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Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. II. Theoretical
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This is the second part of a two-part study on a partially miscible liquid-liquid flow (carbon dioxide and
deionized water) that is highly pressurized and confined in a microfluidic T-junction. In the first part of this
study, we reported experimental observations of the development of flow regimes under various flow conditions
and the quantitative characteristics of the drop flow including the drop length, after-generation drop speed, and
periodic spacing development between an emerging drop and the newly produced one. Here in part II we provide
theoretical justifications to our quantitative studies on the drop flow by considering (1) CO2 hydration at the
interface with water, (2) the diffusion-controlled dissolution of CO2 molecules in water, and (3) the diffusion
distance of the dissolved CO2 molecules. Our analyses show that (1) the CO2 hydration at the interface is
overall negligible, (2) a saturation scenario of the dissolved CO2 molecules in the vicinity of the interface will
not be reached within the contact time between the two fluids, and (3) molecular diffusion does play a role
in transferring the dissolved molecules, but the diffusion distance is very limited compared with the channel
geometry. In addition, mathematical models for the drop length and the drop spacing are developed based on the
observations in part I, and their predictions are compared to our experimental results.
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I. INTRODUCTION

In the first paper, we reported the experimental observations
on partially miscible liquid-liquid flows that was highly
pressurized and confined in a microfluidic T-junction, where
liquid carbon dioxide and water were used as the dispersed and
the continuous liquids, respectively. Under the flow conditions
(different flow rate ratios and capillary numbers) probed,
drop flow and coflow were identified as the two main flow
patterns, where the “drop flow” was a designation covering
the squeezing, transitional, and dripping regime. Moreover, the
squeezing stage was found in our study as sort of “elongating-
squeezing” because of the significant “dragging” effect due
to the viscous forces exerted on the interface even during
the commonly acknowledged, interfacial tension-dominated
squeezing regime. The “flowrate-controlled” mechanism [1,2]
was suggested to interpret the elongating-squeezing regime
of the drop breakup. However, our scaling formulations from
the experimental results indicated a magnified effect of the
flow rate contrast upon the final sizes of the produced liquid
CO2 drops (i.e., the factor α in the formulation reported by
Garstecki et al. is larger than as expected [1]). There exists a
transitional capillary number Cac ∼ 1 × 10−2, as confirmed
quantitatively, when the drop formation transits from the
elongating-squeezing to the dripping regime. Focusing on the
drop flows, we measured the speed values of the drops fol-
lowing generations as they started to flow in the main channel
and characterized the periodical development of drop spacing
between the emerging drop and the newly produced one.

In this second paper we first provide theoretical justifi-
cations to our quantitative observations on the drop flow
from the relevant aspects of the mass transfer of the CO2

molecules that are mainly present in the vicinity of the interface
between the bulk CO2 and the water stream. The relevant
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mass transfer mechanisms being investigated include (1)
CO2 hydration at the interface with water, (2) the diffusion-
controlled dissolution of CO2 molecules in water, and (3) the
diffusion distance of the dissolved CO2 molecules.

Focusing on the drop length and the drop spacing, two
mathematical models are provided in this paper based on the
experimental results reported in part I. The model for the drop
length accounts for the effect of the “elongating time” added
to the “necking time” on the final sizes of the generated drops,
which elucidates the factor A (much larger than 1) for our cases
in the formulation

L/W ∼ 1 + A
(
QH2O/QCO2

)B
, (1)

where L and W are the drop length (μm) and the channel width
(150 μm), respectively; QH2O and QLCO2 are the volumetric
flow rates (μl/min) of water and liquid CO2; and A and B
are fitting factors from the experiments. Based on the drop
speed differences in the stages of one period of the drop
generation, a linear mathematical model is built to predict
the drop spacing developments between an emerging drop and
the newly produced one within the stagnating and filling stage
and the elongating and squeezing stage of one drop generation
period. (The truncating stage is very short comparatively and
therefore is not considered.)

II. THEORETICAL JUSTIFICATIONS

When it comes to the two-phase microflows concerning
fully miscible and/or partially miscible fluids, we meet mostly
a diffusive-interface problem especially when we eye the
interfacial phenomenon, such as the hydrodynamics occurring
near contact lines or breakup and coalescence related to fluid
jets as well as droplets [3]. The instance of using liquid CO2

and water as the dispersed and the continuous fluid in the
micro-T-junction is very likely one of those problems. This
statement is further verified by others’ experimental observa-
tions [4,5] where the interface separating the bulk CO2 from
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the water stream in the microchannels is featured by a dark ring
enclosing the CO2 drop under bright-field visualizations. We
believe that there exists a dissolution-diffusional film, instead
of the “sharp interface,” in which the concentration gradient of
dissolved CO2 molecules leads to a gradient of the density that
further results in different refraction coefficients. Therefore,
to justify our previous experimental results of the drop flows,
it is very necessary to take the mass transport of the CO2

molecules (into water from the 100% interface) into account
and to estimate how much CO2 dissolves and how far the
dissolved CO2 molecules can diffuse into the water stream.
Prior to a discussion of the diffusion-controlled dissolution,
the hydration of the dissolved CO2 molecules is analyzed.

A. Interfacial dissolution of CO2 in water within the T-junction

1. Hydration of the dissolved CO2 molecules

The hydration of CO2 occurs when it dissolves in water
(pH ≈ 5.93) and produces carbonic acid, as formulated by the
reaction at chemical equilibrium

CO2(aq) + H2O � H2CO3(aq). (2)

The equilibrium constant KCO2 , as defined by the ratio of
the reaction rate constant (kf ) of the forward reaction over
that (kr ) of the reverse reaction under equilibrium {kf /kr ,
which also equals the concentration ratio [H2CO3]/([CO2] ×
[H2O]) at equilibrium, where the square bracket denotes the
concentrations in the unit of mol/liter; however, this reaction
is generally a pseudo-first-order reaction because of a constant
[H2O] ([H2O] can thus be omitted out of the denominator),
thus kf /kr = [H2CO3]/[CO2]} indicates how much CO2 can
be hydrated into carbonic acid. At 25 ◦C, KCO2 ≈ 1.7 × 10−3

(unit:1) for the above reaction indicates the vast majority of
CO2 exists as molecular CO2 rather than H2CO3 in water
[6]. The other fact is that the forward process is much slower
than the reverse at room temperature (kf ≈ 0.035 s−1 versus
kr ≈ 20.6 s−1 for the first-order reaction with respect to CO2

and H2CO3 [7,8]). Given by the time scale of the CO2 drop
generations at the T-junction (see Table II in paper I but without
considering case 13 and 21), the hydration of dissolved CO2

molecules has not reached equilibrium.
When the concentration of H2CO3 is relatively low in the

aqueous solution, an overall reaction including the dissociation
of H2CO3 for producing bicarbonate HCO3

− is usually
introduced to replace Eq. (2):

CO2 + H2O � HCO3
− + H+. (3)

Note that the CO2 in the above reaction includes both
the aqueous CO2 and the hydrated species (H2CO3). The
equilibrium constant (K ′

CO2
) of this reaction can be expressed

as

K ′
CO2

= k′
f /k′

r = [HCO3
−][H+]/([CO2][H2O]). (4)

The value of K ′
CO2

at 25 °C and a very low ionic strength
(∼0) is 4.45 × 10−7 [9]; or, pKa(pKa = −log10Ka) is 6.35
as an apparent dissociation constant of nominal H2CO3 which
includes both CO2 (aq) and the rare H2CO3 [6]. In fact, the
pKa of carbonic acid (purely H2CO3) is ∼3.6 at 25 °C [6].
Furthermore, bicarbonate may dissociate into hydrogen ion

(H+) and carbonate ions (CO3
−) by the reaction

HCO3
− � CO3

2− + H+, (5)

which is characterized by a second equilibrium constant
KHCO3

− defined as

KHCO3
− = [

CO3
2−]

[H+]/[HCO3
−]. (6)

Comparatively, KHCO3
− has a value of 4.84 ×

10−11(mol/liter), and thus the dissociation constant pKa

of HCO3
− is 10.3 [9]. Due to its much lower dissociation

constant (pKa ≈ 14 at 25 °C) [10], water’s self-ionization
is beyond the scope of our discussion. In a nutshell, the
hydration of dissolved CO2 at the interface shows an overall
negligible effect to the total dissolved CO2 molecules, and
they are still vastly present as CO2 molecules in the aqueous
solution, given the time scale in the micro-T-junction.

2. Theoretical estimate of diffusion-controlled dissolution

CO2 molecules, after their dissolution in water [i.e.,
dissolved CO2(aq) molecules], can be transported from the
bulk CO2 to water, which is mainly attributed to the diffusion of
the CO2(aq) molecules under a certain concentration gradient.
In general, several mechanisms should be considered when
discussing mass transfer, which mainly include hydrodynamic
dispersion, convection, and diffusion. Considering a mixing
zone with a concentration gradient of the sample of interest
in a pressure-driven microchannel flow, velocity profile is
parabolic type which causes distortion to the mixing zone
and must be considered in evaluating the mass transfer in
this region. However, for the mixing zone shown in Figure 1,
which is a small region of the entire interface between the
dispersed and continuous phase in the x-y plane, hydrodynamic
dispersion is negligible. The curved interface is meant to
illustrate the impact of the interfacial tension between the
CO2 drop and the thin water film that exists between the CO2

drop and channel walls in the z direction (top and bottom
channel walls). First, the velocity component in the y direction
(channel height direction) is small, which is mainly induced by
the vortices inside the droplets. Therefore, the hydrodynamic
distortion to the mixing zone caused by the velocity component
in the y direction is negligible. Second, the velocity component
in the x direction is also small. During the filling and stagnation
stage, there exists a velocity component in the x direction
which is much smaller than that in the z direction. When
the drop formation evolves from the filling to the elongating
and squeezing stage, which is the longest stage among the
three stages, the velocity component in the x direction is
approaching zero because the interface is almost parallel to
the vertical channel walls. Therefore, its overall impact on
hydrodynamic dispersion is negligible. Third, the possible
distortion to the mixing zone could be caused by the shear
motion over the interface, which is induced by the difference
of the velocity component in the z direction between the
continuous and dispersed phases. However, this hydrodynamic
distortion is also negligible if considering the entire drop
formation period. This study operates in the squeezing regime,
and in the longest stage, the elongating and squeezing stage,
the continuous phase upstream is almost completely blocked
by the CO2 drop, which almost touches the channel walls.
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FIG. 1. (a) Indications of the Cartesian coordinates (x: perpen-
dicular to the liquid CO2 stream; y: tangential to the interface and
in the channel depth direction; z: tangential to the interface and in
the flow direction; origin: one point-of-interest on interface at a half
channel depth), scale bar: 150 μm. (b) Schematic of the transport
of the dissolved CO2 molecules from the interface (solid line) into
water driven by dissolution and diffusion (in the x-y plane). The
region outlined by a solid line and a dash line represents a diffusive
film of the CO2 molecules. Note that this diffusive film is enlarged
for easy viewing and is actually very thin compared to the channel
depth D (XD/D ∼ 10−2, where XD is the thickness of the diffusion
film.). The schematic shows a cross-sectional view of the two phases
separated by two interfaces, one (the solid line) is between CO2

and the CO2 aqueous solution, and the other (the dash line) is a
hypothetical one between pure water and the CO2 aqueous solution
where CO2 concentration is nonzero but approaching zero.

This results in a negligible shear motion over the interface
and thus negligible hydrodynamic distortion. During the first
short filling stage, the shear motion is appreciable. However,
its effect in distorting the mixing zone is reduced to a certain
extent by the interfacial tension that tends to hold the interface
in shape. Therefore, overall the hydrodynamic dispersion
caused by the shear motion can be neglected.

The CO2 transport over the mixing zone region due to
convection is mainly influenced by the velocity component
in the x direction because the velocity in the z direction is
tangential to the interface. As discussed above, the velocity
component in the x direction is very small during the filling
stage and almost approaches to zero during the long elongating
and squeezing stage. Therefore the mass transfer of CO2 over
the mixing zone is mainly dominant by diffusion.

The dissolution and diffusion of the CO2 molecules is
schematically described in Fig. 1. Due to the unsteady interface
in terms of its location and shape, we assume the following:

(1) Water is an isotropic and homogeneous solvent
(2) The diffusion coefficient of CO2 molecules into water,

DCD , is a constant
(3) The effect of the finite water film (thickness ≈2%

× hydraulic diameter [4]), which exists between CO2 and
the channel walls due to wettability, on CO2 dissolution and
diffusion is negligible, and thus we only consider the transport
process across the diffusive film (shown in Fig. 1)

(4) Mass transport is one-dimensional in the direction
perpendicular to the interface (x direction in the Fig. 1), in
other words, we focus on the x-y plane

(5) Quasi-steady state is achieved, which is rational espe-
cially in the “elongating and squeezing” stage, the generally
longest stage compared to the other two stages, and therefore
the location of the interface is constant relative to the channel
wall; and the hydrodynamic dispersion on the x axis may
approach zero

(6) Other than the interface (specifically, the solid line in
Fig. 1) as a boundary, the water-side channel wall is another
one in the x direction.

For this one-dimensional model under a quasi-steady state
(on the negative “x” direction), the dissolution of CO2

molecules at the interface (solid line in Fig. 1) and the diffusion
of the dissolved CO2(aq) molecules in water can be described
by the following two equations:

dC

dt

∣∣∣∣
x∼0

= KCDA(Cs − C), (7)

Jx = −DCD

dC

dx
, (8)

where C is the concentration of the dissolved CO2 in water at
time t(0 < t < t0), Cs is the solubility of CO2 in water at a
given pressure and temperature, KCD is a constant with a unit
of 1/(m2 · s), and A is the effective dissolution area (i.e., the
area of the concave interface). Equation (8) is Fick’s first law of
diffusion, where Jx[mol/(m2 × s)] is the diffusion molar flux
of the dissolved CO2 molecules per square meter per second
and it is related to the concentration gradient. Note that we
omit the convective molar flux in this binary mixture caused
by the molar average velocity in view of the very small molar
fraction [C/(C + CH2O) � 2 × 10−3] of CO2 in the mixture
of CO2 and water.

Integration of Eq. (7) with Eq. (8) at x ∼ 0 with time
approaching infinite (XD ∼ W/2 as t ∼ �) leads to

dC

dt

∣∣∣∣
x∼0

= KCDA
W

2

J0

DCD

. (9)

If we further introduce V as the final dissolution volume,
Eq. (9) can be revised as

1

V

d(V C)

dt

∣∣∣∣
x∼0

= KCDA
W

2

J0

DCD

, (10)

in which d(V C)/dt at x ∼ 0 offsets Jo · A(mol/s) and yields
the factor KCD:

KCD = DCD

V W/2
. (11)
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Thus Eq. (7) can be rewritten as

dC

dt

∣∣∣∣
x∼0

= DCDA

V W/2
(Cs − C). (12)

Equation (12) describes the dissolution of CO2 molecules
at the interface in terms of the concentration variations over a
sufficiently long period, which is dominated by diffusion. The
integration of this equation leads to

Cx∼0 = Cs

(
1 − e

− DCDA

V W/2 t
)
. (13)

Based on an approximation of V ∼ (A·W/2), Eq. (13) may
be simplified as

Cx∼0 = Cs

(
1 − e

− 4DCD

W2 t
)
. (14)

The diffusion coefficient of CO2 molecules into water,
DCD , at 298 K can be estimated by the Stokes-Einstein
relation [11],

DCD = kBT

6πηr
, (15)

where kB , η, and r are the Boltzmann constant (kB =
1.38 × 10−23 J/K), the dynamic viscosity (η = 890 μPa · s at
298 K) of water and the kinetic radius of the hypothetical
sphere-shaped CO2 molecules (r = 1.65 Å = 1.65 × 10−10 m
according to Ref. [12]), respectively. Therefore, DCD has an
approximate value of 1.5 × 10−9 m2/s, and Eq. (14) can be
specifically written for our case as

Cx∼0 = Cs

(
1 − e− 4

15 t
)
. (16)

Moreover, Cs at the applied pressure and temperature condition
in our study has a value of 1.267 mol/liter or so [13,14] where
the molar fraction of CO2 is approximately 0.0247 mole per 1
mole water. As a result, Eq. (16) can be further specified as

Cx∼0 (mol/liter) = 1.267
(
1 − e− 4

15 t
)
. (17)

In view of the time durations in Table II in part I, it is too
fast to render a saturation scenario of the dissolved CO2 at the
interface, though a large number (10−4NA,NA is the Avogadro
number.) of CO2 molecules at least conceptually exist in the
aqueous solution near the interface.

B. Molecular diffusion of dissolved CO2 molecules in water

As discussed in the previous section, the interface between
liquid CO2 and water within the T-junction during the second
stage and the third stage of one period is featured by a clear
upper section and a shading lower section. The clear section,
as observed, barely moves relative to the shading section due
to a compromise of the capillary pressure in squeezing the CO2

stream. This section of the interface is considered to be quasi-
steady and diffusion becomes the only transport mechanism
of the dissolved CO2 molecules. To evaluate how far the CO2

molecules can be transported into water, namely, the diffusion
distance, an appropriate solution of Fick’s second law may
be required [15]. The diffusion equation for one dimensional
model at a nonsteady state has been defined by Fick’s second
law [16], hence,

∂C

∂t
= DCD

∂2C

∂x2
. (18)

This partial differential equation can be solved based on
a constructed function y = x√

4DCDt
and rearranged as an

ordinary differential equation of C with respect to y. Here we
provide only the final expression of the solution [see Eq. (19)]
and the detailed deductions can be found in literature [17,18]:∫

dC =
∫

Be−y2
dy, (19)

where B is a constant resulted from the integration. To solve
the above integrals, the following boundary conditions need to
be used:

Cx = C0 at y = 0 (x = 0, t > 0) (20a)

= 0, at y = ∞ (x = ∞, t = 0). (20b)

Therefore, we have∫ 0

c0

dc = B

∫ ∞

0
e−y2

dy. (21)

Based on the property of error function erf(y) and comple-
mentary error function erfc(y), we have

erf(y) = 2√
π

∫ y

0
e−ξ 2

dξ, (22a)

erfc(y) = 1 − erf(y) = 2√
π

∫ ∞

y

e−ξ 2
dξ. (22b)

Let y = 0 in Eqs. (22a) and (22b), we obtain∫ ∞

0
e−y2

dy =
√

π

2
. (23)

Substituting Eq. (23) into Eq. (21) gives

B = −2c0√
π

. (24)

Substituting B back to Eq. (19) yields∫
dC = −2c0√

π

∫
e−y2

dy. (25)

Solving the integrals from y = 0 to y = x√
4DCDt

on the two
sides of Eq. (25), we have∫ cx

c0

dc = −2c0√
π

∫ y= x√
4DCDt

0
e−ξ 2

dξ (26a)

or

cx − c0 = (−c0)erf(y). (26b)

The error function erf(y) can be expanded using Taylor
series as

erf(y) = 2√
π

∞∑
n=0

(−1)n(y)2n+1

n!(2n + 1)

= 2√
π

(
y − y3

3
+ y5

10
− y7

42
+ · · ·

)
. (27)

The first term on the right side of Eq. (27) is applied to
approximate the error function, and hence,

erf(y) ∼ 2√
π

y = 2√
π

x√
4DCDt

= x√
πDCDt

. (28)
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Substituting Eq. (28) into Eq. (26b) yields

cx = c0

(
1 − x√

πDCDt

)
. (29)

Cx is the concentration of the dissolved CO2 molecules at
a diffusion distance x from the interface (in Fig. 1) and let
cx ≈ 0 be a critical concentration, then we have

|x| ≈
√

πDCDt, (30)

where t is the diffusion time. It is obvious that the absolute
value of the diffusion distance x mainly depends on the
diffusion time t since diffusion coefficient is a constant
[O(10−9)]. However, t is uneasy to be exactly quantified
because the hydrostatic state of one specific point on the clear
section lasts for only a limited time (t) out of one period t0.
Diffusion time t can be written as

t = at0, 0 < a < 1, (31)

where a is a fractional number. Here a varies among different
cases with different QH2O/QLCO2 ; even under the same case,
it also varies among various locations on the clear section.
Generally, a is larger at a location closer to the front corner of
the T-junction than the one at a further downstream location.
Consequently, Eq. (30) may be rewritten as

|x| ≈
√

πDCDat0, 0 < a < 1. (32)

Case 1 (see part I), for example, has a period of 7.8 ms, and
the maximum value of a is approximated as (7.8 − 1.6)/7.8 =
0.795. Thus the maximum diffusion distance on the clear
section under case 1 is about 5.4 μm based on Eq. (32). It
means that diffusion effect maximally covers a distance range
from 0 to 5.4 μm from the clear section of the interface under
case 1. This estimation results from the critical concentration
cx ≈ 0; if cx = c0/2 is applied, the corresponding distance
range will be 0 to 2.7μm. Regardless of the applied critical

concentration, the diffusion distance x compared with the
channel width W is a small value (�3.6%).

III. MATHEMATICAL MODELS OF DROP
LENGTH AND DROP SPACING

In this section, mathematical descriptions of the drop
length (normalized by the channel width) and the periodic
development of the drop spacing are given based on our
experimental results in part I. Some references to the concepts
and parameters in part I may be necessary.

A. Mathematical model of L/W incorporating
the “elongating” effect

The normalized drop lengths (by channel width W) are
correlated to the flow rate ratios QH2O/QLCO2 in part I of our
study. And the experimental results showed that the factor
A in Eq. (1) was much larger than 1, for the two groups of
experiments, i.e., a constant total flow rate of 100 μl/min and
a constant flow rate of the dispersed fluid (liquid CO2). On the
other hand, factor B in the scaling formulations were still in the
vicinity of (−1) which was consistent with the one reported
by Garstecki et al. [1].

It is believed that the determination of A in our study
requires accounting for not only the “squeezing” (i.e., trun-
cating) time but also the “elongating” time (see Fig. 2) when
the liquid CO2 keeps entering and thus increases the length
of the emerging drop, which is attributed to the elongating-
squeezing regime distinguished from the general “squeezing”
regime. The final length L of the drop is determined by how
much CO2 has entered into the emerging drop in terms of
length during the aforementioned three stages of one period,
namely, the stagnating and filling stage, the elongating and
squeezing stage, and the truncating stage (Fig. 2). Thus,

L ∼ (�Lsf + �Les + �Ltr), (33)

FIG. 2. Liquid CO2 drop length increases during the main three stages, namely, the stagnating and filling stage, the elongating and squeezing
stage, and the truncating stage of one period of drop generation. (a) Drop length increase �Lsf from the beginning to the end of the filling;
(b) the time estimate of the elongating and squeezing stage by observing the advancing distance (Y) of the water front from the filling end to
the end of elongating and squeezing, the right frame shows that (1) the conjuncture between the clear and the shading section is located in the
vicinity of the midpoint of the channel width and (2) the shading sectional line intersects the channel sideline with a characteristic angle θ ; (c)
the truncating time estimate by considering the pinching off of the rest W/2 thick CO2 stream.
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where �Lsf,�Les, and �Ltr are the drop length increases
during the filling, elongating and squeezing, and truncating of
the emerging drop, respectively. We adopt the notion that the
length increase �Lsf [Fig. 2(a)] as a result of CO2 filling (i.e.,
the length of the tip of the emerging drop) at the end of the
first stage is on the order of channel width W [1]. Therefore,
we have

�Lsf ∼ W. (34)

To determine �Les, the time duration tes of the elongating
and squeezing stage needs to be estimated, which can be
achieved by dividing the advancing distance of the continuous
fluid (water) by its mean flow speed QH2O/(DW ). It is
observed that at the end of the elongating and squeezing stage
[the right frame in Fig. 2(b)], for most of the investigated
drop flow cases, the conjuncture between the clear section and
inclined shading section at the interface is located nearby the
centerline of the main channel; in addition, the two sectional
interfacial lines approximate to straight lines and the shading
section line intersect the sideline of the channel forming a
characteristic angle θ . The advancing distance Y of water
during this second stage can be calculated by

Y = W/2

tanθ
, (35)

and hence

tes ∼ Y

QH2O/(DW )
. (36)

During the time, tes, liquid CO2 from the side channel keeps
entering the emerging drop at a mean speed of QLCO2 /(DW).
Based on these two parameters, the drop length increase, �Les,
can be estimated as

�Les∼ Y

QH2O/(DW )

QLCO2

DW
=Y (QH2O/QLCO2 )−1. (37)

Following the above strategy for �Les, the drop length
increase, �Ltr, during the truncating stage can be estimated as

�Ltr ∼ W/2

QH2O/(DW )

QLCO2

DW
= W

2
(QH2O/QLCO2 )−1.

(38)

Combining Eqs. (34), (37), and (38), the length L of the
generated liquid CO2 drop can be approximated as

L ∼ �Lsf + �Les + �Ltr

= W + Y (QH2O/QLCO2 )−1 + W

2
( QH2O/QLCO2 )−1,

(39)

and if the above equation is further divided by W and
rearranged, we obtain

L

W
∼ 1 +

(
Y

W
+ 1

2

) (
QH2O/QLCO2

)−1
. (40)

Substituting Eq. (35) into Eq. (40) yields

L

W
∼ 1 +

(
1

2tanθ
+ 1

2

) (
QH2O/QLCO2

)−1
. (41)

FIG. 3. Schematics of the development of spacing between an emerging drop and the adjacent formed one within one period of drop
generation: (a) spacing increases from S0 (at the beginning, solid lines) to S (at the end, dash lines) during the filling stage and (b) spacing
increases from S (at the beginning, solid lines) to S ′ (at the end, dot lines) during the elongating and squeezing and the truncating stage.
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By comparing Eq. (1) to Eq. (41), the factor A corresponds
to 1

2 ( 1
tanθ

+ 1). Given the value of θ [(12 ± 1)°] in our study,
A has a value of (2.85 ± 0.2) from the mathematical model,
which agrees with the fitted values from our experimental data
[see Figs. 7(a) and 7(b) in paper I].

B. Mathematical model of periodic drop spacing S between
emerging drop and adjacent formed one

We have reported the development of drop spacing within
one period of the drop generation in the preceding paper. As
shown by the representative drop flow cases (see Fig. 9 in
paper I), the spacing always starts from an initial value S0 and
increases linearly during the two main stages (Fig. 3), i.e., the
stagnating and filling stage and the elongating and squeezing
stage, though the increasing rates vary due to narrowed drop
speed difference over time.

During the filling stage prior to the emerging drop blocking
the main channel, the already-formed drop moves downstream
at a speed ∼ (VH2O,a + VCO2,a) as discussed in the previous
section; on the other hand, the emerging drop has a secondary
effect “flowing downstream” other than filling, and its effective
displacement is exactly the drop length increase �L (∼W)
during the filling time tsf , as a result, the effective mean speed
of the emerging drop within the filling stage can be estimated
as

Vsf,eff = �Lsf/tsf ∼ W/tsf . (42)

Based on the speed of the emerging drop and the already
formed one together with the initial spacing S0, the spacing in
the filling stage increases linearly as a function of time, which
can be formulated as

S(t) = S0 +
[(

VCO2,a + VH2O,a

) − W

tsf

]
(t − 0), 0 < t � tsf

(43)

or

S(t) = S0 +
(

QCO2 + QH2O

DW
− W

tsf

)
· t, 0 < t � tsf

(44)

Note that the estimate of spacing here may be applicable
only to the drop flow cases excluding the dripping flows (case
27 and 28 in Fig. 5 in paper I) because either the speed of
the emerging drop or that of the already formed drop needs
to be amended considering that during the dripping regime,
the emerging drop does not reach the far-end channel nor does
VTotal,a represent the actual averaged total velocity. However,
the strategy for estimating spacing can be analogous for the
dripping regime where the continuous fluid (specifically, its
mean speed) may dominate the increasing rate of spacing [(S −
S0)/t].

As soon as the emerging drop blocks the main channel, it
commences the subsequent stages, and its mean speed at the
front tip is supposed to be consisted of two components: one
is contributed by the filling of liquid CO2 at a rate of QCO2

(i.e., VCO2,a), and the other one by the continuous fluid via
the contact upon the interface (more specifically, the shading
section). As observed from the drop flows (excluding case

27 and 28), this latter speed component approximates to the
moving speed of the inclined shading section of the interface
[Fig. 2(b)], which is reasonable considering that the shading
section is mainly propelled downstream by water especially
under the drop flow cases resulted from low flow rate ratios.
It is discovered that during the elongating and squeezing stage
the water front in contact with the shading section advances
downstream by a distance of Y [Fig. 2(b)], and Y can be
approximated by W/(2tanθ ). As a consequence, the mean speed
of the shading section, Vsh, over the time of the elongating and
squeezing stage (tes) plus that of the truncating stage (ttr) can
be determined as

Vsh ∼ Y

tes + ttr
. (45)

Based on the values of W and θ (W = 150 μm and θ ≈
12◦), Y is calculated as a constant of 352.85 μm. Therefore,
the mean speed Vsh becomes dependent on the total time
(tes + ttr) of the elongating and squeezing and the truncating
stage. Moreover, the speed of the front tip of the emerging
drop, VCO2, tip, can be estimated by summing up VCO2, a and
Vsh, such that

VCO2, tip = VCO2, a + Vsh (46)

or

VCO2, tip = QCO2

DW
+ Y

tes + ttr
. (47)

Thus, the spacing increase [S ′(t) − S(tsf)] during the elon-
gating and squeezing and the truncating stage at the moment,
t , can be calculated by

S ′(t) − S(tsf) =
[(

QCO2 + QH2O

DW

)
−

(
QCO2

DW
+ Y

tes + ttr

)]

× (t − tsf), tsf < t � t0, (48)

Substituting Eq. (44) at t = tsf into Eq. (48) and rearranging,
we have

S ′(t) = S0 +
(

QCO2 + QH2O

DW
− W

tsf

)
· tsf

+
(

QH2O

DW
− Y

tes + ttr

)
(t − tsf), tsf < t � t0.

(49)

Combining Eqs. (44) and (49), the spacing development
over one period t0(t0 = tsf + tes + ttr) of drop generation can
be described as

spacing = S0 +
(

QCO2 + QH2O

DW
− W

tsf

)
· t, 0 < t � tsf

(50a)

= S0 +
(

QCO2 + QH2O

DW
− W

tsf

)
· tsf

+
(

QH2O

DW
− Y

tes + ttr

)
(t − tsf), tsf < t � t0.

(50b)
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FIG. 4. Drop spacing development within one period (8.4 ms) of
drop generation under drop flow case 14. The experimental data (•)
herein are averaged from those in the Fig. 9(b) in paper I, and each
error bar indicates two standard deviations from the averaged spacing
upon the corresponding time moment. Dashed lines are the fitting
lines from the experimental data, and solid lines are the plots of the
linear mathematical model in Eq. (50).

According to Eq. (50), the calculated spacing development
within one period of the drop flow case 14 (which has been
chosen as a model case in paper I) can be expressed as

spacing (μm) = 330.73 + 36.1t, 0 < t � 2 ms

= 390.99 + 5.97t, 2 < t � 8.4 ms, (51)

which are also plotted in Fig. 4 for comparisons with
those fitted from the experimental data. Note that the initial
spacing, S0, inherits from the first fitting above when t = 0.
Qualitatively, the theoretical model, Eq. (50), is consistent
with the experimental fitting functions, which is a bit better
during the first stage (0 to 2 ms) of the one period (8.4 ms) but
is slightly deviated for the elongating and squeezing and the
truncating stage (2–8.4 ms). Moreover, the slopes in the models
are both lower than those in the experimental fitting functions.
These differences arise from the estimate of the total flow speed
by using the total flow rate as well as a certain overestimate
of the speed of the emerging drop. A quantitative comparison
of the spacing between those resulted from the experimental
fittings and the calculated ones from the mathematical model
can be conducted as
∣∣spacing−spacingex, fit

∣∣
spacingex, fit

= 6.45t

42.55t + 330.73
, 0 < t � 2 ms

(52a)

= 3.81t + 6.36

9.78t + 397.35
, 2 < t � 8.4 ms.

(53b)

Therefore, the largest relative errors between the experi-
mentally fitted spacing and the model predicted spacing are
3.1% at t = 2 ms for the stagnating and filling stage and
8% at t = 8.4 ms for the elongating and squeezing stage and
the truncating stage, respectively. These errors are acceptable
accounting for the uncertainty of the drop speed measurement
under case 14 [see the Fig. 8(a) in paper I] where the mean drop
speed is 114 mm/s with a standard deviation of 6.5 mm/s.

IV. CONCLUSION

In the second paper of a two-part series, we have provided
theoretical justifications to our quantitative studies on the drop
flow by considering the mass transport of the CO2 molecules
driven by the diffusion controlled dissolution occurring in the
vicinity of the interface. We have first evaluated the CO2

hydration at the interface with water assuming the interface
reaches a saturation scenario of CO2 dissolution. The hydration
shows an overall negligible effect to the total dissolved CO2

molecules in terms of amount and the vast majority of the
dissolved CO2 molecules still present in the aqueous state.
Second, we have estimated the diffusion-controlled dissolution
of CO2 molecules in water based on a hydrostatic assumption
and found that a saturation scenario of the dissolved CO2

molecules in the vicinity of the interface would not be
reached within the contacting time. The dissolution section
was followed by an analysis on the diffusion distance of the
dissolved CO2 molecules. Molecular diffusion does play a role
in transferring the dissolved CO2 molecules, but the diffusion
distance (or “diffusive thickness”) is very limited compared
with the channel geometry.

In addition, mathematical models for the drop length and the
drop spacing have been developed based on the observations
in paper I and are compared to our experimental results. We
have reported a characteristic interface angle θ formed by the
channel wall and the interface at the end of the elongating
and squeezing stage that commenced the truncation of the
dispersed stream. This angle was applied to accomplish our
model of the drop length, and the factor A in the model
was successfully quantified, which agrees with that resulted
from the experimental fittings. Moreover, based on the speed
differences between the emerging drop and the adjacent newly
generated one, a linear mathematical model was developed
to predict the drop spacing as a function of the time for,
respectively, addressing the stagnating and filling stage and the
elongating-squeezing stage of the emerging drop generation.
In view of a periodic occurrence of the spacing development,
the model agrees well with experimental results and the relative
errors are reasonable.
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