
Machine Learning for SAT Solvers

by

Jia Hui Liang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Jia Hui Liang 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Karem Sakallah
Professor, Electrical Engineering and Computer Science Dept.,
University of Michigan

Supervisors: Vijay Ganesh
Assistant Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Krzysztof Czarnecki
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Derek Rayside
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Pascal Poupart
Professor, Dept. of Computer Science,
University of Waterloo

Other Member: Catherine Gebotys
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Boolean SAT solvers are indispensable tools in a variety of domains in computer science and
engineering where efficient search is required. Not only does this relieve the burden on the
users of implementing their own search algorithm, they also leverage the surprising effec-
tiveness of modern SAT solvers. Thanks to many decades of cumulative effort, researchers
have made persistent improvements to SAT technology to the point where nowadays the
best solvers are routinely used to solve extremely large instances with millions of variables.
Even though our current paradigm of SAT solvers runs in worst-case exponential time, it
appears that the techniques and heuristics embedded in these solvers avert the worst-case
exponential time in practice. The implementations of these various solver heuristics and
techniques are vital to the solvers effectiveness in practice.

The state-of-the-art heuristics and techniques gather data during the run of the solver
to inform their choices like which variable to branch on next or when to invoke a restart.
The goal of these choices is to minimize the solving time. The methods in which these
heuristics and techniques process the data generally do not have theoretical underpin-
nings. Consequently, understanding why these heuristics and techniques perform so well
in practice remains a challenge and systematically improving them is rather difficult. This
goes to the heart of this thesis, that is to utilize machine learning to process the data as
part of an optimization problem to minimize solving time. Research in machine learning
exploded over the past decade due to its success in extracting useful information out of
large volumes of data. Machine learning outclasses manual handcoding in a wide variety
of complex tasks where data are plentiful. This is also the case in modern SAT solvers
where propagations, conflict analysis, and clause learning produces plentiful of data to be
analyzed, and exploiting this data to the fullest is naturally where machine learning comes
in. Many machine learning techniques have a theoretical basis that makes them easy to
analyze and understand why they perform well.

The branching heuristic is the first target for injecting machine learning. First we
studied extant branching heuristics to understand what makes a branching heuristics good
empirically. The fundamental observation is that good branching heuristics cause lots of
clause learning by triggering conflicts as quickly as possible. This suggests that variables
that cause conflicts are a valuable source of data. Another important observation is that
the state-of-the-art VSIDS branching heuristic internally implements an exponential mov-
ing average. This highlights the importance of accounting for the temporal nature of the
data when deciding to branch. These observations led to our proposal of a series of machine
learning-based branching heuristics with the common goal of selecting the branching vari-
ables to increase probability of inducing conflicts. These branching heuristics are shown

iv

empirically to either be on par or outcompete the current state-of-the art.

The second area of interest for machine learning is the restart policy. Just like in
the branching heuristic work, we first study restarts to observe why they are effective in
practice. The important observation here is that restarts shrink the assignment stack as
conjectured by other researchers. We show that this leads to better clause learning by
lowering the LBD of learnt clauses. Machine learning is used to predict the LBD of the
next clause, and a restart is triggered when the LBD is excessively high. This policy is
shown to be on par with state-of-the-art. The success of incorporating machine learning
into branching and restarts goes to show that machine learning has an important role in
the future of heuristic and technique design for SAT solvers.

v

Acknowledgements

I would like to thank my co-supervisor Vijay Ganesh for his wisdom and guidance in
academics, career, and life. Your ability to teach not just knowledge but also character has
profoundly changed me as a person. We make a great research team and I am sincerely
fortunate to have your mentorship for the last half decade.

I would like to thank my other co-supervisor Krzysztof Czarnecki for his flexibility
and openness for me to find my place as a budding researcher. I owe a great deal of debt
for your kindness and patience over the years.

I would like to thank the members of the Examining Committee for their time and
expertise. Their advices are invaluable for improving the quality of this thesis.

vi

Dedication

This is dedicated to ma and pa.

vii

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Summary of Contributions . 3

2 Background 8

2.1 SAT Solving . 8

2.1.1 Conjunctive Normal Form (CNF) 8

2.1.2 Conflict-Driven Clause-Learning (CDCL) SAT Solver 9

2.1.3 Experimental Evaluation . 17

2.2 Average . 18

2.2.1 Mean and Variance . 19

2.2.2 Exponential Moving Average (EMA) 20

2.3 Probability Distribution . 21

2.3.1 Mean and Variance . 22

2.3.2 Normal Distribution . 22

2.4 Machine Learning . 23

2.4.1 Supervised Learning . 23

2.4.2 Reinforcement Learning . 27

viii

2.5 Graph Community Structure and Centrality 30

2.5.1 Variable Incidence Graph . 30

2.5.2 Community Structure . 31

2.5.3 Degree Centrality . 32

2.5.4 Eigenvector Centrality . 33

3 Machine Learning-Based Branching Heuristics 34

3.1 Global Learning Rate (GLR) . 35

3.2 Greedy Maximization of GLR . 36

3.2.1 Experimental Results . 38

3.3 Multi-Armed Bandits Branching . 39

3.3.1 Learning Rate Objective . 40

3.3.2 Multi-Armed Bandit Model for Branching 41

3.3.3 Learning Rate Branching (LRB) Heuristic 41

3.3.4 Experimental Results . 44

3.4 Stochastic Gradient Descent Branching Heuristic 53

3.4.1 Experimental Results . 57

3.5 Related Work . 57

4 Understanding Branching Heuristics 61

4.1 Understanding GLR . 62

4.2 Understanding VSIDS . 64

4.2.1 Understanding VSIDS Bump . 65

4.2.2 Understanding VSIDS Decay . 69

4.2.3 Correlation Between VSIDS and Graph Structure 71

4.3 Related Work . 78

ix

5 Machine Learning-Based Restart Policy 79

5.1 Prior Hypotheses on “The Power of Restarts” 80

5.1.1 Heavy-tailed Distribution and Las Vegas Algorithm Hypotheses . . 81

5.1.2 Escaping Local Minima Hypothesis 82

5.2 “Restarts Enable Learning Better Clauses” Hypothesis 82

5.2.1 Confirming the “Compacting the Assignment Stack” Claim 83

5.2.2 Learning Better Clauses . 85

5.2.3 Solving Instances Faster . 85

5.2.4 Clause Length . 88

5.2.5 Low LBD in Core Proof . 88

5.3 LBD Percentile . 88

5.4 LBD of Next Clause . 92

5.5 Experimental Evaluation . 95

5.6 Related Work . 96

6 Conclusion 97

References 100

x

List of Tables

3.1 Comparison of our extensions on the base CDCL solver (MiniSat 2.2 with
aggressive LBD-based clause deletion). The entries show the number of
instances solved for the given solver and benchmark, the higher the better.
Green is best, red is worst. 48

3.2 Apple-to-apple comparison between branching heuristics (LRB, CHB, and
VSIDS) in a version of MiniSat 2.2 with aggressive LBD-based clause dele-
tion. The entries show the number of instances in the benchmark the given
branching heuristic solves, the higher the better. Green is best, red is worst.
The LRB version (we dub as MapleSAT), outperforms the others. 49

3.3 The average ranking of observed rewards compared between different branch-
ing heuristics in MiniSat 2.2 with aggressive LBD-based clause deletion. The
lower the reported number, the better the heuristic is at maximizing the ob-
served reward relative to the others. Green is best, red is worst. 51

3.4 Apple-to-apple comparison between four state-of-art solvers: CryptoMiniSat
(CMS) with LRB heuristic, CMS with VSIDS, Glucose, and Lingeling. The
table shows the number of instances solved per SAT Competition bench-
mark, categorized as SAT or UNSAT instances. CMS with LRB (we dub as
MapleCMS) outperforms CMS with VSIDS on most benchmarks. 52

3.5 # of solved instances by various configurations of SGD, VSIDS, and LRB. 58

3.6 GLR and average LBD of various configurations of SGD, VSIDS, and LRB
on the entire benchmark with duplicate instances removed. LRB solves the
most instances and achieves the highest GLR and lowest average LBD in
our experiments. 58

xi

4.1 The GLR, number of instances solved, and average solving time for 7 differ-
ent branching heuristics, sorted by the number of solved instances. Timed
out runs have a solving time of 1800s in the average solving time. 63

4.2 The Spearman correlation relating GLR to solving time between the 7
heuristics. The experiment is repeated with different solver configurations.
MapleSAT is the default configuration which is essentially MiniSat [32] with
phase saving [74], Luby restarts [63], and rapid clause deletion [10] based
on LBD [10]. Clause activity based deletion is the scheme implemented in
vanilla MiniSat. 63

4.3 MiniSat’s VSIDS and clause learning prefers to pick, bump, and learn over
bridge variables. 74

4.4 Results of comparing cVSIDS and VSIDS with TDC. 77

4.5 Results of comparing cVSIDS and VSIDS with TEC. 77

xii

List of Figures

2.1 A cactus plot of the Glucose 4.1 solver over the 350 instances from the main
track of SAT Competition 2017 with a 5000 second timeout. 19

3.1 GGB vs VSIDS. Each point in the plot is a comparable instance. Note that
the axes are in log scale. GGB has a higher GLR for all but 2 instances.
GGB has a mean GLR of 0.74 for this benchmark whereas VSIDS has a
mean GLR of 0.59. 38

3.2 GGB vs VSIDS. GGB has a lower average LBD for 72 of the 98 comparable
instances. GGB has a mean average LBD of 37.2 for this benchmark whereas
VSIDS has a mean average LBD of 61.1. 39

3.3 A cactus plot of the 5 branching heuristics in MiniSat 2.2 with aggressive
LBD-based clause deletion. The benchmark consists of the 4 most recent
SAT Competition benchmarks (2014, 2013, 2011, 2009) including both the
application and hard combinatorial categories, excluding duplicate instances. 50

3.4 A cactus plot of various configurations of SGD, VSIDS, and LRB on the
entire benchmark with duplicate instances removed. 59

4.1 Histogram of the log bump-conflict ratio. 68

4.2 Histogram of the percentage of intermediate clauses that remain 1-empowering
after the 1-UIP clause is learnt. 69

4.3 Cactus plot of Glucose 4.1 with and without VSIDS decay on 350 instances
from the main track of SAT Competition 2017. 70

5.1 Cactus plot of Glucose 4.1 with and without restarts on 350 instances from
the main track of SAT Competition 2017. 80

xiii

5.2 Scatter plot for a given instance showing increasing assignment stack size as
the restarts become less frequent. 84

5.3 Histogram showing the distribution of Spearman correlations between the
restart interval and the average assignment stack size for all 350 instances.
The median correlation is 0.839. 84

5.4 Scatter plot for a given instance showing increasing assignment stack size
correlates with increasing LBD of learnt clauses. 86

5.5 Histogram showing the distribution of Spearman correlations between the
average assignment stack size and the average LBD of learnt clauses for all
350 instances. The median correlation is 0.607. 86

5.6 Scatter plot for a given instance showing increasing average learnt clause
LBD correlates with increasing effective time. 87

5.7 Histogram showing the distribution of Spearman correlations between the
average learnt clause LBD and effective time for all 90 instances without
timeouts. The median correlation is 0.366. 87

5.8 Histogram for the ratio between the mean LBD of the learnt clauses in the
core proof and the mean LBD of all the learnt clauses for the 57 unsatisfiable
instances DRAT-trim produced a core proof. 89

5.9 Histogram of LBDs of 4 instances. A normal distribution with the same
mean and variance is overlaid on top for comparison. 90

5.10 Histogram of the actual percentiles of the LBD predicted to be the 99.9th

percentile using a normal distribution. 91

5.11 Histogram of the Pearson correlation between the “previous” and “next”
LBD for the instances in the SAT Competition 2017 main track benchmark. 92

5.12 Cactus plot of two state-of-the-art restart policies and MLR on the entire
benchmark with duplicate instances removed. 95

xiv

Chapter 1

Introduction

The Boolean satisfiability problem, one of the most fundamental one in computer science,
asks if there exists an (efficient) decision procedure that decides whether Boolean formulas
given in conjunctive normal form are satisfiable. Given that Boolean satisfiability (aka
SAT) is the quintessential NP-complete problem [29], the broad consensus is that there
are no efficient decision procedures or solvers for it. This consensus might lead one to
prematurely conclude that SAT solvers cannot be useful for any real-world applications
and that this problem is primarily of theoretical interest. Yet nothing could be further
from the truth. Modern SAT solvers have had a revolutionary impact on a wide range
of disciplines. These solvers routinely solve very large instances, with tens of millions of
variables and clauses in them, obtained from real-world applications. Through decades of
research, the community of solver researchers has built surprisingly effective backtracking
algorithms called conflict-driven clause-learning (CDCL) SAT solvers [66] that are based on
just a handful of key principles [52]: conflict-driven branching, efficient propagation, con-
flict analysis and conflict-driven clause-learning, preprocessing/inprocessing, and restarts.
What is even more surprising is that these solvers scale well for many applications for
which they are not designed, often out-performing the previous best algorithms that are
specifically designed for the domain. Examples include contexts as diverse as program anal-
ysis [24], model-checking [26, 21], AI planning [54], cryptanalysis [70], and combinatorial
mathematics [56, 46, 90].

Despite all this success, a persistent issue with solver research has been a lack of good
empirical and theoretical understanding of why these solvers are so efficient. Such an
understanding is crucial not merely due to its scientific merit, but also because it would
enable us to build better solvers going forward. The current trial-and-error approach of
improving solver performance is not sustainable in the long run. We need general principles

1

to guide researchers as they navigate the complex space of solver heuristics. In this thesis,
we address this question of what constitute good general principles for solver heuristic
design.

In this thesis, we approach the knotty problem of why solvers are efficient by empir-
ically studying the most successful solver heuristics, such as branching and restarts, in
detail. This systematic study led to some interesting and surprising observations. The
first among them was the rather obvious observation that solver heuristics are methods
aimed at optimizing some metric that correlates well with minimizing solver runtime. Fur-
ther, we noticed that some of these successful heuristics, especially those used in branching,
leveraged the large amount of data generated by solvers via appropriate statistical analysis.
Finally, as we studied them in detail, we realized that solver designers had inadvertently
incorporated concepts from machine learning, such as exponential moving averages (EMA)
and exponential recency weighted averages (ERWA) used in the context of reinforcement
learning. This led us to the following thesis:

An effective and general principle for designing SAT solvers (or any logic engine)
is to view these decision procedures as a collection of interacting optimization
subroutines, where each subroutine or heuristic aims at optimizing some met-
ric that correlates with minimizing overall solver runtime on any given input
instance. While identifying such metrics is hard and may require knowledge of
various application domains, they do dramatically clarify solver design. Fur-
ther, these subroutines have access to the enormous amount of data that solvers
generate, which in turn suggests the use of machine learning (ML) based meth-
ods to designing them. Finally, as we briefly describe below and at length in the
rest of the thesis, online machine learning methods are particularly well-suited
for designing efficient solver heuristics.

While there are many kinds of SAT solvers, in this thesis we focus on conflict-driven
clause-learning (CDCL) SAT solvers [66] since they are presently the dominant solver for
most practical applications. As is the case with any backtracking search algorithm, the
run of a CDCL SAT solver can be visualized as traversing paths over a search tree. In this
search tree, each node is a distinct variable with two outgoing edges marked true and false
respectively denoting assigning values to the variables. The branching heuristic decides
where the variables are placed in this search tree, and this ordering has an enormous
impact on the running time of the solver. At every node, the solver infers the values of
some variables forced by the value assignments in the nodes above. As the solver traverses
down the search tree, it will frequently discover that the path it is exploring contains no

2

solutions, hence it needs to backtrack and try another branch. Once the solver exhaustively
searches the entire search tree without finding a satisfying solution, it terminates having
proven the formula unsatisfiable. The solver described thus far is called DPLL after the
inventors Davis-Putnam-Logemann-Loveland [31], first presented in 1960. The brute force
nature of DPLL limits its practical utility. The CDCL paradigm extends DPLL with
a series of techniques and heuristics such as conflict-driven branching, clause learning,
backjumping, and frequent restarts that dramatically improve its performance over the
plain DPLL solver. See Section 2.1 for a thorough explanation of how CDCL solvers are
implemented.

The crucial insight behind the success of CDCL over DPLL is that CDCL combines
search (in the form of branching and propagation) with deduction (in the form of conflict
analysis and clause learning) in a corrective feedback loop, while DPLL is primarily a
search algorithm. The deductive component of the CDCL solver performs two critical
roles: first, it prune the search space through deductively eliminating paths in the search
tree (via clause learning), and second, it guides the branching via conflict-driven branching
heuristic (a la VSIDS). This back-and-forth exploration via search and exploitation by
learning clauses aligns very well with certain reinforcement learning paradigms. In the
typical reinforcement learning setting, an agent iteratively interacts with an environment
with the goal of learning a policy that maximizes its reward. One could view many CDCL
solver heuristics, such as branching, restarts, and value selection through this lens, enabling
us to get a deeper understanding of why SAT solvers are efficient and further leverage the
vast literature on reinforcement learning techniques that might be particularly suited to
the SAT solver setting.

The core focus of this thesis is designing new state-of-the-art heuristics for CDCL
SAT solvers and it covers two broad themes. The first theme is a detailed empirical
understanding of why certain SAT solver heuristics, such as branching and restarts, work
so well for real-world instances. The second theme is leveraging this understanding into
a general solver design principle that views these heuristics as ML-based optimization
procedures. Below we provide a brief description the contributions presented in this thesis.

1.1 Summary of Contributions

Understanding the Power of Heuristics: One of the struggles to improving heuristics
is that we lack insight into why they are effective in the first place. Modern CDCL
SAT solvers are complex beasts with many convoluted interactions between its var-
ious parts. But before we understand the solver in its entirety, we should start by

3

understanding the individual parts such as the heuristics. Even though the heuristics
play an outsized role in the performance of modern SAT solvers, our understanding
on why they are effective is lagging behind. In this thesis, we try to better our
understanding of why modern implementations of branching heuristics and restart
policies are effective in practice. We find that the explanation in both cases relates to
clause learning, the defining feature of CDCL SAT solvers. Ultimately, CDCL SAT
solvers are proof systems and the branching heuristic and restart policies enhance
their ability to produce proofs effectively by enhancing clause learning.

In Chapter 4, we focus on branching heuristics. Every branching heuristic devises
some scheme for ranking variables and selects the highest ranked unassigned variable
to branch on next. Many great heuristics have been proposed and employed with-
out explicitly answering the question “what makes a variable good to branch on?”
We empirically study a large set of extant branching heuristics to give us clues on
how to address this question. Our study of extant branching heuristics suggests that
better heuristics tend to trigger clause learning more frequently, a metric we call the
global learning rate (GLR). In other words, a variable is good to branch on if it is
likely to lead to a conflict so a new clause can be learnt to prune the search space.
We give special attention to the dominant branching heuristic called variable state
independent decaying sum (VSIDS) [68] and obtain other valuable insights. We show
that the decay of VSIDS corresponds to an exponential moving average highlighting
the importance of temporality when processing data. Additionally, we show that
VSIDS correlates with graph centrality and bridge variables in the community struc-
ture. The wisdom we gained from this study motivates the design of our machine
learning-based branching heuristics.

Restart policies are the focus of Chapter 5. Just like the case with branching heuris-
tics, we find that restart policies positively affect clause learning. We show that
the frequency of restarts negatively correlates with the size of the assignment stack.
Restarts allow the solver to reassemble the assignment stack on the subset variables
that the branching heuristic is focused on now. In other words, the variables on the
assignment stack that are no longer ranked highly by the branching heuristic can
be removed by restarts thus shrinking the assignment stack. In turn, a shrinking
assignment stack improves the quality of clause learning. Since the assignment stack
is more focused with restarts, the learnt clauses are focused on fewer blocks of liter-
als, thus decreasing the literal block distance (LBD) [10]. The LBD is a metric for
learnt clauses that is widely believed to be negatively correlated with the quality of
the clause. These observations about restarts motivate the formation of our machine
learning-based restart policy.

4

Optimization with Machine Learning: CDCL SAT solver heuristics have one goal,
solve the instance as quickly as possible. For any problem, there exists a shortest
proof of unsatisfiability or satisfiability. It is rarely easy for a CDCL SAT solver
to construct the shortest proof directly. Instead the solver relies on a handful of
heuristics to make an assortment of choices to hopefully produce a proof with the
least amount of time as possible. We believe that we should attack heuristic design
from first principles, that is, to explicitly view heuristics as an optimization problem
with the objective to minimize total solving time. This optimization is difficult to
do so directly since the solving time is hard to compute a priori. Instead, we opt
to optimize some other feature that correlates with solving time and also agrees
with experience and intuition. Even with this simplification, we still find ourselves
running into trouble. As we designed branching heuristics and restart policies based
on our observations, we encounter a problem where we need a complicated function
as the basis of the heuristic to perform the optimization. The first option is to
handcode these complicated functions, but this would either lead a function that is
too expensive to invoke or a function that is too cryptic for humans to formulate as
computer code. We sidestepped these issues by relying on machine learning to learn
the function from the data which happens to be abundant in CDCL SAT solvers.

In Chapter 3, we use the lessons learnt from studying branching heuristics to design
new state-of-the-art branching heuristics based on machine learning. The objective
we chose is to maximize GLR informed by our earlier study of extant branching
heuristics. We first designed the greedy GLR branching (GGB) heuristic as a proof
of concept to observe the consequence of branching on variables that maximize GLR
greedily. The overhead of the GGB is extremely high, but if the branching over-
head is factored out, we find that the GGB far exceeds the current state-of-the-art
in both maximizing GLR and minimizing solving time. This result reinforces the
proposition that GLR is a good objective to optimize for branching heuristics, sub-
ject to the overhead. The obstacle with GGB is its overhead, in particular, it calls
upon an extremely expensive function to test which variable increases the GLR as
the foundation of its GLR maximization. We propose the stochastic gradient descent
branching (SGDB) heuristic which operates the same as GGB except the expensive
function is approximated via supervised machine learning. SGDB is shown to be
very competitive with modern state-of-the-art branching heuristics. Additionally, we
provided an alternative objective of learning rate with respect to a variable. We used
multi-armed bandits, a subset of reinforcement learning, to maximize this variable-
specific learning rate. The new heuristic called the learning rate branching (LRB)
heuristic is shown to solve more instances than the state-of-the-art.

5

Our observations about restarts inspire our machine learning-based restart policy in
Chapter 5. We chose the objective of minimizing LBD based on our study. The
objective of the new restart policy is to avoid learning high LBD clauses since these
clauses are of lower quality. The strategy is to invoke a restart if the upcoming learnt
clause has excessively high LBD. We use supervised machine learning to predict the
LBD of the learnt clause using past LBDs as data. We quantify the threshold for
“excessively high” by approximating the right tail distribution of LBDs as a normal
distribution and use z-scores on this distribution to predict high percentiles. The
new restart policy called machine learning-based restart (MLR) policy is competitive
with state-of-the-art.

Branching heuristics and restart policies are the focus of this thesis as they are among
the most important solver heuristics. Based on these two case studies, we believe that the
core message of this thesis lifts to other contexts such as clause deletion, clause learning, and
polarity selection. That is, a good general strategy for designing heuristics is to first study
and understand the power behind heuristics. Secondly, solve the optimization problem of
minimizing the solving time, or another feature as a proxy, using machine learning.

While the use of machine learning in SAT solvers is not new, our approach to the
problem differs from previous attempts in many important ways. CDCL SAT solvers have
many parameters from the various heuristics and techniques it implements, and fine-tuning
these parameters to the instance leads to better performance. Various researchers have used
machine learning to predict the best parameters by training offline on a large benchmark of
instances [49, 64, 57], also known as algorithm configuration. The idea is that instances with
similar features (for example, similar number of variables and clauses) will likely benefit
from similar parameters. Supervised machine learning is used to either predict the best
configuration given the instance features or predict the solving time given a configuration.
Another prominent use of machine learning in SAT research is in the portfolio approach to
parallel SAT [87]. A portfolio solver contains many SAT solvers, and runs a small selection
of them for a given input with the hope that at least one solver terminates quickly. Since the
amount of computer cores on a machine is limited, the portfolio solver must choose a subset
among the solvers to run. A portfolio solver prefers a portfolio of diverse solvers so that they
can cover each others’ weaknesses. Supervised machine learning is used to predict which
solvers are most likely to terminate quickest on the given input, and hence those solvers are
the ones used. Just like in algorithm configuration, the training is performed offline on a
large benchmark of instances. In these use cases, machine learning is external to the CDCL
SAT solver itself. These methods treat the SAT solver as a black box. Our approach in this
thesis replaces fundamental parts inside the CDCL SAT solver with machine learning. By

6

changing the solver itself, we can make improvements that black box approaches cannot.
Performing machine learning internally in the solver has the major advantage of having
access to the data dynamically generated during the run of the solver. This data gives
more powerful insights into the input formula than static analysis alone. Additionally, the
machine learning training switches from offline to online. The consequence of our approach
is that the machine learning technique needs to be extremely computationally efficient
when performed online since every second spent on machine learning is a second spent
not performing CDCL SAT solving. On the other hand, online training prevents a certain
class of overfitting. The offline training uses a large benchmark with the assumption that
the learning generalizes to the input instance. Whereas in online training, we train on the
input instance itself and need not worry about generalizability between different instances.
This allows he heuristic to adapt itself dynamically to the instance being solved. We
believe our approach to machine learning is complimentary to the typical uses of machine
learning in SAT solvers. Our heuristics, like most solutions based on machine learning,
introduce a handful of parameters subject to tuning by automatic algorithm configuration.
Additionally, our heuristics veer from the standard heuristics, giving CDCL SAT solvers
more diversity thus benefiting portfolio solvers.

7

Chapter 2

Background

This chapter reviews background knowledge required for the remainder of this thesis, cov-
ering the 5 topics: SAT solving in Section 2.1, averages in Section 2.2, probability distri-
butions in Section 2.3, machine learning in Section 2.4, and graph community structure
and centrality in Section 2.5.

2.1 SAT Solving

Boolean satisfiability is the problem of finding an assignment to the variables of a Boolean
formula such that the formula evaluates to true. SAT solvers are programs that take a
Boolean formula as input (denoted by φ) and outputs an assignment satisfying the input
formula if such an assignment exists, in which case the input formula is said to be satisfiable.
Otherwise the input formula is said to be unsatisfiable. In this section, we describe how SAT
solvers work internally including the format of inputs, heuristics and techniques involved,
and the backtracking search.

2.1.1 Conjunctive Normal Form (CNF)

Almost all SAT solvers expect the input Boolean formula to be in conjunctive normal form
(CNF). Any propositional Boolean formula can be transformed into CNF with only a linear
increase in formula size using the Tseitin transformation [84]. Hence, requiring CNF as
input does not limit the space of allowable Boolean formulas.

8

A Boolean variable is a variable that can take on either the value true or the value
false, typically represented by the letters x, y, or z. A literal is either a variable (x) or its
negation (¬x), also interpreted as a pair of variable (x) and sign (negative meaning ¬ and
positive meaning absence of ¬). A clause is a disjunction (“or”) of literals. A conjunctive
normal form (CNF) formula is a conjunction (“and”) of clauses. The length of a clause C,
represented by a pair of vertical bars |C|, is the number of literals in the clause. To simplify
notation, a clause is sometimes treated as a set of literals and a CNF formula is sometimes
treated as a set of clauses. Sometimes a clause is treated as a set of variables when the sign
is not important. The advantage of CNF is that the SAT solver only needs to worry about
clauses and as we will see in the next section, modern SAT solvers implement propagation
and clause learning techniques that operates efficiently over clauses.

2.1.2 Conflict-Driven Clause-Learning (CDCL) SAT Solver

Over the years, researchers have invented many paradigms for implementing SAT solvers
with various advantages and disadvantages. The conflict-driven clause-learning (CDCL) [66]
style SAT solvers is the focus of this thesis as they are presently the most widely used in
practice. CDCL SAT solvers are backtracking algorithms that explore the assignment
space. At a high level, it tries to constructively build a complete satisfying assignment,
backtracking and fixing mistakes as needed.

An assignment (denoted by ν) is a mapping of variables to either true or false. For
example ν = {x 7→ true, y 7→ false} is an assignment that maps x to true and y to false.
A variable is assigned if it is in the mapping, otherwise it is unassigned. An assignment is
complete if it maps every variable to some value, otherwise it is partial. For convenience,
a literal is interchangeable with a variable plus value assignment. That is, x ≡ x 7→ true
and ¬x ≡ x 7→ false. Given an assignment, we can evaluate variables, literals, clauses,
and CNFs using the following formulas.

EvaluateV ariable(x, ν) := ν[x] (2.1)

EvaluateLiteral(l, ν) :=

{
EvaluateV ariable(x, ν) if l = x

¬EvaluateV ariable(x, ν) if l = ¬x
(2.2)

EvaluateClause(C, ν) :=
∨
l∈C

EvaluateLiteral(l, ν) (2.3)

EvaluateCNF (φ, ν) :=
∧
C∈φ

EvaluateClause(C, ν) (2.4)

9

A clause is satisfying with respect to an assignment (the assignment is usually under-
stood from context) if at least one literal in the clause evaluates to true since the clause
is a disjunction. A clause is falsified with respect to an assignment if all the literals in
the clause evaluate to false. A complete assignment is satisfying if all the clauses in the
input CNF are satisfied. In other words, the input CNF evaluates to true with a satisfying
complete assignment. Any partial assignment that falsifies a clause cannot be extended
to a satisfying complete assignment. In a backtracking search like CDCL, a clause being
falsified means the solver needs to backtrack.

A CDCL SAT solver relies on a handful of features to help it search for a satisfying
complete assignment. We describe the most prominent features below and the entire CDCL
algorithm is presented in Algorithm 1.

Assignment: A CDCL SAT solver maintains an assignment, sometimes referred to as
the current partial assignment or the assignment stack, in which it attempts to ex-
tend into a complete satisfying assignment. Branching and propagation extend this
assignment, whereas backjumping and restarts shrink this assignment.

Branching: The solver branches by selecting an unassigned variable, guessing its value,
and adding it to the assignment. The branching heuristic is the piece of code that
selects the variable and value. Typically, the branching heuristic is divided into
two parts: the variable selection heuristic (typically VSIDS [68]) is responsible for
selecting which variable to branch on and the polarity heuristic (typically phase-
saving [74]) is responsible for selecting the value. In this thesis, we always use phase-
saving as the default polarity heuristic and occasionally refer to the variable selection
heuristic as the branching heuristic when it is paired with phase-saving. Hence VSIDS
is often referred to as a branching heuristic despite only selecting the variable and
leaving phase-saving to select the value. This linguistic short cut is very common in
the SAT community.

A variable assigned by branching is called a decision variable. A decision variable
plus its assigned value is a decision literal. The decision level of a decision variable x
is the number of decision variables already in the assignment when x was assigned by
branching, not including x itself. The decision level of a literal is the decision level
of its variable.

Boolean Constraint Propagation (BCP): A clause of length n is unit with respect to
an assignment if n−1 literals evaluate to false and the last literal is unassigned. Since
a CNF can only be satisfied if this last literal is true, Boolean constraint propagation

10

(BCP) searches for unit clauses and extends the assignment by assigning the last
literal, where the last literal is said to be propagated. For example, suppose we have
a clause C = x∨¬y ∨¬z and an assignment x 7→ false, y 7→ true. Since the literals
x and ¬y evaluate to false under the assignment, BCP extends the assignment to
x 7→ false, y 7→ true, z 7→ false in order to satisfy the clause C. BCP repeats until a
fixed-point is reached, that is, no clauses are unit. The decision level of a propagated
variable x is the number of decision variables already in the assignment when x was
propagated.

BCP is the workhorse of a CDCL solver. Even clause learning, the namesake of
CDCL, derives its power by empowering BCP. Whenever a variable is propagated,
it cuts the current search space in half since the solver does not need to explore the
other value for that propagated variable. Since it takes n − 1 literals evaluating to
false for BCP to kick in, intuitively shorter clauses are better at cutting the search
space since they are more likely to propagate.

BCP is responsible for maintaining a data structure called the implication graph. The
vertices in the implication graph are literals and edges keep track of which literals
forced other literals to propagate. For example, in the last example where we have
C = x∨¬y∨¬z and an assignment x→ false, y → true, BCP propagated the literal
z. BCP adds and edge from ¬x to z and another edge from y to z since x being
false and y being true forced BCP to propagate z. Additionally, falsified clauses have
edges from the negation of each of its literal to a special vertex ⊥. For example, if
the clause x∨¬y is falsified, then there is an edge from ¬x to ⊥ and y to ⊥. Literals
corresponding to decision variables do not have incoming edges. The implication
graph is used by clause learning, which is described next.

Clause Learning: If a clause is falsified after BCP terminates, then the solver is in con-
flict and the falsified clause is called the conflicting clause. The defining feature of
CDCL is to learn a new clause by conflict analysis after each conflict that succinctly
summarizes why the conflict occurred. These are called learnt clauses and no satisfy-
ing complete assignment can falsify them. In other words, learnt clauses are implied
by the original formula. There are various ways to construct a valid learnt clause
from a conflict. The learnt clause is stored in the learnt clause database. BCP uses
all the clauses in the original input and the clauses in the learnt clause database to
perform propagation.

The set of all current decision literals during a conflict clearly cannot be all simulta-
neously be true since it led to the current conflict. That is, at least one of the decision
literals must be false. The simplest method to learn a clause during a conflict is to

11

disjunct the negation of every current decision literal. For example, suppose the
solver encounters a conflict and the decision literals are x, ¬y, and z. Then a valid
learnt clause is ¬x ∨ y ∨ ¬z. As we can see, the learnt clause forces at least one of
the decision literals to take the opposite value. This is a valid learnt clause because
it is 1-provable [75].

Definition 1 (1-Provable) Let C be a clause. Create an assignment A consisting
of the negations of all the literals in C, that is A = {¬l | l ∈ C}. The clause C is
1-provable if and only if applying BCP with A on the CNF φ results in a conflict. In
other words, C must be true or else φ will have a falsified clause.

The term 1-provable comes from the fact that the clause C is proved by a single step
of BCP. 1-provability is sufficient, but not necessary, for a clause to be a valid learnt
clause.

As discussed earlier, a 1-provable learnt clause can be constructed by disjuncting the
negation of every current decision literal. However, this creates an unnecessarily large
clause and as intuited earlier, smaller clauses are preferable. A general technique for
constructing a 1-provable learnt clause is to cut the implication graph. Imagine
drawing the implication graph on a 2-D plane, then a cut is a contiguous line that
bisects the graph into two sides such that one side contains the vertex ⊥ (called the
conflict side) and the other side contains all the decision literals (called the reason
side). Then disjuncting the negation of all the reason side literals incident to the cut
is a 1-provable learnt clause. To see why this learnt clause is 1-provable, assigning
all these literals then applying BCP will reconstruct the same conflict side leading to
the ⊥, hence a clause is falsified and thus the constructed learnt clause is 1-provable.

The remaining question is where to place the cut in the implication graph. In prac-
tice, the cut is placed at the first unique implication point (1-UIP) [66]. A unique
implication point (UIP) is a literal in the implication graph such that all paths start-
ing from the decision literal with the highest decision level to the vertex ⊥ must
cross the UIP vertex. Multiple literals can be a UIP, the 1-UIP refers to the UIP
closest to ⊥. All SAT solvers discussed in this thesis construct the learnt clause by
cutting the implication graph such that 1-UIP is on the reason side incident to the
cut. The learnt clause contains exactly one literal with the highest decision level,
that being the 1-UIP literal itself. There are a couple advantages with cutting at the
1-UIP to learn a clause: the learnt clause is unit after backjumping and the 1-UIP
learnt clause has the lowest literal block distance amongst all the UIP learnt clauses.
Backjumping and literal block distance will be described shortly.

12

Learnt clauses are useful because they prune the search space. To state this more
formally, learnt clauses are 1-empowering [75].

Definition 2 (1-Empowering) Let C = α ∨ l be a clause where α is a disjunction
of literals and l is a single literal. l is an empowering literal of C with respect to CNF
φ if and only if the following properties are true.

1. The clause C is logically implied by φ, that is, all assignments satisfying φ also
satisfies C.

2. Create an assignment A consisting of the negations of all the literals in α, that
is A = {¬m | m ∈ α}. Applying BCP with A on the CNF φ results in a
conflict. Additionally, BCP does not propagate l, that is l remains unassigned
after BCP terminates.

The clause C is 1-empowering if it contains at least one empowering literal.

The second property of 1-empowering describes how learnt clauses improve the BCP.
Without the learnt clause C, BCP was not able to deduce l. After the learnt clause C
is added to the learnt clause database, then it is able to deduce l using C. Therefore
propagation can deduce new facts because C is 1-empowering. All learnt clauses
produced by UIP learning is 1-empowering.

The clause learnt by cutting the implication graph can also be constructed by apply-
ing resolution to the clauses on the conflict side. Resolution is a rule of inference for
propositional logic that works as follows.

a1 ∨ ... ∨ an ∨ l b1 ∨ ... ∨ bm ∨ ¬l
a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bm Resolution

ai, bi, and l are literals. Resolution takes two clauses as input with the condition that
they share one variable with opposing signs (i.e., l and ¬l). The output of resolution,
also called the resolvent, is a new clause that disjuncts the two input clauses and
removes l and ¬l. A proof system containing just the resolution inference rule, called
general resolution, is both sound and complete. As stated earlier, the clause learning
technique implemented by CDCL SAT solvers is essentially applying the resolution
rule. That is, we can apply the resolution rule to the clauses on the conflict side of the
implication graph to construct the exact same learnt clause as a CDCL SAT solver. A
CDCL SAT solver returns unsatisfiable when a conflict occurs at decision level zero,

13

and this is equivalent to inferring an empty clause as a resolvent of the resolution
rule. By this perspective, a CDCL solver can be viewed as a resolution engine
constructing a proof of the empty clause for an unsatisfiable CNF input. So a typical
CDCL solver cannot be stronger than general resolution. Remarkably, Pipatsrisawat
and Darwiche showed in 2009 that CDCL solvers with nondeterministic branching
and restarts are only at most polynomially weaker than general resolution [75], that is
CDCL p-simulates general resolution. We find it beneficial to view SAT solvers with
the viewpoint of proof construction, especially when it comes to designing heuristics.

Backjump: After a conflict, the solver needs to undo part of the assignment since no ex-
tensions of that assignment are satisfying. Naively, a solver can simply backtrack by
unassigning all the variables with the highest decision level, that is going from n deci-
sion levels to n−1 decision levels. In practice however, CDCL solvers typically back-
track multiple decision levels also called backjump, also known as a non-chronological
backtrack [66]. The rule implemented in most CDCL solvers is to backjump to the
smallest decision level that the newest learnt clause becomes unit. For a learnt clause
of length 1, that is decision level 0. Otherwise for a learnt clause produced by a UIP
cut, the solver backjumps to the second highest decision level of all the variables
in the learnt clause since a UIP cut guarantees exactly one variable in the learnt
clause with the highest decision level. When backjumping unassigns variables, their
corresponding vertices in the implication graph are deleted in unison.

Restart: A restart [43] unassigns all variables in the current assignment and clears the en-
tire implication graph. Semantically, a restart is equivalent to a backjump to decision
level 0. Whenever BCP terminates without a conflict, a solver can opt to perform
a restart, typically guided by some heuristic. Restarts appear counterintuitive by
discarding all the work building the assignment, yet in practice a solver that imple-
ments restarts is much more efficient than a solver that does not. This phenomenon
is the subject of Chapter 5.

Clause Deletion: A CDCL SAT solver learns a new clause for each conflict that needs
to be stored in the learnt clause database. The solver benefits from these learnt
clauses by pruning the search space via 1-empowerment but this comes with draw-
backs. First, the amount of learnt clauses eventually overwhelms the solver’s available
memory. Second, the computational cost of BCP increases as the number of learnt
clauses increases. For both these reasons, modern CDCL solvers perform clause dele-
tion where a large portion of learnt clauses are routinely deleted. The downside is
that the solver may need to relearn some deleted clauses. If the deletion is too aggres-
sive, then the solver can get stuck in an infinite loop of relearning the same clauses

14

over and over, thus the solver is no longer guaranteed to terminate. In practice, the
frequency of clause deletion decreases over time to alleviate this issue.

To mitigate the drawbacks of clause deletion, solvers try to delete lower “quality”
clauses and maintain higher “quality” clauses. However, the definition for quality is
not entirely precise. Clause length is an intuitive proxy for quality where a shorter
clause is considered better quality. The rationale is that a clause with n literals
requires n − 1 literals being assigned to false before the clause induces propagation
so a smaller n means the clause is more likely to cause propagation. Audemard and
Simon noticed that many of these n−1 literals are assigned together. More precisely,
literals with the same decision level, called a block, are often logically connected in a
way that assigning one propagates the others. They used this observation to devise
a better clause quality metric called the literal blocks distance (LBD) [10] of a clause
defined as the number of distinct decision levels of all the literals in that clause. A low
LBD is intuitively better for the same reason as clause length, in that it takes fewer
assignments before the clause propagates. Modern clause deletion heuristics delete
learnt clauses with high LBD since these clauses are deemed to be lower quality.

Ultimately, a CDCL SAT solver is trying to automatize general resolution. For an
unsatisfiable instance, there exists a shortest sequence of resolution rule applications that
derives the empty clause, and hence a proof of unsatisfiability. If the sequence is short,
then a CDCL SAT solver can solve this instance quickly given that CDCL p-simulates
general resolution [75]. However this p-simulation result is contingent on nondeterministic
branching which is infeasible to implement in practice. If we view CDCL as a resolution
engine, then the branching heuristic design problem can be thought of as designing a de-
terministic branching heuristic that minimizes the number of resolution steps to the empty
clause. Alternatively, this can be thought of as approximating the ideal nondeterministic
branching as closely as possible.

Modern branching heuristics observe conflict analysis to dynamically rank the vari-
ables, see Section 4.2.1 for more details. The SAT solver can be split up into two parts:
the “student” that constructs partial assignments and “teacher” that critiques them. The
student consists of the branching and propagation whereas the teacher consists of conflict
analysis and backjumping. Then the solver becomes a two player game between the student
and the teacher. The student attempts to extend the partial assignment into a satisfying
assignment. Meanwhile the teacher provides feedback to the student in the form of learnt
clauses to inform the student of mistakes and repair the partial assignment. The student
and teacher take turns building up and tearing down the partial assignment until the stu-
dent concludes either satisfiable or unsatisfiable. From this model, the student-teacher

15

Algorithm 1 Pseudocode for a basic CDCL SAT solver. φ is the input CNF.

1: function CDCL(φ)
2: ν ← ∅ . Start with an empty assignment.
3: loop
4: ν ← BCP (φ, ν)
5: if ∃conflictingClause ∈ φ such that Falsified(conflictingClause, ν) then
6: if CurrentDecisionLevel(ν) = 0 then
7: return UNSAT
8: end if
9: learntClause← ConflictAnalysis(conflictingClause, ν)

10: φ← φ ∪ {learntClause} . Clause learning
11: ν ← BacktrackToDecisionLevel(DetermineBacktrackLevel(learntClause), ν)
12: else if |ν| = |V ariables(φ)| then
13: return SAT
14: else if RestartConditionMet() then
15: ν ← BacktrackToDecisionLevel(0, ν) . Restart
16: else
17: OptionallyPerformClauseDeletion()
18: var ← BranchingHeuristic()
19: value← PolarityHeuristic(var)
20: ν ← ν ∪ {var 7→ value} . Branch
21: end if
22: end loop
23: end function

16

feedback loop closely resembles the interplay between agent-environment loop in reinforce-
ment learning literature. This similarity inspired us to pursue reinforcement learning as
the basis for a new branching heuristic in Chapter 3.

2.1.3 Experimental Evaluation

SAT solvers are experimentally evaluated whenever a change is made, whether it be some-
thing small like a change of parameter or something big like implementing a new heuristic.
The evaluations performed in this thesis adhere to the following.

Benchmark: SAT solvers are evaluated over a fixed set of CNF instances, called the
benchmark. Hand selecting the benchmark can bias the evaluation since it is well
known that certain solvers and/or heuristics perform better and worse on certain
benchmarks. To avoid this issue of biasing the benchmark, we use the benchmarks
from the SAT Competition which is standard practice in this field. The SAT Com-
petition [1] is an annual competition where top SAT researchers worldwide compete
for the fastest SAT solver. The benchmarks change every year. The instances come
from diverse sources and require the solver to be well rounded to perform well. The
competition typically splits the benchmarks into three categories. The application
category are instances that come from real world usage of SAT solvers such as software
and hardware verification. The hard combinatorial category are contrived instances
designed to be challenging for modern solvers such as factoring and sub-graph iso-
morphism. The random category are instances that are randomly generated. We
typically evaluate on the application and hard combinatorial categories since CDCL
SAT solvers are extremely poor at solving random instances.

Environment: Experiments are performed in the cloud due to the size of the bench-
marks. Cloud environments with heterogeneous hardware are unqualified for eval-
uating solvers with respect to solving time. All time-sensitive experiments were
conducted on StarExec [82], a platform purposefully designed for evaluating SAT
solvers. The machines on StarExec have the following specifications.

• Intel Xeon CPU E5-2609 at 2.40GHz

• 10240 KB cache

• 129022 MB main memory

• Red Hat Enterprise Linux Server release 7.2 (Maipo)

17

• Linux kernel 3.10.0-514.16.1.el7.x86 64

• gcc-4.8.5-4.el7.x86 64

• glibc-2.17-157.el7 3.1.i686

For time-sensitive experiments, we sometimes opt for the Orca cluster on the SHAR-
CNET cloud [2] since it provides orders of magnitude more compute resources than
StarExec. The heterogeneous machines on the Orca cluster have the following spec-
ifications.

• 24 core AMD Opteron at 2.2 GHz with 32.0 GB of main memory

• 16 core Intel Xeon at 2.6 GHz with 32.0 GB of main memory

• 16 core Intel Xeon at 2.7 GHz with 64.0 GB of main memory

• 16 core Intel Xeon at 2.7 GHz with 128.0 GB of main memory

Plotting: Results of an experiment are typically plotted in a cactus plot which makes it
easy to see high level changes to performance at a glimpse. To construct a cactus
plot, a solver is run on every instance in the benchmark and the solving time for
each instance is recorded. All instances that timeout are discarded. The cactus plot
has two axes. The x-axis is the number of instances solved and the y-axis is the
solving time. For every value of x > 0, let y be the solving time in seconds for the
xth fastest instance to solve. Then the point (x, y) is added to the cactus plot. This
is interpreted as x instances in the benchmark have solving times less than or equal
to y seconds for the given solver. Being further to the right means solving more
instances. Being further down means solving instances faster. See Figure 2.1 for an
example of a cactus plot.

2.2 Average

A time series t = 〈t1, t2, ..., tn〉 is a sequence of numbers where ti ∈ R represents a data
point collected at time i. For example, ti can represent the distance traveled by a runner
after i seconds. We can compute the average of a time series to express what a typical
value is in the sequence. Two common methods for averaging includes the mean and the
exponential moving average.

18

0 20 40 60 80 100 120 140 160 180

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
ol

v
in

g
ti

m
e

(s
)

Glucose 4.1

Figure 2.1: A cactus plot of the Glucose 4.1 solver over the 350 instances from the main
track of SAT Competition 2017 with a 5000 second timeout.

2.2.1 Mean and Variance

The mean µ is a weighted sum of the time series where the weight is the constant 1
n
.

µ(t) =
n∑
i=1

1

n
ti (2.5)

Since every element in the time series is given equal weight, the temporal feature of the
data is essentially ignored and the order of the time series does not matter. Also note that
the expected value of the time series is also the mean.

E(t) = µ(t) (2.6)

The variance σ2 measures how far the data spreads from the mean. A low variance
means most of the data is clustered around the mean. A high variance means the data is
very spread out. The variance of a time series is defined as follows.

19

σ2(t) =
1

n− 1

n∑
i=1

(ti − µ(t))2 (2.7)

The mean µ and variance σ2 can be computed incrementally using the following formula.

δn = tn − µ(〈t1, t2, ..., tn−1〉) (2.8)

µ(〈t1, t2, ..., tn〉) = µ(〈t1, t2, ..., tn−1〉) + δn/n (2.9)

µ(〈〉) = 0 (2.10)

∆n = tn − µ(〈t1, t2, ..., tn〉) (2.11)

M(〈t1, t2, ..., tn〉) = M(〈t1, t2, ..., tn−1〉) + δn∆n (2.12)

M(〈〉) = 0 (2.13)

σ2(〈t1, t2, ..., tn〉) =
M(〈t1, t2, ..., tn〉)

n− 1
(2.14)

2.2.2 Exponential Moving Average (EMA)

Time is an important aspect when analyzing data, as old data can distort analysis. For
example, consider a time series ti representing the points scored by an athlete in his ith

game. One might compute the mean of the time series to evaluate the quality of the player
in his current form to determine whether he is worth adding to the team. However, the
mean would give a misleading picture of his current form since his first game he played
as a child and his most recent game are weighted equally. What makes more sense is to
give more weight to his recent games since this is more reflective of his current form. The
exponential moving average (EMA) does exactly that by giving a weighted average with
more recent elements having exponentially higher weights [22]. Typically, EMA is defined
recursively with the parameter 0 < α < 1 called smoothing factor or step-size depending
on context.

EMAα(〈t1, t2, ..., tn〉) = α · tn + (1− α) · EMAα(〈t1, t2, ..., tn−1〉) (2.15)

EMAα(〈〉) = 0 (2.16)

By convention, we will define the EMA of an empty time series to be zero, although
in practice this may not be ideal. As we will see in the branching heuristic case, setting

20

the value for the EMA of an empty time series corresponds to the initialization problem
of branching heuristics.

The above recursive definition gives a simple incremental implementation as more data
comes in. If Q is the EMA of 〈t1, t2, ..., tn〉 and a new data point tn+1 is collected, then
Q := α · tn+1 + (1 − α) · Q will be the EMA of the new time series containing tn+1. Note
that the time series does not need to be stored to compute the EMA, only Q needs to be
stored. This makes the EMA computation very cheap in both time and space.

In any case, the above recursive definition can be expanded to a closed form formula.

EMAα(〈t1, t2, ..., tn〉) = α

n∑
i=1

(1− α)n−iti (2.17)

In this expanded form, it is clear that EMA is also a weighted average where ti is given
the weight α(1 − α)n−i. The weights shrink exponentially as i decreases. Based on the
coefficient (1− α)n−i, it is clear that a smoothing factor α closer to 1 discounts older data
more and hence puts more weight in the recent data of the time series. Finding a good
value for α is a mix of intuition and experimentation.

2.3 Probability Distribution

A probability distribution describes the probability of all possible outcomes of a random
variable X. There are two classes of probability distributions, the discrete probability
distribution and the continuous probability distribution. In this section, we describe the
latter.

The continuous probability distribution, as the name suggests, is applicable when the
outcomes are continuous such as real numbers. It associates probabilities to outcomes via
a cumulative distribution function FX(x) for a random variable X.

FX(x) = P (X ≤ x) (2.18)

The probability density function fX(x) is defined with respect to the cumulative dis-
tribution function that describes the relative likelihood of the outcomes in the continuous
domain.

fX(x) =
d

dx
FX(x) (2.19)

21

2.3.1 Mean and Variance

Suppose we sample n times the random variable X resulting in 〈t1, t2, ..., tn〉. The mean
of X is the mean of the time series µ(〈t1, t2, ..., tn〉) as n approaches infinity, also known
as the law of large numbers. Alternatively, the mean of X can be computed using the
probability density function.

µ(X) =

∫
xfX(x)dx (2.20)

The variance is defined as the following.

σ2(X) =

∫
(x− µ(X))2fX(x)dx (2.21)

2.3.2 Normal Distribution

The normal distribution is a common continuous probability distribution defined by two
parameters: the mean µ and variance σ2. The variance is sometimes replaced by the
standard deviation σ, the square root of the variance. Even though the normal distribution
is a continuous distribution, it is often used to approximate discrete distributions. The
probability density function f(x) for the normal distribution is defined as follows.

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.22)

The probability density function forms a bell curve around the mean µ. The width
of the bell curve is proportional to the standard deviation σ. In this thesis, we use the
normal distribution to carve out percentiles, that is, we use it compute P (X ≤ x) where
X ∼ norm(µ, σ2). This can be calculated using z-score defined as follows.

z =
x− µ
σ

(2.23)

Once z is computed, use a Z-table to compute Φ(z). The Z-table is a table displaying
the values of Φ for common values of z. The probability can then be computed as P (X ≤
x) = Φ(z) = Φ(x−µ

σ
).

22

The reverse is also possible, find x such that P (X ≤ x) = p where p is a constant. In
other words, find the value x with percentile p.

P (X ≤ x) = p (2.24)

Φ(
x− µ
σ

) = p (2.25)

x− µ
σ

= Φ−1(p) (2.26)

x = Φ−1(p)σ + µ (2.27)

Given that Φ−1(p) is a constant for a fixed p, x can be computed by knowing the mean
µ and standard deviation σ.

2.4 Machine Learning

Machine learning is a rich field in artificial intelligence broadly to learn from data. We will
focus on two paradigms: supervised learning and reinforcement learning.

2.4.1 Supervised Learning

Suppose there exists some complex function f : Input→ Output that is infeasible to imple-
ment by hand. However, we do have labeled training data in the form of 〈Inputi, f(Inputi)〉
pairs. Given a large set of these labeled training data, also called a training set, machine
learning algorithms infer a new function f̃ that approximates f by analyzing the training
set. These types of machine learning algorithms are called supervised learning algorithms.

For example, consider the problem of image recognition: given an image as input,
return as output the name of the object present in the image. In this case the function
f maps inputs to names f : Image → Name. It is easy for our human brains to execute
f , given an image we can instantly recognize the object in it. However, implementing f
as a computer program by hand is infeasible. But engineers are interested in f for image
recognition to apply it in autonomous driving for example. In practice, these engineers use
supervised learning to approximate f . One of the challenges is to collect enough data to
train a complex function like f . For image recognition, the labeled training data is of type
〈Image,Name〉 consisting of an image along with the correct name of the object present

23

in the image. Humans can manually provide the labels, the names of the objects in the
images in this case. Once the training set is acquired, the supervised learning algorithm
learns f̃ .

If everything goes well, f̃ returns the correct output with a high probability when given
inputs from the training set, in which case we we say f̃ fits the training set. Ideally, f̃
returns the correct output for inputs that are not in the training set, in which case we say
the function generalizes.

Most supervised learning algorithms require the input data to be represented as a vector
of numbers. Feature extraction solves this issue by transforming each input data into a
vector of real numbers, called a feature vector, that summarizes the input datum. During
training, the feature vectors are used for training in place of the original input, hence
learning the function f̃ : Rn → Output where Rn is the feature vector’s type. Deciding
which features to extract has a large impact on the learning algorithm’s success. For
example, in image recognition, the feature extraction function Image→ Rn transforms an
image into an array of pixel RGB values where n is the number of pixels in the image.

Supervised learning is divided into two categories depending on the domain of the
output. Regression is the subclass of supervised learning where the output is continuous.
Classification is the other subclass where the output is categorical.

Regression: In this thesis, we only consider linear regression where f̃ : Rn → R is a linear
function.

f̃([x1, x2, ..., xn]) := w0 + w1x1 + w2x2 + ...+ wnxn (2.28)

The weights wi ∈ R measure the significance of each feature. The learning algorithm
is responsible for finding values for these weights to make f̃ approximate f as closely
as possible.

Classification: In this thesis, we only consider binary classification where the function
we want to learn has the type f : Input → {1, 0}. In other words, f maps every
input to either the class 1 or the class 0. f is also called a predicate.

We use logistic regression [30], a popular technique for binary classification, to learn
a function f̃ that cheaply approximates f . Despite the word “regression” in logistic
regression, it is typically used for classification. The function learnt by logistic re-
gression has the type f̃ : Rn → [0, 1] where Rn is from the feature extraction and the
output is a probability in [0, 1] that the input is in class 1. Equivalently, this is the

24

probability that the output is not in class 0. Logistic regression defines the function
f̃ as follows.

f̃([x1, x2, ..., xn]) := σ(w0 + w1x1 + w2x2 + ...+ wnxn), σ(z) :=
1

1 + e−z
(2.29)

The weights wi ∈ R measure the significance of each feature. The learning algorithm
is responsible for finding values for these weights to make f̃ approximate f as closely
as possible. Note that w0 +w1x1 +w2x2 + ...+wnxn is a linear function like in linear
regression. The sigmoid function σ simply squeezes the linear function to be between
0 and 1. Hence f̃ outputs a real number between 0 and 1, which is expected since it
is interpreted as a probability.

The learning algorithm we use to set the weights for both linear regression and logistic
regression is called stochastic gradient descent (SGD) [20], which is a popular algorithm
in many supervised learning problems. SGD minimizes the error by taking a step in the
opposite direction of the gradient with respect to each data point. The error of a data
point can be computed by the following error function, which is defined differently for
linear regression and logistic regression.

Linear regression:
Err(x, y,W) = (y − f̃(x; W))2 (2.30)

x is the input of a labeled training data point, y is the corresponding label for this
data point, and W is a vector weights that parameterizes f̃ .

Logistic regression:

Err(x, y,W) = y(1− f̃(x; W)) + (1− y)(f̃(x; W)) (2.31)

x is the input of a labeled training data point, y is the corresponding target class (0
or 1) for this data point and W is a vector weights that parameterizes f̃ .

In either case, the error function intuitively measures the difference between the output
of f̃ and the actual labeled output in the training set. If the error is high, then the fit is
poor. The duty of the learning algorithm is to select the weight vector W such that the
error function is minimized. For linear and logistic regression, this boils down to a convex

25

optimization problem where the objective is to minimize the error function by searching
over the space of weights. The local minimum and global minimum are one and the same
for convex optimization. The SGD algorithm which finds local minimums are ideal for
linear regression and logistic regression.

SGD minimizes the error rate by computing the slope or gradient of the error function
with respect to the weights, and moves the weights in the direction where the slope points
downwards hence reducing the error. SGD takes a step in the opposite direction of the
gradient as follows.

W′ ←W − α∂Err(x, y,W)

∂W
(2.32)

Here α is the step length (also known as the learning rate, not to be confused with the
unrelated definition of learning rate in SAT solving context). Under normal conditions, f̃
with the new weights W′ will fit the training set better than with the old weights W. If
training time is not an issue, then SGD can be applied repeatedly until a fixed point is
reached. The parameter 0 < α < 1 controls how aggressively the technique converges.

A common problem with machine learning in general is overfitting, where the trained
function f̃ predicts correctly for the inputs it has seen in the training set, but works poorly
for inputs it has not seen. We use a common technique called L2 regularization [69] to
mitigate overfitting. L2 regularization introduces a new term in the error function that
favors small weights.

Linear regression:
Err(x, y,W) = (y − f̃(x; W))2 + λ||W||22 (2.33)

Logistic regression:

Err(x, y,W) = y(1− f̃(x; W)) + (1− y)(f̃(x; W)) + λ||W||22 (2.34)

Essentially the error function appends the term λ||W||22 at the end to perform L2
regularization where λ is a constant.

||W||22 :=
n∑
i=0

w2
i (2.35)

Recall that SGD minimizes the error function. By adding term ||W||22, the error grows
if the weights wi are large. So SGD must also keep the weights small to minimize the

26

new error function. λ is a parameter that determines the importance of the regularization
penalty. How regularization prevents overfitting is beyond the scope of this thesis.

SGD is also commonly used in an online and incremental fashion. Each time new
data comes in, SGD is applied to this new data to update the weights, then the data is
discarded. This has two advantages. Discarding the data keeps the memory usage low,
especially useful when data is abundant. Additionally, the distribution in which the data is
created can change over time. Online stochastic gradient does not assume the distribution
is fixed and adjusts the weights accordingly after enough time. These two advantages are
critical in our use of SGD for designing heuristics.

2.4.2 Reinforcement Learning

In psychology, reinforcement refers to increasing or decreasing the likelihood of certain
actions based on positive (i.e., reward) or negative (i.e., cost) stimulus. For example,
rewarding a dog for good behavior teaches the dog to behave properly. Likewise, punishing
a dog for poor behavior teaches the dog to cease its bad behavior. Inspired by reinforcement
in psychology, an area of machine learning called reinforcement learning models an agent
who learns which actions are good or bad based on feedback it receives from performing
those actions.

Reinforcement learning is a very deep field. In this thesis, we will focus on the simplest
formulation of reinforcement learning called multi-armed bandits or MAB for short. We
will explain the MAB problem [83] through a classical analogy of a gambler (also called
agent) in a casino with n slot machines. The objective of the gambler is to maximize the
reward of monetary payouts received by playing these slot machines. Each slot machine has
a reward probability distribution describing its monetary payouts, associating a probability
with every possible value of payout. This distribution is hidden from the gambler. At any
given point in time, the gambler has n actions to choose from corresponding to playing one
of the n slot machines. The gambler picks an action, plays the corresponding slot machine,
and receives a reward in terms of monetary payout by sampling that slot machine’s reward
probability distribution. The MAB problem is to decide which actions to take to maximize
the cumulative reward over the long term, that is, to make as much money as possible.
Next, we describe a few algorithms that solve the MAB problem.

Optimal: If the reward probability distributions of the slot machines were revealed, then
the gambler would simply play the slot machine whose reward probability distribu-
tion has the highest mean. This will maximize expected monetary payouts for the

27

gambler. Note that this optimal strategy only requires knowing the mean of the re-
ward probability distribution for each slot machine and nothing else. The following
two algorithms approximate this optimal strategy by estimating the mean reward.
This is denoted by Qa where a is the action and Qa is the estimated mean reward
for playing action a.

Sample-Average: Since the reward probability distribution is hidden, a simple MAB
algorithm called sample-average [83] estimates the true mean of each reward prob-
ability distribution by the sample mean of the rewards observed from playing the
slot machines. If t is the time series of rewards received for playing action a, then
Qa = µ(t). When it comes time to select an action, the sample-average algorithm
picks argmaxaQa, that is, the machine it estimates to have the highest mean reward.

For example, suppose there are 2 slot machines named A and B. The gambler plays
both slot machines 4 times each, receiving the 4 rewards 〈$1, $2, $3, $4〉 for A and
〈$5, $4, $3, $2〉 for B. Then the algorithm will estimate the mean rewards of slot
machines A and B as QA = µ(〈$1, $2, $3, $4〉) = $2.5 and QB = µ(〈$5, $4, $3, $2〉) =
$3.5 respectively. Since QB > QA, the sample-average algorithm opts to play slot
machine B.

By the law of large numbers from probability theory, the estimated mean reward will
converge to the true mean reward as the number of observations approaches infinity.
In other words, the gambler improves the accuracy of its estimate of mean reward for
a slot machine by simply playing that slot machine to generate more reward data.
More data means better estimates.

Exponential Recency Weighted Average: The sample-average algorithm is applica-
ble if the hidden reward probability distributions are fixed. If the distributions change
over time, then the problem is called nonstationary, and requires different algorithms.
For example, suppose a slot machine gives smaller and smaller (respectively bigger
and bigger) rewards the more it has been played. The older the observed reward,
the bigger the difference between the current probability distribution and the distri-
bution from which the reward was sampled. Hence, older observed rewards should
have a smaller impact on the estimated mean reward than recent observed rewards.
This gives rise to the exponential recency weighted average [83] (ERWA) algorithm.
Instead of computing the mean of the observed rewards as in the sample-average
algorithm, ERWA uses EMA to give higher weights to recent observations relative to
distant observations. It estimates the mean reward as Qa = EMA(t) where t is the
time series of rewards received for playing action a. Using the same example as the
sample-average, ERWA estimates the mean payout of the slot machines A and B as

28

QA = EMAα(〈$1, $2, $3, $4〉) = $3.0625 and QBEMAα(〈$5, $4, $3, $2〉) = $2.5625
respectively where the smoothing factor is α = 0.5. Since QA > QB, ERWA esti-
mates the slot machine A to have a higher mean and opts to play slot machine A.
This differs from the sample-average algorithm which selected the slot machine B.
The recent rewards for the slot machine A is higher than the recent rewards of the
slot machine B, and this factored into ERWA’s decision to rank slot machine A as
the better machine to play.

In the sample-average and ERWA algorithms, selecting the action with the highest
estimated mean reward is called exploitation, that is, it chose the action it believes at
that time to be the best action given extant observations. The word exploitation refers
to exploiting the current knowledge accrued from playing the various slot machines and
observing their rewards in the past. However, this strategy can be suboptimal if the
estimates of the mean rewards are inaccurate.

For example, suppose a casino has 2 slot machines, with the first and second machines
having reward probability distributions with means of 100 and 200 respectively. The
gambler plays the first slot machine ten times and estimates its mean reward to be 105.
The gambler then plays the second machine ten times and by sheer bad luck receives
uncharacteristically low rewards. After the ten plays, the gambler estimates the mean
reward to be 50 for the second slot machine. If the gambler were to purely exploit, he
would continue playing the first slot machine perhaps perpetually. As long as the estimated
mean reward of the first slot machine remains above 50, the gambler never plays the second
machine. The estimated reward of the second slot machine remains at 50, and the gambler
never learns the true mean of 200. So by only exploiting, the gambler can fail to learn that
the second slot machine is the optimal slot machine to play. To avoid this problem, the
gambler needs to play the second machine more often, even though at the current time it
estimates the first slot machine to be the optimal slot machine to play. That way it has
the opportunity to collect more data about the second slot machine to produce a more
accurate estimate of its mean reward.

To address the shortcomings of exploitation, some algorithms introduce an aspect called
exploration [83] where it plays an action whose estimated mean reward is not the highest.
The word exploration refers to exploring other actions to gather more data about them
to improve the accuracy of the estimate mean. However, too much exploration is also a
problem. With enough data, the gambler has a reasonable picture of which slot machine has
the highest mean reward. Exploring in this case means playing a suboptimal slot machine.
This leads to the exploitation versus exploration trade-off where too much exploitation

29

leads to the gambler learning the optimal action much later and too much exploration
leads to the gambler selecting suboptimal actions too often.

2.5 Graph Community Structure and Centrality

Variables in a CNF formula have logical connections and the relationships between variables
is important to heuristics. The CNF can be represented graphically to visualize these
relationships. Once the CNF is in the form of a graph, we can apply various graph metrics
to analyze the CNF. We primarily focus on community structure and centrality metrics to
identify vertices of interest in the graph and correlate these with the variables prioritized
by VSIDS in Section 4.2.3. Community structure groups vertices that are closely related.
Centrality is a class of metrics to measure the “importance” of various vertices in a graph
by assigning a numerical value to each vertex. The number associated with each vertex
denotes its relative importance in the graph [36, 34].

2.5.1 Variable Incidence Graph

Variables in the same clause can propagate each other. The variable incidence graph (VIG)
captures these forms of relations between variables. In the VIG, every variable is its own
vertex. Two vertices share an edge if the corresponding variables share a clause. Since the
VIG captures potential propagations between variables, and shorter clauses are more likely
to propagate, naturally the VIG assigns higher weights to edges corresponding to shorter
clauses. If two variables share a clause of length |C|, then the weight of the edge between
them is assigned to 1

|C|−1
. This weighting scheme was chosen so that every clause adds a

weighted degree of 1 to all variables in the clause. All edges between each pair of vertices
is combined into a single weighted edge by summing the weights.

Definition 3 (Variable incidence graph (VIG)) Let φ be a CNF formula. The vari-
able incidence graph is a defined by the set of vertices V , the set of edges E, and the
weights of edges W : E → R.

V = V ariables(φ) (2.36)

E = {xy | C ∈ φ ∧ x ∈ C ∧ y ∈ C ∧ x 6= y} (2.37)

W (xy) =
∑

C∈φ∧x∈C∧y∈C∧x6=y

1

|C| − 1
(2.38)

30

When appropriate, we sometimes interpret a VIG as an adjacency matrix when conve-
nient. The adjacency matrix is a matrix representation of the weight function.

Definition 4 (Adjacency matrix) Suppose all the vertices are arbitrarily numbered as
x1, x2, ..., xn. An adjacency matrix A is a n×n matrix, where n is the number of variables
and the cell Aij = W (xixj).

2.5.2 Community Structure

The concept of decomposing graphs arose in the study of complex networks [39, 28] such
as social networks. A graph has community structure if the graph can be partitioned into
subgroup of vertices called communities subject to the following.

1. Each community has many edges between vertices within the same community. We
refer to these edges as intracommunity edges.

2. For every pair of distinct community, there are very few edges connecting vertices
between these two communities. We refer to these edges as bridges.

Given a partition of variables, the quality of the community structure for this particular
partition is measured by the modularity denoted by Q[28].

Q =
∑
i

(eii − a2
i) (2.39)

eij =
1

2m

∑
v

∑
w

δ(cv, i)δ(cw, j) (2.40)

ai =
1

2m

∑
v

kvδ(cv, i) (2.41)

ki =
∑
j

Aij (2.42)

m =
1

2

∑
i

ki (2.43)

δ(i, j) =

{
1 if i = j

0 otherwise
(2.44)

31

cv is the community in which v belongs to according to the partition. ki is the weighted
degree of vertex i. m is the total weight of all edges in the graph (the 1

2
is to prevent

double counting the weights of an undirected graph). eij is the weighted fraction of bridge
edges that start in community i and end in community j. ai is the weighted fraction
of edges incident to vertices in community i. From the definition of network modularity
Q =

∑
i(eii − a2

i), it is clear that the term eii boosts Q for intracommunity edges whereas
ai penalizes Q for bridges. Q ranges between 0 and 1. We say that a graph has a “good”
community structure if there exists a partition of communities such that Q is close to 1.

The ideal community structure detection algorithm finds the partition of variables into
communities such that Q is maximized. However, this exact maximization is prohibitively
expensive. In practice, there are a variety of algorithms that maximizes Q on a best
effort basis and tends to work well for most use cases. We refer the reader to these
papers [39, 28, 89] for a more formal introduction to community structure of graphs.

Recently there has been some interesting discoveries showing that SAT formulas from
real world applications exhibit community structure [7]. Subsequently, the authors of the
paper [72] showed that the running time of CDCL solvers is correlated with community
structures of SAT instances.

In the context of the community structure of the VIG of a CNF, bridge variables are
the variables corresponding to bridges in the community structure.

Definition 5 (Bridge Variable) A bridge variable is a variable whose corresponding ver-
tex in the VIG is incident to a bridge edge.

2.5.3 Degree Centrality

Degree centrality is motivated by social networks where vertices are people, and edges
represents that two people are acquaintances. The person with the most acquaintances is
the most popular. Degree centrality measures popularity. The degree centrality [34] of a
vertex in a graph is defined as the degree of the vertex. More precisely, degree centrality
of a vertex is computed as follows.

Degree(x) =
∑
y∈V

W (xy) (2.45)

32

2.5.4 Eigenvector Centrality

Degree centrality only takes into account the weight of the edges. Eigenvector centrality
also accounts for the importance of the vertex on the opposite side of the edge. For
example, being an acquaintance with the president is much more important than being an
acquaintance with an aide. The eigenvector centrality [71] is defined as follows.

Eigen(x) = λ−1
∑
y∈V

W (xy)Eigen(y) (2.46)

λ is a constant corresponding to the largest eigenvalue. Note that the definition is
recursive, making it less straightforward to compute than degree centrality. We use the
power iteration [41] method to approximate the eigenvector centrality.

To execute the power iteration method, the graph is first represented as an adjacency
matrix A. Let b0 be a vector of real numbers used as an initial estimation of the eigenvector
centrality. The ith element of the vector b0 is the estimate of the eigenvector centrality
of ith variable. We use the vector of all 1√

n
as our initial estimation. An iteration of the

power iteration method updates the estimates like so.

bk+1 =
Abk
||Abk||22

(Power iteration)

||M ||22 of a matrix M is computed as follows.

||M ||22 =
∑
i

∑
j

m2
ij (2.47)

The power iteration method converges the vector bk to the eigenvector centrality.

lim
k→∞

Eigen = bk (2.48)

The more iterations of power iteration, the closer bk approximates the eigenvector
centrality. Since this computation is rather expensive for large graphs, we use only 100
iterations. For our use case, the estimated centrality values change very little after 100
iterations.

33

Chapter 3

Machine Learning-Based Branching
Heuristics

In this chapter, we design new state-of-the-art branching heuristics by exploiting machine
learning. One of the challenges in designing branching heuristics is that it is not clear
what constitutes a good decision variable. Ideally, the branching heuristic selects the de-
cision variables such that the total solving time is minimized, but implementing this ideal
branching heuristic is impractical since the solving time is not known until the solver ter-
minates. Despite this setback, we still need to classify good decision variables in designing
branching heuristics. In this chapter, we define a simple metric called global learning rate
(GLR) that negatively correlates with solving time. In lieu of directly minimizing solving
time, we opt to maximize GLR instead for practical reasons. With this perspective, good
branching variables are those that increase GLR if branched on. Viewing the branching
problem explicitly as a GLR maximization problem gives clarity and structure to design-
ing branching heuristics by SAT researchers. This chapter proves that this perspective of
branching is very profitable.

Designers of branching heuristics must balance a trade-off between selecting good deci-
sion variables and the time it takes to compute these decision variables. Many instances, es-
pecially those originating from cryptography or combinatorial mathematics, requires brute
force to exhaust certain regions of the search space. A costly branching heuristic per-
forms poorly in these brute force situations. On the other hand, we know from work on
backdoors [86] that selecting the correct decision variables can result in very small search
spaces in practice. What we find is that machine learning is a powerful class of algorithms
that manages this trade-off by cheaply learning the good decision variables. In this chap-

34

ter, we define our objective, the global learning rate (GLR), and present some machine
learning-based branching heuristics to maximize the GLR objective.

3.1 Global Learning Rate (GLR)

The branching heuristic does not affect completeness nor soundness of CDCL, it is simply
there to improve performance. Ultimately the branching heuristic is solving an optimiza-
tion problem, select the branching order such that solving time is minimized. Hence the
problem of branching is an optimization problem where the solving time is the objective
to minimize. However, it is infeasible to calculate the solving time a priori, which makes
it unsuitable as an objective to minimize for branching.

The goal is to define a metric of CDCL solvers that serves as a proxy for solving time.
In other words, this feature empirically separates good and bad branching heuristics. This
serves two purposes. First, this helps us formalize an intuition on what makes a branching
heuristic good. Second, this feature can be used as an objective in an optimization prob-
lem as a substitute for solving time. The branching heuristic is responsible for assigning
variables through decisions that the SAT solver makes during a run. Although most of the
assignments will eventually revert due to backtracking and restarts, the solver guarantees
progress due to the production of learnt clauses. Hence learning new clauses gives a simple
metric for progress of the search.

We propose the global learning rate (GLR) as a proxy for solving time of a solver. GLR
is defined as follows.

GLR :=
of conflicts

of decisions
(Global Learning Rate)

Maximizing GLR makes intuitive sense when viewing the CDCL solver as a proof
system. Every conflict generates a new lemma (i.e., a learnt clause) in the proof. Every
decision is like a new “case” in the proof. Intuitively, the solver wants to generate lemmas
quickly using as few cases as possible, or in other words, maximize conflicts with as few
decisions as possible. This is equivalent to maximizing GLR. Of course in practice, not all
lemmas/learnt clauses are of equal quality, so the quality is also an important objective.
We will comment more on this in later sections.

Our goal is to construct a new branching heuristic to maximize the GLR. We assume
that one clause is learnt per conflict. Learning multiple clauses per conflict has diminishing

35

returns since they block the same conflict. First let us justify why maximizing GLR is a
reasonable objective for a branching heuristic. Past research concludes that clause learning
is the most important feature for good performance in a CDCL solver [52], so perhaps it is
not surprising that increasing the rate at which clauses are learnt is a reasonable objective.
In our experiments, we assume the learning scheme is 1-UIP [66] since it is universally used
by all modern CDCL solvers.

We propose the following hypothesis regarding GLR. We support this hypothesis in a
series of experiments.

Hypothesis 1 The branching heuristic that achieves higher GLR tends to be a better
branching heuristic.

3.2 Greedy Maximization of GLR

Finding the globally optimal branching sequence that maximizes GLR is intractable in
general. Hence we tackle a simpler problem to maximize GLR greedily instead. Although
this is too computationally expensive to compete with practical branching heuristics, it
provides a proof of concept for GLR maximization and a gold standard for subsequent
branching heuristics to emulate.

We define the function c : PA → {1, 0} that maps partial assignments to either class
1 or class 0. Class 1 is the “conflict class” which means that applying BCP to the input
partial assignment with the current clause database encounters a conflict once BCP hits a
fixed-point. Otherwise the input partial assignment is given the class 0 for “non-conflict
class”. Note that c is a mathematical function with no side-effects, that is applying it does
not alter the state of the solver. The function c is clearly decidable via one call to BCP,
although it is quite costly when called too often.

c(PA) =

{
1 if BCP (ClauseDatabase, PA) results in a conflict

0 otherwise
(3.1)

The greedy GLR branching (GGB) heuristic is a branching heuristic that maximizes
GLR greedily. When it comes time to branch, the branching heuristic is responsible for
appending a decision variable (plus a polarity) to the current partial assignment. GGB
prioritizes decision variables where the new partial assignment falls in class 1 according

36

to the function c. In other words, GGB branches on decision variables that cause a con-
flict during the subsequent call to BCP, if such variables exist. See Algorithm 2 for the
implementation of GGB.

Algorithm 2 Pseudocode for the GGB heuristic using the function c to greedily maximize
GLR. Note that GGB is a meta-heuristic, it takes an existing branching heuristic (VSIDS
in the pseudocode) and makes it greedier by causing conflicts whenever possible. In general,
VSIDS can be replaced with any other branching heuristic.

1: function PhaseSaving(Var) . Return the variable plus a polarity.
2: return mkLit(V ar, V arsavedPolarity)
3: end function
4:

5: function VSIDS(Vars) . Return variable with highest VSIDS activity plus a
polarity.

6: return PhaseSaving(argmaxv∈V arsvactivity)
7: end function
8:

9: function GGB
10: CPA← CurrentPartialAssignment
11: V ← UnassignedV ariables
12: oneClass← {v ∈ V | c(CPA ∪ {PhaseSaving(v)}) = 1}
13: zeroClass← V \ oneClass
14: if oneClass 6= ∅ then . Next BCP will cause a conflict.
15: return VSIDS(oneClass)
16: else . Next BCP will not cause a conflict.
17: return VSIDS(zeroClass)
18: end if
19: end function

Unfortunately, GGB is very computationally expensive due to the numerous calls to
the c function every time a new decision variable is needed. However, we show that GGB
significantly increases the GLR relative to the base branching heuristic VSIDS. Addition-
ally, we show that if the time to compute the decision variables was factored out, then
GGB would be a more efficient heuristic than VSIDS. This suggests we need to cheaply
approximate GGB to avoid the heavy computation. A cheap and accurate approximation
of GGB would in theory be a better branching heuristic than VSIDS.

37

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1 10 100 1000 10000

G
G

B
 E

�

e
c
ti

v
e
 T

im
e

VSIDS E�ective Time
GGB has higher GLR VSIDS has higher GLR

Figure 3.1: GGB vs VSIDS. Each point in the plot is a comparable instance. Note that
the axes are in log scale. GGB has a higher GLR for all but 2 instances. GGB has a mean
GLR of 0.74 for this benchmark whereas VSIDS has a mean GLR of 0.59.

3.2.1 Experimental Results

In this section, we show that GGB accomplishes its goal of increasing the GLR and solving
instances faster. Experiments were performed with MapleSAT using the StarExec plat-
form [82], a platform purposefully designed for evaluating SAT solvers. Restarts and clause
deletion were turned off to minimize the effects of external heuristics. For each of the 300
instances in the SAT Competition 2016 application category, MapleSAT was ran twice,
the first run configured with VSIDS and the second run configured with GGB. The run
with VSIDS used a timeout of 5000 seconds. The run with GGB used a timeout of 24
hours to account for the heavy computational overhead. We define effective time as the
solving time minus the time spent by the branching heuristic selecting variables. Figure 3.1
shows the results of effective time between the two heuristics. Only comparable instances
are plotted. An instance is comparable if either both heuristics solved the instance or one
heuristic solved the instance with an effective time of x seconds while the other heuristic
timed out with an effective time greater than x seconds.

Of the comparable instances, GGB solved 69 instances with a lower effective time than
VSIDS and 29 instances with a higher effective time. Hence if the branching was free,
then GGB would solve instances faster than VSIDS 70% of the time. GGB achieves a
higher GLR than VSIDS for all but 2 instances, hence it does a good job increasing GLR

38

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1 10 100 1000 10000

G
G

B
 E

�

e
c
ti

v
e
 T

im
e

VSIDS E�ective Time
GGB has lower LBD VSIDS has lower LBD

Figure 3.2: GGB vs VSIDS. GGB has a lower average LBD for 72 of the 98 comparable
instances. GGB has a mean average LBD of 37.2 for this benchmark whereas VSIDS has
a mean average LBD of 61.1.

as expected. Figure 3.2 shows the same experiment except the points are colored by the
average LBD of all clauses learnt from start until termination. GGB has a lower LBD than
VSIDS for 72 of the 98 comparable instances. We believe this is because GGB by design
causes conflicts earlier when the decision level is low, which keeps the LBD small since
LBD cannot exceed the current decision level.

3.3 Multi-Armed Bandits Branching

As noted earlier, the student-teacher model of CDCL portrays a feedback loop between
branching and clause learning that is highly reminiscent of reinforcement learning. We pur-
sue reinforcement learning in this section as a means for designing new branching heuris-
tics. However, we need to modify the GLR objective slightly to work in the reinforcement
learning framework.

39

3.3.1 Learning Rate Objective

Branching is an action in reinforcement learning parlance. To design a branching heuristic
with reinforcement learning, we need to design a reward for individual actions that guide
the solver towards higher GLR. Although the ultimate goal is to increase GLR, the GLR
metric is a “global” metric that measures the overall performance. We define a local version
of GLR, simply called learning rate, that measures the contribution to GLR by individual
actions/variables.

Clauses are learnt via conflict analysis on the implication graph that the solver con-
structs during solving. A variable v participates in generating a learnt clause l if either v
appears in l or v is resolved during the conflict analysis that produces l (i.e., appears in the
conflict side of the implication graph induced by the cut that generates l). In other words,
v is required for the learning of l from the encountered conflict. Note that only assigned
variables can participate in generating learnt clauses. We define I as the interval of time
between the assignment of v until v transitions back to being unassigned. Let P (v, I) be
the number learnt clauses in which v participates during interval I and let L(I) be the
number of learnt clauses generated in interval I. The learning rate (LR) of variable v at

interval I is defined as P (v,I)
L(I)

. For example, suppose variable v is assigned by the branching
heuristic after 100 learnt clauses are produced. It participates in producing the 101-st and
104-th learnt clause. Then v is unassigned after the 105-th learnt clause is produced. In
this case, P (v, I) = 2 and L(I) = 5 and hence the LR of variable v is 2

5
.

In other words, the learning rate of a variable is the probability the variable generates
a conflict when assigned. Clearly branching on variables with high learning rate increases
the global learning rate.

The exact LR of a variable is usually unknown during branching. In the previous exam-
ple, variable v was picked by the branching heuristic after 100 learnt clauses are produced,
but the LR is not known until after the 105-th learnt clause is produced. Therefore optimiz-
ing LR involves a degree of uncertainty, which makes the problem well-suited for learning
algorithms. In addition, the LR of a variable changes over time due to modifications to
the learnt clause database, stored phases, and assignment trail. As such, estimating LR
requires nonstationary algorithms to deal with changes in the underlying environment.
These circumstances are well-suited for multi-armed bandits.

40

3.3.2 Multi-Armed Bandit Model for Branching

Given n Boolean variables, we abstract branching as an n-armed bandit optimization
problem. A branching heuristic has n actions to choose from, corresponding to branching on
any of the n Boolean variables. The expressions assigning a variable and playing an action
are used interchangeably. When a variable v is assigned, then v can begin to participate in
generating learnt clauses. When v becomes unassigned, the LR r is computed and returned
as the reward for playing the action v. The terms reward and LR are used interchangeably.
The MAB algorithm uses the reward to update its internal estimates of the action that
maximizes the rewards.

The MAB algorithm is limited to picking actions corresponding to unassigned vari-
ables, as the branching heuristic can only branch on unassigned variables. This limitation
forces some exploration, as the MAB algorithm cannot select the same action again until
the corresponding variable is unassigned from backtracking or restarting. Although the
branching heuristic is only assigning one variable at a time, it indirectly assigns many
other variables through propagation. We include the propagated variables, along with the
branched variables, as plays in the MAB framework. That is, branched and propagated
variables all receive their own individual rewards corresponding to their LR, and the MAB
algorithm uses all these rewards to update its internal estimates. This also forces some ex-
ploration since a variable ranked poorly by the MAB algorithm can still be played through
propagation.

3.3.3 Learning Rate Branching (LRB) Heuristic

Given the MAB abstraction, we first use the well-known ERWA bandit algorithm as a
branching heuristic. We will upgrade ERWA with two novel extensions to arrive at the
final branching heuristic called the learning rate branching (LRB) heuristic. We will justify
these extensions experimentally through the lens of MAB, that is, these extensions are
better at maximizing the LR rewards. We will demonstrate empirically the effectiveness
of LRB at solving the benchmarks from the 4 previous SAT Competitions.

Exponential Recency Weighted Average (ERWA): We will explain how to apply
ERWA as a branching heuristic through the MAB abstraction. First we will provide
a conceptual explanation, that is easier to comprehend. Then we will provide a com-
plementary explanation from the implementation’s perspective, which is equivalent
to the conceptual explanation, but is more efficient.

41

Algorithm 3 Pseudocode for ERWA as a branching heuristic using our MAB abstraction
for maximizing LR.
1: procedure Initialize . Called once at the start of the solver.
2: α← 0.4 . The step-size.
3: LearntCounter ← 0 . The number of learnt clauses generated by the solver.
4: for v ∈ V ars do . V ars is the set of Boolean variables in the input CNF.
5: Qv ← 0 . The EMA estimate of v.
6: Assignedv ← 0 . When v was last assigned.
7: Participatedv ← 0 . The number of learnt clauses v participated in gen-

erating since Assignedv.
8: end for
9: end procedure

10:
11: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars) .

Called after a learnt clause is generated from con-
flict analysis.

12: LearntCounter ← LearntCounter + 1
13: for v ∈ conflictSide ∪ learntClauseV ars do
14: Participatedv ← Participatedv + 1
15: end for
16: if α > 0.06 then
17: α← α− 10−6

18: end if
19: end procedure
20:
21: procedure OnAssign(v ∈ V ars) . Called when v is assigned by branching or propa-

gation.
22: Assignedv ← LearntCounter
23: Participatedv ← 0
24: end procedure
25:
26: procedure OnUnassign(v ∈ V ars) . Called when v is unassigned by backtracking or

restart.
27: Interval← LearntCounter −Assignedv
28: if Interval > 0 then . Interval = 0 is possible due to restarts.
29: r ← Participatedv/Interval. . r is the LR.
30: Qv = (1− α) ·Qv + α · r . Update the EMA incrementally.
31: end if
32: end procedure
33:
34: function PickBranchLit . Called when the solver requests the next branching

variable.
35: U ← {v ∈ V ars | isUnassigned(v)}
36: return argmaxv∈UQv . Use a priority queue for better performance.
37: end function

42

Conceptually, each variable v maintains its own time series tsv containing the ob-
served rewards for v. Whenever a variable v transitions from assigned to unas-
signed, ERWA will calculate the LR r for v (see Section 3.3.1) and append the
reward r to the time series by updating tsv ← append(tsv, r). When the solver
requests the next branching variable, ERWA selects the variable v∗ where v∗ =
argmaxv∈U(EMAα(tsv)) and U is the set of currently unassigned variables.

The actual implementation takes advantage of the incrementality of EMA to avoid
storing the time series ts, see Algorithm 3 for pseudocode of the implementation. Al-
ternative to the above description, each variable v maintains a floating point number
Qv representing EMAα(tsv). Qv is initialized to 0 at the start of the search. When v
receives reward r, the implementation updates Qv using the incrementality of EMA,
that is, Qv ← (1 − α) · Qv + α · r (see line 30 of Algorithm 3). When the solver re-
quests the next branching variable, the implementation selects the variable v∗ where
v∗ = argmaxv∈UQv and U is the set of currently unassigned variables (see line 36 of
Algorithm 3). Note that Qv can be stored in a priority queue for all unassigned vari-
ables v, hence finding the maximum takes logarithmic time in the worst-case. The
implementation is equivalent to the prior conceptual description, but significantly
more efficient in both memory and time.

For our experiments, we initialize the step-size α = 0.4. We follow the convention
of typical ERWA to decrease the step-size over time [83]. After each conflict, the
step-size is decreased by 10−6 until it reaches 0.06 (see line 17 in Algorithm 3), and
remains at 0.06 for the remainder of the run. This step-size management is equivalent
to the one in CHB [59] and is similar to how the Glucose solver manages the VSIDS
decay factor by increasing it over time [12].

Reason Side Rate (RSR) Extension: Recall that LR measures the participation rate
of variables in generating learnt clauses. That is, variables with high LR are the
ones that frequently appear in the generated learnt clause and/or the conflict side
of the implication graph. If a variable appears on the reason side near the learnt
clause, then these variables just missed the mark. We show that accounting for these
close proximity variables, in conjunction with the ERWA heuristic, optimizes the LR
further.

More precisely, if a variable v appears in a reason clause of a variable in a learnt
clause l, but does not occur in l, then we say that v reasons in generating the learnt
clause l. We define I as the interval of time between the assignment of v until v
transitions back to being unassigned. Let A(v, I) be the number of learnt clauses
which v reasons in generating in interval I and let L(I) be the number of learnt

43

clauses generated in interval I. The reason side rate (RSR) of variable v at interval

I is defined as A(v,I)
L(I)

.

Recall that in ERWA, the estimates are updated incrementally as Qv ← (1 − α) ·
Qv + α · r where r is the LR of v. This extension modifies the update to Qv ←
(1−α)·Qv+α·(r+A(v,I)

L(I)
) where A(v,I)

L(I)
is the RSR of v (see line 25 in Algorithm 4). Note

that we did not change the definition of the reward. The extension simply encourages
ERWA to branch on variables with high RSR. We hypothesize that variables observed
to have high RSR are likely to have high LR as well.

Locality Extension: Recent research shows that VSIDS exhibits locality [61], defined
with respect to the community structure of the input CNF instance [61, 72, 7].
Intuitively, if the solver is currently working within a community, it is best to continue
focusing on the same community rather than exploring another. We hypothesize that
high LR variables also exhibit locality, that is, the branching heuristic can achieve
higher LR by restricting exploration.

Inspired by the VSIDS decay, this extension multiplies the Qv of every unassigned
variable v by 0.95 after each conflict (see line 5 in Algorithm 5). Again, we did not
change the definition of the reward. The extension simply discourages the algorithm
from exploring inactive variables. This extension is similar to the decay reinforcement
model [33, 88] where unplayed arms are penalized by a multiplicative decay. The
implementation is optimized to do the multiplications in batch. For example, suppose
variable v is unassigned for k conflicts. Rather than executing k updates of Qv ←
0.95×Qv, the implementation simply updates once using Qv ← 0.95k ×Qv.

The learning rate branching (LRB) heuristic refers to ERWA in the MAB abstrac-
tion with the RSR and locality extensions. We show that LRB is better at optimizing
LR than the other branching heuristics considered, and subsequently has the best overall
performance of the bunch.

3.3.4 Experimental Results

In this section, we discuss the detailed and comprehensive experiments we performed to
evaluate LRB. First, we justify the extensions of LRB by demonstrating their performance
vis-a-vis improvements in learning rate. Second, we show that LRB outperforms the state-
of-the-art VSIDS and CHB branching heuristic. Third, we show that LRB achieves higher
rewards/LR than VSIDS, CHB, and LRB without the extensions. Fourth, we show the

44

Algorithm 4 Pseudocode for ERWA as a branching heuristic with the RSR extension.
The pseudocode Algorithm1.method(...) is calling out to the code in Algorithm 3. The
procedure PickBranchLit is unchanged.

1: procedure Initialize
2: Algorithm1.Initialize()
3: for v ∈ V ars do . V ars is the set of Boolean variables in the input CNF.
4: Reasonedv ← 0 . The number of learnt clauses v reasoned in

generating since Assignedv.
5: end for
6: end procedure
7:

8: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆
V ars)

9: Algorithm1.AfterConflictAnalysis(learntClauseV ars, conflictSide)
10: for v ∈ (

⋃
u∈learntClauseV ars reason(u)) \ learntClauseV ars do

11: Reasonedv ← Reasonedv + 1
12: end for
13: end procedure
14:

15: procedure OnAssign(v ∈ V ars)
16: Algorithm1.OnAssign()
17: Reasonedv ← 0
18: end procedure
19:

20: procedure OnUnassign(v ∈ V ars)
21: Interval← LearntCounter − Assignedv
22: if Interval > 0 then . Interval = 0 is possible due to restarts.
23: r ← Participatedv/Interval. . r is the LR.
24: rsr ← Reasonedv/Interval. . rsr is the RSR.
25: Qv = (1− α) ·Qv + α · (r + rsr) . Update the EMA incrementally.
26: end if
27: end procedure

45

Algorithm 5 Pseudocode for ERWA as a branching heuristic with the locality extension.
AfterConflictAnalysis is the only procedure modified.

1: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆
V ars)

2: Algorithm2.AfterConflictAnalysis(learntClauseV ars, conflictSide)
3: U ← {v ∈ V ars | isUnassigned(v)}
4: for v ∈ U do
5: Qv ← 0.95×Qv.
6: end for
7: end procedure

effectiveness of LRB within a state-of-the-art CDCL solver, namely, CryptoMiniSat [80]. To
better gauge the results of these experiments, we quote two leading SAT solver developers,
Professors Audemard and Simon [11]:

“We must also say, as a preliminary, that improving SAT solvers is often a
cruel world. To give an idea, improving a solver by solving at least ten more
instances (on a fixed set of benchmarks of a competition) is generally showing
a critical new feature. In general, the winner of a competition is decided based
on a couple of additional solved benchmarks.”

Setup

The experiments are performed by running CDCL solvers with various branching heuristics
on StarExec [82]. The benchmarks for the experiments consist of all the instances from
the previous 4 SAT Competitions (2014, 2013, 2011, and 2009), in both the application
and hard combinatorial categories. For each instance, the solver is given 5000 seconds of
CPU time and 7.5GB of RAM, abiding by the SAT Competition 2013 limits.

Our experiments test different branching heuristics on a base CDCL solver, where the
only modification is to the branching heuristic to give a fair apple-to-apple comparison.
Our base solver is MiniSat version 2.2.0 [32] (simp version) with one modification to use
the popular aggressive LBD-based clause deletion proposed by the authors of the Glucose
solver in 2009 [10]. Since MiniSat is a relatively simple solver with very few features, it is
ideal for our base solver to better isolate the effects of swapping branching heuristics in our
experiments. Additionally, MiniSat is the basis of many competitive solvers and aggressive
LBD-based clause deletion is almost universally implemented, hence we believe the results
of our experiments will generalize to other solver implementations.

46

Experiment: Efficacy of Extensions to ERWA

In this experiment, we demonstrate the effectiveness of the extensions we proposed for LRB.
We modified the base solver by replacing the VSIDS branching heuristic with ERWA. We
then created two additional solvers, one with the RSR extension and another with both
the RSR and locality extensions. We ran these 3 solvers over the entire benchmark and
report the number of instances solved by these solvers within the time limit in Table 3.1.
ERWA solves a total of 1212 instances, ERWA with the RSR extension solves a total of
1251 instances, and ERWA with the RSR and locality extensions (i.e., LRB) solves a total
of 1279 instances. See Figure 3.3 for a cactus plot of the solving times.

Experiment: LRB vs VSIDS vs CHB

In this experiment, we compare LRB with the state-of-the-art branching heuristics VSIDS [68]
and CHB [59]. Our base solver is MiniSat 2.2 which already implements VSIDS. We then
replaced VSIDS in the base solver with LRB and CHB to derive 3 solvers in total, with
the only difference being the branching heuristic. We ran these 3 solvers on the entire
benchmark and present the results in Table 3.2. LRB solves a total of 1279 instances,
VSIDS solves a total of 1179 instances, and CHB solves a total of 1235 instances. See
Figure 3.3 for a cactus plot of the solving times.

Experiment: LRB and Learning Rate

In this experiment, we measure the efficacy of the 5 branching heuristics from Table 3.1 and
Table 3.2 at maximizing the LR. For each instance in the benchmark, we solve the instance
5 times with the 5 branching heuristics implemented in the base solver. For each branching
heuristic, we track all the observed rewards (i.e., LR) and record the mean observed reward
at the end of the run, regardless if the solver solves the instance or not. We then rank
the 5 branching heuristics by their mean observed reward for that instance. A branching
heuristic gets a rank of 1 (resp. 5) if it has the highest (resp. lowest) mean observed reward
for that instance. For each branching heuristic, we then average its ranks over the entire
benchmark and report these numbers in Table 3.3. The experiment shows that LRB is the
best heuristic in terms of maximizing the reward LR (corresponding to a rank closest to
1) in almost every category. In addition, the experiment shows that the RSR and locality
extensions increase the observed rewards relative to vanilla ERWA. Somewhat surprisingly,
VSIDS and CHB on average observe higher rewards (i.e., LR) than ERWA, despite the

47

Benchmark Status ERWA
ERWA
+ RSR

ERWA
+ RSR

+ Locality
(LRB)

2009 Application
SAT 85 84 85
UNSAT 122 120 121
BOTH 207 204 206

2009 Hard Combinatorial
SAT 98 99 101
UNSAT 65 68 69
BOTH 163 167 170

2011 Application
SAT 105 105 103
UNSAT 98 101 98
BOTH 203 206 201

2011 Hard Combinatorial
SAT 95 88 93
UNSAT 45 61 65
BOTH 140 149 158

2013 Application
SAT 125 133 132
UNSAT 89 95 95
BOTH 214 228 227

2013 Hard Combinatorial
SAT 113 110 116
UNSAT 97 108 110
BOTH 210 218 226

2014 Application
SAT 111 108 116
UNSAT 82 77 77
BOTH 193 185 193

2014 Hard Combinatorial
SAT 87 92 91
UNSAT 73 87 89
BOTH 160 179 180

TOTAL (w/o duplicates)
SAT 638 632 654
UNSAT 574 619 625
BOTH 1212 1251 1279

Table 3.1: Comparison of our extensions on the base CDCL solver (MiniSat 2.2 with
aggressive LBD-based clause deletion). The entries show the number of instances solved
for the given solver and benchmark, the higher the better. Green is best, red is worst.

48

Benchmark Status LRB VSIDS CHB

2009 Application
SAT 85 83 89
UNSAT 121 125 119
BOTH 206 208 208

2009 Hard Combinatorial
SAT 101 100 103
UNSAT 69 66 67
BOTH 170 166 170

2011 Application
SAT 103 95 106
UNSAT 98 99 96
BOTH 201 194 202

2011 Hard Combinatorial
SAT 93 88 102
UNSAT 65 48 47
BOTH 158 136 149

2013 Application
SAT 132 127 137
UNSAT 95 86 79
BOTH 227 213 216

2013 Hard Combinatorial
SAT 116 115 122
UNSAT 110 73 96
BOTH 226 188 218

2014 Application
SAT 116 105 115
UNSAT 77 94 73
BOTH 193 199 188

2014 Hard Combinatorial
SAT 91 91 90
UNSAT 89 59 76
BOTH 180 150 166

TOTAL (w/o duplicates)
SAT 654 626 673
UNSAT 625 553 562
BOTH 1279 1179 1235

Table 3.2: Apple-to-apple comparison between branching heuristics (LRB, CHB, and
VSIDS) in a version of MiniSat 2.2 with aggressive LBD-based clause deletion. The entries
show the number of instances in the benchmark the given branching heuristic solves, the
higher the better. Green is best, red is worst. The LRB version (we dub as MapleSAT),
outperforms the others.

49

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000 1200 1400

T
im

e
 (

s
)

of Solved Instances

VSIDS
ERWA

CHB
ERWA + RSR

LRB

Figure 3.3: A cactus plot of the 5 branching heuristics in MiniSat 2.2 with aggressive
LBD-based clause deletion. The benchmark consists of the 4 most recent SAT Competition
benchmarks (2014, 2013, 2011, 2009) including both the application and hard combinatorial
categories, excluding duplicate instances.

fact that VSIDS and CHB are designed without LR as an explicit objective. This perhaps
partly explains the effectiveness of those two heuristics.

Experiment: LRB vs State-Of-The-Art CDCL

In this experiment, we test how LRB-enchanced CryptoMiniSat competes against the state-
of-the-art solvers CryptoMiniSat [80], Glucose [12], and Lingeling [14] which all implement
VSIDS. We modified CryptoMiniSat 4.5.3 by replacing VSIDS with LRB, leaving every-
thing else unmodified. We ran unmodified CryptoMiniSat, Glucose, and Lingeling, along
with the LRB-enchanced CryptoMiniSat on the benchmark and report the results in Ta-
ble 3.4. LRB improved CryptoMiniSat on 6 of the 8 benchmarks and solves 59 more
instances overall.

50

Benchmark Status LRB ERWA
ERWA
+ RSR

VSIDS CHB

2009 Application
SAT 2.41 3.79 3.42 2.51 2.87
UNSAT 2.13 4.16 3.32 2.90 2.49
BOTH 2.25 4.01 3.36 2.74 2.65

2009 Hard Combinatorial
SAT 2.43 3.30 3.03 3.29 2.95
UNSAT 2.18 4.18 3.48 3.22 1.94
BOTH 2.33 3.66 3.21 3.26 2.53

2011 Application
SAT 2.25 3.61 3.02 2.77 3.35
UNSAT 2.14 3.82 3.22 3.49 2.33
BOTH 2.20 3.72 3.12 3.13 2.85

2011 Hard Combinatorial
SAT 2.57 3.47 2.98 3.46 2.53
UNSAT 2.57 3.72 3.32 3.54 1.85
BOTH 2.57 3.56 3.11 3.49 2.27

2013 Application
SAT 2.33 3.60 3.16 2.49 3.41
UNSAT 2.02 4.16 3.07 3.39 2.37
BOTH 2.19 3.85 3.12 2.89 2.95

2013 Hard Combinatorial
SAT 2.51 3.57 2.91 3.03 2.98
UNSAT 1.99 3.92 2.65 4.26 2.18
BOTH 2.24 3.75 2.78 3.65 2.58

2014 Application
SAT 2.27 3.68 3.21 2.50 3.35
UNSAT 2.24 4.34 3.20 2.82 2.40
BOTH 2.25 4.01 3.21 2.66 2.88

2014 Hard Combinatorial
SAT 2.43 3.51 3.03 2.78 3.26
UNSAT 1.81 4.38 2.69 3.82 2.30
BOTH 2.11 3.96 2.85 3.31 2.76

TOTAL (w/o duplicates)
SAT 2.45 3.53 3.10 2.72 3.20
UNSAT 2.12 4.08 3.10 3.41 2.30
BOTH 2.28 3.81 3.10 3.07 2.74

Table 3.3: The average ranking of observed rewards compared between different branching
heuristics in MiniSat 2.2 with aggressive LBD-based clause deletion. The lower the reported
number, the better the heuristic is at maximizing the observed reward relative to the others.
Green is best, red is worst.

51

Benchmark Status
CMS

w/ LRB
CMS

w/ VSIDS
Glucose Lingeling

2009 Application
SAT 85 87 83 80
UNSAT 140 143 138 141
BOTH 225 230 221 221

2009 Hard Combinatorial
SAT 102 95 90 98
UNSAT 71 65 70 83
BOTH 173 160 160 181

2011 Application
SAT 106 97 94 94
UNSAT 122 129 127 134
BOTH 228 226 221 228

2011 Hard Combinatorial
SAT 86 86 80 88
UNSAT 57 49 44 66
BOTH 143 135 124 154

2013 Application
SAT 115 109 104 100
UNSAT 120 115 111 122
BOTH 235 224 215 222

2013 Hard Combinatorial
SAT 116 114 115 114
UNSAT 114 101 106 117
BOTH 230 215 221 231

2014 Application
SAT 107 102 99 101
UNSAT 118 127 120 141
BOTH 225 229 219 242

2014 Hard Combinatorial
SAT 89 85 79 89
UNSAT 122 100 93 119
BOTH 211 185 172 208

TOTAL (w/o duplicates)
SAT 619 598 575 589
UNSAT 738 700 685 782
BOTH 1357 1298 1260 1371

Table 3.4: Apple-to-apple comparison between four state-of-art solvers: CryptoMiniSat
(CMS) with LRB heuristic, CMS with VSIDS, Glucose, and Lingeling. The table shows
the number of instances solved per SAT Competition benchmark, categorized as SAT or
UNSAT instances. CMS with LRB (we dub as MapleCMS) outperforms CMS with VSIDS
on most benchmarks.

52

3.4 Stochastic Gradient Descent Branching Heuristic

GGB is too expensive in practice because of the computational cost of computing the c
function. As mentioned earlier, branching heuristics need to balance the trade-off between
selecting good decision variables and branching quickly. Unfortunately, GGB fails in the
latter. In this section, we describe a new branching heuristic called the stochastic gradient
descent branching (SGDB) heuristic that solves this issue by cheaply approximating c :
PA→ {1, 0} via machine learning.

The c function is a classifier that classifies partial assignments into either class 1 or
0. We approximate c by modelling it as a classification problem in machine learning. We
opt for the popular logistic regression function c̃ : Rn → [0, 1] where Rn is the partial
assignment’s feature vector and [0, 1] is the probability the partial assignment is in class
1, the conflict class. We use online stochastic gradient descent to train the function c̃
to approximate the function c during the search. Online training is a good fit since the
function c we are approximating is non-stationary due to the clause database changing over
time. For an instance with n Boolean variables and a partial assignment PA, we introduce
the features x1, ..., xn defined as follows: xi = 1 if variable i ∈ PA, otherwise xi = 0.

Recall that in logistic regression, c̃ := σ(w0 +w1x1 +w2x2 + ...+wnxn) is parameterized
by the weights wi, and the goal of SGDB is to find good weights dynamically as the solver
roams through the search space. At the start of the search all weights are initialized to
zero since we assume no prior knowledge.

To train these weights, SGDB needs to generate training data of the form PA× {1, 0}
where 1 signifies the conflicting class, that is, applying BCP on PA with the current
clause database causes a conflict. We leverage the existing conflict analysis procedure in
the CDCL algorithm to create this data. Whenever the solver performs conflict analysis,
SGDB creates a partial assignment PA1 by concatenating the literals on the conflict side of
conflict analysis with the negation1 of the literals in the learnt clause and gives this partial
assignment the label 1. Clearly applying BCP to PA1 with the current clause database
leads to a conflict, hence it is assigned to the conflict class. SGDB creates another partial
assignment PA0 by concatenating all the literals in the current partial assignment excluding
the variables in the current decision level and excluding the variables in PA1. Applying
BCP to PA0 does not lead to a conflict with the current clause database, because if it did,
the conflict would have occurred at an earlier decision level. Hence PA0 is given the label
0. In summary, SGDB creates two data points at every conflict, one for each class (the

1Recall that the learnt clause is created by negating some literals in the implication graph, this negation
here is to un-negate them.

53

conflict class and the non-conflict class) guaranteeing a balance between the two classes.

Two data points are created at every conflict. SGDB then applies one step of stochastic
gradient descent on these two data points to update the weights after each conflict. Since
we are training in an online fashion, the two data points are discarded after the weights
are updated. To reduce the computation cost, regularization is performed lazily. Regular-
ization, if done eagerly, updates the weights of every variable on every step of stochastic
gradient descent. With lazy updates, only the weights of non-zero features are updated. In
other words, the weights of unassigned variables do not need to be updated immediately.
As is typical with stochastic gradient descent, we gradually decrease the learning rate α
over time until it reaches a fixed limit. This helps to rapidly adjust the weights at the start
of the search.

When it comes time to pick a new decision variable, SGDB uses the c̃ function to
predict the decision variable that maximizes the probability of creating a partial as-
signment in class 1, the conflict class. More precisely, it selects the following variable:
argmaxv∈UnassignedV arsc̃(CPA ∪ PhaseSaving(v)) where CPA is the current partial as-
signment and PhaseSaving(v) returns v plus the polarity which the phase saving heuristic
assigns to v if it were to be branched on. However, the complexity of the above computa-
tion is linear to the number of unassigned variables. Luckily this can be simplified by the
following reasoning:

argmaxv∈UnassignedV arsc̃(CPA ∪ PhaseSaving(v))

= argmaxv∈UnassignedV arsσ(w0 + wv +
∑

l∈vars(CPA)

wl)

Note that σ is a monotonically increasing function.

= argmaxv∈UnassignedV ars(w0 + wv +
∑

l∈vars(CPA)

wl)

Remove the terms common to all the iterations of argmax.

= argmaxv∈UnassignedV arswv

Hence it is equivalent to branching on the unassigned variable with the highest weight.
By storing the weights in a max priority queue, the variable with the highest weight can
be retrieved in time logarithmic to the number of unassigned variables, a big improvement
over linear time. The complete algorithm is presented in Algorithm 6.

Differences with VSIDS: The SGDB branching heuristic presented thus far has many
similarities with VSIDS. During each conflict, VSIDS increments the activities of the

54

Algorithm 6 Pseudocode for the SGDB heuristic.
1: function PhaseSaving(Var) . return the variable plus a polarity
2: return mkLit(V ar, V arSavedPolarity)
3: end function
4:
5: procedure Initialize
6: for all v ∈ V ars do
7: α← 0.8, λ← 0.1× α, wv ← 0
8: rv ← 0 . Stores the last time v was lazily regularized.
9: end for
10: conflicts← 0 . The number of conflicts occurred so far.
11: end procedure
12:
13: function GetPA1(learntClause, conflictSide)
14: return {¬l | l ∈ learntClause} ∪ conflictSide
15: end function
16:
17: function GetPA0(PA1)
18: return {v ∈ AssignedV ars | DecisionLevel(v) < currentDecisionLevel} \ PA1

19: end function
20:
21: procedure AfterConflictAnalysis(learntClause, conflictSide) . Called after a learnt clause is generated from

conflict analysis.
22: if α > 0.12 then
23: α← α− 2× 10−6, λ← 0.1× α
24: end if
25: conflicts← conflicts+ 1
26: PA1 ← GetPA1(learntClause, conflictSide)
27: PA0 ← GetPA0(PA1)
28: for all v ∈ vars(PA1 ∪ PA0) do . Lazy regularization.
29: if conflicts− rv > 1 then
30: wv ← wv × (1− αλ

2
)conflicts−rv−1

31: end if
32: rv ← conflicts
33: end for
34: error1 ← σ(w0 +

∑
i∈vars(PA1)

wi) . Compute the gradients and descend.

35: error0 ← σ(w0 +
∑
i∈vars(PA0)

wi)

36: w0 ← w0 × (1− αλ
2

)− α
2

(error1 + error2)

37: for all v ∈ vars(PA1) do
38: wv ← wv × (1− αλ

2
)− α

2
(error1)

39: end for
40: for all v ∈ vars(PA0) do
41: wv ← wv × (1− αλ

2
)− α

2
(error0)

42: end for
43: end procedure
44:
45: function SGDB
46: d← argmaxv∈UnassignedV arswv
47: while conflicts− rd > 0 do . Lazy regularization.
48: wd ← wd × (1− αλ

2
)conflicts−rd

49: rd ← conflicts
50: end while
51: end function

55

variables in PA1 by 1 whereas SGDB increases the weights of the variables in PA1

by a gradient. Additionally, the VSIDS decay multiplies every activity by a constant
between 0 and 1, the L2 regularization in stochastic gradient descent also multiplies
every weight by a constant between 0 and 1. SGDB decreases the weights of variables
in PA0 by a gradient, VSIDS does not have anything similar to this.

Sparse Non-Conflict Extension: The AfterConflictAnalysis procedure described in
Algorithm 6 takes time proportional to |PA1| and |PA0|. Unfortunately in practice,
|PA0| is often quite large, about 75 times the size of |PA1| in our experiments. To
shrink the size of PA0, we introduce the sparse non-conflict extension. With this
extension PA0 is constructed by randomly sampling one assigned literal for each
decision level less than the current decision level. Then the literals in PA1 are
removed from PA0 as usual. This construction bounds the size of PA0 to be less
than the number of decision levels. See Algorithm 7 for the pseudocode.

Reason-Side Extension: SGDB constructs the partial assignment PA1 by concatenat-
ing the literals in the conflict side and the learnt clause. Although PA1 is sufficient
for causing the conflict, the literals on the reason side are the reason why PA1 literals
are set in the first place. Inspired by the LRB branching heuristic with a similar ex-
tension, the reason-side extension takes the literals on the reason side adjacent to the
learnt clause in the implication graph and adds them to PA1. This lets the learning
algorithm associate these variables with the conflict class. See Algorithm 8 for the
pseudocode.

Algorithm 7 Pseudocode for the sparse non-conflict extension. Only the GetPA0 code is
modified, the rest remains the same as SGDB.

1: function Sample(level)
2: C ← {v ∈ V ars | DecisionLevel(v) = level}
3: return a variable sampled uniformly at random from C
4: end function
5:

6: function GetPA0(PA1)
7: return (

⋃
i∈{1,2,...,currentDecisionLevel−1} Sample(i)) \ PA1

8: end function

56

Algorithm 8 Pseudocode for the reason-side extension. Only the GetPA1 code is modified,
the rest remains the same as SGDB.

1: function GetPA1(learntClause, conflictSide)
2: adjacent←

⋃
lit∈learntClauseReason(¬lit)

3: return {¬l | l ∈ learntClause} ∪ conflictSide ∪ adjacent
4: end function

3.4.1 Experimental Results

We ran MapleSAT configured with 6 different branching heuristics (LRB, VSIDS, SGDB
with four combinations of the two extensions) on all the application and hard combinatorial
instances from SAT Competitions 2011, 2013, 2014, and 2016. At the end of each run, we
recorded the elapsed time, the GLR at termination, and the average LBD of all clauses
learnt from start to finish. Table 3.5 and Figure 3.4 show the effectiveness of each branching
heuristic in solving the instances in the benchmark. The reason-side extension (resp.
sparse non-conflict extension) increases the number of solved instances by 97 (resp. 155).
The two extensions together increase the number of solved instances by 219, and in total
solve just 12 instances fewer than VSIDS. LRB solves 93 more instances than VSIDS.
Table 3.6 shows the GLR and the average LBD achieved by the branching heuristics.
Both extensions individually increased the GLR and decreased the LBD. The extensions
combined increased the GLR and decreased the LBD even further. The best performing
heuristic, LRB, achieves the highest GLR and lowest LBD in this experiment. It should
not be surprising that LRB has high GLR, our goal when designing LRB was to generate
lots of conflicts by branching on variables likely to cause conflicts. By design, LRB tries
to achieve high GLR albeit indirectly by branching on variables with high learning rate.

3.5 Related Work

The Chaff solver introduced the VSIDS branching heuristic in 2001 [68]. Although many
branching heuristics have been proposed [40, 17, 78, 38, 65, 51], VSIDS and its variants
remain as the dominant branching heuristic employed in modern CDCL SAT solvers. Car-
valho and Marques-Silva used rewards based on learnt clause length and backjump size
to improve VSIDS [25]. More precisely, the bump value of VSIDS is increased for short
learnt clauses and/or long backjumps. Their usage of rewards is unrelated to the defini-
tion of rewards in the reinforcement learning and multi-armed bandits context. Loth et
al. used multi-armed bandits for directing the growth of the search tree for Monte-Carlo

57

Benchmark Status
SGDB +

No
Ext

SGDB +
Reason

Ext

SGDB +
Sparse

Ext

SGDB +
Both
Ext

VSIDS LRB

2011 Application
SAT 84 89 96 93 95 103
UNSAT 87 87 96 94 99 98
BOTH 171 176 192 187 194 201

2011 Hard Combinatorial
SAT 85 92 91 97 88 93
UNSAT 36 50 43 51 48 64
BOTH 121 142 134 148 136 157

2013 Application
SAT 91 92 108 112 127 132
UNSAT 75 75 86 81 86 95
BOTH 166 167 194 193 213 227

2013 Hard Combinatorial
SAT 107 109 118 118 115 116
UNSAT 57 88 60 99 73 111
BOTH 164 197 178 217 188 227

2014 Application
SAT 79 86 100 107 105 116
UNSAT 65 62 79 73 94 76
BOTH 144 148 179 180 199 192

2014 Hard Combinatorial
SAT 82 82 91 86 91 91
UNSAT 41 61 56 73 59 89
BOTH 123 143 147 159 150 180

2016 Application
SAT 52 55 62 62 60 61
UNSAT 52 50 55 57 63 65
BOTH 104 105 117 119 123 126

2016 Hard Combinatorial
SAT 5 7 6 7 3 6
UNSAT 19 29 25 26 42 25
BOTH 24 36 31 33 45 31

TOTAL (no duplicates)
SAT 585 612 672 682 684 718
UNSAT 432 502 500 554 564 623
BOTH 1017 1114 1172 1236 1248 1341

Table 3.5: # of solved instances by various configurations of SGD, VSIDS, and LRB.

Metric Status
SGDB +

No
Ext

SGDB +
Reason

Ext

SGDB +
Sparse

Ext

SGDB +
Both
Ext

VSIDS LRB

Mean GLR
SAT 0.324501 0.333763 0.349940 0.357161 0.343401 0.375181
UNSAT 0.515593 0.518362 0.542679 0.545567 0.527546 0.557765
BOTH 0.403302 0.409887 0.429420 0.434854 0.419337 0.450473

Mean Avg LBD
SAT 22.553479 20.625091 19.470764 19.242937 28.833872 16.930723
UNSAT 17.571518 16.896552 16.249930 15.832730 22.281780 13.574527
BOTH 20.336537 18.965914 18.037512 17.725416 25.918232 15.437237

Table 3.6: GLR and average LBD of various configurations of SGD, VSIDS, and LRB on
the entire benchmark with duplicate instances removed. LRB solves the most instances
and achieves the highest GLR and lowest average LBD in our experiments.

58

0 200 400 600 800 1,000 1,200 1,400

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
ol

v
in

g
ti

m
e

(s
)

SGD + No Extensions
SGD + Reason Extension
SGD + Sparse Extension
SGD + Both Extensions

VSIDS
LRB

Figure 3.4: A cactus plot of various configurations of SGD, VSIDS, and LRB on the entire
benchmark with duplicate instances removed.

59

Tree Search [62]. The rewards are computed based on the relative depth failure of the
tree walk. Fröhlich et al. used the UCB algorithm from multi-armed bandits to select the
candidate variables to define the neighborhood of a stochastic local search for the theory of
bitvectors [37]. The rewards they are optimizing is to minimize the number of unsatisfied
clauses. Lagoudakis and Littman used reinforcement learning to dynamically switch be-
tween a fixed set of 7 well-known SAT branching heuristics [58]. Their technique requires
offline training on a class of similar instances. Our technique differs in that machine learn-
ing selects the variables themselves, rather than selecting from a branching heuristic from
a fixed set of predetermined heuristics.

60

Chapter 4

Understanding Branching Heuristics

Pipatsrisawat and Darwiche made a landmark discovery in 2009. They showed remarkably
that CDCL solvers with nondeterministic branching and restarts p-simulate general reso-
lution [75]. That is, problems with short general resolution proofs are tractable for CDCL
solvers assuming the branching heuristic and the restart policy makes the correct choices.
This goes to show the importance of the branching heuristic to a SAT solver in theory.
On the empirical side, the story is the same, the branching heuristic is critically important
for the awesome performance of CDCL SAT solvers we see today [52]. The shortcoming
in practice is that the branching heuristic cannot simulate the nondeterministic branching
order without knowing the proof of unsatisfiability a priori. Yet somehow the branching
heuristic still needs to derive a good branching order somehow. This chapter is devoted
to understanding how good branching heuristics arrive at a good order by studying their
behavior.

The VSIDS branching heuristic is of primary interest due to its role in revolutionizing
CDCL SAT solvers. Although VSIDS is just a composition of two simple procedures called
bump and decay, its uncanny ability to conjure up good variable orderings for a wide range
of instances is an enigma. In this chapter, we study the bump and decay components
separately and understand them individually before treating VSIDS as a whole.

In this chapter, we first justify GLR as a good objective for branching by studying
extant branching heuristics in SAT history. We see that the better heuristics tend to be
those that achieve higher GLR. Second, we show that VSIDS bump is biased towards
variables that are likely to increase GLR. However, this bump “signal” is noisy. Third,
we show that VSIDS decay is an exponential moving average for smoothing out noise in
a noisy signal. Hence the combination of bump and decay allows VSIDS to focus on the

61

variables most likely to increase GLR. Lastly, we show that the bump and decay can be
viewed as finding constrained variables in a graphical CNF. More precisely, the variables
ranked highly by VSIDS correlates with the variables ranked highly by graph centrality
measures.

4.1 Understanding GLR

In Hypothesis 1, we conjectured that increasing GLR is good for branching. Our exper-
imental results with GGB and LRB are consistent with that hypothesis. In this section,
we conduct a more thorough experiment to support the hypothesis.

We test 7 well-known branching heuristics: LRB [60], CHB [59], VSIDS (MiniSat [32]
variation of VSIDS), CVSIDS (Chaff [68] variation of VSIDS), Berkmin [40], DLIS [65],
and Jeroslow-Wang [51]. We created 7 versions of MapleSAT [3], one for each branching
heuristic, keeping the code unrelated to the branching heuristic untouched. We ran all
7 branching heuristics on each application and hard combinatorial instance from every
SAT Competition and SAT Race held between 2009 and 2016 with duplicate instances
removed. At the end of each run, we recorded the solving time, GLR at termination, and
the average LBD of clauses learnt. This experiment was conducted on StarExec. For each
instance, the solver was given 1800 seconds of CPU time and 8GB of RAM. The code for
our experiments can be found on the MapleSAT website [4].

The results are presented in Table 4.1. Note that sorting by GLR in decreasing order,
sorting by instances solved in decreasing order, sorting by LBD in increasing order, and
sorting by average solving time in increasing order produces almost the same ranking. This
gives credence to our hypothesis that GLR correlates with branching heuristic effectiveness.
Additionally, the experiment shows that high GLR correlates with low LBD.

To better understand the correlation between GLR and solving time, we ran a second
experiment where for each instance, we computed the Spearman’s rank correlation coeffi-
cient [81] (Spearman correlation for short) between the 7 branching heuristics’ GLR and
solving time. We then averaged all the instances’ Spearman correlations by applying the
Fisher transformation [35] to these correlations, then computing the mean, then applying
the inverse Fisher transformation. This is a standard technique in statistics to average
over correlations. This second experiment was performed on all the application and hard
combinatorial instances from SAT Competition 2013 using the StarExec platform with a
5400s timeout and 8GB of RAM. For this benchmark, the average Spearman correlation is
-0.3708, implying a negative correlation between GLR and solving time, or in other words,

62

Table 4.1: The GLR, number of instances solved, and average solving time for 7 different
branching heuristics, sorted by the number of solved instances. Timed out runs have a
solving time of 1800s in the average solving time.

Heuristic Avg LBD Avg GLR # Instances Solved Avg Solving Time(s)
LRB 10.797 0.533 1552 905.060
CHB 11.539 0.473 1499 924.065

VSIDS 17.163 0.484 1436 971.425
CVSIDS 19.709 0.406 1309 1043.971

BERKMIN 27.485 0.382 629 1446.337
DLIS 20.955 0.318 318 1631.236
JW 176.913 0.173 290 1623.226

Table 4.2: The Spearman correlation relating GLR to solving time between the 7 heuristics.
The experiment is repeated with different solver configurations. MapleSAT is the default
configuration which is essentially MiniSat [32] with phase saving [74], Luby restarts [63],
and rapid clause deletion [10] based on LBD [10]. Clause activity based deletion is the
scheme implemented in vanilla MiniSat.

Configuration Spearman Correlation
MapleSAT -0.3708

No phase saving -0.4492
No restarting -0.3636

Clause deletion based on clause activity -0.4235
Clause deletion based on LBD -0.3958

Rapid clause deletion based on clause activity -0.3881

a high (resp. low) GLR tends to have low (resp. high) solving time as we hypothesized.
Table 4.2 shows the results of the same correlation experiment with different solver con-
figurations. The results show that the correlations remain moderately negative for all the
configurations we tried.

The hypothesis that GLR correlates with the solving time of various branching heuristic
holds empirically for the set of well-known branching heuristics. Perhaps this should not
come as a surprise given that the recent trend in branching heuristic design is to prioritize
variables that caused conflicts, presumably assuming these variables continue to cause
conflicts in the near future. We dive deeper in the next section on how the VSIDS branching
heuristic accomplishes exactly that.

63

4.2 Understanding VSIDS

Various branching heuristics have come and gone. Over time, the variable state indepen-
dent decaying sum (VSIDS) branching heuristic [68] has become the dominant branching
heuristic for CDCL SAT solvers for over a decade. Understanding why VSIDS works well
in practice is crucial in designing new heuristics. VSIDS is implemented as follows.

Activity: VSIDS associates a floating-point number for each variable called activity. In-
tuitively, the activity measures a variable’s frequency of appearing in recent conflicts
via the bump and decay. When it comes time to branch, VSIDS selects the unas-
signed variable with the highest activity. This is made easy by storing the activities
in a priority queue. Typically activities are initialized to zero at the start of the
search.

Bump: During conflict analysis, all the variables appearing in either the conflict side of
the cut or the learnt clause have their activity additively increased by one, also called
a bump. The bump (without the decay) is essentially counting the number of times
each variable appears in either the conflict side of the cut or the learnt clause. We
define a notable variation of VSIDS, which we refer to as cVSIDS, that only bumps
variables in the learnt clause. cVSIDS bumps a subset of variables that VSIDS
bumps, and they perform decay in the same manner.

Decay: After each conflict, the activities of all variables is multiplicatively decreased by a
decay factor α where 0 < α < 1. A naive implementation of decay takes linear time
to perform the multiplication for each variable activity. MiniSat introduced a clever
implementation of decay [32] that reduces the cost to amortized constant time.

It is beneficial to view the bumps of variable v as a time series bv defined as follows.

bv := 〈bv,1, bv,2, ..., bv,t〉 (4.1)

bv,i :=

{
1 if variable v is bumped on the ith conflict

0 otherwise
(4.2)

Then the activity of variable v at time the tth conflict is defined recursively as follows.

64

activityv,t =

{
0 if t = 0

α(bv,t + activityv,t−1) otherwise
(4.3)

Adding bv,t to the previous activity is the bump and multiplying by α is the decay.
In this definition, we define the initial activity as zero which is common. Setting the
initial activity is called initialization, and the activity values chosen for initialization can
drastically alter the running time. For now, we ignore initialization and focus on the
fundamentals, the bump and decay. The key to understanding VSIDS is to address the
following two questions.

1. What is special about the class of variables that VSIDS chooses to additively bump?

2. What role does multiplicative decay play in making VSIDS so effective?

We will show that the answer to the first question is that VSIDS bumps variables that
are likely to cause conflicts and hence increase GLR if branched on. The answer to the
second question is that the multiplicative decay behaves like an exponential moving average
(EMA) that favors variables that persistently occur in conflicts (the signal) over variables
that occur intermittently (the noise). The combination of these two answers gives VSIDS
the power to realize variable orderings that achieve high GLR.

4.2.1 Understanding VSIDS Bump

Without the VSIDS bump, the variable activities will remain zero. But what is special
about the set of variables VSIDS chooses to additively bump? The GLR experiment in
Table 4.1 provides a good hint. VSIDS achieves high GLR by branching on variables that
are more likely to cause conflicts in the future. Paired with the fact that it bumps variables
that caused conflicts in the past, it seems natural to speculate that VSIDS bumps variables
that cause GLR to go up if branched on.

Recall the definition of function c : PA → {1, 0} from equation 3.1. Class 1 is the
“conflict class” which means that applying BCP to the input partial assignment with the
current clause database would encounter a conflict once BCP hits a fixed-point. Otherwise
the input partial assignment is given the class 0 for “non-conflict class”.

The process of branching appends a variable assignment to the current partial assign-
ment to create a new partial assignment PA′. If c(PA′) = 1, then the GLR increases since

65

a conflict is imminent once BCP is invoked. The most recent decision caused the GLR to
increase. Otherwise c(PA′) = 0 means the GLR decreases since a decision was made but
no conflict occurs. The idea is to use c to classify all the potential decision variables to
either class 1 (i.e., those that increase GLR if branched on) and class 0 (i.e., those that de-
crease GLR if branched on). See Algorithm 9 for the pseudocode. If increasing GLR is the
goal, then VSIDS should bump variables in class 1 to increase its likelihood of branching
on these variables to obtain higher GLR.

Algorithm 9 Pseudocode for classifying a potential decision variable x for CNF φ.

1: function PhaseSaving(Var) . Return the variable plus a sign.
2: return mkLit(V ar, V arsavedPolarity)
3: end function
4:

5: function Classify(x)
6: CPA← CurrentPartialAssignment
7: PA′ ← CPA ∪ PhaseSaving(x)
8: return c(PA′)
9: end function

Hypothesis 2 The set of variables VSIDS chooses to bump has an overrepresentation of
variables in class 1 (the conflict class) relative to the general population of variables.

In this experiment, we ran Glucose 4.1 1 over all 350 instances in the main track from
the SAT Competition 2017. Each instance is given a timeout of 6 hours on StarExec [82].
Whenever a conflict occurs, we perform the following steps.

1. Record the set of variables bumped by VSIDS.

2. Allow the solver to resolve the conflict by learning a new clause, backjumping, and
propagating the new learnt clause.

3. For all potential decision variables (i.e., all the unassigned variables), we classify
them as either class 1 or class 0.

4. If none of the variables have class 1, then we ignore this conflict. Otherwise proceed
to the next step.

1Glucose is a popular and competitive CDCL SAT solver often used in experiments because of its
efficacy and simplicity (http://www.labri.fr/perso/lsimon/glucose/)

66

http://www.labri.fr/perso/lsimon/glucose/

5. We record the following information:

• BumpedClassOne: the number of potential decision variables that were bumped
by the conflict and are in class 1.

• Bumped: the number of potential decision variables that were bumped by the
conflict.

• ClassOne: the number of potential decision variables that are in class 1.

• All: the number of potential decision variables.

At the end of the run, we compute the following two numbers for each instance.

B =

∑
BumpedClassOne∑

Bumped
(4.4)

C =

∑
ClassOne∑

All
(4.5)

B represents the proportion of bumped potential decision variables that were in class
1. If B is relatively high, then the VSIDS bump is targeting class 1 variables. This biases
VSIDS to branch on these variables thus increasing GLR. C represents the percentage
of potential decision variables that are in class 1. C describes the proportion class 1
variables occurring in the general population of variables. We then compute the bump-
conflict ratio defined as B

C
. A high ratio means that VSIDS bump targets class 1 variables

disproportionately. We record the bump-conflict ratio for every instance and report the
ratios in Figure 4.1 in the form of a histogram. The median bump-conflict ratio is 11.75
and the average bump-conflict ratio is 422.40. So for most instances, the bumped variable
is over 11 times more likely to be in class 1 than the average variable. Only 5 of the 350
instances recorded a ratio less than 1, with the minimum ratio being 0.953.

Understanding VSIDS bump helped with our branching heuristic work. Since VSIDS
uses conflict analysis to identify variables likely to cause conflicts, we used the same clause
analysis mechanism as a reward signal in the reinforcement learning context.

We provide an complementary explanation for the set of variables VSIDS chooses to
bump. Recall that a 1-UIP learnt clause is derived by a sequence of resolution rule ap-
plications starting from the conflicting clause. In this sequence of resolutions, only the
final resolvent (i.e., the 1-UIP learnt clause itself) is stored in the learnt clause database.
The intermediate clauses in this sequence of resolutions are discarded. The 1-UIP learnt

67

 0

 10

 20

 30

 40

 50

 60

-2 0 2 4 6 8 10 12

#
 in

st
a
n
ce

s

log(B/C)

Bump-conflict ratio

Figure 4.1: Histogram of the log bump-conflict ratio.

clause is beneficial because it is 1-empowering, but many of these intermediate clauses
are also 1-empowering [76]. We conjecture that many of these intermediate clauses re-
main 1-empowering even after learning the 1-UIP clause. So we want to branch on the
variables corresponding to these 1-empowering intermediate clauses to hopefully absorb
them through conflicts. That is, to learn additional clauses so that they no longer remain
1-empowering. The variables corresponding to these 1-empowering intermediate clauses
are exactly the variables on the conflict side, which VSIDS bumps.

Hypothesis 3 Intermediate clauses of the 1-UIP learning scheme are mostly 1-empowering
even after adding the 1-UIP learnt clause to the learnt clause database.

In this experiment, we ran Glucose 4.1 over all 350 instances in the main track from
the SAT Competition 2017. Each instance is given a timeout of 6 hours on StarExec [82].
Whenever a conflict occurs, we record all the intermediate clauses. We then allow the
solver to learn the 1-UIP clause. After, we scan the intermediate clauses from the most
recent conflict and mark whether they are 1-empowering or not. At the end of the run,
we report the fraction between the total number of marked intermediate clauses over the
total number of intermediate clauses for every instance. We report all the fractions in
Figure 4.2. A fraction of 1 (resp. 0) means all (resp. none) of the intermediate clauses
remain 1-empowering after the 1-UIP clause is learnt. The median fraction is 0.685 and

68

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 in

st
a
n
ce

s

% 1-empowering intermediate clause

Intermediate clauses remaining 1-empowering

Figure 4.2: Histogram of the percentage of intermediate clauses that remain 1-empowering
after the 1-UIP clause is learnt.

the average fraction is 0.676. So approximately 67% of the intermediate clauses are not
absorbed and benefit from having their variables bumped.

4.2.2 Understanding VSIDS Decay

The inclusion of multiplicative decay in VSIDS gives it the distinctive feature of focusing
its search based on recent conflicts. Figure 4.3 shows the importance of decay in VSIDS
from a performance perspective. Without decay, Glucose solved 57 fewer instances out of
the 350 in the benchmark.

The original Chaff paper [68] and patent [67] motivates the decay by rather cryptically
mentioned that VSIDS acts like a “low-pass filter” without specifying what signals are
being fed to this filter, and why the high-frequency components are being filtered out
and discarded. While Huang et al. [48] referred to VSIDS as an EMA, we will show
this explicitly. On top of explicitly characterizing VSIDS as an EMA, we also describe
how this plays a crucial role in the effectiveness of VSIDS as a branching heuristic. We
first reformulate how activities are calculated to better highlight the relationship between
VSIDS and EMA.

69

0 20 40 60 80 100 120 140 160 180

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
ol

v
in

g
ti

m
e

(s
)

Glucose 4.1
Glucose 4.1 w/o VSIDS decay

Figure 4.3: Cactus plot of Glucose 4.1 with and without VSIDS decay on 350 instances
from the main track of SAT Competition 2017.

activityv,t =

{
0 if t = 0

α(bv,t + activityv,t−1) otherwise
(4.6)

=

{
0 if t = 0

αbv,t + αactivityv,t−1 otherwise
(4.7)

=

{
0 if t = 0

(1− α)(α
1−αbv,t) + αactivityv,t−1 otherwise

(4.8)

In the last equation, the recursive definition of activity is remarkably similar to the
recursive definition of EMA. We define a new time series b′ for bumps that scales all the
elements of b by α

1−α .

b′v := 〈 α

1− α
bv,1,

α

1− α
bv,2, ...,

α

1− α
bv,t〉 (4.9)

Then the equation of activity can be further simplified.

70

activityv,t =

{
0 if t = 0

(1− α)(α
1−αbv,t) + αactivityv,t−1 otherwise

(4.10)

=

{
0 if t = 0

(1− α)b′v,t + αactivityv,t−1 otherwise
(4.11)

= EMA1−α(b′v) (4.12)

In this final equation, it is clear that VSIDS activity is exactly an EMA over the scaled
bump time series b′. The EMA causes VSIDS to favor variables that “persistently” occur in
“recent” conflicts. Recall that earlier we showed that VSIDS bump targets class 1 variables.
However this data is extremely noisy, and not always accurate. Additionally, the set of
class 1 variables changes over time as the current partial assignment morphs and the learnt
clause database expands. Hence there is a temporal aspect to understanding the bump
signals. For these reasons, an EMA helps reduce the noise and handle the temporality of
class 1 variables. As a result, adding decay to VSIDS greatly increases the GLR since it is
better able to single out class 1 variables than without decay.

Understanding VSIDS decay was greatly beneficial to our branching heuristic work.
The VSIDS connection with EMA led us directly to ERWA in the reinforcement learning
branching context since it also employs EMA to smooth out noise and handle temporality.

4.2.3 Correlation Between VSIDS and Graph Structure

Variables form logical relationships and we hypothesize that VSIDS exploit these rela-
tionships to find the variables that are most “constrained” in the formula. The logical
relationship between variables are concretized as some variation of the variable incidence
graph (VIG). We then use various metrics from graph theory to find the “constrained”
variables and show that VSIDS concentrates on these variables.

VSIDS Favors Bridge Variables

Researchers have found that SAT formulas encountered in the real world tend to exhibit
community structure [7]. Shortly after, a different group of researchers show that formulas
with good community structure tend to be easier to solve [72]. It was natural for us ask

71

the question whether VSIDS somehow exploits the community structure of SAT instances
thus formulas with good community structure are more suitable for modern solvers.

What we find in practice is that if we singled out a single community and erased the
other communities from the formula, the SAT solver solves the single community very
quickly. Bridge variables “constrain” the formula in the sense that each community is easy
to solve individually but the bridge variables add dependencies between the communities
which makes the entire problem difficult to solve. The connection between community
structure and solving time is perhaps that good community structure lends itself to divide-
and-conquer because the bridges are easier to satisfy. More precisely, the solver can focus
its attention on the bridges by picking the bridge variables and assigning them appropri-
ate values. When it eventually assigns the correct values to enough bridges, the VIG is
separated among the community boundaries, and each partition can be solved with no
interference from each other. Even if the VIG cannot be completely separated, it may still
be beneficial to the cut bridges between communities so that these communities can be
solved relatively independently. This analysis is consistent with a technique proposed in
2015 [8] to take advantage of community structure. In that paper [8], the authors propose a
preprocessing technique of solving pairs of communities by severing the bridges with other
communities to produce learnt clauses. Their work assumes that after severing the bridges,
the communities are easy to solve hence their preprocessing technique is cheap. Addition-
ally, they assume that the learnt clause quality improves after severing the bridges, hence
their technique produces clauses that are better than just running the CDCL SAT solver
on the original formula with all the communities intact. CNF inputs with good community
structure by definition have fewer bridges, hence fewer bridges to cut before separation in
the VIG occurs. Based on this intuition, we propose the following hypothesis.

Hypothesis 4 VSIDS disproportionately picks, bumps, and learns clauses over the bridge
variables in the community structure of SAT instances.

VSIDS bumping and picking bridge variables lends itself to finding the correct value of
bridge variables to separate the VIG. Learning clauses over bridge variables help correct
wrong assignments to bridge variables.

To support the hypothesis, we performed the following experiments over the 1030 in-
stances from SAT Competition 2013, after simplification using the MiniSat [32] simplifying-
solver. We used the Louvain method [18] to compute the communities of the VIG of the
input SAT formulas. We picked Louvain because it scales well with the size of input
graphs. For each instance, the Louvain method is given an hour to compute and save the
best community partition it finds. The community information is then given to a modified

72

MiniSat 2.2.0 so it can track the bridge variables. Due to the high cost, we only com-
pute the communities once at the start. The modified MiniSat is given a timeout of 5000
seconds per instance, as per the SAT Competition 2013 rules. Before MiniSat begins its
CDCL loop, it reads in the community information stored by the Louvain method. The
solver then scans through its the initial input clauses and checks which variables share at
least one clause with another variable residing in a different community and marks them as
bridge variables. Our modified version of MiniSat checks if variable x is a bridge variable
whenever one of 3 conditions occur.

1. Picks a decision variable x.

2. Bumps a variable x.

3. Learns a clause over variable x during the search.

If the variable is a bridge, the solver updates its internal counters to keep track of
the number of bridge variables in the each of the 3 scenarios. At the end of the run, the
solver outputs the percentage of variables that are bridge in each of these scenarios. This
additional code adds little overhead and does not change the behavior of MiniSat. We
are simply instrumenting the solver to collect statistics of interest with the community
computation performed beforehand.

For each instance, we compute the percentage of decision variables, bumped variables,
learnt clause variables, and number of variables in the CNF that are also bridges. Then
we averaged these percentages over the three SAT 2013 Competition benchmark categories
(application, combinatorial, and random) and reported these numbers.

Table 4.3 shows that bridge variables are highly favored in MiniSat by its branching
heuristic, conflict analysis, and clause-learning. It is a surprising result that bridge vari-
ables are favored even though the heuristics and techniques in MiniSat have no notion of
communities. While bridge variables certainly make up a large percent of variables, the per-
cent of picked bridge variables is even higher. Table 4.3 includes only the instances where
the Louvain implementation completed before timing out. In total, 229/300 instances in
the application category and 238/300 instances in the hard combinatorial category are
included. In the random category, every variable is a bridge, hence the results are omitted.
This is expected because it is highly improbable to generate random instances where a
variable is not neighboring another variable outside its community.

73

Category
% of

variables
that are bridge

% of
picked variables
that are bridge

% of
bumped variables

that are bridge

% of
learnt clause variables

that are bridge
Application 61.0 79.9 71.6 78.4
Combinatorial 78.2 87.6 84.3 88.2

Table 4.3: MiniSat’s VSIDS and clause learning prefers to pick, bump, and learn over
bridge variables.

VSIDS Favors High Temporal Centrality Variables

Centrality measures the important vertices in a graph and is a contender for the defini-
tion of “constrainedness” of variables. A variable with high degree centrality appears in
many clauses, hence it is highly “constrained” in the formula since every clause constrains
the valid assignments to that variable. Eigenvector centrality defines constrainedness re-
cursively. A variable with high eigenvector centrality appears in many clauses containing
variables with high eigenvector centrality. That is, it is not enough for a variable to be in
many clauses for it to be “constrained” according to eigenvector centrality, those clauses
must also contain highly constrained variables. In this section, we describe the experiments
to support the following hypothesis.

Hypothesis 5 VSIDS and cVSIDS, viewed as ranking functions, correlate strongly with
both temporal degree centrality and temporal eigenvector centrality.

Recall that VSIDS decay implements an EMA over the bump time series which gives
us a clue that the temporal aspect of clause learning needs to be taken into account. To
incorporate the temporal aspect of learnt clauses we introduce temporal variable incidence
graph (TVIG) here, that extends the VIG by encoding temporal information into its struc-
ture. During the CDCL search, let tnow be the number of conflicts that has occurred thus
far. Let t(C) be the number of conflicts that has occurred up to learning clause C. In the
TVIG, every clause is labeled with a timestamp denoted timestamp(C).

timestamp(C) :=

{
0 if clause C is from the original input formula

t(C) if clause C is a learnt clause
(4.13)

Fix an exponential smoothing factor 0 < α < 1. The TVIG is a weighted graph
constructed in the same manner as the VIG except the weight function W is defined
differently.

74

W (xy) =
∑

C∈φ∧x∈C∧y∈C∧x 6=y

αtnow−timestamp(C)

|C| − 1
(4.14)

The only difference in the weight function between the TVIG and VIG is that the
weights are scaled by the factor αtnow−timestamp(C). The exponent tnow − timestamp(C) is
interpreted as the age of the clause. Since timestamp(C) is constant and tnow increments
after ever conflict, the age of a clause keeps increasing. Observe that the TVIG evolves
throughout the solving process: as new learnt clauses are added, new edges are added to the
graph, and the ages of extant edges increase. As an edge’s age increases, its weight decreases
exponentially with time assuming no new learnt clause contains its pair of variables. The
exponential decrease in weights is inspired by VSIDS decay which is an EMA as shown
earlier in Section 4.2.2. In many domains, it is often the case that more recent data points
are more useful than older data points. We then define two temporal graph centrality
(TGC) measures over the TVIG called the temporal degree centrality (TDC) and temporal
eigenvector centrality (TEC).

Definition 6 (Temporal Degree Centrality (TDC)) The temporal degree centrality
of a variable is the degree centrality of the variable’s corresponding vertex in the TVIG.

Definition 7 (Temporal Eigenvector Centrality (TEC)) The temporal eigenvector
centrality of a variable is the eigenvector centrality of the variable’s corresponding vertex
in the TVIG.

We use two measurements to show that VSIDS correlates with TDC and TEC, the
Spearman’s rank correlation coefficient and top-k.

Spearman’s Rank Correlation Coefficient: At any time during the search, we can
rank the variables in descending order based on variable activities. We can construct
a second ranking of variables in descending order based on their TGC. We then
compute the Spearman’s rank correlation coefficient [81] between the VSIDS and
TGC rankings. Spearman’s rank correlation coefficient is a widely-used correlation
coefficient in statistics for measuring the degree of relationship between a pair of
rankings. The strength of Spearman’s correlation is conventionally interpreted as
follows: 0.00–0.19 is very weak, 0.20–0.39 is weak, 0.40–0.59 is moderate, 0.60–0.79
is strong, 0.80–1.00 is very strong. We follow the standard practice of applying the
Fisher transformation [35] when computing the average of correlations.

75

Top-k: Let v be the unassigned variable with the highest ranked according to some VSIDS
variant. Let i be the position of variable v according to a specific TGC ranking, ex-
cluding assigned variables. Then the top-k measure is 1 if i ≤ k, otherwise 0. The
rationale for this metric is that SAT solvers typically only choose the top-ranked
unassigned variable, according to the VSIDS ranking, to branch on. The ordering
of the lower ranked variables is mostly inconsequential in practice, yet the Spear-
man correlation considers the proper ordering of the lower ranked variables just as
important as the higher ranked variables. If the VSIDS top-ranked unassigned vari-
able occurs very often among the top-k ranked variables according to TGC, then we
infer that VSIDS picks variables that are highly ranked according to TGC. In our
experiments, we used various values for k.

We perform the following experiment to support that VSIDS correlates with TDC and
TEC. We implemented the VSIDS variants and TGC measures in MiniSat 2.2.0 [32]. All
the experiments were performed using MiniSat on all 1030 Boolean formulas obtained
from all three categories (application, combinatorial, and random) of the SAT Competi-
tion 2013. Before beginning any experimentation, the instances are first simplified using
MiniSat’s inbuilt preprocessor with the default settings. All experiments were performed
on the SHARCNET cloud [2], where cores range in specs between 2.2 to 2.7 GHz with 4 GB
of memory, and 4 hour timeout. We use 100 iterations of the power iteration algorithm [41]
to compute TEC. We use MiniSat’s default decay factor of 0.95 for VSIDS. We also use
0.95 as the exponential smoothing factor for the TVIG. We take Spearman correlation and
top-k measurements on the current state of the solver after every 5000 iterations, where an
iteration is defined as a decision or a conflict. Observe that we take measurements dynam-
ically as the solver solves an instance, and not just once at the beginning. Such a dynamic
comparison gives us a much better picture of the correlation between two different ranking
functions or measures than a single point of comparison. After the solver terminates on
an instance, we compute the average Spearman correlation and top-k measured during the
run of the solver.

We measured the average Spearman correlation and top-k for all combinations of
VSIDS/cVSIDS and TDC/TEC on every instance. We take all the instance averages
and average them again, and report the average of the averages. The final numbers are
labeled as “mean top-k” or “mean Spearman”. For example, a mean top-10 of 0.912 is in-
terpreted as “for the average instance in the experiment, 91.2% of the measured top-ranked
variables according to VSIDS are among the 10 unassigned variables with the highest cen-
trality”. Likewise, a high mean Spearman implies the average instance has a strong positive
correlation between VSIDS and TGC rankings.

76

cVSIDS vs TDC VSIDS vs TDC
Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.818 0.946 0.988 0.629 0.791 0.864
Mean Top-1 0.884 0.865 0.949 0.427 0.391 0.469
Mean Top-10 0.912 0.898 0.981 0.705 0.735 0.867

Table 4.4: Results of comparing cVSIDS and VSIDS with TDC.

cVSIDS vs TEC VSIDS vs TEC
Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.790 0.926 0.987 0.675 0.764 0.863
Mean Top-1 0.470 0.526 0.794 0.293 0.304 0.418
Mean Top-10 0.693 0.746 0.957 0.610 0.670 0.856

Table 4.5: Results of comparing cVSIDS and VSIDS with TEC.

The results are presented in Table 4.4 (resp. Table 4.5) comparing VSIDS and TDC
(resp. TEC) rankings. The data shows a strong correlation between VSIDS variants and
TDC, in particular, the 0.818 mean Spearman between cVSIDS and TDC is high. The
metrics are lower with TEC, but the correlation remains strong. VSIDS has a better
mean Spearman with TEC than TDC in the application category. We have also conducted
this experiment with non-temporal degree/eigenvector centrality and the resulting mean
Spearman and mean top-k are significantly lower than their temporal counterparts.

It is commonly believed that VSIDS focuses on the “most constrained part of the
formula” [45], and that this behavior is responsible for its surprising effectiveness in prac-
tice. However, the term “most constrained part of the formula” has previously not been
well-defined in a mathematically precise manner. One intuitive way to define the con-
strainedness of a variable is to analyze the Boolean formula, and count how many clauses
a variable occurs in. The variables can then be ranked based on this measure. In fact,
this measure is the basis of the branching heuristic called DLIS [65], and was once the
dominant branching heuristic in SAT solvers. We show that graph centrality measures are
a good way of mathematically defining this intuitive notion of syntactic “constrainedness
of variables” that has been used by the designers of branching heuristics. Degree centrality
of a vertex in the VIG is indeed equal to the number of clauses it belongs to, hence it
is a good basis for guessing the constrained variables for the same reason. Eigenvector
centrality extends this intuition by further increasing the ranks of variables close in prox-
imity to other constrained variables in the VIG. Additionally, as the dynamic structure
of the VIG evolves due to the addition of learnt clauses by the solver, the most highly
constrained variables in a given instance also change over time. Hence we incorporated
learnt clauses and temporal information into the TVIG to account for changes in variables’

77

constrainedness over time.

Besides the success of branching heuristics like VSIDS and DLIS, there is additional
evidence that the syntactic structure is important for making good branching decisions. For
example, Iser et al. discovered that initializing the VSIDS activity based on information
computed on the abstract syntax tree of their translator has a positive impact on solving
time [50]. In a different paper [72], the authors have shown that the graph-theoretic
community structure strongly influences the running time of CDCL SAT solvers. This
is more evidence of how CDCL SAT solver performance is influenced by syntactic graph
properties of input formulas.

4.3 Related Work

Armin Biere [13] described the low-pass filter behavior of VSIDS, and Huang et al. [48]
stated that VSIDS is essentially an EMA. Katsirelos and Simon [53] were the first to
publish a connection between eigenvector centrality and branching heuristics. In their
paper [53], the authors computed eigenvector centrality (via Google PageRank) only once
on the original input clauses and showed that most of the decision variables have higher
than average centrality. Also, it bears stressing that their definition of centrality is not
temporal. By contrast, our results correlate VSIDS ranking with temporal degree and
eigenvector centrality, and show the correlation holds dynamically throughout the run
of the solver. Also, we noticed that the correlation is also significantly stronger after
extending centrality with temporality. Simon and Katsirelos do hypothesize that VSIDS
may be picking bridge variables (they call them fringe variables). However, they do not
provide experimental evidence for this. To the best of our knowledge, we are the first to
establish the following results regarding VSIDS.

1. VSIDS disproportionately bumps variables in class 1, the conflict class.

2. Explain the importance of EMA (multiplicative decay) to the effectiveness of VSIDS.

3. VSIDS picks, bumps, and learns high-centrality bridge variables.

78

Chapter 5

Machine Learning-Based Restart
Policy

A CDCL SAT solver can be thought of as constructing a search tree on-the-fly exploring
possible solutions. The solver frequently restarts, that is, it discards the current search tree
and begins anew (but does not throw away the learnt clauses and the variable activities).
Although this may seem counterproductive, SAT solvers that restart frequently are faster
empirically than solvers that opt not to restart. Figure 5.1 shows the importance of restarts
in CDCL SAT solvers. Without restarts, Glucose solved 15 fewer instances out of the 350
in the benchmark.

Researchers have proposed a variety of hypotheses to explain the connection between
restarts and performance such as exploiting variance in the runtime distribution [63, 42]
(similar to certain kinds of randomized algorithms). For various reasons however, we
find these explanations for the power of restarts do not apply to the CDCL SAT solver
setting. Instead, we take inspiration from Hamadi et al. who claim that the purpose of
restarts is to compact the assignment stack [45], that is, the assignment stack is smaller
with restarts enabled. We then further show that a compact stack tends to improve the
quality of clauses learnt where we define quality in terms of the well-known metric literal
block distance (LBD). Despite the search tree being discarded by a restart, learnt clauses
are preserved so learning higher quality clauses continues to reap benefits across restarts.
Learning higher quality clauses allows the solver to find a solution quicker. However,
restarting too often incurs a high overhead of constantly rebuilding the search tree. So
it is imperative to balance the restart frequency to improve the LBD but avoid excessive
overhead incurred by restarts.

79

0 20 40 60 80 100 120 140 160 180

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
ol

v
in

g
ti

m
e

(s
)

Glucose 4.1
Glucose 4.1 w/o restarts

Figure 5.1: Cactus plot of Glucose 4.1 with and without restarts on 350 instances from the
main track of SAT Competition 2017.

Based on these observations, we present a new machine learning-based restart policy in
this chapter that is competitive with the state-of-the-art policies. Since restarts empirically
reduce LBD, we designed a restart policy that tries to avoid high LBDs by restarting at
the right times. Intuitively, our restart policy does the following: restart if the next
learnt clause has an LBD in the 99.9th percentile. Implementing this policy requires new
techniques to answer the two following questions: is an LBD in the 99.9th percentile and
what is the LBD of the next learnt clause. We designed techniques to estimate answers
to these two questions. Regarding the first question, the normal distribution is a good
approximation for the right tail of the LBD distribution. The answer for the second
question is to use machine learning to predict the LBD of the next learnt clause.

5.1 Prior Hypotheses on “The Power of Restarts”

In this section, we discuss prior hypotheses on the power of restarts in the DPLL and local
search setting and their connection to restarts in the CDCL setting.

80

5.1.1 Heavy-tailed Distribution and Las Vegas Algorithm Hy-
potheses

From the perspective of Las Vegas algorithms, some researchers have proposed that restarts
in CDCL SAT solvers take advantage of the variance in solving time [63, 42]. For a
given input, the running time of a Las Vegas algorithm is characterized by a probability
distribution, that is, depending on random chance the algorithm can terminate quickly or
slowly relatively speaking. A solver can get unlucky and have an uncharacteristically long
running time, in which case, a restart gives the solver a second chance of getting a short
runtime [63]. It can continue to restart until it gets lucky.

Moreover, a heavy-tailed distribution was observed for various satisfiable instances on
randomized DPLL SAT solvers [42]. Intuitively, this means that the probability of a long
runtime is non-negligible in practice. Hence DPLL SAT solvers are likely to benefit from
restarts assuming some randomization in the solver.

However, this explanation does not lift to restarts in modern CDCL solvers. First,
most modern CDCL SAT solver implementations are not Las Vegas algorithms, that is,
they are deterministic algorithms. Hence restarts cannot take advantage of variance in the
solving time like in Las Vegas algorithms. Second, the optimal restart policy for Las Vegas
algorithms has a restart interval greater than the expected solving time of the input [63].
So difficult instances should restart very infrequently. However in practice, even difficult
instances with high solving time benefit from very frequent restarts in CDCL SAT solvers.
Third, the definition of restarts in the context of Las Vegas algorithms differs significantly
from the restarts implemented in CDCL SAT solvers. In Las Vegas algorithms, the restarts
are equivalent to starting a new process, where the algorithm starts an new independent
run from scratch preserving nothing from the previous run. Restarts in CDCL are only
partial, the assignment stack is erased but everything else preserved (i.e., learnt clauses,
saved phases, activity, etc.). Since the phases are saved, the CDCL SAT solver reassigns
variables to the same value across restart boundaries [77]. As the authors of ManySAT [45]
note: “Contrary to the common belief, restarts are not used to eliminate the heavy tailed
phenomena since after restarting SAT solvers dive in the part of the search space that they
just left.” Fourth, the heavy-tailed phenomena was found to be true only for satisfiable
instances, and yet empirically restarts are known to be even more relevant for unsatisfiable
instances.

81

5.1.2 Escaping Local Minima Hypothesis

Another explanation for restarts comes from the context of optimization. Many optimiza-
tion algorithms (in particular local search algorithms), get stuck in the local minima. Since
local search only makes small moves at a time, it is unlikely to move out of a deep local
minimum. The explanation is that restarts allow the optimization algorithm to escape
the local minimum by randomly moving to another spot in the solution space. Certain
local-search based SAT solvers with the objective to minimize the number of unsatisfied
clauses perform restarts for this very purpose [47, 79]. However, restarts in CDCL do
not behave in the same manner. Instead of setting the assignment of variables to random
values like in local search, CDCL solvers revisit the same (or nearby) search space of as-
signments even after restarts since the variable activities and phases are preserved across
restart boundaries [77].

As we show in Section 5.2, our hypothesis for the power of restarts is indeed consistent
with the “escaping local minima” hypothesis. However, restarts enable CDCL solvers to
escape local minima in a way that works differently from local search algorithms. Specifi-
cally, CDCL solvers with restarts enabled escape local minima by jumping to a nearby space
to learn “better clauses”, while local search algorithms escape local minima by randomly
jumping to a different part of the search space.

5.2 “Restarts Enable Learning Better Clauses” Hy-

pothesis

In this section, we propose that restarts enable a CDCL solver to learn better clauses.
To justify our hypothesis, we start by examining the claim by Hamadi et al. [45] stating
that “In SAT, restarts policies are used to compact the assignment stack and improve the
order of assumptions.” Recall that the only thing that changes during a restart in a CDCL
solver is the assignment stack, and hence the benefits of restarts should be observable on
the assignment stack. We show that this claim is empirically true by demonstrating that
restarting frequently correlates with a compact assignment stack. We then go one step
further to show that a compact assignment stack leads to better clause learning. More
precisely, the solver ends up learning clauses with lower LBD, thereby supporting our
hypothesis, and this in turn improves the solver performance.

Hypothesis 6 Frequent restarts compact the assignment stack.

82

Hypothesis 7 Compacting the assignment stack lowers the LBD of learnt clauses.

Hypothesis 8 Lower LBD of learnt clauses correlates with better performance.

Restarts do incur a cost though [77], for otherwise restart after every conflict would be
the optimal policy for all inputs. After a solver restarts, it needs to make many decisions
and propagations to rebuild the assignment stack from scratch. We call this the rebuild
time. More precisely, whenever a solver performs a restart, we note the current time and
the assignment stack size x right before the restart. Then the rebuild time is the time
taken until either the solver encounters a new conflict or the new assignment stack size
exceeds x through a series of decisions and propagations. Since we want to isolate the
benefit of restart, we need to discount the cost of rebuilding. We define effective time to
be the solving time minus the rebuild times of every restart.

5.2.1 Confirming the “Compacting the Assignment Stack” Claim

We ran the Glucose 4.1 SAT solver [12] with various frequencies of restarting to show
that indeed restarts do compact the assignment stack. For all experiments in this section,
Glucose was run with the argument “-no-adapt” to prevent it from changing heuristics.
For each instance in the SAT Competition 2017 main track, we ran Glucose 4.1 with a
timeout of 3hrs of effective time on StarExec [82].

At every conflict, the assignment stack size is logged before backtracking occurs then
the solver restarts after the conflict is analyzed (i.e., a uniform restart policy that restarts
after every 1 conflict). We then ran the solver again on the same instance except the restart
interval is doubled (i.e., a uniform restart policy that restarts after every 2 conflicts). We
continue running the solver again and again, doubling the restart interval each time (i.e., a
uniform restart policy that restarts after every 2k conflicts) until the restart interval is so
large that the solver never restarts before termination. For each instance, we construct a
scatter plot, where the x-axis is the restart interval and the y-axis is the average assignment
stack size for that restart policy on that instance, see Figure 5.2 for an example. We then
compute the Spearman correlation between the two axes, a positive correlation denotes that
smaller restart intervals correlate with smaller assignment stack size, that is evidence that
frequent restarts compacts the assignment stack. We plot the Spearman correlations of all
350 instances in Figure 5.3. 91.7% of the instances have a positive correlation coefficient.
In conclusion, our experiments support the claim by Hamadi et al. [45] “restarts policies
are used to compact the assignment stack.”

83

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 5600

 5700

 5800

 5900

1 10 100 104 105 106 107

A
ve

ra
g
e
 a

ss
ig

n
m

e
n
t

st
a
ck

 s
iz

e
 d

u
ri

n
g
 c

o
n
fl
ic

t

Uniform restart interval

blockpuzzle_9x9_s4_free3.cnf

Figure 5.2: Scatter plot for a given instance showing increasing assignment stack size as
the restarts become less frequent.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-1 -0.5 0 0.5 1

#
 in

st
a
n
ce

s

Spearman correlation coefficient

Correlation between
restart interval and assignment stack size

Figure 5.3: Histogram showing the distribution of Spearman correlations between the
restart interval and the average assignment stack size for all 350 instances. The median
correlation is 0.839.

84

It is important to note that this result is contingent on the branching heuristic im-
plemented by the solver. If the branching heuristic is a static ordering, then the solver
picks the decision variables in the same order after every restart and rebuilds the same
assignment stack, hence the assignment stack does not get compacted. In our previous
work [61], we showed that VSIDS-like branching heuristics “focus” on a small subset of
logically related variables at any point in time. We believe a “focused” branching heuristic
will see the compacting of assignment stack since a restart erases the assignment stack so
a “focused” branching heuristic can reconstruct the assignment stack with only the subset
of variables it is focused on. In the case of VSIDS and LRB, this subset of variables are
the variables appearing in recent conflicts.

5.2.2 Learning Better Clauses

We hypothesize that compacting the assignment stack generally leads to better learnt
clauses, and that this is one of the benefits of restarts in SAT solvers in practice. Note
that the clause learning schemes construct the learnt clause from a subset of variables on
the assignment stack. Hence, a smaller assignment stack should lead to a learnt clause
with smaller LBD than otherwise. To show this experimentally, we repeat the previous
experiment where we ran Glucose 4.1 with the uniform restart policy restarting every 2k

conflicts for various parameters of k. At each conflict, we log the assignment stack size
before backtracking and the LBD of the newly learnt clause. For each instance, we draw
a scatter plot, where the x-axis is the average assignment stack size and the y-axis is the
average LBD of learnt clauses, see Figure 5.4. We compute the Spearman correlation
between the two axes and plot these correlations in a histogram, see Figure 5.5. 73.1% of
the instances have a positive correlation coefficient.

5.2.3 Solving Instances Faster

Although lower LBD is widely believed to be a sign of good quality clause, we empirically
show that indeed lower LBD generally correlates with better effective time. This exper-
iment is a repeat of the last two experiments, with the exception that the x-axis is the
average learnt clause LBD and the y-axis is the effective time, see Figure 5.6 for an ex-
ample. As usual, we compute the Spearman correlation between the two axes, discarding
instances that timeout, and plot these correlations in a histogram, see Figure 5.5. 77.8%
of the instances have a positive correlation coefficient. As expected, learning lower LBD
clauses tend to improve solver performance.

85

 50

 100

 150

 200

 250

 300

 5000 5200 5400 5600 5800

A
ve

ra
g
e
 le

a
rn

t
cl

a
u
se

 L
B

D

Average assignment stack size during conflict

blockpuzzle_9x9_s4_free3.cnf

Figure 5.4: Scatter plot for a given instance showing increasing assignment stack size
correlates with increasing LBD of learnt clauses.

 0

 5

 10

 15

 20

 25

 30

 35

 40

-1 -0.5 0 0.5 1

#
 in

st
a
n
ce

s

Spearman correlation coefficient

Correlation between assignment stack size and LBD

Figure 5.5: Histogram showing the distribution of Spearman correlations between the
average assignment stack size and the average LBD of learnt clauses for all 350 instances.
The median correlation is 0.607.

86

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80 90

E
ff

e
ct

iv
e
 t

im
e
 (

s)

Average learnt clause LBD

blockpuzzle_9x9_s4_free3.cnf

Figure 5.6: Scatter plot for a given instance showing increasing average learnt clause LBD
correlates with increasing effective time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

#
 in

st
a
n
ce

s

Spearman correlation coefficient

Correlation between LBD and effective time

Figure 5.7: Histogram showing the distribution of Spearman correlations between the
average learnt clause LBD and effective time for all 90 instances without timeouts. The
median correlation is 0.366.

87

5.2.4 Clause Length

If the previous experiments replaced LBD with clause length, then the median Spearman
correlation between the average assignment stack size and average learnt clause length
is 0.822 and the median Spearman correlation between the average learnt clause length
and effective time is 0.08. This lower correlation between clause length and effective time
perhaps explains why LBD is generally a better metric than clause length.

5.2.5 Low LBD in Core Proof

We hypothesize that lower LBD clauses are preferable for unsatisfiable instances because
they are more likely to be a core learnt clause, that is, a learnt clause that is actually
used in the derivation of the final empty clause. We performed the following experiment
to support our hypothesis. We ran Glucose with no clause deletion on all 350 instances of
the SAT Competition 2017 main track with 5000 seconds timeout. We turned off clause
deletion because the deletion policy in Glucose inherently biases towards low LBD clauses
by deleting learnt clauses with higher LBDs. We used DRAT-trim [85] to extract the
core proof from the output of Glucose, i.e, the subset of clauses used in the derivation
of the empty clause. We then computed the ratio between the mean LBD of the core
learnt clauses and the mean LBD of all the learnt clauses. Lastly we plotted the ratios in a
histogram, see Figure 5.8. For the 57 instances for which core DRAT proofs were generated
successfully, all but one instance has a ratio below 1. In other words, lower LBD clauses
are more likely to be used in deriving the empty clause than clauses with higher LBD.

5.3 LBD Percentile

Given the LBD of a clause, it is unclear a priori how to label it as “good” or “bad”. Some
heuristics set a constant threshold and any LBDs above this threshold are considered bad.
For example, the parallel solver Plingeling [15] considers learnt clauses with LBD greater
7 to be bad, and these clauses are not shared with the other solvers running concurrently.
COMiniSatPS considers learnt clauses with LBD greater than 8 to be bad, and hence these
clauses are readily deleted [73]. The state-of-the-art Glucose restart policy [11] on the other
hand uses the mean LBD multiplied by a fixed constant as a threshold. The problem with
using a fixed constant or the mean times a constant for thresholds is that we do not have
a priori estimate of how many clauses exceed this threshold, and these thresholds seem

88

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

#
 in

st
a
n
ce

s

Average core proof LBD / Average LBD

Figure 5.8: Histogram for the ratio between the mean LBD of the learnt clauses in the
core proof and the mean LBD of all the learnt clauses for the 57 unsatisfiable instances
DRAT-trim produced a core proof.

arbitrary. Using arbitrary thresholds makes it harder to reason about solver heuristics,
and in this context, the efficacy of restart policies.

For the above reasons, we propose that it is more appropriate to use dynamic threshold.
The threshold is dynamically computed by collecting empirical data from the CDCL SAT
solver during its run for a given input. We chose the threshold to be the 99.9th percentile
of LBDs of the learnt clauses seen during the run so far. Before we estimate whether an
LBD is in the 99.9th percentile, the first step is to analyze the distribution of LBDs seen
in practice. In this experiment, the Glucose solver was run on all 350 instances in SAT
Competition 2017 main track for 30 minutes and the LBDs of all the learnt clauses were
recorded. Figure 5.9 shows the histogram of LBDs for 4 representative instances. As can be
seen from the distributions of these representative instances, either their LBD distribution
is close to normal or a right-skewed one.

Even though the right-skew distribution is not normal, the high percentiles can still
be approximated by the normal distribution since the right tail is close to the normal
curve. We conducted the following experiment to support this claim. For each instance,
we computed the mean and variance of the LBD distribution to draw a normal distribution
with the same mean and variance. We used the normal distribution to predict the LBD x

89

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30 35 40

Fr
eq

u
en

cy

modgen-n200-m90860q08c40-29667.cnf
normal(13.18, 4.60)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100 120

Nb5T15.cnf
normal(20.76, 13.15)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50

Fr
eq

u
en

cy

LBD

hwmcc15deep-6s105-k35.cnf
normal(13.79, 6.51)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25

LBD

klieber2017s-0500-024-t12.cnf
normal(11.27, 2.76)

Figure 5.9: Histogram of LBDs of 4 instances. A normal distribution with the same mean
and variance is overlaid on top for comparison.

90

 0

 5

 10

 15

 20

 25

 30

 35

 40

 97 97.5 98 98.5 99 99.5 100

#
 in

st
a
n
ce

s

Actual percentile

Figure 5.10: Histogram of the actual percentiles of the LBD predicted to be the 99.9th

percentile using a normal distribution.

at the 99.9th percentile. We then checked the recorded LBD distribution to see the actual
percentile of x. Figure 5.10 is a histogram of all the actual percentiles. Even in the worst
case, the predicted 99.9th percentile turned out to be the 97.1th percentile. Hence for this
benchmark the prediction of the 99.9th percentile using the normal distribution has an
error of less than 3 percentiles. Additionally, only 6 of the 350 instances predicted an LBD
that was in the 100th percentile and all 6 of these instances solved in less than 130 conflicts
hence the prediction was made with very little data.

These figures were created by analyzing the LBD distribution at the end of a 30 minute
run of Glucose, and we note the results are similar before the 30 minutes are up. Hence
the 99.9th percentile of LBDs can be approximated as the 99.9th percentile of norm(µ, σ2).
The mean µ and variance σ2 are estimated by the sample mean and sample variance of all
the LBDs seen thus far, which is computed incrementally so the computational overhead
is low. The 99.9th percentile of the normal distribution maps to the z-score of 3.08, that
is, an LBD is estimated to be in the 99.9th percentile if it is greater than µ+ 3.08× σ.

91

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
 in

st
a
n
ce

s

Pearson correlation coefficient

Figure 5.11: Histogram of the Pearson correlation between the “previous” and “next” LBD
for the instances in the SAT Competition 2017 main track benchmark.

5.4 LBD of Next Clause

Since at any point during the run of a solver, the LBD of the “next learnt” clause is
unknown, we propose the use of machine learning to predict that LBD instead. This
requires finding good features that correlate with the next LBD. We hypothesize that
LBDs of recent past learnt clauses correlate with the LBD of the next learnt clause.

In this experiment, Glucose was run on all 350 instances of the 2017 Competition main
track and the LBDs of all the learnt clauses were recorded. Let n be the number of LBDs
recorded for an instance. A table with two columns of length n − 1 are created. For
each row i in this two column table, the first column contains the LBD of the ith conflict
and the second column contains the LBD of the (i + 1)th conflict. Intuitively, after the
solver finishes resolving the ith conflict, the ith learnt clause is the “previous” learnt clause
represented by the first column. Correspondingly, the “next” learnt clause is the (i+ 1)th

learnt clause represented by the second column. For each instance that took more than
100 conflicts to solve, we computed the Pearson correlation between the first and second
column and plot all these correlations in a histogram, see Figure 5.11.

Our results show that the “previous LBD” is correlated with the “next LBD” which
supports the idea that recent LBDs are good features to predict the next LBD via machine

92

learning. In addition, all the correlations are positive, meaning that if the previous LBD
is high (resp. low) then the next LBD is expected to be high (resp. low). Perhaps this
explains why the Glucose restart policy [11] is effective. Additionally, we note that for the
average instance, the LBD of the learnt clause after a restart is smaller than the LBD of
the learnt clause right before that restart 74% of the time, showing the effect of restarts
on LBD.

We propose learning the function f(l−1, l−2, l−3, l−1 × l−2, l−1 × l−3, l−2 × l−3) = lnext
where l−i is the LBD of the learnt clause from i conflicts ago and l−i × l−j are products
of previous LBDs to incorporate their feature interaction, and lnext is the LBD of the next
clause. This function is approximated using linear regression where θi are coefficients to
be trained by the machine learning algorithm:

f̃(l−1, l−2, l−3, l−1 × l−2, l−1 × l−3, l−2 × l−3) = θ0 + θ1 × l−1 + θ2 × l−2 + θ3 × l−3 + θ4 ×
l−1 × l−2 + θ5 × l−1 × l−3 + θ6 × l−2 × l−3

Since LBDs are streamed in as conflicts occur, an online algorithm that can incre-
mentally adjust the θi coefficients cheaply is required. We use the state-of-the-art Adam
algorithm [55] from machine learning literature because it scales well with the number of
dimensions, is computationally efficient, and converges quickly for many problems. The
Adam algorithm is in the family of stochastic gradient descent algorithms that adjusts the
coefficients to minimize the squared error, where the error is the difference between the
linear function’s prediction and the actual next LBD. The algorithm computes the gradient
of the squared error function and adjusts the coefficients in the opposite direction of the
gradient to minimize the squared error function. For the parameters of Adam, we use the
values recommended by the original authors [55].

The coefficients θi are all initialized to 0 at the start of the search. Whenever a new
clause is learnt, one iteration of Adam is applied with the LBDs of the three previous
learnt clauses and their pairwise products as features and the LBD of the new clause as
the target. The coefficients θi are adjusted in the process. When BCP reaches a fixed
point without a conflict, the function f̃ is queried with the current set of coefficients θi to
predict the LBD of the next clause. If the prediction exceeds the sample mean plus 3.08
standard deviations (i.e., approximately the 99.9th percentile), a restart is triggered.

The new restart policy, called machine learning-based restart (MLR) policy, is shown
in Algorithm 10. Since the mean, variance, and coefficients are computed incrementally,
MLR has a very low computational overhead.

93

Algorithm 10 Pseudocode for the new restart policy MLR.
1: function Initialize . Called once at the start of search.
2: α← 0.001, ε← 0.00000001, β1 ← 0.9, β2 ← 0.999 . Adam parameters.
3: conflicts← 0, conflictsSinceLastRestart← 0
4: t← 0 . Number of training examples.
5: prevLbd3 ← 0, prevLbd2 ← 0, prevLbd1 ← 0 . LBD of clause learnt 3/2/1 conflicts ago.
6: µ← 0,m2← 0 . For computing sample mean and variance of LBDs seen.
7: for v in 0..|FeatureV ector()| − 1 do . Initialize θ,m, v to be vectors of zeros.
8: θi ← 0,mi ← 0, vi ← 0 . Coefficients of linear function and Adam internals.
9: end for

10: end function
11:
12: function FeatureVector
13: return [1, prevLbd1, prevLbd2, prevLbd3, prevLbd1 × prevLbd2, prevLbd1 × prevLbd3, prevLbd2 ×

prevLbd3]
14: end function
15:
16: function AfterConflict(LearntClause) . Update the coefficients θ using Adam.
17: conflicts← conflicts+ 1, conflictsSinceLastRestart← conflictsSinceLastRestart+ 1
18: nextLbd← LBD(LearntClause)
19: δ ← nextLbd− µ, µ← µ+ δ/conflicts,∆← nextLbd− µ,m2← m2 + δ ×∆
20: if conflicts > 3 then . Apply one iteration of Adam.
21: t← t+ 1
22: features← FeatureV ector()
23: predict← θ · features
24: error ← predict− nextLbd
25: g ← error × features
26: m← β1 ×m+ (1− β1)× g, v ← β2 × v + (1− β2)× g × g
27: m̂← m/(1− βt

1), v̂ ← v/(1− βt
2)

28: θ ← θ − α× m̂/(
√
v̂ + ε)

29: end if
30: prevLbd3 ← prevLbd2, prevLbd2 ← prevLbd1, prevLbd1 ← nextLbd
31: end function
32:
33: function AfterBCP(IsConflict)
34: if ¬IsConflict ∧ conflicts > 3 ∧ conflictsSinceLastRestart > 0 then
35: σ ←

√
m2/(conflicts− 1)

36: if θ · FeatureV ector() > µ+ 3.08σ then . Estimate if next LBD in 99.9th percentile.
37: conflictsSinceLastRestart← 0, Restart()
38: end if
39: end if
40: end function

94

0 100 200 300 400 500 600 700 800

0

1,000

2,000

3,000

4,000

5,000

Instances solved

S
ol

v
in

g
ti

m
e

(s
)

Glucose
Glucose + MLR
Glucose + Luby

Figure 5.12: Cactus plot of two state-of-the-art restart policies and MLR on the entire
benchmark with duplicate instances removed.

5.5 Experimental Evaluation

To test how MLR performs, we conducted an experimental evaluation to see how Glucose
performs with various restart policies. Two state-of-the-art restart policies are used for
comparison with MLR: Glucose (named after the solver itself) [11] and Luby [63]. The
benchmark consists of all instances in the application and hard combinatorial tracks from
the SAT Competition 2014 to 2017 totaling 1411 unique instances. The Glucose solver
with various restart policies were run over the benchmark on StarExec. For each instance,
the solver was given 5000 seconds of CPU time and 8GB of RAM. The results of the
experiment are shown in Figure 5.12. The source code of MLR and further analysis of the
experimental results are available on our website [5].

The results show that MLR is in between the two state-of-the-art policies of Glucose
restart and Luby restart. For this large benchmark, MLR solves 19 instances more than
Luby and 20 instances fewer than Glucose. Additionally, the learnt coefficients in MLR
σ1, σ2, σ3 corresponding to the coefficients of the features representing recent past LBDs

95

are nonnegative 91% of the time at the end of the run. This reinforces the notion that
previous LBDs are positively correlated with the next LBD.

5.6 Related Work

Theorists have conjectured that restarts give the solver more power in a proof-complexity
sense than a solver without restarts. A CDCL solver with asserting clause learning scheme
can polynomially simulate general resolution [75] with nondeterministic branching and
restarts. It was independently shown that a CDCL solver with sufficiently random branch-
ing and restarts can simulate bounded-width resolution [9]. It remains an open question
whether these results hold if the solvers does not restart. This question has remained
stubbornly open for over two decades now. We refer the reader to the excellent articles
by Buss et al. on attempts at understanding the power of restarts via proof-complexity
theory [23, 19].

Restart policies come in two flavors: static and dynamic. Static restart policies pre-
determine when to restart before the search begins. The state-of-the-art for static is the
Luby [63] restart heuristic which is theoretically proven to be an optimal universal restart
policy for Las Vegas algorithms. Dynamic restart policies determine when to restart on-the-
fly during the run of the solver, typically by analyzing solver statistics. The state-of-the-art
for dynamic is the restart policy proposed by Glucose [11] that keeps a short-term and a
long-term average of LBDs. The short-term is the average of the last 50 LBDs and the
long-term is the average of all the LBDs encountered since the start of the search. If the
short-term exceeds the long-term by a constant factor then a restart is triggered. Hence
the Glucose policy triggers a restart when the recent LBDs are high on average whereas
MLR restarts when the predicted LBD of the next clause is high. Biere et al. [16] propose
a variation of the Glucose restart where an exponential moving average is used to com-
pute the short-term and long-term averages. Haim and Walsh [44] introduced a machine
learning-based technique to select a restart policy from a portfolio after 2100 conflicts.
The MABR policy [70] uses multi-armed bandits to minimize average LBD by dynami-
cally switching between a portfolio of policies. Our use of machine learning differs from
these previous methods in that machine learning is part of the restart policy itself, rather
than using machine learning as a meta-heuristic to select between a fixed set of restart
policies.

96

Chapter 6

Conclusion

Heuristic design for CDCL SAT solvers is very challenging due to the large design space
and our poor understanding of what makes CDCL SAT solvers tick. On the other hand,
it is also very rewarding due to their prominent role in the overall effectiveness of the
solver. This thesis provides set of pragmatic principles in heuristic design that proved to
be successful in the branching heuristic and restart policy space.

1. Find a simple metric for the given heuristic space that correlates with solving time.
For branching heuristics, we used the global learning rate (GLR) as the metric. For
restart policies, the metric we used is the literal block distance (LBD). In our ex-
perience with branching and restarts, we defined the metric with respect to some
aspect of clause learning since CDCL SAT solvers are proof systems that attempt to
construct relatively small proofs. In the case of branching, we optimized for the quan-
tity of learning (GLR) and whereas in restarts we optimized for the quality (LBD).
We believe that a fruitful future direction is to incorporate multiple metrics that
encompass a wider perspective of SAT performance and invent new heuristics that
simultaneously optimize all the metrics in an multi-objective optimization fashion.

2. Observe what happens when said metric is optimized when overhead is discounted.
We designed the greedy GLR branching (GGB) heuristic to show that maximizing
GLR improves performance if the huge overhead is ignored. Although this heuristic
is grossly impractical, its purpose is a proof-of-concept to demonstrate the effects of
maximizing GLR. It serves as a gold standard for subsequent heuristics to emulate.
This provides a good sanity check that the metric makes sense in practice.

97

3. Exploit machine learning to perform the optimization cheaply. On the branching
heuristic space, we used machine learning to directly approximate GGB with the
stochastic gradient descent branching (SGDB) heuristic. On the restart policy space,
we used machine learning to predict upcoming learnt clauses with poor LBD. In
either case, we took advantage of the data generated from conflict analysis during
the run of the solver to learn the respective functions. This gives rise to the online
machine learning-based heuristics, rather than applying machine learning outside of
the SAT solver like in the portfolio solver approach. This avoids a common overfitting
problem when training offline over a training set that is distinct from the instance
being solved. Even instances that look similar superficially can have very different
runtime characteristics, and offline training has a very difficult time generalizing
between instances.

SAT solvers naturally have many difficult choices to make. Which variable to branch
on? When to restart? Which clause to learn and which clause to delete? With the
explosive rise of machine learning, it is becoming abundantly clear these choices should be
learnt rather than the old-fashioned way of handcoding a strategy. With the success in
the branching heuristic and restart policy domain, we are confident in the wisdom of using
machine learning techniques as a basis for designing heuristics in CDCL SAT solvers.

Our machine learning work partitions the solver nicely into two components that is
metaphorically similar to human reasoning. The first component is a deductive reasoning
teacher. This includes BCP and conflict analysis that applies the resolution proof rule to
deduce lemmas. However, deductive learning causes a blow up since there is an exponential
number of lemmas. The second component is an inductive reasoning student. This includes
the heuristics that apply machine learning to learn from data which part of the search space
is most productive. However, the conclusions derived from inductive reasoning may be
unsound, but thankfully the deductive reasoning blocks any mistakes and returns feedback
to the heuristics to fine-tune their inductive reasoning. Viewing the SAT solver as a
student-teacher loop makes it clear the similarities between CDCL and other verification
and learning algorithms.

Reinforcement learning: In reinforcement learning [83], the student is the agent learn-
ing to perform the best actions online from feedback it receives from the teacher en-
vironment. The student estimates the best actions at each timestep and the teacher
corrects the student by using rewards to steer the student towards optimal actions.
The process repeats until the student converges on the optimal action. The student-
teacher similarity between CDCL and reinforcement learning led us to developing
the LRB algorithm.

98

Query learning: In query learning [6], the student is trying to learn a target language by
hypothesizing a language to the teacher who then returns a counterexample as to why
the hypothesized language is different than the target language. The teacher guides
the student’s hypothesis through this counterexample feedback mechanism. The
process repeats until until the student’s hypothesis is exactly the target language.

CEGAR: In counterexample-guided abstraction refinement (CEGAR) [27], the student
synthesizes a model that ideally adheres to the specification. If the model is spurious,
the teacher explains the error to the student who uses the explanation to refine its
model. The process repeats until the student finds a correct model.

As we can see, the student-teacher model is quite general in the space of learning and
verification. The student synthesizes potential answers (i.e., partial assignments, actions,
languages, models) for the teacher to critique. The teacher’s feedback (i.e., learnt clauses,
rewards, counterexamples) is used by the student to refine its understanding. The student
and teacher form a continuous feedback loop until the student converges on the correct
solution. As we can see, these types of algorithms are very powerful in their respective
domains. In this thesis, we introduced the idea of using machine learning to implement
the student so that it learns to synthesize the correct partial assignments over time. We
hope that our use of a machine learning student can inspire other incarnations of the
student-teacher model to take advantage of machine learning as well.

99

References

[1] http://www.satcompetition.org/.

[2] https://www.sharcnet.ca.

[3] https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/.

[4] https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/sgd.

[5] https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/mlr.

[6] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, April
1988.

[7] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The Community Structure of
SAT Formulas. In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and
Applications of Satisfiability Testing – SAT 2012, pages 410–423, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[8] Carlos Ansótegui, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon. Using Commu-
nity Structure to Detect Relevant Learnt Clauses. In Marijn Heule and Sean Weaver,
editors, Theory and Applications of Satisfiability Testing – SAT 2015, pages 238–254,
Cham, 2015. Springer International Publishing.

[9] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algo-
rithms with many restarts and bounded-width resolution. In Oliver Kullmann, editor,
Theory and Applications of Satisfiability Testing - SAT 2009, pages 114–127, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[10] Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. In Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence, IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

100

http://www.satcompetition.org/
https://www.sharcnet.ca
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/sgd
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/mlr

[11] Gilles Audemard and Laurent Simon. Refining Restarts Strategies for SAT and UN-
SAT, pages 118–126. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[12] Gilles Audemard and Laurent Simon. Glucose 2.3 in the SAT 2013 Competition. In
Proceedings of SAT Competition 2013, pages 42–43, 2013.

[13] Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In Proceed-
ings of the 11th International Conference on Theory and Applications of Satisfiability
Testing, SAT’08, pages 28–33, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report, 10(1), 2010.

[15] Armin Biere. Lingeling, Plingeling and Treengeling Entering the SAT Competition
2013. In Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
pages 51–52, 2013.

[16] Armin Biere and Andreas Fröhlich. Evaluating CDCL Variable Scoring Schemes,
pages 405–422. Springer International Publishing, Cham, 2015.

[17] Armin Biere and Andreas Fröhlich. Theory and Applications of Satisfiability Testing
– SAT 2015: 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, chapter Evaluating CDCL Variable Scoring Schemes, pages 405–
422. Springer International Publishing, Cham, 2015.

[18] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, 2008.

[19] Maria Luisa Bonet, Sam Buss, and Jan Johannsen. Improved Separations of Regular
Resolution from Clause Learning Proof Systems. Journal of Artificial Intelligence
Research, 49:669–703, 2014.

[20] Léon Bottou. On-line Learning in Neural Networks. chapter On-line Learning and
Stochastic Approximations, pages 9–42. Cambridge University Press, New York, NY,
USA, 1998.

[21] Aaron R. Bradley. SAT-based Model Checking Without Unrolling. In Proceedings
of the 12th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI’11, pages 70–87, Berlin, Heidelberg, 2011. Springer-Verlag.

101

[22] Robert G Brown. Exponential Smoothing for Predicting Demand. In Operations
Research, volume 5, pages 145–145, 1957.

[23] Samuel R. Buss and Leszek Aleksander Kolodziejczyk. Small Stone in Pool. Logical
Methods in Computer Science, 10(2), 2014.

[24] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: Automatically Generating Inputs of Death. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS ’06, pages 322–
335, New York, NY, USA, 2006. ACM.

[25] Elsa Carvalho and João P. Marques Silva. Using Rewarding Mechanisms for Improving
Branching Heuristics. In SAT 2004 - The Seventh International Conference on Theory
and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada,
Online Proceedings, 2004.

[26] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded Model
Checking Using Satisfiability Solving. Formal Methods in System Design, 19(1):7–34,
2001.

[27] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement. In Proceedings of the 12th Interna-
tional Conference on Computer Aided Verification, CAV ’00, pages 154–169, London,
UK, UK, 2000. Springer-Verlag.

[28] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical Review E, 70:066111, Dec 2004.

[29] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[30] D. R. Cox. The Regression Analysis of Binary Sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 20(2):215–242, 1958.

[31] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for
Theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[32] Niklas Eén and Niklas Sörensson. Theory and Applications of Satisfiability Testing: 6th
International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003,
Selected Revised Papers, chapter An Extensible SAT-solver, pages 502–518. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

102

[33] Ido Erev and Alvin E Roth. Predicting How People Play Games: Reinforcement
Learning in Experimental Games with Unique, Mixed Strategy Equilibria. American
Economic Review, 88(4):848–881, 1998.

[34] Katherine Faust. Centrality in affiliation networks. Social Networks, 19(2):157 – 191,
1997.

[35] R. A. Fisher. Frequency Distribution of the Values of the Correlation Coefficient in
Samples from an Indefinitely Large Population. Biometrika, 10(4):507–521, 1915.

[36] Linton C. Freeman. Centrality in Social Networks Conceptual Clarification. Social
Networks, 1(3):215 – 239, 1978.

[37] Andreas Fröhlich, Armin Biere, Christoph Wintersteiger, and Youssef Hamadi.
Stochastic Local Search for Satisfiability Modulo Theories. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 1136–1143.
AAAI Press, 2015.

[38] Roman Gershman and Ofer Strichman. Hardware and Software, Verification and
Testing: First International Haifa Verification Conference, Haifa, Israel, November
13-16, 2005, Revised Selected Papers, chapter HaifaSat: A New Robust SAT Solver,
pages 76–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[39] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[40] Eugene Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-solver. Dis-
crete Appl. Math., 155(12):1549–1561, June 2007.

[41] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[42] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-Tailed Phe-
nomena in Satisfiability and Constraint Satisfaction Problems. Journal of Automated
Reasoning, 24(1-2):67–100, February 2000.

[43] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search
Through Randomization. In Proceedings of the Fifteenth National/Tenth Confer-
ence on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI
’98/IAAI ’98, pages 431–437, Menlo Park, CA, USA, 1998. American Association for
Artificial Intelligence.

103

[44] Shai Haim and Toby Walsh. Restart Strategy Selection Using Machine Learning Tech-
niques. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing
- SAT 2009, pages 312–325, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[45] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a Parallel SAT solver.
Journal on Satisfiability, 6:245–262, 2008.

[46] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer. In Nadia Creignou
and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT
2016, pages 228–245, Cham, 2016. Springer International Publishing.

[47] Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination. Annals of Mathematics and Artificial
Intelligence, 43(1):91–111, Jan 2005.

[48] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. SAS+ Planning As Satisfiability.
Journal of Artificial Intelligence Research, 43(1):293–328, January 2012.

[49] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based
Optimization for General Algorithm Configuration. In Carlos A. Coello Coello, edi-
tor, Learning and Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[50] Markus Iser, Mana Taghdiri, and Carsten Sinz. Optimizing MiniSAT variable order-
ings for the relational model finder Kodkod. In Proceedings of the 15th International
Conference on Theory and Applications of Satisfiability Testing, SAT’12, pages 483–
484, Berlin, Heidelberg, 2012. Springer-Verlag.

[51] Robert G. Jeroslow and Jinchang Wang. Solving Propositional Satisfiability Problems.
Annals of Mathematics and Artificial Intelligence, 1(1-4):167–187, September 1990.

[52] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empirical Study of the
Anatomy of Modern Sat Solvers. In Proceedings of the 14th International Conference
on Theory and Application of Satisfiability Testing, SAT’11, pages 343–356, Berlin,
Heidelberg, 2011. Springer-Verlag.

[53] George Katsirelos and Laurent Simon. Eigenvector Centrality in Industrial SAT In-
stances. In Michela Milano, editor, Principles and Practice of Constraint Program-
ming, Lecture Notes in Computer Science, pages 348–356. Springer Berlin Heidelberg,
2012.

104

[54] Henry Kautz and Bart Selman. Planning As Satisfiability. In Proceedings of the 10th
European Conference on Artificial Intelligence, ECAI ’92, pages 359–363, New York,
NY, USA, 1992. John Wiley & Sons, Inc.

[55] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
CoRR, abs/1412.6980, 2014.

[56] Boris Konev and Alexei Lisitsa. A sat attack on the erdős discrepancy conjecture. In
Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
– SAT 2014, pages 219–226, Cham, 2014. Springer International Publishing.

[57] Lars Kotthoff, Ian P. Gent, and Ian Miguel. An Evaluation of Machine Learning in
Algorithm Selection for Search Problems. AI Communications, 25(3):257–270, August
2012.

[58] Michail G Lagoudakis and Michael L Littman. Learning to Select Branching Rules
in the DPLL Procedure for Satisfiability. Electronic Notes in Discrete Mathematics,
9:344–359, 2001.

[59] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential
Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages 3434–3440.
AAAI Press, 2016.

[60] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning Rate
Based Branching Heuristic for SAT Solvers. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages 123–140,
Cham, 2016. Springer International Publishing.

[61] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki.
Understanding VSIDS Branching Heuristics inConflict-Driven Clause-Learning SAT
Solvers. In Nir Piterman, editor, Hardware and Software: Verification and Testing,
pages 225–241, Cham, 2015. Springer International Publishing.

[62] Manuel Loth, Michèle Sebag, Youssef Hamadi, and Marc Schoenauer. Principles and
Practice of Constraint Programming: 19th International Conference, CP 2013, Upp-
sala, Sweden, September 16-20, 2013. Proceedings, chapter Bandit-Based Search for
Constraint Programming, pages 464–480. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

105

[63] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal Speedup of Las Vegas
Algorithms. Information Processing Letters, 47(4):173–180, September 1993.

[64] Manuel Lpez-Ibez, Jrmie Dubois-Lacoste, Leslie Prez Cceres, Mauro Birattari, and
Thomas Sttzle. The irace package: Iterated racing for automatic algorithm configu-
ration. Operations Research Perspectives, 3:43 – 58, 2016.

[65] João P Marques-Silva. The Impact of Branching Heuristics in Propositional Satis-
fiability Algorithms. In Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence, EPIA ’99, pages 62–74, London, UK,
UK, 1999. Springer-Verlag.

[66] João P Marques-Silva and Karem A. Sakallah. GRASP-A New Search Algorithm for
Satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’96, pages 220–227, Washington, DC, USA, 1996.
IEEE Computer Society.

[67] Matthew W. Moskewicz, Conor F. Madigan, and Sharad Malik. Method and system
for efficient implementation of boolean satisfiability, August 26 2008. US Patent
7,418,369.

[68] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Annual
Design Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001.
ACM.

[69] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[70] Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof Czarnecki, and Vijay
Ganesh. Adaptive Restart and CEGAR-Based Solver for Inverting Cryptographic
Hash Functions. In Andrei Paskevich and Thomas Wies, editors, Verified Software.
Theories, Tools, and Experiments, pages 120–131, Cham, 2017. Springer International
Publishing.

[71] M. E. J. Newman. Analysis of weighted networks. Physical Review E, 70:056131, Nov
2004.

[72] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent
Simon. Impact of Community Structure on SAT Solver Performance. In Carsten Sinz

106

and Uwe Egly, editors, Theory and Applications of Satisfiability Testing – SAT 2014,
pages 252–268, Cham, 2014. Springer International Publishing.

[73] Chanseok Oh. Improving SAT Solvers by Exploiting Empirical Characteristics of
CDCL. PhD thesis, New York University, 2016.

[74] Knot Pipatsrisawat and Adnan Darwiche. A Lightweight Component Caching Scheme
for Satisfiability Solvers. In Proceedings of the 10th International Conference on The-
ory and Applications of Satisfiability Testing, SAT’07, pages 294–299, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[75] Knot Pipatsrisawat and Adnan Darwiche. On the Power of Clause-Learning SAT
Solvers with Restarts, pages 654–668. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[76] Knot Pipatsrisawat and Adnan Darwiche. On Modern Clause-Learning Satisfiability
Solvers. Journal of Automated Reasoning, 44(3):277–301, March 2010.

[77] Antonio Ramos, Peter van der Tak, and Marijn J. H. Heule. Between Restarts and
Backjumps. In Karem A. Sakallah and Laurent Simon, editors, Theory and Applica-
tions of Satisfiability Testing - SAT 2011, pages 216–229, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[78] Lawrence Ryan. Efficient Algorithms for Clause-Learning SAT Solvers. Master’s
thesis, Simon Fraser University, 2004.

[79] Lorenza Saitta and Michele Sebag. Phase Transitions in Machine Learning, pages
767–773. Springer US, Boston, MA, 2010.

[80] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryp-
tographic Problems. In Theory and Applications of Satisfiability Testing - SAT 2009,
12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, pages 244–257, 2009.

[81] Charles Spearman. The Proof and Measurement of Association between Two Things.
The American Journal of Psychology, 15(1):72–101, 1904.

[82] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Automated Reasoning: 7th In-
ternational Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, chapter StarExec:
A Cross-Community Infrastructure for Logic Solving, pages 367–373. Springer Inter-
national Publishing, Cham, 2014.

107

[83] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction,
volume 1. MIT press Cambridge, 1998.

[84] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–
483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[85] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient
Checking and Trimming Using Expressive Clausal Proofs. In Carsten Sinz and Uwe
Egly, editors, Theory and Applications of Satisfiability Testing – SAT 2014, pages
422–429, Cham, 2014. Springer International Publishing.

[86] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to Typical Case Com-
plexity. In Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence, IJCAI’03, pages 1173–1178, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc.

[87] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-
based Algorithm Selection for SAT. Journal of Artificial Intelligence Research,
32(1):565–606, June 2008.

[88] Eldad Yechiam and Jerome R. Busemeyer. Comparison of basic assumptions embed-
ded in learning models for experience-based decision making. Psychonomic Bulletin
& Review, 12(3):387–402, June 2005.

[89] Wangsheng Zhang, Gang Pan, Zhaohui Wu, and Shijian Li. Online community de-
tection for large complex networks. In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI ’13, pages 1903–1909. AAAI Press,
2013.

[90] Edward Zulkoski, Curtis Bright, Albert Heinle, Ilias Kotsireas, Krzysztof Czarnecki,
and Vijay Ganesh. Combining sat solvers with computer algebra systems to verify
combinatorial conjectures. Journal of Automated Reasoning, 58(3):313–339, Mar 2017.

108

	List of Tables
	List of Figures
	Introduction
	Summary of Contributions

	Background
	SAT Solving
	Conjunctive Normal Form (CNF)
	Conflict-Driven Clause-Learning (CDCL) SAT Solver
	Experimental Evaluation

	Average
	Mean and Variance
	Exponential Moving Average (EMA)

	Probability Distribution
	Mean and Variance
	Normal Distribution

	Machine Learning
	Supervised Learning
	Reinforcement Learning

	Graph Community Structure and Centrality
	Variable Incidence Graph
	Community Structure
	Degree Centrality
	Eigenvector Centrality

	Machine Learning-Based Branching Heuristics
	Global Learning Rate (GLR)
	Greedy Maximization of GLR
	Experimental Results

	Multi-Armed Bandits Branching
	Learning Rate Objective
	Multi-Armed Bandit Model for Branching
	Learning Rate Branching (LRB) Heuristic
	Experimental Results

	Stochastic Gradient Descent Branching Heuristic
	Experimental Results

	Related Work

	Understanding Branching Heuristics
	Understanding GLR
	Understanding VSIDS
	Understanding VSIDS Bump
	Understanding VSIDS Decay
	Correlation Between VSIDS and Graph Structure

	Related Work

	Machine Learning-Based Restart Policy
	Prior Hypotheses on ``The Power of Restarts''
	Heavy-tailed Distribution and Las Vegas Algorithm Hypotheses
	Escaping Local Minima Hypothesis

	``Restarts Enable Learning Better Clauses" Hypothesis
	Confirming the ``Compacting the Assignment Stack'' Claim
	Learning Better Clauses
	Solving Instances Faster
	Clause Length
	Low LBD in Core Proof

	LBD Percentile
	LBD of Next Clause
	Experimental Evaluation
	Related Work

	Conclusion
	References

