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Abstract 

Deep Learning is one of the fastest growing research topics in process systems 

engineering due to the ability of deep learning models to represent and predict non-linear 

behavior in many applications. However, the application of these models in chemical 

engineering is still in its infancy. Thus, a key goal of this work is assessing the capabilities of 

deep-learning based models in a chemical engineering applications.  The specific focus in 

the current work is detection and classification of faults in a large industrial plant involving 

several chemical unit operations. Towards this goal we compare the efficacy of a deep-

learning based algorithm to other state-of-the-art multivariate statistical based techniques for 

fault detection and classification. The comparison is conducted using simulated data from a 

chemical benchmark case study that has been often used to test fault detection algorithms, 

the Tennessee Eastman Process (TEP). A real time online scheme is proposed in the 

current work that enhances the detection and classifications of all the faults occurring in the 

simulation. This is accomplished by formulating a fault-detection model capable of 

describing the dynamic nonlinear relationships among the output variables and manipulated 

variables  that can be measured in the Tennessee Eastman Process during the occurrence 

of faults or in the absence of them. In particular, we are focusing on specific faults that 

cannot be correctly detected and classified by traditional statistical methods nor by simpler 

Artificial Neural Networks (ANN). To increase the detectability of these faults, a deep 

Recurrent Neural Network (RNN) is programmed that uses dynamic information of the 

process along a pre-specified time horizon. In this research we first studied the effect of the 

number of samples feed into the RNN in order to capture more dynamical information of the 

faults and showed that accuracy increases with this number e.g. average classification rates 

were 79.8%, 80.3%, 81% and 84% for the RNN with 5, 15, 25 and 100 number of samples 

respectively. As well, to increase the classification accuracy of difficult to observe faults we 

developed a hierarchical structure where faults are grouped into subsets and classified with 

separate models for each subset. Also, to improve the classification for faults that resulted in 

responses with low signal to noise ratio excitation was added to the process through an 

implementation of a pseudo random signal(PRS). By applying the hierarchical structure 

there is an increment on the signal-to-noise ratio of faults 3 and 9, which translates in an 

improvement in the classification accuracy in both of these faults by 43.0% and 17.2% 
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respectively for the case of 100 number of samples and by 8.7% and 23.4% for 25 number 

samples. On the other hand, applying a PRS to excite the system has showed a dramatic 

increase in the classification rates of the normal state to 88.7% and fault 15 up to 76.4%. 

Therefore, the proposed method is able to improve considerably both the detection and 

classification accuracy of several observable faults, as well as faults considered to be 

unobservable when using other detection algorithms. Overall, the comparison of the deep 

learning algorithms with Dynamic PCA (Principal Component Analysis) techniques showed a 

clear superiority of the deep learning techniques in classifying faults in nonlinear dynamic 

processes. Finally, we develop these same techniques to different operational modes of the 

TEP simulation, achieving comparable improvements to the classification accuracies. 
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Chapter 1 

Introduction 

1.1 Background on Fault Detection 

In the modern process industry, the implementation of control schemes and systems 

for the detection and diagnosis of process disturbances or faults have become almost 

mandatory due to the increased demands for quality and profitability. A fault is defined as 

the deviation of a variable from an acceptable range of operation (Isermann, 2006). Also, 

since the effect of faults often propagates and leads to other faults it is imperative to detect 

them soon after their occurrence. Process incidents and shutdowns are frequent in the 

petroleum and chemical industries and many of these have been considered preventable. 

These incidents and faulty operations have resulted, just in the US alone, in an estimated 

loss of 20 billion US dollars per year (Nimmo, 1995). To avoid or mitigate these losses 

industrial plants nowadays are highly integrated with hundreds of sensors and multiple 

control loops. 

Currently, advanced feedback control schemes such as internal model control (IMC) 

and model predictive control (MPC), have been successfully used for the stabilization of 

processes. However, in the presence of large process disturbances and manipulated 

variable constraints, these control schemes might not be sufficiently resilient to avoid 

abnormal operation (Chiang, Russell, & Braatz, 2001). A typical process monitoring system 

is composed of three basic parts: a detection algorithm, a diagnosis algorithm and a control 

action. The detection algorithm main objective is to detect an abnormal behavior in the 

system. Most detection algorithms are based on matching the output of the system to a 

previously defined “normal” operation. After detecting an abnormality, the diagnosis 

algorithm will gather the data and attempt to detect patterns in the information to determine 

the root cause of the abnormality. Then, depending on the fault detected and its effect on 

the system the corrective actions required to return the system to normal operation might be 

implemented immediately or be scheduled for later implementation depending on the 

severity of the fault.  

A fault is considered observable when its effects on the system can be observable 

from a set of measured variables (M. Bin Shams, Budman, & Duever, 2011). Observability is 
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an important topic for any fault detection and diagnosis problem because a lack of 

observabiliy or a low resolution can have detimentral effects on the detection or diagnosis 

ability of the fault detection scheme. The lack of  ability to detect/diagnose the fault  is due to 

unobservability or distinguishability problems. The unobservability problem arises when the 

effect of a fault on the system cannot be observed by the available measured variables. On 

the other hand, the distinguishability problem is related to the fact that different faults have 

similar effect on the measured variables used for detection/diagnosis. It is important to 

consider that both the control scheme and the observability of faults play key roles with 

respect to the observability and distinguishability problems. For example, the better the 

tracking performance of the control scheme is the less variability that can be observed in the 

controlled variable with respect to its set point and thus the less ability to distinguish the fault 

from other faults or from normal operation. Therefore, a trade-off commonly exists between 

the performance of the control scheme and the observability.  

Fault detection and diagnosis can be classified into two main approaches depending 

on the way the data is used to infer the fault: mechanistic model based approach and data-

driven model based approach (Chiang et al., 2001). The model based fault-detection 

approach consists of inferring the fault from input and output data and a mathematical model 

generally based on first principles. In order to formulate a succesfull model a priori 

knowledge of the physics and first principles’ equations involved are required in addition to 

the data used for a priori model calibration and for fault inference. Figure 1 display the 

structure of the model-based fault detection approach. In this approach a set of measured 

input signals U and output signals Y are obtained from the process. Then, based on these 

signals, the detection method generates a set of features, that might be residuals (𝒓), 

parameter estimates (θ̂) or state estimates (𝒙̂), that are compared with normal features, i.e. 

features that are observed while the system is operated without fault referred to as “normal 

state”. To detect changes on the measured features at any given time and compare them to 

normal features a set of symptoms 𝒔 (Isermann, 2004) is defined that is informative about 

the faults in the process.  

On the other hand, data-driven model based detection methods are an alternative  to 

mechanistic model-based algorithms for monitoring the process that does not need an 

explicit mathematical model for detection. Figure 2 shows the basic structure of the data-
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driven models (Qin, 2009). For methods based on such data-driven models  the online 

measurements of the process are directly compared with the normal behavior, and 

occurrence of the fault is assessed from a measure of differences between faulty to normal 

operation where these differences are calibrated a priori (Yin, Ding, Xie, & Luo, 2014). 

Nowadays, these data based methods have evolved from just being able to analyze one 

variable to be able to learn correlations between the process variables and even capture the 

time-varying behavior of the process. 

In the current project  we apply data-driven methods for fault detection. Specifically, we have 

developed deep learning neural network models for the detection and distinguishability of 

faults in a popular chemical benchmark case study, the Tennessee Eastman Process (TEP) 

simulator. The schemes tried during the research use both static as well as dynamic 

correlations for detection and diagnosis where the advantage of the dynamic versus the 

static approach are studied. In this research the concepts of disturbances, fault and classes 

are used with same meaning. During the original TEP article developed by Downs and 

Vogel, the 20 different process disturbances that were considered were also used in fault 

detection studies as faults.   

 

Figure 1. Basic structure model-based fault detection schemes 
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Figure 2. Basic structure of the data-driven models for fault detection 

1.2 Background Deep Learning 

The behaviors of biological systems have frequently inspired new ideas for 

mathematical algorithms such as Artificial Neural Networks(ANN). The idea that gave birth 

to ANN was to develop mathematical models that are able to mimic the decision making 

process and the basic descriptive functions of the human brain. The first mathematical 

model for ANN was introduced in 1943 by neurophysiologist Warren McCulloch and 

mathematician Walter Pitts in their paper "A Logical Calculus of the Ideas Immanent in 

Nervous Activity". That work described mathematically the way the human nervous system 

works as a net of interconnected neurons, where each neuron contains an axon and a 

soma, and how this network propagates excitation forward through the interconnections 

composing the network (McCulloch & Pitts, 1943). The model developed could recognize 

from the input two different categories, positive and negative, by testing a function f(x, w), 

where 𝒙 is the input and 𝒘 is a weight. However, the weights in this original algorithm had to 

be selected manually. 

In the late 1950’s Frank Rosenblatt created the perceptron, which became the first 

model that solved the weighting parameter problem by self-learning the value of the weights 

by presenting to the model examples of the inputs of each category (Rosenblatt, 1958). In 

1960 Bernard Widrow developed the Adaptive Linear Neuron (ADALINE) that involves units 
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that could also self-learn the weight values (Widrow, 1960). Even though the perceptron and 

ADELINE were linear, a key difference between both units was that the former used class 

labels whether the latter used continuous predicted values. Although it was not the first 

algorithm to self-learn its weights, ADALINE included a special training algorithm called 

stochastic gradient descent which became one of the most popular training algorithms for 

models today. During the 1960’s there was a lot of interest in these models. However, this 

excitement dipped when in 1969 Marvin Minsky and Seymour Papert identified some key 

limitations of the proposed linear networks when trying to learn XOR function by a single 

perceptron (Minsky & Papert, 1969).  

By the mid-1980’s a second wave of research on Artificial Neural Networks occurred 

that was motivated by the development of the back-propagation algorithm, a new learning 

procedure that improved all the previous results obtained by any neuron-like units 

(Rumelhart, Hinton, & Williams, 1986). This new wave of research was further promoted by 

new studies in the field of connectionism (Touretzky & Hinton, 1985). Connectionism stated 

that by increasing the number of interconnected simple neuron-like units it was possible for 

a network to learn and identify more complex behaviors. Furthermore, research based on 

Artificial Neural Networks continued to flourish during the 1990’s with advances in sequence 

modeling that permitted to solve several problems encountered when modeling long 

sequences of data (Bengio, Simard, & Frasconi, 1994; J. Hochreiter, 1991), by using a novel 

gated neuron-like cell, the Long Short-Term Memory (LSTM) unit (S. Hochreiter & Urgen 

Schmidhuber, 1997). By this time the capabilities of Artificial Neural Networks to solve a 

variety of complex problems that have been recognized. However, the combined effects of 

advances in other fields, as Kernel Machines and graphical models, and requirements for 

high computational power required for ANN halted advances in the field.  

 This partial abandonment of Artificial Neural Networks’ research lasted till mid-2000’s 

when a third period of renewed interest in the field started and continue up to this day. Due 

to the expensive computational power required for successfully training bigger and deeper 

neural networks, researchers had to investigate solutions to accelerate the convergence and 

the performance of the algorithms. In 2006 Hinton et al. developed a new training strategy 

referred to as “greedy layer-wise pre-training”, which involved an unsupervised pre training 

each layer separately of a network in order to boost the performance of the networks 
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(Geoffrey E. Hinton, Osindero, & Teh, 2006). This development gave birth to the term deep 

learning, due to the ability of training deeper and more complex networks (Lecun, Bengio, & 

Hinton, 2015). Currently, deep learning popularity continues to rise, due to advances and 

availability in computational power and algorithmic developments that have resulted in many 

profitable applications and broaden interest in research.  

1.3 Research Objectives 

The following main objectives were sought in the current project:  

 Improve the detection and classifications of faults in a large industrial plant with 

several chemical processes. During this research we applied data from the 

Tennessee Eastman Problem, a widely used chemical engineering benchmark 

simulator for testing fault diagnosis and control strategies (Downs & Vogel, 1993). 

 Compare different deep-learning based algorithms to other widely used multivariate 

statistical based techniques for fault detection and classification.  

 Analyze the effect of including increasing amount of historical data to capture the 

nonlinear dynamic behavior with greater accuracy thus leading to improved fault 

classification ability. 

 Analyze the effect of building a hierarchical structure and implement excitation 

signals into the system to increase the signal-to-noise ratio of difficult to observe 

faults. 

 Assess the robustness of the proposed techniques by testing their ability to classify 

faults for different sets of operating conditions in the Tennessee Eastman Problem, 

i.e. different operating modes. 
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1.4 Thesis Outline 

The current thesis is organized into five chapters covering the following topics: 

 Chapter 1:  General introduction about the contents of the thesis, research objectives 

and scientific approach. 

 Chapter 2: Comprehensive literature review of the concepts applied during this 

research, a description of the plant simulation used in the case studies and a review 

of different methodologies previously used for detection and diagnosis. 

 Chapter 3: Description of the procedure followed during this work for static data with 

deep learning and comparison with other widely used multivariate statistical 

methods. Comparisons were performed for different operating modes of the TEP 

plant simulator. 

 Chapter 4: Description of the procedure followed during this work for dynamical data 

with deep learning and statistical methods used for comparison. This chapter 

includes results about the effect of the number of data samples, the application of a 

hierarchical structure and the implementation of a pseudo random signal. Moreover, 

it includes a comparison between the different TEP control schemes using the 

previous tools. 

 Chapter 5: This chapter contains a summary of the finding of the research as well as 

recommendations for future work.  
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Chapter 2 Literature Review 

2.1 Introduction to Artificial Neural Networks 

Artificial Neural Networks were developed as a way to mathematically describe how 

the biological nervous system is capable of learning and processing complex information. 

Even though it has not been possible to fully reproduce the way the nervous system works, 

neural networks are derived as a narrow-sense abstraction which takes advantage of the 

knowledge of the basic functionality and organization of the neurons. Analogous to the way 

the human brain learns by experience, neural networks take advantage of examples (data 

samples) to generalize rules by executing several linear and nonlinear functions and by 

adjusting tuning weights of these functions (Goodfellow, Yoshua, & Aaron, 2016) to satisfy a 

specific quality of fit criterion.  

To understand the potential engineering applications of artificial neural networks we 

consider the importance of some basic concepts and fundamentals of the nervous system 

and the relationship between both. The basic unit in the nervous system is called a neuron, 

shown in Figure 3, which is composed of three main parts: axon, soma and dendrites. In the 

presence of a stimuli the dendrites that are tree-like structures, act as receptors of the 

signal. Then, the soma is responsible of translating and delivering a response. This 

response is then propagated as an impulse through the axon to other surrounding units. It is 

estimated that the average human brain contains approximately 86 billion of neurons 

intertwined together to form a network (Herculano-Houzel, 2009).  

An artificial computer model that resembles the main functional parts of a single 

neuron in the nervous system can be inferred from a comparison between Figure 3 and 

Figure 4. Just as with the dendrites in biological neurons the artificial neuron 𝑗 has a number 

of 𝑛 inputs 𝑥1, 𝑥2, … , 𝑥𝑛 represented as vector 𝒙 ∈  R𝑛 and each input have an assigned 

weight 𝑤1, 𝑤2, … , 𝑤𝑛. After sensing an impulse, the soma processes the information with the 

goal of making a decision. The input to each artificial neuron is a weighted summation of the 

inputs 𝒛 of the neuron given by  

𝒛 =  ∑𝒙𝒊𝒘𝒊,                     (1) 
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which may also include a bias term. Subsequently, a response to the input signal in the 

biological neural network is transmitted to another neuron through the axon. In the artificial 

neuron, this is equivalent to passing the value of 𝑧 through an activation function 𝑓, which 

produces the value of an output signal  

𝒚 =  𝑓(𝒛).            (2) 

Finally, with both biological and artificial neurons the overall network is formed by linking the 

output of each neuron to the input of another neuron. The number of outputs of a network 

might also be represented as a vector 𝒙 ∈  𝑅𝑛, which depends on the number of outputs for 

every particular problem. Furthermore, during the learning phase, the weights and biases 

associated with each neuron can be altered depending on the efficacy of the results. 

 

Figure 3. Schematic and functional description of a biological neuron. 

 

 

Figure 4. Schematic of a neuron in an artificial neural network  
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2.1.1 The Feed-Forward Neural Networks 

Single perceptron’s are only able to solve simple modelling tasks but they are not 

able to explain more complex phenomena such as those occurring in nonlinear systems, 

such as a simple XOR function (Goodfellow et al., 2016). So, in order to solve more complex 

tasks, inspired by the nervous system architecture models with several neurons and layers 

are assembled.  This results in Feed-forward Networks, also called Multi-Layer Perceptron 

(MLP’s), that are considered to be the prototypical models for deep learning and consists of 

networks of multiple interconnected layers of neurons.  Each layer is stacked one after 

another and each neuron is connected to each neuron in the following layer.  Figure 5 

shows a schematic for a basic Multi-Layer Perceptron of three layers, which can be used to 

explain the architecture and mathematical description behind Artificial Neural Networks. In 

terms of its architecture, the network involves three groups of layers: input layer, one or 

more middle layers and an output layer. The input layer is fed with the data available in the 

problem. The middle layers are used by the network to learn the important features, 

contained in the data necessary to address a particular problem. The last layer referred to 

as the output layer is responsible for providing a final answer that may be a class label in 

classification problems or continuous values in general prediction problems. It is important to 

note that there are no limitations on the number of layers nor number of neurons that a 

network can be composed of. However, in feed-forward networks, there are no 

interconnections among neurons within the same layer and thus the data is transmitted only 

in one forward direction.  

To summarize the mechanics of the neural network description let us first consider 

that each neuron Sj
L1 is connected to each input in the input layer 𝒙𝒏 = {𝒙𝟏𝒋, 𝒙𝟐𝒋, … . , 𝒙𝒏𝒋} , 

which has a specific weights assigned to each input 𝒘𝒏 = {𝒘𝟏𝒋, 𝒘𝟐𝒋, … . , 𝒘𝒏𝒋} and a bias term 

𝜽𝒊𝒋.  The weighted sum of the inputs is then calculated using the following formula  

𝐳𝒋 = ∑ 𝐱𝒊𝒋𝒘𝒊𝒋 + 𝛉𝒊𝒋
𝑛
𝑖=0            (3) 

The value of 𝐳𝒋 is then passed through an activation function 𝑓(𝐳𝒋), the key decision making 

unit, which depending on the task to be accomplished can take different forms.  Consider for 

instance the following activation function  

𝑓(𝐳𝒋) =  
1

1 + 𝑒
−𝐳𝒋,            (4) 
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then the output of S1
L1 is computed as  

S1
L1 = 

1

1+ 𝑒
−(∑ 𝐱𝒊𝒋𝒘𝒊𝒋+𝛉𝒊𝒋

𝒏
𝒊=𝟎 )

 .                          (5) 

As illustrated in Figure 5 below each node in the hidden layer is computed and then the 

resulting values are used as inputs for the following layer, the output layer in this simplistic 

example, that will use the same mathematical principles used to compute the previous layer. 

 

Figure 5. Schematic for a Multi-Layer Perceptron of 3 layers 

2.1.2  Activation Functions 

Table 1 shows the corresponding equation and graphical representation of the 

output that are obtained from each one of the most popular activation functions used in 

neural network models. The first type of activation function is the linear function, which is 

easy to compute but unable to learn complex nonlinear behavior. The binary step is an 

activation function usually used to compute the output of a classification network and the 

result of the function is either 0 or 1. In contrast, the three following rows, in table 1, 

represent the most popular activation functions used to describe nonlinearities to the 

network. The sigmoidal function computes an S-shaped output between 0 and 1, which will 

return an output between 0 and 1 depending on the value of the weighted sum of the inputs. 

The tanh is also an S-shaped function, though instead of the output being between 0 and 1 

it ranges from -1 to 1.  The output range that the tanh function computes is often more 

desirable than the sigmoidal due to the fact that it is zero-centered. Lastly, the rectified linear 
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unit (ReLU) is currently the most used activation function in current neural network 

applications (Nair & Hinton, 2010). There are two main advantages of using ReLU as 

activation for units in deep neural networks. The non-linearity of the function will allow the 

network to create sparse representations, which translate in transferring only important 

information through the network. Once the neurons are active, the form of the activation 

function dictates a linear function, which allows for parameter sharing through the network 

while avoiding the vanishing gradient problem (Glorot & Bordes, 2011).  

 

Table 1 Popular activation functions and plots  

Name Equation Plot 

Linear 𝑓(𝑧) = 𝑎𝑧 + 𝑏 

 

Binary Step 𝑓(𝑧) =  {
0 𝑓𝑜𝑟 𝑧 < 0
1 𝑓𝑜𝑟 𝑧 ≥ 0 

 

 

Sigmoid 𝑓(𝑧) =  
1

1 + 𝑒−𝑧
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Tanh 𝑓(𝑧) = tanh(𝑧) =  
2

1 + 𝑒−2𝑧
− 1 

 

Rectified 

Linear Unit 

(ReLU) 

𝑓(𝑧) = max(0, 𝑧) =  {
0 𝑓𝑜𝑟 𝑧 < 0
𝑧 𝑓𝑜𝑟 𝑧 ≥ 0 

 

 

 

It is important to mention that any of the activation units presented in table 1 may be 

used in any of the layers of the network, either hidden or output. In addition, to all the 

previous layers, in many classification problems it is often desired to make the output vector 

a probabilistic distribution over 𝑛 different classes to account for the presence of noise and 

stochastic disturbances. Such probabilistic classification can be generally addressed by 

applying softmax activation units in the output layers. The sotfmax unit, in rare cases, may 

also be used in the hidden layers if it is desired to choose only one of 𝑛 internal variables. 

Through the use of softmax units it is possible to estimate the confidence of the network’s 

prediction by analyzing the output vector 𝐩, where  ∑ 𝐩𝑖𝑖 = 1. Therefore, the vector 𝐩 will 

give a probability distribution that a particular data point belongs to a specific category. The 

formula of the softmax function is obtained by normalizing 𝑧𝑖, where 𝑧𝑖 is defined as 

𝒛𝒊 = ∑𝒙𝒊𝒘𝒊 + 𝒃𝒊,            (6) 

which then is applied to the softmax activation function as  

𝒚𝒊  =  f(𝒛𝒊)  =  
exp (𝒛𝒊)

∑ exp (𝒛𝒋)j
 .          (7)  

A strong prediction will result in only one category having a value close to 1, while a weak 

prediction will have the probability distributed to several categories. 
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2.1.3  Training Feed-Forward Neural Networks 

The previous sections of this chapter have provided the basics of neural networks in 

terms of structure as well as the typical activation functions used for the neurons. However, 

a fundamental question for obtaining an efficient and useful network is how to calculate the 

optimal values of the parameters, i.e. weights and biases, in the network. The process of 

selecting the values of a network is referred to as training. The training process of a neural 

network is based on presenting the network with a large number of examples, known as 

training data, which are processed through the network and derive an iterative calibration of 

the values of the parameters such as to minimize a cost function.  

Let us consider a simple example of a neural network formed only with rectified 

linear activation units that is presented with a large set of training examples to learn the 

behavior as well as the corresponding value of the output vector for each training example. 

Then, the parameters are typically calibrated by minimizing a mean squared error function 

as follows: 

MSE =  
1

𝑛
∑ (𝒚𝒊 − 𝒚𝒊̃)

2𝑛
𝑖=1           (8) 

Where 𝒚𝑖 is the output vector computed by the neural network and 𝒚𝒊̃ is the desired output 

vector. Then, the objective is to find the particular combination of weights that will minimize 

the squared error of all training examples as per the following optimization problem: 

min
𝛉

 MSE           (9) 

Where 𝛉 represents all the weights and biases in the network and 𝑦𝑖 is given by equations 

(7) and (8). Additionally, the choice of the activation units and the purpose of the network will 

define the cost function that will be used throughout the network. For example, if the 

objective is to solve a binary classification problem then the output activation function can be 

chosen either of sigmoidal or softmax type. However, for different activation functions the 

loss function will be different where for sigmodial a binary cross-entropy loss will be used 

while for softmax a multiclass cross-entropy loss is generally employed.   

 It should be noticed that by introducing non-linearities into the neural network   

typical loss functions such as the sum of square error that are convex with respect to 

parameters when using linear models become non-convex with respect to the parameters of 
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the neural network. This means that the cost function of a neural network, based on non-

linear activation units, contains many combinations of parameters and this may result in 

several local minima and saddle points. Typically, problems that contain many non-linear 

features are trained iteratively by using gradient descent based algorithms that drive the 

value of the cost function to a minimum but that may not be necessarily the global minimum. 

This same procedure is applied in training neural networks with activation units such as 

sigmoidal or rectified linear units. Thus, in order to understand the training of neural 

networks the basics of gradient descent must be understood.   

Gradient descent is an optimization algorithm for finding the set of parameters that 

minimize a fit function 𝑓 based on a data training set, by sequentially iterating along the 

gradient of the function to find local minima (Shamir, 2003). For example, a simple linear 

function 

 𝑓(𝒙) = 𝑚𝑥 + 𝑏                     (10) 

with two initially unknown parameters, the slope 𝑚 and the intercept 𝑏, the parameters that 

minimize the mean squared error function:  

𝑀𝑆𝐸 = 
1

𝑛
 ∑ (yi − (mxi + b))2n

i=1 .                     (11) 

are obtained by the method of steepest descent (Rosenbloom, 1956), as follows. First, the 

values of the parameters are initialized and the gradients of the error function with respect to 

each parameter given by the partial derivatives are evaluated, i.e. 

∂E

∂m
= 

2

n
∑ -xi(yi-(mxi+b))n

i=1                     (12) 

and, 

 
∂E

∂b
= 

2

n
∑ -(yi-(mxi+b))n

i=1 .                    (13) 

Based on these gradients, successive iterations are conducted in the direction of the 

steepest descent by updating the values of the parameters, 

∆m = -ϵ
∂E

∂m
                       (14) 

∆b = -ϵ
∂E

∂b
,                      (15) 
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where the gain 𝜖 is a hyper parameter referred to as the learning rate since it determines the 

magnitude of parameter change allowed in the direction of the gradients. Eventually, after a 

few iterations, this procedure may reach a minimum in the error function. This same 

procedure could be applied for updating the values of the weights and biases for each 

neuron of a neural network, with the difference that the form of the cost function 𝑓 given 

above will change depending on the activation function. However, there might be cases 

where the error function is non convex, as illustrated in Figure 6, where we might get stuck 

in a local minimum depending on the learning rate 𝜖. 

 

Figure 6. Illustration of error surface with respect to changes in the two weights 

 When applying a gradient descent method for training a neural network, it should be 

remembered that feedforward neural networks are applied on a set of inputs x that are 

propagated through the hidden layers to produce an output y. Thus, for each new set of 

inputs it is possible in principle to compute a new error between the output of the network 

and the expected output. Accordingly, a recursive learning approach can be implemented 

where the newly calculated error is fed-back through the network to drive changes of the 

network’s parameters to minimize the total error function through a gradient descent 

approach. The error is propagated backward through the network in the form of gradients of 

the cost function with respect to the parameters that describe how the cost function changes 

with respect to changes in the weights of each individual connection in the previous layer 

thus updating iteratively each weight of the network to minimize the error between the 
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network output and the expected value. This recursive approach for training neural networks 

with the help of gradient descent is known as backpropagation (Rumelhart et al., 1986).   

Mathematically, the backpropagation algorithm is illustrated for a simple example for 

a network with two parameters w1 and w5. Figure 7 shows a simple 3 layered network that 

is used to illustrate this situation. In this case the error function is computed as 

E =  
1

2
 ∑ (𝑦𝑗 −  𝑂𝑌𝑗

)
2

𝑗∈𝑜𝑢𝑡𝑝𝑢𝑡 ,                              (16) 

where 𝑂𝑌𝑗
 is defined as the output computed by the neural network and 𝑦𝑗 is the expected 

value. First, define all 𝑍𝑖  as the sum of weighted inputs and 𝑂𝑖 as the output of the neurons, 

so from feedforward training the following 𝑍𝑖   and 𝑂𝑖 are defined: 

 ZH1
= w1*X1+w2*X2, 𝑂𝐻1

= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝐻1
),                  (17) 

 𝑍𝑌1
=  𝑤5 ∗ 𝑂𝐻1

+ 𝑤6 ∗ 𝑂𝐻2
, 𝑂𝑌1

= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝑌1
).                 (18) 

The backpropagation procedure is started by computing the gradient of the error  

 
𝜕𝐸

𝜕𝑂𝑌𝑗

 = - (𝑦𝑗 −  𝑂𝑌𝑗
).                     (19) 

The gradient of the total error with respect to w5, i.e. 
𝜕𝐸

𝜕𝑤5
 is obtained by applying the chain 

rule as follows: 

  
∂E

∂w5
= 

∂E

∂OY1

∂OY1

∂ZY1

∂ZY1

∂w5
 ,                    (20) 

where 

 
𝜕𝐸

𝜕𝑂𝑌1

= −(𝑦1 −  𝑂𝑌1
),                     (21) 

𝜕𝑂𝑌1

𝜕𝑍𝑌1

= 𝑂𝑌1
(1 − 𝑂𝑌1

), and                    (22) 

 
𝜕𝑍𝑌1

𝜕𝑤5
= 𝑂𝐻1

.                      (23) 

Then, the update of the weight w5 at each step of the backpropagation procedure is 

  ∆w5= ϵ 
∂E

∂w5
,                      (24) 
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where 𝜖 is the learning rate. Due to the back-propagation procedure and the 

interconnectivity of the network, the deeper the network is, the larger the effect of the 

changes in the parameters on the outputs of the network.  This propagation effect can be 

seen by applying the back-propagation procedure to the middle layer in the network of 

Figure 7. In this case the gradient of the total error with respect to w1, i.e. 
𝜕𝐸

𝜕𝑤1
,  is obtained 

by applying the chain rule to this problem as follows: 

 
∂E

∂w1
= 

∂E

∂OH1

∂OH1

∂ZH1

∂ZH1

∂w1
,                     (25) 

Where H1 is the output from one of the neurons in the middle layer. Using the same 

procedure as for the output layer we define 

  
𝜕𝑂𝐻1

𝜕𝑍𝐻1

= 𝑂𝐻1
(1 − 𝑂𝐻1

)                    (26) 

 
𝜕𝑍𝐻1

∂w1
= 𝑋1.                      (27) 

However, in this case, we have to compute the  
𝜕𝐸

𝜕𝑂𝐻1

 term as  

𝜕𝐸

𝜕𝑂𝐻1

= 
𝜕𝐸𝑂𝑌1

𝜕𝑂𝐻1

+ 
𝜕𝐸𝑂𝑌2

𝜕𝑂𝐻1

 ,                    (28) 

since a change in w1 will affect both outputs. First, the error for the first output with respect 

to the output of the first middle neuron is: 

 
𝜕𝐸𝑂𝑌1

𝜕𝑂𝐻1

= 
𝜕𝐸𝑂𝑌1

𝜕𝑍𝑌1

∗
𝜕𝑍𝑌1

𝜕𝑂𝐻1

,                     (29) 

where 

 
𝜕𝐸𝑂𝑌1

𝜕𝑍𝑌1

= 
𝜕𝐸𝑂𝑌1

𝜕𝑂𝑌1

∗
𝜕𝑂𝑌1

𝜕𝑍𝑌1

= −(𝑦1 −  𝑂𝑌1
) ∗ 𝑂𝑌1

(1 − 𝑂𝑌1
)                 (30)  

which is computed from equation (21) and (22). Then, we can compute  

 
𝜕𝑍𝑌1

𝜕𝑂𝐻1

= w5.                       (31) 

The same procedure is applied to 
𝜕𝐸𝑂𝑌2

𝜕𝑂𝐻1

, resulting in 
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𝜕𝐸𝑂𝑌2

𝜕𝑂𝐻1

= 
𝜕𝐸𝑂𝑌2

𝜕𝑍𝑌2

∗
𝜕𝑍𝑌2

𝜕𝑂𝐻1

= −(𝑦2 −  𝑂𝑌2
) ∗ 𝑂𝑌2

(1 − 𝑂𝑌2
) ∗  𝑤7.                (32) 

Finally, we have all the terms in order to compute the update in 𝑤1 as 

∆w1= ϵ 
∂E

∂w1
                      (33) 

where the derivative in the RHS of this equation is calculated from equation (25). This same 

procedure is applied to each of the other weights from the grid and the values are improved 

iteratively during the training process. 

 

Figure 7. Simple 3 layered neural network 

2.1.4 Challenges and Optimization of Gradient Descent Algorithm 

Studies on the Gradient Descent algorithm for training neural networks revealed 

several challenges. For example, the use of the Gradient Descent method with randomly 

initialized parameter values for training very deep networks, i.e. typically networks with a 

number of hidden layers larger than 3, revealed that the procedure often converged to local 

minima (Tesauro, 1992). To address this problem Bengio et al. proposed the greedy layer-

wise training procedure for deep networks, which was essentially an unsupervised method 

for initializing the parameters of each layer near a local minimum in order to avoid the 

gradient descent to converge to local minima (Bengio, Lamblin, Popovici, & Larochelle, 

2007). Then, over the years several additional optimization procedures have been proposed 

to improve the convergence of the gradient descent algorithm. Therefore, this subsection 

will discuss some of the challenges for training deep neural networks and the advances and 

modifications that were proposed to improve the convergence of the gradient descent 

algorithm. 

 One of the key challenges for the original gradient descent was that initially the 

algorithm was applied for the entire training data thus resulting in poor convergence when 
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the algorithm evolved in flat regions of the error objective function. To address this problem 

modification to the original gradient descent algorithm known as Stochastic Gradient 

Descent (SDG) was proposed where the only difference is that the gradient is calculated 

with respect to each sample in the training data (L Bottou, 1991). This change improves the 

ability of the algorithm to avoid flat regions but at the cost of significant increase in 

computational time due to the need of computing the error and gradient for each sample. 

Later, in order to reduce the increase in computational time this algorithm was combined to 

a batch learning approach to develop Batch Gradient Descent. Batch Gradient Descent is 

based on applying information through the network as small batches instead than for 

individual samples, which leads to advantages in generalization and computational time 

(Léon Bottou, 1998).  

 The second major challenge for convergence of the gradient descent method is 

related to whether the error surface function changes sufficiently in the direction of steepest 

descent. Theoretically, it is possible to assess whether the error surface changes sufficiently 

along a certain direction by computing the Hessian matrix. The Hessian matrix is basically a 

matrix of second derivatives of the gradients with respect to changes in the value of the 

weights. By checking the Hessian, it is possible to identify particularly singular situations 

where the gradients vanish corresponding to an ill-conditioned Hessian matrix. This 

challenging situation was solved by introducing a new term into the cost function referred to 

as momentum, which helps filtering possible fluctuations in the surface of the error function, 

due to the non linearities in the system and/or random noise, in generally flat regions of this 

function. Essentially, when using momentum, a memory cell is introduced that keeps track of 

an exponential decaying moving average of the gradients in order to continuously force 

advancement in the direction of steepest descent (Polyak, 1964).  Mathematically, this 

memory cell is described with the following formula:  

𝐯𝐢 =  𝛼𝐯𝐢−𝟏 −  𝜖𝐠𝐢,                     (34) 

where 𝛼 is a new hyper parameter with value between 0 and 1, which will determine the 

exponential decay rate of the gradients and where 𝜖 and 𝑔𝑖 are the learning rate and the 

gradient of 𝑖 respectively. It is important to noticed that the relationship between 𝛼 and 𝜖 

informs on how the previous gradients affect the direction of the steepest descent. 
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Furthermore, to improve convergence, the weight of the momentum term in the objective 

error function is updated as per the following function:  

∆𝐰𝐢 = 𝐯𝐢.                      (35) 

 The third important challenge for convergence of the gradient descent is the 

selection of the optimal learning rate hyper parameter  𝜖. Usually, there is a trade-off in the 

selection of the learning factor: selecting a too large learning factor results in larger 

parameter corrections along the surface of the error function that could hamper its 

convergence by skipping over the optimum while selecting a learning factor that is too small 

will slow down the convergence speed. To resolve this problem, the concept of adaptive 

learning rates was developed. For example in the delta-bar-delta algorithm the individual 

learning rates are adapted depending on the sign of the partial derivatives of the error 

function (Jacobs, 1988). Recently, three main methods have been developed in order to 

optimize the selection of the learning rate: AdaGrad, RMSProp, and Adam.  

AdaGrad is a method that individually adapts the learning rates of each parameter 

based on the scaling of the error function such as the values of each learning rate is divided 

by the sum of squares of the historical accumulation of each gradient (Duchi, Hazan, & 

Singer, 2011). Mathematically, the implementation is based on a recursive formula for the 

accumulated gradients; 

𝐫i = 𝐫i−1 + 
𝜕𝐸

𝜕𝜃𝑖
∗

𝜕𝐸

𝜕𝜃𝑖
,                     (36) 

Then the gradient equation is modified as follows: 

∆𝐰𝐢 = −
𝝐

𝜹+√𝐫i

𝜕𝐸

𝜕𝜃𝑖
,                     (37) 

Where 𝛿 is a very small number that is solely introduced to avoid a division by 0. Even 

though AdaGrad performs well for problems of convex optimization, it has been founf 

inefficient in non-convex problems where the updating algorithm drops excessively the 

learning rate due to the squared accumulation of the gradient (Goodfellow et al., 2016).  

RMSProp was developed based on the AdaGrad given above to achieve better 

performance in non-convex problems by implementing an exponential weighted moving 
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average filter for the accumulation function of the gradients (Geoffrey E. Hinton, Srivastava, 

Krizhevsky, Sutskever, & Salakhutdinov, 2012) that is described by the following formula: 

𝐫i =  𝜌𝐫i−1 + (1 − 𝜌)
𝜕𝐸

𝜕𝜃𝑖
∗

𝜕𝐸

𝜕𝜃𝑖
,                    (38) 

Where 𝜌 is a user selected decay factor that will constrained the window of gradients that is 

retained at each instance of the gradient search. Currently, RMSProp is one of the most 

popular optimization algorithms used to train deep neural networks. 

Lastly, Adam, named after the term “Adaptive moments”, is another optimization 

method that involves a combination between RMSProp and momentum. When applying 

momentum to RMSProp the decaying moving average of the gradients which is referred to 

as the first moment of the gradient must be stored. On the other hand, in the RMSProp 

method, the exponential weighted moving average of the accumulation of the gradients, 

known as the second moment of the gradient (Kingma & Ba, 2014) must be calculated and 

stored. Mathematically, the first moment is estimated via the following recursive formula 

𝐬i = 𝜌1𝑠i−1 + (1 − 𝜌1)
𝜕𝐸

𝜕𝜃𝑖
                   (39) 

while the second moment is: 

𝐫i = 𝜌2𝐫i−1 + (1 − 𝜌2)
𝜕𝐸

𝜕𝜃𝑖
∗

𝜕𝐸

𝜕𝜃𝑖
.                   (40) 

Then, following Adam’s method, corrections to both moments can be made in order to 

account for any initialization bias as per the following formulas: 

 𝒔̃i = 
𝐬i

1−𝜌1
𝑖  and                      

(41) 

𝐫̃i = 
𝒓i

1− 𝝆2
i .                     (42) 

After computing the moment corrections, the weights are updated by taking into account the 

corrections according to the following function  

∆𝛉𝐢 = −ϵ
𝐬̃𝒊

𝜹+√𝐫̃i
.                    (43) 

In a recent comparison paper that takes into account most of the modern gradient descent 

optimization methods it has been demonstrated that the Adam method performs better than 
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Adagrad and RMSProp due its bias-correction step (Ruder, 2016). Thus, Adam is currently 

considered the most robust optimization method to train deep neural networks and will be 

applied during this project for the optimization problem. 

2.1.5 Data sets and Regularization 

One of the major challenges for neural network models is to provide them with the 

ability to predict accurate results for inputs that have not been used for model calibration. 

This capacity of models to predict with data never seen before is known as generalization. 

To achieve good model generalization ability, the data is generally divided in at least two 

sets of information, a training set and a testing set. During the training procedure the neural 

network is presented with the training data only and the model parameters are calculated so 

as to minimize the error function, known as training error. After minimizing the training error, 

the generalization error is tested by applying the trained neural network for the testing set of 

data. In order to evaluate the performance of the model, the gap between the testing and 

training error is particularly assessed in order to identify whether the model might be 

underfitting or overfitting the information. The underfitting problem arises when the model is 

not able to reduce the training error to an acceptable standard. On the other hand, 

overfitting arises when the model is not able to generalize, which translates in a widening of 

the gap between the training and testing data.  

When training a model, usually, the training error and testing error are 

simultaneously monitored until either one of them stops decreasing. If the errors achieved 

are not satisfactory the training procedure will continue with the goal of improving the 

model’s feature extraction capabilities or by taking actions to prevent overfitting. Several 

techniques have been developed to prevent overfitting in neural networks, which includes 

regularization, early stopping and dropout. 

Regularization is a broad concept that has been applied in many statistical models in 

a number of ways. However, in deep neural networks regularization refers to penalizing a 

particular norm of a parameter/s within the objective function of the optimization problem, 

e.g. the sum of square errors between predictions and data. Therefore, in order to calculate 

the total gradient of the objective function the gradients of both the error function and the 

regularization functions have to be calculated. Mathematically, in the objective function the 

regularization term is added as follows: 
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𝐽(𝛉) = 𝐸𝑟𝑟𝑜𝑟 +  𝛼𝑅(𝜽),                   (44) 

where α is a hyper parameter that weights the norm penalty R(θ). Typically, in deep neural 

networks two types of norm are used for regularization of the parameters 𝐿2 or  𝐿1. When 𝐿1 

regularization is applied to a model the penalty term is the sum of absolute value of all the 

parameters, defined as 

 R𝐿1(𝛉) =  ∑ |𝛉i|i .                     (45) 

In contrast, 𝐿2 regularization is described as the sum of squared magnitude of the 

parameters,  

R𝐿2(𝛉) =  
1

2
∑ 𝛉i

2
i .                     (46) 

Correspondingly, the gradients of these penalties terms, 𝐿1 or 𝐿2, can be compute as 

𝜕𝑅𝐿2

𝜕𝜽i
=  𝑠𝑖𝑔𝑛(𝜽i) and                     (47) 

𝜕𝑅𝐿2

𝜕𝜽i
= 𝜽i.                      (48) 

The main difference between both types of regularization is that 𝐿1 generally leads to a 

sparse representation where many parameters are left unchanged in the training procedure, 

whereas the 𝐿2 norm tends to distribute the changes required for minimization of the 

objective more equally among the parameters 

The early stopping algorithm is a simple way for preventing overfitting when training 

deep neural networks. In this method of regularization, both the training error and the 

validation error are simultaneously monitored to ensure a certain balance between them at 

the solution. In theory, at the start of training, both errors will start decreasing. Then,  if after 

certain time the validation error will start increasing but the validation error does not improve,  

the network is not trained any further (Prechelt, 1998). 

Dropout was developed as a way to inexpensively prevent overfitting in deep neural 

networks with large number of parameters (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014). The theory behind dropout is based on randomly dropping units in the 

neural network or preventing units from adapt during the training phase with the expectation 

that the model will generalize better in the absence of information. An illustration of dropout 
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is shown in Figure 8. Technically, during each iteration or batch of iterations in the training 

procedure the value of each individual neuron is either kept depending on a probability p 

(hyper parameter) or dropped out by reducing its value to zero and cutting all the incoming 

and outgoing information to the neuron. It is important to denote that the process of dropping 

a neuron is only done during the training phase but when the model is tested for 

generalization the hyper parameter p value associated to the neuron is changed back to 1 

as the neuron is used. Some of the most important advantages for dropout is that it is a 

computational inexpensive operation and it is able to work well with any type of model (feed-

forward, recurrent, etc.) and its compatibility with other regularizers. 

 

 

Figure 8 Dropout technique illustration. (Left) Network without dropout. (Right) Network with 

dropout. 

2.1.6 Batch Normalization 

Batch normalization is a tool developed by Ioffe and Szegedy, which main goal is to 

provide to every layer in a network inputs with zero mean and variance by applying 

normalization after each layer (Ioffe & Szegedy, 2015) . The goal of batch normalization is to 

address the so called “internal covariate shift”, where during training, the inputs to the next 

layers change as changes in the parameters from the previous layers occurs. To mitigate 

the “internal covariate shift” it is required to slow down the training when dealing with 

problems with significant nonlinearities by adopting small learning rates. Instead, this 

method implements a normalization layer in the model, which will normalize the data for 

each mini-batch. Batch normalization has proven to be a good additional tool for any 
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network that results in speedier convergence time and also acts as a regularization 

technique (Ioffe & Szegedy, 2015).  

  Mathematically, batch normalization is defined for the values of 𝐗 on a mini-batch 

𝜷 = [𝒙𝟏 …𝑚], where we first start by calculating the mean 𝝁𝜷 and variance 𝝈𝜷
𝟐  for the mini-

batch. Mathematically, these parameters are calculated as follows: 𝐗𝐢 

𝝁𝜷 = 
1

m
∑ 𝐗𝒊

m
i=1                      (49) 

𝝈𝜷
𝟐 = 

1

m
∑ (𝐗𝒊 − 𝝁𝜷)2m

i=1 .                    (50) 

Then, applying the mean and the variance the data is normalized again as follows 

𝐗̂i = 
𝐱𝒊−𝝁𝜷

√𝝈𝜷
𝟐+𝝐

                      (51) 

 In addition to the normalization given above the output of the batch normalization layer is 

mathematically defined as  

𝒚𝒊 =  𝜸𝒙̂𝒊 + 𝜹                      (52) 

Where 𝒙̂𝒊 is defined as our mini-batch normalize data and 𝜸 and 𝜹 will be new parameter to 

be learned by the new layer in order to scale and shift the data appropriately if necessary. 

Hence, while the outputs parameters are initialized to result in a zero mean and variance 

distribution, these parameters will be able to learn, through further training, another 

distribution that might yield better results. 

2.1.7  Auto Encoder 

An auto encoder is a type of unsupervised neural network model that it is trained to 

produce outputs that are a replicate of the values of the input. The idea of auto encoders 

was born soon after the idea of backpropagation learning. The motivation of auto encoders 

was to use the inputs as outputs of the network in an unsupervised fashion to extract 

relevant nonlinear higher-order properties of the inputs (Zemel & Hinton, 1994). An auto 

encoder is generally made of two functions: an encoder and a decoder function. The 

encoder function, represented as 𝐡 = 𝑓(𝐱),  is responsible for detecting valuable properties 

of the data to generate a representational vector of the important properties of the input 

data. Alternatively, a decoder function , described as 𝐫 = 𝑓(𝐡), transforms the 
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representation vector outputted from the encoder back to a close representation of the input 

𝐱.  

When combining the encoder and the decoder the model is forced to select and 

learn valuable features of the input data that can be translated back to a similar 

representation of the input. Typically, when designing auto encoders, the model is restricted 

to learn an approximate representation of the input. Therefore, the model is encouraged to 

learn the most important characteristics of the data and avoid to only copy the values of the 

input. An illustration of a simple auto encoder is shown in Figure 9. In Figure 9, we can 

notice that we only have one hidden layer 𝐡, an input layer 𝐗, and the output layer 𝑿̃, which 

is an approximate representation of the input. In Figure 9, the encoder is the connection 

between the input layer and the hidden nodes 𝐡 = 𝑓(𝐱) and the decoder is the connection of 

the hidden nodes to the output 𝐫 = 𝑔(𝐡), where the functions ℎ(𝐳) and 𝑔(𝐳) can be any 

activation functions.  Furthermore, auto-encoders are trained with all of the same techniques 

as used to train feedforward networks.  

 Even though, auto encoders might seem superfluous since they are designed such 

as the output replicates the inputs, they have been found very effective for training deep 

neural networks. One of the most important applications of auto encoders is the ability of 

compressing the input dimensions without dropping relevant data and the ability of these 

models to detect and extract important features of the input data (G. E. Hinton & 

Salakhutdinov, 2006). It has also been observed that auto encoders, as an unsupervised 

pretraining tool for deep networks, enhance the generalization of deep models (Erhan, 

Courville, & Vincent, 2010). Lately, auto encoders have been found to be a powerful tool in 

generative models. There are several variations of the basic auto encoder model depending 

on their application where the two most popular ones are sparse and denoising auto 

encoders. The former auto-encoder model is trained where the parameters of the auto-

encoder are added to the loss function for regularization purpose (Aurelio Ranzato et al., 

2007), while the denoising auto encoder is used by altering the loss function to take into 

account the noise of the input thus acting as a noise filter (Vincent, Larochelle, Bengio, & 

Manzagol, 2008). 
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Figure 9. Simple auto encoder composed of 1 hidden layer 

2.2 Recurrent Neural Networks 

2.2.1 Recurrent Neural Networks 

In order to understand the training of Recurrent Neural Networks it is important to 

emphasize their key differences from feed-forward networks. Feed-forward networks are 

considered as an “stateless”, i.e. without dynamic states, neural network method, since for 

training the data is treated as static. In other words, feed-forward networks are trained to 

only describe relations between the variables of each observation at any given time but do 

not take into account history. Therefore, in some cases, valuable relationships may be lost 

as a result of neglecting the effect of dynamic correlations of current and past input and 

output data. In contrast, the idea of “statefull” models were developed as a way take 

advantage of the sequential relationships of the data with respect to previous inputs by 

storing the information in a “memory cell” over a span of time. The aim of storing the 

information in a memory cell is to force the model to consider previous values of the 

sequence such as to capture important pieces of the sequential information. 

Accordingly, Recurrent Neural Networks is a type of neural network unit that was 

developed with the purpose of handling sequential data by expressing the values of the 

inputs as vectors through a sequence as x(1),x(2), …, x(t) (Rumelhart et al., 1986).  One of the 

key elements that is used to capture the sequential nature of the data in recurrent models is 

parameter sharing, which enhances the model by sharing its parameters across a certain 

time span. This parameter sharing feature is usually applied to tying up the parameters of 

each variable through the network independently of the index of the sequence. This allows 

the model to enhance its generalization capacity to sequences not seen before and to 
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sequences of different lengths. Figure 10 shows a schematic description of a simple 

example of recurrent neural networks. By comparing Figure 10 to a computational graph of 

a feed-forward network we could spot that the main difference consists in the idea of a 

cycle. This cycle represents the influence of the present and previous historical values of a 

variable on its own future value. 

 

Figure 10. A fully connected recurrent neural network with a single neuron. (Left) Folded 

representation of the RNN with feedback connection in its hidden layer. (Right) Same RNN model, 

but this image describes the time-unfolded representation.  

In order to understand how recurrent neural networks, work we first review how the 

information is handled by the network. Following the explanation above since recurrent 

networks are based on sequential information rather than static one, the input data in 

organized into matrixes to take into account the time span to be captured by the network 

model. As  shown in Figure 10, recurrent models are composed of feedforward connections, 

which represent the flow of information from a neuron to another (𝐰𝒊𝒏 and 𝐰𝒐𝒖𝒕), and 

recurrent connections, which represents important information stored from previous time 

steps (𝐰𝒓𝒆𝒄). In the model in Figure 10, we can observe a fully connected recurrent model 
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that produces an output at each time step and contain a recurrent connection in its hidden 

layer. In this case, we have to adapt the equation of the hidden layer to take into account the 

recurrent relation, which can be mathematically described as:  

𝒉(𝒕) = 𝑓(𝐳) = 𝑓(𝒘𝒊𝒏𝒙(𝒕) + 𝒘𝒓𝒆𝒄𝒉
(𝒕−𝟏) + 𝒃).                  (53) 

However, this recurrent connection can be altered depending on the problem. Thus, it is 

possible to build models with different feedback connections. In addition, we can also build 

models that produces one single output at the end of the sequence instead of producing an 

output every single time step.  

Another key element to consider in recurrent models is that at each time step a 

sequence is processed and subsequently the model will restart itself. This means that the 

model will only learn features within the time span defined by the observations and not in 

between different observations. In principle, the optimization of the recurrent models with 

respect to the network parameters is done the same way as with feed-forward models. Few 

differences in training between feedforward and recurrent networks are presented in the 

following subsection. 

2.2.2 Back-Propagation Through Time 

One difference between backpropagation and recurrent networks is that for the latter 

a feedback connection is used to store important information of the sequence. This 

feedback connection alters the way the gradient is calculated in the backpropagation 

algorithm in order to take into account the sequential data and the recurrent parameter. The 

modification of the backpropagation algorithm that takes into account the sequential nature 

of the data is known as Backpropagation Through Time (BPTT). It is important to denote 

that even though the backpropagation algorithm must be modified the resulting algorithm is 

based on steepest gradient-descent concept.  

The modification to the gradient calculation used for the recurrent network is 

illustrated for a simple example that is schematically described in Figure 11. As shown in 

Figure 11, we assume that the network is composed of 3 layers: input, hidden and output 

layer. To simplify the explanation we only consider 3 parameters to optimize Wℎ𝑦, W𝑥ℎ and 

Wℎℎ. Then, by using feed forward propagation the following pertinent equation is obtained: 
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zt= xtWxh
T +ht-1Whh

T ,                     (54) 

ht=σ1(zt),                      (55) 

yt= htWhy
T ,                      (56) 

ot=σ2(yt),                      (57) 

and the error function is defined as 

 E = f( 𝑂𝑡 , 𝑌𝑡
𝑟𝑒𝑎𝑙).                      (58) 

Where 𝜎1 and σ2 can be any type of activation function and the sub index 𝑡 denotes the time 

step, where we consider that the recurrent model relates among the sequences of only two 

time steps. We observe from Figure 11 that a change in Wℎ𝑦 only affects 𝐸𝑡 at that single 

time step.  Therefore, using the chain rule the gradient of the output weight Wℎ𝑦 is  

𝜕𝐸𝑡

𝜕Wℎ𝑦
= ∑

𝜕𝐸𝑡

𝜕Wℎ𝑦
𝑡 = 

𝜕𝐸2

𝜕Wℎ𝑦
+

𝜕𝐸1

𝜕Wℎ𝑦
= 

𝜕𝐸2

𝜕𝑂2

𝜕𝑂2

𝜕𝑦2

𝜕𝑦2

𝜕Wℎ𝑦
+

𝜕𝐸1

𝜕𝑂1

𝜕𝑂1

𝜕𝑦1

𝜕𝑦1

𝜕Wℎ𝑦
               (59) 

On the other hand, any changes in Wℎℎ and W𝑥ℎ will impact the error function 𝐸𝑡 depending 

on the previous time steps. Formally, it can be observed that a change in Wℎℎ will impact 𝐸2 

when computing the value of h1 and h2, which depends on h1. 

𝜕𝐸𝑡

𝜕Wℎℎ
= ∑

𝜕𝐸𝑡

𝜕Wℎℎ
 =  

𝜕𝐸2

𝜕Wℎℎ
+

𝜕𝐸1

𝜕Wℎℎ
𝑡 = ∑

𝜕𝐸𝑡

𝜕h𝑡

𝑡
𝑘=0

𝜕ℎ𝑡

𝜕h𝑘

𝜕ℎ𝑘

𝜕z𝑘

𝜕𝑧𝑘

𝜕Wℎℎ
=

𝜕𝐸2

𝜕o2

𝜕𝑜2

𝜕𝑦2

𝜕𝑦2

𝜕h2

𝜕ℎ2

𝜕z2

𝜕𝑧2

𝜕Wℎℎ
+

 
𝜕𝐸2

𝜕o2

𝜕𝑜2

𝜕𝑦2

𝜕𝑦2

𝜕h2

𝜕ℎ2

𝜕z2

𝜕𝑧2

𝜕h1

𝜕ℎ1

𝜕z1

𝜕𝑧1

𝜕Wℎℎ
+ 

𝜕𝐸1

𝜕o1

𝜕𝑜1

𝜕𝑦1

𝜕𝑦1

𝜕h1

𝜕ℎ1

𝜕z1

𝜕𝑧1

𝜕Wℎℎ
                (60) 

This same procedure is applied to W𝑥ℎ, which change will also impact the error function 𝐸𝑡. 

This results in a similar gradient as for Wℎℎ, which can also be expanded in the same way 

as before, and it is given as: 

𝜕𝐸𝑡

𝜕W𝑥ℎ
= ∑

𝜕𝐸𝑡

𝜕W𝑥ℎ
𝑡  =  

𝜕𝐸2

𝜕W𝑥ℎ
+

𝜕𝐸1

𝜕W𝑥ℎ
= ∑

𝜕𝐸𝑡

𝜕h𝑡

𝑡
𝑘=0

𝜕ℎ𝑡

𝜕h𝑘

𝜕ℎ𝑘

𝜕z𝑘

𝜕𝑧𝑘

𝜕W𝑥ℎ
               (61) 

Alter computing all the gradients for each parameter, it is possible to update the weight 

using the same updating formula as for backpropagation thus ensuring that the updating 

proceeds in the direction of gradient descent. 
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Figure 11.  Illustration of simple recurrent network 

2.2.3 Challenges in Recurrent Networks 

Even though recurrent networks appear to be very powerful tools for learning time-

based dependencies in sequential data, it is very challenging to train them properly 

especially when faced with long-term dependencies. Typically, when training recurrent 

networks, we might face either a vanishing gradient or an exploding gradient problem. The 

vanishing gradient problem is presented in a model when, during the training, the norm of 

the gradients corresponding to long term dependencies decreases exponentially to 0 along 

the training procedure. This makes the model to be unable to learn important long temporal 

correlations of the variables (J. Hochreiter, 1991). In contrast, the exploding gradient 

problem presents itself when the norm of the gradients corresponding to long term 

dependencies increases exponentially to an infinite value. Exploding gradient has the effect 

of making the model unstable hampering its overall learning ability (Bengio et al., 1994). 

To explain the theory behind both of these training problems we should first 

remember the recurrent relationship, which can be expressed mathematically as  

𝒉𝐭 = 𝒘𝑟𝑒𝑐𝒉𝐭−𝟏).                     (62)  

Therefore, we can observe that depending if the value of the 𝒘𝒓𝒆𝒄 is either 𝑤𝑟𝑒𝑐 < 1 or 

𝑤𝑟𝑒𝑐 > 1 the product in this recursive relation may vanish or explode. Generally, a network 

model is composed of traditional activation functions that have gradients in the range of 0 

and 1. Therefore, when applying the backpropagation algorithm which uses the chain rule to 

compute the gradients, recursive equations between current and past gradients will appear 

which are susceptible to the vanishing or exploding gradient problems.  

 Due to increase in demand of deeper models and the popularity and efficacy of 

recurrent networks several research teams have devoted effort into solving the problems of 

vanishing or exploding gradients. There have been several proposed methods to solve both 

of these problems such as, adjusting the activation units for a more suitable options as 

ReLU’s and ELU’S (Clevert, Unterthiner, & Hochreiter, 2015) and echo state networks 
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(Jaeger, 2010). However, at the moment, the best practice when dealing with recurrent 

networks has been the application of new gated-type unit structures that are able to deal 

with both problems, specifically Long-Short Term Memory units (LSTM) (S. Hochreiter & 

Urgen Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al., 2014). Some 

important characteristics of gated-type units is that they are able to change the model 

weights at each time step thus accumulating relevant information over multiple time steps 

and forgetting the state value once this information has been used. 

2.2.4 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) units, a type of gated neuron unit, were developed 

as a way to propagate important long term dependencies in sequential data by introducing 

self-loops (S. Hochreiter & Urgen Schmidhuber, 1997).  The LSTM is a complex gated unit 

composed of three gate units and a memory cell.  Figure 12 shows a single LSTM unit. By 

inspecting Figure 12 we can see the four major operations in a LSTM unit the forget gate 

(ft), the input gate (it), the output gate (ot), and memory cell (ct). The key component of the 

LSTM unit is the memory cell (ct), a tensor responsible for holding all the critical long term 

dependencies learned over time. These critical long term dependencies will be written and 

modified by the LSTM cell every time step depending of the information computed by the 

forget gate (ft),the input gate (it) and the output gate (ot).  

First, the input gate (it) is responsible for evaluating what part if any of the past 

historical data should be kept for further training. Mathematically, the input gate is described 

as follows: 

𝒊𝐭 =  σ(𝐖(𝐢)𝒙𝐭 + 𝐔(𝐢)𝒉𝐭−𝟏 + 𝐛(𝐢)) ,                   (63) 

where 𝐖(𝐢), 𝐔(𝐢) and  𝐛(𝐢)are respectively the input weight, recurrent weight and bias of the 

input gate and σ represents a sigmoidal activation function. The idea of the input gate is to 

allow the network to keep relevant information from the previous time step, but at the same 

time allow it to ignore “stale” information. The input gate is controlled by a sigmoidal 

function, which will produce a tensor with values of 0 and 1 that will express if either a value 

of a certain location in the previous step is relevant or not. 

Once we have decided about the amount of information that it is worth keeping as 

determined by the input gate the information that is worth recording is determined in the 
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memory cell (ct). The process of identifying what information is worth recording in the 

memory cell is composed of two parts, identifying the new information we want to record and 

the old information we wish to keep from the previous memory state. Mathematically, the 

memory cell is a combination of the forget gate and the input gate described by the following 

recursive equation: 

 𝒄𝐭 =  𝐟𝐭 ∗ 𝐜𝐭−𝟏 +   𝐢𝐭 ∗ tanh(𝐖(𝐜)𝐱𝐭 +  𝐔(𝐜) 𝐡𝐭−𝟏 + 𝐛(𝐜)),                (64) 

where 𝐜𝐭−𝟏, 𝐖(𝐜), 𝐔(𝐜) and  𝐛(𝐜)are respectively the previous memory state, the input weight, 

recurrent weight and bias of the memory cell. The first part in equation 64 above is the 

information of the previous memory state worth keeping and the second part is the new 

information worth keeping. In addition, the forget gate is described as 

 𝐟𝐭 =  σ(𝐖(𝐟)𝐱𝐭 + 𝐔(𝐟)𝐡𝐭−𝟏 + 𝐛(𝐟)),                   (65) 

Where now 𝐖(𝐟), 𝐔(𝐟) and  𝐛(𝐟) are respectively the input weight, recurrent weight and bias 

of the forget gate.  

To conclude, as with most recurrent networks, the output is computed after every 

time step where this operation is also composed of two parts an output gate (𝑜t) and the 

final output (ht). The output gate is described as 

𝐨𝐭 =  σ(𝐖(𝐨)𝐱𝐭 + 𝐔(𝐨)𝐡𝐭−𝟏 + 𝐛(𝐨)),                   (66) 

Where 𝐖(𝐨), 𝐔(𝒐) and  𝐛(𝒐)are respectively the input weight, recurrent weight and bias of the 

output gate. The final output of the LSTM is computed as  

𝐡𝐭 = 𝐨𝐭 ∗ tanh (𝐜𝐭),                     (67) 

where the tanh function part computes an intermediate tensor from the memory cell and 

where the output gate is a gate responsible of shutting off the output if necessary, therefore 

filtering the output. This output will prove an internal signal or a final value depending on the 

model. 
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Figure 12. Illustration of the LSTM recurrent network “cell” 

2.2.5 Gated Recurrent Units (GRU) 

As explained earlier, LSTM units have been successful in capturing the dynamic 

behavior of data through the introduction of 4 self-loops, but how much of this architecture is 

actually necessary to capture the behavior. Gated Recurrent Units (GRU) were developed 

as a way to study other possible architectures capable of capture the dynamic behavior of 

the data while allowing the time scale control and forgetting capabilities (Chung, 2014, 

2015). The difference between LSTM and GRU relies that GRU is composed of only two 

gated units, in charge of updating or resetting the state unit, and exposes the hidden content 

by not using a memory unit. Figure 13 shows us an illustration of a single GRU unit. By 

inspecting Figure 13 we can see the three major operations in a GRU unit the update gate 

(zt), the reset gate (𝑟t), and state (ht). 

In GRU’s the update gate (zt) is responsible of determining how much of the data 

presented is worth keeping to be passed to the future. Mathematically, the update gate is 

described as  

𝐳𝐭 =  σ(𝐖(𝐳)𝐱𝐭 + 𝐔(𝐳)𝐡𝐭−𝟏 + 𝐛(𝐳))  ,                  (68) 

where 𝐖(𝐳), 𝐔(𝐳) and  𝐛(𝐳) are respectively the input weight, recurrent weight and bias of the 

update gate and σ represents a sigmoidal activation function. On the other hand, the reset 
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gate (rt) is responsible of determining which parts of the previous information should be 

forgotten. The reset gate is described as  

𝐫𝐭 =  σ(𝐖(𝐫)𝐱𝐭 + 𝐔(𝐫)𝐡𝐭−𝟏 + 𝐛(𝐫)) ,                   (69) 

where 𝐖(𝐫), 𝐔(𝐫) and  𝐛(𝐫) are respectively the input weight, recurrent weight and bias of the 

reset gate. 

Finally, the state (ht) is in charge of holding the valuable information of the sequence 

for the current unit and propagating the value down the network. The final state is a 

combination of the information contained in both the update gate and the reset gate. 

Mathematically, described as  

𝐡𝐭 = 𝐳𝐭 ∗ tanh(𝐖(𝐡)𝐱𝐭 + 𝐫𝐭𝐔
(𝐡)𝐡𝐭−𝟏 + 𝐛(𝐡)) + (1 − 𝐳𝐭) ∗ 𝐡𝐭−𝟏 ,               (70) 

where 𝐡𝐭−𝟏, 𝐖(𝐡), 𝐔(𝐡) and  𝐛(𝐡) are respectively the previous state, the input weight, 

recurrent weight and bias of the state. 

 

 

Figure 13. Illustration of the GRU recurrent network “cell” 
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2.3 Tennessee Eastman Process (TEP) 

2.3.1 TEP Problem Description 

The Tennessee Eastman Process (TEP) is a process which model was developed 

by Downs and Vogel (1993) in collaboration with the Eastman Chemical Company. The 

model has become a benchmark problem for testing, control and optimization strategies by 

academia and industry (Downs & Vogel, 1993).  Different simulators have been produced 

for this problem either in Matlab or in other coding languages. The usefulness of this 

simulator stems from the fact that it represents an actual functioning chemical plant that 

involves several typical engineering units such as reactors and distillation units, several 

control loops and several controlled, manipulated variables and disturbances. In addition, 

the Tennessee Eastman plant has been widely successful as a source of information for 

several process monitoring and fault detection solutions (Bathelt, Ricker, & Jelali, 2015; 

Chiang et al., 2001; Kulkarni, Jayaraman, & Kulkarni, 2005; Larsson, Hestetun, Hovland, & 

Skogestad, 2001; Lau, Ghosh, Hussain, & Che Hassan, 2013; Rato & Reis, 2013; Ricker, 

1996; Xie & Bai, 2015). The simulator of the TEP is used in the current study to test the 

proposed deep learning fault detection techniques. 

The process simulated in the Tennessee Eastman is composed of 5 major unit 

operations: reactor, condenser, stripper, separator and compressor. In addition, the 

simulation contains several chemical reactions that translate on 8 different components in 

the simulation: 2 products (G and H), 4 reactants (A, C, D and E), a byproduct (F) and an 

inert (B). Figure 14 shows the process flowsheet of the Tennessee Eastman plant that 

describes the plant operation. The Tennessee Eastman simulation contains 53 total 

measurement composed of 22 continuous process variables, 19 sampled analyzer process 

variables and 12 manipulated variables. All these measurements can be simulated to 

contain Gaussian noise. The description and the label of each process measurements are 

listed in tables 2, 3 and 4 respectively.  

 Furthermore, it should be pointed out that the plant simulation in open loop is 

unstable due to the presence of highly exothermic reactions in the process reactor.  

Therefore, there have been several control schemes implemented in order to stabilize the 

simulation.  The most popular Tennessee Eastman process control scheme was developed 
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by Ricker, applying a decentralized system control scheme (Ricker, 1996). In addition to the 

process inherent instability, the simulation contains 20 pre-programmed faulty scenarios, 

which are described thoroughly in table 5. In 2015, Ricker release a revision to his original 

control scheme for the Tennessee Eastman that brought updates in some algorithms and 

structure of the code and additional process measurements and disturbances (Bathelt et al., 

2015). 

The labels considered in Tables 2 through 5 are the labels used in the original Tennessee 

Eastman Simulation. By giving these labels we intend to facilitate the traceability of these 

measurements for the readers. More information about the process model can be found in 

the original paper (Downs & Vogel, 1993).  More details about the control schemes applied 

to the simulation can be found in the original Ricker control scheme (Ricker, 1996) and its 

revised version (Bathelt et al., 2015), which can be downloadable in 

http://depts.washington.edu/control/LARRY/TE/download.html.  

 

 

Figure 14. Tennessee Eastman plant process flowsheet 
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Table 2. Manipulated variables in Tennessee Eastman plant 

Description Label 

D feed flow XMV(1) 

E feed flow XMV(2) 

A feed flow XMV(3) 

A and C feed flow XMV(4) 

Compressor recycle valve XMV(5) 

Purge valve XMV(6) 

Separator pot liquid flow XMV(7) 

Stripper liquid product flow XMV(8) 

Stripper steam valve XMV(9) 

Reactor cooling water flow XMV(10) 

Condenser cooling water flow XMV(11) 

Agitator speed XMV(12) 

 

Table 3. Continuous process measurements in Tennessee Eastman plant 

Description Label 

A feed XMEAS(1) 

D feed XMEAS(2) 

E feed XMEAS(3) 

A and C feed XMEAS(4) 

Recycle flow XMEAS(5) 

Reactor feed rate XMEAS(6) 

Reactor pressure XMEAS(7) 

Reactor level XMEAS(8) 

Reactor temperature XMEAS(9) 

Purge rate XMEAS(10) 

Product separator temperature XMEAS(11) 

Product separator level XMEAS(12) 

Product separator pressure XMEAS(13) 

Product separator underflow XMEAS(14) 

Stripper level XMEAS(15) 

Stripper pressure XMEAS(16) 

Stripper underflow XMEAS(17) 

Stripper temperature XMEAS(18) 

Stripper steam flow XMEAS(19) 

Compressor work XMEAS(20) 

Reactor cooling water outlet temperature XMEAS(21) 

Separator cooling water outlet temperature XMEAS(22) 
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Table 4. Sampled process measurements in Tennessee Eastman plant 

Description Label 

Reactor feed analysis of A XMEAS(23) 

Reactor feed analysis of B XMEAS(24) 

Reactor feed analysis of C XMEAS(25) 

Reactor feed analysis of D XMEAS(26) 

Reactor feed analysis of E XMEAS(27) 

Reactor feed analysis of F XMEAS(28) 

Purge gas analysis of A XMEAS(29) 

Purge gas analysis of B XMEAS(30) 

Purge gas analysis of C XMEAS(31) 

Purge gas analysis of D XMEAS(32) 

Purge gas analysis of E XMEAS(33) 

Purge gas analysis of F XMEAS(34) 

Purge gas analysis of G XMEAS(35) 

Purge gas analysis of H XMEAS(36) 

Product analysis of D XMEAS(37) 

Product analysis of E XMEAS(38) 

Product analysis of F XMEAS(39) 

Product analysis of G XMEAS(40) 

Product analysis of H XMEAS(41) 

 

Table 5. Process disturbances in Tennessee Eastman plant 

Description Label Type 

A/C feed ratio, B composition constant IDV(1) Step 

B composition,  A/C ratio constant IDV(2) Step 

D feed temperature IDV(3) Step 

Reactor cooling water inlet temperature IDV(4) Step 

Condenser cooling water inlet temperature IDV(5) Step 

A feed loss IDV(6) Step 

C header pressure loss-reduced availability IDV(7) Step 

A, B, C feed composition IDV(8) Random 

D feed temperature IDV(9) Random 

C feed temperature IDV(10) Random 

Reactor cooling water inlet temperature IDV(11) Random 

Condenser cooling water inlet temperature IDV(12) Random 

Reactor kinetics IDV(13) Drift 

Reactor cooling water valve IDV(14) Stiction 

Condenser cooling water valve IDV(15) Stiction 
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Deviations of heat transfer within stripper IDV(16) Random 

Deviations of heat transfer within reactor IDV(17) Random 

Deviations of heat transfer within condenser IDV(18) Random 

Recycle valve of compressor, underflow separator, 
underflow stripper and steam valve stripper 

IDV(19) Stiction 

Unknown IDV(20) Random 

2.3.2 Previous Fault Detection and Diagnosis Techniques based on Statistical 

Approaches 

Several data-driven statistical process monitoring approaches have been applied to 

the detection and diagnoses of disturbances in the Tennessee Eastman simulation. Each of 

these methods have shown different levels of success in detecting and diagnosing the 20 

faults contained in the simulation. It is important to denote that several statistical studies 

have reported faults 3, 9 and 15 as unobservable due to the close similarity in the responses 

of the measured variables used to detect these faults (Chiang, Russell, & Braatz, 2000; Du 

& Du, 2018; Lau et al., 2013; Mohamed Bin Shams, Budman, & Duever, 2010). Therefore, 

during this section, we are reviewing the statistical approaches that have been used for the 

TEP and the corresponding level of performance of these methods.   

Principal Component Analysis (PCA) is an unsupervised learning data driven 

technique based on orthogonal transformations for simplifying a multivariate data set by 

reducing the dimensionality while conserving the most relevant information (Hotelling, 1933; 

Pearson, 1901). PCA and many variations of the general PCA algorithm has been 

successfully applied to several studies for fault detection and diagnosis problem (Lau et al., 

2013; Yin, Ding, Haghani, Hao, & Zhang, 2012; Zhang, 2009). This has usually yielded good 

performance detection rate in many observable faults, but deficient performance for the 

difficult to observe faults (<3%).  One important variation to the normal PCA algorithm is the 

adjustment of the algorithm to take advantage of dynamic relationships in the data, known 

as Dynamic Principle Component Analysis (DPCA). DPCA implements time lag shifts to the 

data matrix to create duplicate vectors that, in theory, could learn dynamical relationships 

occurring in the data (Ku, Storer, & Georgakis, 1995). DPCA has been found to be able to 

improve the results of static PCA on observable faults, but it is still unable to significantly 

improve detection with respect to the faults that are difficult to observe faults (Chiang et al., 

2001; Ku et al., 1995; Odiowei & Yi, 2010; Rato & Reis, 2013; Yin et al., 2012).  
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Independent Component Analysis (ICA) is also an unsupervised method based on 

decomposing multivariate data set into independent non-Gaussian vectors, addressing higher 

order dependencies (Comon, 1994). Typically, the detection rate of ICA is comparable to the 

detections rates obtained by PCA; however, it does provide improvement for some faults in 

the Tennessee Eastman simulation (Lee, Qin, & Lee, 2006; Rashid & Yu, 2012; Yang, 

Chen, Chen, & Liu, 2012; Yin et al., 2012; Zhang, 2009). As with PCA, we can make the ICA 

algorithm can be modified to take advantage of dynamic relationships in the data, known as 

Dynamic Independent Component Analysis (DICA). DICA has been found to be able to 

obtain high detection rates in all observable faults, but it is still unable to detect efficiently 

faults 3, 9 and 15 (Stefatos & Hamza, 2010). 

Canonical Variate Analysis (CVA) is another dimensionality reduction algorithm that 

involves the selection of pair of variables between the inputs and output of two sets in order 

to maximize the correlation. In contrast with other methods, CVA is able to take into account 

sequential correlations in data sets with dynamic behavior (Larimore, 1990). The CVA 

algorithm is applied mathematically as a linear state-space model that is identified from time 

series input data and an output data. Therefore, CVA examine the data for linear 

combinations of the past that could explain the variation of the data in the future. CVA has 

been successfully applied to several studies for fault detection and diagnosis problem 

(Jiang, Huang, Zhu, Yang, & Braatz, 2015; Stubbs, Zhang, & Morris, 2012; Yang et al., 

2012). With the help of lagged data CVA performance for detection of fault has achieved 

very good results for most faults in the Tennessee Eastman simulation except for 3, 9 and 

15 but it has also been able to improve the detection rates for 3, 9 and 15 (Cao & Samuel, 

2016; Chiang et al., 2001; Odiowei & Yi, 2010; Samuel & Cao, 2015).  

In addition to the methods reviewed, there are other prominent data-driven statistical 

process monitoring solutions that have been applied to the Tennessee Eastman simulation. 

Partial Least Squares (PLS) is another dimensionality reduction method that based on 

maximizing the covariance between a predictor and a predicted matrix for each component 

in the space (Wold, 1985). The applications of the general PLS algorithm and other modified 

PLS algorithms has provided good results comparable to the performances of PCA and ICA 

(Chiang et al., 2000; Dong, Zhang, Huang, Li, & Peng, 2015; Odiowei & Yi, 2010; Yang et 

al., 2012).  
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Typically, when applying the algorithms showed above that compare the values of 

the normal state with values of the state in the presence of the fault, it is possible to answer 

the fault detection problem, i.e. whether operation is normal or faulty. However, by 

combining the results of these algorithms with classification techniques it is also possible to 

solve the diagnosis problem. Fisher Discriminant Analysis (FDA) is a supervised fault 

diagnosis method that takes into account the information between classes in order to 

maximizes the variance between classes and compute discriminants (directions) (Fisher, 

1936; Mika, Ratsch, Weston, & Scholkopf, 1999). FDA have achieved good performance for 

the detection of observable faults in the Tennessee Eastman simulation (Chiang, 

Kotanchek, & Kordon, 2004; Chiang et al., 2000; Yang et al., 2012). Support Vector 

Machines (SVM) is another supervised classification technique based on transforming the 

input data into a high dimensional space to maximize the distance between two classes 

(Vapnik, 1998). SVM have been applied in the Tennessee Eastman simulation as a solution 

for both detection and diagnosis of faults (Chiang et al., 2004; Kulkarni et al., 2005; 

Mahadevan & Shah, 2009).Another solution to the problem of fault diagnosis is combining 

the results from the PCA algorithm in combination with a Cumulative Sum (CUSUM). This 

has showed to be a viable option to solve the detection problem of difficult to observe  

disturbances  due that the cumulative sum of values over time will be able to detect minor 

changes in the process variables that cannot be detected without using the CUSUM 

operation (M. Bin Shams et al., 2011). 
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Table 6. Previous results for the detection of difficult to observe faults with CUSUM-PCA 

 

This technique was applied for the detection of faults of difficult to observe faults and depicts the 

Average Run Length (ARL) to detect these faults in hours using a combination of CUSUM and PCA.  

Results are extracted from: CUSUM-PCA (Mohamed Bin Shams et al., 2010). 

 

Table 7. Previous results for the detection of faults with different statistical techniques. 

 

All these results are for the detection of faults. Results are extracted from: FDA (Yin et al., 2012), 

PLS/TPLS/MLPS (Yin et al., 2012), DPLS (Odiowei & Yi, 2010), PCA (Chiang et al., 2001; Lau et al., 

2013; Mahadevan & Shah, 2009; Rato & Reis, 2013; Stefatos & Hamza, 2010; Yin et al., 2014), 

DPCA (Chiang et al., 2001; Mahadevan & Shah, 2009; Odiowei & Yi, 2010; Rato & Reis, 2013; 

Stefatos & Hamza, 2010; Yang et al., 2012; Yin et al., 2014), CVA (Chiang et al., 2001; Odiowei & 

Yi, 2010), CVA-ICA (Yang et al., 2012), ICA (Stefatos & Hamza, 2010; Yang et al., 2012; Yin et al., 

2014), DICA (Stefatos & Hamza, 2010), CVA-KDE (Odiowei & Yi, 2010; Yang et al., 2012), SVM 

(Chiang et al., 2004; Mahadevan & Shah, 2009). 

Fault Statistics ARLo.c (hrs)

3 LCS 127.05

9 SCS 8.2

15 SCS 41

3 T2 102.4

9 T
2 276.05

15 T
2 89.65

3 & 15 T
2 41.3

CUSUM-PCA

Fault FDA PLS TPLS MPLS PCA DPCA CVA CVA-ICA SVM ICA CVA-KDE

1 100 99.88 99.88 100 99.88 99.88 100 100 99.8 99.59 99.75

2 98.75 98.63 98.88 98.88 98.75 99.38 99 100 98.6 7.08 99.5

3 7 14.25 24.25 18.75 12.88 12.25 1.4 91.79 N/A 16.14 73.03

4 100 99.5 100 100 100 100 100 100 99.6 95.42 99.88

5 100 33.63 100 100 33.63 43.25 100 100 100 100 99.88

6 100 100 100 100 100 100 100 100 100 100 99.88

7 100 100 100 100 100 100 100 100 100 100 99.88

8 98.13 97.88 98.5 98.63 98 98 98.4 99.37 97.9 97.29 96.63

9 6.25 14.5 23.5 18.75 8.38 12.88 0.7 95.79 N/A 7.29 92.26

10 87.13 82.63 91 91.13 60.5 72 90.1 99.58 87.6 91.25 96.63

11 73.38 78.63 86.13 83.25 78.88 91.5 80.5 100 69.8 79.17 99.38

12 99.75 99.25 99.63 99.88 99.13 99.25 100 100 99.9 98.54 99.5

13 95.63 95.25 96.13 95.5 95.38 95.38 96 100 95.5 97.5 96.13

14 100 100 100 100 100 100 100 100 100 99.79 99.88

15 12.63 23 29.88 23.25 14.13 19.75 9.7 97.9 N/A 11.46 99.5

16 83.25 68.38 90.75 94.28 55.25 67.38 91.6 99.37 89.8 80.41 99.13

17 96.63 94.25 96 97.13 95.25 97.25 97.6 100 95.3 90.42 98.13

18 90.75 90.75 91.88 91.25 90.5 90.88 90.8 98.74 90 84.58 99.25

19 87.88 26 82.88 94.25 41.13 87.25 98.1 100 83.9 75.83 99.88

20 81.88 62.75 78.38 91.5 63.38 73.75 91.3 99.58 90 93.96 97.63

21 52.75 59.88 66.38 72.75 52.13 61 65.8 N/A 52.8 N/A N/A
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2.3.3 Previous Detection and Diagnosis Approaches based on Deep Learning  

Deep learning network models can also serve as a fault monitoring tool. Different 

deep learning approaches have been applied for the detection and diagnoses of 

disturbances in the Tennessee Eastman simulation. As with the statistical methods, each 

reviewed method have shown different results for the detection and diagnosis problem of 

the 20 faults contained in the simulation. In the case of deep learning methods, as with 

statistical methods, faults 3, 9 and 15 have been classified as difficult to observe due to the 

closeness of the responses in the measured variables (Lv, Wen, Bao, & Liu, 2016; Xie & 

Bai, 2015; Zhao, Sun, & Jin, 2018). Usually, to solve the problem of detection and diagnosis 

problem the data can be used as either static or dynamic 

 When approaching the data as static the input vectors of data at different time steps 

are considered as independent vectors. One of the first applications of neural networks in a 

chemical plant was developed to detect and diagnose faults in the Syschem plant, which 

contains 19 different faults (Hoskins, Kaliyur, & Himmelblau, 1991). In this work a three 

layered network with backpropagation was implemented resulting in valuable associations 

between system faults and input vectors providing good detection and classification of fault. 

In 2015 Xie and Bai proposed deep neural networks as solution for the diagnosis problem in 

the Tennessee Eastman simulation with some modifications (Xie & Bai, 2015). In their work 

they proposed the application of a hierarchical deep neural network, which is basically a 

model that separates the faulty data into different clusters and depending on the cluster to 

which newly acquired data belong a diagnosis can be produced. The classification results 

obtained by this method are promising for many observable faults and the hierarchical 

structure improves the classification rates from simple deep neural networks. In 2016 Lv et 

al. proposed implementing a stacked sparse auto encoder (SSAE) structure to a deep 

neural networks in order to extract important features from the input in order to improve the 

diagnosis problem in the Tennessee Eastman simulation (Lv et al., 2016). The diagnosis 

results applying this deep learning technique showed improvements, when compared to 

typical statistical techniques, for most observable faults; however, in the case of difficult to 

observe faults as 3, 9 and 15 the classification accuracy continue to be unsatisfactory. In 

addition, a comparison between a deep stacked networks (DSN) and deep stacked auto 

encoders (SAE) for the detection of faults was also studied (Chadha & Schwung, 2018). 
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 While with static data we treat the input data vectors collected at each time interval 

as independent vectors for dynamic data the time dimension is explicitly consider by 

inputting the data in the form of matrices where the columns correspond to the sequential 

lagged variables measured at different time intervals (Li, Olson, & Chester, 1990). Recently, 

Long Short Term Memory units have been applied to the Tennessee Eastman Problem for 

the diagnosis of faults (Zhao et al., 2018). The article based the results in a dynamical 

model with LSTM units to learn the dynamical behavior from sequences of features of three 

time steps and the application of batch normalization to enhance convergence. This model 

is able to enhance the classification rates of most observable faults and slightly improves 

the results of the difficult to observe faults. 

Table 8. Previous results for the detection and diagnosis of faults with deep learning techniques. 

 

It is important to denote that in the case of DL-LSTM we based this results in the ROC curves and 

drew lines in false positive rates to get the classification.  Results are extracted from: DSN&SAE for 

detection (Chadha & Schwung, 2018), DL-SSAE for classification (Lv et al., 2016), DL-HIER for 

classification (Xie & Bai, 2015), DL-LSTM for classification (Zhao et al., 2018). 

Fault Case DSN SAE DL-SSAE DL-HIER (FP = 0.1) (FP = 0.2)

1 90.8 77.6 100 97.7 100 100

2 89.6 85 99.75 97.2 100 100

3 14.4 79.4 N/A N/A 68 90

4 47.6 56.6 100 99.6 100 100

5 31.6 76 98.88 92.8 100 100

6 91.6 82.8 100 99.5 100 100

7 91 80.6 100 99.5 100 100

8 90.2 83 97.88 62.3 94 95

9 16.3 50.6 N/A N/A 60 88

10 63.2 75.3 99.25 81.8 90 95

11 54.2 75.9 89.25 52.5 87 93

12 87.8 83.3 99.75 55.3 90 95

13 85.5 83.3 99.75 50.4 88 95

14 89 77.8 95.13 69.5 100 100

15 26.7 55.5 N/A N/A 62 94

16 74.8 78.3 99.5 77.9 81 84

17 83.3 78 99.75 71.4 93 98

18 82.4 83.3 99.5 84.3 93 97

19 52.4 67.7 96.75 97.2 100 100

20 44.1 77.1 99.38 73.4 83 91

21 31 16.7 N/A N/A 38 73

DL - LSTM
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2.3.4 Different Control Schemes in the Tennessee Eastman Simulation 

As explained in the previous section the Tennessee Eastman Simulation, has been 

widely applied for several applications of which one of the most important one is the testing 

of novel control schemes. Nowadays, three different control schemes for the TEP has been 

made available in the Tennessee Eastman Matlab simulator. These three modes have been 

made available in recent releases of the TEP called MultiLoop_mode3, MultiLoop_mode1 

and MultiLoop_ Skoge _mode1 (Bathelt et al., 2015).  

MultiLoop_mode3 and MultiLoop_mode1 where developed by Lawrence Ricker and 

the Simulink model of the control strategy is fully described in the paper "Decentralized 

control of the Tennessee Eastman Challenge Process" (Ricker, 1996). It is important to 

consider that both of these models were developed using decentralized control strategies.  

The decentralized control scheme is based on partitioning the whole plant into little sub-

units, with one controller is sued to control each sub-unit. The key difference between Mode 

3 and Mode 1 lies is that they consider different operating conditions and process initial 

values. These differences require the use of different control loops to ensure good control 

performance.  

On the other hand, the MultiLoop_ Skoge _mode1 Simulink model of the control 

strategy is described in  the paper “Self-Optimizing control of a large-scale plant: The 

Tennessee Eastman process” (Larsson et al., 2001). The control scheme applied on this 

mode introduces an idea by Morari et al (Morari, Arkun, & Stephanopoulos, 1980) and 

further developed by Skogestad (Skogestad, 2000) named “self-optimizing control”. This 

idea involves the selection of a set of controlled variables, which if controlled at constant 

setpoints will result in a near to optimal process operation (Skogestad, 2000). In general, the 

self-optimizing control approach provides information about the controlled and manipulated 

variables that are important for the control of the system  
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Chapter 3 

Fault Detection and Classification using Static Data 

3.1 Overview 

In this chapter, statistical monitoring models using static data are applied to the 

Tennessee Eastman Process for fault detection and classification problems. This chapter 

covers two principal detection and diagnosis models: Principal Component Analysis (PCA) 

and Artificial Neural Networks (ANN). For the purpose of fault diagnosis with PCA we 

combined the structure of PCA with Support Vector Machine (SVM) to differentiate between 

different faults. PCA was considered for comparison since it is the most widely used 

approach to detection and diagnosis in both academic studies and industrial practice. Fault 

diagnosis with static data refers to the fact that only data available at a given time interval is 

used to diagnose a fault at that time interval. Therefore, the information contained in the 

vector of data at the particular time interval at which the fault is being diagnosed it only 

accounts for the correlation between variables but it does not account for dynamic 

correlations between the current and past time intervals. The use of dynamic data where 

dynamic correlations are considered is presented separately in Chapter 4.  

The classification rates and false alarm rates resulting from models trained with static 

data will be tested with the 20 different in a fault diagnosis problem together. In addition, 

based on these results, a hierarchical scheme is proposed for both PCA and ANN models to 

assess whether this hierarchical static data based structure is able to improve the fault 

diagnosis results, as well as the false alarm rates. In addition, the robust performance of the 

PCA and ANN models is tested by comparing the results for different control schemes 

available for the TEP simulator. 

3.2 Definitions and Methods 

Process monitoring algorithms involve two objectives: fault detection and fault 

classification. Fault detection is usually viewed as a binary classification problem that is 

used to assess whether the process is normal or faulty. Typically, fault detection is trained 

by first analyzing the normal process information, which is then used to generate statistical 

limits of normal operation. Therefore, when a particular fault occurs the algorithm will detect 
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the abnormal behavior by assessing whether the data is out of the normal range of 

operation. On the other hand, fault classification is a more complex multi-class classification 

problem where data is associated to different classes and where each class correspond to a 

particular fault. Hence, fault classification algorithms infer from different correlations between 

the variables whether a specific fault is occurring at any particular time. Following the above, 

in the current study we are merging the concepts of detection and classification into a single 

algorithm by adding another class which represent the normal operation condition. Thus by 

treating normal operation as an additional class, fault detection can be accomplished by 

simply assessing whether the data corresponds to normal operation or not.  

In addition, in this research a differentiation is made between two types of faults 

occurring in the TEP problem: observable and difficult-to-observe. Observable faults are 

considered as fault that have discernible symptoms as compared to the noise considered in 

the TEP case study and have been classified with a good degree of accuracy using 

conventional fault detection or diagnosis techniques, e.g. multivariate statistical algorithms. 

On the other hand, the difficult to observe faults are defined as faults which symptoms are 

very similar to other faults, they exhibit a low signal to noise ratio and they have been 

reported as difficult to classify with conventional statistical techniques.  

3.2.1 Process monitoring with Principal Component Analysis 

As explained in the previous chapter, Principal Component Analysis (PCA) is an 

unsupervised learning data driven technique based on orthogonal transformations for 

simplifying a multivariate data set by reducing its dimensionality while conserving the most 

relevant information (Hotelling, 1933; Pearson, 1901).  The PCA is a data reduction 

technique, given a data matrix 𝐗  composed of n observations and p random variables, that 

computes a set of linear combinations k, where 𝑝 > 𝑘, that explains the highest percentage 

of the total variation in the observations. This is computed by finding the sample covariance 

matrix 𝐒 of matrix 𝐗, which is equivalent to the calculation of the eigenvalue decomposition 

of 𝐒 . Accordingly, this equation is computed as follows: 𝐒 

𝑺 =  
1

n−1
 𝐗T𝐗 = 𝐏𝐃𝑷T                     (71) 

Where P is an orthogonal matrix which columns represents the corresponding eigenvector 

of S and the diagonal elements of D represents the real non-negative values of the 
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eigenvalues. Since PCA is a data reduction technique it results in a lower dimensional 

space where  k < p and the loading vectors’ set is of dimension:  

𝐏𝑘 = (v1, v2 …vk) ∈ 𝐑pxk                   (72) 

Following the above a lower-dimensional space projection of X, can be described by the 

following score matrix: 

𝐘 = 𝐏k
T𝐗𝐢, i = 1,…n                     (73) 

The score space , which is the projection of the score matrix onto the p dimensional space, 

is  

𝐗̂ = 𝐓𝐏T                      (74) 

Then, the residual matrix, which describes the remaining differences between the reduced 

dimensional space projected and the actual input, is  

𝐄 = 𝐗 − 𝐗̂                      (75) 

PCA can be used for fault detection by using measures that quantify the statistically 

significant differences between the normal states and the faulty states. Particularly, there 

are two statistical measures that can be applied as fault detection techniques when applying 

PCA: 𝐓2 and 𝐐.  

The 𝐓2 statistic is computed as 

𝐓i
2 = 𝐱i

T𝐏k𝐃
−1𝐏k

T𝐱i                     (76) 

where 𝐱 is an observation vector of a process variable, 𝐏 is the orthogonal matrix and 𝐃 is a 

diagonal matrix which diagonal elements are the eigenvalues of the original X. The 

Hotelling’s 𝐓2 statistics test represents the variation of the samples from the mean. On the 

other hand, 𝐐 statistis, also known as 𝐐 residual, measures the variation between the data 

samples representation in the k reduced projected space and each sample. 𝐐 residuals are 

computed as follows:  

𝐐i = 𝐫i
T𝐫i                       (77) 

Where 𝑟𝑖 is the residual vector that is calculated using the following formula 

𝐫i = (𝐈 − 𝐏K𝐏k
T)𝐱i                      (78) 
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PCA is applied in this study as a space reduction technique that explains the 

variance of a set of variables through a projection onto linear combinations of these 

variables. Usually, the first few principal components, which explained the largest variation, 

are used for monitoring thus neglecting the principal components with small contributions. 

Accordingly, assessing the relative importance of the number of principal components to be 

selected for process monitoring performance is crucial for correct detection and 

classification. 

3.2.2 Fault classification using Support Vector Machine 

SVM is a supervised binary classification technique, which goal is to project the data 

onto linear hyperplanes to separate between pre-defined classes, given a dataset matrix 𝐗 

and a labels matrix 𝐘 (Cortes & Vapnik, 1995). Usually, the matrix 𝐗 is represented by mxn, 

where m is the number of observations and n the number of variables. On the other hand, 

each row in the labels matrix Y is represented as either 1 or -1 to differentiate between the 

situation where the data belongs or does not belong to the class respectively. Given that 

SVM uses linear hyperplanes to differentiate between classes, we can write it as 

f(x)  =  𝒘̅ ∙ 𝒙̅𝑖 + 𝒃                      (79) 

Where 𝒘̅ and 𝒃 are parameters that determine the position and orientation of the linear 

hyperplane. Furthermore, based on the values of the matrix 𝐘, SVM theory dictates that a 

canonical hyperplane is defined which permits defining the following constraint 

𝐲i(𝐰̅ ∙ 𝐱̅i + 𝐛)-1 = 0                     (80) 

Then, for the purpose of finding an optimal separation hyperplane, the distance between the 

two classes is represented as follows: 

𝜌(𝐰̅, 𝐛) =  
𝟐

‖𝐰̅‖
                      (81) 

After some mathematical manipulations it is possible to show that the optimal hyperplane 

that maximizes the distance between the two classes can be obtained by solving the 

following minimization problem subject to constraint (80): 

min
1

2
 ‖𝐰̅‖2                      (82) 
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Then, this constrained optimization problem can be formulated with Lagrange multipliers as 

follows: 

𝐥 =  
1

𝟐
‖𝐰̅‖2 − ∑𝜶𝒊[𝐲i(𝐰̅ ∙ 𝐱̅i + 𝐛) − 1]                      (83) 

Where 𝛼𝑖 represent the Lagrange multipliers. Then, to find the optimal solution to the 

problem : the optimality conditions are as follows: 

𝜕𝐥

𝜕𝐰
= 𝐰̅ − ∑𝜶𝒊𝐲i𝐱̅i = 0    ∴   𝐰 =  ∑ 𝜶𝒊𝐲i𝐱̅i

m
i                     (84) 

𝜕𝐥

𝜕𝐛
= − ∑𝜶𝒊𝐲i = 0    ∴   ∑ 𝜶𝒊𝐲i = 0m

i                      (85) 

From (83), (84) and (85) it is possible to obtain: 

𝐥 =  ∑ 𝜶𝒌
m
𝒌 − 

1

2
∑ ∑ 𝜶𝒊𝜶𝒋𝒚𝒊𝒚𝒋𝒙̅𝒊 ∙ 𝒙̅𝒋

m
j

m
i                    (86) 

From this equation, it can be noticed that the solution to the optimization problem depends 

only on the dot product of pairs of samples 𝒙̅𝒊 ∙ 𝒙̅𝒋. On the other hand, depending on the 

problem under consideration, it may be impossible to linearly separate between classes. To 

address highly nonlinear problems, the theory of Kernel function was developed (Hofmann, 

Schölkopf, & Smola, 2008), that is based on the transformation of the feature vector into a 

higher dimensional space, which can be expressed as follows:  

K(𝒙̅𝒊, 𝒙̅𝒋) =  ∅(𝒙̅𝒊) ∙ ∅(𝒙̅𝒋)                      (87) 

Where ∅ is considered the feature mapping. Then, the separation hyperplane can be re-

calculated using these Kernel transformations. Some of the most common Kernel functions 

are listed in table 9.  

Table 9. Kernel Functions Expressions 

Name Expression 

Linear K(𝒙̅𝒊, 𝒙̅𝒋) = 𝒙̅𝒊 ∙ 𝒙̅𝒋  

Polynomial 
K(𝒙̅𝒊, 𝒙̅𝒋) = (1 +

𝒙̅𝒊 ∙ 𝒙̅𝒋

𝜎2
)𝒏 

Radial Basis Function (RBF) 
K(𝒙̅𝒊, 𝒙̅𝒋) = exp(−

‖𝒙̅𝒊∙𝒙̅𝒋‖
𝟐

𝜎2 )  
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Even though Support Vector Machines (SVM) where first designed as a binary 

classification technique, several studies have been able to extend the SVM properties to 

multiclass classification problems. To extend the SVM binary classification problem into a 

multiclass classification approach two different methods have been proposed: “one-against-

all” or “one-against-one”. The “one-against-all” method is based on assembling k SVM 

models, where k is the number of classes. Then, the k classifiers are trained by using the 

information of each class against the information of all the other classes (L. Bottou et al., 

1994). On the other hand, the “one-against-one” method is developed by assembling 

k(k-1)/2 classifiers, where each one of these classifiers is obtained by comparing the data 

between two different classes. After training all the classifiers, scores can be developed that 

define to which class each set of data belongs to (Ulrich, 1999). During this study the “one-

against-one” strategy was applied since it is simpler to implement. In addition, there have 

been studies to investigate the efficacy of each of these methods and they have concluded 

that the “one-against-one” method is usually the better strategy (Hsu & Lin, 2002). 

3.2.3 Fault diagnosis with Artificial Neural Networks 

In this study the structure of the neural network is developed by dividing the training 

in two different parts: a stacked auto encoder neural network that will help compressing the 

data into a smaller space followed by softmax classifier layer which will provide the final 

classification result. It should be noticed that the purpose of the auto-encoder is twofold: i- 

compressing the raw data into a smaller space and ii- it provides weight values that are 

used as initial guesses for further refined training of the autoencoder+softmax structure. 

Since the training of the final network is based on a highly nonlinear optimization procedure, 

the use of good initial guesses as provided by the autoencoder are crucial for the success of 

the final training procedure. It has been reported in the literature, that auto encoders have 

been found to help to boost the classification accuracy as well as loss function (Geoffrey E. 

Hinton et al., 2006). 

A stacked auto encoder is an unsupervised type of networks which consist of 

stacking several layers of neurons and forcing the output to replicate the input as best as 

possible as explained in the previous chapter. The data compression achieved by the 

autoencoder serves primarily to denoise the input data.  As mentioned in the previous 

chapter the auto-encoder is composed of an encoding part and a decoding part. However, 
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after training, the decoding part is left out while the encoding part, that is used to compress 

the data and denoise the inputs, is kept for further use in combination with a softmax based 

classification layer. In addition, in order to accelerate the training of the autoencoder and 

avoid the covariate shift problem mentioned in the previous chapter, a batch normalization is 

applied between the layers of the autoencoder.  

In order to use the autoencoder for classification the decoder is removed and the 

auto-encoder is connected to a classification layer. After combining the auto-encoder with 

the classification layer, the weights of the encoder may be left constant from the previous 

training operation or they may be fine-tuned together with the classification layer. Usually, 

when solving classification problems, it is possible to apply sigmoidal or softmax functions 

as activation functions in the output layer. Softmax activation function are able to handle 

multiclass classification problems by outputting set of binary values, where each 

configuration in this binary code represents a certain class. In addition, softmax functions 

provide probability distributions that can inform us on the confidence level of the prediction. 

Training the classification model involves a supervised learning procedure, where for each 

data vector applied for training or testing a class is assigned thus allowing the neural 

network model to learn to detect different patterns corresponding to different classes. 

3.3 Results and Discussions 

3.3.1 Experiment and Data Setup 

To demonstrate the effectiveness of the theory presented above, we generate 

training and test data from the Tennessee Eastman Process (TEP) simulation. The TEP 

control scheme used for the main part of the research is described as “Multiloop_mode3”. 

The data extracted from the TEP simulation has been extracted from the normal state and 

20 different faults, which consists of 52 different variables generated with a sampling interval 

of 36 seconds. It should be noticed that during the testing of our methods the normal state 

was considered as a different class and hence 21 different classes are considered for 

diagnosis (classification). In addition, we have eliminated the effect of short initial transients 

by avoiding using the first hour of the simulation. Each different fault is run for 72 hours, 

generating 7,100 samples for each state. This data is divided between training and testing 

data, where we include the first 4,100 samples as training data and the rest for testing. This 
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results in 21 different classes in total that sums up to 81,859 training samples and 59,179 

testing data. We should point out that the discrepancy between these numbers is due to the 

fact that when implementing faults 6 and 8 the simulation became unstable after a period of 

time (~6 h) due to the inherent unstable behavior of the reactor in response to the onset of 

fault 6. The problems related to Fault 6 have been reported in previous studies and control 

overrides have been proposed to avoid the resulting instability (Larsson et al., 2001). 

3.3.2 Static PCA-SVM vs Static ANN 

In this section the results obtained for fault diagnosis using different statistical tools 

and ANN will be analyzed and compared. First, the results of Principal Component Analysis 

(PCA) are presented.  Then, the relationship between the number of PCA loadings used and 

classification performance is discussed. Finally, the classification performance and the false 

alarm rates obtained with Support Vector Machine (SVM), PCA -SVM and Artificial Neural 

Networks (ANN) based on static data will be compared.  

 When applying PCA to the TEP dataset we combine all the training data of the 

different disturbances into one data matrix X  composed of n=86,100 observations and p=53 

random variables.  PCA will compute a set of linear combinations k, where 𝑝 > 𝑘, that 

explains the highest % of the total variation in the observations. Figure 15 shows the 

relationship between the number of PCA loadings and the variance explained in the dataset. 

As it can be observed in Figure 15, as we increase the number of principal components that 

are considered in the PCA model the variance captured by the model increases. However, 

ince the TEP simulation contains a certain % of noise in all the measurements and we are 

interested in filtering the noise from the data, the number of principal components in the final 

PCA model should be selected so as it results in improvements in classification rates. 

Hence, in order to determine the number of principal components to be used, we compared 

the classification results obtained from different combinations of principal components with 

SVM. Figure 16 shows the comparison between the classification rates resulting from 

models based on SVM only and on the combination of SVM with PCA. The comparison of 

explained variance among the models with different number of principal components is 

shown in Figure 15. It is evident from this figure that beyond 35 principal components there 

is no further improvement towards explaining the variance in the data. For example, 

considering PCA models with 15, 25 and 35 principal components resulted in the 
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explanation of 83%, 94% and 98.6% of the total variance respectively. Figure 16 indicates 

that for almost all the faults, we obtain higher classification rates when 98.6% of the dataset 

variances is explained by 35 principal components (linear relationships).  Figure 16 also 

shows that the results obtained from the combination of PCA and SVM provides significantly 

better classification as compared to a model that is based solely on SVM. Hence, it is 

concluded that the ability of PCA to denoise the raw data through data compression is very 

useful. Therefore, in the following sections of this chapter a model that combines PCA with 

SVM is used and 35 principal components are considered for the PCA component of the 

model.  Figure 17 shows the false alarm rates for each different class using the previous 

methods. Consistent with the classification results, the model that is solely based on SVM 

results in higher false alarm rates for many of the faults as compared to the rates obtained 

with the combines PCA+SVM model. 

 

 

Figure 15. Illustration of PCA loadings and explained variance. (white) Represents the explains 

variation by each loading. (black) Accumulation of variance explained. 
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Figure 16. Classification accuracy obtained in TEP depending on the number of loadings 

  

Figure 17. False alarm rates obtained in TEP depending on the number of loadings 
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Subsequently an ANN model composed of an auto-encoder and a softmax layer was 

developed and compared to the model based on SVM and to the model based on the 

combination of PCA and SVM. As explained above the autoencoder was learned first 

through an unsupervised learning procedure and the resulting weight values were used as 

initial guesses for re-training the weights of the final model that consists of the autoencoder 

connected to the softmax classification layer.    

Figure 18 shows the classification rates obtained by different statistical approaches 

for fault diagnosis, as well as for the ANN. From this figure, it can be observed that the ANN 

is able to provide better classification results than either the SVM or the combined 

PCA+SVM models. Good classification performance is obtained in most of the observable 

faults, with the exception of fault 16. However, for the faults (0,3,9,15) that are reported as 

difficult to observe in previous studies it is possible to observe that also with the techniques 

developed here the results are still poor. In the average, the classification accuracies are 

49.7%, 67.3% and 73.8% for SVM, PCA+SVM and ANN respectively. Figure 19 shows the 

false alarm rates obtained with the different models. From this figure it can be observed that 

the false alarm rates have a consistent trend with the classification rates’ results. 

Accordingly, the false alarm rates are particularly high for the difficult to observe faults. 

However, we can observe that the false alarm rates obtained with the ANN model are still 

significantly lower (better) that with the SVM, and SVM+PCA models. 
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Figure 18. Comparison of the classification accuracy of SVM, PCA+SVM and ANN obtained in 

TEP 

 

Figure 19. Comparison of the false alarm rated of SVM, PCA+SVM and ANN obtained in TEP 



 

 60 

3.3.3 Hierarchal PCA-SVM vs Hierarchal ANN 

To address the low classification rates obtained for the difficult-to-observe faults a 

hierarchal strategy is proposed here. First, a rationale for the use of a hierarchal structure 

will be provided. Then, the results with and without the hierarchical structure for all the 

proposed models will be compared, ie. SVM, PCA+SVM and ANN.  

The rationale behind this hierarchical structure derives from the confusion matrix of 

the classification results of the previous section illustrated in table 10. Table 10 indicates 

that the classification rates are good for almost every observable fault. However, when we 

focus on the classification performance of the difficult-to-observe faults we find that the 

neural network is not able to discern between the information of these faults. This is a 

common problem when we are dealing with data sets corresponding to different faults that is 

too similar one to another. This similarity result in large miss-classification of faults as also 

corroborated by the results in the confusion matrix.  

The proposed hierarchical structure addresses the similarities of data sets 

corresponding to different faults by focusing the classification model on the smaller group of 

faults that are difficult to classify. This is somewhat analogous to the use of weighted least 

squares based models where part of the outputs are weighted preferentially with respect to 

others. Similar preferential weighting could have been done with a single one ANN based 

model but isolating the problem by finding separate models for the easier to identify faults 

and for the difficult-to-identify faults is a simpler, easier to calibrate approach. Accordingly, 

we separate the data related to the difficult-to-identify faults and these data is then 

normalized anew based on the range of values for each variable obtained for these faults. 

This re-normalization is able to increase the variance of the data corresponding to the 

difficult-to-identify faults as compared to their relative variance when these data were 

embedded together with the rest of the faults, i.e. with the easier faults. This re-

normalization, enhances the fault classification. After normalizing the data, another ANN, 

SVM and PCA+SVM models are trained for the few faults included in the class of the 

difficult-to-observe faults. The proposed hierarchical structure for separate identification of 

easier and difficult to identify faults is shown in Figure 20.  

Figure 21 compares the classification rates for the different faults as obtained with 

the SVM, PCA+SVM and ANN models. Figure 21 shows that the relative superiority of the 
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ANN classification algorithm with respect to the SVM and PCA+SVM algorithms is still 

maintained. On the other hand, it is evident from Figure 21 that the classification accuracy 

for the difficult to observe faults when using the hierarchical structure improves as compared 

to the models that do not use this structure. This can be further seen in Figure 22, where we 

compare the classification rates obtained with ANN applying a simple all-to-all structure and 

the hierarchical structure. When we compare the overall average classification rate of the 

hierarchical structure to the original non-hierarchical model that consider all the faults 

together we can observe a slight improvement of 2.2% in the average classification rate: 

76.0% with the hierarchical structure versus 73.8% without the hierarchical structure.  

 

Table 10. Confusion matrix of the classification results for TEP for an all-to-all structure. 

 

       y_0_test_h

pred2_h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FA

0 546 0 0 659 0 0 0 0 0 672 139 3 0 0 17 774 878 3 0 0 5 85%

1 0 2999 0 0 0 0 76 0 466 0 0 0 2 0 0 0 0 0 0 0 0 15%

2 13 0 2999 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 1%

3 1093 0 0 1086 0 0 0 0 0 548 64 35 0 18 46 861 462 86 0 0 195 76%

4 1 0 0 0 2998 0 0 0 0 0 0 137 0 1 1 0 0 0 0 0 0 4%

5 0 0 0 0 0 2999 0 0 0 0 111 0 283 13 0 0 0 0 0 0 0 12%

6 0 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

7 0 0 0 0 0 0 0 2999 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

8 0 0 0 0 0 0 0 0 1331 0 97 0 8 59 0 0 0 0 2 0 5 11%

9 391 0 0 420 0 0 0 0 0 972 71 108 0 29 9 456 456 53 0 0 37 68%

10 17 0 0 2 0 0 0 0 35 0 2281 0 0 31 1 1 0 0 0 0 17 4%

11 2 0 0 2 1 0 0 0 0 8 0 2430 1 167 44 0 0 75 0 0 6 11%

12 0 0 0 0 0 0 0 0 32 0 18 0 2528 136 0 0 0 0 43 2 116 12%

13 0 0 0 1 0 0 2 0 24 14 6 7 68 2277 0 1 5 0 8 0 0 6%

14 0 0 0 21 0 0 0 0 0 2 0 183 0 1 2837 0 4 26 0 0 10 8%

15 410 0 0 304 0 0 0 0 0 297 29 22 0 9 5 363 488 0 0 0 24 81%

16 515 0 0 493 0 0 0 0 0 415 131 39 0 5 8 519 679 3 0 0 30 76%

17 10 0 0 3 0 0 0 0 1 39 0 32 3 17 31 0 0 2753 0 0 3 5%

18 0 0 0 0 0 0 0 0 46 3 13 0 52 107 0 1 9 0 2940 0 10 8%

19 0 0 0 0 0 0 0 0 64 1 0 0 11 42 0 0 0 0 4 2997 2 4%

20 1 0 0 8 0 0 0 0 0 28 39 3 43 59 0 23 18 0 2 0 2539 8%

Acc 18% 100% 100% 36% 100% 100% 61% 100% 67% 32% 76% 81% 84% 76% 95% 12% 23% 92% 98% 100% 85%
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Figure 20. Hierarchical structure for partitioning of classes in the TEP 

 

Figure 21. Comparison of the classification accuracy of SVM, PCA+SVM and ANN using 

hierarchical structure 
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Figure 22. Comparison between the classification accuracy of ANN using an all-to-all structure and 

hierarchical structure 

3.3.4 Comparison between different modes of Tennessee Eastman Simulation 

In this section we analyze and compare the results obtained for fault classification 

using the three different control strategies contained in the Tennessee Eastman Simulation. 

In order to conduct a fair comparison between the different modes the same network 

structure was applied to the 3 modes of operation. Comparing the classification rates for the 

3 modes is important for assessing the robustness of the algorithm to cope with changes in 

operating conditions since the modes involve different conditions. Both classification and 

false alarm rates were calculated 

In order to be consistent with the previous study the same data extraction and data 

treatment as before were applied for this study. The results obtained for the classification 

and false alarm rates of the different TEP modes are shown in Figure 23 and Figure 24 

respectively. Even though, the operating conditions may be different and the control 

schemes may change between the different modes similar trends are observed to the ones 

observed in the previous section that considered only one mode of operation. Accordingly, 

the classification rates for the easier to identify faults are still very high, while the faults that 
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were difficult to identify in the original model are still difficult to discern in the new two 

modes. The average classification accuracies are: 73.8%, 71.1%, and 76.6% for mode3, 

mode 1 and mode1Skoge respectively. 

An important point to consider when comparing mode3 to mode1 and mode1Skoge, 

is that there is a high level of confusion between the normal state and the fault 16 thus 

resulting in classification rates of either 0 or 16 to be 0%. Carefully inspection of the data 

associated to these two classes indicated a high level of similarity of the data associated to 

fault 16 and the normal state. A thorough dynamic investigation using different dynamic 

scenarios was conducted in Simulink but we were unsuccessful in finding a scenario that 

allowed distinguishing between fault 16 and the normal state. This led to the conclusion that 

in the simulation files for mode1 and mode1Skoge fault 16 is not active.  

 

Figure 23. Comparison between the classification accuracy of ANN using the different control 

schemes 
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Figure 24. Comparison between the false alarm rates of ANN using the different control schemes 

3.4 Conclusions of Chapter 3 

In this chapter we compare the accuracy of deep learning models (ANN) to statistical 

models (SVM and PCA+SVM) to classify faults based on static information. It was to clearly 

demonstrated in the presented studies that neural networks provide better performance that 

the statistical models and they are a powerful tool for fault classification, due to their abilities 

to capture nonlinear behavior. The overall classification average before the hierarchical 

structure was implemented for SVM was 49%, for PCA was 67.3% and ANN 73.8%. In 

addition, a hierarchical structure was developed whereby splitting faults with similar 

characteristics and then reclassifying them results in good improvements in the classification 

accuracy. In the case of ANN, the improvement of using a hierarchical structure, compared 

to an all-to-all structure, was of +3% in average classification accuracy. Furthermore, we 

applied this same study to several different control scheme modes available for the 

Tennessee Eastman Simulator. These additional studies show similar results to those 

obtained with the original operating mode.  Thus, good classification is obtained for all easy 

to observe faults and the performance is still poor for the difficult to observe faults. The 
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average classification accuracies obtained with the hierarchical structure are similar for the 3 

modes of operation: 73.8%, 71.1%, and 76.6% for mode3, mode1, and mode1Skoge 

respectively. 
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Chapter 4 

Fault Detection and Classification using Dynamic Data 

4.1 Overview 

In this chapter, statistical monitoring models are generated based on dynamic data of 

the Tennessee Eastman Process for fault detection and classification. The key difference 

between this chapter and the previous one is that here current and past data is considered 

together as inputs to the models and thus dynamic correlations in the data are considered. 

This chapter covers two principal detection and diagnosis models that are specifically suited 

for capturing dynamic correlations: Dynamic Principal Component Analysis (DPCA) and 

Recurrent Neural Networks (RNN). For the purpose of fault diagnosis with DPCA a DPCA 

compression model combined with a Support Vector Machine (SVM) based model is used to 

differentiate between different faults. Although this model combines DPCA and SVM, for 

simplicity it is referred in this chapter as the DPCA model. On the other hand, the RNN 

model is a particular dynamic neural network structure that captures dynamic correlations in 

the data.  Similar to the previous chapter, a hierarchical scheme is developed to improve the 

classification results by developing separate models for the easier and more difficult to 

observe faults. In addition, for specific faults that are difficult to observe due to low signal to 

noise ratio a novel approach using a pseudorandom signal is implemented in order to 

enhance the classification rates. This structure is shown to increase the classification 

accuracy of both easier to observe and difficult to observe faults. To test the robustness of 

the proposed classification models, we will compare them for different operating modes 

available for the TEP simulator. 

4.2 Definitions and Methods 

During this section, the concepts of number of samples and number of lags could be 

considered as synonyms. However, in the case of number of lags, to be consistent with 

notations used in other DPCA studies it is used to describe the number of lagged vectors of 

variables stacked in the observation matrix used as input to a DPCA model. Similarly, in the 

case of number of samples, it will be used in RNN models to describe the number of 

continuous observations used for the transformation of the data matrix into a 3 dimensional 

version. 
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4.2.1 Dynamic Principal Component Analysis (DPCA) – SVM 

In order to understand the rationale for using dynamic data to enhance fault 

classification, the main differences in information contained in static and dynamic data are 

explained. On one hand, static systems are only able detect correlations between variables 

at a particular time instance and to relate these instant correlated data to the status of the 

fault at that instance. On the other hand, dynamic systems will detect correlation between 

variables as well as correlations with past values. It is evident that upon occurrence of the 

fault the measured variables do not change significantly as compared to the noise levels, 

then the dynamic fault will not be identified until the differences in the signal become 

significant as compared to the noise. In addition two faults may have similar static 

correlations but it is likely that they will exhibit exactly the same dynamic correlations. 

Furthermore, highly nonlinear processes are expected to exhibit different dynamic behavior 

around different operating variables. For all these reasons, the consideration of dynamic 

data is expected to enhance fault classification. Dynamic Principal Component Analysis 

(DPCA) was developed as an extension of the PCA monitoring method to take into account 

dynamical correlations between variables in the observation matrix (Chiang et al., 2001; Ku 

et al., 1995).  

Accordingly, the observation matrix is extended by stacking lagged information into a 

matrix that it is also referred to as a Hankel matrix. Mathematically, the lagged observation 

matrix is defined as follows: 

𝐗(𝒍) =  

[
 
 
 
 

𝒙𝒕
𝑻 𝒙𝒕−𝟏

𝑻 ⋯ 𝒙𝒕−𝒍
𝑻

𝒙𝒕−𝟏
𝑻 𝒙𝒕−𝟐

𝑻 ⋯ 𝒙𝒕−𝒍−𝟏
𝑻

⋮ ⋮ ⋱ ⋮
𝒙𝒕+𝒍−𝒏

𝑻 𝒙𝒕+𝒍−𝒏−𝟏
𝑻 ⋯ 𝒙𝒕−𝒏

𝑻 ]
 
 
 
 

                  (88) 

where xt
T is defined as the observation vector in time instance t, l is the lag number and n is 

the number of observations. In principle, the subsequent procedure of data compression by 

DPCA is the same as for PCA. Thus, after stacking the observation matrix with lagged 

information vectors a decomposition into principal components is effected followed by the 

projection of the data onto a lower dimensional space. Following this compression step a 

multivariate autoregressive (ARX) model based on the compressed data can be established 

(Ku et al., 1995). On the other hand a DRNN (Deep Recurrent Neural Network) model is 
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investigated that is based on the same amount of past information as determined by the 

number of lags considered for the DPCA models. The description of the DRNN model is 

detailed in the following section.  

4.2.2 Fault Diagnosis with Deep Recurrent Neural Networks (DRNN) 

Although as shown in previous studies and in the previous chapter neural networks 

are a powerful tool for detection and classification of faults they may still lacking accuracy 

when the data used for detection is not informative enough. For example, static data used in 

the previous chapter may not be sufficient for accurate classification, especially for the 

difficult to observe faults, since they ignored dynamic correlations among the inputs.  

Therefore, it is important to understand that the consideration of dynamic instead of static 

information only may result in improved classification performance. Consequently, to study 

the effect of considering dynamic data on classification rate, we formulated recurrent neural 

networks, a tool for modelling nonlinear dynamic processes.  

The general structure of the dynamic neural network model is somewhat similar to 

the one used for the fault classification problem with static data. However, when using 

dynamic data, the basic neuron has to be capable of receiving and correlating data collected 

at different time intervals. The two most common neural network units to regress dynamic 

data are: Long-Short Term Memory (LSTM) cells and Gated Recurrent Units (GRU). Thus, 

the basic model structure used for static data in the previous chapter where the network is 

based on the connection of a stacked auto encoder and a softmax classifier remains the 

same but the basic neural units of the auto-encoder are now modified to account for 

dynamic inputs. 

Thus, in the case, the stacked auto encoder will consist of several layers of recurrent 

units stacked together. It is important to denote that we applied batch normalization to the 

transformed inputs after each inner layer of the auto-encoder, in order to decrease the 

learning time of the training algorithms. The data employed in this current study is the same 

data as used in the previous chapter. However, in the current case instead of using a data 

vector with the instantaneous measured variables, current and past data are organized into 

a matrix to be inputted through the recurrent network. It is important to denote that there are 

two ways to structure the context, the middle layer, in an auto encoder structure for recurrent 

networks. The first option is to structure the context as a vector, where the data matrix is 
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transformed by the encoder into a context vector that will contain the important information 

and then transform it back into a matrix for presentation to the decoder. The second option 

is by applying the context as a matrix, where we only reduce the variable size, without 

reducing the dimension of the matrix. Through several testing we decided that the second 

option was the more viable one since the lost information due to the dimension reduction 

was detrimental to the accuracy. As before, after training of the auto-encoder-decoder, the 

decoder part is ignored and the remaining encoder part is connected to a soft-max based 

classification layer. As before to accelerate the training of the autoencoder and to avoid the 

covariate shift problem batch normalization is applied to the intermediate inputs in between 

the recurrent layers of the autoencoder.  

 In contrast with the case that used static data in the current case since the auto 

encoder is built to return a matrix as its output we need to implement another layer that will 

transform this output matrix into a vector for further use in the classification layer. This 

intermediate layer necessary to transform the output matrix into a vector is also based 

recurrent neural units. The classification model that is made of the combination of the auto-

encoder connected to a softmax classification layer is trained by a supervised learning 

procedure where for each data vector applied for training or testing a particular class is 

provided. Following this supervised learning procedure, the network learns to differentiate 

dynamic patterns corresponding to the different classes. As in the previous chapter we can 

also here keep the weights obtained from trained of the auto-encoder or we can fine tune 

these weights in the supervised learning procedure that is used to train the classification 

model, i.e. the model made of the auto-encoder connected to the softmax classification 

layer. 

4.2.3 Pseudo Random Signal for Fault Diagnosis 

Classic fault detection theories establish as undetectable faults those that result in 

measurable signals whose amplitudes are smaller than the noise magnitude along the 

quantification interval. In the case of the Tennessee Eastman several faults have been 

considered difficult to detect due to their inherent small signal to noise ratio. Therefore, in 

some cases we might need to induce signals with bigger amplitude in order to be able to 

detect these faults. The problem of undetectable faults is particularly acute in the TEP 

problem since several fault must be inferred from variables that are part of closed loop 
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control loop. Variables that are controlled in closed loop inherently exhibit small variation 

thus making it difficult to estimate occurrence of faults from such variables. For example, 

when certain variable in the system approximately reach steady state only small signal 

changes may be observed which may be of the order of the noise. Thus, in order to create 

signals with larger amplitude that will be more informative about the occurrence of a fault, 

we rely on process-identification methods for fault detection (Isermann, 2006). Following 

system identification theory, it is known that by applying external input changes at certain 

point of the process it is possible to obtain information about the behavior of the process 

(Ljung, 1987). Therefore, with the goal of creating fault related signals with larger amplitudes 

we propose injecting excitation signals at different points of control loops, e.g. adding an 

excitation signal to the set-points, especially into the loops that involve variables related to 

the difficult to detect faults. 

4.3 Results and Discussions 

As in the previous chapter, we continue to differentiate between two types of faults: 

observable and difficult to observe. Observable faults will be considered fault that have 

discernible symptoms and have been well classified with conventional fault detection or 

diagnosis techniques. On the other hand, difficult to observe faults are those that generate 

changes in measured variables that are similar for different faults and thus are difficult to 

classify with conventional statistics techniques. It is important to emphasize that all the 

model used for classification in this section are able to capture dynamic correlation among 

the data. 

4.3.1 Experiment and Data Setup 

To demonstrate the effectiveness of the proposed methods, we generate training 

and test data from the Tennessee Eastman Process (TEP) simulation. As before, the TEP 

control scheme used for the initial phase of the current case study the operating mode is the 

one referred in the TEP simulator as “Multiloop_mode3”. The data extracted from the TEP 

simulation has been extracted for operation at the normal state and for 20 different faults. At 

each sampling interval 52 different variables are assumed to be measured. Each vector of 

measurements can be acquired with a sampling interval of 36 seconds. It should be noticed 

that during the testing of our methods we used the normal state as a different class and 
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hence 21 different classes are considered for classification. In addition, we have eliminated 

the effect of short initial transients by avoiding using the first hour of the simulation. Each 

different fault occurrence of the simulation is run for 72 hours, generating 7,100 samples for 

each fault. The data is then divided between training and testing data sets, where the first 

4,100 samples are used as training data and the rest I used for testing. This results in 21 

different classes in total that sums up to 81,859 training samples and 59,179 testing data. It 

is important to consider that the number of training and testing samples may slightly vary 

depending on the data transformation needed for each model used here for classification, 

i.e. DPCA or RNN. 

For the DPCA the data matrix is constructed by concatenating the observation 

vectors with the respective lagged observations where different number of lags were 

considered for comparison in the case study. After developing the lagged observation 

matrix, we search for dynamical correlations in the data through DPCA, which functions as a 

dynamical feature extraction method. Then, the resulting features are fed to an SVM for fault 

classification.  On the other hand, in order to feed the information through a RNN model the 

observation vector is transformed into a 3D data matrix, instead of a 2D matrix. This data 

transformation from a 2D, defined as batch size and variables, to a 3D structure is done by 

adding the time samples as another dimension. Thus, the transformed data matrix has 3 

dimensions defined as: batch size, number of time samples and variables. Figure 25 shows 

an illustration of this data transformation. 

 

Figure 25. Illustration of data transformation for RNN. 
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4.3.2 Dynamic PCA vs Recurrent Neural Network 

In this section we analyze and compare results obtained for fault diagnosis using the 

DPCA and RNN based models. First, we show and analyze the results obtained for the 

classification performance and the false alarm rates obtained with the Recurrent Neural 

Networks (RNN) for dynamical data for the three modes of the simulation available. In 

addition, we study the effect of increasing the number of time samples for all different modes 

in the Tennessee Eastman simulation based on the hypothesis that using an increasing 

number of lags will enhance classification accuracy. The results of the RNN are then 

compared with the classification results obtained with the Dynamic Principal Component 

Analysis (DPCA) based model. In addition we compare the classification performance with 

two main gated recurrent units LSTM and GRU. 

, For comparing the RNN and DPCA classification models we first defined the number of 

samples we will be using for both studies. In the case of DPCA the number of lags used in 

the observation matrix is the key parameter. We compare the models resulting that use 5, 

15 and 25 lags. It is important to understand that DPCA is a data reduction technique 

usually used for fault detection. However, in order to make it into a classification problem the 

output features from the DPCA model are fed into an SVM model that is used for final 

classification. Figure 26 shows the classification accuracies of DPCA combined with SVM 

for 5, 15 and 25 lags. From this figure it is found that with 5 and 15 lags similar classification 

results are obtained. However, with 25 lags the classification accuracy decreases.  A 

possible explanation for this decrease is that as the number of lags increases the data 

exhibit increasing variability due to noise and nonlinearity that cannot be properly captured 

by the linear DPCA based extraction model This is somewhat comparable with the training 

of autoregressive models that as the number of lagged basis functions become larger the 

model becomes more prone to overfitting of noise and therefore it has lower predictive 

accuracy.  
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Figure 26. Classification accuracy obtained with DPCA in TEP depending on the number of lags. 

 

Therefore, in order to further compare the results of DPCA with RNN, we choose the 

best model which in this case was obtained with 15 lags. Figure 27 shows the classification 

rates obtained by the DPCA model and the RNN that uses LSTM neural units. From this 

figure, we observe that the RNN provides better classification than DPCA. The RNN 

provides consistent better classification than the DPCA model for all the faults that are 

considered to be easier to observe.  Furthermore, the RNN is also able to outmatch DPCA 

in classification accuracy for all the difficult-to-observe faults (0,3,9,15). However, in the 

case of these faults the results are still poor despite the fact that richer dynamic information 

is used. Figure 28 shows the false alarm rates obtained by the two models The trends 

observed form this figure are consistent with the classification rates where RNN provide 

lower false alarm rates for most faults but false alarm rates are still high with both methods 

for the difficult to observe faults. 
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Figure 27. Comparison of classification accuracy of DPCA+SVM and RRN in TEP. 

 
Figure 28. Comparison of false alarm rates of DPCA+SVM and RRN in TEP. 
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In order to improve the classification accuracy with RNN the consideration of a 

longer time horizon of data into the model was investigated. It was hypothesized that by 

including additional past information, the nonlinear RNN model can better capture the 

nonlinear behavior of the process while not increasing the overfitting of noise in the data 

Consequently, we study the effect of the number of samples presented to the RNN.  Figure 

29 shows the different classification accuracies obtained with models that assumed different 

number of samples. We can observe that by increasing the number of samples we are able 

to increase the classification accuracies of some faults. In particular, we can observe a 

drastic increase in the classification accuracy of fault 16 possibly indicating the ability of the 

network to capture the nonlinear dynamic behavior associated to this fault. In addition, the 

effect of increasing the number of samples can be observed by analyzing the average 

classification accuracy for the different number of samples, where we obtained 79.8%, 

80.3%, 81% and 84% for the RNN with 5, 15, 25 and 100 number of samples respectively. 

On the other hand, for the difficult to observe faults the classification accuracy for any of 

these faults was still low. In addition, from Figure 30 which shows the false alarm rates, it 

can be observe very high false alarm rates for the difficult to observe faults. 

 

Figure 29. Effect of time samples in the classification accuracy TEP 
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Figure 30. Effect of time samples in the false alarm rates in TEP 

Following the hypothesis that different neural units may affect the classification 

accuracy the performance of the two main different recurrent units: LSTM and GRU were 

used to design classification models. Therefore, a classification model with GRU units was 

developed that used the same general structure that was used with LSTM, i.e. a 

combination of a stacked encoder connected to a softmax classification layer. Figure 31 and 

Figure 32 shows the results for the classification accuracy and the false alarm rates 

respectively when applying in the network GRU’s as units. By inspecting the figures, we can 

perceive the same trends as with LSTM’s, where we are able to identify easily between the 

observable faults and as we increase the number of samples we are able to increase the 

classification rates. However, when it comes to the difficult to observe faults the 

classification rates are still low and the false alarm rates are relatively high. To quantitatively 

compare the results obtained with the LSTM and GRU, the average classification rates were 

calculated as follows 79.8%, 80.3%, and 81% for LSTM and 77.4%, 78.2%, and 79.1% for 

GRU. Thus, the network based on LSTM performs slightly better for this particular study but 

this result may be problem dependent. 
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Figure 31. Effect of time samples in the classification accuracy in the TEP applying GRU’s 

 

Figure 32. Effect of time samples in the false alarm rates in the TEP applying GRU’s 
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4.3.3 Hierarchal Recurrent Neural Network 

In this section we analyze and compare results obtained for fault classification while 

using a hierarchal partition of the faults as done with the static data based models presented 

in Chapter 3. The classification and false alarm rates obtained with the hierarchical structure 

with an RNN model are calculated and compared to the RNN model without a hierarchical 

structure.  

As done with the models developed for static data, we look again at the confusion 

matrix of the classification problem with the RNN that uses LSTM as the neural unit, showed 

in table 11. Again, it can be observed from the confusion matrix that the classification rates 

are good for almost every observable fault. However, the confusion related to the difficult to 

observe faults is still very high. Therefore, the same hierarchical structure showed in Figure 

22 was applied here to the RNN model that uses LSTM as its neural unit. The goal was to 

enhance the classification accuracy by using separate models for the easier to observe and 

difficult to observe faults respectively. 

Table 11. Confusion matrix of the classification results with RNN for TEP for an all-to-all structure  

with 25 number of samples. 

 

  This can be seen in Figure 33, where can observe the classification rates obtained 

by the hierarchical structure with 25 and 100 number of samples. In addition, Figure 35 

       y_0_test_h

pred2_h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FA

0 210 0 0 29 0 0 0 0 0 152 56 0 0 0 0 339 419 0 0 0 0 83%

1 0 2973 0 0 0 0 61 0 3 0 0 0 0 16 0 0 0 0 0 0 0 3%

2 0 0 2973 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0%

3 265 0 0 2267 0 0 0 0 0 501 67 0 0 35 0 276 127 69 0 0 79 38%

4 0 0 0 0 2973 0 0 0 0 0 76 68 0 0 1 0 0 0 0 0 53 6%

5 0 0 0 0 0 2973 0 0 0 0 0 0 241 0 0 0 0 0 0 0 0 7%

6 0 0 0 0 0 0 0 0 7 0 0 0 0 5 0 0 0 0 0 0 0 100%

7 0 0 0 0 0 0 0 2973 159 0 15 0 10 155 0 0 0 0 0 0 0 10%

8 0 0 0 0 0 0 0 0 1439 0 0 0 33 143 0 0 0 0 0 0 0 11%

9 249 0 0 567 0 0 0 0 0 1541 277 3 0 71 0 252 111 5 0 0 117 52%

10 88 0 0 0 0 0 85 0 0 25 2049 0 0 82 0 35 0 0 0 0 2 13%

11 0 0 0 0 0 0 0 0 0 0 13 2899 0 0 40 0 0 0 0 0 43 3%

12 0 0 0 0 0 0 0 0 71 0 18 0 2509 161 0 0 0 0 1 0 0 9%

13 0 0 0 0 0 0 0 0 71 0 0 0 97 2176 0 0 0 0 0 0 2 7%

14 0 0 0 0 0 0 0 0 0 2 1 3 0 0 2932 0 0 0 0 0 0 0%

15 1989 0 0 74 0 0 0 0 4 678 341 0 0 3 0 1942 1358 0 0 0 0 70%

16 171 0 0 15 0 0 0 0 0 74 56 0 0 13 0 112 942 0 0 0 0 32%

17 0 0 0 0 0 0 0 0 71 0 0 0 5 8 0 0 0 2899 0 0 0 3%

18 0 0 0 0 0 0 0 0 0 0 0 0 69 31 0 0 0 0 2972 3 0 3%

19 0 0 0 0 0 0 27 0 129 0 0 0 0 44 0 0 0 0 0 2970 0 6%

20 1 0 0 21 0 0 0 0 19 0 4 0 9 30 0 17 16 0 0 0 2675 4%

Acc 7% 100% 100% 76% 100% 100% 0% 100% 73% 52% 69% 98% 84% 73% 99% 65% 32% 98% 100% 100% 90%
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shows a comparison between the classification rates obtained for 100 number of samples 

when using an all-to-all structure and using the hierarchical structure. Overall, by developing 

the hierarchical structure, we are able to increase the average classification rates of both 

structures from 80.6% to 84.1% and from 84.0% to 87.0% respectively. However, most 

importantly by doing the hierarchical structure we are able to classify correctly 2 faults that 

are generally considered difficult to observe: fault 3 and 9. The hierarchical structure is able 

to improve the classification accuracy in both of these faults by 43.0% and 17.2% 

respectively for the case of 100 number of samples and by 8.7% and 23.4% for 25 number 

samples. In the case of the normal state and the fault 15 we are able to see an increase in 

their classification rate but it is still very low. The false alarm rates with the hierarchical 

structure are shown in Figure 34.  

 

Figure 33. Classification accuracy of RNN applying a hierarchical structure for 25 and 100 number 

of samples. 



 

 81 

 

Figure 34.  False alarm rates of RNN applying a hierarchical structure for 25 and 100 number of 

samples. 

 

Figure 35.  Comparison between the classification accuracy of RNN using an all-to-all structure 

and hierarchical structure with 100 number of samples. 



 

 82 

4.3.4 Application of Pseudo Random Signal for Diagnosis Results 

The last section showed that the use of a hierarchical structure can significantly 

enhance the classification accuracy but the resulting model is still unable to diagnose 

correctly between the normal state and fault 15. Therefore, in this section we implemented a 

pseudo random signal, as a disturbance, to a setpoint in the Tennessee Eastman Simulation 

to generate sufficient excitation so as to overcome low signal to noise ratios in signals 

associated to fault 15.  

 The reasoning behind the implementation of this pseudo random signal is that, even 

with the renormalization, we can observe from the confusion matrix a high level of confusion 

between the normal state and the fault 15. Consequently, following a process identification 

approach we add an external signal in order to increase the signal-to-noise ratio of signal/s 

that can be used for distinguishing fault 15 from the normal state. Towards this goal a 

pseudo random signal was designed and added as a disturbance in a process setpoint. In a 

practical implementation since it may be detrimental to vary a set-point with an added PRBS 

signal this signal could be introduced sporadically to test the occurrence of the fault. Thus, 

the proposed PRBS will not be used on a continuous basis. Analyzing the fault 15, which 

corresponds to stiction in the condenser cooling water valve, we introduced the additional 

excitation in a setpoint related to the condenser control. The nearest setpoint that could 

excite the condenser control loop was selected to be the separator temperature. The added 

set-point signal was implemented by running the simulation and implementing the signal at 

different times and data were collected while the signal was being introduced. This pseudo 

random signal can be observed in Figure 36. The data was then inputted through a new 

neural network model that was specifically designed to differentiate between the normal 

state and fault 15. Therefore, a new level was added to the hierarchical structure given 

before as shown in Figure 37. The results obtained by implementing this pseudo random 

signal can be observed in Figure 38, which is a comparison between the results obtained 

applying only the hierarchical structure and with a PRS with 100 number of samples. Figure 

38 shows a dramatic increase in the classification rates of the normal state to 88.7% and 

fault 15 up to 76.4%.  
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Figure 36. Pseudo random signal implemented in the Separator Temperature 

 

Figure 37. Final Hierarchical structure in the TEP for mode3 with PRS 
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Figure 38. Comparison between the classification accuracy of RNN applying only the hierarchical 

structure and with a PRS with 100 number of samples. 

4.3.5 Comparison Different Modes of Tennessee Eastman Simulation 

In this section we analyze and compare results obtained using dynamical data for 

fault classification with the RNN algorithm for the three different operating mode used in the 

Tennessee Eastman Simulation. We will show the results for the remaining two modes: 

mode1 and mode1Skoge. In order to be able to compare between the different modes we 

applied the same network structure to every mode. Both the classification rates as well as 

the false alarm rates are obtained and compared for the different modes.  

For consistency with the previous study we applied the same data extraction and 

data treatment as before. One important thing to consider, is that for mode1 and 

mode1Skoge there is a limitation with fault 16 that cannot be distinguished from fault 16 

since the data is almost identical for the two variables. Therefore, the data from fault 16 was 

not used for the following study. 
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The results obtained for the effect of the number of samples considered in the 

models on the classification accuracy for TEP mode1 and mode1Skoge are shown in Figure 

39 and Figure 41. The corresponding false alarm rates are shown in Figure 40 and Figure 

42. Even though, the operating conditions may be different and the control schemes may 

change between the different modes similar trends are observed for both modes. Good 

classification rates are obtained for both modes for the easier to detect faults. However, the 

classification rates are low for the difficult to observe faults. As before, for both operating 

modes, increasing the number of samples in the models results in higher classification rates. 

In the case of mode1 we obtained average classification accuracies of 79.8%, 80.5%, 

81.6% and 84.3% respectively as we increase the number of samples from 5, 15, 25 and 

100 respectively. On the other hand, for mode1Skoge we obtained average classification 

accuracies of 83.4%, 84.6%, 85.4% and 87.3% for 5,15, 25 and 100 samples respectively. 

Figure 43 compares the classification accuracy for each class in each of the three different 

control schemes. 

 

Figure 39. Effect of time samples in the classification accuracy TEP mode1 
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Figure 40. Effect of time samples in the false alarm rates TEP mode1

 

Figure 41. Effect of time samples in the classification accuracy TEP mode1Skoge 
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Figure 42. Effect of time samples in the false alarm rates TEP mode1Skoge 

 

Figure 43. Comparison between the classification accuracy of RNN using the different control 

schemes 



 

 88 

Since the classification accuracy in the difficult to observe faults was still low for both 

operating modes of the TEP, we applied the techniques proposed above to enhance the 

classification for mode3.Thus, first the hierarchical structure was applied to enhance the 

classification of the difficult to observe faults. However, in this case the results in the 

hierarchical structure showed almost the same results as with the original non-hierarchical 

model structure.  

Subsequently, the introduction of PRS excitation signals was considered. However, it 

should be remembered that in the case of mode3 we were able to detect fault 3 and 9 using 

the hierarchical structure, which lead us to think that only applying an excitation to the 

system through the implementation of a pseudo random signal to a setpoint related to fault 

15 would not be enough for the other operating modes of the TEP. Consequently, a study 

was conducted to identify the most suitable points for injecting excitation signals to identify 

faults 3 and 9. Fault 3 and 9 turn out to be closely related faults since they are both 

disturbances in the D feed temperature, but fault 3 is a step disturbance while fault 9 is a 

random disturbance. Consequently, we decided to add another pseudo random signal, 

which is shown in Figure 44 to the D feed ratio, in order to create a suitable excitation. The 

new hierarchical structure for the mode1 and mode1Skoge is shown in Figure 45. After 

developing this pseudorandom signal, we added both signals to the process as shown in 

Figure 36 and Figure 44 and applied this signal at different times during the simulation.  

The results obtained for the classification rates are shown in Figure 46 and Figure 47 

for the difficult to observe faults in mode1 and mode1Skoge respectively. It is found that by 

applying both of these signals the classification rates of faults 3 and 9 are significantly 

improved. For example, by inserting this pseudo random signal in mode1 we are able to 

improve the classification accuracy of these faults by 16.4% and 34.1% with respect to the 

full structure. On the other hand, in mode1Skoge the classification accuracy of these faults 

are improved by only 8% and 22.3% with respect to the full structure. 
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Figure 44. Pseudo random signal implemented in the D feed ratio 

 

 

Figure 45. Hierarchical structure for partitioning of classes in the TEP for mode1 and mode1Skoge 
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Figure 46. Comparison between classification accuracy of RNN, in mode1, applying a full structure 

(F), hierarchical structure and PRS with 100 number of samples (F+100PRS), and hierarchical 

structure and PRS with 200 number of samples (F+200PRS). 

 

Figure 47. Comparison between classification accuracy of RNN, in mode1Skoge, applying a full 

structure (F), hierarchical structure and PRS with 100 number of samples (F+100PRS), and 

hierarchical structure and PRS with 200 number of samples (F+200PRS). 
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4.4 Conclusions of Chapter 4 

In this chapter we compared the accuracy of deep learning techniques to statistical 

techniques when using dynamical information. Recurrent neural networks were shown to be 

an effective tool for fault classification due to their ability to capture nonlinear dynamic 

behavior. We showed that the classification averages can be enhanced depending on the 

length of the time horizon of past data fed to the RNN, where we obtained 79.8%, 80.3%, 

81% and 84% for the RNN with 5, 15, 25 and 100 number of samples respectively. In 

addition, for mode3, a hierarchical model structure was developed, which was effective for 

classifying some faults that are very difficult to observe by other methods: fault 3 and 9 by 

43.0% and 17.2% respectively for the case of 100 number of samples.  Thus, by splitting the 

classification model into a model dealing with the easier to detect fault and another model 

that classify the more difficult to detect faults the classification accuracy can be improved. In 

addition, the introduction of external excitation to the system through the employment of 

pseudorandom signals has been shown to help increasing the classification accuracies of 

difficult to observe faults, specifically increasing the classification rates of the normal state to 

88.7% and fault 15 up to 76.4%. The methods to enhance the classification accuracy were 

further tested for two additional operating modes available in the TEP simulator resulting in 

similar improvements to the classification accuracy.   
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Chapter 5 Final Remarks and Future Work 

5.1 Concluding remarks 

In a large chemical plant, the quick identification of faults and disturbances is crucial 

in order to keep the process running at optimal condition. This work studied the application 

of deep learning as a way to increase the detection and classification of faults in a chemical 

benchmark simulation plant, the Tennessee Eastman Problem (TEP). The TEP simulation 

contains 20 different disturbances that were used during this study to make the classification 

problem. This work proposes the division of these faults in two categories: observable and 

difficult to observe. The difference between these two categories lies in the signal-to-noise 

ratio, where the former result in variable changes with good signal-to-noise ratio with 

discernible symptoms whereas the later exhibit low signal-to-noise ratio with similar 

symptoms to other disturbances. Specifically and as previously reported by other 

researchers the difficult to observe faults in the TEP are fault 3, fault 9, fault 15 and the 

normal state. 

First, the accuracy of deep learning models (ANN) and statistical models (SVM and 

PCA+SVM) was compared to classify faults based on static information. By comparing ANN 

with classical statistical tools for fault detection and diagnosis such as PCA (Principal 

Component Analysis), we demonstrated the inherent ability of neural networks to explain 

nonlinear behavior. The overall classification average obtained in an all-to-all structure was 

for SVM 49%, for PCA 67.3% and for ANN 73.8%. The superior results obtained with ANN is 

directly related to  the fact that ANN uses nonlinear activation functions, which are able to 

capture nonlinear behavior of the system. In addition, a hierarchical structure was developed 

were faults with similar characteristics were assigned to subgroups and then the individual 

faults were re-classified within the subgroup  resulting in an overall classification average 

improvement of +3% for ANN. Additionally, this same study was applied to the different 

control scheme modes available for the Tennessee Eastman Simulator, showing similar 

results to those obtained with the original operating mode, obtaining 73.8%, 71.1%, and 

76.6% for mode3, mode1, and mode1Skoge respectively. Similar trends between the three 

modes were found, where we obtained good classification accuracies most faults. However, 

the classification accuracies for the difficult to observe faults was deficient.  
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Following the results obtained by the static study, it was hypothesized that the 

addition of dynamic information may improve classification accuracy.  Initially, a comparison 

between deep learning techniques to statistical techniques when using dynamical 

information was developed. A comparison of Dynamic PCA to Recurrent Neural Networks 

(RNN) with 15 number of time intervals showed an overall classification average of 69.6% 

and 80.3% for DPCA and RNN respectively. Thus, as for the study with static data, it was 

shown that RNN is an effective tool for fault classification due to their ability to capture 

nonlinear dynamic behavior. Afterwards, the study showed that the classification averages 

can be enhanced depending on the length of the time horizon of past data fed to the RNN, 

where we obtained 79.8%, 80.3%, 81% and 84% for the RNN with 5, 15, 25 and 100 

number of samples respectively. However, most of the improvement in classification 

improvements occurred for the observable faults. Therefore, a hierarchical model structure 

was developed, which was effective for classifying some faults that are very difficult to 

observe by other methods: the classification of fault 3 and 9 improved by 43.0% and 17.2% 

respectively for the case of 100 number of samples. The explanation behind these 

improvements is that by splitting the classification model into a model dealing with the easier 

to detect fault and another model that classify the more difficult to detect faults and re-

normalizing the variables within each group we are able to increase the signal-to-noise ratio 

of these faults thus leading to better classification. It could be argued that similar results 

could have been obtained by designing a much larger network that encompasses both 

models of the hierarchical structure but this will result in a very high computational cost.   

Also, despite the classification improvements for fault 3 and 9,  it was found that the 

normal state and the fault 15 were still highly confounded thus resulting in poor 

differentiation between the normal state and Fault 15. To address this problem external 

excitation was added to the system through the injection of pseudorandom signals, 

increasing the classification rates of the normal state to 88.7% and fault 15 up to 76.4%. 

Thus,  this additional excitation improved the signal to noise ratio in the responses resulting 

from these faults leading to better classification results. Lastly, the methods proposed to 

enhance fault classification were further tested for two additional operating modes available 

in the TEP simulator resulting in similar improvements to the classification accuracy. 
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5.2 Future work  

Based on the studies carried out during this research, the following recommendations for 

future work are proposed: 

1. Optimal structure selection of the deep learning algorithm: Apply a grid search that 

will be able to infer the best combination of number of samples, number of layers, 

number of nodes and values of regularization terms in the RNN to be used for 

classification. 

2. Find theoretical limits for classification accuracy: Continue to study the effect of the 

number of samples, due that, theoretically, there should be a number of sample size 

where the classification accuracy should stop improving. 

3. Optimal design of external excitation signals for fault classification: Study the effect 

of implementing different kinds of excitation signals in into the process order to 

increase the observability of the difficult to observe faults. As well, we should study 

the optimal time required to obtain a good accuracy when applying an excitation 

signal. In addition, it would be valuable to observe how the classification 

performance changes as we vary the location of the excitation signal across the 

process. 

4. Optimal integration of hierarchical structure and external excitation: Analyze if the 

hierarchical structure can improve the results after inserting the excitation signal. 

This can be applied as an initial tool to differentiate between the two kinds of difficult 

to observe faults, where we usually obtained a lot of confusion between the normal 

state and fault 15 and between fault 3 and fault 9. 

5. Further studies on the effect of change in operating mode on fault classification 

accuracy: Develop more comparison studies between the different control schemes 

of the TEP simulation and the reasons of discrepancies in the fault detection and 

diagnosis of fault in the different modes. 

6. Consideration of additional faults: Extend this study by adding the 8 additional 

disturbances proposed by Ricker in the new TEP simulation update (Bathelt et al., 

2015). 
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