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Abstract 

Bulk heterojunction polymer solar cell (PSC) is a promising photovoltaic technology for 

clean and renewable energy sources due to its superior advantages such as mechanical 

flexibility, light weight, low-cost fabrication, and large-area manufacturing compatibility. In 

this work, two classes of polymers, PzDP and TPT based polymers, were designed and 

synthesized for the application of PSC. Firstly, two copolymers PzDP24-T and PzDP16-BDT 

were prepared via Stille-coupling polymerization, which exhibited narrow bandgaps and low-

lying energy levels. The PzDP24-T polymer showed n-type dominant charge transport 

properties with electron mobility up to 2.9×10-2 cm2 V-1, whereas PzDP16-BDT exhibited 

ambipolar charge transport behavior with balanced electron/hole mobilities up to 2.2×10-3 cm2 

V-1 s-1/2.5×10-3 cm2 V-1 s-1 in OTFTs. These PzDP-based polymers were then used as acceptor 

with PTB7-Th as the donor in all-PSCs. The PzDP24-T/PTB7-Th devices showed relatively 

low power conversion efficiency (PCE) (~ 0.3%), which caused poor morphology because of 

insufficient solubility. After the optimization of the backbone structure to PzDP16-BDT, the 

PCE of PzDP16-BDT/PTB7-Th based devices improved to 1.57%. On the other hand, the 

inferior bulk charge transport properties for PzDP-based polymers limited the overall PCEs. 

Secondly, a novel pyridazine-based conjugated monomer TPT was synthesized and 

incorporated into D-A copolymer (TPT-BDT). Compared to the analogue pyridine-based 

polymers, the TPT-BDT polymer showed a similar or deeper energy levels of -3.66 eV/-5.55 

eV, which suggested the utilization of pyridazine can efficiently modulate the HOMO and 

LUMO. However, the TPT-BDT showed no performance for hole/electron mobilities in 

OTFTs due to highly twisted backbone. In addition, as the pyridazine is a ligand of palladium 

catalyst, the molecular weight of the polymer is low (~ 10 kDa). The relatively low molecular 

weight is found to be the reason of the severe PCEs (~ 0.11%) for TPT-BDT/PC61BM solar 

cells. 
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Chapter 1 Introduction 

1.1  Research Background 

Today fossil fuels still dominate the energy consumption in the world (Figure 1-1). As non-

renewable sources, once fossil fuels are consumed, they will not be replenished.[1] 

Furthermore, burning fossil fuels accounts for the majority of the emitted carbon dioxide, 

causing serious environmental problems such as global warming. Thus, it is urgent to explore 

a sustainable and environmentally friendly energy source.[2] Solar energy, as a renewable, 

clean and abundant source of energy, becomes a trending topic in the past decades.[3] The 

utilization of solar power is essential for us to respond to the exhaustion of petroleum and coal 

as well as environmental problems.[4] 

One of the important solar energy conversion approaches is the solar cell technology (Figure 

1-2). A solar cell consists of a semiconductor device that absorbs solar light and converts it 

into electric current directly.[5] Since the first solar cell was created by Charles Fritts in 1883,[6] 

significant progress has been made in the development and commercialization of solar cells 

particularly in the very recent years. Nowadays, solar cells can be classified into three types 

according to generation:[7] The first generation of solar cells are made of crystalline silicon 

which are the most popular one in the market due to its good performance and high stability[8], 

for example, Keiichiro Masuko achieved a conversion efficiency of 25% for crystalline silicon-

based solar cells in 2014.[9] However, high manufacturing cost of crystalline silicon is a 

challenge for the development of crystalline silicon solar panels.[10] The second generation of 

solar cells are thin film solar cells, which are based on amorphous silicon, copper indium 

gallium diselenium (CIGS) and cadmium sulphide (CdTe). Compared to the first generation 

solar cells, thin film solar cells have a lower production cost because of lower material 

consumption of thin film and replacement of expensive silicon wafers.[11] However, thin film 

solar cells generally exhibit half the efficiency of crystalline-based solar cells.[12] The third 

generation of solar cells typically use many solution processable materials, such as organic 

materials (small molecules or polymers) and inorganic substances (CdTe, for instance), relating 

to a variety of thin film technologies. Although, at present, the third generation of solar panels 
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are still in research field, they have already showed great potential for the future of solar 

energy.[13] Organic solar cells or organic photovoltaics (OPVs), above all, offer a variety of 

outstanding features: Firstly, the solution processability enables organic solar cells to be 

produced in a simple, continuous and large-scale process by using printing tools.[14] On the 

other hand, solution processed solar cells are less costly than inorganic solar cells since their 

manufacture can avoid some high energy methods such as vacuum deposition.[15] Secondly, 

organic solar cells are suitable for  portative electronic devices in special applications (such as 

aerospace), because light weight and flexibility are typical nature advantages for most organic 

materials.[16] Thirdly, the raw materials of organic solar cells are various, so organic solar 

panels’ structures can be designed to adapt to different applications. Hence, those features give 

organic solar cells a promising prospect and may revolutionize the future of solar energy. 

 

Figure 1-1 1965-2016 Global primary energy consumption.[17] 
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Figure 1-2 Typical solar panel configuration.[18]  

1.2 Organic Solar Cells 

An organic solar cell is a sort of photovoltaic electronic device that employs organic 

semiconductors (polymers or small molecules) as active layers for light absorption and 

photoelectric conversion.[19] In 1959, Kallamann and Pope developed the first organic solar 

cell by applying a single crystal of anthracene that sandwiched between two electrodes, which 

obtained photovoltaic efficiency of 0.00002%. Although the researchers could not explain the 

principle completely, they built a foundation for organic materials in photovoltaics.[20] A great 

advance of organic solar cell was achieved by Tang in 1986 with a power conversion 

efficiencies (PCEs) of 1%.[21] The structure and principle of this solar cell can be simply 

showed in Figure 1-3: Two organic planar heterogenetic layers are sandwiched between ITO-

coated glass (contacts to anode) and silver (contacts to cathode). The two active organic layers 

consist of copper phthalocyanine (CuPc) and perylene tetracarboxylic derivative (PDI), 

displaying as electron donor and electron acceptor respectively. However, for the limited 

exciton dissociation length (less than 10 nm) in the planar heterojunction (PHJ) device, the 
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photovoltaic current is only contributed by the interface of single donor and acceptor 

layers.[22][23] Therefore, generally PCE of PHJ solar cell is not high. In order to overcome 

the drawback of PHJ device, bulk heterojunction (BHJ) solar cell was invented (Figure 1-4b). 

In a BHJ device, the organic layer is a blend of donor and acceptor within separated nanophases, 

providing a larger interfacial area and thus a shorter distance for exciton diffusion.[24] In 1995, 

the first BHJ was reported by Heeger et al, with a blend of MEH-PPV as an electron donor and 

C60 fullerene derivative (PC61BM) (Figure 1-5) as an electron acceptor, indicating an 

outstanding PCE.[25] The utilization of fullerene derivative is an enormous improvement for 

OPV because of their high electron mobility and high electron affinity. For instance, the OSC 

device based on poly-3-hexylthiophene (P3HT) and PC61BM can show high-efficiency (5%) 

and excellent characteristics, such as thermal and chemical stability, which makes it a potential 

candidate for the mass-fabrication of OSCs.[26] In recent years, π-conjugated polymers also 

have been developed rapidly. For example, in 2018, the tandem OSC based on PTB7-Th:O6T-

2F:PC71BM can obtain PCE of 17.3%, offering more viable choices of materials for OSC.[27]  

 

Figure 1-3 Device structure of OPV reported by Tang.[28] 
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Figure 1-4 Device structures of (a) planar heterojunction, (b) bulk heterojunction.[29] 

 

Figure 1-5 The structures of P3HT and PC61BM. 

In OSC, the photovoltaic conversion includes four consecutive steps (Figure 1-6): 1) light 

absorption, 2) exciton diffusion and dissociation, 3) charge transport and 4) charge 

collection.[14] Each of those steps is important in determining the overall PCE, requiring the 

optimization of material design, device fabrication. 

Firstly, light absorption generates excitons: when the photon penetrates the front contact of a 

solar cell and is absorbed by the organic layers, an electron excites from the highest occupied 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) from the 

donor and then an efficient exciton (a pair of electron and hole) is created. However, exciton 
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in organic semiconductors have to overcome the binding energy to dissociate free carriers 

because of the low dielectric coefficient, whereas the inorganic semiconductors can produce 

free carriers directly. Afterwards the exciton diffuses in the organic layers with a length of 10 

- 20 nm. At the interface between donor and acceptor, due to the offset of the lowest unoccupied 

molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) 

of the acceptor, an electron will transfer from the exciton to the LUMO of the acceptor, leading 

to charged interface at the junction of donor and acceptor.[30] After getting rid of coulombic 

attraction, a free electron and a hole will be generated and flow to different electrodes.[31] 

 

Figure 1-6 Functional mechanism of organic photovoltaic conversation.[32]  

The characteristics of an organic solar cell (OSC) are determined by several parameters: power 

conversion efficiency (PCE), the open circuit voltage (VOC), short circuit current density (JSC), 

fill factor (FF) and external quantum efficiency. Above all, the most intuitive factor PCE is 

directly relevant to VOC, JSC and FF, which can be quantitatively analyzed from the voltage-

current density (V-J) curve. (Figure 1-7) 
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Figure 1-7 (a) Typical J-V characteristics. (b) Power density as a function of applied voltage.[33] 

As showed in Figure 1-7, VOC is the voltage when the external circuit of solar cell disconnects 

or J is 0, namely the maximum output voltage.  

Heeger expressed the equation of VOC through their discovery of recombination in polymer-

fullerene bulk heterojunction solar cells:[34] 

𝑉𝑂𝐶 =
1

𝑒
(𝐸𝐻𝑂𝑀𝑂

𝐷𝑜𝑛𝑜𝑟 − 𝐸𝐿𝑈𝑀𝑂
𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐷) −

𝐾𝑇

𝑒
ln

𝑁𝑒𝑁ℎ

𝑁𝑐
 

where Ne is termed the electron density in the fullerene domains, Nh is termed the hole density 

in the polymer domains under open circuit conditions, and Nc is the density of states (DOS) at 

the conduction band edge of the polymer and fullerene. The energy shift, D, increases from 

disorder inside the phase separated acceptor and donor domains. 

Sequentially, Scharber proposed the relationship between VOC and HOMO and LUMO of 

donor and acceptor, by summarizing 26 types of BHJ solar cells: 

𝑉𝑂𝐶 =
1

𝑒
(𝐸𝐻𝑂𝑀𝑂

𝐷𝑜𝑛𝑜𝑟 − 𝐸𝐿𝑈𝑀𝑂
𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟) − 0.3𝑒𝑉 

According to this equation, the VOC has a linear proportion to the diffidence between EHOMO
Donor  

and ELUMO
Acceptor

, which supplies the design rules for BHJ solar cell.[35] 

Jsc is the current density when the voltage across the solar cell is zero or the solar cell is short 

circuited. JSC can be indicated by the equation:  
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𝐽𝑠𝑐 = neμE 

Where n is charging density, e is elementary charge, μ is carrier mobility, and E is electric-field 

strength. 

FF represents the degree of extraction of the free carriers from photovoltaic devices to 

electrodes.[36] FF is defined as the ratio of the maximum power from the solar cell to the 

product of VOC and JSC. At a particular point, according to the J-V curve, the maximum power 

(Pm) is obtained, then the PCE at this point can be calculated by: 

𝑃𝑚

𝑃𝑖𝑛
=

𝐽𝑚𝑉𝑚

𝑃𝑖𝑛
=

𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑖𝑛
 

As a result, FF can be expressed by: 

FF =
𝐽𝑚𝑉𝑚

𝐽𝑠𝑐𝑉𝑜𝑐
 

Where Pin is the light power incident on the device, Jm is the current of the maximum power, 

Vm is the voltage of the maximum power. 

Parasitic resistances such as series resistance (Rs) and shunt resistance (Rsh) can also impact 

on the J-V curve. When the Rs and Rsh are considered, the J-V characteristics can be represented 

as: 

J = 𝐽𝐿 − 𝐽𝑂 exp (
𝑞(𝑉 + 𝐽𝑅𝑆)

𝑛𝐾𝑇
) −

𝑉 + 𝐽𝑅𝑆

𝑅𝑆𝐻
 

Where JL is the photocurrent, Jo is the dark current, q is the elementary charge, n is the ideality 

of diode and V is the applied voltage. Combining the equations, we can obtain that the FF will 

increase with the rise of Rsh and the decline of Rs. Apart from this, charge carrier mobility, 

interface recombination, film morphology and miscibility of blends also influence FF 

significantly.[37][38]  

With all above parameters the PCE can be calculated as the product of VOC, JSC, and FF divided 

by input power (100 mW/cm2 for the standard AM 1.5G spectrum multiplied by the area of the 

cell): 
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PCE =
𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑖𝑛
 

Thus, VOC, JSC and FF can determine the overall solar cell efficiency. The backbones and their 

conjugated systems are related to the basic properties of polymers such as band gap and energy 

position, thereby responding to VOC and JSC. A polymer with a low band gap and a broad 

absorption band can absorb more photons, which will lead to high JSC for OPV device. For 

instance, a semiconductor with a low band gap 1.1 eV can harvest 77% of solar light, whereas 

a big band gap 2 eV only absorb 30% at most.[39] However, excessively low bandgap requires 

an increase of the HOMO level of donor and will decrease VOC. According to Shockley’s work, 

there is a theoretical optimal bandgap for light harvesting to coordinate VOC and JSC, which is 

around 1.3 eV.[40] Apart from bandgap, the energy levels of donor and accept also require to 

be matched. The LUMO of the donor should be at least 0.3 eV higher than the LUMO of the 

acceptor so that the driving force can overcome the binding energy to dissociate free 

carriers.[41] Thus, it is necessary to reach a balance to guarantee the low bandgap for donors 

while matching the energy levels of corresponding acceptors. In addition, optimizing side 

chains and introducing substituents such as, fluorine, cyano and heteroatoms can also influence 

JSC and VOC evidently.[42] Besides, morphology of organic active layer and network between 

donor and acceptor are also the important factors to affect those parameters. For BHJ solar cell, 

a domains width (20 nm) of donor and acceptor that is twice as the exciton diffusion length 

(Figure 1-8) is beneficial to exciton transport and free carries generation.[43] 

The diversity of parameters poses challenges to get the best performance for OPV. However, 

on the other hand, it gives us more opportunities to design or optimize novel materials with 

fine energy levels, light absorption, blend morphology and transport characteristics to achieve 

higher efficiency cells. 
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Figure 1-8 Ideal BHJ domain and real BHJ solar cell.[43] 

1.3 π-Conjugated Polymers for Organic Solar Cells 

The first famous π-conjugated polymers for OSCs is poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-

phenylenevinylene] (MEH-PPV) (Figure 1-9) that reported by Hegger and co-workers,[25] 

and another PPV-based polymer, MDMO-PPV (Figure 1-9), obtained a PCE of 3.3% with 

PC61BM as the acceptor.[44] The large bandgap (> 2 eV) and low mobility of PVV-based 

polymers are the bottleneck for high PCE.[45] Subsequently, regioregular poly(3-

hexylthiophene) (P3HT) (Figure 1-9) attracted attention in solar cell, achieving PCE up to 5% 

with PC61BM as the acceptor because of its smaller band gap, better conjugated structure as 

well as morphology optimization.[34][46] Even at present, P3HT is still a star for PSC research 

due to its thermal and chemical stability and commercial available feather.[26] However, the 

restricted absorption (below 650 nm) and the high-lying HOMO level of P3HT limits the 

efficiency of P3HT-based solar cell.[47][48] In 2003, Andersson reported PFDTBT polymers 

(Figure 1-9) with the alternating donors (fluorene) and acceptors (dithienyl-benzothiadiazole), 

matching with PC61BM for a PCE 2.2%.[49] Since the PCE was not very high, this was the 

first time that donor-acceptor polymers were introduced in OPV, opening a new thread for OSC 

materials. In recent years donor-acceptor polymers composed of electron rich segments and 

electron deficient units along their polymer backbones, has been developed rapidly.[50] For 
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donor-acceptor polymer, the alternation of electron rich moieties (such as thiophene and 

bithiophene) and electron deficient units (such as diketopyrrolopyrrole) can determines the 

optical bandgaps, the energy levels and the carrier mobility: Firstly, the partial charge 

separation of donor and acceptor elevates the HOMO and lows the LUMO of donor-acceptor 

polymers, leading to a lower band gap (Figure 1-10).[51] Secondly, the intermolecular 

distance between donor-acceptor polymers is shortened by the attraction between donor and 

acceptor moieties of adjacent molecules, which is benefit to charge transport.[52] Thus, the 

donor-acceptor polymers have attracted growing attraction and demonstrated high PCE in OPV. 

For example, The discovery of the new polymer family, PTB-based polymers that consist of 

electro-rich BDT unit and electron-poor TT unit, was a significant breakthrough in OSC 

field.[36] The introduction of a fluorine atom into the TT unit of PTB-based polymers caused 

a great improvement of PCE. Especially, poly-thieno [3,4-b]-thiophene-co-benzodithiophene 

(PTB7) polymer stands out as one of the most promising donor for OSC and a benchmark in 

this field.[42] For example, in 2016, Wan et al optimized PTB7-Th (Figure1-9)/PC71BM cell 

that achieved high PCE up to 10.8%[53]. Recently, a highly efficient ternary cells based on 

PTB7-Th, COi8DFIC and PC71BM offered PCE 14.08%.[54]  
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Figure 1-9 The structure of MEH-PPV, MDMO-PVV, P3HT, PFTBT and PTB7-Th. 
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Figure 1-10 Molecular orbital theory explanation for band gap reduction in D-A copolymer. 

1.4 All-polymer Solar Cell 

Since the first BHJ solar cell was reported by Heeger, fullerenes, particularly PC61BM and 

PC71BM-based derivatives, have been the mainstream acceptor in BHJ OSCs.[55] In fact, 

acceptor based on non-fullerene materials generally obtained lower PCE than fullerene-based 

acceptor in OPV during a long time. However, the gap between fullerene and non-fullerene 

solar cells keeps shrinking significantly result from the synthetic methods, materials design 

strategies and device engineering protocols developed.[56] On the other hand, although 

fullerenes in OPVs have sensible advantages, such as excellent electron transport 

characteristics, adequate LUMO energy level, anisotropic charge transport and high electron 

affinity,[57] fullerenes and their derivatives also suffer from several inevitable drawbacks: First 

of all, it is difficult for fullerenes to absorb red and near-infrared region due to weak optical 

light absorption, although PC71BM derivatives provide better absorption than PC61BMs 

(Figure 1-1).[58][59] Secondly, high electron affinity of fullerene determines their excessively 
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low LUMO, which limits the operating voltage of organic SCs.[60] Moreover, fullerene 

molecules have high degree of functionalization, so the increase of their LUMO level is not 

easy.[61] Thirdly, in organic active layer, fullerenes prefer to aggregate under light and thermal, 

so that the performance of fullerene OSCs will decline in a short term.[62][63] Finally, the cost 

of fullerene production is high.[64] Those above disadvantages stimulated the exploitation of 

non-fullerene SCs, which normally use conjugated polymers or small molecules as acceptor 

instead of fullerenes. On the other hand, all-polymer solar cells (all-PSCs), consisting of 

polymer-donor and polymer-acceptor materials, achieved considerably more efficiencies and 

attracted more attention in recent years. Compared with fullerenes, polymer semiconductors 

have easily tunable absorption of visible light to enhance light-harvesting at long wavelengths. 

Also, owing to the diversity of chemical structure, polymer materials possess efficient tuning 

of energy levels, one of the key factors of high PCE in OPVs.[65] In addition, polymer/polymer 

blends offer prominent flexibility in controlling solution viscosity, providing the feasibility of 

large-sale OSC fabrication in industrial coating process.[66] Besides, the all-PSCs could 

display superior mechanical robustness and thermal stability compared with the fullerene-PSC 

and OPV.[67] Due to the intensive efforts in structure engineering and device optimization, the 

PCE of all-PSCs have dramatically increased in recent years, which is over 10%.[68] To 

achieve high performance all-PSCs, it is necessary to design and synthesis new polymer 

acceptor materials that have the following features: 1) good solubility, 2) well-matched energy 

levels for efficient charge transfer, 3) small bandgap for good light harvest, 4) high electron 

mobility for efficient charge transport, and 5) favorable miscibility with donor materials for 

ideal phase-separated BHJ structure. 
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Figure 1-11 The structure of PC71BM.[69] 

1.5 Characterization of Polymers 

To acquire a scientific work, there are several techniques used to investigate the properties of 

materials during polymer synthesis and explain the obtained results. The techniques applied 

for this work are simply presented below. 

Nuclear magnetic resonance (NMR) spectroscopy is widely used to determine organic 

chemical identity and structure. Many atomic nuclei have a property called spin. When a 

magnetic field is applied, the NMR active nuclei, such as 1H and 13C, will induce resonance 

frequencies. Due to the difference of electron distribution, the resonance frequencies will vary 

in different signals. By counting the chemical shifts resulted from resonance signals relative to 

the resonance frequency of the reference substance, such as tetramethylsilane (TMS), NMR 

spectrum can be obtained. Compared with chemical shifts table, the chemical structure and 

purity can be analyzed and determined.[70] 

For resulted polymers, gel permeation chromatography (GPC) is an important technique to 

determine their number average molecular weight (Mn), weight average molecular weight 

(Mw) and polydispersity index (PDI). In GPC column, the porous gel particles, such as cross-

linked polystyrene, can separate the polymers on the basis of their size in solution. Molecules 

with smaller hydrodynamic volumes (low molecular weight) are enable to pass more pores in 

the column, and therefore they consume more time or volume in the column. Based on the 

elution behavior of the polymer standards of known molecular weight with narrow 

distributions (e.g., polystyrenes), the number of polymers with different molecular weight (Mn 
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and Mw) can be obtained as a function of retention time or volume.[71] Further, PDI can be 

calculated by Mw/Mn, which is an index of the molecular weight distribution. 

Thermal gravimetric analysis (TGA) is a method of thermal analysis, which detects the change 

of mass as the temperature increases. In this work, TGA is used to evaluate the thermal stability 

of polymers so that the temperature range can be determined in further application. Differential 

scanning calorimetry (DSC) is another thermoanalytical measurement for phase transition 

properties. In DSC experiment, the sample and reference are maintained at the same 

temperature. When the sample undergoes phase transition, the sample will absorb or release 

heat in order to retain the same temperature with the reference.[72] Hence, from the curve of 

heat flow and temperature, exothermic or endothermic process will be monitored. DSC can 

identify the crystallization and the glass transition temperatures of polymers, which is a 

valuable approach to investigate the relationship between thermal properties and charge 

transport properties. 

For organic semiconductor, the ultraviolet-visible spectroscopy (UV-Vis) is routinely used to 

study the optical properties. The UV-Vis absorption spectrum of dilute solution and thin film 

of polymer can provide many useful characteristics, such as aggregation properties and light 

absorbance range. In addition, the optical bandgap (Eg) of polymer represents the minimum 

amount of energy required for a photon to excite an electron from HOMO to LUMO, which 

can be determined from the onset absorption (λonset) by the equation[73]: 

𝐸𝑔 =
ℎ × 𝑐

λ𝑜𝑛𝑠𝑒𝑡
× 𝑒 

where h is Plank's constant, c is the speed of light and e is the energy of an electron. 

Cyclic voltammetry (CV) is a type of electrochemical measurement, where the working 

electrode potential is ramped linearly versus time. During the cycles of ramps in potential, the 

reduction onset potential (Vred) is the energy at which electrons are injected to LUMO, whereas 

oxidation onset potential (Vox) represents the energy at which electrons are removed from 

HOMO. Ferrocene with a known HOMO at -4.8 eV, whose an oxidation onset potential is set 

at 0 V, is often used as a reference.[74] As a result, the HOMO/LUMO can be obtained by the 

equations below: 
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HOMO = −𝑉𝑜𝑥 − 4.8 𝑒𝑉 

 LUMO = −𝑉𝑟𝑒𝑑 − 4.8 𝑒𝑉 

Density functional theory (DFT) is a computational quantum mechanical modelling method 

based on a determination of the electron density of the molecule. With the theoretical ground 

state investigated by DFT, the properties of a given chemical structure can be predicted, such 

as HOMO and LUMO energy levels, the electronic distribution and the atomic geometry.[75] 

Thus, DFT calculation is an efficient method to design polymer structures and interpret 

polymer properties.  

X-ray diffraction (XRD) is a widely used technique of polymer characterization that can 

provide information concerning both the crystalline and amorphous states. In XRD 

measurement, the incident X-ray beams is scattered at polymer film with varying incident 

angles. The interaction of the incident rays with the polymer film will generate constructive 

interference only when the condition satisfies Bragg's law: nλ=2dsinθ.[76] Where d is the 

polymer packing distance, θ is the incident angle, n is any integer and λ is the wavelength of 

the X-ray beam. Hence, the polymer chain packing distance can be calculated from the 

diffraction peak. Atomic force microscopy (AFM) is another important measurement for the 

solid-state properties. In AFM measurement, a tip is attached to the free end of the cantilever, 

which is used to scan the sample surface. When the tip is brought into proximity of a sample 

surface, forces between the tip and the sample will cause a deflection of the cantilever. A laser 

beam is reflected off the back of the cantilever to a 4-quadrant photodiode detector. According 

to the surface morphology, the tip of the cantilever will bend and the detector can measure the 

deflection.[77] The created image is a computational visualization of the sample surface. 

1.6 Project Objectives and Thesis Structure. 

At present, the development of all-PSCs is still far behind that of fullerene/polymer solar cells 

due to the lack of the acceptor polymers with efficient n-type performance.[78] In order to 

develop polymeric semiconductors with stable n-type properties, a strong electron-deficient 

unit is needed to bring down the LUMO of D-A polymers.[79] Therefore, in Chapter 2, the 

objective of the work is to take advantage of the strong electron-withdrawing group 
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dipyrrolo[2,3-b:2',3'-e] pyrazine-2,6(1H,5H)-dione (PzDP) to design new polymer with low-

lying energy levels. The resultant PzDP-based polymers will be characterized to study the 

optical and electronic properties. A suitable donor polymer (PTB7-Th) will be used to fabricate 

the all-PSCs, and several optimizations will be utilized to investigate the photovoltaic 

properties of the polymers. The results will be further analyzed by using XRD, AFM and SCLC 

measurements. 

On the other hand, polythiophene (PT) derivatives have attracted considerable interest in OPV 

due to their high hole mobility and simple synthesis.[80] However, the most classical PT 

derivative, poly(3‐hexylthiophene), exhibited a high‐lying HOMO level and a large bandgap 

and thus caused limited performance in solar cells.[48] In order to solve these issues, in Chapter 

3, a novel PT derivative 5,7-bis(octylthio)-1,4-di(thiophen-2-yl)thieno[3,4-d] pyridazine (TPT) 

will be synthesized and used for the first time to form a D-A polymer. The new building block 

TPT is attempted to obtain deep HOMO and narrow bandgap due to the strong electron-

deficient nitrogen atoms in the backbone and internal charge transfer of D-A polymer. The 

characterization of related polymer TPT-BDT will be presented. 

Finally, in Chapter 4, the thesis work will be summarized and then some future directions will 

be proposed for further improvement. 
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Chapter 2 Synthesis and Characterization of PzDP-based Polymers 

2.1 Introduction 

All-polymer solar cells, which contain conjugated polymers with n-type properties as electron-

acceptors to replace fullerene derivatives, have been extensively studied in recent years.[81] 

However, the number of n-type polymers lags far behind p-type polymers, which have limited 

development of all-PSC.[82] Therefore, the design of n-type polymers is highly required and 

relevant for efficient all-PSCs. In particular, to achieve high performance, incorporating 

electron-deficient groups into the linear conjugated backbones, such as naphthalene diimide 

(NDI), perylene diimide (PDI) and diketopyrrolopyrrole (DPP) unit, is vital to design acceptor 

polymers for all-PSCs.[83] Among them, DPP-based polymers, are promising candidates for 

high-performance OPVs due to a high intrinsic charger transferability, low bandgaps, excellent 

thermal-stability and photostability, and impressive crystallinity.[84] For instance, DPP-based 

polymers have enable power conversion efficiencies of up to 9.4% when DPP-based polymers 

acted as electron donor and PC71BM was used as electron acceptor.[85] However, although 

several DPP-based polymers show their potential for use as electron acceptors in PSCs due to 

excellent electron mobilities in FETs, unit DPP have been used much less than NDI and 

PDI.[86] To apply DPP-based polymer as the electron acceptor in organic solar cells, the 

electron affinity is needed to be further modified to get low-lying energy levels.[82] For 

example, Wei designed DPP incorporating two thiazoles rings to obtain low‐lying energy levels. 

The resulting DPP polymer can act as an electron acceptor in PSCs to reach a PCE of 2.9%.[87] 

Thus, following this principle, we explored PzDP, the analogous structure of DPP with stronger 

electron affinity for electron-acceptors in efficient photovoltaic devices. 

PzDP compounds were first created by Hoechstetter as pigments and dyestuffs[88], which is a 

trinucleate heterocyclic consists of pyrazine that is sandwiched between two pyrrolinones to 

offer a large π-conjugated fused ring structure.[89] It can be regarded as a derivative of DPP 

isomer (Figure 2-1), which is a strongly electron withdrawing moiety. Attachment of electron-

deficient pyrrolinone in DPP isomer unit can induce significantly more electron-accepting 

property than DPP unit, thereby enhancing stronger electron transport characteristics. 
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Figure 2-1 A structural comparison of DPP, iso-DPP and PzDP. 

We first elucidated the coplanarity, electron distribution, and energy levels of the PzDP unit by 

conducting computational simulations on two model compounds: PzDP-Me and DPP-Me, 

whose nitrogen atoms were substituted by methyl groups for simplicity. The simulation results 

clearly showed that the PzDP-Me unit has a highly coplanar geometry with about 0° between 

the dipyrrolo-pyrazine-dione core and the benzene unit (Figure 2-2), which is crucial for 

forming closely packed π-π stack. The HOMO and LUMO energy levels of PzDP-Me are -

5.75 eV/-3.40 eV, while the HOMO and LUMO of DPP-Me are -4.97 eV/-2.51 eV (Figure 2-

3), which suggests the PzDP building block is significantly more electron deficient than the 

DPP. Hence, PzDP based polymers have promising potentiality to provide a stable n-type 

performance, which is necessary for the acceptor of all-PSCs. 
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Figure 2-2 A geometry comparison of PzDP-Me and DPP-Me. 

 

Figure 2-3 Predicted energy levels of PzDP-Me and DPP-Me. 

2.2 Synthesis of PzDP Monomers and Related Polymers 

The synthesis routes for PzDP monomers and polymers are outlined in Scheme 2-1 and 

Scheme 2-2, respectively. Ethyl 2-(4-bromophenyl)-2-oxoacetate (Compound 1), 1,4-

diacetylpiperazine-2,5-dione(Compound 2) and 2,2-bis((3,7-dimethyloctyl)oxy) ethyl 

bromide (Compound 3), 3,7-bis(4-bromophenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-2,6(1H,5H) 

dione) (Compound 4) were synthesized according to the literature methods.[90][91][92][89]. 

The compounds of each steps can be produced in high yield except compound 4 (25%). The 

low yield of compound 4 may be due to selectivity of its starting material (Compound 3), which 

is a mixture of cis-/trans- isomers. In addition, 4 branched alkyl chains were introduced to the 
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nitrogen atoms through base-catalyzed to solubilize the PzDP structure during polymerization 

and to optimize solubility of polymers. Moreover, all of the monomers were purified twice by 

silica gel column chromatography and recrystallized 3 times, aiming to improve molecular 

weight and obtain narrow dispersity. 

 

Scheme 2-1 Synthetic route towards PzDP monomers. 

Reaction conditions: i) DCM/AlCl3/0 °C/4 h, 75%; ii) Et3N/60 °C/8.5 h, 79%; iii) Et3N/55-60 °C/8.5 h, 

79%; iv) HCONH2/150 °C/overnight, 25%; v) DMF/K2CO3/130 °C /8 h, 51-63%. 
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Scheme 2-2 Synthetic route towards PzDP polymers. 

Reaction conditions: Toluene/Pd (PPh3)2Cl2/90-110 °C /48 h, 88-93%. 

2.3 N-type Dominant Polymer PzDP24-T 

2.3.1 Preparation of PzDP24-T 

Three PzDP-T polymers were synthesized via Stille coupling polymerization of 5a - 5c with 

2,5-bis(trimethylstannyl) thiophene using the toluene/Pd (PPh3)2Cl2 system.[89] After being 

precipitated in methanol, the crude polymer was further purified by Soxhlet extraction with 

acetone, hexane and chloroform. In the backbone of PzDP-T, the benzene-thiophene units, as 

“weak donor”, help maintain a low HOMO energy level, while PzDP, the electron deficient 

moieties as “strong acceptor”, reduce the band gap by internal charge transfer. 

The first PzDP-T polymer in this study is PzDP20-T, in which a branched alkyl chains 2-

octyldodecyl was introduced to the nitrogen atom through base-catalyzed N-alkylation. 

However, 2-octyldodecyl is not enough to decrease the strong intermolecular interaction that 
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caused by the large fused PzDP core, so the PzDP-20-T is not soluble in some common organic 

solvent, such as chloroform and chlorobenzene, in spite of a low Mn. Consequently, PzDP-20-

T was discarded in further research because it showed no solution processability. 

 

Figure 2-4 The comparison PzDP-T copolymers with two different alkyl chains. 

PzDP-24-T was then prepared via Stille coupling polymerization of 4b with 2,5-

bis(trimethylstannyl) thiophene, and purified using Soxhlet extraction. After optimization of 

side chain from C20 to C24, the PzDP-24-T demonstrated significantly enhanced solubility 

and processability in chloroform and chlorobenzene. (Figure 2-4) 

2.3.2 Characterization of PzDP24T 

The molecular weight of PzDP24T was determined by high-temperature gel-permeation 

chromatography (HT-GPC) using 1,2,4-trichlorobenzene as an eluent and polystyrene as 

standards at 140 °C (Figure 2-5). The number average molecular weight (Mn) and PDI were 

measured to be to be 28.3 kDa and 3.12, respectively. 
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Figure 2-5 The molecular weight distribution for PzDP24-T obtained by HT-GPC. 

The thermal stability of the polymer PzDP-24-T was characterized by thermogravimetric 

analysis (TGA), and Figure 2-6 shows that the polymer exhibits excellent thermal stability 

with only 2% weight loss was observed at 440 °C under the inert atmosphere. In addition, 

neither exothermic nor endothermic transitions were observed in the range from -20 °C to 

300 °C in the DSC measurement (Figure 2-7), suggesting the absence of crystalline domains. 
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Figure 2-6 TGA curve of PzDP24-T measured with a heating rate of 10 °C min-1 under nitrogen. 

 

Figure 2-7 Differential scanning calorimetry (DSC) profiles of PzDP24-T obtained at a scanning rate 

of 10 °C min-1 under nitrogen. 

PzDP-24-T exhibited a broad UV-vis-IR absorption spectrum range from 350 nm to 900 nm. 
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(Figure 2-8) The near-infrared absorption spectrum is ideal for applications in OPV for 

effective light harvesting. In the dilute solution (chloroform), the PzDP24-T showed a 

maximum absorption peak at 759 nm and an intense peak at 705 nm. Interestingly, in solid 

state (as-spun film), both peaks slightly blue shifted to 753 nm and 684 nm, respectively, which 

is an indication of the dominance of H-aggregate.[93] The optical band gaps of the polymer 

films are calculated to be 1.44 eV by using the absorption onsets, which is slightly wider than 

those (~ 1.3 eV) of the DPP-based polymers with thiophene linkages.[94] 

 

Figure 2-8 The absorption profile of in PzDP24-T diluted solution (chloroform) and thin film. 

Cyclic voltammetry (CV) was carried out to investigate electrochemical property of the 

polymer (Figure 2-9). By using the oxidative onset potentials, the HOMO level of PzDP24-T 

was determined to be -5.77 eV, whereas the LUMO level was calculated from the reduction 

onset potentials to be -3.94 eV. Comparing to the HOMO/LUMO (-5.30 eV/-3.74 eV) levels 

of the DPP-based polymers with single thiophene linkages,[95] HOMO/LUMO levels of 

PzDP24-T were lowered by 0.47 eV and 0.26 eV, which indicates that the PzDP unit has 

stronger electron accepting effect than that of DPP moiety. The lower-lying LUMO of PzDP24-

T can lead to more efficient photoinduced charge separation at the interfaces between donor 

and acceptor in OSC. 
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Figure 2-9 Cyclic voltammogram of PzDP24-T in a 0.1 M tetrabutylammonium hexafluorophosphate 

solution in acetonitrile. 

PzDP24-T was characterized as channel semiconductors in bottom-gate, bottom-contact OTFT 

devices with gold being the drain and source electrodes. The polymer thin films were obtained 

by spin coating a polymer solution in chloroform onto DTS-modified SiO2 dielectric layer, and 

optionally annealed at different temperatures (50 °C, 100 °C, 150 °C and 200 °C) a nitrogen 

filled glovebox. The polymer showed n-type dominant ambipolar charge transport behavior 

(Figure 2-10). The highest mobility was achieved at annealing temperature of 150 °C with 

electron mobility up to 0.029 cm2 V-1 s-1 with an average of 0.025 cm2 V-1 s-1 (Table 2-1). 

Moreover, the hole mobility for PzDP24T is relatively low with the best mobility 0.0021 cm2 

V-1 s-1 at 150 °C, which is different from DPP-polymers incorporating thiophene with well-

balanced hole and electron mobilities. This likely arises from a limited hole injection because 

of the relatively deep HOMO level of PzDP24-T. 
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Figure 2-10 The output curves (a)/(c) in the electron/hole enhancement mode. The transfer curves 

(b)/(d) in the electron/hole enhancement mode. The BGBC OTFT devices with 150 °C-annealed 

PzDP24-T films. Device dimensions: channel length (L) = 30 µm; channel width (W) = 1000 µm. 

Table 2-1 The summary of BGBC OTFT performance of PzDP24-T. 

Tannealing (°C) Hole mobility a 

(cm2 V-1 s-1) 

Electron mobility a 

(cm2 V-1 s-1) 

RT 0.0013± 0.0002 (0.0015) 0.017± 0.001 (0.018) 

50 0.0015± 0.0001 (0.0016) 0.019± 0.002 (0.021) 

100 0.0015± 0.0003 (0.0018) 0.022± 0.001 (0.023) 

150 0.0015± 0.0003 (0.0018) 0.025± 0.004 (0.029) 

200 0.0013± 0.0002 (0.0015) 0.011± 0.003 (0.014) 

a The average mobility ± standard deviation (maximum mobility) calculated from the 

saturation regions of five devices. 
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The low-lying energy levels, the narrow bandgap, good electron transporting characteristic, 

and the near-infrared absorption spectrum suggest PzDP24-T is a potential electron acceptor 

for polymer-polymer solar cells. We selected PTB7-Th as the complementary donor due to its 

relatively high-lying HOMO (-5.24 eV) and LUMO (-3.66 eV) levels[96], which provide a 

large enough energy offset (> 0.3 eV) with the HOMO and LUMO of PzDP24-T to facilitate 

efficient charge dissociation. (Figure 2-11) 

 

Figure 2-11 a) The energy level alignment of the PzDP24-T and PTB7-Th; b) Schematic representation 

of the solar cell device structure. 

The device configuration was ITO/PEDOT: PSS/PTB7-Th: PNDIOT/LiF/Al. (Figure 2-11) 

As preliminary device fabrication, we used chlorobenzene as the processing solvent for the 

active layer. Initially, the optimal donor/acceptor ratio was determined 1:1 with a best PCE of 

0.19% (Table 2-2). We noticed that it was difficult to process PzDP24/ PTB7-Th into a uniform 

thin film in chlorobenzene (10 mg/ml) because PzDP24-T was suffered from limited solubility 

in chlorobenzene. Then we tried to further change the spin coating solvent to dichlorobenzene 

to optimize the performance of the solar cell. For dichlorobenzene, the optimal donor/acceptor 

(D/A) ratio was determined to be 1:1, respectively, where the best PCE of 0.3% was realized 

(VOC = 0.76 V, JSC = 1.27 mA cm
-2, and FF = 0.31) (Figure 2-12). In addition, we tried to 

perform annealing treatment for 10 min on the polymer blend, as thermal annealing has proven 

to be a successful method to improve JSC and FF.[97] However, the PCE of those devices 

decreased remarkably due to lower JSC and FF (Table 2-3), which suggests thermal annealing 

is not required for PzDP24-T based solar cells. 



 

 31 

 

Figure 2-12 The J-V characteristic for the solar cell device based on PzDP24-T: PTB7-Th. The active 

layer (1:1 weight ratio) was spin-coated using a solution (10 mg/ml) in o-dichlorobenzene at 1500 rpm. 

Table 2-2 The optimization of donor/acceptor ratio and solvent in the active layer. 

Solvent Donor/Acceptor 

ratio 

JSC 

(mA/cm2) 

VOC (V) FF PCE (%) 

 

CB 

1:1 1.04 0.62 0.30 0.19 

1:1.5 1.02 0.59 0.27 0.16 

1.5:1 1.01 0.63 0.28 0.18 

 

o-DCB 

1:1 1.26 0.75 0.31 0.30 

1:1.5 1.02 0.67 0.30 0.21 

1.5:1 1.14 0.56 0.36 0.23 

Table 2-3 Device performance optimization through post-treatment. 
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Post-treatment JSC 

(mA/cm2) 

VOC (V) FF PCE (%) 

None 1.26 0.75 0.31 0.30 

Solvent-annealing 1.16 0.64 0.27 0.20 

To further understand the low performance of PzDP24-T-based devices, we used AFM to 

investigate the morphology of the PzDP24-T: PTB7-Th blend under the same conditions to 

prepare the solar cell devices. (Figure 2-13) The AFM image showed PzDP24-T: PTB7-Th 

based cell has coarsened morphology with average root mean-square surface (RMS) roughness 

6.23 nm in chlorobenzene. (Figure 2-13a) The large roughness could partially explain the low 

JSC because it is detrimental to charge carrier transport and collection.[42] Moreover, large 

phase-separated fabric structure can be observed in the blend film with size over 1 µm. A 

plausible reason is the poor solubility of PzDP24-T polymer, giving insufficient donor/acceptor 

intermixing at nanometer scale. The oversized phase segregation has negative impact on the 

exciton dissociation at the D-A interface because the exciton diffusion length is around 10 nm, 

which indicates the ideal domain width should be about 20 nm.[98] In contrast, the blend film 

spin-coated in dichlorobenzene exhibited lower RMS value (5.14 nm) and smaller aggregation 

domains (Figure 2-13b), leading to relatively high JSC and overall PCE. On the other hand, 

there is still room for further improvement of the photovoltaic properties by decreasing the 

domain sizes of the phase separation through strategies such as cosolvents[67] and processing 

additives[99]. 
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Figure 2-13 AFM height images (4 µm × 4 µm) of PTB7-Th: PzDP24-T blend films spin-coated on 

PEDOT: PSS/ITO substrates processed with (a) chlorobenzene (b) o-dichlorobenzene. 

The blend surface morphology observed by AMF does not represent the entire bulk 

morphology due to the absence for vertical morphology. Thus, further investigation is 

necessary to understand the performance of PzDP24-T based devices. Then we measured the 

charge transport properties of the PTB7-Th: PzDP24-T blend films by the space‐charge‐limited 

current (SCLC) technique. The hole‐only device was composed of ITO/PEDOT:PSS/polymer 

blend/MoO3/Ag while electron‐only device consisted of ITO/ZnO/polymer blend/LiF/Al. 

(Figure 2-14) The charge carrier mobility was calculated by fitting the J‐V curves in the near 

quadratic region according to the modified Mott‐Gurney equation: 

J =
9

8
𝜇𝜀𝜀0

𝑉2

𝐿3
 

Where L is the thickness of the polymer blend films, ε0 is vacuum dielectric constant and ε is 

approximately 3 for organic semiconductors. Hole and electron mobilities of PTB7-Th: 

PzDP24-T blend films were determined to be 2.64 × 10-5 cm2 V-1 s-1 and 9.18 × 10-7 cm2 V-1 s-

1 respectively (Figure 2-15). We noted that the electron mobility was over an order of 

magnitude lower than that of the hole mobility. It is known that the critical requirement for 

high performance solar cell to achieve balanced hole/electron carrier mobilities, so both charge 

carriers can be collected equally in unison.[100] The unbalanced hole/electron charge transport 

due to the low electron mobility could be the reason of low FF of the devices.[101] 
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Figure 2-14 Schematic representation of the SCLC devices structure: a) hole-only; b) electron-only. 

 

Figure 2-15 The J-V characteristics of the electron-only and hole-only devices for PTB7-Th: PzDP24-

T. 
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2.0 2.5 3.0 3.5 4.0 4.5 5.0

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

J
 (

m
A

/c
m

2
)

Voltage (V)

 PTB7-Th:PzDP24-T hole-only

 PTB7-Th:PzDP24-T electron-only



 

 35 

packing of individual neat film. The PzDP24-T neat film showed no appreciable long-range 

order diffraction peaks (Figure 2-16), indicating almost completely amorphous morphology. 

This result is also supported by DSC traces, which showed no glass transition and no melting 

peak. The reason of disorder packing property of PzDP24-T is probable that the zigzagged 

structure of thiophene have induced noncoplanar backbone and imposed large steric hindrances 

for the polymer chains.[102][103] These results suggested that polymer PzDP24-T film has 

poor crystallinity, which have negative impact on the JSC. It have been evidenced that relatively 

good crystallinity is the typical target during device processing because of the high carrier 

mobility and high light absorption in ordered molecular systems.[104][105] For example, 

Marcel mentioned that, for P3HT: P(NDI2OD‐T2) blends, relatively crystalline acceptor 

(P(NDI2OD‐T2)) is benefit to the charge carrier separation.[106] Moreover, in the polymer 

blend of solar cell, as the electron transport is mainly undertaken by the acceptor (PzDP24-T), 

the intrinsic disordered packing property of PzDP24-T could explain the low electron mobility 

for SCLC, corresponding to unbalanced hole/electron charge transport. 

 

Figure 2-16 XRD spectra obtained from the spin-coated PzDP24-T thin films on DDTS-modified 

SiO2/Si substrates annealed at different temperatures. 
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2.4 Balanced Ambipolar Polymers PzDP16-BDT 

2.4.1 Preparation of PzDP16-BDT 

Due to the very strong intermolecular interaction, PzDP-based polymers suffer from poor 

solubility in OPV application. According the previous study, the copolymer of C20-substituted 

PzDP and thiophene (T), PzDP20-T, was completely insoluble in several common solvents, 

whereas PzDP24-T also showed limited solubility. Moreover, further longer and branched side 

chains can result in diminishing lower charge transport property and lower overall 

performance.[42] Hence, in order to overcome this problem, we developed the D-A copolymer 

of PzDP unit and alkyl-thiophene-substituted benzo[1,2-b:4,5-b′]dithiophene (BDT), PzDP-

BDT. Introducing BDT unit can not only improve the solubility of PzDP-based polymers due 

to the presence of alkyl side chains, but also provide promising merits. Firstly, BDT unit is a 

planar conjugated molecule and easily forms π-π stacking, which is benefit to high 

mobility.[107] Secondly, for BDT, the small steric hindrance between adjacent units makes it 

an ideal conjugated unit for high PCE material design.[108] 

The additional side chains in BDT units allowed PzDP-BDT polymers substitute shorter side 

chains than PzDP-T. In this regard, we synthesized three PzDP-BDT polymers with these three 

side chains with different branch length via Stille coupling, which are named PzDP20-BDT, 

PzDP16-BDT and PzDP12-BDT, respectively (Figure 2-17). Among the three polymers, 

PzDP20-BDT yielded 95% in hexane whereas PzDP12-BDT was not soluble during Soxlet 

extraction, which exhibits the side chains were oversize or skimpy. Besides, PzDP16-BDT 

showed opportune and excellent solubility in several common organic solvent, such as 

chloroform, chlorobenzene and dichlorobenzene. 
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Figure 2-17 The comparison PzDP-BDT copolymers with three different alkyl chains. 

2.4.2 Characterization of PzDP16-BDT 

The number average (Mn) and polydispersity index (PDI) was determined to be 24.6 kDa and 

3.14, respectively, using HT-GPC at a column temperature of 140 °C with 1,2,4-

trichlorobenzene as eluent and polystyrene as standards (Figure 2-18). 
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Figure 2-18 The molecular weight distribution for PzDP16-BDT obtained by HT-GPC. 

The thermal stability and crystallinity of PzDP16-BDT was characterized by TGA and DSC, 

respectively. The polymer exhibited a good thermal stability with a 2% weight loss at 435 ℃ 

(Figure 2-19). DSC curve of PzDP16-BDT showed neither obvious exothermic nor 

endothermic signals, indicating the absence of crystalline domain (Figure 2-20). 
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Figure 2-19 TGA curve of PzDP16-BDT measured with a heating rate of 10 °C min-1 under nitrogen. 

 

Figure 2-20 Differential scanning calorimetry (DSC) profiles of PzDP16-BDT obtained at a scanning 

rate of 10 °C min-1 under nitrogen. 
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Figure 2-21 shows the UV-vis-IR absorption spectra of PzDP16-BDT for both the dilute 

solution (∼ 10-6 M in chloroform) and as-spun film. There are two distinctive peaks can be 

observed in both absorption spectra. The absorption bands in the high energy region from 300 

nm to 400 nm are attributed to the delocalized excitonic π-π* transition. The broad bands in 

the low energy region from 650 nm to 800 nm are assigned to intramolecular charge transfer 

(ICT) interactions between the donor and acceptor units in the building blocks of polymers. 

PzDP16-BDT shows the maximum absorption wavelength at 754 nm in solution. In solid films, 

the maximum absorption peak is blue-shifted from 754 nm to 703 nm, which is an indication 

of the dominance of H-aggregate. The onset absorption edges as the thin films for PzDP16-

BDT is 867 nm, corresponding to an optical bandgap of 1.43 eV. 

 

Figure 2-21 The UV-Vis-IR absorption spectra of PzDP16-BDT in diluted solution (chloroform) and 

in thin film. 
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reversible. The CV curve of PzDP16-BDT presents an onset reduction potential at -0.80 eV vs 

Ag/Ag+ and an onset oxidation potential at 0.86 eV vs Ag/Ag+. The HOMO and the LUMO 

levels of the polymer calculated to be -5.60 eV and -3.94 eV, respectively. Owing to the 

stronger electron accepting effect of the PzDP moiety, the energy levels are notably lower 

compared to those of their corresponding DPP-based polymers with the same BDT leakage, 

which is in good agreement with the previous study of PzDP24-T.   

 

Figure 2-22 Cyclic voltammogram of PzDP16-BDT in a 0.1 M tetrabutylammonium 

hexafluorophosphate solution in acetonitrile. 

The same device configuration applied in characterization of PzDP24-T was used to evaluate 

PzDP16-BDT as a channel semiconductor in BGBC OTFT. The polymer PzDP16-BDT 

showed balanced ambipolar charge transport behavior (Table 2-4). When PzDP16-BDT was 

annealed from 50 °C to 150 °C for 30 min, both hole and electron mobilities gradually 

increased. However, further increasing the annealing temperature to 200 °C caused 

degeneration for p-type/n-type carrier mobilities. The best performance was achieved at 150 °C 

with the highest hole and electron mobilities up to 0.0022 cm2 V-1 s-1and 0.0025 cm2 V-1 s-1, 
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respectively. It can be noticed that the polymer PzDP16-BDT showed lower charge 

performance than the polymer PzDP24-T. For the polymer PzDP16-BDT, the presence of side 

chains on BDT can significantly improve the solubility. However, in the solid state (film), the 

excessively strong side chain interaction might hinder the π-π stacking of the polymer main 

backbones.[109]  

Table 2-4 The summary of BGBC OTFT performance of PzDP16-BDT. 

Tannealing (°C) Hole mobility a 

(cm2 V-1 s-1) 

Electron mobility a 

(cm2 V-1 s-1) 

RT 0.00054± 0.00023 (0.00074) 0.00038± 0.00016 (0.00054) 

50 0.00074± 0.00033 (0.00107) 0.00050± 0.00014 (0.00064) 

100 0.0014± 0.0003 (0.0017) 0.00093± 0.0003 (0.0012) 

150 0.0015± 0.0004 (0.0022) 0.0015± 0.001 (0.0025) 

200 0.00012± 0.00021 (0.00033) 0.0012± 0.0003 (0.0015) 

a The average mobility ± standard deviation (maximum mobility) calculated from the 

saturation regions of five devices. 
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Figure 2-23 The output curves (a)/(c) in the electron/hole enhancement mode. The transfer curves 

(b)/(d) in the electron/hole enhancement mode. The BGBC OTFT devices with 150 °C-annealed 

PzDP16-BDT films. Device dimensions: channel length (L) = 30 µm; channel width (W) =1000 µm. 

 

Figure 2-24 a) The energy level alignment of the PzDP16-BDT and PTB7-Th; b) Schematic 

representation of the solar cell device structure. 

In addition, given that LUMO/HOMO offsets between PzDP16-BDT and PTB7-Th are larger 

than 0.3 eV, the polymer was used as electron acceptor with PTB7-Th as electron donor to 
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fabricate all-PSC with the same device structure of PzDP24-T. (Figure 2-24) Different D/A 

ratios (w/w) 1:0.8, 1:1 and 0.8:1, were scanned. Chlorobenzene and o-DCB were used as 

solvent to make the solutions. We also tried fabricating the devices in air and nitrogen 

conditions. The detailed photovoltaic data are listed in Table 2-5 and Table 2-6. It can be seen 

that the optimum device for PzDP16-BDT/PTB7-Th is spin-coated in chlorobenzene with D/A 

ratio 1:0.8 under nitrogen, and the best power conversion efficiency (PCE) value of 1.55% (JSC 

= 5.64 mA/cm2, VOC = 0.72, FF = 0.38) was obtained under this condition (Figure 2-25). 

Moreover, thermal annealing was also tried to improve the device performance. However, after 

annealing at 100 °C for 10 min, those devices showed a significant drop in performance. (Table 

2-7) 

 

 

Figure 2-25 The J-V characteristic for the solar cell device based on PzDP24-T: PTB7-Th. The active 

layer (1:0.8 weight ratio) was spin-coated using a solution (12.5 mg/ml) in o-dichlorobenzene at 1500 

rpm. 

Table 2-5 Device performance optimization through donor/acceptor ratio. 
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Solvent Donor/Acceptor 

ratio 

Environment JSC (mA/cm2) VOC (V) FF PCE (%) 

CB 1:1 Nitrogen 4.80 0.70 0.34 1.15 

CB 1:0.8 Nitrogen 5.64 0.72 0.38 1.55 

CB 0.8:1 Nitrogen 3.73 0.72 0.37 1.00 

o-DCB 1:1 Nitrogen 2.85 0.73 0.32 0.68 

o-DCB 1:0.8 Nitrogen 3.17 0.72 0.35 0.80 

o-DCB 0.8:1 Nitrogen   2.54   0.73   0.32   0.59 

 

Table 2-6 The summary of device performance in different environment. 

Solvent Donor/Acceptor 

ratio 

Environment JSC (mA/cm2) VOC (V) FF PCE (%) 

CB 1:0.8 Air 4.01 0.72 0.37 1.09 

CB 1:0.8 Nitrogen 5.64 0.72 0.38 1.55 

o-DCB 1:0.8 Air 2.53 0.72 0.31 0.60 

o-DCB 1:0.8 Nitrogen 3.17 0.72 0.35 0.80 

 

Table 2-7 Device performance optimization through post-treatment. 

Post-

treatment 

Solvent Donor/Acceptor 

ratio 

JSC 

(mA/cm2) 

VOC 

(V) 

FF PCE 

(%) 

None CB 1:0.8 5.64 0.72 0.38 1.55 

Annealing CB 1:0.8 0.64 0.71 0.35 0.16 

Atomic force microscopy (AFM) measurements were carried out to study the surface 



 

 46 

morphology of the thin film blends. As shown in Figure 2-26, the PTB7-Th: PzDP16-BDT 

polymer blends spin‐coated from o-dichlorobenzene show a phase separated surface 

morphology with large domain sizes of 200 - 300 nm as well as a large RMS of 3.5 nm (Figure 

2-26b), which is not ideal for efficient exciton dissociation. In contrast, the film blends 

dissociated from chlorobenzene present a phase‐separated surface morphology with domain 

sizes of around 100 nm and a relatively small RMS 0.86 nm (Figure 2-26a), which is more 

favorable for efficient charge photogeneration. These results are also in good agreement with 

the photovoltaic performance in terms of JSC, FF values of these all‐polymer solar cells. 

Compared with PzDP24-T-based devices, the observed optimized morphology of PzDP16-

BDT is attributed to better miscibility of the acceptor polymer and donor polymer because of 

its enhanced solubility for solar cell fabrication. 

 

Figure 2-26 AFM height images (4 µm × 4 µm) of PTB7-Th: PzDP16-BDT blend films spin-coated 

on PEDOT: PSS/ITO substrates processed with (a) chlorobenzene (b) dichlorobenzene. 

Further, the molecular orientation of the polymer PzDP16-BDT films was investigated by 

using the reflective X-ray diffraction technique (Figure 2-27). XRD patterns of different 

annealing temperature showed no appreciable diffraction peaks, indicating amorphous 

morphology. The poor crystallinity is likely caused by those redundant side chains so that steric 

hindrance disturbs the conjugation of the backbone, resulting in intrinsic disordered packing 

property.[110] In generally, poor crystallinity is related to low charge-transport character, 

which was further investigated by SCLC measurement with the same fabrication in the 

previous chapter (Figure 2-28). The hole-only and electron-only mobilities were calculated to 
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be 1.10 × 10-5 cm2 V-1 s-1 and 2.39 × 10-7 cm2 V-1 s-1, respectively. (Figure 2-29) Thus, the 

lower electron mobility of the PTB7-Th: PzDP16-BDT blend is still one of the key limiting 

factors in the performance of PSCs. 

 

Figure 2-27 XRD spectra obtained from the spin-coated PzDP16-BDT thin films on DDTS-modified 

SiO2/Si substrates annealed at different temperatures. 

 

Figure 2-28 Schematic representation of the SCLC devices structure: a) hole-only; b) electron-only. 
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Figure 2-29 The J-V characteristics of the electron-only and hole-only devices for PTB7-Th: PzDP16-

BDT. 

2.5 Conclusion 

In conclusion, two PzDP-based conjugated polymers named as PzDP24-T and PzDP16-BDT 

were designed and synthesized, which demonstrated suitable solubility by optimizing different 

lengths of side chain. With the electron-deficient effect of pyrrolinone groups, the PzDP24-T 

and PzDP16-BDT exhibited lower LUMO (-3.94 eV and -3.91 eV) compared with DPP-based 

polymers with same donor linkages. The lower LUMO energy levels can facilitate electron 

injection and thus provide stable n-type performance, which is necessary for the acceptor of 

all-PSCs. Herein, PzDP24-T showed n-type dominant charge transport properties in OTFTs 

with electron mobility up to 2.9 × 10-2 cm2 V-1 s-1cm2 V-1 s-1, whereas PzDP16-BDT exhibited 

ambipolar charge transport behavior with balanced electron/hole mobilities up to 2.2 × 10-3 

cm2 V-1 s-1/2.5 × 10-3 cm2 V-1 s-1. When the polymers applied in PSCs, a PCE of 0.3% was 

recorded in the PSC device based on PTB7-Th/PzDP24-T. AFM images suggested there were 
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large phase preparation with large RMS roughness present in polymer blends, which might be 

due to poor miscibility at nanometer scale. This has limited the charge generation that happens 

at the D-A interface, and thus led to a very low JSC. On the other hand, a smaller domain size 

and smoother roughness could be observed in PTB7-Th/PzDP16-BDT blend, and the PCE of 

devices based on PTB7-Th/PzDP16-BDT improved to 1.57%. However, through XRD and 

SCLC studies, we found that both PzDP24-T and PzDP16-BDT exhibited intrinsic disordered 

packing property thus leading to unbalanced charge transport in the polymer blends, which 

might have negative impact on the performance of those all-PSC devices. Therefore, to further 

improve the performance of PzDP-based polymers as acceptor in OSCs, the future work should 

focus on introducing higher planar unit into the polymer backbone (such as thiophene-

vinylene-thiophene) and tuning the lengths of side chain to obtain an eligible balance between 

crystallinity and solubility. 

2.6 Experimental 

2.6.1 Materials and Characterization 

All chemicals were purchased from commercial sources and used without further purification. 

Computational simulations were performed with density function theory (DFT) calculation 

with the 6-311G + (d, p) basis set and all the orbital pictures were obtained using Gauss-View 

5.0 software. GPC measurements were performed on a Waters SEC system using 1,2,4-

trichlorobezene as eluent and polystyrene as standards at 140 °C. TGA measurements were 

carried out on a TA Instruments SDT 2960 at a scan rate of 10 °C min-1 under nitrogen. The 

UV-Vis-IR absorption spectra of polymers were recorded on a Thermo Scientific model 

GENESYS™ 10S VIS spectrophotometer. Cyclic voltammetry (CV) data were obtained on a 

CHI600E electrochemical analyzer using an Ag/AgCl reference electrode and two Pt disk 

electrodes as the working and counter electrodes in a 0.1 M tetrabutylammonium 

hexafluorophosphate solution in acetonitrile at a scan rate of 100 mV s-1. Ferrocene was used 

as the reference, which has a HOMO energy value of -4.8 eV. NMR data was recorded with a 

Bruker DPX 300 MHz spectrometer with chemical shifts relative to tetramethyl silane (TMS, 

0 ppm). Transmission XRD measurements were carried out on a Bruker Smart 6000 CCD 3-
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circle D8 diffractometer with a Cu RA (Rigaku) X-ray source (λ = 0.15406 nm) and the 

polymer flakes stacked between two Mylar substrates. Atomic force microscopy (AFM) 

images were taken on polymer thin films spin-coated on the DDTS-modified SiO2/Si substrates 

with a Dimension 3100 scanning probe microscope 

2.6.2 Fabrication and Characterization of OTFT Devices 

A bottom-gate bottom-contact (BGBC) configuration was used for all OTFT devices. The 

preparation procedure of the substrate and device is as follows. A heavily n-doped SiO2/Si 

wafer with ~ 300 nm-thick SiO2 was patterned with gold source and drain pairs by conventional 

photolithography and thermal deposition. Then the substrate was treated with air plasma, 

followed by cleaning with acetone and isopropanol in an ultra-sonic bath. Subsequently, the 

substrate was placed in a solution of dodecyl trichlorosilane (DDTS) in toluene (3 % in toluene) 

at room temperature for 20 min. The substrate was washed with toluene and dried under a 

nitrogen flow. Then a polymer solution in chloroform (5 mg/ml) was spin-coated onto the 

substrate at 3000 rpm for 60 s to give a polymer film (~ 40 nm), which was further subject to 

thermal annealing at different temperatures for 20 min in a glove box. All the OTFT devices 

have a channel length (L) of 30 µm and a channel width (W) of 1000 µm, and were 

characterized in the same glove box using an Agilent B2912A Semiconductor Analyzer. The 

hole and electron mobilities are calculated in the saturation regime according to the following 

equation: 

𝐼𝐷𝑆 =
𝜇𝐶𝑖𝑊

2𝐿
(𝑉𝐺 − 𝑉𝑇)2 

where IDS is the drain-source current, µ is charge carrier mobility, Ci is the gate dielectric layer 

capacitance per unit area (~ 11.6 nF cm-2), VG is the gate voltage, VT is the threshold voltage, 

L is the channel length (30 µm), and W is the channel width (1000 µm). 

2.6.3 Fabrication and Characterization of All-PSC Devices 

All all-PSC devices were fabricated using the conventional configuration ITO/PEDOT: 

PSS/PTB7-Th: polymer acceptor/LiF/Al. ITO glass substrates were sonicated in water, acetone 

and IPA. Then the substrates were treated with plasma cleaning. A thin layer of PEDOT: PSS 
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(Al 4083) was deposited through spin coating at 4000 rpm and dried subsequently at 150 °C 

for 20 min in air. Then the substrates were transferred to a nitrogen glove box, where the 

polymer blend layer (~ 140 nm) was spin-coated onto the PEDOT: PSS layer. Finally, a thin 

layer of LiF (1 nm) and a layer of Al (100 nm) electrode were deposited in vacuum onto the 

substrate at P ≈ 5.0 × 10-6 Pa. The active area is 0.07 cm2. The current density-voltage (J-V) 

characteristics of the all-PSCs were measured on an Agilent B2912A Semiconductor Analyzer 

with a Science Tech SLB300-A Solar Simulator. A 450 W xenon lamp and an air mass (AM) 

1.5 filter were used as the light source. 

2.6.4 Synthetic Procedures 

General procedure for the synthesis of ethyl 2-(4-bromophenyl)-2-oxoacetate (Compound 

1): 

 

Anhydrous aluminum-trichloride (10 g, 0.075 mol) was added slowly to a stirred mixture of 

DCM (20 ml), ethyl 2-chloro-2-oxoacetate (10.24 g, 8.4 ml, 0.075 mol) and bromobenzene 

compound (7.85 g, 5.3 ml, 0.050 mol) cooled in an ice-bath, at such a rate as to maintain the 

reaction temperature below 10 ℃. After the addition was completed the reaction mixture was 

stirred at 10 ℃ for 1 hour and then at ambient temperature for 3 hours, after which it was 

poured carefully into a mixture of ice and water (150 ml). The aqueous layer was extracted 

with DCM (3 × 20 ml), and the organic layers was combined, dried by Na2SO4, filtered. After 

removing solvent, the product was purified by a very short column using hexane/DCM (1:1) 

and ethyl acetate, respectively.  

Yield: 9.6 g, 75%.  

1H-NMR (300 MHz, chloroform-d, ppm) δ 7.90 (m, 2H), 7.66 (m, 2H), 4.45 (q, J = 7.1 Hz, 

2H), 1.42 (t, J = 7.1 Hz, 3H) 

General procedure for the synthesis of 1,4-diacetylpiperazine-2,5-dione (Compound 2): 
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Glycine anhydride (11.41 g, 0.1 mol) was refluxed in acetic anhydride (50 mL) under argon 

for 11 h. The solvent was evaporated under reduced pressure, and the crude solid product 

was recrystallised from ethyl acetate and hexane and washed with methanol. 

Yield: 16.0 g, 79%.   

1H-NMR (300 MHz, chloroform-d, ppm) δ 4.59 (s, 4H), 2.59 (s, 6H) 

General procedure for the synthesis of diethyl 2,2'-(3,6-dioxopiperazine-2,5-diylidene) 

bis(2-(4-bromophenyl) acetate)) (Compound 3): 

 

Under argon protection, a mixture of ethyl 2-(4-bromophenyl)-2-oxoacetate (3.86 g, 15 mmol), 

1,4-diacetylpiperazine-2,5-dione (1.29 g, 6.5 mmol) and 3.5 ml triethylamine was heated at 55 

- 60 ℃ overnight. After removing most of triethylamine under a reduced pressure, the residue 

was triturated and stirred in 10 ml of methanol for 12 h at room temperature, then filtered and 

washed with cold methanol to get a mixture of isomers.  

Yield: 3.0 g, 79%. 

1H-NMR (300 MHz, chloroform-d, ppm) δ 11.91 - 11.75 (s, s, 1 + 2.2H), 8.05 - 6.96 (m, 25H), 

4.34 - 4.13 (m, 12H), 1.35-1.15 (m, 18H). 

General procedure for the synthesis of 3,7-bis(4-bromophenyl)dipyrrolo[2,3-b:2',3'-

e]pyrazine-2,6 (1H,5H)-dione) (Compound 4): 
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The precursors of (Compound 3) (3 g, 5 mmol) was heated in formamide (50 ml) at 150 ℃ 

overnight under argon protection. After cooling, 20 ml methanol was added, then washed by 

/DCM/acetone and filtered to give a dark red product. 

Yield: 0.75 g, 25%.   

1H-NMR (DMSO-d6, 300 MHz, ppm) δ 11.44 (s, 1H), 8.23 (d, 2H), 7.72 (d, 2H). 

General procedure for the synthesis of 3,7-bis(4-bromophenyl)-1,5-bis(2-

decyltetradecyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-2,6(1H,5H)-dione (Compound 5-a): 

 

In a dry three-neck 25 ml round bottom flask, PzDP (Compound 3) (0.248 g. 0.5 mmol) and 

anhydrous K2CO3 (0.207 g, 1.5 mmol) were suspended in anhydrous N, N-dimethylformamide 

(DMF) (9 ml), Br-alky chain (1.55 mmol) was then added portionwise, and the reaction 

mixture was further stirred and heated overnight at 130 °C. The reaction mixture was allowed 

to cool down to room temperature, poured into water (80 ml), and stirred for 5 min. The product 

was extracted with ethyl acetate (40 ml × 3), then washed with water. Removal of the solvent 

afforded the crude product which was further purified using a silica-gel column (eluted with 

DCM: Hexane = 2:1 ~ 1:1). The residue was recrystallized with hot methanol. 

Yield: 0.30 g, 51%.  

1H-NMR (300 MHz, chloroform-d, ppm) δ 8.37 (d, J = 8.7 Hz, 4H), 7.55 (d, J = 8.7 Hz, 4H), 
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3.62 (d, J = 7 Hz, 4H), 1.93 (s, 2H), 1.27 (m, 82H), 0.86 (t, J = 5.9 Hz, 12H). 

Compounds 5-b to 5-e were synthesized with a similar synthetic procedure that was used 

for compound 5-a. 

3,7-bis(4-bromophenyl)-1,5-bis(2-octyldodecyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-

2,6(1H,5H)-dione (Compound 5-b): 

 

Yield: 0.32 g, 59%.  

1H-NMR (300 MHz, chloroform-d, ppm) δ 8.37(d, J = 8.7 Hz, 4H), 7.57 (d, J = 8.7 Hz, 4H), 

3.63 (d, J = 7 Hz, 4H), 1.96 (s, 2H), 1.27 (m, 64H), 0.94 - 0.82 (m, 12H). 

3,7-bis(4-bromophenyl)-1,5-bis(2-hexyldecyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-

2,6(1H,5H)-dione (Compound 5-c): 

 

 

Yield: 0.28 g, 60%.  

1H-NMR (300 MHz, chloroform-d, ppm) δ 8.37 (d, J = 8.5 Hz, 4H), 7.57 (d, J = 8.6 Hz, 4H), 

3.64 (d, J = 7.1 Hz, 4H), 1.94 (s, 2H), 1.28 (d, J = 22.1 Hz, 49H), 0.85 (t, J = 6.3 Hz, 12H). 

3,7-bis(4-bromophenyl)-1,5-bis(2-butyloctyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-
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2,6(1H,5H)-dione (Compound 5-d): 

 

Yield: 0.26 g, 63%. 

1H-NMR (300 MHz, chloroform-d, ppm) δ 8.36 (d, J = 8.7 Hz, 4H), 7.56 (d, J = 8.7 Hz, 4H), 

3.63 (d, J = 7.1 Hz, 4H), 1.94 (s, 2H), 1.27 (d, J = 22.0 Hz, 33H), 0.95 - 0.78 (m, 13H). 

General procedure for the synthesis of polymer PzDP24-T: 

 

Compound 5-a (0.1306 g, 0.115 mmol) and 2,5-bis(trimethylstannyl)thiophene (0.0471 g, 

0.115 mmol) were charged into a 25 ml flask. After degassing and refilling argon for 3 times, 

anhydrous toluene (6 ml) and bis(triphenylphosphine)palladium (II) dichloride (2 mg, 2.4% 

mol) were added and the reaction mixture was raised to 90 ℃ and stirred for 48 hours. After 

the mixture cold down, the mixture was poured into 100 ml methanol with stirring. After 

filtration, Soxhlet extraction by acetone, hexane and chloroform. 

Yield: 

Acetone extracted fraction: 0%.  

Hexane extracted fraction: 10 mg, 8%.  

Chloroform extracted fraction: 110 mg, 87%. 
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All PzDP-based Polymers were synthesized with a similar synthetic procedure that was 

used for PzDP24-T. 

PzDP20-T: 

 

Yield:  

Acetone extracted fraction: 0%. 

Hexane extracted fraction: 0%. 

Chloroform extracted fraction: 9 mg, 8%. 

PzDP20-BDT: 

 

Yield: 

Acetone extracted fraction: 0%. 

Hexane extracted fraction: 100 mg, 88%. 

Chloroform extracted fraction: 10 mg, 8%. 
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PzDP16-BDT: 

 

Yield: 

Acetone extracted fraction: 0%. 

Hexane extracted fraction: 0%. 

Chloroform extracted fraction: 108 mg, 95%. 

PzDP16-BDT: 

 

Yield: 

Acetone extracted fraction: 0%. 

Hexane extracted fraction: 0%. 

Chloroform extracted fraction: 8 mg
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Chapter 3 Synthesis and Characterization of Novel Building Block TPT-

based-polymer. 

3.1 Introduction 

The bulk heterojunction (BHJ) polymer solar cells, based on conjugated polymer donor and 

fullerene derivative acceptor, have attracted growing attraction due to their lightweight, low 

cost, flexible photovoltaic panels and potential application of mass-production.[111] Among 

the large variety of conjugated polymers donor materials, the most widely investigated one is 

regioregular poly(3-hexylthiophene) (P3HT).[112] However, the PCE of devices based on 

P3HT and PCBM blend, is limited by the relatively low VOC, resulting from the high-lying 

HOMO level (-5 eV) of P3HT.[48] In addition, the relatively large bandgap of P3HT (~ 2.0 

eV) causes inferior light harvest, which is unfavorable for high PCE.[47] Therefore, design 

and synthesis of novel photovoltaic polymers with deep HOMO energy level and broader 

absorption, is necessary to improve photovoltaic performance of PSCs. One of the successful 

methods to solve these issues is to alternate electron-withdrawing (acceptor) and electron-

donating (donor) units in the polymer backbone, thereby reducing the bandgap. Besides, 

attaching electron‐withdrawing segments on polymer backbone is efficient to modify a deep 

HOMO.[36][113] Functional groups containing nitrogen atom have been frequently utilized 

as electron-deficiency moieties to optimize molecular energy levels (HOMO and LUMO) of 

conjugated polymers.[114] For instance, quinoxaline, a heterocyclic conjugated unit with a 

ring complex made up of a benzene ring and a pyrazine ring, indicates significant electron-

withdrawing property due to the strong electronegativity of the two nitrogen atoms in pyrazine. 

Quinoxaline-based polymers exhibited narrow band gaps and promising photovoltaic 

properties, which have achieved an outstanding PCE up to 11%.[115] However, pyridazine, as 

an isomeric structure with pyrazine, is one promising yet unexplored electron-deficient 

heterocycle for D-A conjugated copolymers with low-lying energy levels and narrow bandgap. 

In this work, a novel aromatic building block (TPT) with a pyridazine core have been designed 

and synthesized, and the characteristics of TPT-based polymer will be described. 

The new aromatic compound TPT, namely 5,7-bis(octylthio)-1,4-di(thiophen-2-yl)thieno[3,4-
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d]pyridazine, has a thieno-pyridazine core that incorporates two thiophene, where the 

substituted alkylthio chains could enable a good solubility for TPT-based polymers. As an 

analogue of pyrazine, pyridazine in the fused ring containing two electron-withdrawing 

nitrogen atoms provides high electron-accepting ability, which can be clearly observed in the 

computational simulation of TPT-Me molecule (Figure 3-1). The simulation results showed 

that the electrons of HOMO are averagely distributed in the entire molecule, whereas in the 

LUMO, the electrons are more concentrated around the thieno-pyridazine core. Meanwhile, 

the calculated HOMO and LUMO levels are -5.65 eV and -2.53 eV, respectively. The predicted 

low-lying energy levels indicate that the TPT moiety is a promising candidate to achieve deep 

HOMO for D-A polymers. 

 

Figure 3-1 Predicted energy levels of TPT-Me. 

3.2 Synthesis of Novel TPT Monomers and Related Polymer 

As shown in Scheme 3-1 and 3-3, the TPT monomers can be easily prepared from simple ring 

closure procedure and condensation reactions (Route 1: non-brominated TPT) (Route 2: 

brominated TPT), their respective synthesis has been carried out as follows. Firstly, compound 

1 was readily synthesized in excellent yields by one-step reaction of carbon disulfide and alkyl 

halide under mild reaction conditions in the presence of cesium carbonate as a basic system 
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and DMAc as the solvent.[116] In addition, we found that a trace amount of phase-transfer 

catalyst TBAI can improve the yield of desired product from 70% to 90%. Secondly, compound 

2a-b was obtained by treating active the corresponding thiophene ketones with compound 1 in 

a mixture solvent (hexane/DFM, 5:1) with sodium hydride as the base.[117] Herein, the yield 

of 2a-b is very sensitive to the equivalent of sodium hydride. Therefore, systematic 

improvement was carried out in a series of experiment with different equivalent of sodium 

hydride, and the results are presented in Table 3-1. 

Table 3-1 The compound 2a-b synthesis improvement results. 

Experiment No. Sodium hydride (eq) Yield of 2a-b 

1 1 25% 

2 1.5 30% 

3 2 10% 

4 3 0 

In addition, it is worth noticing that compound 2-b is not stable in silica gel and will partially 

decompose into thiol during silica gel column chromatography, which may arise from the weak 

acidity of silica gel surface. (Figure 3-2) 

 

Figure 3-2 The compound 2-b can decompose into thiol in silica gel. 

Thirdly, the synthesis of compound 3a-b involved an oxidative homodimerization reaction with 

N-chlorosuccinimide in DMSO.[118] Finally, compound 4a-b was synthesized through a 

condensation reaction with hydrazine monohydrate in acetic acid.[119] 

In preliminary attempt, we had synthesized non-brominated TPT compound 4-a via route 1 

and attempted to obtain brominated monomer 4-b by brominating 4-a. However, neither 

bromination in 4-a nor 3-a could yield related brominated product 4-b or 3-b in different 
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conditions (Scheme 3-2). We suspected the alkylthio might be oxidized by bromination reagent: 

NBS or Br2, which have failed the reactions. Therefore, we tuned to route 2, which is outlined 

in Scheme 3-3. The replacement of 2-acetyl-thiophene by 2-acetyl-5-bromothiophene allows 

the avoidance of subsequent bromination reactions, which achieved brominated monomer 4-b 

successfully.  

 

Scheme 3-1 Synthetic route towards non-brominated TPT. 

Reaction conditions: i) DMAc/CsCO3/r.t/overnight, 90%; ii) DMF/hexane (1:5)/NaH /r.t/12 h, 30%; iii) 

DMSO/100 °C/8.5 h, 42%; iv) NH2-NH2/100 °C /4 h, 66%. 

 

Scheme 3-2 Bromination of 3-a and 4-a. 

Reaction conditions: 1. DCM/NBS/r.t; 2. Chloroform/NBS/40-60 °C; 3. DMF/NBS/r.t; 4. DCM/Br2/r.t 
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Scheme 3-3 Synthetic route towards brominated TPT. 

Reaction conditions: i) DMAc/CsCO3/r.t/overnight, 90%; ii) DMF/hexane (1:5)/NaH/r.t/12 h, 30%; iii) 

DMSO/100 °C/8.5 h, 42%; iv) NH2-NH2/100 °C/4 h, 66%. 

 

 

Scheme 3-4 Synthetic route towards TPT-BDT polymer. 

Reaction conditions: Toluene/Pd (PPh3)4/90-110 °C/48 h, 52%. 

The brominated TPT (compound 4-b) was then polymerized with comonomer BDT and TT by 

Stille coupling polymerization reactions. In spite of numerous attempts, only polymer TPT-

BDT was obtained with toluene as the solvent and Pd (PPh3)4 as the catalyst with relatively 

low yield (52%) (Scheme 3-4). The low yield suggested that the polymer had low molecular 

weight, which could be partially explained by a strong interaction of the pyridazine unit with 

the palladium catalyst. Indeed, pyridazines have been evidenced as a strong metal-coordinating 

ligand.[120][121] Thurs, during the polymerization reaction, pyridazine moiety of TPT can 

trap the palladium catalyst so that the efficiency of polymerization is limited (Figure 3-3). 



 

 63 

 

Figure 3-3 The complex of palladium with TPT monomer can occur during the polymerization reaction. 

3.3 Characterization of TPT-BDT 

TPT-BDT polymer show good solution processability in several common solvent, such as 

chloroform, chlorobenzene and o-dichlorobenzene. The molecular weight of the TPT-BDT 

polymer is 10.7 kDa (Mn) with a PDI of 3.1, which was measured by gel permeation 

chromatography (GPC) using 1,2,4-trichlorobenzene as eluent under 140 °C and 

monodispersed polystyrene as standard (Figure 3-4). The reason of the relatively low 

molecular weight has been discussed above. 
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Figure 3-4 The molecular weight distribution for TPT-BDT obtained by HT-GPC. 

 

Figure 3-5 TGA curve of TPT-BDT measured with a heating rate of 10 °C min-1 under nitrogen. 
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The TPT-BDT polymer was also characterized by thermogravimetric analyses (TGA). As 

shown by Figure 3-5, TPT-BDT polymer exhibits a good thermal stability up to 300 °C. 

The UV-Vis-IR absorption spectra of the polymer TPT-BDT is shown in Figure 3-6. There are 

two absorption peaks can be observed in the absorption spectrum of the film. The peak at 388 

nm should be attributed to π-π* transition along the conjugated backbones of the polymer, 

while the shoulder peak at 503 nm should be attributed to interchain π-π* transition due to the 

π-π stacking of the backbones.[122] Compared to the solution absorption, both peaks of thin 

film absorption were red-shifted from 380 nm to 388 nm and 496 nm to 503 nm. The red-

shifting suggests TPT-BDT polymer has a more coplanar conformation and stronger 

intermolecular interactions in the solid state (thin film). The optical bandgap was calculated to 

be 1.89 eV according to onset absorption of the solid state. 

  

Figure 3-6 The UV-Vis-IR absorption spectra of TPT-BDT in diluted solution (chloroform) and in thin 

film. 

Cyclic voltammetry measurement was used to investigate the HOMO/LUMO levels of the 

TPT-BDT polymer (Figure 3-7). Based on the onset oxidation potentials, the HOMO is 
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estimated to be -5.55 eV. Due to the absence of reduction peaks, the LUMO was determined 

by combining HOMO with the optical bandgap, obtaining a LUMO energy level of -3.66 eV. 

When compared to the analogue backbones with pyrazine rings, such as quinoxaline and 

thieno-pyrazine based polymers, the TPT-BDT polymer has lower or approximate energy 

levels (Figure 3-8). These results suggest the utilization of pyridazine unit is a good method 

to modulate the HOMO and LUMO of conjugated polymers. 

 

Figure 3-7 Cyclic voltammogram of PzDP16-BDT in a 0.1 M tetrabutylammonium 

hexafluorophosphate solution in acetonitrile. 
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Figure 3-8 The energy levels of TPT-BDT and the polymers with analogue backbones (P1 and 

PBDTDTQx-O). 

The numbers of P1 and PBDTDTQx-O can be found from the reference.[123][124] 

Further, The TPT-BDT polymer was characterized as the channel semiconductor in bottom-

contact, bottom-gate OTFTs with gold being the drain and source electrodes and p-doped 

silicon wafer being gate electrode. However, OTFT devices with TPT-BDT thin films showed 

almost no performance for hole/electron mobilities at different annealed temperature. The 

computational simulations showed a highly twisted backbone for TPT-BDT polymer, which 

could limit carrier charge-transport properties. For example, Brédas found that torsion angles 

along the main chains that larger than about 40 ° have a significant negative effect on the 

electronic properties.[125] However, the computational simulations showed that the torsion 

angle between thiophene and  thieno-pyridazine core in TPT-Me is as high as 66 ° (Figure 3-

9). Hence, such a large torsion angle of TPT monomer might prevent charge delocalization 

over the polymer backbone and co-facial π-π interactions between polymer chains, thereby 

impairing mobilities. 
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Figure 3-9 The geometry of TPT-Me. 

 

Figure 3-10 The energy level alignment of the TPT-BDT and PC61BM[126]; b) Schematic 

representation of the solar cell device structure. 

Further, to investigate the photovoltaic properties of TPT-BDT, the PSCs were fabricated with 

a conventional device architecture of ITO/PEDOT: PSS/TPT-BDT: PC61BM/LiF/Al (Figure 

3-10) and were characterized under the illumination of AM 1.5 G (100 mW cm-2). Table 3-2, 

3-3 and 3-4 displays the photovoltaic performance of the PSC devices with different fabrication 
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conditions. Firstly, the donor/acceptor (TPT-BDT/PC61BM) weight ratios were optimized in 

the range from 1.5:1, 1:1 to 1:1.5. It can be noticed that all the PSCs devices with different D/A 

weight ratios exhibited relatively low photovoltaic performance. The optimum D/A weight 

ratio was found to be 1:1.5, and the corresponding results showed the highest PCE of 0.11% 

with VOC of 0.66 V, JSC of 0.74 mA cm-2, and FF of 24% (Figure 3-11). After that, the optimized 

D/A ratio (1:1.5) was carried out to study the impact of active layer thickness and thermal 

annealing on the photovoltaic performance of the PSCs based on TPT-BDT/PC61BM. Table 3-

3 showed the relationship between photovoltaic performance of the PSCs with difference 

active layer thickness. We can see that the photovoltaic performance of the PSCs was not 

sensitive to the active layer thickness in the range of 70 - 170 nm, where the overall PCEs were 

nearly unchanged. However, the PCE of the PSCs slightly decreased with the thermal 

annealing at 100 °C, and 150 °C for 15 min, indicating that the thermal annealing is not 

required for the PSCs based on TPT-BDT/PC61BM. 
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Figure 3-11 The J-V characteristic for the solar cell device based on TPT-BDT: PC61BM. The active 

layer (1:1.5 weight ratio) was spin-coated using a solution (10 mg/ml) in chloroform at 2000 rpm. 

Table 3-2 The optimization of donor/acceptor ratio. 

Donor/Acceptor 

ratio 

JSC (mA/cm2) VOC (V) FF PCE (%) 

1:1 0.54 0.64 0.24 0.08 

1:1.5 0.74 0.66 0.24 0.11 

1.5:1 0.31 0.68 0.25 0.05 

 

Table 3-3 The optimization of active layer thickness. 

Thickness (nm) Donor/Acceptor 

ratio 
JSC (mA/cm2) VOC (V) FF PCE (%) 

70 1:1.5 0.70 0.60 0.25 0.11 

113 1:1.5 0.74 0.66 0.24 0.11 

170 1:1.5 0.66 0.66 0.24 0.11 

 

Table 3-4 Device performance optimization through post-treatment. 

Thermal 

annealing (°C) 

Donor/Acceptor 

ratio 
JSC (mA/cm2) VOC (V) FF PCE (%) 

None 1:1.5 0.74 0.66 0.24 0.11 

100 1:1.5 0.55 0.67 0.24 0.09 

150 1:1.5 0.68 0.65 0.24 0.10 

The poor performance of TPT-BDT/PC61BM might be mainly caused by the relatively low 

molecular weight of TPT-BDT polymer. The study of the impact of polymer molecular weight 
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on performance of OPV has been previous reported in literature. For example, Pavel have 

demonstrated that lowering the molecular weight of P3HTs can dramatically decrease the 

performance of P3HT/PCBM bulk heterojunction solar cells. Compared to the devices made 

of high-molecular-weight P3HT, the devices with low molecular weight P3HT exhibited a 

reduction of the VOC and FF by 50% as well as a decrease in the JSC by a factor of 5 - 10.[127] 

Similarly, Ding also found that the increase of Mn of PTB7-Th could improve the performance 

of PTB7-Th/PC61BM based cells due to better morphology and lower density of recombination 

centers.[128] Hence, to further improve the performance of solar cell based on TPT-based 

polymer, the foremost focus should be placed on the polymerization optimization to obtain 

high molecular weight polymers. 

3.4 Conclusion 

In summary, we have presented the synthesis of new pyridazine-based conjugated monomer 

TPT for the first time. The electron-withdrawing monomer TPT has been prepared 

conveniently in a few steps involving condensation reaction and simple purification procedures. 

The related polymer TPT-BDT suggests that introducing pyridazine unit can efficiently 

modulate HOMO/LUMO compared with the analogue backbones with pyridine. However, 

DFT simulation showed a highly twisted backbone for TPT structure, which might be the 

reason of the poor charge carrier charge-transport properties in OTFT application. When the 

polymer TPT-BDT was applied as donor in PSCs with PC61BM as acceptor, all devices showed 

very poor performance (~ 0.11%). The low PCEs might be caused by the relatively low 

molecular weight, because the pyridazine unit has a strong interaction with palladium catalyst 

during polymerization reaction and thus limits the efficiency of the polymerization reaction.  

3.5 Experimental 

3.5.1 Materials and Characterization 

All chemicals were purchased from Sigma-Aldrich and used without further purification. The 

DFT calculation, GPC measurement, TGA measurement, UV-Vis-IR absorption spectra, 

cyclic voltammetry (CV) and NMR data were obtained with the same conditions as that 
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described in Chapter 2. 

3.5.2 Fabrication and Characterization of OTFT and Solar Cell Devices 

The device fabrication procedures used for testing TPT-BDT copolymer were same as that 

described in Chapter 2 for PzDP-based polymers. 

3.5.3 Synthetic Procedures 

General procedure for the synthesis of bis(2-ethylhexyl) carbonotrithioate (Compound 

1): 

 

 

 

A mixture of CS2 (1.52 g, 20.0 mmol) and Cs2CO3 (6.52 g, 20.0 mmol) in DMAc (20 ml) was 

stirred at r.t for 30 min, and then 2-ethylhexyl bromine (3.86 g, 20.0 mmol) in DMAc (5 ml) 

was added. Stirring of the reaction mixture was continued at 25 °C overnight hours. Then 40 

ml water was added to the mixture. The product was extracted by 25 ml × 3 ethyl acetate, and 

then dried by vacuo. The crude product was filtered by a thin silica gel layer to get a light-

yellow oil. 

Yield: 3.0 g, 90%. 

1H NMR (300 MHz, chloroform-d, ppm) δ 3.38 (d, J = 7.9 Hz, 4H), 1.79 - 1.59 (m, 2H), 1.49 

- 1.18 (m, 16H), 0.87 (m, 12H). 

 

General procedure for the synthesis of 2-ethylhexyl 3-(5-bromothiophen-2-yl)-3-

oxopropanedithioate (Compound 2-b): 
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2-Acetyl-5-bromo-thiophene (2.05 g, 10 mmol) was added to a suspension of NaH (60% 

suspension in mineral oil, 0.6 g, 15 mmol) in DMF/hexane solvent mixture (1:4, 30 ml). After 

1 hour, di(2-ethylhexyl) trithiocarbonate (3.34 g, 10 mmol) was slowly added to the reaction 

mixture and stirred well for 12 h. After completion of the reaction (monitored by TLC), the 

reaction mixture was acidified with 1M HCl (20 ml). The product was extracted with 

dichloromethane (2 × 30 ml) followed by washing with brine (2 × 25 ml) and dried over 

anhydrous sodium sulfate. The solvent was evaporated under vacuum and the residue obtained 

was purified by column chromatography over a very short silica gel using hexane/DCM (5:1) 

as eluent to give a yellow oil without further purify. 

Yield: 1.3 g, 30%. 

1H NMR (300 MHz, chloroform-d, ppm) δ 7.45 (s, 1H), 7.08 (t, J = 4.2 Hz, 1H), 6.69 (s, 1H), 

3.25 (d, J = 6.3 Hz, 2H), 1.69 (h, J = 6.3 Hz, 1H), 1.51 - 1.13 (m, 12H), 0.88 (s, 12H). 

 

General procedure for the synthesis of (2,5-bis((2-ethylhexyl)thio)thiophene-3,4-

diyl)bis((5-bromothiophen-2-yl)methanone) (Compound 3-b): 
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To a stirring solution of 2-ethylhexyl 3-(5-bromothiophen-2-yl)-3-oxopropanedithioate in 

DMSO (8 ml), NCS (0.17 g, 1.3 mmol, 0.5 eq) was added at room temperature and the reaction 

mixture was stirred for 30min. The flask containing the reaction was transferred to an oil bath 

at 100 °C for 12 h. After completion of the reaction (monitored by TLC), water was added. 

The content was extracted with dichloromethane (2 × 10 ml). The combined extract was dried 

over anhydrous Na2SO4 and the solvent was evaporated under vacuum. The crude residue thus 

obtained was purified by column chromatography over silica gel using DCM/hexane as eluent 

to afford an orange oil. 

Yield: 0.42 g, 43%. 

1H NMR (300 MHz, chloroform-d, ppm) δ 7.12 (d, J = 4.1 Hz, 2H), 6.99 (d, J = 4.1 Hz, 2H), 

2.94 (d, J = 6.2 Hz, 4H), 1.47 - 1.11 (m, 20H), 0.96 - 0.77 (m, 12H). 

 

General procedure for the synthesis of 1,4-bis(5-bromothiophen-2-yl)-5,7-bis((2-

ethylhexyl)thio)thieno[3,4-d]pyridazine (Compound 4-b): 

 

 

 

To the solution of the 3,4-diacylthiphene (0.5 g, 0.66 mmol) in acetic acid (12 ml) was added 

hydrazine monohydrate 3 ml, and the resulting mixture at 100 ℃ 4 h under nitrogen. After 

cooling down to r.t, acetic acid was quenched by NaHCO3 solution. 50 ml DCM was added to 

the crude product and washed by water (50 ml × 3). The organic layer was dried by Na2SO4 

and concentrated. Then the product was purified by through a silica gel column with the eluent 

(hexane/EA = 5:1) to give a dark red viscous oil. 
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Yield: 0.33 g, 66%. 

1H NMR (300 MHz, chloroform-d, ppm) δ 7.29 (d, J = 3.9 Hz, 2H), 7.11 (d, J = 3.9 Hz, 2H), 

2.76 (d, J = 6.2 Hz, 4H), 1.42 (s, 2H), 1.39 - 1.03 (m, 20H), 0.97 - 0.72 (m, 13H). 

 

General procedure for the synthesis of TPT-BDT: 

 

 

 

Compound 4-b (0.100 g, 133.9 µmol) and benzol-bithiophene (0.103 g, 133.9 µmol) were 

charged into a 25 ml flask. After degassing and refilling argon for 3 times, anhydrous toluene 

(6 ml) and Pd (PPh3)4 (5.5%, 8.5 mg,7.35 µmol) in 1 ml toluene were added and the reaction 

mixture was raised to 110 ℃ and stirred for 48 hours. After the mixture cold down, the mixture 

was poured into 100 ml methanol with stirring and filtered. Soxhlet extraction by acetone, 

hexane and chloroform. 

Yield: 

Acetone extracted fraction: 15 mg, 14%. 

Hexane extracted fraction: 30 mg, 30%. 

Chloroform extracted fraction: 54 mg, 52%. 
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Chapter 4 Summary and Future work 

In conclusion, this thesis presents the design and synthesis of two electron-deficient moieties 

PzDP and TPT by utilizing electron‐withdrawing nitrogen atoms, and the characterization of 

several related polymers semiconductor were described. 

In Chapter 2, a series of alkyl-substituted PzDP monomers were prepared and incorporated 

into D-A copolymers. Two PzDP-based polymers, PzDP24-T and PzDP16-BDT, were 

synthesized and demonstrated suitable solubility and HOMO/LUMO levels. In addition, 

PzDP24-T showed n-type dominant charge transport properties in OTFTs with electron 

mobility up to 2.9 × 10-2 cm2 V-1 s-1cm2 V-1 s-1, whereas PzDP16-BDT exhibited ambipolar 

charge transport behavior with balanced electron/hole mobilities up to 2.2 × 10-3 cm2 V-1 s-1/ 

2.5 × 10-3 cm2 V-1 s-1. When the polymers were used as acceptor in all-PSCs with PTB7-Th as 

donor, the PzDP24-T based devices showed very poor performance (the highest PCE 0.3%). 

AFM images of PTB7-Th: PzDP24-T indicated a large phase-separated fabric structure with a 

large RMS roughness, which is unfavorable for charge generation that happens at the D-A 

interface. The poor morphology might result from the limited solubility of PzDP24-T polymer, 

leading to an insufficient D/A intermixing. For PTB7-Th: PzDP16-BDT blend, the morphology 

was significantly improved with smaller domain size and smoother roughness. Meanwhile, an 

improvement of PCE as high as 1.57% was realized for PzDP16-BDT based devices. Moreover, 

XRD measurement suggested both PzDP24-T and PzDP16-BDT films are rather disordered in 

solid state, which has negative impact on charge-transport. Further, SCLC measurement of the 

blends exhibited unbalanced charge unbalanced charge due to low electron mobilities, which 

could partially limited FF. 

For future work on the PzDP-based materials should focus on reducing the domain sizes of 

phase separation, such as using cosolvents and processing additives (DIO). Second, optimizing 

the backbone structure by introducing higher planar donor, such as thiophene-vinylene-

thiophene, could increase the crystallinity for better charge transport, which is favorable to 

increase both short-circuit current density (JSC) and fill factor (FF).[105] On the other hand, 

the length of side chains also needs to be tuned to obtain a well balance between crystallinity 
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and solubility. 

In Chapter 3, the novel pyridazine-based conjugated monomer TPT and related polymer TPT-

BDT are presented, which is the first time to synthesis and incorporate into D-A copolymer for 

the structure. The electron-withdrawing monomer TPT have been prepared in good yields and 

in a few steps involving condensation reaction and simple purification procedures. However, 

due to the strong interaction of the pyridazine unit with the palladium catalyst during 

polymerization reaction, the molecular weight of TPT-BDT polymer was relatively low. 

Compared to the polymers with the analogue backbones, the use of a pyridazine core instead 

of or pyridine core, is a good way to modulate the HOMO, LUMO of conjugated polymers. 

TPT-BDT has a highly twisted backbone with torsion angles as high as 66 °, which leaded to 

the poor charge carrier charge-transport properties in OTFT application. When the polymer 

was incorporated as a donor in solar cell with PC61BM as acceptor, all devices showed very 

poor performance around 0.11%. The low molecular weight is expected to be the main reason 

for these unfavorable PCEs. 

For future direction on the TPT-based materials, the work should be concentrated on the 

polymerization methods to get high molecular weight polymers. Using new palladium catalyst 

with strong ligand might prevent the pyridazine core from trapping palladium metal, leading 

to higher efficiency for polymerization reaction. Besides, incorporating the precursor (3-b) of 

TPT monomer into polymerization before condensation reaction with hydrazine monohydrate 

could obtain high molecular weight polymers. 
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Appendix 

 

 

Figure A-1 300 MHz 1H NMR spectrum for ethyl 2-(4-bromophenyl)-2-oxoacetate 

(Compound 1). 
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Figure A-2 300 MHz 1H NMR spectrum for 1,4-diacetylpiperazine-2,5-dione (Compound 2). 
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Figure A-3 300 MHz 1H NMR spectrum for diethyl 2,2'-(3,6-dioxopiperazine-2,5-diylidene) 

bis(2-(4-bromophenyl) acetate)) (Compound 3). 
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Figure A-4 300 MHz 1H NMR spectrum for 3,7-Bis(4-bromophenyl)dipyrrolo[2,3-b:2',3'-

e]pyrazine-2,6 (1H,5H)-dione) (Compound 4). 
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Figure A-5 300 MHz 1H NMR spectrum for 3,7-bis(4-bromophenyl)-1,5-bis(2-

decyltetradecyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-2,6(1H,5H)-dione (Compound 5-a). 
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Figure A-6 300 MHz 1H NMR spectrum for 3,7-bis(4-bromophenyl)-1,5-bis(2-

octyldodecyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-2,6(1H,5H)-dione (Compound 5-b). 
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Figure A-7 300 MHz 1H NMR spectrum for 3,7-bis(4-bromophenyl)-1,5-bis(2-hexyldecyl) 

dipyrrolo[2,3-b:2',3'-e] pyrazine-2,6(1H,5H)-dione (Compound 5-c). 
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Figure A-8 300 MHz 1H NMR spectrum for 3,7-bis(4-bromophenyl)-1,5-bis(2-butyloctyl) 

dipyrrolo[2,3-b:2',3'-e] pyrazine-2,6(1H,5H)-dione (Compound 5-d). 
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Figure A-9 300 MHz 1H NMR spectrum for bis(2-ethylhexyl) carbonotrithioate (Compound 

1). 
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Figure A-10 300 MHz 1H NMR spectrum for 2-ethylhexyl 3-(5-bromothiophen-2-yl)-3-

oxopropanedithioate (Compound 2-b). 
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Figure A-11 300 MHz 1H NMR spectrum for 2,5-bis((2-ethylhexyl)thio)thiophene-3,4-

diyl)bis((5-bromothiophen-2-yl)methanone) (Compound 3-b). 
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Figure A-12 300 MHz 1H NMR spectrum for 1,4-bis(5-bromothiophen-2-yl)-5,7-bis((2-

ethylhexyl)thio)thieno[3,4-d]pyridazine (Compound 4-b). 
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