included. The form of the driving electric field

73



is provided in Eq. (A.24), where the series is a summation over frequency ωn. The introduction

of multiple frequencies is justified in nonlinear processes such as harmonic generation, four wave

mixing or down-conversion, which are all multi-photon processes. In general, a perturbation method

approach is taken in solving the nonlinear differential shown in Eq. (A.25). This is to say that the

contribution of the higher order terms are small compared to the linear term (ω2
0x � ax2 � bx3)

and are treated as such. In accordance with this, the trial solution has the form of x = λx(1) +

λ2x(2) + λ3x(3) + · · · , where λ characterises the strength of the perturbation. Once we solve

the differential we can obtain expressions for the electric susceptibility (χ) which are seen in Eq.

(A.26) for the polarisation vector (P). The polarisation vector is the total polarisation per unit

volume and expresses the density of induced or permanent electric dipole moments in a dielectric

material, thereby providing us with a description of the material’s response to an external electric

field. The material assumption here is that it is isotropic, that is to say that any parameter and

their properties are independent of direction. The expansion coefficients, χ(i), are the i -th order

electric susceptibilities. In addition to that, it is evident that this is a power series expansion in the

electric field. The goal of the following subsections will be to derive expressions for the χ(1) and χ(3)

susceptibilities. From the susceptibility, one can derive expressions for the dielectric constant, index

of refraction and optical conductivity, making it fundamental to describing optical phenomena in

materials. The derivations shown here are adapted from Nonlinear Optics by Robert Boyd [66].

A.2.1 Linear

The linear response of the system is obtained by considering the behaviour of the harmonic oscillator

or simply considering the linear terms of equations 1.1-5. The relevant equations are as follows:

d2x(t)

dt2
+ γ

dx(t)

dt
+ ω2

0x(t) = − e

m
E(t) (A.27)

x(t) = λx(1)(t) = λx(1)(ω1)e−jωmt + c.c. (A.28)

E(t) = E1e
−jωmt + c.c. (A.29)

P(E) = ε0χ
(1)E (A.30)

We begin by taking the trial solution (A.28) and electric field (A.29) and inserting them into the

equation of motion (A.27). By carrying out the differentiation, the following expression is obtained:

x(1)(ωm) =
eE(ωm)

m(ω2 + jγωm − ω2
0)

(A.31)

With an expression for charge displacement, x(1)(ωm), we can define the first order polarisation

vector P(1) as follows:

P(1) = −Nex(1)(ωm) =
−Ne2

m

1

(ω2
m − ω2

0) + jγωm
E(ωm) = ε0χ

(1)(ωm)E(ωm) (A.32)
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where N is the average number of identical individual dipole moments contributing to the polari-

sation per unit volume, ε0 is the permittivity of vacuum, and χ(1) is the electric susceptibility. It

can be easily followed that the first order electric susceptibility is:

χ(1)(ωm) =
Ne2

mε0

1

((ω2
0 − ω2

m)− jγωm)
=
Ne2

mε0

1

D(ωm)
(A.33)

where we have defined a complex denominator function, D(ωm), for mathematical convenience.

The susceptibility function can be separated into its real and imaginary components as such:

χ(1) = χ
(1)
Re − jχ

(1)
Im

χ
(1)
Re(ωm) =

ω2
p(ω

2
0 − ω2

m)

(ω2
0 − ω2

m)2 + ω2
mγ

2
(A.34)

χ
(1)
Im(ωm) =

ω2
pωmγ

(ω2
0 − ω2

m)2 + ω2
mγ

2
(A.35)

It is often necessary to separate the real and imaginary components of these quantities because in

doing so one can appreciate the isolated effects of loss mechanisms as gleamed from the imaginary

component. We can now define the expression for the complex linear refractive index in terms of

susceptibility:

ñ = n0 − jκ

ñ =

√
1 + χ(1)

n0(ω) =
1√
2

√√√√(
1 + χ

(1)
Re(ω1)

)
+

√(
1 + χ

(1)
Re(ω1)

)2

+ χ
(1)2
Im (ω1) (A.36)

κ(ω) =
1√
2

√√√√−(1 + χ
(1)
Re(ω1)

)
+

√(
1 + χ

(1)
Re(ω1)

)2

+ χ
(1)2
Im (ω1) (A.37)

The real part (n) of ñ is the linear refractive index, while the complex part (κ) is the extinction

coefficient which relates to the absorption coefficient of the material. In performing this derivation,

we have related the macroscopic quantity of refractive index to microscopic atomic polarisations as

induced by an impinging field. This derivation can be further pursued under the Drude model to

obtain complex conductivities but that is beyond the scope of this work.

A.2.2 Nonlinear

Having derived a concise framework for the linear regime, we can now consider the higher or-

der processes. As mentioned previously, the origin of optical/electronic properties is based in the

material’s crystallographic properties. When considering the second (χ(2)) and third (χ(3)) order
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susceptibilities, it is seen that every material exhibits a third order susceptibility, albeit the con-

tribution of χ(3) is very small. However, for a material to exhibit a second order susceptibility, it

must have non-centrosymmetric inversion symmetry. In this case, the χ(3) term still exists, but is

overshadowed by the large χ(2) term. By default, materials that have a centrosymmetric inversion

symmetry have no contribution from the even terms in susceptibility. The second and third order

processes are colloquially known as the linear and quadratic electro-optic effect. The use of this

verbiage will become clear by the end of this derivation. It would follow that after deriving the

relation for χ(1), the relation for χ(2) will be derived. However, the nonlinearity of interest derives

from χ(3), therefore, we will jump directly into deriving the third order susceptibility, however, the

framework for solving for χ(2) follows the same process.

We begin again by laying out the relevant equations as follows:

d2x(t)

dt2
+ γ

dx(t)

dt
+ ω2

0x(t) + bx3(t) = − e

m
E(t) (A.38)

x(t) = λx(1) + λ2x(2) + λ3x(3) + · · · (A.39)

E(t) = E1e
−jω1t + E2e

−jω2t + E3e
−jω3t + c.c. (A.40)

P(E) = ε0(χ(1) + χ(3)EE)E (A.41)

In similar fashion the trial solution (A.39) is inserted into the nonlinear equation of motion (A.38).

By requiring that the terms proportional to λn vanishing separately for each value of n, we obtain

separate differential equations for each order in x(1,2,3):

d2x(1)(t)

dt2
+ γ

dx(1)(t)

dt
+ ω2

0x(1)(t) = − e

m
E(t) (A.42)

d2x(2)(t)

dt2
+ γ

dx(2)(t)

dt
+ ω2

0x(2)(t) = 0 (A.43)

d2x(3)(t)

dt2
+ γ

dx(3)(t)

dt
+ ω2

0x(3)(t)− b(x(1) · x(1))x(1) = 0 (A.44)

We can easily recognise that Eq. (A.42) is the equation of motion for the linear regime and the

solution found in the previous subsection still applies. Considering Eq. (A.43), we know that in this

centrosymmetric media, the second order response is non-existent. Mathematically, the equation is

damped but not driven, therefore, the steady-state solution is x(2) = 0. To calculate the third-order

response, a slight substitution has been made for ease of derivation where x(3) = (x(1) · x(1))x(1).

By inserting the expression found in the linear regime for first order charge displacement (A.31)

into Eq. (A.44), the following expression is obtained:

d2x(3)(t)

dt2
+ γ

dx(3)(t)

dt
+ ω2

0x(3)(t) = −
∑
mnp

be3[E(ωm) ·E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)
× e−j(ωm+ωn+ωp)t (A.45)
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The summation over m, n and p shows that the equation contains many different frequencies and

the complex denominator function, D(ω), is the same as defined previously. For ease of derivation,

we denote one of the frequencies as ωq = ωm + ωn + ωp. Now the solution of Eq. (A.45) can be

written in the form:

x(3)(t) =
∑
q

x(3)(ωq)e
−jωqt (A.46)

Substituting Eq. (A.46) into Eq. (A.45), we find:

((ω2
0 − ω2

q )− jγωq)x(3)(ωq) = −
∑
mnp

be3[E(ωm) ·E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)

x(3)(ωq) = −
∑
mnp

be3[E(ωm) ·E(ωn)]E(ωp)

m3D(ωq)D(ωm)D(ωn)D(ωp)
(A.47)

With this the third order polarisation term and susceptibility can be defined:

P(3) = −Nex(3)(ωq) =
∑
mnp

−Nbe4

m3

E(ωm)E(ωn)E(ωp)

D(ωq)D(ωm)D(ωn)D(ωp)

P(3) =
∑
mnp

ε0χ
(3)(ωq;ωm, ωn, ωp)E(ωm)E(ωn)E(ωp) (A.48)

χ(3)(ωq;ωm, ωn, ωp) =
−Nbe4

m3ε0

1

D(ωq)D(ωm)D(ωn)D(ωp)
(A.49)

We have now obtained a concise expression for the third order susceptibility. It is clear that the

third-order nonlinearity has some form of a four-wave interaction. This expression is sufficient

in describing the nonlinear polarisation contribution in this regime but at visual inspection gives

minimum phenomenological understanding of the expression. In similar treatment as the linear

regime, we can seperate the real and imaginary components through tedious algebra, however,

we can perform a simplification to obtain a real expression usng an empirical rule introduced

by Miller [67] which allows us to estimate the magnitude of the susceptibility term under a few

assumptions. The atomic number (N) is nearly constant (∼1022 cm−3) for all condensed matter,

and the parameters m and e are both fundamental constants. We can estimate the size of nonlinear

coefficient b by considering that the linear and nonlinear contributions to the restoring force given

by Eq. (A.22) will become comparable to the atomic dimension d, which says mω2
0d = mbd3,

implying b =
ω2

0
d2 . Considering the nonresonant excitation case approximating D(ω) as ω2

0 and

N ∼ 1/d3, we can obtain the following simplified expression:

χ(3) ' Nbe4

ε0m3ω8
0

=
e4

ε0m3ω6
0d

5
(A.50)
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Having treated the linear and nonlinear terms in isolation, we can now discuss effective behaviour

of the material when the third-order nonlinearity is probed. Considering the total polarisation

vector for a third-order nonlinearity given in Eq. (A.41), the term in the bracket can be isolated

and defined as the effective susceptibility as thus:

χeff = χ(1) + χ(3)
∣∣E(ω)

∣∣2 (A.51)

Using a similar relationship shown for the linear regime, the real part of the total refractive index

is derived as such:

ñ =
√

1 + χeff =

√
1 + χ(1) + χ(3)

∣∣E(ω)
∣∣2

ñ =

√
n2

0 + χ(3)
∣∣E(ω)

∣∣2
ñ = n0

√
1 +

χ(3)
∣∣E(ω)

∣∣2
n2

0

(A.52)

In general, the latter term under the square root is much smaller than 1. Using the Taylor series

expansion, the effective refractive index can be rewritten as:

ñ ≈ n0 +
χ(3)

2n0

∣∣E(ω)
∣∣2

ñ = n0 + ∆n = n0 + n2I (A.53)

where n0 is the previously derived linear refractive index (A.36), ∆n is the third-order nonlin-

ear susceptibility-induced refractive index change, and n2 is the nonlinear refraction coefficient.

Here we have substituted
∣∣E(ω)

∣∣2 by I, as they are proportional to each other. More specifically,∣∣E(ω)
∣∣2 = 1

ε0cn0
I. A qualitative analysis of Eq. (A.53) tells us that there is a linear dependence on

the intensity of the impinging field on the contribution of nonlinear refraction to the cumulative

refractive behaviour. As mentioned previously, this effect is colloquially known as the quadratic

electro-optic effect, as the nonlinear effect is proportional to the square of the electric field.
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A.3 Nonlinear Refraction

In this section we will derive the general theory that the Z-scan measurement is based on and

how far-field transmittanc is used to extract the effects of nonlinear refraction. The derivation is

adapted from Sheik-bahae’s first two articles about this technique [42] [51]. The analysis will follow

the changes in the incident beam as it enters and propagates the sample, and then the free space

propagation of this modified beam to the aperture and detector plane. Before delving into the

mathematics it is

Gaussian beam

The inception of this analysis is at well-known Gaussian beam equation, which has been derived in

Appendix A.1. As we will make use of the resulting equation we present it here for easy reference:

E(r, z, t) = E0(t)

[
w0

w(z)
exp

(
− r2

w2(z)
− j kr2

2R(z)

)
exp

(
− jφ(z, t)

)]
(A.54)

where z is the distance along the propagation axis, w(z) = w0

√
1 + z2

z2
R

is the beam radius, w0 is

the beam waist (3.5, A.16), R(z) = z

(
1+ z2

z2
R

)
is the radius of curvature of the wavefront, zR is the

Rayleigh length (3.6), and λ and k are the usual laser wavelength and wave vector, respectively.

The leading term E0(t) is the temporal envelope of the laser pulse. Since we are after the induced

phase variations from the samples, we focus on the phase term, φ. However, the term is a function

of only z and not r, which tells us that radial phase variations are considered to be constant in this

term. For our purposes, we are probing the radial phase variations, therefore, the phase function

φ(z, t) will be omitted but a new phase term, ∆φ(r), will be used.

Induced phase shift

The total refraction phenomenon in the sample will include the linear(n0) and nonlinear term (n2)

as shown in Eq. (A.53): ñ = n0 + ∆n = n0 + n2I. For the analysis, a thin sample approximation

is utilised. The sample can be considered thin if the sample length (L) does not induce spatial

variations in the beam diameter either due to diffraction or nonlinear refraction. This allows for the

assumption that the interaction between the sample and the laser pulse occurs only at a single point

and not over the entire interaction length of the sample. This condition is satisfied if the following

two inequalities are satisfied: L � zR for diffraction, and L � zR
∆φ(0) for nonlinear refraction. In

general, ∆φ(0) is very small and less restrictive condition for diffraction, L < zR, proves sufficient

as demostrated through experiment [51]. With this assumption and a slowly-varying envelope

approximation (SVEA), where the spatial and temporal amplitudes change slowly as compared to

wavelength, the phase and the amplitude of the electric field can be described by the following pair

of differential equations:
d∆φ(r, z, t, L)

dz′
= ∆n(I)k (A.55)
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dI

dz′
= −α(I)I (A.56)

where z′ is the propagation depth in the sample and α(I) includes the linear and nonlinear ab-

sorption terms. These equations govern the propagation of a Gaussian beam through the sample.

Ignoring absorptive effects for now, and considering only a third-order nonlinearity Eq. (A.55) can

be solved and an expression for the phase shift at the exit surface of the sample is:

∆φ(r, z, t, L) = ∆φ0(z, t, L) exp

(
− 2r2

w2(z)

)

∆φ0(z, t, L) =
∆Φ0(t, L)

1 + z2

z2
R

∆Φ0(t, L) = k∆n(t)Leff (A.57)

where ∆Φ0(t) is the on-axis phase shift at the focal plane and is define above, Leff is the effective

interaction length of the sample defined as Leff = 1−e−αL
α , α is the linear absorption coefficient,

and ∆n(t) is defined by n2I00(t) where I0(t) is the on-axis irradiance . We can now rewrite the

equation for the Gaussian beam at the exit surface of the sample by including the induced phase

shift:

Ee(r, z, t) = E(r, z, t)e
−αL

2 ej∆φ(r,z,t,L) (A.58)

Propagation through free space

By using the complex electric field exiting the sample (A.58), the far-field pattern of the beam at

the aperture plane can be determined. By using a Gaussian Decomposition (GD) procedure as done

by Weaire et al. [68] and also by Sheik-Bahae et al. [51], we can obtain the far-field pattern. The

basic idea behind GD is to use a basis set of Gaussian beams to construct the desired optical field,

through individual propagation of the beams (m) and then coherently resumming the individual

beam. This motivation for following such a procedure was the increased complexity in mathematics

when an optical field encountered a surface [69]. Gaussian beams are the choice function for the

implementation of this method because the Fourier transform of a Gaussian function is another

Gaussian function, so the functional form of the Gaussian beam does not change during propagation.

In comparison, a plane wave changes to an Airy function when propagated to the far-field. If you

start with a collection of Gaussian beams, you will finish with a collection of Gaussian beams [70].

The electric field at the exit plane is decomposed into a summation of Gaussian beams through a

Taylor series expansion of the nonlinear phase term. Since, only small phase changes are considered,

only the first few terms of the series need to be considered:

ej∆φ(r,z,t) =
∞∑
m=0

[j∆φ0(z, t)]m

m!
e−2mr2/w2(z) (A.59)
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By including the effects of propagation (A.59) to the initial beam curvature (A.54), we obtain the

resultant field pattern (Ea):

Ea(r, t) = E(r = 0, z, t)e
−αL

2

∞∑
m=0

[j∆φ0(z, t)]m

m!

wm0

wm
exp

(
− r2

w2
m(z)

− j kr2

2Rm(z)
+ jθm

)
(A.60)

By denoting d as the propagation distance from the exit surface to the aperture plane and defining

g = 1 + d
R(z) , the Gaussian beam parameters for m individual beams can be defined:

w2
m0 =

w2(z)

2m+ 1
(A.61)

w2
m = w2

m0

[
g2 +

d2

d2
m

]
(A.62)

Rm = d

[
1− g

g2 + d2/d2
m

]−1

(A.63)

θm = tan−1

[
d/dm
g

]
(A.64)

dm =
kw2

m0

2
(A.65)

Transmittance through aperture

With a form for the optical field function which includes the a sample induced phase shift and

propagation to the aperture plane, the transmitted power through the aperture can be obtained by

spatially integrating Eq. (A.60) from r = 0 to r = ra, where ra is the radius of the aperture:

PT (∆Φ0(t)) = cε0n0π

∫ ra

0

∣∣Ea(r, t)∣∣2rdr (A.66)

Including the temporal variation of the pulse, the normalised Z-scan profile can be related to the

transmitted power as:

T (z) =

∫∞
−∞ PT (∆Φ0(t))dt

S
∫∞
−∞ Pi(t)dt

(A.67)

where Pi(t) = πw2
0I0(t)/2 is the instantaneous input power within the sample, S = 1−exp

(
−2r2

a/w
2
a

)
is the linear transmittance through the aperture, and wa is the radius of the beam at the aperture

plane. Let us first consider a steady state result which implies an instantaneous nonlinearity and

a temporally square pulse, which is equivalent to continuous wave (CW) source. Considering only

a cubic nonlinearity and the assumption of a small phase change (|∆Φ0| � 1), only the first two

terms in Eq.(A.60) need to be retained. Following these simplifications and making use of the
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relations (A.61 -A.65), the Z-scan transmittance (A.67) can be rewritten as:

T (z,∆Φ0) =

∣∣Ea(z, r = 0,∆φ0)
∣∣2∣∣Ea(z, r = 0,∆φ0 = 0)
∣∣2

T (z,∆Φ0) =

∣∣(g + jd/d0)−1 + j∆φ0(g + jd/d1)−1
∣∣2∣∣(g + jd/d0)−1

∣∣2 (A.68)

Using the far-field condition d � zR, we can simplify the above equation to gain a geometry-

independent normalised transmittance as:

T (z,∆Φ0) ' 1− 4∆Φ0x

(x2 + 9)(x2 + 1)
(A.69)

where x = z/zR. This equation can be fit to normalised Z-scan data to obtain a best fit value

for ∆Φ0. This expression can be further simplified, by considering the normalised peak-valley

separation, ∆Tp−v. By differentiating Eq. (A.69) by z (dT (z,∆Φ0)/dz = 0), the following relations

are obtained:

xp,v = ±

√√
52− 5

3
' ±0.858 (A.70)

∆Zp−v = ±1.7z0 (A.71)

∆Tp−v =
8|xp,v|

(x2
p,v + 9)(x2

p,v + 1)
∆Φ0 = 0.406∆Φ0 (A.72)

For a small |∆Φ0|, the peak and valley occur a distance of ±0.858 around the focus (A.70, A.71).

In order to simplify the fitting process, a simple algebraic relation (A.72) is found. Numerical

calculations show that this relation is accurate to within 0.5% for |∆Φ0 ≤ π|. To include the effect

of a finite aperture we can multiply Eq. (A.72) by (1 − S)0.25, where S is the previously defined

linear transmittance through the aperture.

Transient solution

The steady-state results can be extended to include transient effects induced by pulsed radiation

by using the time-averaged index change 〈∆n(t)〉:

〈∆n(t)〉 =

∫∞
−∞∆n0(t)I0(t)dt∫∞
−∞ I0(t)dt

(A.73)

With a nonlinearity having an instantaneous response and decay times relative to the pulsewidth

of the laser, for a temporally Gaussian pulse the time averaged index change and phase shift are:

〈∆n(t)〉 = ∆n/
√

2
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〈∆Φ0(t)〉 = ∆Φ0

√
2 (A.74)

where ∆n now represents the peak-on-axis index change at focus and ∆Φ0 = kn2,effI0(t)Leff . The√
2 is an averaging factor for the instantaneous Kerr nonlinearity for a Gaussian pulse. Now the

nonlinear index of refraction can be determined via a simple substitution:

n2,eff =

√
2∆Φ0

k0I0Leff
(A.75)

Eq. (A.75) provides a simplistic expression for the n2 value which can be extracted from the Z-scan

data. Most importantly it accounts for the temporal effects when the pulse width of the source

becomes comparable to the duration of the nonlinearity or simply the relaxation coefficient.

Critical Power

We will derive an expression for the critical power required for self-refraction to occur and dominate

diffraction. The following discussion is taken from two different texts, namely ”Nonlinear Optics:

Theory, Numercal Modeling, and Applications by Banerjee [8] and Laser Physics by Milonni and

Eberly [71].

The wave equation (A.5) for the electric field (E = E0e
−jωt) is derived in Appendix A.1. By

substituting Eq. (A.53) into the equation to account for refraction, approximating n2 � n0, we

obtain:

∇2E− n2

c2

δ2E

δt2
≈ ∇2E− 1

c2
(n2

0 + 2n0n2E
2)
δ2E

δt2
= 0 (A.76)

Invoking the paraxial approximation as done in the derivation of the Gaussian Beam equation (A.1)

and averaging over an optical period results in:

∇2
TE0 + 2jk

δE0

δz
+
k2n2

n0

∣∣E0

∣∣2E0 = 0 (A.77)

where k = n0ω/c is the usual wave vector and ∇2
T is the transverse Laplacian. The transverse term

accounts for changes in the beam perpendicular to the propagation axis, thus encompassing the

effects of diffraction. Due to the term accounting for transverse changes, the term is dependent on

size of the beam or the cross section. By denoting the cross section radius as a0, we can simplify the

term as: ∇2
TE0 ∼ a−2

0 E0. The k2n2
n0

∣∣E0

∣∣2E0 contains the nonlinear refraction term and describes the

self-refraction in the sample. It follows that in order for nonlinear refraction to dominate diffraction,

this term must be comparable to the transverse term: k2n2
n0

∣∣E0

∣∣2E0 ∼ a−2
0 E0, which simplifies to

a2
0

∣∣E0

∣∣2 ∼ n0
k2n2

.

The beam intensity I is proportional to the square of the electric field (
∣∣E0

∣∣2) via the relation

I = (n0cε0/2)
∣∣E0

∣∣2. Intensity is simply power per unit area (W/cm2), therefore, to obtain a critical

power the critical intensity must be multiplied by the cross section of the beam as follows:

Pcr ∼ (πa2
0)I =

πn0cε0
2

a2
0

∣∣E0

∣∣2
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Pcr =
πn0cε0

2

n0

k2n2

Pcr =
πn2

0cε0
2k2n2

Pcr =
cε0λ

2

8πn2
(A.78)

From this expression it is seen that the beam power must exceed this threshold, not the intensity,

for self-refraction to occur. Even if the beam is focused tighter, self-refraction will not occur as

diffraction will also increase with a reduction in beam diameter.
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Table B.1: Catalog of optical components and controllers used in experimental set-ups

Identifier Optical
Component

Manufacturer/
Part (Number)

Notes

Z-scan experimental set-up [Figure 3.2]

Modelocked Ti:Sapphire
Tunable Laser

Coherent
Chameleon Vision S

λ = 690 - 1040 nm
τpulse = 75 fs
f = 80 MHz
M2 < 1.1

HWP Zero-Order Half-Wave Plate Thorlabs
WPH05M-780 [72]

Antireflection coating: 780 nm

RM Rotation Mount Thorlabs
RSP1X15 [73]

3600 continuous or 150 indexed ro-
tation

GLP Glan-Laser Calcite Polarizer Thorlabs
GL10-B [74]

Clear Aperture: 10 mm
Antireflection coating: 650-1050
nm

M Protected Silver Mirror Thorlabs
PF10-03-P01 [75]

-

PCX N-BK7 Plano-Convex Lens Thorlabs
LA1509-B-ML [76]

Focal length = 100.0 mm
Antireflection coating: 650-1050
nm

GoQ Graphene on Quartz sub-
strate

ACS Material
CVQZ1011 [77]

CVD Graphene grown on copper,
transferred onto substrate

Stage Motorised Translation Stage Thorlabs
PT1-Z8 [78]

Travel range: 25 mm
Resolution: 50 nm

NP-BS Cube-Mounted, Non-
Polarizing, 50:50 Beamsplit-
ter Cube

Thorlabs
CCM1-BS014/M [79]

Antireflection coating: 700-1100
nm

ND Neutral Density Filter Thorlabs
ND01A [80]

Optical Density = 0.1
(T = 79%)

BCX N-BK7 Bi-Convex Lens Thorlabs
LB1676-B-ML [81]

Focal length = 100.0 mm
Antireflection coating: 650-1050
nm

AP Precision Pinhole Thorlabs
P500S [82]

Diameter = 500±10 µm

CA
OA

Germanium Detector Newport
918D-IR-OD3R [83]

Spectral range: 780-1800 nm
OD3 Attenuator
Sensor size: 3 mm

- Newport Benchtop Optical
Power and Energy Meter

Newport
2936-C [84]

Dual Channel
USB interface
Sampling Rate: 250 kHz

- Beam Profiler Thorlabs
2936-C [52]

Dual scanning slit
Min beam diameter: 2.5 µm
Max beam diameter: 9 mm
13.5% clip width

- T-Cube DC Servo Motor
Controller

Thorlabs
TDC001 [85]

-
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Identifier Optical
Component

Manufacturer/
Part (Number)

Notes

Prism-pair pulse stretching experimental set-up [Figure 4.1]

PSM N-SF11 Equilateral Disper-
sive Prism

Thorlabs
PS853 [86]

25 mm

GblMt Ultima Gimbal Prism
Mount, 1 in., 100 TPI
Adjustment Screws

Newport
UGP-1 [87]

-

POM Pick-off mirror (D-shaped
mirror and mount)

Thorlabs
PFD10-03-P01 [88]
KM100D [89]

-

HRM 1”x1” Hollow Roof Prism
Mirror

Thorlabs
HRS1015-P01 [90]

-

Pump-probe experimental set-up [Figure 5.1]

λ/2(900) 1” Achromatic Half-Wave
Plate

Thorlabs
AHWP10M-980 [91]

SM1-Threaded Mount, 690 - 1200
nm

P-BP Polarising Beamsplitter
Cube

Thorlabs
CCM1-PBS253/M
[92]

30 mm Cage Cube-Mounted

Chp Optical Chopper - -

Pol1/2 1/2” Mounted VIS Linear
Polariser

Thorlabs
LPVIS050-MP2 [93]

-

Pel 1” Pellicle Beamplitter Thorlabs
BP145B3 [94]

Coated for 45:55 (R:T) Split Ratio
for 1-2 um

Refl-L Broadband Hollow Retrore-
flector

Newport
UBBR2.5-5S [95]

63.5 mm, 5 arc sec parallelism, 450-
10,000 nm

Refl-S Broadband Hollow Retrore-
flector

Newport
UBBR1-2S [96]

1.0 in, 2 arc sec parallelism, 450-
10,000 nm
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