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Abstract

Hydraulic fracturing in naturally fractured rocks often leads to the creation of a
stimulated zone in which the target rock formation is deformed and fractured by
the reactivation and shear dilation of natural fractures and the plastic deformation,
damaging, and fracturing of the bulk. In this paper, we present a novel mathematical
model with the goal of simulating the evolution of the stimulated volume during
hydraulic fracturing. This was achieved by introducing an equivalent continuum non-
local poro-elastic-plastic zone of enhanced permeability for the stimulated region,
characterized by an internal length scale. The non-local plastic constitutive behavior
of the rock, combined with the classical Biot’s poroelastic theory, was implemented
using a new implicit C0 non-local finite element method. A predictor-corrector return
algorithm for the non-local plasticity model was formulated as an extension of the
classical plasticity algorithm. To improve the performance of the iterative solution
scheme, a consistent algorithmic stiffness tangent modulus was developed. First, the
elastic-plastic constitutive behavior of the proposed methodology is verified using the
standard non-porous biaxial compression test with strain softening behavior. Next, it
is verified that the poro-elastic-plastic model correctly simulates the evolution of the
stimulated zone and the subsequent change in the flow and fluid pressure for several
hydraulic fracturing examples under various far-field in-situ stress conditions. Lastly,
the non-local poro-elastic-plastic model is shown to be mesh-independent and capable
of capturing a wide range of complex fracturing behavior.

1. Introduction

Hydraulic Fracturing (HF) is a common technique used in the oil and gas indus-
try to stimulate production from tight hydrocarbon-bearing formations including coal
beds, shales, mudstones, and tight sandstones [1]. Other applications of this technol-
ogy include the pre-conditioning of massive ore bodies in block caving mining [2, 3],
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compensation for ground subsidence during tunneling [4], and the disposal of wastes
in underground formations [5, 6]. During HF, a fluid slurry is injected into a target
formation under high pressure, causing deformation and failure (fracture) of the rock
mass and increasing the permeability in a region surrounding the injection point –
creating a Stimulated Volume (SV).

The existence of a post-HF zone of globally enhanced permeability (the SV) has
been widely recognized in the HF literature [7, 8, 9]. During a typical HF opera-
tion in a naturally fractured rock mass, the injected fluid initially creates Mode I
tensile fractures that propagate preferentially along the local natural fractures, as
they possess far lower fracture toughness than the dense, strong rock matrix [10, 8].
The propagation of tensile fractures can significantly increase the shear stress in the
macroscopic vicinity of the fracture tips, at a scale of meters or tens of meters, de-
pending on the fracture aperture and curvature. This, combined with a reduction of
the effective confining stress due to increased fluid pressures, leads to shear slip events
along the pre-existing fractures intersecting or close to the propagating tensile cracks,
effectively bifurcating the crack fronts, increasing fracture network complexity, and
leading to irreversible volume changes through shear dilation [8, 9]. As the result, the
fracture network can be quite complex on the length scale of the strong local fabric.
At a larger scale, however, the SV is aligned with the orientation of the maximum
principal stress due to the principle of work minimization [11, 9].

Since the goal of HF is to enhance the permeability of a reservoir, it is useful to
think of the SV as being divided into two zones, each in which permeability enhance-
ment is dominated by a different mechanism. The innermost zone that is closest to
the well is mostly dominated by Mode I tensile fracture deformation, and is called the
"sand zone" because it is the zone that cane be most easily propped by injected sand
(Fig. 1a) [8, 9]. Beyond the sand zone is the shear dilation zone, in which deformation
is dominated by shear and slip events of Mode II and Mode III nature , as evidenced
by microseismic imaging [7, 12] (Fig. 1a). Shear fracturing along pre-existing frac-
tures is accompanied by shear dilation, resulting in a zone of naturally propped and
more permeable fractures. The shear dilation zone is expected to be much larger than
the sand zone and is thought to significantly contribute to permeability enhancement
and hence to production from tight reservoirs [7, 8, 9].

It is important to recognize that the naturally fractured fabric of the target forma-
tions leads to the creation of the complex fracture networks in a volume of plastically
deformed and damaged rock mass, rather than leading to a single conductive fracture
[7, 12, 9]. Permanent deformations from the reactivation and shear dilation of natural
and induced fractures are required for the creation of a stimulated volume; reversible
elasticity processes are insufficient.

The primary contribution of this article is the presentation of a simulation scheme
aimed at modeling the SV (i.e., the effective behavior of a network of fractures) cre-
ated by hydraulic fracturing. The primary focus of convectional HF modeling has
been on the simulation of individual hydraulic fractures and their tip processes and
asymptotic behaviors [13, 14, 15]. When a group or network of hydraulic fractures is
mathematically simulated, it is generally done by explicitly modeling each fracture
using discrete fracture models [16, 17]. Whereas previous efforts in non-local plas-
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ticity models for porous media have focused application to localization phenomena
of individual cracks and shear bands [18, 19], here we used a similar paradigm to
model the evolution of a stimulated volume. This allows larger scale (reservoir-scale)
problems of hydraulic fracturing to be more readily modeled.

Discontinuum approaches, e.g., the distinct element approach (DEM), treating
jointed rock masses as an assemblage of blocks with stipulated contact laws, are com-
monly used to account for the strong fabric effects on the propagation of hydraulic
fractures in naturally fractured rock [20, 21]. The high computational burden for
large scale problems, small discretization sizes and explicit time stepping, and the
single scale nature of the constitutive laws are among the major drawbacks of dis-
continuum approaches [22]. This motivates development of more efficient continuum
approaches which incorporate the effective behavior of the natural fracture network,
making simulation of a wide range of HF processes possible. It has recently been
shown that it is possible to accurately parameterize the hardening behavior of the
continuum plastic-damage model using triaxial load curves from the representative
element volumes DEM simulations [22]. Thus, it is possible to build up-scaled contin-
uum models that are able to, in an average sense, capture the behavior of naturally
fractured rock masses. In this article, we present an alternative macroscale continuum
approach with the goal of simulating the evolution of the SV during HF.

We assume that the Stimulated Volume in the jointed rock mass can be repre-
sented by an equivalent non-local poro-elastic-plastic continuum zone of enhanced
permeability. The details of the complex fracturing, nucleation and micro-events of
coalescence that occur at the discrete level are not explicitly modeled; instead, their
effects are translated into three constitutive models: (1) for the degradation of the
yield strength of rock (plastic softening), (2) for the evolution of effective permeability
with plasticity, and (3) for the energy dissipation within the localization band, which
is controlled by an internal characteristic length scale,`c, that is related to the natural
fracture distribution and spacing as well as the micromechanics of deformation. Note
that in this study, we assume that the group of natural fractures (when subjected
to the confining stress and pore fluid loading) tends to predominantly exhibit plastic
softening behavior and plastic hardening stage is neglected. This assumption can be
true for a network of fractures in which the micro- cracking and void coalescence of
the fracture network at the discrete level will lead to the progressive degradation of
the material cohesion.

The idea of a non-local plastic softening model for the jointed rocks in this article
is inspired in part by the classical strain localization and shear band propagation
modeling in dry [23, 24] and saturated geomaterials [18, 19] in application to the
problems in geotechnical engineering. The strain localization band is a zone of intense
shearing and inelastic deformation that forms during the plastic-softening stage [25].
The thickness of this zone is controlled by the microstructure and has been previously
characterized by Bažant and Oh [26]. In this article, we extend the non-local plasticity
theory to model the SV in porous jointed rocks.

In previous non-local plasticity models for saturated porous media, e.g., [18, 19],
localization was driven by mechanical loading on the domain boundaries. This is in
contrast to the creation of the stimulated volume in hydraulic fracturing applications
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which is driven by pore fluid injection and the initial in-situ stress field. This sig-
nificant difference in loading type, results in unique phenomena, which have not yet
explored in the literature of non-local plasticity.

In this article, we extend the non-local plasticity theory to model the SV in porous
jointed rocks. The mechanism of shear band localization in geotechnical applications
is primarily due to the mechanical loading enforced as traction forces on the domain
boundaries. However, the creation of the strain localized band for hydraulic fracturing
applications is governed by the diffusion loading which together with the initial in-
situ stress field results in certain unique features which have not yet explored in the
literature.

Use of non-local and gradient-based plasticity and damage models is often moti-
vated by a desire to overcome the well-known pathological problems of mesh depen-
dence which occur in FEM simulations with classical plasticity and damage models
when strain softening occurs [26, 27, 28]. In this article, the introduction of a non-
local plasticity model serves the dual purpose of ensuring that the discrete problem
remains well-posed while enshrining a length scale associated with the natural frac-
ture fabric into the constitutive model. Note that plasticity models have been used
previously in the context of hydraulic fracture simulation e.g., [29, 30, 31]; however,
these models have not tied up the post yielding behavior of the softening materi-
als to a characteristic length scale leading to the aforementioned pathological mesh
dependence of the numerical results.

A non-local poro-elastic-plastic model is presented and implemented within a Fi-
nite Element Method (FEM) framework based on the classical Biot’s Theory. Energy
dissipation due reactivation of the fracture network and permanent plastic deforma-
tion of the poro-elasto-plastic body is achieved though the plastic work. The Drucker-
Prager yield criterion [32] is used to incorporate the complex fracture behavior of the
fracture network (SV) associated with both tensile softening (Mode I) and and shear
dilation (Mode II and III) when stress triaxiality is large. A new implicit C0 non-local
plasticity model is proposed for the non-local plastic constitutive behavior, which is
an approximation of C1 non-local continuity models introduced in [27, 33]. This is
achieved by reformulation of the traditional model for the non-local plasticity [34, 35].
The predictor-corrector algorithm for the proposed C0 model is developed in a man-
ner similar to the classical plasticity theory [36], but differs from the manner in which
non-local plasticity is usually implemented. To facilitate the numerical convergence
of the governing equations, a consistent algorithmic tangent operator is also derived.

Damage mechanics based smeared fracture models, such as phase field models
[37, 38] and the non-local permeability model [39], have been applied to the HF
problem. The phase field approach fails to account for permeability enhancement
from permanent/plastic shear dilation and thus cannot be used to quantify the zone of
shear dilation. Furthermore, this approach does not tie the length scale that appears
in those models with the characteristic lengths of the natural fracture network or
microstructure of the rock mass. Rather, there has been a lot of effort dedicated to
showing that phase field models converge to linear elastic fracture mechanics solutions
in the limit as the length-scale goes to zero [40]. The non-local permeability method
[39] is a new approach inspired from the non-local transport theory [41, 42] which
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Figure 1: (a) The various stimulated zones during injection into a naturally fractured system [9].
(b) Equivalent continuum approximation of the stimulated zone controlled by the length scale lc.

defines a characteristic length scale for the flow (permeability). This approach seems
promising, but like other purely damage approaches does not incorporate the effect
of permanent shear dilation, and hence the related permeability enhancement from
plastic shear dilation. A realistic representation of the SV should account for both
degradation of the elastic modulus (i.e., damage) and the yield strength (plasticity).
In this study, the effect of damage and elastic degradation on the strain localization
is neglected for the sake of simplicity; it will be addressed in the future.

This paper is organized as follows. In Sec. 2, the problem setting and governing
equations are presented. The numerical implementation and procedure are discussed
in Sec. 3. The effectiveness of the proposed model is demonstrated for a series of
fracturing propagation examples in Sec. 4.

2. Mathematical formulation

Consider a poro-elasto-plastic body in the domain Ω ∈ R2 bounded by ∂Ω (Fig.
2). The boundary ∂Ω is composed of the sets of prescribed displacements ∂Ωu,
traction ∂Ωt, flow rate ∂Ωq, pressure ∂Ωp and plastic ∂Ω% boundaries such that
∂Ωu ∪ ∂Ωt = ∂Ωq ∪ ∂Ωp = ∂Ω and ∂Ωu ∩ ∂Ωt = ∂Ωq ∩ ∂Ωp = ∅. The domain Ω is
further decomposed into an elastic domain Ωe and a plastic domain Ω%. The behavior
of the body subjected to the given boundary conditions is described by the following
equations:

2.1. Non-local constitutive behavior of the rock matrix
Hooke’s law

The elasto-plastic constitutive behavior of the rock matrix due to an external
loading is described by the generalized Hooke’s law

∆σ′ = C : ∆εe, (1)

where ∆σ′ and ∆εe are the increments in the effective stress and elastic strain tensors,
respectively, and C is the fourth-order stiffness tensor.

The material subjected to an increasing load may yield when the load on the
material exceeds the elastic limit. At this point, the material will experience elastic
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Figure 2: Schematic of the problem domain.

and plastic strains. The elastic component of the strain increment tensor can be
expressed in terms of the total strain ∆ε and plastic strain ∆εp increment tensors as:

∆εe = ∆ε−∆εp. (2)

The total strain can be defined in terms of the symmetric part of the displacement
gradient strain tensor given by:

ε =
1

2
(∇u+∇uT ), (3)

in which u(x) denotes the displacement and x ∈ Ω is a material point.

Associated flow rule
The amount of plastic strain can be obtained from the plastic flow rule. The

general form of the associated flow rule is given by [43]

∆εp = ∆λ
∂f

∂σ′
, (4)

where λ is the plastic multiplier and f is a particular yield function. Since the plastic
multiplier is a scalar quantity, the plastic strain rate is directed outward from the
plastic yield surface.

In this study, we use the associated flow rule with the Drucker-Prager (DP) yield
criterion. The DP failure criterion is widely used to study the failure behavior of
geomaterials, e.g., rocks, concrete, and soil. The DP yield function is given by [32]

f (σ′, ẽp) =
(
s

′
ijs

′
ij

)1/2

+

√
2

3
αfσ

′
m −

√
2

3
βσy(ẽ

p). (5)

Here, s′ denotes the deviatoric effective stress tensor, αf and β are positive con-
stants relating to the material properties, σ′

m is the volumetric effective stress, and
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σy is the yield stress expressed as a function of the non-local equivalent plastic strain
ẽp. Note that the special case of the Von Mises failure criterion can be obtained from
(5) by letting αf = 0 and β = 1.

For linear isotropic softening materials, the yield stress function takes the form

σy = σy0 + hẽp, (6)

in which σy0 is the initial yield stress and h is the linear isotropic hardening coefficient
which is negative for softening materials (for h < 0) .

The incremental form of the non-local equivalent plastic strain can be written as
[24]

∆ẽp = ∆ep + c∇2∆ep +
3

10
c2∇4∆ep + · · · . (7)

Here, ∆ep is the corresponding local plastic strain increment counterpart and c =
(l2c/24) is a coefficient related to the non-local plastic length scale lc. Note that the
classical local plasticity theory can be recovered from (7) by letting c ≈ 0. Neglecting
the fourth-order term in (9) leads to well-known explicit gradient formulation for
elasto-plasticty [28]

∆ẽp = ∆ep + c∇2∆ep. (8)

Differentiation of (8) twice and substituting the result back into equation (8) gives

∆ẽp − c∇2∆ẽp = ∆ep − c2∇4∆ep. (9)

The equation can be further simplified to:

∆ẽp − c∇2∆ẽp = ∆ep, (10)

referred to as the implicit-gradient formulation for elasto-plasticty [34].
The additional condition on the non-local boundary of the plastic domain is given

by [34]:
n% · ∇∆ẽp

∣∣
∂Ω% = 0, (11)

where n% is the unit normal vector pointing outward from the plastic boundary
surface. Note that the boundary condition (10) assumes that the traction vanishes
at the moving boundary of the plastic domain.

The local effective plastic strain increment in (10) can be obtained by the well-
known expression

∆ep =

√
2

3
∆εp : ∆εp, (12)

which for the DP yield criterion can be expressed as [33]

∆ep =

√
2

3
(1 +

2

9
α2)∆λ. (13)
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2.2. Non-local constitutive behavior of flow
The flow of the fluid through the porous medium is described by the Darcy’s law

given by

q = −k (ẽp)

µ
∇p, (14)

where q is the fluid discharge tensor, µ is the viscosity of the fluid, and k is the per-
meability of the porous medium assumed to be a function of the non-local equivalent
plastic strain ẽp.

One may express the permeability k as a Taylor series expansion in ẽp as

k (ẽp) = k|ẽp=0 +
dk

dẽp

∣∣∣∣
ẽp=0

ẽp +
1

2!

d2k

dẽ2
p

∣∣∣∣
ẽp=0

ẽp2 + ... . (15)

Although the derivatives in (15) are unknown, one may seek a solution in the form of
an empirical function relating the rock mass permeability to the accumulated plastic
strain as

k = k0

(
1 + a (ẽp)b

)
, (16)

where k0 is the initial permeability and a ≥ 0 and b are constant coefficients to be
calibrated.

2.3. Equilibrium equation
The equilibrium equation and boundary conditions for the system described in

Fig. 1 are
∇ · (σ′ − αpI) = 0, (17)

and
σ · n |∂Ωt = t̄, u |∂Ωu = ū, (18)

where α is the Biot coefficient, I is the identity tensor, σ is the total stress tensor
on the boundary surface, n is the unit normal vector perpendicular to the boundary
surface, and t̄ and ū are the prescribed traction and displacement tensors on the
boundaries ∂Ωt and ∂Ωu, respectively. Note that inertia and body forces are neglected
in (17).

2.4. Continuity equation for the fluid phase
Applying the law of conservation of mass leads to the local continuity equation

∂ζ

∂t
+∇ · q = 0, (19)

where ζ is the fluid content. The constitutive law relating the fluid content ζ and
pressure p is expressed as

p = M(ζ − αtr(ε)). (20)
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Here, M is the Biot modulus and tr(ε) = εV is the trace of the strain tensor. The
sets of initial and boundary conditions corresponding to the flow equation (19) are

p |t=0 = p0, n · q
∣∣
∂Ωq = q p

∣∣
∂Ωp = p̄, (21)

where p0 is the initial pore pressure and q and p̄ are the prescribed flow rate and
pressure on the boundaries ∂Ωq and ∂Ωp, respectively. Substitution of ζ from (20) in
(19) and rearranging the result gives

1

M

∂p

∂t
+ α

∂εV
∂t
− 1

µ
∇ · (k (ẽp)∇p) = 0. (22)

3. Numerical implementation

The summary of the set of governing equations and corresponding boundary con-
ditions to describe the behavior of the body described in Fig. 1 are:

• Equilibrium
∇ · (σ′ − αpI) = 0, x ∈ Ω (23)

• Non-local plasticity
∆ẽp − c∇2∆ẽp = ∆ep, x ∈ Ω% (24)

• Fluid flow
1

M

∂p

∂t
+ α

∂εV
∂t
−∇ · (k

µ
∇p) = 0, x ∈ Ω (25)

• Initial and boundary condition

p |t=0 = p0, n.q
∣∣
∂Ωq = q̄, p

∣∣
∂Ωp = p̄, σ.n |∂Ωt = t̄, u |∂Ωu = ū, n%·∇∆ẽp

∣∣
∂Ω% = 0.
(26)

The weak formulation of the system of governing equations is obtained in the standard
way. We choose three arbitrary weight functions wu, w%, wp for the displacement u,
non-local plastic strain increment ∆ẽp, and pressure p fields, respectively. The weak
form of the governing equations (23-25) after applying the boundary conditions (26)
for the sets of u ∈ U0, 4ẽp ∈ %0, and p ∈ P 0 can be written as

∫

Ω

∇wu : (σ′ − αpI)dΩ =

∫

∂Ωt

wu · t̄dΓ, ∀wu ∈ U0 (27)

∫

Ω%

w%∆ẽ
pdΩ + c

∫

Ω%

∇wT% · ∇∆ẽpdΩ =

∫

∂Ω%

wT% ∆epdΓ, ∀w% ∈ %0 (28)

1

M

∫

Ω

wp
∂p

∂t
dΩ+α

∫

Ω

wp
∂εV
∂t

dΩ+
1

µ

∫

Ω

∇wp · k (ẽp)∇pdΩ =

∫

∂Ωp

wpq̄dΓ, ∀wp ∈ P 0.

(29)
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Figure 3: Schematic of the mixed finite element. The 8-node serendipity elements for displace-
ment and 4-node linear element for the pressure and non-local plastic strain increment are used for
numerical calculations.

3.1. Semi-discrete and discrete equations
We first discretize u, p and ∆ẽp using a mixed finite element, as illustrated in Fig.

3.
The displacement u(x, t), pressure p(x, t), and non-local plastic strain increment

∆ẽp(x, t) are approximated as

u(x, t) =
∑

∀I∈Su

Nu
I (x)uI(t), ∆ẽp =

∑

∀I∈S%

N%
I (x)∆ẽpI(t), p(x, t) =

∑

∀I∈Sp

Np
I (x)pI(t),

(30)
respectively, in whichNu

I , N
%
I , N

p
I are the standard finite element shape functions used

to interpolate the displacements, non-local plastic strain increment, and pore pressure
fields. Su, Sp, and S% are the sets of node I for the u, p, and ∆ẽp approximations,
respectively. Let the displacements, non-local plastic strain increment, and pressure
degrees of freedom vectors be du = {u1,u2, . . .}>, d% = {∆ẽp1,∆ẽp2, . . .}>, and dp =
{p1, p2, . . .}>, and their respective time derivatives be ḋu, ḋ%, and ḋp. The mixed
nature of the system of equations (27-29) requires the selection of suitable shape
functions for the pore pressure, displacement and non-local plastic strain increment
fields to satisfy the LBB stability condition [44]. This is achieved by selecting 8-node
quadrilateral shape functions for displacement and 4-node bi-linear shape functions
for pore pressure and the non-local plastic strain increment.

Substitution of (30) into the weak forms (27-29) and applying the standard diver-
gence theorem leads to the following semi-discrete equations

Ru(du,d%,dp) =

∫

Ω

BuT {σ′} dΩ−
∫

Ω

BuTα Ī
1×3
pdΩ −

∫

∂Ωt

N pT t̄dΓ = 0 (31)

R%(du,d%,dp) =

∫

Ω%

N %T∆ẽpdΩ +

∫

Ω%

B%T c∇∆ẽpdΩ −
∫

Ω%

N %T∆epdΩ = 0 (32)

Rp(du,d%,dp) =
1

M

∫

Ω

N pT ṗdΩ+α

∫

Ω

N pT ε̇V dΩ−
∫

Ω

BpT k (ẽp)

µ
∇pdΩ−

∫

∂Ωp

N pT q̄dΓ = 0.

(33)
Here, Bu is the standard B-matrix of shape function derivatives for an 8-node

quadrilateral element for displacements, Bp andB% are the standard B-matrices for a
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4-node quadrilateral element for scalar fields,Nu ,N p, andN % are the corresponding
matrices of shape functions, {σ′} denotes the effective stress in Voigt form, and
Ī

1×3
=
[

1 1 0
]>
.

We will solve (31-33) using a fixed point iterative scheme by first solving simul-
taneously for du and dp and then solving for d% and iterating until convergence. To
this end let the solution vector d and a residual vector R be given respectively as:

d =

[
du

dp

]
, R =

[
Ru

Rp

]
. (34)

Let dn and dn+1 be the values of d at times tn and tn+1, respectively, and let the time
step size be denoted by ∆t, such that tn+1 = tn + ∆t. Let the time derivatives of ḋu

and ḋp be approximated using a backwards Euler scheme of the form.

ḋ
n+1

=
1

∆t

(
dn+1 − dn

)
(35)

Substitution of (35) into (31-33) yields a non-linear system of equations for dn+1,
which is solved by linearizing (34). Let dn+1

i be the solution at iteration i of time
tn+1. Let the increment in the solution from one iteration to the next be denoted
by ∆di and given by dn+1

i+1 = dn+1
i + ∆di. At iteration i + 1 of the NR solver, the

following linear system of equations is solved
(

1

∆t
M +K

(
dn+1
i

))
∆di = −R

(
dn+1
i

)
. (36)

The components of the tangent stiffness matrix are:

Kuu =

∫

Ω

BuTCalg.BudΩ, (37)

Kup = −
∫

Ω

BuTα Ī
1×3
N pdΩ,

Kpp =

∫

Ω

BpT k(ẽp)

µ
BpdΩ,

M pu =

∫

Ω

N pTαBuT,voldΩ,

M pp =

∫

Ω

N pT 1

M
N pdΩ,

Kpu = Muu = Mup = 0, (38)

Here, Calg. is the consistent algorithmic stiffness tangent modulus, the derivation of
which is described in the next section.

During each load step, a fixed point iteration strategy is used to solve (31)-(33).
Starting from an initial value for ẽp, equations (31) and (33) are solved using the
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Newton-Raphson method to find du and dp. During the stress update and computa-
tion of the consistent algorithmic stiffness tangent modulus, the system of equations
(32) is solved for d%. The solution of (32) is discussed in the following subsection.

3.1.1. Consistent algorithmic stiffness tangent modulus
The general form of the consistent algorithmic stiffness tangent modulus in matrix

form can be expressed as [45]

Calg. = C −Cn%
T

(
∂∆λ

∂εI

)
−∆γC

(
∂n%

∂εI

)
, (39)

in which, C is stiffness matrix of the solid material, and n% is the normal to the yield
surface. For the DP yield criterion n% takes the form [33]

n% = (n%D + n%S), (40)

where n%D =
{
s

′e
}
/
∣∣{s′e

}∣∣ and n%S =
√

(2/27)αI are the contributions from
deviatoric and spherical parts of the effective stress tensor to n%, expressed in terms
of bulk modulus K, shear modulus µ, and the elastic part of the deviatoric effective
stress

{
s

′e
}
.

Let us first obtain the expression for ∂n%/∂εI . Taking the derivative of n% with
respect to εI using (40) yields

∂n%

∂εI
=
∂n%D

∂εI
, (41)

and
∂n%D

∂εI
=

∂

∂εI

( {
s

′e
}

|{s′e}|

)
=

2µ

|{s′e}|(Idev − n%
T
Dn%D), (42)

in which Idev is the deviatoric identity matrix. Note that (42) is identical to the
equivalent expression in the classical plasticity problem.

We use the yield condition (5) to obtain ∂∆γ/∂εI . The yield condition states
that the stress at the point of yielding is required to remain on the yield surface (i.e.,
f = 0). Recall from classical plastic theory that

∣∣∣
{
s

′
}∣∣∣ =

∣∣∣
{
s

′e
}∣∣∣− 2G∆λ, |

{
σ

′
m

}
| = |

{
σ

′e
m

}
| −
√

2Kα∆γ. (43)

Substitution of (43) in (5) and letting f = 0 result

∆λ =
f e −

√
2
3
βh∆ẽp

(
2G+

√
4
3
Kα2

) . (44)

in which

f e =
∣∣∣
{
s

′e
}∣∣∣+

√
2

3
α|
{
σ

′e
m

}
| −
√

2

3
β (σy0 + hẽp,n) . (45)
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We now take the derivative of (44) with respect to εI

∂∆λ

∂εI
=

1(
2G+

√
4
3
Kα2

)
(
∂ |{se}|
∂εI

+

√
2

3
α
∂|
{
σ

′e
m

}
|

∂εI
−
√

2

3
βh
∂∆ẽp

∂εI

)

=
1(

2G+
√

4
3
Kα2

)
(

2Gn%D + 3Kn%S −
√

2

3
βh
∂∆ẽp

∂εI

)
. (46)

In the above expression, ∂∆ẽp/∂εI is unknown and it has yet to be determined.
Combining (44) and (13) and substituting the resulting expression in (32) allows one
to find the non-local plastic strain increment as

∆ẽp = K−1
%% F %, (47)

where
K%% =

∫

Ω%

N%TmN%dΩ +

∫

Ω%

B%T cB%dΩ,

m = 1 +
βh
√

4
9
(1 + 2

9
α2)

2G+
√

4
3
Kα2

, (48)

F % =

√
2
3
(1 + 2

9
α2)

2G+
√

4
3
Kα2

∫

Ω%

N%Tf edΩ. (49)

Taking the derivative of (47) with respect to εI yields

∂∆ẽp

∂εI
= K−1

%%

∂F %

∂εI
(50)

∂∆ẽp

∂εI
=

√
2
3
(1 + 2

9
α2)

2G+
√

4
3
Kα2

K−1
%%

∫

Ω%

N%T ∂f
e

∂εI
dΩ, (51)

∂∆ẽp

∂εI
=

√
2
3
(1 + 2

9
α2)

2G+
√

4
3
Kα2

K−1
%%

∫

Ω%

N%T
(
2µn%D + 3Kn%S

)
dΩ. (52)

Substitution of (42), (46) and (52) in (39) yields

Calg. = C − 1(
2G+ 4

3
Kα2

) (2Gn%D + 3Kn%S

)T (
2µn%D + 3Kn%S −

βh
√

4
9
(1 + 2

9
α2)

2G+
√

4
3
Kα2

K−1
%%

∫

Ω%

N%T
(
2µn%D + 3Kn%S

)
dΩ


− 4µ2∆γ

|{s′e}| (Idev − n%
T
Dn%D).

(53)
Note that a similar expression for ∂∆ẽp/∂εI in the context of explicit non-local plas-
ticity using the Von-Mises failure criterion was derived in [46].
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3.2. Stress update procedure
The stress update involves elastic predictor and plastic corrector stages, which are

modified to account for non-local plasticity. We initially assume that the initial state
of the system at time step tn is known and the initial variables at the load step n
are

{
σ

′}
=
{
σ

′n}, p = pn, ẽp = ẽp,n. The current iteration for a given time step is
denoted by i = 1, 2, . . ..

3.2.1. Predictor step
The summary of the algorithm for the predictor step is as follows:

Step 1. At the current iteration i , ∆ui is given

Step 2. Since the stress state at i is unknown, the loading step is assumed to be
elastic: {

σ
′e
i

}
=
{
σ

′n
}

+
{

∆σ
′
i

}
=
{
σ

′n
}

+C∆εei (54)

where
{
σ

′e
}
is the elastic effective stress.

Step 3. The DP yield criterion is calculated using the elastic effective stress obtained
in step 2:

f e =
∣∣∣
{
s

′e
i

}∣∣∣+

√
2

3
α|
{
σ

′e
m,i

}
| −
√

2

3
β (σy0 + hẽp,n) . (55)

Step 4. Check whether the elastic effective stress lies inside (f e < 0) or on/outside
(f e ≥ 0) of the initial yield surface, i.e., If f e < 0, the state of the stress is
elastic: {

σ
′n+1

}
=
{
σ

′e
i

}
, ẽp,n+1 = ẽp,n. (56)

If f e > 0, the load step at iteration i is plastic and the corrector step must be
employed.

Corrector step
When the elastic effective stress from the predictor step lies outside of the yield

surface, the elastic increment includes plastic strain and the elastic stress must be
corrected as {

σ
′

i

}
=
{
σ

′e
i

}
−C∆εpi , (57)

where the plastic strain increment ∆εp is given by the associated flow rule (4) as

∆εpi = ∆λ(2Gn%D,i + 3Kn%S,i). (58)

The values of the tensors n%D and n%S are known from the predictor procedure.
The only unknown expression in (58) is ∆λ which can be obtained from (44). The
corrector solution procedure is as follows:

Step 1. Using the elastic stress obtained in the predictor step, calculate ∆ẽpi from
(47).
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Step 2. Interpolate ∆ẽpi at the Gauss points and calculate ∆γi from (44).

Step 3. Calculate the plastic strain tensor from (58).

Step 4. Update stress from (57).

Step 5. Update the non-local plastic strain ẽpi = ẽp,n + ∆ẽpi .

Step 6. Calculate the consistent algorithmic stiffness tangent (53).

Step 7. Calculate the residuals (36) and check for convergence.

Step 8. If not converged, calculate the stiffness tangent matrix and solve for the new
increments using (36).

Step 9. Check the convergence and repeat the iteration i = i + 1 until residual in
(36) falls below a specific tolerance.

4. Examples

4.1. Dry rock-compression shear band (bench mark)
The study of shear band formation in a standard biaxial compression test using

the Von Mises failure criterion is a common exercise in the non-local theory of plas-
ticity. We use this example to validate the elastic-plastic constitutive behavior of the
proposed methodology for dry materials.

Consider a rectangular 60mm×120mm block subjected to a uniformly compressive
displacement on its upper edge, as illustrated in Fig. 4. The block is deformed under
plane strain conditions and porous medium effects are neglected. We assume that
the lower edge of the block can move freely in the horizontal direction and is fixed
in vertical displacement. In order to prevent rigid body motion, the mid-point of the
lower edge is prevented from moving horizontally. In this case, the effective stress
prior to the onset of plasticity is uniform throughout the specimen. To facilitate the
formation of the shear band, a 100mm2 defect is introduced in the left corner of the
domain by reducing its yield stress by 10%. The material properties used in the study
are listed in Table 1 [28].

Shear modulus G = 4.0GPa
Isotropic softening coefficient h = −0.4GPa
Poisson’s ratio ν = 0.49
Initial yield stress σy0 = 100MPa
Shear band length scale lc = 3mm

Table 1: Material properties [28].

The load, in the form of a uniform vertical displacement, d, is applied in a lin-
early increasing fashion and the total reaction along the top edge of the plate, P ,
is computed. The resulting load-deflection curves using non-local and local plastic-
ity formulations are illustrated in Fig. 5 for three meshes of 12 × 24, 24 × 48, and
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Figure 4: Block schematic for compression shear test.

48 × 96 mixed rectangular elements. The solution of Pamin [28] obtained using the
explicit non-local plasticity model with C1 continuity is also shown for comparison.
As illustrated in Fig. 5, the load initially increases with displacement until strain
localization takes place, leading to the reduction in the stress-bearing capacity of the
material (i.e.: softening). As the result, the material surrounding the localization
band will experience an unloading process.

Load-displacement curves obtained using local plasticity suffer from pathological
mesh dependency, which has been extensively discussed in the literature [26, 27, 28].
This problem is circumvented by introducing higher order terms with a characteristic
length scale controlling the thickness of the shear band (localization process) in the
governing equations. As shown in Fig. 5, the load-displacement curves for the 24×48,
and 48 × 96 element meshes using the non-local plasticity formulation are nearly
identical, showing that the localization process is mesh-independent. The convergence
of the non-local equivalent plastic strain for a given displacement is also shown in Fig.
6.

It is noted that the non-local model introduced in this paper is C0 implicit and
is different from the C1 continuity explicit model of Pamin [28]. The evolution equa-
tions for the non-local plastic strain in the C0 continuity (10) and C1 continuity (8)
formulations are different (additional fourth-order term in (9) is neglected), leading
to different manifestations of the internal length scale in the results. However, the
load-deflection curve for our C0 continuity implicit formulation with a length scale of
8 mm agrees very well those of the C1 continuity explicit formulation with a length
scale of 3 mm. This example explains that comparable results can be obtained with
both formulations, provided that a suitable length scale is used with each. The inter-
nal length scale is often associated with micro-crack initiation and void coalescence
in the localized zone and has been previously characterized [26]; however, in practice
one may use the internal length scale to calibrate the energy dissipation and softening
behavior of the model from experimental or field data.

The effect of the length scales of 2mm, 3mm, and 4mm on the load-displacement
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Figure 5: Normalized reaction force P/(Wσy0) versus normalized displacement d/H for various mesh
sizes. Length scale is lc = 3mm.

Figure 6: Non-local plastic strain contours for 12 × 24, 24 × 48, and 48 × 96 grids at the given
displacement d/H = 0.0083.
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Figure 4: Normalized reaction force (P/(Wσy0)) versus normalized displacement (d/H) for different
length scales.

DP failure

Figure 5: Normalized reaction force (P/(Wσy0)) versus normalized displacement (d/H) for DP yield
criterion.

13

Figure 7: Normalized norm reaction force (P/(Wσy0)) versus normalized displacement (d/H) for
different length scales.

curve is illustrated in Fig. 7. The width of the shear band evidently plays a major role
on the unloading behavior of the material during the plastic softening stage. Materials
with smaller length scale will unload more rapidly, dissipate less energy, and more
readily tend toward snap-back behavior and instability. This behavior is similar to
that observed in double-edge-notched beams in which materials with smaller fracture
toughness experience greater snap-back [47].

The performance of the proposed C0 methodology for non-local plasticity is also
shown by plotting the rate of convergence of the norm of the residual with respect
to the number of Newton iterations, illustrated for load step d/H = 0.0075 in Fig.
8 for the given displacement steps ∆u = 0.002mm (blue) and ∆u = 0.05mm (red).
For small displacement increments on the boundary, the residual converges to zero
at a nearly quadratic rate of 1.8. For large displacement increments the convergence
rate is much lower, e.g., when displacement load step is ∆u = 0.05mm the rate of
convergence of the residual is 0.36.

4.2. Fluid-driven stimulated volume evolution
HF design success depends on a good understanding of the fluid and solid skeleton

interactions in relation to the initial in-situ stress field in the subsurface rocks. The
large-scale stress condition (far-field stress) is a key parameter controlling the HF
propagation path. In this section, we demonstrate the capability of our model to
capture SV growth in a naturally fractured rock mass under various far-field in-situ
stress conditions. Quantifying the evolution of the SV and the subsequent change in
the flow and fluid pressure are the primary interests in this study.
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Figure 8: Residual versus the number of iteration at the given displacement d/H = 0.0075 for the
given displacement steps ∆u = 0.002mm (blue) and ∆u = 0.05mm (red).

Example 1
We consider a synthetic example of injection into a fractured and permeable for-

mation characterized by an internal length scale of 0.45m, initial porosity φ = 6%,
initial permeability k0 = 1md, minimum in-situ stress σmin = −40MPa acting in the
horizontal direction, and maximum in-situ stress σmax = −80MPa acting in the ver-
tical direction. The liquid is injected at a flow rate of q = 8× 10−4m2/s at the center
of a 400m2 square domain (point a), as shown in Fig. 9. Note that at this point we
only use arbitrary values of a and b to show the strength of the model. However,
these constants in fact can be somewhat constrained by post shut-in flow analysis of
a SV. The full discussion of the range of the constant parameters will be discussed in
the future. Material parameters used in the simulation are given in Table 2 (chosen
based on [48]). The initial virgin permeability of k0 = 1 md is reflective of that of the
carbonate rocks.

Figure 10 shows the evolution of the non-local plastic strain and the fluid pressure
in time for selected points a, b, and c in the square domain, as marked in Fig. 9.
At first, the injection of the fluid causes a rapid increase in the pore pressure at the
injection point. The latter, together with the reduction in the effective stress, leads to
immediate plastic yielding at the injection point. As more fluid is injected, the plastic
yielding then spreads out as the SV grows in a direction generally perpendicular
to σmin, as would be expected. Normally, the fluid pressure at the injection point
monotonically increases to a peak referred to as the “breakdown” pressure, then it
falls, indicating that a tensile fracture is created. The breakdown pressure is a local
effect arising from the presence of the borehole. It can be significantly higher than
the large-scale fracture closure pressure, which is controlled by the far-field minimum
stress. Also, it varies depending on the geomechanical condition of the reservoir, such
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Figure 9: Schematics of the injection problem. A 400m2 square domain is selected for the injection
project. Fluid is injected at at the center of the square domain assuming that its boundary is
fixed and drained (p = 0). The minimum and maximum confining stresses are σmin = −40MPa,
σmax = −80MPa, respectively. The line A− A′

and points a, b, c will be used later to demonstrate
the accuracy of the numerical results.

Injection rate q = 0.0008m2/s
Fluid viscosity µ = 1cP
Intermediate in-situ stress σV = −64MPa
Shear modulus G = 12.0GPa
Undrained Poisson’s ratio νu = 0.30
Drained Poisson’s ratio ν = 0.15
Initial yield stress σy0 = 30MPa
Characteristic length scale lc = 0.45m
Biot’s modulus M = 29.3GPa
Biot’s coefficient α = 0.64GPa
Isotropic softening coefficient h = −0.4GPa
DP failure constants αf = 0.35, β = 1
Initial permeability k0 = 1md
Constants in relation (16) a = 500000, b = 1

Table 2: Material properties used for the hydraulic fracturing simulations.
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Figure 10: The evolution of the non-local plastic strain and fluid pressure for the given points a, b,
and c as marked in Fig. 9. Permeability is related directly to the non-local plastic strain via (16)
and as such contour plots of permeability follow the same trend as those of the non-local plastic
strain.

as the state of the stress around the injection point, the mechanism of microcracking
and failure in the localized plastic zone, and properties of the fluid and the formation.
In Fig. 10 a breakdown pressure of about 110MPa can be observed in the injection
pressure curve (point a).

Figure 11 shows the contour map of the non-local plastic strain and corresponding
pore pressure evolution for three given times, t = 20s, t = 50s, and t = 100s. As
expected, given the homogeneity of this synthetic example, the SV volume grows
symmetrically from the injection point in the direction of the maximum confining
stress, defined by a zone of increased permeability (as permeability is a function of
the effective plastic strain). It is an established fact that a HF follows the path of the
least resistance, and in the proposed methodology, the SV evolution is not a priori
known; it is recovered as the part of the solution, depending on the initial in-situ
stress field, and is mesh-independent.

The amount of the SV extension is inversely related to the characteristic length
scale of the localized plastic zone. The latter, combined with the far-field stress
and other design parameters, determines the amount of work required to propagate
the SV. In this study, it is assumed that the characteristic length scale is constant
(i.e., that the target formations has homogeneously distributed natural fractures.)
In this case, it is reasonable to have a characteristic length scale of the range 0.1m
to 1m, as it is expected to be related to the spacing of natural fractures. A similar
range of characteristic length scale is previously reported, e.g., in [39]. However, a
more realistic representation may require multiple (and possibly spatially variable)
length scales introduced as a tensorial quantity to accurately model heterogeneously
distributed natural fractures. A characterization of the non-local length scale with
site-specific field data, an important factor, is beyond the scope of this paper.

The distribution of the pressure around the fracture also indicates that the fluid
diffusion front has propagated far beyond the stimulated region (i.e,. 2-D diffusion).
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Figure 11: The evolution of the non-local plastic strain for the time steps, t = 20 s, t = 50 s, and
t = 100 s. Permeability is related directly to the non-local plastic strain via (16) and as such contour
plots of permeability follow the same trend as those of the non-local plastic strain.

This contradicts the conventional HF modeling assumption that the fluid diffusion is
limited to a small region around the fracture (1-D diffusion). The latter assumption
may only be true for very impermeable reservoirs (shales without open natural frac-
tures), or for the case of high viscosity fluid (gel-like) where filtration processes limit
leak-off to the vicinity of the fracture. For the case of low-viscosity injection using
water or slickwater (or propane, N2 or CO2...), the fluid diffusion can vary over wider
ranges of scales from 1-D to 2-D, invalidating the 1-D assumption [5, 49].

Validity of the numerical results
In this section, we investigate the accuracy of the numerical results and the influ-

ence of the mesh size on the evolution of the non-local plastic strain and pressure for
the proposed methodology. We discretize the domain using three sets of unstructured
meshes consisting of 2008 (coarse), 4184 (medium-coarse), and 5665 (fine) elements,
shown in Fig. 13. The refinement of mesh size is mainly carried out in the middle
region (2m× 20m ) where HF propagation is expected to take place. The minimum
element length of the three meshes was h = 0.06m, h = 0.03m, and h = 0.01m.

Figure 14 compares the evolution of the non-local plastic strain and pressure
along the cross section line A-A’ (Fig. 9) at time t = 50s and t = 100s for the
three meshes. The results for the two finest meshes shows a good agreement for
the non-local plastic strain evolution. However, the coarser mesh slightly tends to
underpredict and overpredict the non-local plastic strain at t = 50s and t = 100s,
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Figure 12: The contours of the fluid pressure for the time steps, t = 20s, t = 50s, and t = 100s.

respectively. The pressure evolution is almost insensitive to the mesh refinement.
Since the virgin formation is relatively permeable (1 md), the diffusion front will
extend beyond the stimulated volume (plasticity zone). In the stimulated volume,
the permeability is higher than that of the surrounding rock mass; as a result, the
pressure gradient will be smaller than it would be otherwise.

The convergence of the numerical results in time for non-local plastic strain and
injected pressure is also shown for a point 4cm above point a in the Fig. 9. Since the
fluid injection takes place at the point in the center of the domain, the fluid pressure
becomes singular at the injection point and the numerical results for the pressure
at this point converges more slowly. For this reason, we selected a point which is
slightly above the injection point. As shown in Fig. 15, the non-local plastic strain
results for the two finest meshes are nearly indistinguishable, while the coarse mesh
overpredicts the non-local plastic strain. The fluid pressure after early injection times
also indicates convergence with mesh refinement.

Example 2-effects of the interface barriers
Although a full discussion of sedimentary layering and geological history effects

leading to inhomogeneities in stresses and material properties is beyond our scope,
an example is developed here to show the strengths of the proposed method. In this
section, we consider an HF example in a formation bounded above and below by
formations with greater in-situ confining stresses. In conventional HF simulations,
formation properties and the in-situ stress field are commonly assumed to remain
unchanged through the entire reservoir. Realistically, the rock mass may contain dis-
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Figure 13: Discretization scheme for the injection problem. Three sets of meshing, coarse (left),
medium-coarse (middle), and fine (right) are used for numerical study of the accuracy of the numer-
ical results.
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Figure 14: Comparison of the non-local plastic strain and fluid pressure along the line A − A
′

(marked on the Fig. 9) at the given time t = 50s and t = 100s. Permeability is related directly to
the non-local plastic strain via (16) and as such contour plots of permeability follow the same trend
as those of the non-local plastic strain.
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Figure 15: The evolution of the non-local plastic strain and the injected bottom-hole pressure with
time for the point a marked on Fig. 9. Permeability is related directly to the non-local plastic strain
via (16) and as such contour plots of permeability follow the same trend as those of the non-local
plastic strain.

continuities, such as faults, joints, and bedding planes, primarily caused by important
geological processes such as tectonics and diagenesis. Formation differences and the
frequency and condition of discontinuities often give rise to stress inhomogeneities
and significant differences in the bulk (upscaled) mechanical properties of rocks, such
as Young’s modulus and Poisson’s ratio. For example, the stiffer layers characterized
by higher Young’s modulus and Poisson’s ratio tend to accommodate higher tectonic
stress, whereas softer rocks are often tectonically relaxed. As the result, HF growth
can be significantly restricted or favored by the heterogeneous stress conditions linked
to the material properties and the geological history.

The domain described in example 1 is modified by adding two interfaces, each
located at a distance of one meter from the injection point, as illustrated in Fig. 16.
The interfaces separate the pay-zone from the rest of the domain and are characterized
by higher horizontal stresses. The mechanical properties of all three layers are the
same and given in Table 2. The other simulation parameters remain unchanged for
the sake of simplicity.

Figure 17 shows the evolution of the stimulated zone SV at times t = 20s, t = 50s,
and t = 100s. Initially, the SV grows vertically, in the direction perpendicular to the
minimum horizontal stress. Following breakdown, the injection pressure continuously
decreases as the SV grows vertically, as shown in Fig. 18. The leading edges of the
SV reaches the interfaces about t = 20s. Whether or not the SV continues to growth
vertically or spreads horizontally in the pay-zone depends in a non-trivial way upon
both the magnitude of the horizontal in-situ stress in the bounding strata and the
vertical in-situ stress in the stimulated formation. In either case, further growth of
the SV requires that the net pressure increases, as Fig. 18 shows. In this problem, the
elevated horizontal in-situ stresses in the bounding strata are large enough to prevent
the SV from continuing to grow vertically. The stimulated zone grows horizontally
as the net pressure increases and remains completely contained in the pay-zone. In
reality, the combined effect of the formation lithology, the nature of the interface
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Figure 16: Schematics of the injection problem in the example 2. The minimum and maximum con-
fining stresses for the pay zone the barrier layers are σmin = −40MPa, σmax = −80MPa, respectively.

barrier (e.g., horizontal bedding planes), the geological and tectonic history, and the
injection parameters all interact to determine the propagation and containment of
the SV.

Example 3-effects of stress angle
In this example, the effect of different initial in-situ stress regimes on SV evolution

and direction is investigated. We consider four sets of far-field stresses, as illustrated
in Fig. 19. The first two sets have non-zero shear components in the vertical and
horizontal directions, but the same values of principal stresses as in the previous
example. Under some sedimentological and tectonic conditions, for instance, above
pinnacle reefs, on the shoulders of salt domes or near a thick channel sand of limited
width, the principal stresses may rotate, leading to the possibility of inclined HF
propagation [50]. This is shown in Fig. 19a and b where the SV has re-orientated to
align with the orientation of the new maximum principal stress which is now inclined
at an angle β = ∓22.5 with respect to the vertical axis. The HF orientation in an
in-situ stress field with no shear components in the vertical and horizontal directions
is also correctly captured (Fig. 19c and d).. This example clearly shows the capability
of the proposed methodology to determine the expected path, independently of the
mesh topology.

5. Conclusions

Microseismic monitoring of hydraulic fracturing in naturally fractured rocks con-
firms the existence of a stimulated region of Mode I and Mode II or III fracturing
deformations, evidenced as a roughly ellipsoidal cloud of stick-slip (Mode II, III)
events. To simulate this behavior, a novel mathematical approach that can emu-
late the evolution of the stimulated volume during hydraulic fracturing of naturally

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

! ! !

!

Figure 17: The evolution of the non-local plastic strain for the time steps, t = 20s, t = 50s, and
t = 100s. Permeability is related directly to the non-local plastic strain via (16) and as such contour
plots of permeability follow the same trend as those of the non-local plastic strain.
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Figure 18: The evolution of the injected bottom hole pressure with time for the example 2.
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Figure 19: The effects of the stress angle on the stimulated volume orientation. Permeability is
related directly to the non-local plastic strain via (16) and as such contour plots of permeability
follow the same trend as those of the non-local plastic strain.

fractured rocks is developed. This is achieved by defining an equivalent non-local
poro-elastic-plastic continuum zone for the stimulated region, described by an inter-
nal characteristic length scale. The elastic-plastic constitutive model is combined
with Biot’s poroelastic theory to account for the interaction of the fluid and solid
deformations. We propose a new implicit C0 continuous Finite Element Analysis,
which in the stress and plastic strain updates are realized using a modified corrector-
predictor return algorithm. To improve the performance of the Newton-Raphson
solver, a consistent algorithmic tangent operator for the non-local plastic flow rule is
also developed. For verification, a mesh-independent study of the proposed non-local
plasticity model for the standard non-porous biaxial compression test was performed.
The effectiveness of the coupled poro-elastic-plastic model was then tested for several
hydraulic fracturing example problems. The stimulated zone and the fluid pressure
in relation to the local in-situ stress field were accurately quantified. We also showed
that the proposed methodology is capable of determining the path of a priori un-
known hydraulic fracturing enhanced zone propagation. This model provides a new
tool to better quantify the stimulated zone, which can lead to better fracture design
and subsequent well performance.
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