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Abstract

Quantile estimation of time-to-event data plays a key role in many medical applica-

tions, especially conditional on covariates of interest. In such settings, bias due to

model misspecification is an important concern. As such, Empirical Likelihood (EL) is

a particularly attractive estimation approach, making minimal parametric modeling as-

sumptions without unduly compromising statistical efficiency. However, observed sur-

vival times are typically subject to right-censoring, in which case most EL approaches

cannot be applied directly. In this thesis, we revisit a widely-applicable Expectation-

Maximization (EM) algorithm for right-censored EL. As the covariate-free EL function

becomes discontinuous in the conditional setting, we propose a continuity correction

for which the computational properties of EM are retained. Several approaches to

obtaining confidence intervals are explored. We provide an implementation of our

method and related algorithms in the R package flexEL. The source code is written in

C++ for high computational performance, and a straightforward interface allows users

to fit arbitrary EL models with little programming effort.
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Chapter 1

Introduction

1.1 Motivation

In many medical applications, the interest resides in the extreme quantiles of the sur-

vival times distributions rather than the expected survival times. In this case, quantile

regression introduced by Basset and Koenker (1978) should be applied as opposed to

the common mean regression.

The situation becomes more complicated when the values of the dependent variable

are not fully observed. As an example, consider we observe the lifetimes of n patients

{y1, · · · , yn}, and for each of i ∈ {1, · · · , n}, we also observe a set of measurements

X i ∈ Rd. Further, we know that not all y′is are true lifetimes, some of the patients

dropped out of the study and the corresponding y′is are the times when they dropped

out. These lifetimes are called right-censored, one of the length-bias issues that com-

monly occur in medical studies.
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Some desired properties when conducting inference in this situation include minimal

modeling assumptions, high statistical efficiency, the ease of obtaining confidence in-

tervals, and the ability to work with right-censored data.

Cox regression (Cox, 1992) is one popular model which works for right-censoring data,

however, the proportional hazards assumption may not hold in many situations. An

alternative approach is the accelerated failure time (AFT) model, which has a more

direct interpretation compared to the Cox regression model. Moreover, the Buckley-

James estimator (Buckley and James, 1979) is a semi-parametric AFT model which

gives promising results for right-censored data. Wang et al. (2015) propose a het-

eroscedastic AFT model for right-censored survival data, which is computationally

simple but relies on parametric assumptions of the error distribution.

A more attractive approach is the empirical likelihood approach, which is a flexible

framework suitable for different kinds of regression models and makes only moment

assumptions but no distribution assumption, and has been shown to enjoy many sta-

tistical properties. The empirical likelihood approach is the focus of this thesis.

1.2 Empirical Likelihood

The empirical likelihood (EL) approach can be traced back to Thomas and Grunke-

meier (1975). Its current framework is mainly developed by Owen (1988, 1990, 1991),

where empirical likelihood ratio statistics is introduced, and the EL method is extended

to linear regression models under fixed or random design. Kolaczyk (1994) further gen-

eralize the method to be used with generalized linear models. Qin and Lawless (1994)

relate estimating equation and empirical likelihood and provide asymptotic properties

of the estimator.
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A Bayesian approach to EL considers the pseudo-posterior distribution pEL(θ|Y) ∝

EL(θ)π(θ) where π(θ) is the prior distribution of θ, is usually straightforward to ex-

plore by Markov chain Monte Carlo (MCMC) algorithm. However, notice that since EL

is not a true likelihood, neither is pEL(θ|Y) a true posterior. The consequences of this

have been investigated by e.g. Lazar (2003). Chaudhuri et al. (2017) considers using

Hamiltonian Monte Carlo sampling for the Bayesian EL models.

EL approach generally requires a convex hall condition, which means that a solution

may not exist if this condition is not satisfied. Chen et al. (2008) propose an adjust-

ment to the constraints in the EL framework to ensure a solution always exist, and the

theoretical properties are not affected.

An approach related to EL is the so-called exponentially tilting (ET) method (Efron,

1981). Schennach (2005, 2007) proposes the exponentially tilted empirical likelihood

(ELET) approach, which enjoys the properties of both ET and EL methods. Newey and

Smith (2004) also gives the theoretical results relating Generalized Method of Moment

(GMM) and Generalized Empirical Likelihood (GEL), their higher order properties, as

well as their bias-corrected forms in the absence of length-bias.

For length-biased data with EL, Zhou (2005) proposes an EM algorithm for censored

an truncated data under mean type constraints without covariates. Zhou and Li (2008)

combine the empirical likelihood with the Buckley-James estimator which works for

regression models. Zhou et al. (2012) revisit the fixed and random design linear re-

gression models but for right-censored data and show that the model works well even

with heteroscedastic errors. Shen et al. (2016) develop a different EM algorithm under

the EL framework for one- or two- sample doubly censored data.

The construction of confidence regions or intervals under the EL frameworks has been

mainly discussed when there is no length-bias. In this case, an asymptotic χ2 distribu-
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tion of log EL is valid. When right-censoring is present, the asymptotic distribution is

no longer a standard χ2 distribution but subject to an unknown scaling factor. Some

approaches have been proposed with modifications of the estimating equations under

the EL framework. For example, He et al. (2016) consider using a special influence

functions in the estimating equations to retain a standard χ2 distribution. Li and Wang

(2003) propose an adjusted EL for linear regression using synthetic data approach.

They extend the EL method for inference on a linear combination of the coefficients

and also incorporate auxiliary information on the covariates. Ning et al. (2013) con-

sider length-biased right-censored data in a non-regression setting for the estimation of

mean, quantile and survival function of the population as well as confidence intervals.

1.3 Quantile Regression

Quantile regression is originated by Basset and Koenker (1978). After the first paper

based on a location model, the authors further consider a location-scale model and

the consistency of the estimator is derived (Koenker and Bassett, 1982). Kocherginsky

et al. (2005) propose a Markov chain marginal bootstrap approach for the confidence

intervals of regression quantiles.

Yang and He (2012) introduce a Bayesian EL method which is able to estimate multiple

quantile levels at the same time, and using prior on the parameters to leverage the

bias and variance trade-off of estimating multiple quantile levels simultaneously. Lan-

caster and Jae Jun (2010) develop a Bayesian exponentially tilted empirical likelihood

approach for quantile regressions. Noh and Lee (2016) propose a quantile regression

location-scale model for heteroscedastic time series models.

For right-censored data, Reich and Smith (2013) considers a Bayesian quantile regres-
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sion under a semi-parametric location-scale model, which is a linear combination of

basis functions. The model jointly estimates multiple quantile levels, but may not be

suitable for extreme quantiles and is computationally expensive. A kernel estimator

under a similar setting is developed by Heuchenne and Van Keilegom (2010).

1.4 Contribution

For EL under right-censoring, we extend an existing EM algorithm to work with var-

ious regression problems. A primary challenge of estimation, in this case, is that the

log EL is no longer continuous in most of the parameters, which causes difficulties in

the optimization of log EL.

We propose a continuity correction to retain the smoothness of the objective function

under right-censoring, so that direct optimization of log EL becomes possible. The

same idea can also help with the non-smoothness introduced by the quantile regression

constraint and together allows the problem to be solved computationally efficiently

without losing statistical efficiency. We verify the correctness of the algorithm after the

continuity correction.

We design a computationally efficient R package called flexEL with source code in

C++, which is flexible enough for users to solve any type of regression problems with

minimum programming effort. Other than our proposed methods, the package also in-

cludes various mean and quantile regressions for both right-censored and uncensored

data, as well as other related algorithms to help with the computation of EL.
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1.5 Outline

In the following chapters, we first introduce our location-scale model for mean and

quantile regressions and derive the estimating equations for the parameters. Then

we describe the EL framework for data without length-bias. After that, we discuss

the case where right-censoring is present and an EM algorithm is extended. We then

describe in detail our continuity correction for quantile regression and right-censored

EL. We demonstrate our approaches and compare with other existing methods using

simulated data. We conclude and discuss future works in the last chapter.

6



Chapter 2

Model and Estimating Equations

In this chapter, we first introduce our semi-parametric location-scale regression model,

then we derive the estimating equations for both mean and quantile regressions.

2.1 Semi-Parametric Location-Scale Regression Model

Consider we observe survival times y1, · · · , yn of n individuals, where for each indi-

vidual i, we also observe a d-dimensional vector of covariates X i. The general location-

scale model has the form

yi = µ(X i; θ) + η(X i; θ) · εi, (2.1)

where µ(X i; θ) is the location function, η(X i; θ) is the scale function, and εi
iid∼ F(ε) has

mean 0 and variance 1, denoted as εi
iid∼ (0, 1), and is independent of X i.
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Unless mentioned otherwise, in this thesis, we consider

µ(X ; θ) = x′β,

η(X ; θ) = σ · exp(z′γ),

such that X = (x, z) and θ = (β, γ, σ), where σ is a scale parameter assumed to be a

positive scalar, σ > 0, and for identifiability purpose, γ should not contain an intercept

term. Then a location-scale model is specified as

yi = x′iβ + σ · exp(z′iγ) · εi, i = 1, · · · , n. (2.2)

Notice that if we assume E(εi) = 0, an intercept should be included in β, which means

that xi,1 = 1 for all i = 1, · · · , n. Also, the assumption E(εi) = 0 in the location-scale

model means that the expectations of y′is are linear in the covariates. If E(εi) = µ 6= 0,

then the conditional expectation of yi is

E[yi|xi, zi] = x′iβ + σ · exp(z′iγ) · µ,

which is not linear in the covariates.

When µ(x; β) = x′β and σ(z; γ) = σ, the model reduces to a linear regression model

yi = x′iβ + σ · εi, i = 1, · · · , n.

2.2 Estimating Equations for Mean Regression

For the general location-scale model (2.1), suppose for a moment that εi
iid∼ N (0, 1) and

consider the so-called quasi-likelihood

QL(θ|y, X ) =
n

∏
i=1

[
1

η(X i; θ)
· exp

{
−µ2(X i; θ)

η2(X i; θ)

}]
. (2.3)
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If the true model were indeed εi
iid∼ N (0, 1), then θ would minimize the expected

negative log QL, such that

θ = arg min
θ̃

E

[
µ2(X i; θ̃)

2η2(X i; θ̃)
+ log

{
η(X i; θ̃)

}]
, (2.4)

or equivalently,
∂

∂θ
E

[
µ2(X i; θ̃)

2η2(X i; θ̃)
+ log

{
η(X i; θ̃)

}]
= 0. (2.5)

Remarkably, one can verify that (2.5) holds not only for εi
iid∼ N(0, 1), but for any

εi
iid∼ (0, 1). Therefore, we use (2.5) to define the moment conditions for our specific

location-scale model (2.2), namely

E
[ y− x′β

exp(2z′γ)
· x
]
= 0

E
[
(1− (y− x′β)2

σ2 · exp(2z′γ)
) · z

]
= 0

E
[ (y− x′β)2

σ2 · exp(2z′γ)
− 1
]
= 0.

(2.6)

Note that the scale parameter σ is dropped in the first equation in (2.6) since it is a

positive constant multiplier with respect to the expectation.

2.3 Estimating Equations for Quantile Regression

For the location-scale model (2.2), the τ × 100% conditional quantile of yi is

Qτ(yi|X i) = x′iβ + σ · exp(z′iγ) · ντ. (2.7)
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In this case, for parameters β, γ and σ, we adopt the same estimating equation as in the

mean regression case. For the quantile parameter ντ, we rely on the “check function"

introduced by Basset and Koenker (1978), which is defined as

ρτ(u) = u · (τ − 1{u ≤ 0}), (2.8)

where 1{·} is the indicator function.

If the τ-th quantile value of εi
iid∼ (0, 1) is ντ, then εi − ντ has τ-th quantile value 0. The

estimator of ντ is then defined as

ν̂τ = arg min
ν̃τ

E

[
ρτ

( y− x′β
σ · exp(z′γ)

− ν̃τ

)]
. (2.9)

As before, we use the first order optimality condition of (2.9) to obtain the estimating

equation for ντ. Therefore, we obtain all the moment conditions for quantile regression

as follows

E
[ y− x′β

exp(2z′γ)
· x
]
= 0

E
[(

1− (y− x′β)2

σ2 · exp(2z′γ)
)
· z
]
= 0

E
[ (y− x′β)2

σ2 · exp(2z′γ)
− 1
]
= 0

E
[
ρ′τ
( y− x′β

σ · exp(z′γ)
− ντ

)]
= 0.

(2.10)
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Chapter 3

Empirical Likelihood with

Fully-Observed Data

In this chapter, we describe the EL framework as well as the confidence interval con-

struction in the absence of length-biases developed by previous works.

3.1 The Empirical Likelihood Framework

Let y1, · · · , yn where yi ∈ Rd+1 be iid observations from an unknown distribution

F0(y), about which a parameter of interest θ is defined as satisfying an m-dimensional

moment condition:

E
[
g(y; θ)

]
= 0, (3.1)

where g(y, θ) =
(

g1(y, θ), . . . , gm(y, θ)
)
.

The empirical likelihood EL(θ) is defined as the profile likelihood over the distribution
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function of y:

EL(θ) = max
F∈F (θ)

n

∏
i=1

dF(yi), (3.2)

where for any given θ, F (θ) is the set of (valid) distribution functions satisfying (3.1).

It was shown (Owen, 1988) that for any θ, the maximum of (3.2) must be achieved by

a PMF putting all mass on the support of the observed data y1, · · · , yn, such that the

infinite-dimensional profile likelihood (3.2) reduces to a finite-dimensional one:

EL(θ) =
n

∏
i=1

ω̂i(θ), (3.3)

where the n-dimensional vector of probability weights ω̂(θ) associated with the obser-

vations is the solution of an inner optimization problem which will be referred to as

EL inner optimization

max
ω

n

∑
i=1

log(ωi)

s.t.
n

∑
i=1

ωi · g(yi; θ) = 0

n

∑
i=1

ωi = 1

ωi ≥ 0, i = 1, · · · , n,

(3.4)

The problem in (3.4) is a constrained convex optimization problem, and its optimal

solution can be found by solving its dual problem derived through the Lagrangian

function, as described by Owen (1990).

Specifically, provided that 0 is in the convex full of the points g(y1; θ), · · · , g(yn; θ), a

unique optimal weight vector exist and can be shown to be

ω̂i(θ) =
1

n · [1− λ̂′(θ)g(yi; θ)]
, (3.5)
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where the vector λ̂(θ) solves the unconstrained optimization problem

λ̂(θ) = arg max
λ

n

∑
i=1

log?
(

1− λ′g(yi; θ)
)

, (3.6)

and where

log?(x) =

log(x) x ≥ 1
n

−1
2 n2x2 + 2nx− 3

2 − log(n) x < 1
n

. (3.7)

Qin and Lawless (1994) has shown that λ(θ) is a continuous differentiable function of θ

provided that convex hull condition is satisfied with θ and ∑n
i=1 g(yi; θ)g′(yi; θ) is posi-

tive definite. However, the support of θ is not necessarily a convex set, as demonstrated

by Chaudhuri et al. (2017).

3.2 Empirical Likelihood Confidence Intervals

Owen (1988) has shown that for sample mean, M-estimators and differentiable statis-

tical functionals in 1-dimension, confidence intervals for the maximum empirical like-

lihood estimator (MELE) asymptotically follows a χ2
1 distribution. Then the result is

generalized to the construction of confidence region of statistics that depend smoothly

on several means or linear estimating equations in multivariate case (Owen, 1990).

Qin and Lawless (1994) further links EL with estimating equations and provides a

method to obtain a confidence region of the entire parameter vector as well as con-

fidence intervals for any subset of parameters in θ, with the following theorem and

corollary:

Theorem 1. Suppose that x follows an unknown distribution F, and θ is a d-dimensional

parameter associated with F. Assume that E[g(x; θ0)g(x; θ0)
′] is positive definite, ∂g(x;θ)

∂θ and
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∂2g(x;θ)
∂θ∂θ′ are continuous in a neighborhood of the true value θ0, || ∂g(x;θ)

∂θ || and || ∂g(x;θ)
∂θ ||

3 are

bounded by some integrable function in this neighborhood, and the rank of E[ ∂g(x;θ)
∂θ ] is d. Let

x1, · · · , xn
iid∼ F. For 0 < r < 1, let Cr,n = {θ : WE(θ) ≥ r}, then

P(θ0 ∈ Cr,n)→ P(χ2
d ≤ −2 log r),

as n→ ∞, where θ0 is the true value of θ0, and

WE(θ) =
EL(θ)
EL(θ̂)

,

where θ̂ is the MELE of θ.

Proof. Theorem 2 by Qin and Lawless (1994).

Corollary 1. Let θ = (θ1, θ2), where θ1 ∈ Rq and θ2 ∈ Rp. For 0 < r < 1, let Cr,n = {θ1 :

W2(θ1) ≥ r}, then

P(θ1,0 ∈ Cr,n)→ P(χ2
q ≤ −2 log r),

as n→ ∞, where θ1,0 is the true value of θ1, and

W2(θ1) =
EL(θ1, θ̂0

2)

EL(θ̂)
,

where θ̂0
2 maximizes EL(θ1, θ2) with respect to θ2 with θ1 being fixed, and θ̂ is the MELE of θ.

Proof. Corollary 5 by Qin and Lawless (1994).

Example 1 illustrates how to use Corollary 1.

Example 1. Recall the quantile regression location-scale model (2.2)

yi = x′iβ + σ · exp(z′iγ) · εi,
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so that for any individual i, its τ × 100% conditional quantile is given by (2.7)

Qτ(yi|X i) = x′iβ + σ · exp(z′iγ) · ντ.

In order to find the α × 100% CI of Qi = Qτ(yi|X i) for individual i, we move the value of

Qi until the condition W2(Qi) ≥ r is violated, where r = exp(−1
2 cα) and cα is the α× 100%

quantile of χ2
1.

In particular, for any fixed Qi, let

ν̂i(β, γ, σ) =
Qi − x′iβ

σ · exp(z′iγ)

and calculate

(β̂0, γ̂0, σ̂0) = arg max
β,γ,σ

EL(ν̂i(β, γ, σ), β, σ, γ).

Then

W2(Qi) =
EL(ν̂i(β̂0, σ̂0, γ̂0), β̂0, γ̂0, σ̂0)

EL(θ̂)
.

Notice that in Example 1 we have to go through this procedure for each one of the indi-

viduals if we want to obtain CI’s for quantile values of all n individuals, which involves

a large number of optimizations. Alternatively, we could use a bootstrap method,

which only requires b times of optimizations, where b is the number of bootstraps, to

obtain all the CI’s at once, which could be much less computationally intensive when

n is moderate or large.
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Chapter 4

Empirical Likelihood under

Right-Censoring

In this chapter, we will discuss two different approaches to work with right-censored

data using EL: an EM algorithm extended from Zhou (2005) and the influence function

approach by He et al. (2016).

4.1 Right-Censored EL for Regression Models

Consider the general location-scale model

yi = µ(X i; θ) + η(X i; θ) · εi, (4.1)

with εi
iid∼ (0, 1) and independent of X i, and m-dimensional conditional moment re-

strictions

E
[
g(X , ε; θ) |X

]
= 0. (4.2)
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When right-censoring is present, instead of observing yi, we observe ui = min(yi, ci)

and δi = 1{yi ≤ ci}, where ci is the censoring time. We assume that the censoring

variable ci is conditionally independent of yi given X i.

The empirical likelihood with censored observations once again is defined by profiling

over the unknown joint distribution function F(X , ε) = G(X ) · H(ε), where G and H

are the CDFs of X and ε:

CEL(θ) = max
F∈F (θ)

n

∏
i=1

dG(X i) · dH(ei)
δi · [1− H(ei)]

1−δi , (4.3)

where

ei = ei(θ) =
ui − µ(X i; θ)

η(X i; θ)
,

and F (θ) is the set of all valid distribution functions satisfying (4.2). It is not hard

to show that for any choice of H(ε), the maximum of (4.3) over G(X ) is attained as

the empirical distribution Ĝ(X ) which puts a point mass of 1/n on each covariate

observation X 1, . . . , X n. Restricting our attention to G(X ) uniform on the observed

covariates, and considering only the weaker moment condition

E
[
g(X , ε; θ)

]
= 0 (4.4)

(which is true for any G(X ) if (4.2) holds), the CEL function reduces to

CEL(θ) = max
F∈F ?(θ)

n

∏
i=1

dH(ei)
δi · [1− H(ei)]

1−δi ,

where F ?(θ) is the set of all valid distributions F(X , ε) satisfying (4.4).

Unfortunately, with censored observations, it is no longer true that an optimal F is only

on the support of the data points Di = (ui, X i), as illustrated by Example 2.

Example 2. Suppose we have 3 observations, a1, a2 and a3 as shown in Figure 4.1, and δ1 = 1,

δ2 = 0 and δ3 = 1. log CEL in this case is

log(ω1) + log(ω2 + ω3) + log(ω3) (4.5)
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a1 a0 a2 a3

= 1δ1 = 0δ2 = 1δ3

Figure 4.1: The optimal F may not have support only on the observations.

Consider a point a0 between a1 and a2 might also take on a non-zero probability weight — the

log CEL function does not change with this extra point. Suppose for some estimating function

g(·) and a particular parameter θ, we have g(a1; θ) = 1, g(a0; θ) = −5, g(a2; θ) = −1, and

g(a3; θ) = 1. Then the probability vectors (ω
(1)
1 , ω

(1)
0 , ω

(1)
2 , ω

(1)
3 ) = (0.4, 0.1, 0.2, 0.3) and

(ω
(2)
1 , ω

(2)
0 , ω

(2)
2 , ω

(2)
3 ) = (0.1, 0, 0.5, 0.4) both satisfy ∑3

i=0 ωi · g(ai; θ) = 0. However, log

CEL with ω(1) is log(0.4× 0.5× 0.3) = log(0.06) which is greater than log CEL with ω(2)

which is log(0.1× 0.9× 0.4) = log(0.036).

However, if we restrict ourselves to this case, i.e., the support of F is D1, . . . , Dn, and if

we also assume that G(X ) is the uniform distribution on X 1, . . . , X n, then we arrive at

the finite dimensional problem

CEL(θ) =
n

∏
i=1

[
ω̂i(θ)

δi( ∑
j:ej≥ei

ω̂i(θ))
1−δi

]
. (4.6)

where similar as before, ω̂(θ) is the solution of an inner optimization problem

max
ω

n

∑
i=1

[
δi log(ωi) + (1− δi) log( ∑

j:ej≥ei

ωi)
]

s.t.
n

∑
i=1

ωi · g(X i, ui; θ) = 0

n

∑
i=1

ωi = 1

ωi ≥ 0, i = 1 · · · , n.

(4.7)
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Note that since we restrict the support of F to be only on the observations Di, it is a

PMF, so that the first constraint in (4.7) is indeed the moment condition itself rather

than the sample version of it. Moreover, with the above formulation of CEL, a censored

observation may also take on a positive probability weight.

Proposition 1. The log CEL function defined above is concave in ω, so that if the convex hull

condition is statisfied with θ, an optimal solution ω̂(θ) exists and it is global.

Proof. See Appendix D.

4.2 An EM Algorithm for EL Inner Optimization

Recall that when the survival times are fully observed, the EL inner optimization prob-

lem given a fixed parameter θ can be converted to its dual problem through Lagrange

multipliers. Under right-censoring, this conversion turns out to be difficult to achieve.

However, notice that right-censoring essentially causes a missing data problem which

can be handled by an EM algorithm. We consider an EM algorithm which is a gener-

alization of Zhou (2005) to regression problems.

Let’s denote the observed residuals given a specific θ as e′is (corresponding to u′is),

the complete residuals as ε′i (corresponding to y′is). Then if δi = 1, we have ei = εi,

otherwise we do not observe εi. This means that the unobserved (latent) variables are

the ε′is such that δi = 0, the complete data likelihood is

`(ω, ε|e) =
n

∑
i=1

log(
n

∏
j=1

ω
1(εi=ej)

j ) (4.8)

The E-step of the EM algorithm takes the expectation of (4.8) with respect to ε (vector

of all latent variables) conditioned on the observed values, the censoring indicator and
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the current state of the parameters, and since for δi = 1, we know that ei = εi, we have

Eε|e,δ,ω0

[
`(ω, ε|e)

]
= Eε|e,δ,ω0

[ n

∑
i=1

δi log(ωi) + (1− δi) log(
n

∏
j=1

ω
1(εi=ej)

j )
]

=
n

∑
i=1

[
δi log(ωi) + (1− δi)

n

∑
j=1

Eεi|e,δ,ω0
[1(εi = ej)] log(ωj)

]
=

n

∑
i=1

[
δi log(ωi) + (1− δi)

n

∑
j=1

Pεi|e,δ,ω0
(εi = ej) log(ωj)

]
.

(4.9)

Notice that we can write

log(
n

∏
j=1

ω
1(εi=ej)

j ) =
n

∑
i=1

1(εi = ej) log(ωj),

because for any i ∈ {1, · · · , n}, 1(εi = ej) = 1 for one and only one j ∈ {1, · · · , n}.
Also, the latent ε′is are independent but not identically distributed, since each of them

follows a different categorical distribution (multinomial distribution with one trial).

The conditional distribution in (4.10) is a categorical distribution conditioned on that

the probability mass only allocates on the values in a subset of {e1, · · · , en} such that

1(ej ≥ ei) = 1 for j = 1, · · · , n, which is still a multinomial distribution.

Pεi|e,δ,ω0
(εi = ej) =

1(ej ≥ ei) ·ω0j

∑n
k=1 1(ek ≥ ei) ·ω0k

. (4.10)

Therefore, the EM algorithm iterates between the following two steps:

• E-step: Given the observed values and the weights ω0 from the previous iteration,

the expectation of the log likelihood is

Eε|e,δ,ω0
[`(ω, ε|e)] =

n

∑
i=1

[
δi log ωi + (1− δi) ∑

j:ej≥ei

ω̃ij log ωj

]
=

n

∑
i=1

[
δi + ∑

k:ek≤ei

(1− δk) · ω̃ki

]
· log ωi,

(4.11)
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where

ω̃ki =
ω0i

∑l:el≥ek
ω0l

, k, i : ek ≤ ei.

• M-step: Let qi = δi + ∑k:ek≤ei
(1 − δk) · ω̃ki for i = 1, · · · , n, then the problem

becomes

max
ω

n

∑
i=1

qi log ωi

s.t.
n

∑
i=1

ωi · g(xi, ui; θ) = 0

n

∑
i=1

ωi = 1

ωi ≥ 0, i = 1 · · · , n,

(4.12)

which is in the same form as in the case without right-censoring. It can be shown

that (see Appendix A) the solution of (4.12) is

ω̂i =
qi

n + λ̂′(θ)g(xi, ui; θ)
, (4.13)

where λ̂(θ) can be solved analogously which is

λ̂(θ) = arg max
λ

n

∑
i=1

qi · log]
(

n + λ′g(xi, ui; θ)
)

, (4.14)

where

log](xi; qi) =


log(xi) xi ≥ qi

− 1
2q2

i
x2

i +
2
q i

xi − 3
2 + log(qi) xi < qi

. (4.15)

As before, the modification of the log function is to expand the domain from strictly

positive numbers to the real line, while making sure that the optimal value remains

the same.

An issue that may be concerned is that the log EL function may not be continuous with

respect to the regression parameters. This issue will be addressed in the next chapter.
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4.3 The Influence Function Approach

The influence function approach by He et al. (2016) is another promising method to

deal with right-censored data with empirical likelihood. The paper mainly concerns

about constructing confidence intervals for a 1-dimensional parameter θ, which is a

functional of the lifetime distribution F. Here we discuss the method under regression

models where the parameter θ is a vector, as well as some issues therein.

Let F(e) = P(ε ≤ e) and G(s) = P(c ≤ s) be the distribution functions associated with

the lifetime variable and the censoring variable, and Fn and Gn be the Kaplan-Meier

estimators of them respectively. Denote F = 1 − F as the survival function of any

distribution F.

Also, let u = min(ε, c) and denote H(x) = P(u ≤ x) as the distribution function of u.

Then given a sample of random pairs (ui, δi) of (u, δ), denote their empirical CDF’s as

H1
n(x) =

1
n

n

∑
i=1

1{ui ≤ x, δi = 1}

H0
n(x) =

1
n

n

∑
i=1

1{ui ≤ x, δi = 0}.
(4.16)

EL in this case is defined the same as with fully-observed data,

EL(θ) =
n

∏
i=1

ω̂i(θ), (4.17)

except that ω̂(θ) is the solution of the following optimization problem using influence
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functions Wni

max
ω

n

∑
i=1

log(ωi)

s.t.
n

∑
i=1

ωi ·Wni(θ) = 0

n

∑
i=1

ωi = 1

ωi ≥ 0, i = 1, · · · , n.

(4.18)

The influence functions are approximations of the iid random functions Wi defined by

Akritas et al. (2000) or He and Huang (2003):

Wi =
g(ui, θ)δi

G(ui)
+

δi

H(ui)
ψ(ui)−

∫
ψ(s)

1{ui ≥ s}
H2

(s)
dH0(s), (4.19)

where

ψ(s) =
∫

x≥s
g(x, θ)dF(x), (4.20)

and g(·) is the estimating function.

It is shown that if θ0 is the true parameter, then

E[Wi(θ0)] =
∫

g(x, θ0)dF(x) = 0. (4.21)

The approximation is achieved by replacing all distribution functions by their EM esti-

mators or empirical CDF’s:

Wni =
g(ui, θ)δi

Gn(ui)
+

δi

Hn(ui)
ψn(ui)−

∫
ψn(s)

1{ui ≥ s}
H2

n(s)
dH0

n(s), (4.22)

where

ψn(s) =
∫

x≥s
g(x, θ)dFn(x). (4.23)
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Therefore, the solution can be found the same way as in the fully-observed case. How-

ever, the log EL is also not continuous in θ with regression models. Example 3 shows

the discontinuity.

Example 3. We simulate data from a simple linear model with only one slope parameter β = 1

yi = βxi + εi, i = 1, · · · , 200,

where xi, εi
iid∼ N (0, 1). The log EL curve is shown in the left plot of Figure 4.2, and the right

plot is the same plot but zoomed in to make the discontinuity more clearly.
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Figure 4.2: log EL curves for a simple linear regression with influence function.
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Chapter 5

Smoothed Empirical Likelihood

There are two sources of discontinuity in the log EL function: the formulation of right-

censored EL and the check function used in quantile regression. In this chapter, we

discuss a single trick to deal with the two discontinuity issues.

5.1 Discontinuity due to Right-Censoring

As briefly mentioned in the last chapter, log CEL function is not a continuous function

in θ, so that direct optimization of log CEL is difficult to achieve. Example 4 illustrates

the problem.

Example 4. Figure 5.1 shows two conditional log CEL curves with data generated from a

simple linear model

yi = β0 + β1xi + εi, i = 1, · · · , 200,

where β0 = 1, β1 = 1.5, xi, εi
iid∼ N (0, 1), ci

iid∼ N (1.35, 1), and εi = min(εi, ci). Notice that
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conditionally, log CEL is continuous in β0 for fixed β1, but not the other way around. This is

because moving β0 continously while fixing β1 does not change the ranking of the residuals.
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Figure 5.1: Conditional log CEL curves for a simple linear regression.

In order to obtain an estimate in this case, one could use Markov Chain Monte Carlo

or global optimization algorithm such as simulated annealing, which are both time-

consuming. Instead of relying on these methods, we consider a revision of the log CEL

function.

The log CEL in Chapter 4 can be expanded as follows

`CEL(θ) =
n

∑
i=1

[
δi log(ωi(θ)) + (1− δi) log( ∑

j:ej≥ei

ωj(θ))
]

=
n

∑
i=1

[
δi log(ωi(θ)) + (1− δi) log(

n

∑
j=1

1(ej(θ) ≥ ei(θ)) ·ωj(θ))
]
.

(5.1)

We can see that the discontinuity of `CEL(θ) in (5.1) is due to an indicator function.

To smooth out this discontinuity, we replace the indicator function by a continuous

approximation.
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Let S be a transformed sigmoid function, i.e.,

S(x; s) =
1

1 + exp(s · x) , (5.2)

where s > 0 is a smoothing parameter. A plot of the function is given in Figure 5.2.

This function is radially symmetric around the point (0, 0.5).
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Figure 5.2: Smooth function for indicator function 1(x ≤ 0).

Specifically, we use

Sij(θ; s) := S(ei(θ)− ej(θ); s) =
1

1 + exp(s · (ei(θ)− ej(θ)))
. (5.3)

Notice that as long as ei(θ) is a continous function of θ for all i = 1, · · · , n, then (5.3) is

indeed a continuous function of θ.

The log smoothed censored EL (log SCEL) is then defined as

`SCEL(θ) =
n

∑
i=1

[
δi log(wi(θ)) + (1− δi) log(

n

∑
j=1

Sij(θ; s) · wj(θ))
]
. (5.4)

If ω(θ) is continuous in θ (which depends on the support defined by the estimating

equations), and each Sij(θ; s) is continuous in θ, then since the sum of continuous
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functions is a continuous, and the composition of continuous functions is continuous,

then `SCEL(θ) is a continuous function of θ.

Proposition 2. The log SCEL function defined by (5.4) is a concave function of ω, so that if

the convex hull condition is satisfied with θ, an optimal solution ω̂(θ) exists and it is global.

Proof. See appendix E.

5.2 Discontinuity due to Quantile Regression Constraint

The log EL function is not continuous given the quantile regression constraints even

with fully-observed data. An illustration is presented in Example 5.

Example 5. Figure 5.3 shows two conditional log CEL curves with data generated from a

simple linear model, where we aim to estimate the 75% quantile

yi = β0 + β1xi + εi, i = 1, · · · , 200,

where xi, εi
iid∼ N (0, 1), β0 = ντ0.75 = 0.6745, and β1 = 1.5.

Recall the check function in Section 2.3 is

ρτ(u) = u · (τ − 1{u ≤ 0}).

Observe that the discontinuity also comes from an indicator function 1{u ≤ 0}. To

make this function continuous, we again replace the indicator function by the continu-

ous approximation in (5.2), so the smoothed check function is given by

ρS,τ(u; s) = u · (τ − S(u; s)).
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Figure 5.3: Conditional log EL curves for a simple quantile regression.

Although there are other approaches to smooth out the discontinuity in quantile re-

gression, such as Chen (2007), splines or kernel methods, the trick above is particularly

straightforward to apply.

As an example, we show the effect of the above continuity correction to both right-

censoring and quantile regression constraint by 3D surface plots of log EL. We generate

data from a simple linear model, and we aim to estimate the 75% quantile

yi = β0 + β1xi + εi, i = 1, · · · , 200,

where β0 = ν0.75 = 0.6745, β1 = 1.5, xi, εi
iid∼ N (0, 1), ci

iid∼ N (1.35, 1), and εi =

min(εi, ci).
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Figure 5.4: Original log CEL surface.

(a) log CEL surface with s = 10 (b) log CEL surface with s = 1

Figure 5.5: log CEL surfaces after continuity correction.
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5.3 The EM Algorithm after Continuity Correction

Recall that in the EM algorithm, parameters are the ω′is given a specific θ. In the E-step,

we take the expectation of the log EL given the observations and the current value of

the parameters.

With (5.1) where there is no smoothing, the expectation is in fact the expectation of a

multinomial distribution conditional on the observed censoring indicators and indica-

tor functions of e′is. With smoothing as in (5.4), the expectation is taken conditional on

the observed censoring indicators and smooth functions of e′is.

Carrying similar steps as before, the E-step gives

qi = δi +
n

∑
j=1

(1− δj) · ω̃ji · log(ωi) (5.5)

where ω̃ji =
S(ej−ei;s)·ω0i

∑n
k=1 S(ei−ek)·ω0k

, and the S function is defined as in (5.2). Then the M-step

solves a constrained weighted EL maximization problem as before.

With smoothing, we are modifying the meaning of censoring from “the value of εi

being in a subset of {e1, · · · , en}" to “the value of εi getting a value of each ek ∈
{e1, · · · , en} with a certain probability which is the distance between ei and ek mea-

sured by S".

Pεi|e,δ,ω0
(εi = ej) =

S(ej ≥ ei) ·ω0j

∑n
k=1 S(ek ≥ ei) ·ω0k

. (5.6)

The resulting distribution Eq (5.6) is still multinomial distribution but with support on

all elements in {e1, · · · , en}.

In the M-step, we are maximizing Eq (4.9) to obtain the new ω. Therefore, the above

algorithm is indeed an EM algorithm.
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Chapter 6

Simulation Studies

In this chapter, we first give a brief description of the flexEL package, and then we

present some simulation results using the methods proposed in this thesis.

6.1 Description of the flexEL Package

The package flexEL offers a flexible framework for users to solve EL regression prob-

lems with a fast computational speed. The package is written in C++ with an R inter-

face providing functionalities including:

• EL inner optimization: a Newton-Raphson algorithm to solve the inner optimiza-

tion problem of EL.

• log EL computation: calculate log EL of given parameters under a regression

model.
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• Mean regression: compute the estimating equations given a parameter value for

mean regression under both location or location-scale models.

• Quantile regression: compute the estimating equations given a parameter value

for quantile regression under both location or location-scale models.

The package has a clear structure to allow users to solve customized regression prob-

lems with minimum programming effort. Essentially, the only requirement is for one

to design and implement the estimating equations of the regression problem, either in

R for convenience or in C++ for computational speed. More details about this package

will be provided in an upcoming GitHub release.

As an example for the computational speed, a comparison of the EL inner optimiza-

tion function (fully-observed data case) implemented in C++ and R is provided in

Figure 6.1. The computational times are the averages of 500 repetitions. Notice that to

maximize EL with respect to θ, many times of this inner EL optimization need to be

performed.
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Figure 6.1: Computational time comparison for inner EL optimization.
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6.2 Experiment Summary

In the following experiments, we consider the following location-scale quantile regres-

sion model

yi = β0 + β1 · xi + σ · exp(γ · zi) · εi, i = 1, · · · , n, (6.1)

where β0 = 0.5, β1 = 1, γ = −0.5, and σ2 = 1. The covariates xi, zi
iid∼ N (0, 1), the

censoring variable ci
iid∼ N (1.35, 1), and εi = min(εi, ci), where εi

iid∼ F(ε), one of the

error distributions summarized in Table 6.1. We consider estimating the 75% quantile

value ν0.75 of the error distributions.

F(ε) ν0.75 Censored (%) Note

N (0, 1) 0.6745 17.0 Symmetric baseline

NCT(−1, 10) 0.6530 16.6 Heavy left-tail

NCT(1, 10) 0.5950 16.5 Heavy right-tail

NCT(1, 3) 0.3219 13.7 Extremely heavy right-tail

Table 6.1: Summary of distributions used in simulations.

For all error distributions in Table 6.1, the information refers to the transformed pdf

so that E(εi) = 0 and var(εi) = 1. “ν0.75" denotes the true 75% quantile value of the

distribution, “Censored (%)" is the approximated percentage being censored with ci
iid∼

N (1.35, 1). NCT(a, b) refers to a non-central t distribution with a as the non-central

parameter and b as the degrees of freedom which control the tails of the distribution.

We compare the maximum smoothed censored EL (SCEL) estimator and the het-

eroscedastic accelerated failure time model for right-censored data by Wang et al.

(2015) with Kaplan–Meier (HLM+KM).

Optimization of log SCEL is conducted through the non-linear minimization function
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nlm in R. For the semi-parametric regression model (6.1), the HLM+KM approach pro-

ceeds in two steps:

1. Estimate the parameters using the QL with εi
iid∼ N (0, 1).

2. Estimate F(ε) by the Kaplan-Meier estimator of ei =
ui−β̂1·xi−β̂0
σ·exp(γ·zi)

.

We will also present two methods to construct confidence intervals: bootstrap con-

fidence intervals and mode-quadrature (normal approximation) confidence intervals.

We must point out that, while the CEL estimator is asymptotically normal, to the best of

our knowledge, convergence of the negative CEL Hessian to the true inverse variance

matrix has not been formally established. However, the mode-quadrature approach

is much faster than the bootstrap, hence our interest in the empirical comparison to

follow.

6.3 Point Estimates of Parameters

In this section, we will compare the two methods for point estimates of the parameters

using box plots. All the experiments are conducted through 200 times simulations.

1. εi
iid∼ N (0, 1): See Figure 6.2. Since in this case the error distribution coincides

with the imputation distribution by HLM+KM, for a large sample size the two

methods perform very similarly.

2. εi
iid∼ NCT(−1, 10): See Figure 6.3. Notice that because the error distribution has

a heavy left-tail and the right-censoring mechanism thus makes censored errors

to have a smaller variance, the estimation of σ2 tends to be smaller compared to

HLM, although for larger sample size the bias does get smaller.
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3. εi
iid∼ NCT(1, 10): See Figure 6.4. Here the error distribution has a heavy right-

tail, the SCEL estimator does perform better than HLM+KM especially on σ2 and

ν0.75.

4. εi
iid∼ NCT(1, 3): See Figure 6.5. The error distribution has an extremely right-tail,

although there is a clearer advantage of SCEL estimator, it needs a much larger

sample size to reduce the bias, especially on the estimations of σ2 and ν0.75.

36



n=100 n=500 n=1000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

β0

n=100 n=500 n=1000

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

β1

n=100 n=500 n=1000

−
0.

8
−

0.
6

−
0.

4
−

0.
2

γ

n=100 n=500 n=1000

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

σ2

n=100 n=500 n=1000

0.
4

0.
6

0.
8

1.
0

1.
2

ν

_

SCEL

HLM+KM

true val

Figure 6.2: Estimates of θ as n increases, εi
iid∼ N (0, 1).
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Figure 6.3: Estimates of θ as n increases, εi
iid∼ NCT(−1, 10).
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Figure 6.4: Estimates of θ as n increases, εi
iid∼ NCT(1, 10).
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Figure 6.5: Estimates of θ as n increases, εi
iid∼ NCT(1, 3).

40



6.4 Construction of Confidence Intervals

Here we compare bootstrap confidence intervals and mode-quadrature approximated

confidence intervals for the above error distributions. The confidence level is chosen

to be 95%. The bootstrap CIs are obtained from 100 bootstrap samples using the

bootstrap percentile method, and the mode-quadrature approximation is obtained by

using a normal distribution with the estimate as the mean, and the diagonal elements

of the hessian matrix returned from nlm as the variances. Due to computational time,

the bootstrap method is done up to n = 1000. The results are given in Table 6.2 to

Table 6.5.

From the tables we can see that the mode-quadrature approximation performs well

for N (0, 1) error, while for other skewed error distributions, it needs a larger sample

size to achieve the right coverage. Moreover, the coverage probabilities for NCT(1, 3)

is very poor especially for σ2 and ν0.75. From the previous section, we can see that this

is due to the bias which is still obvious even sample size is 1000, although the bias is

decreasing as n gets larger.

Bootstrap Mode-Quad

n 100 500 1000 100 500 1000 1500

β0 91.5 92.0 92.5 85.0 90.0 92.5 95.0

β1 90.0 91.5 92.5 76.5 91.0 89.5 94.0

γ 92.5 90.0 92.5 77.5 85.0 89.5 91.5

σ2 81.5 90.5 91.0 79.5 93.0 93.5 95.0

ν0.75 96.0 93.5 92.5 88.0 90.0 92.0 93.5

Table 6.2: Coverage probabilities, εi
iid∼ N (0, 1).
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Bootstrap Mode-Quad

n 100 500 1000 100 500 1000 1500

β0 92.0 95.5 93.5 85.0 93.0 92.5 91.0

β1 89.0 92.0 95.5 79.5 87.0 92.0 92.0

γ 91.0 92.0 94.5 77.5 82.5 90.0 90.0

σ2 79.5 91.5 92.0 76.0 90.5 91.5 91.0

ν0.75 96.5 94.0 92.0 86.0 90.5 87.0 90.5

Table 6.3: Coverage probabilities, εi
iid∼ NCT(−1, 10).

Bootstrap Mode-Quad

n 100 500 1000 100 500 1000 1500

β0 94.0 91.0 91.0 81.0 89.0 89.0 89.0

β1 96.5 93.0 92.0 80.5 86.0 85.5 85.5

γ 93.0 91.0 95.0 72.0 78.5 82.0 81.0

σ2 69.5 80.5 82.5 66.5 77.0 78.5 76.0

ν0.75 92.5 94.0 93.5 83.0 91.0 90.0 94.5

Table 6.4: Coverage probabilities, εi
iid∼ NCT(1, 10).

Bootstrap Mode-Quad

n 100 500 1000 100 500 1000 1500

β0 89.5 83.5 81.5 75.0 73.5 73.5 72.5

β1 92.5 92.5 91.5 73.5 77.5 75.0 72.0

γ 94.0 93.5 90.0 65.5 65.5 62.0 61.5

σ2 17.0 10.5 9.5 12.5 5.5 3.0 0.5

ν0.75 58.5 49.5 39.0 60.5 50.5 38.5 31.5

Table 6.5: Coverage probabilities, εi
iid∼ NCT(1, 3).
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Chapter 7

Conclusion and Future Works

Quantile estimation conditional on covariates is discussed in the case of right-censored

data using empirical likelihood. For the discontinuity in the EL due to the quantile re-

gression constraint as well as right-censoring, a continuity-correction is proposed, and

the maximum SCEL estimator is compared through simulations with another method

which essentially imputes censored values by a normal distribution.

Simulations show that SCEL method works better for right-skewed error distributions

compared to left-skewed ones because of right-censoring, although for a very skewed

error distribution, large sample size is required for bias to diminish empirically. More-

over, for slightly skewed error distributions, bootstrap confidence intervals does pro-

vide the correct coverage, while for an extremely skewed error distribution, the cover-

age could be very poor due to the bias of the estimators, especially with comparatively

small sample sizes.

There are several directions of future works: Firstly, the current optimization of log

SCEL using nlm in R relies on numerical approximation of the gradient. If an analytic
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gradient can be derived for the log SCEl in a similar fashion as in Chaudhuri et al.

(2017), the optimization can be achieved much faster and more accurate, especially

combined with the support correction by Chen et al. (2008).

Secondly, the discontinuity of the log EL using the influence function might be cor-

rected too. We expect the performance of the corresponding estimator to be promising,

and the confidence intervals are also easier to construct under this setting.

Thirdly, a better way of obtaining the confidence intervals using SCEL should be inves-

tigated. One direction is to use a better bootstrap method in the case of censored data.

Also, since bias is the main reason for the under-coverage of the confidence intervals

when sample size is small, finding a way to approximate and correct this bias would

help correct the coverage probabilities.

Lastly, a more thorough comparison of SCEL with a few other methods such as the EL

with Buckley-James estimator by Zhou and Li (2008), as well as the influence function

approach by He et al. (2016) under the location-scale quantile regression model should

be conducted. The selection of smoothing parameter s should also be investigated.
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Appendix A

Derivation of M-step in the EM

Algorithm

For simplicity of notation, for now let’s denote gi = g(X i, ui, θ). The Lagrangian func-

tion for the optimization problem (4.12) (after converting max to min)

min
ω

−
n

∑
i=1

qi log ωi

s.t.
n

∑
i=1

wi · gi = 0

n

∑
i=1

ωi = 1

ωi ≥ 0, i = 1 · · · , n,

(A.1)

is given by

L(ω) = −
n

∑
i=1

qi log ωi + γ(
n

∑
i=1

ωi − 1) + λ′
n

∑
i=1

ωi · gi (A.2)
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Then by first order condition of optimality, ∂L(w)
∂wi

= 0 for all i = 1, · · · , n, we have

n

∑
i=1

wi
∂L(w)

∂wi
= −

n

∑
i=1

qi +
n

∑
i=1

wi · γ = 0

which gives γ = ∑n
i=1 qi. In fact, we can check that

n

∑
i=1

qi =
n

∑
i=1

[
δi + ∑

k:ek≤ei

(1− δk) · ω̃ki
]

=
n

∑
i=1

[
δi + ∑

k:ek≤ei

(1− δk) ·
ω0i

∑l:el≥ek
ω0l

]
=

n

∑
i=1

δi +
n

∑
i=1

∑
k:ei≥ek

(1− δk) ·
ω0i

∑l:el≥ek
ω0l

=
n

∑
i=1

δi +
n

∑
k=1

(1− δk) ·
∑i:ei≥ek

ω0i

∑l:el≥ek
ω0l

=
n

∑
i=1

δi +
n

∑
k=1

(1− δk)

= n.

(A.3)

Substituting γ = n back to equation (A.2) and with ∂L(ω)
∂ωi

= 0, we have

wi =
qi

n + λ′gi
(A.4)

Also, because of the constraints ∑n
i=1 ωi · gi = 0, we have

n

∑
i=1

qi · gi

n + λ′gi
= 0 (A.5)

Instead of sovling equation (A.5) directly, we can transform it into a minimization

problem of a convex function

f (λ) = −
n

∑
i=1

qi log(n + λ′gi) (A.6)
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Notice that from the constraints of the optimization problem (A.1), we must have ωi ≤
1, and with (A.4), we should only consider λ for which

n + λ′gi ≥ qi

By a similar argument as in Owen (1990), we can define a quadratic function log](xi)

which matches log(xi) and its first two derivatives at qi (through Taylor expansion).

That is, at xi = qi

log(xi) = log qi +
1
qi
(xi − qi)−

1
q2

i
(xi − qi)

2 + o(x2
i )

= − 1
2q2

i
x2

i +
2
qi

xi −
3
2
+ log qi + o(x2

i )
(A.7)

which gives the expression (4.15). So that we can combine (A.6) with the support

restriction as

f ](λ) = −
n

∑
i=1

qilog](n + λ′gi) (A.8)

to obtain λ̂ as in (4.14).

52



Appendix B

Equivalence between the EM Algorithm

and log CEL Maximization

Does the EM algorithm produce equivalent results as directly maximizing (5.1), or

with smoothing, (5.4) subject to the same constraints? We know that EM algorithm is

equivalent to maximizing the marginal likelihood of the observed data, but it does not

seem obvious that (5.1) or (5.4) are the corresponding marginal distributions or not.

However, we can follow the method by Turnbull (1976) and Zhou (2005) and show that

this is indeed the case.

Before continuity correction, recall that in the EM algorithm, we have

ω̂i(θ) =
qi

n + λ̂′gi(θ)
, (B.1)
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where

qi = δi +
n

∑
k=1

(1− δk)1(ek ≤ ei) · ω̃ki,

ω̃ki =
ω0i

∑n
l=1 1(ek ≤ el) ·ω0l

,

λ̂ = arg max
λ

n

∑
i=1

qi · log]
(

n + λ′g(xi, yi; θ)
)

.

(B.2)

To maximize the log CEL in (5.1) with respect to ω subject to the constraints for a

given θ, we look at the (negated) Lagrangian function which is shown to be concex. θ

is omitted since it is fixed here:

L(ω, γ, λ) = −
n

∑
i=1

[
δi log ωi + (1− δi) log(

n

∑
j=1

1(ej ≥ ei) ·ωj)
]

+ γ(
n

∑
i=1

ωi − 1) + λ′
n

∑
i=1

ωi · gi.

(B.3)

At optimality, the first derivatives of the Lagrangian function with respect to w, γ and

λ must be 0 respectively. Denote the first derivative of L w.r.t wk as dk(w), which is

dk(ω) = −
[

δk
ωk

+
n

∑
i=1

(1− δi)1(ek ≥ ei)

∑n
j=1 1(ej ≥ ek) ·ωk

]
+ γ + λ′gi. (B.4)

Since ∂L
∂ωk

= 0 for all k = 1, · · · , n at optimality, we have

n

∑
k=1

dk(ω) ·ωk = −
n

∑
k=1

[
δk
ωk

+
(1− δk)∑n

j=1 1(ej ≥ ek)

∑n
j=1 1(ej ≥ ek) ·ωk

]
·ωk + γ

n

∑
k=1

ωk

= −n + γ = 0.

(B.5)

This gives γ = n, so that we can replace γ by n in the Lagrangian function.
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With (B.4) and ∑n
i=1 qi = n = γ, we can write Eq (B.1) as

ω̂i =
ω0i

n + λ̂′gi
· qi

ω0i

=
ω0i

n + λ′gi
·
(
−di(w0) + n + λ′gi

)
=
(
1− di(ω0)

n + λ̂′gi

)
·ω0i,

(B.6)

where subscript “0" indicates the value at the previous iteration during the EM algo-

rithm. Therefore, if ω0 gives the optimal value for the original log EL, since di(ω0) = 0,

Eq (B.6) implies ω̂i = ω0i, so that EM converges; conversely, when EM converges, we

have ω̂i = ω0i, so that di(ω0) = 0, and thus the original log EL reaches optimality at

ω0.

After continuity correction, the Lagrangian function and the EM algorithm only have

the indicator functions replaced by S. Since the function S does not have ω as its ar-

gument, everything follows as above and Eq (B.6) still holds. Therefore, the smoothed

EM algorithm is indeed equivalent to maximizing the smoothed version of the original

log EL under the constraints.

In Appendix C, we provide an alternative argument for the validity of the algorithm,

that the value of the objective function is indeed non-decreasing during the iterations.

55



Appendix C

Another Proof of Validity for the EM

Algorithm

Here we discuss an alternative way of showing the algorithm indeed produces mono-

tone increasing sequence of log EL’s. The following argument is similar to the one by

Turnbull (1976).

We have shown that log CEL is a concave function and it is differentiable, and we know

that for a differentiable concave function, the difference in the function values of two

points is bounded by its first-order Taylor approximation. That is, for two valid and

56



consecutive steps ω(n) and ω(n+1), and using (B.6)

`(ω(n+1))− `(ω(n)) ≥
n

∑
i=1

∂`

∂ωj
· (ω(n+1)

i −ω
(n)
i )

=
n

∑
i=1

∂`

∂wj
·
−di(ω

(n)) ·ω(n)
i

n + λ̂′gi

=
n

∑
i=1

(
−di(ω

(n)) + n + λ̂′gi
)
·
−di(ω

(n)) ·ω(n)
i

n + λ̂′gi

=
n

∑
i=1

d2
i (ω

(n)) ·ω(n)
i

n + λ̂′gi
≥ 0

(C.1)

as long as n + λ̂′gi ≥ 0. Also, the last step uses the fact that the constraints are satisfied

at ω and thus ∑n
i=1 di(ω) ·ωi = 0.

Notice that the function log] in (4.14) always gives λ̂ such that n + λ′gi ≥ 0, because

it is a modification of the log function such that for any λ such that n + λ′gi < 0, the

function value is smaller than any other λ̃ such that n + λ̃′gi ≥ 0, and thus contradicts

that λ̂ give the maximum value.

This argument is also not affected by the smoothing function, so it also applies to the

smoothed version of EM.
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Appendix D

Proof of Proposition 1

We first show that the negation of the objective function in (4.7) is convex (Part I), then

we will show that the Lagrangian function is convex, and it is strictly convex if and

only if only if no observation other than the one with the largest survival time can be

a censored observation (Part II).

Part I:

Maximizing the objective function in (4.7) is equivalent to

min−
n

∑
i=1

[
δi log ωi + (1− δi) log( ∑

j:ej≥ei

ωj)
]
. (D.1)

Let A(ω) = −∑n
i=1 δi log ωi and B(ω) = −∑n

i=1(1− δi) log(∑j:ej≥ei
ωj), the first and the

section terms of (D.1) respectively. Since the sum of convex functions is still convex,

we only need to show that A(ω) and B(ω) are both convex. We show this by finding

the Hessian matrices of them.
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The second derivative of A(ω) w.r.t any wi is

τi :=
∂2A(ω)

∂wi
=

δi

w2
i
≥ 0.

The Hessian matrix is a diagonal matrix with the above entries on the diagonal, there-

fore, the Hessian matrix for A(ω) is indeed positive semidefinite (PSD). Thus A(ω) is

a convex function.

Assumed w.l.o.g. that the residual e′is are ordered, and the weights and indicators are

ordered accordingly. We have

B(ω) = −
[
(1− δ1) log(∑

j≥i
ωj) + · · ·+ (1− δn) log(∑

j≥i
ωj)
]
.

First derivative of B(ω) w.r.t ω1 is

∂B(ω)

∂ω1
= − 1− δ1

∑n
i=1 ωi

,

so that second derivative of B(ω) first w.r.t w1 then w.r.t wi for any i ≥ 1 is

σ1 :=
∂2B(ω)

∂ωi∂ω1
=

1− δ1

(∑n
i=1 ωi)2 ≥ 0.

First derivative of B(ω) w.r.t ω2 is

∂B(ω)

∂ω2
= − 1− δ1

∑n
i=1 ωi

− 1− δ2

∑n
i=2 ωi

,

so that second derivative of B(ω) first w.r.t ω2 then w.r.t ω1 is

∂2B(ω)

∂ω1∂ω2
=

1− δ1

(∑n
i=1 ωi)2 = σ1,

and the second derivative of B(ω) first w.r.t ω2 then w.r.t. ωi for any i ≥ 2 is

σ2 :=
∂2B(ω)

∂ωi∂ω2
=

1− δ1

(∑n
i=1 ωi)2 +

1− δ2

(∑n
i=2 ωi)2 .
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Then by induction, we obtain the n× n Hessian matrix in the form

H =



σ1 σ1 σ1 · · · σ1

σ1 σ2 σ2 · · · σ2

σ1 σ2 σ3 · · · σ3
...

...
... . . . ...

σ1 σ2 σ3 · · · σn


.

We can do row operations on the matrix — subtracting i-th row from i + 1-th row for

i = 2, · · · , n — without changing its determinant, we get

H =



σ1 σ1 σ1 · · · σ1

0 σ2 − σ1 σ2 − σ1 · · · σ2 − σ1

0 0 σ3 − σ2 · · · σ3 − σ2
...

...
... . . . ...

0 0 0 · · · σn − σn−1


.

Since it is an upper triangular matrix, its determinant is the product of the diagonal

elements. These diagonal elements are all nonnegative since σi+1 ≥ σi for all i =

1, · · · , n− 1 by the calculation above.

Therefore, the objective function in (4.7) is indeed a convex function.

Part II:

Let f (ω) denote the objective function in (D.1), m(ω) = ∑n
i=1 ωi − 1, and h(ω) =

∑n
i=1 ωi · gi. Then the Lagrangian function of the optimization problem (4.7) is given

by

L(ω) = f (ω) + γ ·m(ω) + λ′h(ω). (D.2)
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To determine the convexity of the Lagrangian function, we take the second derivative

so we get the Hessian matrix H∗ as

H∗ =
∂2L(ω, γ, λ)

∂ω2

=
∂2L(ω)

∂ω2

=
∂2A(ω)

∂ω2 +
∂2B(ω)

∂ω2 = H,

since the second derivatives of m and h are both 0.

From Part I,

∂2A(ω)

∂ω2 =


τ1 0 · · · 0
... τ2 · · · 0
...

... . . . 0

0 0 · · · τn


and

∂2B(ω)

∂ω2 =



σ1 σ1 σ1 · · · σ1

σ1 σ2 σ2 · · · σ2

σ1 σ2 σ3 · · · σ3
...

...
... . . . ...

σ1 σ2 σ3 · · · σn


.

As in Part I, we can perform row operations on the matrix H without changing its

determinant. Here, let P be the permutation matrix such that PM subtracts ith row by
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(i + 1)th row in matrix M ∈ Rn×n for i = 1, · · · , n− 1. Then we have

PH∗ =



τ1 −τ2 + σ1 − σ2 σ1 − σ2 · · · σ1 − σ2

0 τ2 −τ3 + σ2 − σ3 · · · σ2 − σ3

0 0 τ3 · · · σ4 − σ3
...

...
... . . . ...

σ1 σ2 σ3 · · · τn + σn


.

As what we have shown in Part I, the above matrix is indeed PSD. Here we would like

to find the sufficient and necessary conditions such that the above matrix is (strictly)

positive definite (PD).

Notice that for any observation, it is either censored or uncensored, so we have τn +

σn > 0. Let Hi be the upper i× i matrix of H, for i = 1, · · · , n− 1. Then for PH∗ to be

PD, the sufficient condition is that the determinant of Hi

|Hi| =
i

∏
i=1

τi

are all positive for i = 1, · · · , n− 1.

This means that the sufficient condition is that τi > 0, i = 1, · · · , n− 1. If τi > 0, i =

1, · · · , n− 1, then σi = 0, i = 1, · · · , n− 1. So we obtained a upper triangular matrix

and all the diagonal elements are strictly positive. Therefore, the necessory condition

is that τi > 0, i = 1, · · · , n− 1 as well.

Hence the negated Lagrangian function for the optimization problem (4.7) is convex,

and it is strictly convex if and only if no observation other than the one with the largest

survival time can be a censored observation.
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Appendix E

Proof of Proposition 2

We will show that the negated log SCEL in (5.4) is convex with respect to ω.

Denote A(ω) = −∑n
i=1 δi log ωi and B(ω) = −∑n

i=1(1− δi) log
(
∑n

j=1 S(ei − ej) · ωj
)
,

the negated first and the section terms of (5.4) respectively, for a fixed θ. We will show

that both of the two terms are convex functions of ω.

The second derivative of A(ω) w.r.t any ωi is

∂2A(ω)

∂ωi
=

δi

ω2
i
≥ 0.

The Hessian matrix is a diagonal matrix with the above entries on the diagonal, there-

fore, the Hessian matrix for A(ω) is indeed PSD. Thus A(ω) is a convex function.

The first derivative of B(ω) w.r.t ω1 is

∂B(ω)

∂ω1
= −

n

∑
i=1

(1− δi) · S′(ei − e1)

∑n
j=1 S(ei − ej) ·ωj

. (E.1)

63



Denote the second derivative of B(ω) w.r.t w1 as

σ11 :=
∂2B(ω)

∂ω2
1

=
n

∑
i=1

(1− δi) · S′(ei − e1)
2(

∑n
j=1 S(ei − ej) ·ωj

)2 .

The second derivative of B(ω) w.r.t. ω1 and then ω2 as

σ12 :=
∂2B(ω)

∂ω1∂ω2
=

n

∑
i=1

(1− δi) · S′(ei − e1) · S′(ei − e2)(
∑n

j=1 S(ei − ej) ·ωj
)2 .

Continue this way the hessian matrix of B(w) can be written as

H =



σ11 σ12 σ13 · · · σ1n

σ12 σ22 σ23 · · · σ2n

σ13 σ23 σ33 · · · σ3n
...

...
... . . . ...

σ1n σ2n σ3n · · · σnn


.

We can write H = ∑n
i=1 Hi, where

Hi =
1− δi(

∑n
j=1(ei − ej) ·ωj

)2 ·



ηi11 ηi12 ηi13 · · · ηi1n

ηi12 ηi22 ηi23 · · · ηi2n

ηi13 ηi23 ηi33 · · · ηi3n
...

...
... . . . ...

ηi1n ηi2n ηi3n · · · ηinn


=

1− δi(
∑n

j=1(ei − ej) ·ωj
)2 · H̄i,

(E.2)

and where

ηijk = S′(ei − ej) · S′(ei − ek)
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If each H̄i such that δi = 0 is PSD, then H is PSD. In fact, each H̄i can be written as the

outer product of two vectors of the same value

H̄i =



S′(ei − e1)

S′(ei − e2)

−s
...

S′(ei − en)





S′(ei − e1)

S′(ei − e2)

−s
...

S′(ei − en)



′

,

where −s appears at the i-th entry. This means that H̄i is a rank 1 matrix with one and

only one positive eigenvalue.1

1 A = vv′, then Av = vv′v = v||v||2 =: vλ, which means the eigenvalue λ = ||v||2 > 0, as long as

v 6= 0.
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