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Abstract

Causal inference is a popular problem in biostatistics, economics, and health science

studies. The goal of this thesis is to develop new methods for the estimation of causal

effects using propensity scores or inverse probability weights where weights are chosen in

such a way to achieve balance in covariates across the treatment groups.

In Chapter 1, we introduce Neyman-Rubin Causal framework and causal inference with

propensity scores. The importance of covariate balancing in causal inference is furthered

discussed in this chapter. Besides, some general definitions and notations for causal in-

ference are provided with many other popular propensity score approaches or weighting

techniques in Chapter 2.

In Chapter 3, we describe a new model averaging approach to propensity score estima-

tion in which parametric and nonparametric estimates are combined to achieve covariate

balance. Simulation studies are conducted across different scenarios varying in the degree of

interactions and nonlinearity in the treatment model. The results show that the proposed

method produces less bias and smaller standard errors than existing approaches. They

also show that a model averaging approach with the objective of minimizing the average

Kolmogorov-Smirnov statistic leads to the best performance. The proposed approach is

applied to a real data set in evaluating the causal effect of formula or mixed feeding versus

exclusive breastfeeding in the first month of life on a child’s BMI Z-score at age 4. The

data analysis shows that formula or mixed feeding is more likely to lead to obesity at age

4, compared to exclusive breastfeeding.

In Chapter 4, we propose using kernel distance to measure balance across different

treatment groups and propose a new propensity score estimator by setting the kernel

distance to be zero. Compared to other balance measures, such as absolute standardized

mean difference (ASMD) and Kolmogorov Smirnov (KS) statistic, kernel distance is one

of the best bias indicators in estimating the causal effect. That is, the balance metric

based on kernel distance is shown to have the strongest correlation with the absolute

bias in estimating the causal effect, compared to several commonly used balance metrics.

The kernel distance constraints are solved by generalized method of moments. Simulation

studies are conducted across different scenarios varying in the degree of nonlinearity in both
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the propensity score model and outcome model. The proposed approach produces smaller

mean squared error in estimating causal treatment effects than many existing approaches

including the well-known covariate balance propensity score (CBPS) approach when the

propensity score model is misspecified. An application to data from the International

Tobacco Control (ITC) policy evaluation project is provided.

Often interest lies in the estimation of quantiles other than the average causal effect.

Other quantities such as quantiles or the quantile treatment effect may be of interest.

In Chapter 5, we propose a multiply robust method for estimating marginal quantiles

of potential outcomes by achieving mean balance in (1) the propensity score, and (2)

the conditional distributions of potential outcomes. An empirical likelihood or entropy

measure can be utilized instead of using inverse probability weighting. Simulation studies

are conducted across different scenarios of correctness in both the propensity score models

and outcome models. Our estimator is consistent if any of the models are correctly specified.
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Chapter 1

Introduction

1.1 Neyman-Rubin Causal Framework

Causal inference is pervasive in many fields. In health research, researchers are interested in

questions such as “What causes the disease?” or “Will aspirin reduce headaches?” In eco-

nomics studies, researchers may ask “What are the factors driving increased gas prices?”

In randomized trials, researchers measure the magnitude of causal effects by comparing

the outcome when an action is applied with the outcome when no action is applied. The

action is commonly known as a treatment, exposure or intervention. Confounders are vari-

ables that affect both the treatment assignment and the outcome. In randomized studies,

treatments are randomly assigned to subjects. Random allocation ensures that there are

no measured or unmeasured baseline characteristics as confounders. Figure 1.1 shows the

causal diagram for a nonrandomized study with treatment assignment T , confounders X,

and outcome variable Y . For a randomized study, there is no edge from X to T . Estimat-

ing a causal effect in randomized studies is straightforward because any covariates that

might influence the outcome can be assumed to have the same distribution across different

treatment groups. Therefore, any difference in the outcome variable across the groups can

be attributed to the different treatments.

There is increasing interest in observational studies to draw causal inference when the

treatment assignment is not random. In non-randomized studies, there may be confounders

1



T Y

X

Figure 1.1: Causal Diagram with Confounders

that impact both the outcome and the treatment assignment. Baseline characteristics of

treated subjects can differ greatly from the characteristics of untreated subjects. Ignoring

these confounders may lead to biased estimation of the causal effects.

In this thesis, we work within the potential outcomes framework, also known as the

Neyman-Rubin Causal Model, for estimating causal effects (Rubin, 1974; Splawa-Neyman

et al., 1990; Holland et al., 1985; Imbens and Rubin, 2015). A potential outcome is the

hypothetical value of the outcome variable for a subject under a specific treatment (Rubin,

2008). If we use i to index individuals and Yi for the outcome of the ith subject, each

individual has a pair of potential outcomes under the binary treatment setting. We use

Yi(1) to denote the potential outcome under treatment, while Yi(0) denotes the potential

outcome under the control.The control here refers to no treatment assignment throughout

the thesis. The individual causal effect can be defined as Yi(1) − Yi(0). Estimation of

the individual causal effect is not practical since we can never observe both {Yi(1), Yi(0)}
simultaneously. If the treatment is applied to subject i, Yi(1) is observed and Yi(0) is

sometimes called the counterfactual outcome. On the other hand, if the treatment is not

applied to subject i, Yi(1) will be the counterfactual outcome and Yi(0) will be observed.

The causal quantity we are interested in estimating is often the average causal effect, which

is defined as the difference in the potential outcomes within the same subject averaged

over a given population: E{Y (1) − Y (0)}. The causal risk ratio (E{Y (1)}/E{Y (0)} =

P{Y (1) = 1}/P{Y (0) = 1}) is also an interesting quantity when we want to study the

incident proportion ratio between treatment and control groups.

Standard assumptions are essential under the Neyman-Rubin Causal Model to obtain

consistent causal effect in observational studies (Rosenbaum and Rubin, 1983; Cole and

Frangakis, 2009). Four key assumptions are given below:

2



• Consistency: A subject with an assigned treatment equal to t has observed outcome

Y equal to its potential outcome Y (t): Yi = Ti × Yi(1) + (1− Ti)× Yi(0).

• Strongly Ignorable Treatment Assignment: The treatment T assigned is inde-

pendent of the counterfactual outcomes given the observed characteristics:

{Yi(1), Yi(0)} |= Ti|Xi.

• Stable Unit Treatment Value Assumption (SUTVA): Each subject’s potential

outcomes should be unaffected by the actual treatment assignment of another subject.

• Positivity: 0 < P (Ti = 1|Xi = x) < 1.

The consistency assumption can be problematic when there are different versions of

treatment (Hernan and Vander Weele, 2011). For example, we want to study the average

effect between the heart transplant (treatment) and medical therapy (control) on patient’s

5 year mortality. The doctor may conduct the heart transplant in different pre-operative

procedures. The average effect of heart transplant in a study where the doctors used a

traditional pre-operative procedure may differ from that in another study where doctors

tried a novel pre-operative procedure. The treatment is not well defined in this case.

The strongly ignorable treatment assignment assumption is also known as the no un-

measured confounders assumption. It implies that conditional on baseline characteristics

the treatment assignment is independent of the set of potential outcomes. If there is no

unmeasured confounders, one can still obtain unbiased estimates of causal effects (Robins

et al., 2000). The no unmeasured confounders assumption is not testable since Yi(0) is

not observed if treatment is assigned or Yi(1) is not observed if no treatment is assigned.

However, assessing the assumption is feasible (Imbens and Rubin, 2015).

The SUTVA excludes the possibilities of units interfering with each other and multiple

versions of a treatment but there are circumstances in which it is not credible. For example,

it may be violated in a family study about some infectious diseases such as flu. If one family

member receives a vaccine, it may affect the others’ change of getting flu.

The positivity assumption implies that each subject has a non-zero probability of re-

ceiving either treatment or control. If a particular subpopulation has zero probability of
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being assigned to the treatment, the estimation of causal effects will be based on extrapo-

lation and we may have to exclude such subpopulation from analysis (Imbens and Rubin,

2015).

1.2 Causal Inference with Propensity Scores

The propensity score is defined as the conditional probability of assignment to the treat-

ment group given the observed covariates (Rosenbaum and Rubin, 1983): e(x) = P (T =

1|X = x). Rosenbaum and Rubin (1983) also showed that, under the strongly ignorable

treatment assignment assumption,

{Yi(1), Yi(0)} |= Ti|ei(X)

which means, given e(X), the distributions of potential outcomes are independent of the

treatment assignment. It plays an important role in estimating the causal effect in obser-

vational studies (Rosenbaum and Rubin, 1983).

There are many approaches to estimate the average causal effect using propensity scores,

such as inverse probability weighting (IPW; Hirano and Imbens (2001)), stratification

(Rosenbaum and Rubin, 1983), and matching (Cochran and Rubin, 1973; Rubin, 1973a,b).

Causal inference based on propensity scores is usually a two step procedure. First the

propensity score is estimated (for example using logistic regression). Then the causal effect

is estimated by weighting the outcome using the inverse of the estimated propensity score

for each subject or matching control subjects to treated subjects based on the similarity

of the estimated propensity scores. These methods have been shown to be effective in

estimating the average causal effect (Hirano and Imbens, 2001; Stuart, 2010).

Logistic regression has frequently been used in observational studies to estimate the

propensity scores for binary treatment. Traditional logistic regression is still found to be

a good choice when the propensity score model is not heavily misspecified. Alternatively,

Lee et al. (2010) suggest using classification and regression trees (CART) (Breiman et al.,

1984), prune CART, and ensemble methods such as: bagged CART (Breiman, 1996),

random forest (Breiman, 2001), and generalized boosted model (GBM) (McCaffrey et al.,
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2004) for propensity score estimation. All the above mentioned approaches are built on de-

cision trees. Among these, GBM and random forest showed improvement over traditional

parametric methods in terms of absolute bias, coverage rate, and reduction in standard

error (Lee et al., 2010). A random forest is a collection of decision trees based on boot-

strapped samples of the original data. For each split of the tree, a random subset of the

predictors is chosen and the best split is found among the chosen predictors (Friedman

et al., 2001). GBM (Friedman et al., 2001) is an iterative tree method that fits a tree

model using residuals from the previous tree. Therefore, the trees are grown sequentially

but not independently such as random forest.

Despite the popularity of IPW, Kang and Schafer (2007) found that the estimators

based on IPW are sensitive to the misspecification of the propensity score model. Many

double robust estimators (Robins et al., 1994, 1995; Rotnitzky et al., 1998; Qin et al., 2008;

Tan, 2010; Fan et al., 2016) have been proposed by modelling the treatment assignment

mechanism and the relationship between covariates and outcome to improve the efficiency.

These methods are robust to the misspecification of one of the treatment or outcome

models.

1.3 Covariate Balancing

Covariate balance means that the distributions of measured covariates for observations in

the treatment group and control group are similar to each other (Harder et al., 2010). Rubin

(2007) advocated mimicking randomized experiments since randomization is considered the

gold standard in estimating the average causal effect. It means analysis in observational

studies can be modified to derive an estimator you would have derived when you run a

randomized control trial. The baseline characteristics of observational studies are used to

adjust the studies such that the subgroups of treatment and control units are similar to

each other. Randomized design is usually infeasible due to many reasons including but

not limited to time limit, ethical concerns, and massive expenses. However, this can be

accomplished by propensity score approaches, matching methods (Stuart, 2010; Iacus et al.,

2012) or weighting based covariate balancing methods (Qin and Zhang, 2007; Hainmueller,

2012; Imai and Ratkovic, 2014; Hazlett, 2015; Chan et al., 2016; Wong and Chan, 2017).
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Hence, achieving balance in covariates across treatment groups is one of the most important

targets for propensity score based approaches to achieve the similarity of subgroups. By

achieving balance in covariates, the bias in estimating the average causal effect can be

reduced (Harder et al., 2010). Mean balance is defined as the equivalence of the means of

the potential outcomes between the treatment and control groups (Hazlett, 2015). Under

strongly ignorable treatment assignment, Hazlett (2015) showed that if the mean balance

on a linear outcome model is achieved by weighting, an unbiased estimator of the average

causal effect on the treated can be obtained. In this section, we give a brief introduction

to the literature specifically focusing on covariate balancing.

Recently, several propensity score modelling approaches have been proposed which tar-

get achieving balance in the covariates. For example, the GBM approach estimates the

propensity score through generalized boosted regression (McCaffrey et al., 2004). The num-

ber of iterations in GBM is determined by minimizing average standardized absolute mean

difference such that the covariate balance is optimized. The covariate balancing propensity

score method (CBPS) was introduced to model the treatment assignment using a logistic

model while simultaneously optimizing the covariate balance (Imai and Ratkovic, 2014).

The CBPS method estimates the parameters of the propensity score model by solving es-

timating equations implied by the covariate balancing property while still incorporating

the standard logistic regression estimation procedure (Imai and Ratkovic, 2014). This es-

timation is conducted using generalized method of moments (GMM) (Hansen, 1982) or

empirical likelihood (Owen, 2001). The CBPS method optimizes the balance of covari-

ates between treatment and control groups. The advantage of CBPS is that it reduces

the effect of potential misspecification of a parametric propensity score model (Imai and

Ratkovic, 2014). Fan et al. (2016) discussed the theoretical properties, optimal choice of

covariate balancing function for CBPS methodology and proposed a double robust and

efficient improved-CBPS (iCBPS) methodology.

In addition to the commonly used matching and inverse propensity score weighting ap-

proaches in observational studies, entropy balancing was proposed by Hainmueller (2012).

The entropy measure used in entropy balancing method is the measure of divergence from

one distribution to another distribution. It differs from other preprocessing approaches by

directly focusing on the goal of achieving covariate balance, which can help to reduce model
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dependence while retaining valuable information. The entropy balancing method relies on

a maximum entropy reweighting scheme that directly incorporates covariate balance into

the weight function. The reweighting scheme includes a large set of balance constraints so

that the covariate distributions in the treatment and control groups will match exactly on

all pre-specified moments. The entropy balancing method is shown to be double robust

when either the logistic propensity score model or the outcome model is linear in some

functions of covariates which is also used for balancing constraints. Hazlett (2015) also

proposed a kernel balancing method to find the weight vector such that the mean balancing

on the kernel matrix is satisfied.

There has been some recent work focusing on using kernel-based methods to estimate

causal effects. Wong and Chan (2017) proposed a kernel-based method to achieve covariate

functional balance for functions of covariates in a reproducing kernel Hilbert space (RKHS).

This method shows that the infinite-dimensional optimization can be transformed into

finite-dimensional optimization. The true outcome regression function is assumed to lie

in the RKHS. The consistency of the causal effect estimator is achieved as long as the

estimation error of the outcome regression function is op(1). In the simulation studies of

Wong and Chan (2017) to compare their proposed covariate functional balancing estimator

with IPW estimator, it is shown that the empirical performance of both estimators are

related to the degree of covariate balancing. The IPW estimator can be very unstable

without any covariate balancing. Zhao (2016) proposed estimating the propensity score

using a covariate balancing scoring rule under a logistic regression model and generalized

the linear predictors into different model spaces such as RKHS. Kallus (2016) proposed a

kernel optimal matching method under the framework of generalized optimal matching by

minimizing a bias-dual-norm imbalance metric under the RKHS norm.

1.4 Outline of the Thesis

As we introduced before, there is a rich literature on statistical analysis of causal inference.

The thesis addresses the causal inference problem focusing on covariate balancing. In

Chapter 2, we introduce the basic setting for estimating average causal effect or other

quantities and give a more detailed review of commonly used propensity score approaches
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and weighting techniques such as IPW, CBPS, entropy balancing, and Targeted Maximum

Likelihood Estimation.

In Chapter 3, we introduce a new model averaging approach for propensity score esti-

mation which combines a parametric model with a nonparametric model. The proposed

methodology is similar in spirit to super learner (van der Laan et al., 2007). Given a library

of candidate models, super learner uses a weighted linear combination of all candidates to

build a new estimator by minimizing a particular loss function, such as the mean squared

error, using cross-validation (Pirracchio et al., 2015). Our approach differs in the sense that

it is a linear combination of one parametric propensity score model with one nonparamet-

ric model and the weight on either model is determined by optimizing a selected balance

metric, such as the average value of absolute standardized mean difference (ASMD) of all

measured covariates or the mean Kolmogorov-Smirnov (KS) test statistic.

In Chapter 4, we introduce another approach to estimate the average causal effect

using kernel distance which is also based on the idea of covariate balancing. The target

is to find the optimal regression coefficients in logistic regression such that the kernel

distance between the distributions of covariates under treatment and control groups are zero

after inverse probability weighting. Similar to the CBPS approach, we employ estimating

equations to find the optimal coefficient estimates based on logistic regression. However,

we aim to achieve the balance in the whole distributions of covariates between treatment

and control groups not only the first or second order moments.

Often interest lies in the estimation of quantities other than the population means. The

quantiles of an outcome can be a more meaningful measure in asymmetric distributions for

real life problems (Zhang et al., 2012; Dı́az, 2015). Several methods have been proposed to

estimate quantile treatment effects (QTE) , for example, the marginal quantiles of potential

outcomes and their difference (Zhang et al., 2012). In Chapter 5, we aim to incorporate

the idea of covariate balancing to the estimation of the quantile treatment effect (QTE)

or quantile treatment effect in the treated (QTET). We aim to achieve balance in the

conditional distributions of outcomes between treated and control groups and estimate the

QTE or QTET simultaneously.
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Chapter 2

Propensity Score Approaches and

Beyond

In this chapter, we will introduce the general setting for causal inference which will be

used throughout this thesis and some propensity score approaches or weighting methods

for estimating causal quantities.

2.1 (Augmented) Inverse Probability Weighting

Let X = (1, X1, . . . , Xp)
ᵀ be a vector of baseline covariates. Following the definition in

Chapter 1, the data are denoted as (Ti, Yi,Xi), i = 1, . . . , n and n = n0 + n1 where n1

and n0 are the numbers of observations in treatment and control groups separately. The

quantities we are interested in estimating are the average causal effect (ACE):

µ = ACE = E {Y (1)− Y (0)}

and the average causal effect in the treated (ACET):

ACET = E {Y (1)− Y (0)|T = 1} .

Throughout the thesis, we will keep with this basic setting. When estimating the

ACE, a treated unit is assigned a weight of ŵi = 1/ê(Xi) where ê(Xi) is the estimated
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propensity score for that unit. The weight for a control unit is ŵi = 1/{1− ê(Xi)}. When

estimating the ACET, the weight for a treated unit is 1 and the weight for a control unit is

ŵi = ê(Xi)/{1− ê(Xi)}. The Horvitz-Thompson estimator (Horvitz and Thompson, 1952)

based on the inverse probability weighting is formulated to estimate the ACE (Robins

et al., 1994),

µ̂ =
1

n

n∑
i=1

{TiYiŵi − (1− Ti)Yiŵi} .

The effect of weighting by inverse probability weighting (IPW) is to create a new

pseudo-population with wi copies of each subject so that treatment T is not confounded

with covariates X. However, an estimator based on augmented inverse probability weight-

ing (AIPW) can achieve full efficiency compared to an estimator based on IPW if both

treatment assignment mechanism and outcome regression model are correctly specified.

Throughout this section, let µ1 = E{Y (1)} and µ0 = E{Y (0)}, then µ = µ1− u0. We also

define the conditional expectation of potential outcome pairs:

µ1|X = E{Y (1)|X},
µ0|X = E{Y (0)|X}.

The AIPW estimator of ACE in Robins et al. (1994) is defined as:

µ̂R =
1

n

n∑
i=1

[
Ti{Yi − µ̂1|Xi

}
ê(Xi)

−
(1− Ti){Yi − µ̂0|Xi

}
1− ê(Xi)

+ µ̂1|Xi
− µ̂0|Xi

]
,

where µ̂1|Xi
and µ̂0|Xi

can be estimated by regressing the observed outcomes on covariates

in treatment or control groups respectively.

Similar to Robins et al. (1994), Qin and Zhang (2007) proposed an empirical likelihood

based estimator for the population mean in missing data problems by maximizing the

biased sampling likelihood subject to covariate moment constraints. Under the assumptions

given in Section 1.1, the estimation of the ACE can be treated as a two-sample missing

data problem and the estimator for µ1 has the following form:

µ̂1,EL =
1

n1

n∑
i=1

θ̂ê−1(Xi)

1 + λᵀr1(Xi, β̂, θ̂, â1)
TiYi,
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where â1 =
∑n

i=1 a1(Xi), a1 = E{a1(X)}, r1(X,β, θ, a1) =

[
1− θe−1(X)

e−1(X){a1(X)− a1}

]
. Here

a1(X) is a user specified vector function of covariates. λ̂ is the Lagrange multiplier deter-

mined by

n∑
i=1

Tir1(Xi, β̂, θ̂, â1)

1 + λᵀr1(Xi, β̂, θ̂, â1)
= 0.

µ̂0,EL can be obtained in a similar way. The empirical likelihood based estimator also

has the same double robust property as the AIPW estimator proposed by Robins et al.

(1994). The double robust estimator will be consistent if either the propensity score model

or the outcome model is correctly specified (Scharfstein et al., 1999). Moreover, if the

true outcome regression model lies in the space spanned by some known functions which

are also incorporated into the above a1(X), the empirical likelihood based estimator can

also achieve full efficiency. Both estimators improve the efficiency of estimators by fully

incorporating available information of the outcome model.

2.2 Covariate Balancing Propensity Score

The IPW estimator is sensitive to misspecification of the propensity score model (Kang and

Schafer, 2007; Zhu et al., 2014). Some methods have been proposed to address this problem

including the covariate balancing propensity score (CBPS) (Tan, 2010; Hainmueller, 2012;

Graham et al., 2012; Chan et al., 2016). The CBPS can also be extended to study general

treatment regimes and the longitudinal analysis setting (Fong and Imai, 2014; Imai and

Ratkovic, 2015). A common choice for the propensity score model is logistic regression:

logit(X) = Xᵀβ, (2.1)

where β ∈ Θ is an unknown parameter column vector. Generally, one will estimate β

by maximizing the log-likelihood function. It can be solved from the following estimating

equation based on the score vector:

1

n

n∑
i=1

Sβ(Ti,Xi) = 0,
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where Sβ(Ti,Xi) = { Ti
eβ(Xi)

− 1−Ti
1−eβ(Xi)

}e′β(Xi) and e′β(Xi) = ∂e(Xi)/∂β
ᵀ. In CBPS, Imai

and Ratkovic (2014) proposed to replace e′β(Xi) by a user specified vector function f(Xi).

The CBPS method estimates β by solving the following m-dimensional estimation equa-

tions:

ḡβ(T,X) =
1

n

n∑
i=1

gβ(Ti,Xi) = 0, (2.2)

with gβ(Ti,Xi) = { Ti
eβ(Xi)

− 1−Ti
1−eβ(Xi)

}f(Xi). Here f(Xi) is called the covariate balancing

function since Equation (2.2) can be also expressed as a covariate balancing equation:

n∑
i=1

Ti
eβ(Xi)

f(Xi) =
n∑
i=1

1− Ti
1− eβ(Xi)

f(Xi).

The covariate balancing equation enables the robust and efficient estimation of ACE.

If we choose the f(Xi) to be {Xᵀ
i , . . . , (X

m
i )ᵀ}, the estimating equations become the mo-

ment condition of covariates as we mentioned before. If the number of parameters equals

the number of equations, it will be just-identified estimation. If the covariate balancing

equation is combined with score function condition, an over-identified continuous updating

generalized method of moments (GMM) estimator can be derived:

β̂GMM = arg min
β∈Θ

ḡβ(T,X)ᵀŴḡβ(T,X).

Here Ŵ is the m×m dimensional covariance matrix. The ACE can be estimated through

IPW once β is estimated. The estimation can also be done through the empirical likelihood

framework with the covariate balancing equation given in Equation (2.2) as constraints.

There was still one issue left unsolved in the CBPS method: what is the optimal choice

of f(X)? Fan et al. (2016) explored the optimal choice of the f(X) and the theoretical

properties of the CBPS-based IPW estimator. If there exists an α such that αᵀf(X) is

equal to the weighted average of conditional mean functions of two potential outcomes, the

CBPS-based IPW estimator is still consistent when the propensity score model is arbitrary

misspecified. Once the covariate balancing function is constructed in this way, the CBPS-

based IPW estimator will be semi-parametric efficient when the propensity score model is

also correctly specified (Fan et al., 2016).
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2.3 Entropy and Kernel Balancing

The IPW estimators including CBPS require specifying a propensity score model. Entropy

balancing (Hainmueller, 2012) and kernel balancing (Hazlett, 2015) are proposed to achieve

covariate balancing by a maximum entropy reweighting without estimating a propensity

score model. Different from IPW approaches, entropy balancing directly focuses on co-

variate balancing. Hainmueller (2012) focuses on the estimation of ACET in observational

studies with binary treatment. Since ACET = E {Y (1)|T = 1}−E {Y (0)|T = 1} , the first

expectation can be estimated from the treatment group directly without weighting. The

second expectation is a counterfactual mean and is unobserved. Weights for the control

group need to be estimated. In the entropy balancing method, the weights for the control

group are chosen to minimize a distance metric:

min
wi

H(w) =
∑
{i|Ti=0}

h(wi)

subject to covariate balancing and normalizing constraints:∑
{i|Ti=0}

wicri(Xi) =
∑
{i|Ti=1}

1

n1

cri(Xi) with r = 1, . . . , R, (2.3)

∑
{i|Ti=0}

wi = 1, (2.4)

wi ≥ 0 for all Ti = 0, (2.5)

where h(·) is a distance metric chosen from a class of empirical minimum discrepancy

estimators proposed by Read and Cressie (2012). A backward Kullback-Leibler distance,

also called entropy measure, which is the measure of divergence between two distributions

(Kullback and Leibler, 1951), is employed (Kullback, 1959): h(wi) = wi log(wi/qi) with wi

being the control weight and qi the base weight. A set of uniform base weights is usually

utilized.

Equations (2.3) is the covariate balancing constraint with cri(Xij) = Xr
ij, r = 1, . . . , R.

The balancing constraint aims to balance between the weighted average of the rth covariate

moment in the control group and the same moment for treatment group up to the Rth

moment. The covariate distributions between treatment and control group will match
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exactly up to Rth order. Equation (2.4) and (2.5) are normalization constraints used by

distance metrics.

The Lagrange multiplier method is used to estimate the weights subject to the con-

straints, then the ACET can be estimated by

ÂCET =
1

n

n∑
i=1

TiYi −
n∑
i=1

{(1− Ti)Yiŵi} . (2.6)

The entropy balancing searches for the optimal set of weights satisfying the covariate

balance constraints while remaining as close as possible to the set of uniform base weights

under the entropy measure (Hainmueller, 2012). The entropy balancing achieves a high

degree of covariate balance directly by imposing up to Rth moment balancing constraints,

while conventional IPW approaches still need to do balancing check after estimation (Hi-

rano et al., 2003). Entropy balancing also has the double robust property as long as either

propensity score model or outcome model is linear in cr(X) (Zhao and Percival, 2017).

Kernel balancing is based on a similar idea to entropy balancing, although kernel bal-

ancing relaxes the limitation on moments by imposing the kernel (Hazlett, 2015). In the

entropy method, unbiasedness is assured only when the propensity score model or outcome

model is linear in the pre-specified functions of observed covariates. However, kernel bal-

ancing seeks weights such that treatment and control groups have equal means on the set

of bases implied by a kernel, which is proved to be a very large space of functions.

In kernel balancing, Hazlett (2015) focuses on the estimation of ACET. The conditional

expectation of Y (0) is assumed to be:

E {Yi(0)|Xi = x} = φ(x)ᵀθ.

A mean balance condition on φ(X) similar to Equation (2.3) is derived:∑
{i|Ti=0}

wiφ(Xi) =
1

n1

∑
{i|Ti=1}

φ(Xi).

Model assumptions are not required but a model space through a choice of kernel such

as Gaussian kernel: K(Xi,Xj) = e−
‖Xi−Xj‖

2

2σ2 is employed. A positive semi-definite ker-

nel K matrix is defined with Ki,j = K(Xi,Xj). The ith row of K can be written as

14



Ki = {K(Xi,X1), . . . , K(Xi,Xn)}. By reordering the observations, the first n1 rows of K

corresponding to treated units:

K =

(
Kt

Kc,

)
where Kt is n1 × n and Kc is n0 × n.

Unlike pre-specified functions, the kernel function can be generalized to an inner product

of infinite-dimensional eigenfunctions by Mercer’s Theorem (Mercer, 1909): K(Xi,Xj) =

〈φ(Xi), φ(Xi)〉. Hence, the mean balance condition on φ(X) can be transformed to mean

balance on K: ∑
{i|Ti=0}

wiKi =
1

n1

Kt
ᵀ
1n1 .

Here 1n1 is a uniform vector of length equal n1. With the constraint, we can optimize the

entropy measure to estimate the weights for the control group. An estimate of ACET can

be obtained by Equation (2.6).

The kernel balancing finds the weights such that the weighted average rows of Kc is

equal to the average rows of Kt. Achieving the mean balance on the kernel matrix implies

achieving the mean balance on a large set of smooth functions of covariates. This is very

helpful when researchers have no knowledge about what function of covariates would drive

the treatment assignment mechanism. Similar to entropy balancing, kernel balancing also

avoids an iterative balance check which is a common practice in matching methods.

2.4 Targeted Maximum Likelihood Estimation

Targeted Maximum Likelihood Estimation (TMLE) is a well-established method to esti-

mate many types of causal effects (van der Laan and Rose, 2011; van der Laan, 2014).

TMLE estimates the parameter of interest in a way that reduces bias by considering the

remaining parameters as nuisance parameters (van der Laan, 2014). It can be used to

estimate the ACE by conditioning the remaining parameters in the likelihood function for

the observed:

L = P (Y|T,X)P (T |X)P (X).
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Define Q(T,X) ≡ E(Y|T,X), g(X) ≡ P (T |X). An initial Q0
n for Q(T,X) can be

estimated from observed data using many techniques such as: traditional regression models,

machine learning approaches, and super learner (van der Laan et al., 2007). Here g(X) is

a nuisance parameter. Then Q0
n can be updated by

Q1
n = Q0

n + εh(X),

where h(X) is a function of nuisance parameter determined by the influence curve of the

parameter of interest. We can estimate ε by regressing the observed outcome Y on h(X)

with intercept Q0
n. Finally, the TMLE estimator for ACE, the parameter of interest, is

given by

µ̂TMLE =
1

n

n∑
i=1

{Q1
n(1,Xi)−Q1

n(0,Xi)}.

The TMLE estimator is also double robust when either the nuisance parameter (g(X))

or outcome model (Q(T,X)) is correctly specified. It is also semi-parametric efficient when

both are correctly specified. An R package, tmle, is available for the implementation of

TMLE in statistical application (Gruber and van der Laan, 2011).

2.5 Summary

In this chapter, we introduce a variety of propensity score based approaches such as: IPW,

AIPW, empirical likelihood based AIPW method, CBPS, iCBPS, TMLE, entropy and

kernel balancing methods. In the following chapter, we will present our proposed methods

based on covariate balancing.
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Chapter 3

Model Averaging Approach

3.1 Proposed Approach

In the literature, model averaging or weighted estimation has been introduced in other

research areas. For example, Olkin and Spiegelman (1987) proposed a semiparametric

density estimator which combines the parametric maximum likelihood estimator and the

nonparametric kernel estimator. In survival analysis, to estimate the hazard function,

Kouassi and Singh (1997) proposed a weighted average of the parametric Weibull model

and a kernel hazard estimator. Nottingham and Birch (2000) developed a model-robust

quantal regression (MRQR) which combines a logistic regression model with a local linear

regression. Motivated by a setting where a parametric model is insufficient to fit the entire

data set, Mays et al. (2001) developed several semiparametric approaches to improve the

fit, one of which combines the regression fit of ordinary least squares and the fit of a

local linear regression. Finally, Zhu et al. (2016) considered combining multiple candidate

models in estimating controlled direct effects and found that combining a parametric model

with a nonparametric model leads to more accurate and efficient estimates.

The quantities we are interested in estimating average causal effect (ACE) and aver-

age causal effect in the treated (ACET). As we discussed in Chapter 2, there are many

approaches to estimate the ACE or ACET using propensity scores, such as inverse prob-

ability weighting (IPW), stratification, and matching. Here, we focus on IPW, although
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the proposed methodology can be extended to matching and stratification procedures.

We will consider two propensity score models: logistic regression (LR) and random for-

est (RF). The simulation by Lee et al. (2010) results show that LR and RF lead to the least

biased causal estimates, among the collection of methods examined, when the propensity

score models are not heavily misspecified. Therefore, averaging over LR and RF methods is

a reasonable choice and both algorithms are easy to implement and computationally fast.

The proposed model averaging propensity score estimate is a linear combination of the

estimated propensity scores from these two models. Let ê1(X) be the estimated propensity

score from LR and ê2(X) be the estimated propensity score from RF. Our proposed model

averaging propensity score estimate is:

êc(X) = λê1(X) + (1− λ)ê2(X),

where λ is a mixing parameter between 0 and 1. The value of λ is chosen such that a

certain balance statistic is minimized. The balance statistic is a measure on the covariates

we use to assess similarity across the treatment groups. Four balance statistics from a list of

balance statistics in Stuart et al. (2013) are proposed and for each criterion, the optimal λ is

found via a grid searching methodology. For each balance statistic, grid searching is simply

an exhaustive search where we calculate the balance statistic for each pre-specified λ value

and the optimal λ is chosen such that the balance statistic is minimized. Here, the grid

search runs from 0 to 1 at an increment of 0.01. We consider the following balance statistics

based on absolute standardized mean difference (ASMD) and Kolmogorov-Smirnov (KS)

statistic: mean ASMD, median ASMD, maximum ASMD, and mean KS statistic.

The ASMD for a covariate Xj is calculated as the absolute value of the difference in

weighted means of the covariate between the treatment group and control group divided

by the standard deviation of the covariate in the treated group (Stuart et al., 2013).

ASMD(j) = |X̄w
j,1/sd(Xj,1)− X̄w

j,0/sd(Xj,1)| for j = 1, . . . , p.

Here, X̄w
j,1 is the weighted mean of the jth covariate in the treated group while X̄w

j,0 is the

weighted mean in the control group,

X̄w
j,0 =

∑n
i=1(1− Ti)Xijŵi∑n
i=1(1− Ti)ŵi

, X̄w
j,1 =

∑n
i=1 TiXijŵi∑n
i=1 Tiŵi

,
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where the weights are based on the model averaged propensity score models and sd(Xj,1)

is the sample standard deviation of Xj in the treatment group without weighting. For each

continuous covariate there is a single corresponding ASMD value. The mean/median/max

ASMD is the mean/median/max of all ASMD values over all covariates. For categorical

covariates, there is a corresponding ASMD for each level of the covariate. To evaluate the

corresponding ASMD for each level of a binary or categorical covariate, we create a binary

variable indicating that the unit is equal to that level and then we calculate the ASMD of

the indicator variable (Lee et al., 2010).

The KS statistic is defined as the maximum discrepancy of two empirical weighted

cumulative distribution functions:

KS(j) = sup
x
|Fw

1,n1
(Xj,1)− Fw

0,n0
(Xj,0)| for j = 1, . . . , p.

Here n1 is the number of units in the treatment group and n0 is the number of units

in the control group. The two empirical weighted cumulative distribution functions are

built based on the covariate values in the treatment group and control group separately.

For categorical variables, the reported KS statistic is the difference in proportions for each

level, between the treated and control groups (Ridgeway et al., 2015).

We have four model averaging or combined approaches based on the four balance statis-

tics. After we find the optimal λ and corresponding new combined propensity scores, we

estimate the weights using the IPW method and then the ACE or ACET based on the

Equation (2.1) in Section 2.1. In Section 3.2, we show the consistency of λ̂ estimator, if λ̂

is chosen such that the mean KS statistic is minimized.

3.2 Theoretical Properties

Through the statement and proof of several lemmas, we will show that when the true

propensity score follows the RF model and λ0 is the true value of the mixing parameter,

we have λ̂n
a.s.−−→ λ0 = 0 as n → ∞ if λ̂n is chosen such that the mean KS statistic

is minimized. For simplicity, we ignore the randomness in e1(·) and e2(·). Given data
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(Xi, Ti), i = 1, . . . , n, the mean KS statistic can be written as:

Gn(λ) =
1

p

p∑
j=1

gj,n(λ),

where

gj,n(λ) = sup
a∈Aj

∣∣∣∣∣hj,n(λ, a)

∣∣∣∣∣,
Aj is the support of the jth covariate and

hj,n(λ, a) =
n∑
i=1

1

n

[
TiI(a ≥ XijTi)

λe1(Xi) + (1− λ)e2(Xi)
− (1− Ti)I{a ≥ Xij(1− Ti)}

1− λe1(Xi)− (1− λ)e2(Xi)

]
is the difference of two empirical weighted cumulative distribution function based on the

inverse probability weights. Let e1(Xi) and e2(Xi) be the underlying models we assume

for LR and RF respectively.

Hereafter, we assume the true propensity score model is the RF model, which means

the true value of λ is zero, i.e., λ0 = 0. Hence the true propensity score is e(X) = e2(X).

We present the following theoretical properties:

Lemma 3.2.1. Assume X = (X1, . . . , Xp) is a continuous random vector. We have:

Gn(λ)
a.s.−−→ G(λ) = 1

p

∑p
j=1 gj(λ), as n→∞, where

gj(λ) = sup
a∈Aj
|hj(λ, a)|

and

hj(λ, a) =

∫
A1

. . .

∫
(−∞,a]∩Aj

. . .

∫
Ap

λ{e2(x)− e1(x)}
{λe1(x) + (1− λ)e2(x)}{1− λe1(x)− (1− λ)e2(x)}

dF (x1, . . . , xj , . . . , xp),

where F (x1, . . . , xj, . . . , xp) is the joint cumulative distribution function of X = (X1, . . . , Xp).

Proof. This property can be easily extended to discrete covariates. We only show the con-

tinuous case here. By the strong law of large numbers, it can be shown that hj,n(λ, a)
a.s.−−→

hj(λ, a) as n→∞. Consequently by the continuous mapping theorem, sup
a
|hj,n(λ, a)| a.s.−−→

sup
a
|hj(λ, a)| as n→∞. Finally, Gn(λ)

a.s.−−→ G(λ) as n→∞.
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Lemma 3.2.2. G(λ0) = 0 and G(λ) > 0, ∀λ 6= λ0 .

Proof. This is true because there exists some x such that e1(x) 6= e2(x) which means that

the integral, hj(λ, a), would not be zero unless λ = λ0 = 0. The same conclusion applies

to G(λ).

Theorem 3.2.3. The minimizer of Gn(λ), λ̂n, will converge almost surely to λ0 as n→∞.

Proof. We prove this theorem by decomposing, Λ, the support of λ.

Assume Λ = {B0, . . . , Bk}, in which Λ = ∪ki=0Bi, Bi ∩ Bj = ∅ for i 6= j, and λ0 ∈ B0. We

also assume Gn(Bi) = inf
λ∈Bi

Gn(λ) and G(Bi) = inf
λ∈Bi

G(λ).

By a similar proof as in Lemma 3.2.1, we have Gn(Bi)
a.s.−−→ G(Bi) as n → ∞, for

i = 1, . . . , k and Gn(λ) ≥ Gn(Bi). Assume A = {ω : lim
n→∞

Gn(Bi) = G(Bi), lim
n→∞

Gn(λ0) =

G(λ0), i = 1, . . . , k}, then P (A) = 1. Therefore, ∀ω ∈ A, ∃N , when n > N , we have

Gn(Bi) > Gn(λ0) by Lemma 3.2.2 for i = 1, . . . , k, so inf
λ∈∪ki=1Bi

Gn(λ) > Gn(λ0), then we

get λ̂n ∈ B0.

For any ε > 0, if we choose B0 = (λ0 − ε, λ0 + ε) then λ̂n ∈ B0 leads to |λ̂n − λ0| ≤ ε,

which means ∀ω ∈ A, we also have lim
n→∞

λ̂n = λ0. Then, let B = {ω : limn→∞ λ̂n = λ0}, we

have A ⊂ B and thus, P (B) = 1. Consequently, we have λ̂n
a.s.−−→ λ0 as n→∞.

The consistency property of λ̂ ensures that the proposed IPW estimator is consistent

when the LR model is misspecified but the RF is not.

3.3 Simulation Studies

3.3.1 Simulation Setup

In this section, we conduct a simulation study to compare the proposed approach to existing

approaches for estimating propensity scores. The simulation setup comes from Lee et al.
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(2010). The true effect of binary treatment T on continuous outcome Y is set to be −0.4.

We generate ten covariates in total. Four of them (X1, X2, X3, X4) are confounders which

are associated with both treatment T and the outcome variable Y . Three of them (X8, X9,

X10) are associated only with the outcome variable. The rest (X5, X6, X7) are associated

only with the treatment. Six of the covariates (X1, X3, X5, X6, X8, X9) are Bernoulli(0.5)

and the others are N(0, 1) distributed. The covariates have a correlation structure as

follows:

corr(X1, X5) = 0.2, corr(X2, X6) = 0.9, corr(X3, X8) = 0.2, corr(X4, X9) = 0.9.

All other correlations are set to 0. The binary treatment T is generated from a Bernoulli

distribution with probability depending on the covariates:

logit{P (Ti = 1|Xi)} = βᵀf(Xi). (3.1)

Here, β is the corresponding coefficient vector and f(Xi) is a function of Xi, the vector of

covariates for unit i depending on the scenarios listed below. The continuous outcome Yi

is generated from a linear combination of Ti and Xi,

Yi = αᵀXi + µTi + εi, i = 1, . . . , n.

Here, α is the coefficient vector for the outcome model, µ is the treatment effect equal to

−0.4 and εi has an independent N(0, 1) distribution.

We run simulations using seven scenarios that differ in the degree of linearity and

additivity in the true treatment model (3.1). The true coefficient values for (β,α, µ) and

the definition of seven models follow Lee et al. (2010):

A: Additivity and linearity (main effects only);

B: Mild non-linearity (one quadratic term);

C: Moderate non-linearity (three quadratic terms);

D: Mild non-additivity (four two-way interaction terms);

E: Mild non-additivity and non-linearity (three two way interaction terms and one quadratic

term);
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F: Moderate non-additivity (ten two-way interaction terms);

G: Moderate non-additivity and non-linearity (ten two-way interaction terms and three

quadratic terms).

The definition of seven propensity score models are given here:

Model A: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7),

Model B: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ β2X
2
2 ),

Model C: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ β2X
2
2 + β4X

2
4 + β7X

2
7 ),

Model D: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ 0.5β1X1X3 + 0.7β2X2X4 + 0.5β4X4X5 + 0.5β5X5X6),

Model E: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ β2X
2
2 + 0.5β1X1X3 + 0.7β2X2X4 + 0.5β4X4X5 + 0.5β5X6),

Model F: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ 0.5β1X1X3 + 0.7β2X2X4 + 0.5β3X3X5 + 0.7β4X4X6

+ 0.5β5X5X7 + 0.5β1X1X6 + 0.7β2X2X3 + 0.5β3X3X4

+ 0.5β4X4X5 + 0.5β5X5X6),
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Model G: P (T = 1|X) = expit(β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

+ β2X
2
2 + β4X

4
4 + β7X

2
7 + 0.5β1X1X3 + 0.7β2X2X4 + 0.5β3X3X5

+ 0.7β4X4X6 + 0.5β5X5X7 + 0.5β1X1X6 + 0.7β2X2X3

+ 0.5β3X3X4 + 0.5β4X4X5 + 0.5β5X5X6).

where β1 = 0.8, β2 = −0.25, β3 = 0.6, β4 = −0.4, β5 = −0.8, β6 = −0.5, and β7 = 0.7.

The outcome model is:

Y = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X8 + α6X9 + α7X10 + µT + ε,

where α0 = −3.85, α1 = 0.3, α2 = −0.36, α3 = −0.73, α4 = −0.2, α5 = 0.71, α6 = −0.19,

and α7 = 0.26. µ is −0.4.

The LR model used to estimate propensity scores is the standard logistic regression

with all main effects included. We also considered employing forward selection to include

quadratic terms and two-way interaction terms in the logistic regression model but the

results were not much different from the results with only the main effects model. This

is because the selection biases are not very large and the average propensity scores are

around 0.5 in all scenarios. The RF propensity score model is implemented using the

randomForest package in R (Liaw and Wiener, 2002) with default settings. The default

number of trees generated is 500. Here, covariate balancing propensity score (CBPS)

approach and generalized boosted model (GBM) are conducted using the CBPS (Fong

et al., 2014) and gbm (Ridgeway, 2015) packages respectively. The data are simulated

with sizes n = 100, 1000, and 5000; 1000 data sets are generated for each scenario. For the

proposed approach we find the optimal λ using each of the four proposed balance statistics.

After the propensity scores are estimated, we employ IPW to estimate the ACE.

3.3.2 Performance Metrics

We evaluate and compare the performance of the four model averaging approaches with

LR, RF, CBPS, and GBM using the following metrics:
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1. Mean of absolute biases in percentage: the average absolute difference of the esti-

mated ACE from the true treatment effect of µ = −0.4 based on all data sets, divided

by the true treatment effect, ∑1000
i=1

∣∣∣ÂCEi − µ
∣∣∣

1000 |µ|
.

2. Empirical standard error: the standard deviation of 1000 treatment effect estimates.

3. Absolute bias of average ACE: the absolute value of the bias of the mean ACE,

denoted as: ∣∣∣∣∣ 1

1000

1000∑
i=1

ÂCEi − µ

∣∣∣∣∣ .
4. Mean squared error (MSE): the average of the squared difference between the esti-

mated ACE and its mean value.

5. Average λ: the average of all λ selected based on the model averaging method across

the 1000 replications.

6. Coverage rate: the percentage of the 1000 confidence intervals that include the true

treatment effect. The confidence interval for each data set is calculated as ÂCEi ±
1.96× ŜEi, where ŜEi is the theoretical standard error calculated using the sandwich

formula using the survey package (Lumley, 2004).

7. Weights: we also compare the inverse probability weights of ten simulated data sets

under different methods.

3.3.3 Results

From scenarios A to G, the degree of misspecification in the logistic regression model

increases so we expect that the model averaging methods will eventually outperform the

other existing propensity score approaches on their own.

Table 3.1 gives the results of the simulation studies for the estimation of ACE at a

sample size n = 1000. For the proposed model averaging method, C1 refers to use of
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mean ASMD as the balance statistic, C2 to median ASMD as the balance statistic, C3

to maximum ASMD as the balance statistic, and C4 to mean KS statistic as the balance

statistic.

The CBPS used here is based on the just-identified condition and the two-step GMM

estimation approach (Imai and Ratkovic, 2014). We also tried fitting the CBPS model with

a continuous updating GMM estimator and found the results to be similar. Incorporating

second order and higher order terms in the balance condition may improve the performance

of CBPS. The GBM does not show much improvement in estimating ACE but it does lead

to better performance when estimating ACET in the simulation results in Lee et al. (2010).

From scenarios A to G, the model averaging methods result in smallest mean of absolute

biases in percentage across all scenarios followed by LR, RF, and CBPS. Particularly in

scenario G, the mean bias percentage of LR is about twice the size of C4. The GBM

method has the largest mean of absolute bias compared to other approaches considered.

This shows that the model averaging methods indeed averaged out the biases from LR and

RF and increased efficiency in all scenarios.

In almost all scenarios, the empirical standard errors of all model averaging approaches

are less than those from traditional approaches. Figure 3.1 also shows that the distributions

of the ACE estimates from model averaging methods are more centralized than other

methods. The LR and RF methods have more outliers in all scenarios.

The MSE is the sum of the squared bias and the empirical variance. Among all methods

examined, the model averaging approaches have the smallest MSE. The GBM method

produces the largest MSE in all scenarios.

The coverage rates of 95% confidence intervals are very high for all methods in all

scenarios (results not shown). The reason may be because the confidence interval is based

on the theoretical standard error calculated using the sandwich formula in the survey

package in R (Lumley, 2004) which is much larger that the empirical standard error (results

not shown). This suggests that the sandwich formula is too conservative. The usage

of survey package should be taken cautiously since a design based method is used to

construct the variance estimator while our method is model based. Theoretically, it is

a wrong formula to estimate the variance of average causal effect. The survey package

treats the propensity score as known when estimating the variance which is why it can be
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Table 3.1: Performance of Measures by Propensity Score Models in 1000 Simulated Data Sets

with n = 1000 (Estimation of ACE)

Measure Method Scenarios

A B C D E F G

Mean of

absolute biases

in percentage

(×100)

C1 3.44 3.41 2.11 4.16 4.18 3.89 3.80

C2 3.44 3.42 2.19 4.20 4.22 3.84 3.84

C3 3.45 3.42 2.06 4.18 4.21 3.87 3.32

C4 3.45 3.44 2.34 4.08 4.20 3.61 3.11

LR 4.00 3.81 2.74 4.94 5.04 5.34 6.61

RF 5.22 5.06 6.01 5.81 6.08 5.69 5.88

CBPS 5.70 5.70 3.99 6.02 6.74 5.59 5.74

GBM 10.76 10.69 10.99 12.52 12.62 12.04 11.86

Empirical

standard error

(×100)

C1 1.69 1.66 1.07 2.07 2.07 1.94 1.26

C2 1.68 1.65 1.11 2.08 2.11 1.92 1.36

C3 1.71 1.67 1.05 2.08 2.10 1.94 1.20

C4 1.63 1.61 1.17 1.98 1.98 1.83 1.28

LR 2.06 1.95 1.34 2.56 2.66 2.63 1.91

RF 2.67 2.55 3.22 2.99 3.14 2.90 3.02

CBPS 1.84 1.86 1.85 2.06 2.06 1.98 2.00

GBM 2.01 2.04 2.20 2.17 2.27 2.13 2.22

Absolute bias of

average ACE

(×100)

C1 0.39 0.37 0.09 0.28 0.41 0.40 1.35

C2 0.41 0.42 0.10 0.30 0.42 0.33 1.36

C3 0.37 0.35 0.01 0.27 0.39 0.39 1.10

C4 0.59 0.56 0.24 0.55 0.77 0.03 0.91

LR 0.04 0.06 0.51 0.20 0.12 1.17 2.55

RF 0.01 0.31 0.55 0.09 0.0007 0.05 0.11

CBPS 2.12 2.08 0.77 2.12 2.48 1.96 2.05

GBM 4.29 4.24 4.35 4.99 5.04 4.80 4.72

Mean

squared error

(×104)

C1 3.00 2.88 1.15 4.35 4.47 3.92 3.41

C2 3.00 2.91 1.24 4.44 4.63 3.79 3.71

C3 3.06 2.92 1.11 4.42 4.57 3.92 2.65

C4 3.00 2.90 1.43 4.22 4.49 3.36 2.45

LR 4.24 3.80 2.06 6.60 7.09 8.27 10.15

RF 7.13 6.60 10.66 8.95 9.84 8.39 9.10

CBPS 7.89 7.80 4.03 8.74 10.38 7.72 8.20

GBM 22.45 22.17 23.74 29.63 30.52 27.60 27.26

Average λ

(×100)

C1 94.23 95.03 95.49 94.10 94.79 92.68 93.21

C2 92.45 93.31 95.30 92.00 93.61 90.66 92.83

C3 93.69 94.67 94.26 93.66 94.30 91.73 90.74

C4 85.58 88.84 85.91 88.39 88.48 85.23 88.57

In each cell, the numbers are multiplied by 100, except for mean squared error, the numbers are multiplied by 10000. C1:

Model averaging method with mean ASMD ; C2: Model averaging method with median ASMD; C3: Model averaging method

with max ASMD; C4: Model averaging method with mean KS statistic; LR: Logistic regression; RF: Random forest; CBPS:

Covariate balancing propensity score; GBM: Generalized boosted model; CI: Confidence interval.
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Figure 3.1: Boxplots of ACE Estimates across All Simulation Scenarios (n = 1000 units,

1000 replications)

C1: Model averaging method with mean ASMD as balance statistic; C2: Model averaging method with

median ASMD as balance statistic; C3: Model averaging method with max ASMD as balance statistic; C4:

Model averaging method with mean KS statistic as balance statistic; LR: Logistic regression method; RF:

Random forest method; CBPS: Covariate balancing propensity score; GBM: Generalized Boosted Model.
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too conservative in this case. The use of the bootstrap approach instead of the sandwich

formula may yield more reliable confidence intervals. This is the approach we take in

Section 3.4.

We also record the absolute bias of the average ACEs over 1000 replications. Among

all approaches, the proposed model averaging methods reduced the bias in scenarios F &

G, compared to LR, CBPS, and GBM. The RF method produces smallest biases but its

empirical standard errors are the largest.

Figure 3.2 shows the distributions of λ for C1, C2, C3, and C4 methods from scenario A

to G. Figure 3.3 shows the distributions of propensity score weights under different methods

for randomly selected 10 data sets with n = 1000. Heavy or extreme weights can lead to

biased and highly variable estimates of the ACE. Compared to LR and RF methods, the

model averaging methods have fewer heavy weights especially in more complex scenarios.

The GBM also has fewer extreme heavy weights.
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Figure 3.2: Boxplots of Estimated λ for the Four Model Averaging Methods across All

Simulation Scenarios (n = 1000 units, 1000 replications)

C1: Model averaging method with mean ASMD as balance statistic; C2: Model averaging method with

median ASMD as balance statistic; C3: Model averaging method with max ASMD as balance statistic;

C4: Model averaging method with mean KS statistic as balance statistic.
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n = 1000. 31



Comparison Across Proposed Model Averaging Methods

Simulation results for n = 100 (Table A.1) and n = 5000 (Table A.2) are given in the Ap-

pendix A.1.1. From Table A.1, we see that all model averaging methods have considerable

lower mean of absolute biases, lower empirical standard error compared to LR, RF, GBM,

and comparable empirical standard error with CBPS. When n = 5000, C4 methods have

considerable smaller mean of absolute biases compared to LR, RF, GBM, and CBPS in

scenarios D, F, and G. The C1, C2, C3, and GBM methods also have smaller empirical

standard error than all other methods in all scenarios.

All model averaging methods perform similarly to each other. The C4 method based

on the KS statistic is preferable to the other three combined methods. It has the smallest

mean of absolute biases in most scenarios as shown in Tables 3.1, A.1, and A.2. In scenarios

F and G, C4 also leads to the smallest mean biases. From Figure 3.1, we find all model

averaging methods are more concentrated around the true treatment effect (µ = −0.4),

among which, C4 has the smallest variance and fewest outliers. In terms of MSE, the

C4 method performs the best especially in scenarios F and G where the true propensity

score model is highly nonlinear. As we know, the KS statistic measures the maximum

discrepancy in the whole distribution between the treatment and the control group and thus

is a better representative of covariate balance than ASMD which measures the difference

in the first moment only. So the C4 method tends to average out more bias and when

there is model misspecification in the LR model, more weight is placed on RF method.

3.4 Application

Childhood obesity has become an important health problem around the world and may

lead to other severe obesity related diseases during adult years (Speiser et al., 2005).

Recently, research has shown some evidence to support the benefit of early breastfeeding on

reducing childhood obesity (Laurence et al., 2004; Ehrenthal et al., 2016). In this section,

we apply our model averaging approach to data drawn from the Delaware Mother Baby

Cohort (DMBC). Details of the study design have been reported elsewhere (Ehrenthal
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et al., 2013). Data are available on 2232 mother-child pairs with 15 maternal and infant

characteristics. There is no missing data. The treatment of interest is formula or mixed

feeding versus exclusive breastfeeding in the first month after the child was born. There

are two outcome variables in the data set: child’s body mass index (BMI) Z-score at age

4 and a binary indicator that the child is obese at age 4. The remaining 12 covariates

include mother’s BMI group, participation in the Women, Infants, and Children program,

whether the child is first birth or not, child’s gestational age, child’s birth weight, mother’s

age at delivery, mother’s race, mother’s education level, mother’s citizenship, medicaid or

uninsured, mother’s marriage status, and an indicator of maternal smoking.

In preliminary analyses, we apply LR and RF methods to estimate propensity scores.

A forward selection is applied within the LR method to select the most important main

effects, two-way interactions, and quadratic terms. For the RF model, we set the number

of trees to be 5000 and search for the optimal number of randomly selected covariates

at each split of the tree. The propensity scores from model averaging approaches are

the combination of propensity scores from LR with forward selection and RF method

with “optimal” mixing parameters. We found that some observations had an estimated

propensity score equal to zero or very close to zero in the treatment group. For those

observations, infinite or large weights will be created by IPW. The large weights have

great impact on results and make the estimated causal effect unstable. We used the

weight trimming approach discussed by Lee et al. (2011) to improve the accuracy and

performance on all methods and weighted combination of propensity scores: weights over

20 were set to 20. We calculated the ASMD values and estimated the ACE using the

proposed model averaging approaches, as well as the LR and RF methods. We employed

a bootstrap approach with a reproduction size of 500 to calculate the standard error and

report the 90% pseudo-empirical likelihood ratio confidence interval based on asymptotic

scaled χ2 approximation with the bootstrap procedure. Details of the empirical likelihood

approach for obtaining the confidence intervals can be found in Wu (2005) and Wu and

Rao (2010). The theoretical justification for this method is based on the true inclusion

probability. When the propensity scores are estimated by machine learning methods, there

is no theoretical justification in the literature. Since we re-estimate the propensity scores

within each bootstrap sample, the re-estimation usually captures the induced variation and

the bootstrap procedure is a good approximation. The results are summarized in Tables
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Table 3.2: Analysis of Breastfeeding Data with Continuous Outcome (Estimation of ACE,

Samples=500)

Method ACE SE 90% PELR CI Selected λ

C1 0.1336 0.0753 (0.0130, 0.2538) 0.99

C2 0.1336 0.0741 (0.0153, 0.2515) 0.99

C3 0.1357 0.0743 (0.0130, 0.2578) 0.86

C4 0.1345 0.0753 (0.0125, 0.2560) 0.78

LR 0.1331 0.0774 (0.0065, 0.2593) 1

RF 0.1173 0.0784 (-0.0271, 0.2607) 0

ACE: Average causal effect of formula or mixed feeding versus exclusive breastfeeding on a child’s BMI

Z-score at age 4;

SE: Standard error;

CI: Confidence interval;

PELR CI: Pseudo-Empirical Likelihood Ratio Confidence Interval of ACE;

SE and CI are based on 500 bootstrap samples.

3.2 and 3.3.

From Table 3.2, all the model averaging methods have positive estimates of ACE.

Compared to bootstrap standard errors from LR and RF, the model averaging methods

all result in slightly smaller standard errors. The ACE estimate based on C4 method,

which lead to the best finite performance in the previous simulation study, is 0.1345. The

90% pseudo-empirical likelihood interval of all model averaging methods do not contain

zero, and thus we can conclude that formula or mixed feeding increases BMI Z-score at

a significance level of 0.1. Here, the selected mixing parameters λ are close to 1, which

indicates that for this data set, the LR model outperforms the RF model. The results of the

data analysis for the binary obesity outcome are given in Table 3.3. For the binary outcome,

the causal effect refers to the causal risk ratio of being obese. The risk of a child being

obese at age 4 is approximately 1.22 times higher if the child receives formula or mixed

feeding versus exclusive breastfeeding. All 90% pseudo-empirical likelihood intervals by

the model averaging approaches do not contain 1, which means formula or mixed feeding

has a positive effect on obesity at a significance level of 0.1. The other results are similar
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Table 3.3: Analysis of Breastfeeding Data with Binary Outcome (Estimation of RR, Sam-

ples=500)

Method RR SE 90% PELR CI Selected λ

C1 1.2195 0.1953 (1.0118, 1.4717) 0.99

C2 1.2195 0.1946 (1.0135, 1.4692) 0.99

C3 1.2251 0.1945 (1.0175, 1.4769) 0.70

C4 1.2245 0.1953 (1.0150, 1.4789) 0.59

LR 1.2187 0.1962 (1.0060, 1.4781) 1

RF 1.2243 0.2464 (0.9951, 1.5085) 0

RR: Risk Ratio; ratio of the risk of being obese between formula or mixed feeding group and exclusive

breastfeeding group;

SE: Bootstrap standard error of RR;

CI: Confidence interval of RR;

PELR CI: Pseudo-Empirical Likelihood Ratio Confidence Interval of RR;

SE and CI are based on 500 bootstrap samples.

to the results in Table 3.2.

Next we check the balance in each covariate after weighting. We used a cutoff value

of 0.1 or 0.2 to evaluate the performance of covariate balancing by checking the ASMD

(Stuart et al., 2013) and KS statistics. Figure 3.4 shows plots of weighted ASMD versus the

unweighted ASMD for each model averaging approach. Unweighted ASMD is calculated

by setting all weights to be 1 when calculating ASMD. As can be seen, several covariates

are highly biased in the original data with ASMD > 0.2. Figure 3.5 shows plots of weighted

KS statistics versus the unweighted KS statistics for each model averaging approach. The

results are similar to Figure 3.4. After weighting, the selection bias has been removed and

almost all the covariates have an ASMD less than 0.1, which means all proposed methods

help to achieve covariate balance in ASMD and KS statistics.
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Figure 3.4: Plots of Weighted ASMD versus Unweighted ASMD (Red Line for Cut-off

Value 0.1, Black Line for Cut-off Value 0.2)
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Figure 3.5: Plots of Weighted KS Statistics versus Unweighted KS Statistics (Red Line for

Cut-off Value 0.1, Black Line for Cut-off Value 0.2)
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3.5 Conclusion

In this chapter, we proposed a new propensity score estimator which combines LR and

RF models. This approach optimizes the covariate balance through a grid search for a

mixing parameter. One issue we did not explore in this chapter is what kind of covariates

should be balanced. Zhu et al. (2015) showed that in addition to the real confounders, by

balancing covariates that are predictive of the outcome, precision of the causal estimator

can be improved. We use the same simulation setup as Lee et al. (2010) to evaluate the

performance of the newly proposed model averaging approach with sample sizes n = 100,

n = 1000, and n = 5000. With the varying degree of nonlinearity of treatment models, we

find that all the model averaging methods, especially the model averaging method with

the objective to minimize mean KS statistic, have smaller bias and standard error than

existing propensity score modelling approaches, especially in the case when there is model

misspecification in the logistic regression model. We also applied our proposed approach

to a real data set of 2232 mother-child pairs. We assess the average causal effect of formula

or mixed feeding versus exclusive breastfeeding in the first month on a child’s BMI Z-score

at age 4. Our results show that formula or mixed feeding instead of exclusive breastfeeding

in the first month of life leads to higher BMI Z-scores at age 4.

There are several advantages to our proposed model averaging approach of propensity

score estimation. First, compared to the traditional LR and RF methods, model averaging

methods are more likely to produce estimates with smaller standard errors and biases,

especially in small sample sizes (Table A.1). Second, the proposed approach also helps

to reduce the imbalance in the covariates thus reducing selection bias due to measured

covariates. Third, the model averaging approach can reduce the bias especially under

misspecified propensity score models in which the traditional parametric approach has

larger bias.

In this chapter, we used grid searching to find the optimal λ. The generalized cross-

validation approach (GCV; Brookhart and van der Laan (2006)) can be implemented to

improve selection of optimal λ. We can target the MSE of ACE to select the optimal λ

under the GCV approach. The parametric and nonparametric models we chose to construct

the model averaging approach are LR and RF. Since many machine learning techniques
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have been introduced for estimating propensity scores, new model averaging approaches

can be introduced by combining other parametric and nonparametric propensity score

models. The parametric component can be improved by incorporating model selection

techniques, like forward or backward selection, although our simulation study does not

show great improvement when we employ this technique.

Our focus is on the IPW procedure. As Imbens and Rubin (2015) pointed out, IPW is

not recommended when the treatment groups differ considerably in terms of covariates. It

would be interesting to extend the proposed methodology to other causal inference estima-

tion procedures, like matching based on propensity scores and double robust estimation.

For example, in matching, we could choose the mixing parameter λ by optimizing the

balance in the covariates for the post matched sample. In addition, instead of treating

all covariates equally, one can prioritize certain covariates as is done in Genetic Matching

(Diamond and Sekhon, 2013). An evolutionary search algorithm can be applied to assign

the weight to each covariate and we can evaluate the balance statistics by incorporating

the covariate weights. For a double robust estimator, we can plug the proposed propensity

score estimator into a targeted maximum likelihood estimator (van der Laan, 2014). Then,

the resulting causal effect estimator is asymptotically linear if the propensity score esti-

mator, as well as the outcome regression estimator converge to the true value with a rate

faster than n−1/4. One advantage is that the asymptotic variance of the proposed causal

estimator can be constructed using the variance of the influence function, overcoming the

inference challenge faced by the IPW estimator.

Finally, to achieve the covariate balance, we focus on minimizing the ASMD or KS

statistic. There exist other balance statistics that may be more appropriate and can be

directly implemented in our approach. For example, a balance statistic based on prognostic

score (Stuart et al., 2013) could be used. This balance statistic is shown to be more

correlated with bias in treatment effect estimates, compared to ASMD and KS statistic.
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Chapter 4

Kernel Distance Propensity Score

Approach

In Chapter 3, we proposed a model averaging approach that reduces the imbalance of

covariates between treatment and control groups based on absolute standardized mean

difference (ASMD) and Kolmogorov-Smirnov (KS) statistics. Alternatively, there are many

other balance measures that can be used like kernel distance (Zhu et al., 2018). Here,

we propose a new propensity score approach that aims to minimize the kernel distance

between the covariate distributions of treatment and control groups without assuming a

functional space for the outcome regression function. We mainly use the kernel function

in the definition of kernel distance to measure the distance of two probability measures,

while the object function in Wong and Chan (2017) is the empirical validity measure.

The method derived by Kallus (2016) differs from our method by minimizing a different

imbalance metric with respect to weights directly.

A kernel function can be decomposed into an inner product of two infinite-dimensional

basis functions so balancing kernel distance is not just balancing first moment or second

moment. In the kernel-based method derived by Wong and Chan (2017), the true outcome

regression function is assumed to lie within the reproducing kernel Hilbert space (RKHS)

and is expressed in terms of kernel functions while our method optimizes the kernel dis-

tance in terms of the kernel function without assuming a functional space for the outcome

40



regression function.

The kernel distance comes from the integral probability metrics (IPM), which is a

popular family of distance measures on probabilities (Zolotarev, 1983; Sriperumbudur et al.,

2012):

γ(P,Q) = sup
f∈F

∣∣∣∣∣
∫
fdP−

∫
fdQ

∣∣∣∣∣, (4.1)

where F is a class of functions on function space and P and Q are two probability measures.

The IPMs have been used in many situations with appropriate choices of F including the

kernel test (Gretton et al., 2012). Equation (4.1) is called kernel distance or maximum

mean discrepancy when F = {f : ‖f‖K ≤ 1}, where K represents a RKHS (Aronszajn,

1950; Gretton et al., 2012). The kernel distance has been shown to be a good measure

of covariates balance (Zhu et al., 2018). A RKHS is a Hilbert space of functions with a

reproducing kernel (Shawe-Taylor and Cristianini, 2004) in which its evaluation operators

are bounded linear operators. The balance metric based on kernel distance has been

shown to have the strongest correlation with the absolute bias in estimating the causal

effect, compared to several commonly used balance metrics (Zhu et al., 2018).

4.1 Proposed Approach

Let the data (Ti,Xi, Yi) be defined as in Chapter 3 and Pn1 and Qn0 be two probability

measures of covariates in the treatment and control groups. Define ‖ ‖K to be the norm

for RKHS. The empirical estimator (Gretton et al., 2012; Sriperumbudur et al., 2012) of

the kernel distance defined in Equation (4.1) is:

γ̂k(Pn1 ,Qn0) = ‖
n∑
i=1

T ∗i K(·,Xi)‖K =

√√√√ n∑
i=1

n∑
j=1

T ∗i T
∗
jK(Xi,Xj), (4.2)

where n = n1 + n0 and we are reminded that n1 and n0 are the numbers of observations

for treatment and control groups, respectively. The weight is T ∗i = Ti/n1 − (1− Ti)/n0.

Gretton et al. (2012) showed that the convergence rate of the kernel distance estimator

is free of the dimension of the covariates. It outperforms other multivariate two-sample
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tests in high dimensional data settings with a lower Type II error when distinguishing two

different distributions from each other. In addition, Gretton et al. (2012) claimed that

kernel distance has a reasonable computation cost compared to other two-sample tests

with a cost of O(n2) in Equation (4.2), free of the dimension of X. If we rely on the inverse

probability weighting (IPW) method to estimate the causal effect, we propose the weighted

kernel distance with an appropriate modification of T ∗i : T ∗i = ŵi/
∑n

j=1 Tjŵj if Ti = 1 and

T ∗i = −ŵi/
∑n

j=1(1−Tj)ŵj if Ti = 0, where wi is the inverse probability weight for subject

i. It can be easily found that the expectation of
∑n

i=1 Tiŵi or
∑n

i=1(1 − Ti)ŵi is n if the

correct propensity score model is fitted. For simplicity, we replace
∑n

j=1(1−Tj)ŵj by n so

T ∗i =
Tiŵi
n
− (1− Ti)ŵi

n
.

The kernel function, K(·, ·) : Rp×Rp 7→ R, will produce a measure of distance between

two vectors. In order for the method to be applied under the Generalized Method of

Moments (GMM) framework, a positive definite kernel function is required. The Gaussian

kernel is one of the most popular positive definite kernels:

K(Xi,Xj) = e−
‖Xi−Xj‖

2

2σ2 ,

where ‖·‖ is the l2 norm. The σ2 can be treated as a scale parameter. If X is standardized,

we usually choose σ2 to be dim(X). If X is not standardized, we usually choose σ2 to be

E{||Xi−Xj||2} or median{||Xi−Xj||2}. However, Equation (4.2) is a biased estimator of

kernel distance. Gretton et al. (2012) therefore suggest an unbiased estimator of squared

kernel distance:

γ̂2(Pn1 ,Qn0) =
n∑
i=1

n∑
j=1, j 6=i

T ∗i T
∗
jK(Xi,Xj). (4.3)

Sriperumbudur et al. (2012) state that γ̂k(Pn1 ,Qn0) = 0 if and only if Pn1 = Qn0 . If we

aim to minimize the discrepancy between the covariate distributions of the treatment and

control groups after weighting, we just need to set Equation (4.3) to zero.

Similar to the covariate balancing propensity score (CBPS) method, we assume the

propensity score follows a logistic regression model:

e(X) =
exp(Xᵀβ)

1 + exp(Xᵀβ)
.
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We aim to find the optimal β̂ = (β̂0, β̂1, . . . , β̂p)
ᵀ such that

n∑
i=1

n∑
j=1, j 6=i

T ∗i T
∗
jK(Xi,m, Xj,m)=0

for m = 0, 1, . . . , p, where K(Xi,m, Xj,m) measures the discrepancy for two observations in

the mth dimension. Hence, covariate balance is achieved under the optimal β̂. We have

p+ 1 unknown parameters and p+ 1 equations to solve. We use the estimating equations

to find the optimal β under GMM.

Our target functions are:

G(m) =
n∑
i=1

n∑
j=1,j 6=i

2T ∗i T
∗
jK(Xi,m, Xj,m), m = 0, . . . , p, (4.4)

or in vector form when scaled by a constant n2/n(n− 1):

Gβ =
2

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

n2T ∗i T
∗
j


K(Xi,0, Xj,0)

K(Xi,1, Xj,1)
...

K(Xi,p, Xj,p)

 . (4.5)

There is a total n2 − n terms in the above target function. The purpose of rescaling in

Equation (4.5) is to make the objective function an average. To use the GMM, we construct

the new observation Zk = (Xi,0, . . . , Xi,p, Xj,0, . . . , Xj,p)
ᵀ for i > j, and Tk = (Ti, Tj)

ᵀ

where k = (i − 2)(i − 1)/2 + j is a 1 to 1 mapping from (i, j) to k. The Zk is the kth

unique combination of two observations, k = 1, . . . , (n2 − n)/2, i, j = 1, . . . , n.

We define

qβ(Ti, Xi) = nT ∗i ,

hβ(Tk, Zk) = qβ(Ti, Xi)qβ(Tj, Xj)

= qβ(π3(Tk), π1(Zk))qβ(π4(Tk), π2(Zk)),

where π1(Zk) = Xi and π2(Zk) = Xj are the projection functions of the first and second

groups of observations. The π3(Tk) and π4(Tk) are the projection functions of the first
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and second component of Tk. Here is an example:

π1 : Zk =



Xi,0

...

Xi,p

Xj,0

...

Xj,p


7→

Xi,0

...

Xi,p

 .

We also define 
K(Xi,0, Xj,0)

K(Xi,1, Xj,1)
...

K(Xi,p, Xj,p)

 =


K(f0(Zk))

K(f1(Zk))
...

K(fp(Zk))

 = F(Zk),

where,

fm(Zk) :



Xi,0

...

Xi,p

Xj,0

...

Xj,p


7→

(
Xi,m

Xj,m

)
, m = 0, . . . , p.

Let (n2 − n)/2 = N , So Equation (4.5) becomes

Gn,β =
1

N

N∑
k=1

hβ(Tk, Zk)F(Zk). (4.6)

We define the vector function and its mth element as:

gβ(Tk, Zk) = hβ(Tk, Zk)F(Zk) (4.7)

gk,m = hβ(Tk, Zk)K(fm(Zk)).

Consequently, Equation (4.6), which is also the target function, becomes

Gn,β = ḡβ(T, Z) =
1

N

N∑
k=1

gβ(Tk, Zk). (4.8)
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We set the target function to zero and solve for β. The estimating equation is considered

the empirical estimator of the expectation of estimating equation E{gβ(Tk, Zk)}. Hence

we can use the GMM framework to solve β̂. The efficient GMM estimator is

β̂GMM = arg min
β∈θ

ḡβ(T, Z)ᵀΣβ(T, Z)−1ḡβ(T, Z), (4.9)

where Σβ(T, Z)−1 ≡ Â is the inverse of variance-covariance matrix estimator. The

variance-covariance matrix estimator of ḡβ(T, Z) is given by

Σβ(T, Z) =
1

N

N∑
k=1

E {gβ(Tk, Zk)gβ(Tk, Zk)
ᵀ|Zk} .

The efficient GMM estimator β̂GMM is derived based on just-identified condition. The

variance-covariance estimator can be ignored if we only study the just-identified case. More

covariate balancing equations such as score functions can be incorporated to obtain a set of

over-identified conditions. It is suggested that over-identified conditions will improve the

asymptotic efficiency in the estimation of the GMM estimator (Imai and Ratkovic, 2014).

4.1.1 Remarks

In addition to using only one kernel function, combining different positive definite kernels

is an efficient way to improve the precision of the kernel estimator (Gönen and Alpaydın,

2011). Many approaches have been proposed to combine several methods together to im-

prove the performance of a particular estimator such as super learner (van der Laan et al.,

2007). Zhan and Ghosh (2015) combined several kernels to improve prediction using kernel

ridge regression on an outcome variable with auxiliary information. In mediation analysis,

Zhu et al. (2016) proposed combining multiple candidate models like machine learning

algorithms in estimating the controlled direct effects. In Xie et al. (2017), a parametric

propensity score model and a nonparametric propensity score model are combined to es-

timate the ACE. The combined method is shown to be more accurate than using a single

model. Following similar ideas, we suggest the K(Xi, Xj) in Equation (4.4) can be con-

structed as
∑M

m=1
1
M
Km(Xi, Xj), where we can combine several positive definite kernels,
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Km(·, ·), such as Gaussian kernel, Laplacian kernel (exp{−||xi− xj||/σ}), exponential ker-

nel (exp{−||xi − xj||/(2σ2)}) and so on. It will be an interesting topic to explore how to

weight each kernel instead of averaging them. The theoretical properties remain the same

for the combined kernel distance approach.

4.2 Theoretical Properties

The GMM framework requires the expectation of the estimating function to be zero. We

discuss the theoretical properties including E{gβ(Tk, Zk)} = 0 in this section and Sec-

tion 4.6. First, we introduce the assumptions following from Fan et al. (2016).

Assumptions 1.

(1) Weak common support condition: there exists a constant 0 < a0 < 1/2 such that with

probability approaching one, a0 < e(Xi) < 1− a0.

(2) There exists a positive definite matrix A∗ and Â
p−→ A∗.

(3) β takes value from a compact set Θ.

(4) gk,m is continuous in β.

(5) β∗ is the unique minimizer of E{ḡβ(T, Z)}ᵀA∗E{ḡβ(T, Z)}.

Under the assumptions given above, we will introduce the consistency and asymptotic

normality of both β̂GMM and µ̂β̂ in this section. For simplicity, we will drop the subscript

of β̂GMM and use β̂ instead throughout this chapter.

Theorem 4.2.1. Under Assumptions 1 and Lemma 4.6.2 in Section 4.6, we have β̂
p−→ β∗

as n→∞. Moreover, if the propensity score model is correctly specified, i.e. P (T = 1|X =

x) = eβ0(x), then β0 = β∗ and β̂
p−→ β0 as n→∞.

Theorem 4.2.1 is important and leads to the consistency of the proposed kernel estima-

tor. The construction of Theorem 4.2.1 is also quite different from the general derivation
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since the constructed random variables are not independent. It enables us to construct

the consistency of the proposed kernel estimator, µ̂β̂. The detailed proof of this theorem

is given in Section 4.6.

Theorem 4.2.2 (Consistency of the ACE Estimator). Under Assumptions 1, if the propen-

sity score model is correctly specified and β̂ is obtained through Equation (4.9), then µ̂β̂

p−→ µ

as n→∞.

This theorem implies that our kernel based estimator is consistent when P (T = 1|X =

x) = eβ0(x). In addition to the consistency of the ACE estimator, we have the asymptotic

normality of ACE estimator.

Theorem 4.2.3. Under Assumptions 1 and the mean value theorem in calculus, we can

derive that Gn,β̂/n
2 = Gn,β0/n

2 +B̃(β̂−β0). With Lemma 4.6.3 in Section 4.6, we further

conclude that

n(β̂ − β0)
d−→ N(0,B−1V(B−1)

ᵀ
), as n→∞,

where B is the limiting matrix of B̃, which is the derivative of Gn,β evaluating at a value,

β̃, between β0 and β̂. V is the variance covariance matrix derived in Lemma 4.6.3.

Theorem 4.2.4. Under Assumptions 1 and the mean value theorem, there is a vector

h̃(β̃)ᵀ such that
√
nµ̂β̂ =

√
nµ̂β0 + h̃(β̃)ᵀ

√
n(β̂ − β0) we can further conclude that

√
n(µ̂β̂ − µ)

d−→ N(0,Ωµ), as n→∞,

where Ωµ is the asymptotic variance.

The randomness of µ̂β̂ mainly consists of randomness from µ̂β0 and β̂. In Subsec-

tions 4.6.7 and 4.6.8, we prove that the randomness from β̂ is ignorable as n → ∞. The

variance of µ̂β̂ is close to the variance of µ̂β0 , which can be estimated by the sandwich vari-

ance estimator as is commonly used in estimating equations (Lumley et al., 2004; Schafer

and Kang, 2008). Hirano et al. (2003) found that IPW with the true propensity score is

not efficient while IPW with their proposed estimated propensity score is semi-parametric

efficient. Our proposed kernel distance propensity score estimator is not semi-parametric

efficient due to the correlation of gβ(Tk, Zk) with gβ(Tj, Zj).
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Figure 4.1: Causal Diagram among Variables in the Simulation Setup

4.3 Simulation Studies

4.3.1 Simulation Setup

In this section, we conduct a set of simulation studies to evaluate the performance of

the proposed kernel distance propensity score approach compared with other existing ap-

proaches. The simulation is based on Stuart et al. (2013) with some modifications. There

are nine continuous covariates: four are confounders, two are only related to the treatment

indicator T , and two are only related to the outcome variable Y . The last one is neither

related to treatment nor outcome (Figure 4.1). The six covariates related to the treatment

indicator follow a mixture normal distribution: 1/2×N(−1, 1) + 1/2×N(1, 1). The oth-

ers follow a N(0, 1) distribution. With the mixture distribution, the imbalance between

the distributions of covariates in the treatment and control groups can be considerable.

The discrepancy between the empirical cumulative distribution functions of covariates of

treated and control groups is shown in Figure 4.2. Although we only include continuous

covariates here, our approach is not limited to this. Joshi et al. (2011) stated that the

kernel distance can be used to compare discrete distributions.

We explore the performance of our estimator while varying in the degree of misspeci-

fication of both the propensity score model and the outcome model. We generate T from
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Figure 4.2: Empirical Cumulative Distribution Functions for Treatment and Control

Groups across Covariates under Simulation Scenario 1A
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the following propensity score model:

logit{P (T = 1|X)} = f(X)ᵀβ.

We also generate Y from the following outcome model:

Y = φ(X)ᵀα+ µT + ε,

where ε ∼ N(0, 1) independently.

The true treatment effect is µ = 3. f(X) and φ(X) depend on the propensity score and

outcome models used. We have three propensity score models used in generating the data.

Model 1: logit{P (T = 1|X)} = β1X1 + β2X2 + β3X4 + β4X5 + β5X7 + β6X8,

Model 2: logit{P (T = 1|X)} = β1X1 + β2X2 + β3X4 + β4X5 + β5X7 + β6X8 + β7X2X4

+ β8X2X7 + β9X7X8 + β10X4X5 + β11X
2
1 + β12X

2
7 ,

Model 3: logit{P (T = 1|X)} = β1X1 + β2X2 + β3X4 + β4X5 + β5X7 + β6X8 + β7X2X4

+ β8X2X7 + β9X7X8 + β10X4X5 + β11X
2
1 + β12X

2
4 + β2X

2
8

+
β7

2
X1X2 +

β8

2
X1X4 +

β9

2
X1X5 +

β1

2
X1X7 +

β7

2
X1X8

+
β8

2
X2X4 +

β9

2
X2X5 +

β1

2
X2X8 +

β7

2
X4X5,

where the coefficients are shown in Table 4.1.

Table 4.1: Coefficients for Propensity Score Models

β1 β2 β3 β4 β5 β6

log(2) log(1.4) log(2) log(1.4) log(2) log(1.4)

β7 β8 β9 β10 β11 β12

log(1.2) log(1.4) log(1.6) log(1.2) log(1.4) log(1.6)
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There are two outcome models for generation:

Model A: Y = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6 + µT + ε,

Model B: Y = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6

+ α7X2X4 + α8X3X5 + α9X3X6 + α10X4X5 + µT + ε,

where the coefficients are shown in Table 4.2.

Table 4.2: Coefficients for Outcome Models

α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 µ

-2.4 1.68 1.68 1.68 3.47 3.47 3.47 0.91 1.68 2.35 0.91 3

So there is a combination of 6 scenarios: 1A, 2A, 3A, 1B, 2B, and 3B, where the number

indicates the propensity score model being used and the letter indicates the outcome model

used for generation. Thus, scenarios 1A, 2A, and 3A, share the same outcome model with

only main effects but they have different propensity score models. Propensity score model 1

only includes main effects; model 2 has a few more squared or interaction terms compared to

model 1; model 3 has more squared and interaction terms compared to model 2. Comparing

1A with 1B, they have the same propensity score model but different outcome models in

the sense that model B has some extra nonlinear terms. When estimating the propensity

scores, we assume no knowledge of the true models and include all covariates in the logistic

regression model as main effects. Thus, in scenarios 1A and 1B, the propensity score

model is correctly specified for our approach and CBPS. On the other hand, there is

model misspecification in all other scenarios. The performance metrics used are empirical

standard error, bias, and mean squared error.

4.3.2 Simulation Results

We evaluate the performance of our proposed kernel distance propensity score (KDPS)

and combined kernel distance propensity score (CKDPS) approaches in comparison with

random forest (RF), CBPS, two different super learner (SL1 & SL2) methods using sample
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sizes n = 500, n = 1000, and n = 1500. Each scenario is based on 1000 Monte Carlo

simulations. The CKDPS includes the average of three positive definite kernels: Gaussian,

Laplacian, and Exponential kernels. SL1 is a combination of logistic regression, random

forest, elastic net regression, and generalized additive model, while SL2 excludes random

forest. The ACE estimate results are shown in Table 4.3 for n = 1500. Results with

n = 1000, n = 500 are shown in Table 4.4 and Table 4.5.

For the proposed KDPS and CKDPS, our choice of σ2 is set to the median of all pairwise

distances of each covariate. We evaluate the performance of KDPS using different σ̂2 in

Tables 4.6, 4.7, and 4.8. In KDPS, the default σ̂2 is set to the median of all pairwise

distances of each covariate. We defined KDPS ds (s = 5, 10, 20) to be the estimator with

the σ̂2 used in KDPS being replaced by σ̂2/s. We also defined KDPS s (s = 5, 10, 20) to be

the estimator with the σ̂2 being replaced by sσ̂2. Generally, the bias is the smallest when

it is around the median. The standard error has a decreasing trend as σ̂2 increases. The

MSE shows a u-shaped trend. Using the median of all pairwise distances of each covariate

is reasonable based on the bias-variance trade-off.

In terms of evaluating bias, from Table 4.3, we see that KDPS and CKDPS outperform

all other methods in scenarios 2A, 3A, 2B, and 3B. All approaches become much more

biased while the bias of our proposed method generally increases less than the other ap-

proaches from scenario 2A to 3A or 2B to 3B. When the propensity score model is correctly

specified (1A and 1B), CBPS is less biased compared to other methods.

In terms of empirical standard error, all methods show a decreasing trend in empirical

standard error from 1A to 3A or 1B to 3B except the RF method. In our data gener-

ation, when the propensity score model changes from 1 to 3, the standard error of the

true propensity score decreases, which explains why the empirical standard error of the

ACE estimator decreases. When the propensity score model is correctly specified, KDPS

and CKDPS have larger standard errors compared to CBPS, which is supported by The-

orem 4.2.4. The KDPS and CKDPS both have larger standard errors compared to other

approaches as the degree of misspecification increases..

In terms of mean squared error, the proposed KDPS and CKDPS approaches both

outperform CBPS in scenarios 2A, 3A, 2B, and 3B. It also outperforms RF and SL1 in all

the scenarios.
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Table 4.3: Performance for Estimation of ACE by Propensity Score Approaches (n = 1500)

1A 2A 3A 1B 2B 3B

KDPS -0.78 -0.72 -0.90 -0.76 -1.74 -1.76

Average CKDPS -0.83 -0.76 -0.92 -0.80 -1.76 -1.78

Bias RF -2.49 -1.92 -1.56 -2.52 -2.35 -2.29

CBPS -0.63 -1.54 -1.83 -0.62 -2.48 -2.63

SL1 -1.06 -4.42 -2.87 -0.99 -5.02 -3.61

SL2 -0.34 -0.94 -1.37 -0.32 -1.97 -2.38

KDPS 0.70 0.72 0.60 0.81 0.74 0.63

Empirical CKDPS 0.71 0.78 0.67 0.81 0.79 0.67

Standard RF 0.43 0.45 0.44 0.48 0.59 0.48

Error CBPS 0.45 0.31 0.22 0.58 0.47 0.33

SL1 1.13 0.41 0.39 1.21 0.46 0.45

SL2 0.91 0.34 0.22 0.92 0.47 0.38

KDPS 1.09 1.04 1.17 1.23 3.59 3.50

Mean CKDPS 1.20 1.18 1.30 1.30 3.73 3.63

Squared RF 6.38 3.90 2.63 6.60 5.88 5.47

Error CBPS 0.60 2.46 3.41 0.73 6.38 7.05

SL1 2.41 19.72 8.38 2.44 25.42 13.21

SL2 0.94 1.00 1.94 0.96 4.09 5.79

KDPS: Kernel distance propensity score approach; CKDPS: Combined kernel distance propensity score

approach; RF: Random forest approach; CBPS: Covariate balancing propensity score approach; SL1:

Super learner method; SL2: Super learner method without RF.
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Table 4.4: Performance for Estimation of ACE by Propensity Score Approaches (n = 1000)

1A 2A 3A 1B 2B 3B

KDPS -1.01 -0.84 -0.96 -0.99 -1.81 -1.82

Average CKDPS -1.05 -0.87 -0.97 -1.05 -1.83 -1.83

Bias RF -2.72 -2.09 -1.65 -2.75 -2.54 -2.34

CBPS -0.81 -1.57 -1.82 -0.80 -2.47 -2.60

SL1 -1.26 -4.95 -2.92 -1.20 -5.48 -3.64

SL2 -0.44 -0.99 -1.38 -0.38 -2.00 -2.36

KDPS 0.77 0.80 0.71 0.91 0.83 0.71

Empirical CKDPS 0.87 0.88 0.77 0.93 0.89 0.78

Standard RF 0.50 0.51 0.47 0.55 0.59 0.58

Error CBPS 0.49 0.38 0.28 0.64 0.54 0.42

SL1 1.40 0.46 0.50 1.45 0.52 0.54

SL2 1.00 0.42 0.29 1.23 0.59 0.45

KDPS 1.61 1.34 1.42 1.79 3.95 3.83

Mean CKDPS 1.86 1.54 1.53 1.97 4.16 3.95

Squared RF 7.66 4.64 2.94 7.84 6.83 5.80

Error CBPS 0.90 2.60 3.40 1.05 6.41 6.96

SL1 3.55 24.74 8.78 3.55 30.27 13.52

SL2 1.19 1.16 1.97 1.65 4.33 5.78

KDPS: Kernel distance propensity score approach; CKDPS: Combined kernel distance propensity score

approach; RF: Random forest approach; CBPS: Covariate balancing propensity score approach; SL1:

Super learner method; SL2: Super learner method without RF.
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Table 4.5: Performance for Estimation of ACE by Propensity Score Approaches (n = 500)

1A 2A 3A 1B 2B 3B

KDPS -1.55 -1.19 -1.23 -1.53 -2.12 -1.99

Average CKDPS -1.57 -1.20 -1.24 -1.51 -2.11 -1.94

Bias RF -3.10 -2.31 -1.73 -3.10 -2.88 -2.43

CBPS -1.13 -1.58 -1.80 -1.16 -2.50 -2.57

SL1 -1.55 -3.88 -2.67 -1.61 -4.59 -3.42

SL2 -0.71 -1.11 -1.41 -0.74 -2.11 -2.36

KDPS 0.93 0.95 0.90 1.05 1.04 1.00

Empirical CKDPS 1.05 1.08 1.02 1.16 1.14 1.09

Standard RF 0.66 0.69 0.63 0.71 0.82 0.78

Error CBPS 0.60 0.47 0.40 0.80 0.71 0.59

SL1 1.54 0.83 0.64 1.64 0.88 0.76

SL2 1.31 0.59 0.43 1.39 0.79 0.68

KDPS 3.27 2.34 2.32 3.45 5.57 4.97

Mean CKDPS 3.57 2.60 2.57 3.63 5.74 4.98

Squared RF 10.04 5.82 3.39 10.10 8.94 6.53

Error CBPS 1.64 2.73 3.41 1.98 6.77 6.98

SL1 4.77 15.75 7.53 5.26 21.82 12.30

SL2 2.22 1.59 2.18 2.47 5.07 6.03

KDPS: Kernel distance propensity score approach; CKDPS: Combined kernel distance propensity score

approach; RF: Random forest approach; CBPS: Covariate balancing propensity score approach; SL1:

Super learner method; SL2: Super learner method without RF.
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Table 4.6: Bias for KDPS with Different σ2

1A 2A 3A 1B 2B 3B

KDPS d20 -1.37 -1.01 -1.01 -1.35 -1.91 -1.87

KDPS d10 -1.28 -0.91 -1.00 -1.24 -1.85 -1.86

KDPS d5 -1.21 -0.86 -0.99 -1.14 -1.83 -1.84

KDPS -1.01 -0.84 -0.96 -0.99 -1.81 -1.82

KDPS 5 -1.03 -0.92 -0.97 -0.98 -1.84 -1.81

KDPS 10 -1.01 -0.94 -1.07 -0.97 -1.87 -1.91

KDPS 20 -0.99 -0.99 -1.21 -0.96 -1.92 -2.03

Table 4.7: Standard Error for KDPS with Different σ2

1A 2A 3A 1B 2B 3B

KDPS d20 1.03 1.12 0.98 1.12 1.10 0.98

KDPS d10 0.96 1.05 0.91 1.03 1.04 0.92

KDPS d5 0.87 0.98 0.84 0.96 0.99 0.86

KDPS 0.77 0.80 0.71 0.91 0.83 0.71

KDPS 5 0.67 0.63 0.57 0.82 0.67 0.62

KDPS 10 0.67 0.66 0.58 0.83 0.70 0.63

KDPS 20 0.69 0.71 0.57 0.82 0.72 0.62

Table 4.8: Mean Squared Error for KDPS with Different σ2

1A 2A 3A 1B 2B 3B

KDPS d20 2.94 2.28 1.99 3.08 4.86 4.45

KDPS d10 2.56 1.93 1.83 2.58 4.49 4.29

KDPS d5 2.22 1.70 1.68 2.22 4.32 4.11

KDPS 1.61 1.34 1.42 1.79 3.95 3.83

KDPS 5 1.50 1.24 1.27 1.64 3.83 3.68

KDPS 10 1.48 1.31 1.48 1.62 3.99 4.05

KDPS 20 1.44 1.49 1.79 1.58 4.21 4.53
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Table 4.9: Simulation Results for Estimation of ACE, Absolute Bias between ASE and

ESE

1A 2A 3A 1B 2B 3B

KDPS

n=200 0.24 0.09 0.09 0.16 0.08 0.02

n=500 0.19 0.03 0.05 0.17 0.02 0.07

n=1000 0.14 0.08 0.11 0.09 0.06 0.06

n=1500 0.03 0.15 0.17 0.05 0.12 0.13

CKDPS

n=200 0.09 0.09 0.25 0.01 0.11 0.21

n=500 0.07 0.09 0.16 0.07 0.07 0.15

n=1000 0.09 0.12 0.12 0.06 0.11 0.10

n=1500 0.07 0.18 0.19 0.05 0.16 0.13

ASE: Average of standard errors reported from survey package, ESE: Empirical standard error.

In Table 4.9, we evaluate the bias between the average standard error (ASE) using

the average of the sandwich variance estimates from the survey package and the empirical

standard error (ESE) of the ACE estimates. Recall in Theorem 4.2.4, we stated that the

asymptotic variance of the KDPS can be approximated by the sandwich variance. Under

scenario 1A and 1B where the propensity score model is correct, the biases are closer to

zero as n increases, which is consistent with our theoretical results in Theorem 4.2.4.
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4.4 Application

The International Tobacco Control (ITC) project is an annual longitudinal survey signed

and ratified by the Framework Convention on Tobacco Control started in 2002. It is

designed to evaluate the effectiveness of national-level tobacco control policies in selected

countries. It started in four countries: Canada, USA, Australia and UK. More detail

about the ITC project can be found in Chen et al. (2018) or Thompson et al. (2006).

Starting from 2011 (wave-8), a web survey was added, so participants could choose to

answer the same questionnaire through either a web survey or a telephone survey. Our

goal is to examine whether there is a significant mode effect (web versus telephone) on the

number of cigarettes smoked per day reported by participants. We apply our proposed

methods to the ITC wave-8 Canada data set. There is a total of 901 observations with 12

variables. The outcome variable (Y ) is the number of cigarettes smoked per day for each

participant. For our purpose, the treatment variable (T ) is the mode of data collection with

1 indicating the participant completes the web survey or 0 if the participant answers the

telephone survey. The primary goal is to examine the average difference in the number of

cigarettes reported between web survey participants versus telephone survey participants.

Most of the questions on the questionnaire are multiple choice but they are summarized

by binary variables. The available ten covariates include: gender of participant (X1: 1 for

male, 0 otherwise), ethnicity (X3: 1 if “White, English only”, 0 otherwise), whether they

visited their doctor since the last survey (X4: 1 if yes, 0 otherwise), self description of

health status (X5: 1 if “Very good”, 0 otherwise), measure of depression (X6: 1 if “Little

interest or pleasure” or “Feeling down or hopeless”, 0 otherwise), frequency of alcohol

drinks consumed in the last 12 months (X7: 1 if “At least one day a week”, 0 otherwise),

income categories (X8: 1 if “Low”, 0 otherwise), education categories (X9: 1 if “Low”,

0 otherwise), and marital status (X10: 1 if married, 0 otherwise). Age (X2) is the only

continuous covariate. It is feasible to assume that confounders related to choosing the web

survey over telephone survey and the number of cigarettes smoked reported per day are

among the basic demographic variables and all other measured covariates.

Covariate adjustment is necessary due to confounding. To find potential confounders,

we perform univariate linear regression and logistic regression of the outcome and treatment

on each covariate and report the p-value for the covariates (Table 4.10). Many covariates
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Table 4.10: Summary for the Significance of Each Covariate in the ITC wave=8 Canada

Dataset from Univariate Regression Models

P-alue

(Y ∼ X)
Mean difference

P-value

(T ∼ X)
Odds ratio

Gender (X1) 0.1000 1.0399 0.7792 1.0386

Age (X2) 0.0004 0.0928 0.0006 -0.0197

Ethnicity (X3) 0.0223 2.6950 0.3752 0.8007

Doctor visit (X4) 0.4744 0.5150 0.0530 1.3523

Health status (X5) 1.920×10−6 -3.1690 0.3077 1.1568

Depression (X6) 0.0466 1.2923 0.0218 0.73251

Alcohol consumption (X7) 0.0627 -1.2615 0.0081 1.4671

Income categories (X8) 0.0263 1.6047 < 0.0001 0.4830

Education categories (X9) 0.0011 2.0768 < 0.0001 0.4763

Marital status (X10) 0.0180 -1.5022 0.0503 1.3065

Mean difference: Sample mean difference for ith covariate between Y [Xi = 1] and Y [Xi = 0]; Odds ratio:

The odds ratio for response Y = 1 comparing Xi = 1 vs Xi = 0.

(X2, X6, X7, X8, X9, and X10) show strong association with both the treatment variable

and the outcome variable. Here, X2 is the only continuous covariate and the mean difference

for X2 is actually the estimated increase in Y when X2 is increased by one unit. The odds

ratio for X2 is the estimated ratio of the odds of Y = 1 when X2 is increased by one unit

as well. In this illustration, we include all covariates into the propensity score models for

further causal effect estimation.

We show the mean difference and odds ratio to explore the expected nature of con-

founders. For example, individuals with X10 = 1 (marital status: 1 if married, 0 otherwise)

have a higher probability being in treatment group but smaller outcome value compared

to individuals with X10 = 0. Individuals with X9 = 1 (education categories: 1 if “Low”,

0 otherwise) have a lower probability being in treatment group but higher outcome value

compared to individuals with X9 = 0. The existence of confounders will lead to the biased

estimation of average causal effect without balancing.
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Estimates of the ACE based on our proposed method as well as other traditional ap-

proaches are given in Table 4.11. Both bootstrap and sandwich variance estimates from

the survey package are used to estimate the standard error. Our choice of σ2 is set to

the median of all pairwise distances of each covariate. All methods except RF result in a

negative value of the ACE estimate. The reason for a positive effect derived by RF may

be due to the instability of RF method. The point estimates from KDPS and CKDPS are

−0.2656 and −0.4696, respectively. The bootstrap standard error and theoretical stan-

dard error are very close to each other except for RF. In CKDPS, we combine Gaussian,

Laplacian, and Exponential kernels. We also apply the KDPS to the data set with only

Laplacian kernel or Exponential kernel (not shown). In both cases, the ACE estimates are

closer to CKDPS compared to KDPS with Gaussian which we recommend here.

The negative ACE estimate indicates that the number of cigarettes smoked per day

reported by web survey participants is less than telephone survey participants, although

all methods show non-significant results at α = 0.05 level since the 95% confidence intervals

include zero. Therefore we conclude that there is no significant effect of the mode of survey

collection on the number of cigarettes smoked per day reported by the participants.

Figure 4.3 shows the variability of the inverse probability weights across different

propensity score approaches. An outlier (over 30) is removed from the weights of RF

method. We can see that the RF method results in more extreme weights than other

methods, which can also explain the larger standard error shown in Table 4.11. To evalu-

ate the performance of our proposed approaches on balancing covariates, we report absolute

standardized mean difference (ASMD) as a metric to evaluate covariate balance. Generally

speaking, an ASMD value smaller than 0.1 indicates the covariate is balanced between the

treatment and control groups (Stuart et al., 2013).

From Figure 4.4, we can see the ASMD for most covariates is reduced under 0.1 after

applying our approach. This indicates our proposed approach achieved balance in all

measured covariates in this application.

Figure 4.5 here compares the estimated kernel distance achieved by our method in com-

parison with all other methods after balancing. We can see that our proposed method has

smaller kernel distance compared to all other method for most covariates. This is reason-

able because our method aims to optimize the kernel distance. In terms of standardized
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Table 4.11: Average Causal Effect between Observations Who Participated through Web

Survey versus Telephone Survey

ACE BSE TSE Bootstrap 95%CI

KDPS -0.4696 0.6612 0.6318 (-1.4770, 1.0192)

CKDPS -0.2656 0.6695 0.6504 (-1.3707, 1.1728)

RF 0.8584 0.9073 0.8289 (-1.2839, 2.4555)

CBPS -0.2011 0.6353 0.6287 (-1.4705, 0.9422)

SL1 -0.2921 0.6438 0.6303 (-1.4499, 1.0746)

SL2 -0.3055 0.6164 0.6300 (-1.5358, 0.8492)

BSE: Standard error based on 500 bootstraps samples; TSE: Theoretical standard error evaluated by

survey package; CI: Confidence intervals based on quantiles of bootstrap estimates.

differences, our approach does not consistently produce lower values. The RF method does

not reduce the imbalance in many covariates in term of standardized difference.
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Figure 4.3: Boxplots of Weights by Propensity Score Approaches in ITC Data Analysis
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Figure 4.4: ASMD Values for Each Covariate under KDPS and CKDPS before and after

Balancing in ITC Data Analysis
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Figure 4.5: Kernel Distance for KDPS vs Other Methods
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4.5 Conclusion

The KDPS approach uses the kernel distance as a measure of covariate balance and achieves

balance in the covariate distributions between treatment and control groups. Our method

improves CBPS in the sense that CBPS achieves the balance only in finite moment con-

ditions but not the overall distributions. A kernel function can be decomposed into an

inner product of two infinite-dimensional basis functions, so balancing kernel distance is

not just balancing finite moment of covariates. We optimize the weighted kernel distance

through the GMM framework. The simulation results show that when the propensity score

is misspecified, our kernel approach yields causal estimators with smaller bias compared

with other approaches.

There are several advantages to our proposed KDPS approach for propensity score

estimation. First, our approach yields estimates with a smaller bias and mean squared

error than all other approaches especially when the propensity score model is misspecified.

Second, our kernel distance approach helps to reduce the imbalance in the covariates so

that propensity score based approaches are valid to estimate the causal effects.

Similar to the KDPS approach, we can also construct another approach using empir-

ical likelihood or pseudo empirical likelihood methods. Wu (2005) employs the pseudo

empirical likelihood method for the analysis of complex survey data. In the case of

responses missing at random, Qin and Zhang (2007) also seek to construct the con-

strained empirical likelihood estimation of mean response. Instead of estimating β, we

can estimate wi through the empirical likelihood framework directly under the constraint:∑n
i=1

∑n
j=1, i 6=j T

∗
i T
∗
jK(Xim, Xjm)=0 for m = 0, 1, . . . , p. Let f(t,xi) be the joint density

function of treatment Ti and covariate vector Xi. Here wi is the inverse probability weight

through propensity score defined before. So wi = 1/P (Ti = 1|xi) for treated units or

wi = 1/P (Ti = 0|xi) for control units. Thus, the empirical likelihood for the whole sample

data can be simplified:

L =
n∏
i=1

f(t,xi) =
n∏
i=1

P (Ti = t|xi)f(xi) =
n∏
i=1

1

wi
f(xi). (4.10)
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The corresponding log likelihood function is:

logL =
n∑
i=1

log f(xi)− logwi, (4.11)

where the constraints are
∑n

i=1 wi = 2n and the target is Equation (4.4), where f(·) is the

density function of X. By maximizing the log likelihood function under the constraints, we

can derive the optimal ŵi and estimate the causal effect. After obtaining the weights, we

can also employ targeted maximum likelihood estimation (TMLE) (van der Laan, 2014)

to estimate the causal effect, which is shown to be double robust and super-efficient under

certain conditions (van der Laan and Gruber, 2010). A few other double robust estimators

may also be employed here. For example, using augmented IPW instead of IPW can be

more efficient (Qin and Zhang, 2007). The kernel distance is defined by summing across

all pairs but it is also worth exploring to sum across only the discordant pairs when one is

treated and the other is not.

4.6 Theorems and Proofs

4.6.1 Proof of Theorem 4.6.1

The following theorem is required for the application of GMM framework and relies on

Assumption 1. This theorem helps us to construct the consistency of β̂.

Theorem 4.6.1 (Estimating Equation Condition). Suppose the correct propensity score is

given as in Equation (2.1) and β0 is the true vector of logistic regression coefficients, then

under Assumptions 1,

E{gβ0(Tk, Zk)} = 0.

The definition of gβ0(Tk, Zk) can be found in Equation (4.7).

Proof. We only need to prove E(gk,m) = 0, where gβ0(Tk, Zk) = (gk,0, . . . , gk,p)
ᵀ for m =

66



0, . . . , p.

E[gk,m] = E{hβ(Tk, Zk)K(fm(Zk))}
= E{qβ(Ti, Xi)qβ(Tj, Xj)K(Xi,m, Xj,m)}
= E{n2T ∗i T

∗
jK(Xi,m, Xj,m)}

= n2E
[
E{T ∗i T ∗jK(Xi,m, Xj,m)|Xi, Xj}

]
= n2E{K(Xi,m, Xj,m)E(T ∗i T

∗
j |Xi, Xj)}

= n2E{K(Xi,m, Xj,m)E(T ∗i |Xi)E(T ∗j |Xj)}, for i < j,

where T ∗i = Tiwi
n
− (1−Ti)wi

n
, and wi = 1/ [Tieβ0(Xi) + (1− Ti){1− eβ0(Xi)}]. We will drop

the subscript β0 for simplicity. When estimating ACE, we can derive the conditional

distribution of Tiwi|Xi and (1− Ti)wi|Xi,

Tiwi|Xi =

 1
e(Xi)

with probability e(Xi)

0 with probability 1− e(Xi)
,

(1− Ti)wi|Xi =

0 with probability e(Xi)

1
1−e(Xi)

with probability 1− e(Xi)
.

Hence, E(Tiwi|Xi) = E{(1 − Ti)wi|Xi} = 1 and E(T ∗|Xi) = 0. This proves E(gk,m) = 0,

so we conclude that E{gβ0(Tk, Zk)} = 0.

4.6.2 Proof of Lemma 4.6.2

To ensure the GMM framework can be applied here, we also prove that Gn,β or ḡβ(T, Z)

converges in probability to E{gβ(Tk, Zk)}. This is quite different from the general law

of large numbers where all variables are independent. The gβ(Tk, Zk) may depends on

gβ(Tr, Zr) when Zk and Zr share the same component such as Zk = (Xᵀ
i , Xᵀ

j )
ᵀ and

Zr = (Xᵀ
j , Xᵀ

l )
ᵀ.

Lemma 4.6.2. Let ḡm(β) =
∑N

k=1 gk,m/N and Em(β) = E(gk,m), then ḡm(β)
p−→ Em(β)

for m = 0, 1, . . . , p. We can further conclude that ḡβ = (ḡ0(β), . . . , ḡp(β))ᵀ is a consistent

estimator of E{gβ(Tk, Zk)} uniformly for β ∈ Θ:

ḡβ
p−→ E{gβ(Tk, Zk)}, as n→∞.
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We use the Chebyshev’s inequality to prove the consistency of estimating functions

in Lemma 4.6.2. It is also true for any β even when the propensity score model is not

correctly specified.

Proof. We only need to prove ḡm(β)
p−→ Em(β) as n → ∞. We will denote Em(β) by

am. It can be easily derived that E(g2
k,m) is a finite constant not depending on n. We use

bm = E(g2
k,m), where bm is this constant. We prove by Chebyshev’s inequality,

P

(∣∣∣∣∣ 1

N

N∑
k=1

gk,m − am

∣∣∣∣∣ > ε

)

≤
Var

(∑N
k=1 gk,m/N

)
ε2

=

∑N
k=1 Var(gk,m) +

∑
k 6=r Cov(gk,m, gr,m)

N2ε2

=
Nbm +Na2

m +
∑

k 6=r Cov(gk,m, gr,m)

N2ε2
.

In the third term of the above formula, the covariance is either zero or a constant. here gk,m

and gr,m are both functions of two observations, let gk,m = h(Xi,Xj) and gr,m = h(Xl,Xs),

where i < j, l < s. Then gk,m and gr,m can only share one component. The covariance

is nonzero when they share one component. Each gk,m will share one component with at

most (2n − 4) other gr,m terms. So there are at most N × (2n − 4) nonzero covariance

terms. Let Cov(gk,m, gr,m) = cm. then we have

P

(∣∣∣∣∣ 1

N

N∑
k=1

gk,m − am

∣∣∣∣∣ > ε

)
≤ Nbm +Na2

m +N(2n− 4)cm
N2ε2

(4.12)

Hence, ḡm(β)
p−→ am as n→∞ and N →∞.

4.6.3 Proof of Theorem 4.2.1

Theorem. Under Assumptions 1 and Lemma 4.6.2, we have β̂
p−→ β∗ as n → ∞. More-

over, if the propensity score model is correctly specified, i.e. P (T = 1|X = x) = eβ0(x),

then β0 = β∗ and β̂
p−→ β0 as n→∞.
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Proof. We prove the consistency of β̂ in β∗ by Theorem 2.1 in Newey and McFadden

(1994). The conditions (i), (ii), and (iii) are satisfied by (3)-(5) of our Assumptions 1.

Based on Assumption (2) and Lemma 4.6.2, ḡβ(T, Z)ᵀΣβ(T, Z)−1ḡβ(T, Z) converges in

probability to E{ḡβ(T, Z)}ᵀA∗E{ḡβ(T, Z)}. So the condition (iv) is also satisfied. We

conclude that β̂
p−→ β∗.

The next step is to show that β0 = β∗ when P (T = 1|X = x) = eβ0(x). By Theo-

rem 4.6.1, we have E{gβ0(Tk, Zk)} = 0 and E{ḡβ0(T, Z)}ᵀA∗E{ḡβ0(T, Z)} = 0. Since A∗

is a positive definite matrix, β∗ and β0 are both minimizers of E{ḡβ(T, Z)}ᵀA∗E{ḡβ(T, Z)}.
Based on Assumption (5), β∗ = β0. Therefore, we have β̂

p−→ β0 as n→∞.

4.6.4 Proof of Theorem 4.2.2

Theorem. Under Assumptions 1, if the propensity score model is correctly specified and

β̂ is obtained through Equation (4.9), then µ̂β̂

p−→ µ as n→∞.

Proof. This proof is similar to what is done in Theorem 3.1 of Fan et al. (2016). When

the propensity score model is correctly specified, let eβ̂(Xi) = êi, then

µ̂β̂ =
1

n

{
n∑
i=1

TiYiŵi −
n∑
i=1

(1− Ti)Yiŵi

}

=
1

n

{
n∑
i=1

TiYi
êi
−

n∑
i=1

(1− Ti)Yi
1− êi

}
.

Let rβ(Ti, Xi, Yi) = TiYi/ei − (1− Ti)Yi/(1− ei) and ei = e(Xi). By Assumptions (1) and

(6), we get that |TiYi/ei − (1− Ti)Yi/(1− ei)| < 2|Yi|/a0. Hence by Lemma 2.4 in Newey

and McFadden (1994), we have supβ∈Θ |1/n
∑n

i=1 rβ(Ti, Xi, Yi)−E{rβ(Ti, Xi, Yi)}| = op(1).

We also have β̂
p−→ β0 from Theorem 4.2.1. Hence by the dominated convergence theorem,

we have

µ̂β̂ = E

{
TiYi
e0
i

− (1− Ti)Yi
1− e0

i

}
+ op(1),
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where e0
i = eβ0(Xi). Since Yi = Ti × Yi(1) + (1− Ti)× Yi(0), then

E

{
TiYi
e0
i

− (1− Ti)Yi
1− e0

i

}
= E

{
TiYi(1)

e0
i

− (1− Ti)Yi(0)

1− e0
i

}
= E

[
E{TiYi(1)|Xi}

e0
i

]
− E

[
E{(1− T )iYi(0)|Xi}

1− e0
i

]
= E

[
E(Ti|Xi)E{Yi(1)|Xi}

e0
i

]
− E

[
{1− E(Ti|Xi)}E{Yi(0)|Xi}

1− e0
i

]
= E [E{Yi(1)|Xi}]− E [E{Yi(0)|Xi}]
= E{Y (1)− Y (0)} = µ.

Therefore, we can conclude that µ̂β̂

p−→ µ as n→∞.

4.6.5 Proof of Lemma 4.6.3

Lemma 4.6.3. Let Gn,β0 = (G
(0)
n,β0

, . . . , G
(p)
n,β0

)ᵀ be the estimating function evaluated at

β0. Given the data (Ti,Xi, Yi), i = 1, . . . , n, it can be verified that the estimating func-

tion G
(m)
n,β0

is a martingale where G
(m)
n,β0

=
∑n

l=2 U
(m)
l , m = 0, . . . , p, and U

(m)
l =

∑
1≤j<l

q
(m)
l,j ,

q
(m)
l,j = 2n2T ∗l T

∗
jK(Xl,m, Xj,m).

With the proof of Lemma 4.6.3, we can use the martingale central limit theorem (Heyde

and Brown, 1970) to establish the asymptotic normality of the estimating function in

Lemma 4.6.4 in the following and further the asymptotic normality of the β̂ and µ̂β̂ in

Theorems 4.2.3 and 4.2.4 of the thesis, respectively.

In our setting Ul =
∑

1≤j<l

ql,j, so there is no U1 and the martingale starts from U2. For

simplicity in the proof here, we drop the superscript, m and subscript, β0, and use Gn, Ul

and ql,j instead of G
(m)
n,β0

, U
(m)
l , and q

(m)
l,j . Also K(Xi,m, Xj,m) is simplified to Ki,j. We only

need to prove the martingale difference of Gn is zero.
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Proof. Consider,

E(Gn+1 −Gn|G2, . . . , Gn)

=E(Un+1|U2, . . . , Un)

=E{
∑

1≤j≤n+1

qn+1,j|(X1, . . . ,Xn), (T1, . . . , Tn)}

=
∑

1≤j≤n+1

E{n2T ∗n+1T
∗
jKn+1,j|(Xj,Xn), (Tj, Tn)},

and

E{n2T ∗n+1T
∗
jKn+1,j|(Xj,Xn), (Tj, Tn)}

=E[E{n2T ∗n+1T
∗
jKn+1,j|(Xj,Xn,Xn+1), (Tj, Tn)}],

Kn+1,j is only a function of Xn+1 and Xj, while T ∗j is a function of Xj and Tj, and T ∗n+1 is

also a function of Xn+1 and Tn+1. So we have:

E(Gn+1 −Gn|G2, . . . , Gn)

=E[E{n2T ∗n+1T
∗
jKn+1,j|(Xj,Xn,Xn+1), (Tj, Tn)}]

=E{n2Kn+1,jT
∗
j E(T ∗n+1|Xn+1)}

=0.

Since we have E(T ∗n+1|Xn+1) = 0 from proof of Theorem 4.2.1. Based on Assumption (1),

we can also have E|Gn| <∞, so Gn is martingale.

4.6.6 Proof of Lemmas 4.6.4 - 4.6.7

From Lemmas 4.6.4 - 4.6.7, we show the asymptotic normality of estimating function Gn

based on martingale central limit theorem.

Lemma 4.6.4. Let σ2
l = E(U2

l |Fl−1) and s2
n =

∑n
l=2 E(σ2

l ) where l ≥ 2 and Fl−1 is the σ-

field generated by U2, . . . , Ul−1. Following from the martingale central limit theorem (Heyde
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and Brown, 1970) and Lemma 4.6.3, there exists a finite constant K1 depending only on

δ, such that

sup
x
|P (Gn ≤ snx)− Φ(x)|

≤ K1

{
s−2−2δ
n (

n∑
l=2

E|Ul|2+2δ + E|(
n∑
l=2

σ2
l − s2

n)|1+δ)

}1/(3+2δ)

,

where Φ(x) is the cumulative distribution function of standard normal distribution and Gn

is the mth element of Gn,β0 for simplicity. If the following conditions are satisfied:

lim
n→∞

s−2−2δ
n

n∑
l=2

E|Ul|2+2δ = 0 (4.13)

lim
n→∞

E|s−2
n (

n∑
l=2

σ2
l − 1)|1+δ = 0, (4.14)

then lim
n→∞

P (Gn ≤ snx) = Φ(x) or n(Gn/n2)
sn/n

d−→ N(0, 1).

We can further conclude that n(Gn,β0/n
2)

d−→ N(0,V) in vector form, where V is the

limiting variance covariance matrix.

The asymptotic normality of Gn depends on the two conditions, Equations (4.13) and

(4.14). Here, we prove that the conditions are satisfied under our setting when δ = 1. In

the following proof, we constructed three Lemmas to finish the proof of Lemma 4.6.4.

Lemma 4.6.5. For i, j, s, t, l = 1, . . . , n,

(1) If s 6= t, then E(q2
l,jql,sql,t) = 0 where j, s, t < l.

(2) If at least one of i, j, s, t is not equal to the rest, then E(ql,iql,jql,sql,t) = 0 where

i, j, s, t < l.

(3) If (l, i) 6= (s, j), then E(ql,iqs,j) = 0 where i < l and j < s.
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Proof. For the first part, let’s assume t 6= s,

E(q2
l,jql,sql,t)

=E[q2
l,jql,sE{ql,t|(Xl,Xj,Xs,Xt), (Tl, Tj, Ts)}]

=E[q2
l,jql,sE{2n2T ∗l T

∗
t Kl,t|(Xl,Xj,Xs,Xt), (Tl, Tj, Ts)}]

=E{2nq2
l,jql,sT

∗
l Kl,tE(T ∗t |Xt)}

=0, Since E(T ∗t |Xt) = 0.

Similarly, we can also prove E(ql,iql,jql,sql,t) = 0 and E(ql,iqs,j) = 0.

Lemma 4.6.6. limn→∞ s
−2−2δ
n

∑n
l=1 E|Ul|2+2δ = 0 when δ = 1.

Proof.

s−4
n

n∑
l=1

E|Ul|4 =s−4
n

n∑
l=1

E


(∑

1≤j<l

ql,j

)4


=s−4
n

n∑
l=1

E


(∑

1≤j<l

q2
l,j + 2

∑
i<j<l

ql,iql,j

)2


In the following to expand the squared term inside the expectation, the expectation for

the cross product within
∑

1≤j<l q
2
l,j (for example: E(q2

l,jq
2
l,i)) is non zero. The expec-

tation for the cross product within
∑

i<j<l ql,iql,j is zero by Lemma 4.6.5 (2) (for ex-

ample: E(ql,iql,jql,sql,t)). The cross products between the two summations (for example:

E(q2
l,jql,sql,t) ) are zero by Lemma 4.6.5 (1), so we have

s−4
n

n∑
l=1

E|Ul|4 =s−4
n

n∑
l=1

E

(∑
1≤j<l

q4
l,j + 6

∑
i<j<l

q2
l,iq

2
l,j

)
=s−4

n (GI +GII),

where GI =
∑

1≤j<l≤n E(q4
l,j) = O(n2) and GII = 6

∑
1≤i<j<l<n E(q2

l,iq
2
l,j) = O(n3).
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The E(q4
l,j) and E(q2

l,iq
2
l,j) are finite. We can also find that,

s2
n =

n∑
l=2

E(σ2
l )

=
n∑
l=2

E(U2
l )− 0

=
n∑
l=2

E(U2
l )−

n∑
l=2

E2(Ul)

=
n∑
l=2

Var(Ul)−
n∑
l 6=s

Cov(Ul, Us)

= Var

(
n∑
l=2

Ul

)
= Var(Gn), where Cov(Ul, Us) = 0 by Lemma 4.6.5 (3),

= Var

( ∑
1≤j<l≤n

ql,j

)

= E


( ∑

1≤j<l≤n

ql,j

)2
− E2

( ∑
1≤j<l≤n

ql,j

)

= E


( ∑

1≤j<l≤n

ql,j

)2
− 0

= E

( ∑
1≤j<l≤n

q2
l,j

)
+ E

 ∑
(l,j)6=(s,t)

ql,jqs,t


=

∑
1≤j<l≤n

E
(
q2
l,j

)
= O(n2)

E(q2
l,j) is finite. Based on the above derivation, we get that limn→∞ s

−4
n

∑n
l=1 E|Ul|4 = 0.

Lemma 4.6.7. limn→∞ E|s−2
n (
∑n

l=1 σ
2
l − 1)|1+δ = 0 when δ = 1.
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Proof.

E


(
s−2
n

n∑
l=2

σ2
l − 1

)2


=E


(
s−2
n

n∑
l=2

σ2
l − 1

)2
− E2

(
s−2
n

n∑
l=2

σ2
l − 1

)
, since E2 (s−2

n

∑n
l=2 σ

2
l − 1) is zero,

=Var

(
s−2
n

n∑
l=2

σ2
l

)

=s−4
n Var

(
n∑
l=2

σ2
l

)
.

Var

(
n∑
l=2

σ2
l

)

=Var

{
n∑
l=2

E(U2
l |Fl−1)

}

=Var

[
n∑
l=2

E
{
U2
l |(X1, . . . ,Xl−1), (T1, . . . , Tl−1)

}]

≤Var

(
n∑
l=2

U2
l

)

=
n∑
l=2

Var(U2
l ) + 2

∑
l<s

Cov(Ul, Us)

=
n∑
l=2

Var(U2
l ), By Lemma 4.6.5 (3), the second term is zero,

=
n∑
l=2

Var

(∑
1≤j<l

q2
l,j +

∑
1≤i<j<l

ql,jql,i

)

Similarly, the covariance between the above two summation terms within variance opera-
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tion are zero due to Lemma 4.6.5, so we have

Var

(
n∑
l=2

σ2
l

)
=

n∑
l=2

{
Var

(∑
1≤j<l

q2
l,j

)
+ Var

( ∑
1≤i<j<l

ql,jql,i

)}

=
n∑
l=2

{
Var

(∑
1≤j<l

q2
l,j

)
+

∑
1≤i<j<l

Var (ql,jql,i)

}

=
n∑
l=2

Var

(∑
1≤j<l

q2
l,j

)
+

∑
1≤i<j<l≤n

Var(ql,jql,i)

=O(n3) +O(n3)

s−4
n = O(n−4), so that limn→∞ E|s−2

n (
∑n

l=2 σ
2
l − 1)|2 = 0.

Based on Lemma 4.6.5, Lemma 4.6.6, and Lemma 4.6.7, we conclude that lim
n→∞

P (Gn ≤
snx) = Φ(x).

4.6.7 Proof of Theorem 4.2.3

Theorem. Under Assumptions 1 and the mean value theorem in calculus, we can derive

that Gn,β̂/n
2 = Gn,β0/n

2 + B̃(β̂ − β0). With Lemma 4.6.4, we further conclude that

n(β̂ − β0)
d−→ N(0,B−1V(B−1)

ᵀ
), as n→∞,

where B is the limiting matrix of B̃, which is the derivative of Gn,β evaluating at a value,

β̃, between β0 and β̂. V is the variance covariance matrix derived in Lemma 4.6.4.

Proof. By dominated convergence theorem and consistency of β̂, we can get that B̃ =

B + op(1), where B̃ =
∂(Gβ/n

2)

∂β
|β=β̃ and β̃ is the intermediate value between β0 and β̂. We

can estimate B by
∂(Gβ/n

2)

∂β
|β=β̂.
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By the assumptions and asymptotic normality of Gβ0/sn, it is implied that Gβ̂ = 0

with probability approaching one. Hence

0 = n
Gβ0

n2
+ B̃n(β̂ − β0)

n(β̂ − β0) = −B̃−1n
Gβ0

n2

d−→ N(0,B−1V
(
B−1

)ᵀ
).

4.6.8 Proof of Theorem 4.2.4

Theorem. Under Assumptions 1 and the mean value theorem, there is a vector h̃(β̃)ᵀ such

that
√
nµ̂β̂ =

√
nµ̂β0 + h̃(β̃)ᵀ

√
n(β̂ − β0) we can further conclude that

√
n(µ̂β̂ − µ)

d−→ N(0,Ωµ), as n→∞,

where Ωµ is the asymptotic variance.

Proof. h̃(β̃) = h0 + op(1) by dominated convergence theorem.

√
n(µ̂β̂ − µ) =

√
n(µ̂β0 − µ) + h̃(β̃)ᵀ

√
n(β̂ − β0)

Since n(β̂ − β0)
d−→ N(0,B−1V

(
B−1

)ᵀ
),

we have
√
n(β̂ − β0)

d−→ 0, and
√
n(β̂ − β0) = op(1). So

√
n(µ̂β̂ − µ) =

√
n(µ̂β0 − µ) + hᵀ

0op(1)

=
√
n(µ̂β0 − µ) + op(1)

Hence,
√
n(µ̂β̂−µ)

d−→ N(0,Ωµ), where Ωµ = E

[{
TiYi
πi,0
− (1−Ti)Yi

1−πi,0

}2
]
−µ2, which can be

estimated by sandwich variance.
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Chapter 5

Multiple Robust Estimation of

Causal Quantile Treatment Effects

In addition to estimate the average causal effect (ACE) or average causal effect in the

treated (ACET), other quantities such as quantiles may be of interest. This is a popular

problem in both health science and economics literature where a policy-maker may be

interested in the effect of treatment on the lower tail of the distributions of potential

outcomes (Firpo, 2007). For an example in medical study, the Consortium on Safe Labour

(CSL) is a large observational study designed to describe contemporary labour progression

in the United States (Zhang et al., 2010). The research question is to examine the causal

effect of epidural analgesia on the duration of the second stage of labour. Because of the

skewed distributions of outcomes, the median or other quantiles may be more appropriate

measures than the mean and variance. Obstetricians are particularly interested in higher

percentiles (e.g., 95th) of the labour duration potential outcome (Zhang et al., 2012).

Zhang et al. (2012) proposed a set of quantile treatment effect (QTE) estimators, such

as outcome regression estimator, inverse probability weighting (IPW) estimator, stratified

estimator, double robust (DR) estimator, and hybrid estimator using the propensity score

and empirical cumulative distribution function. Xu et al. (2017) also proposed a QTE

estimator using a Bayesian additive regression tree to estimate the propensity score and a

Dirichlet process mixture of normals model to estimate the density function.
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Han and Wang (2013) proposed a multiple robust estimator for missing data problems.

Multiple nonresponse models and multiple imputation models are also fitted for nonre-

sponse in surveys (Chen and Haziza, 2017). Based on the idea of multiple robustness, we

also propose a multiple robust method for estimating marginal quantiles of potential out-

comes and the quantile treatment effect by achieving mean balance in (1) the propensity

score, and (2) the conditional distributions of potential outcomes. An estimating equations

approach can be employed if we employ a parametric propensity score model. We can also

use empirical likelihood or entropy balancing approaches if we want to estimate the weights

directly for each observation without modelling the propensity score model.

In this chapter, we aim to achieve balance in the conditional distributions of outcomes

between treated and control groups and estimate the QTE or quantile treatment effect in

the treated (QTET) simultaneously. An empirical likelihood or entropy measure approach

can be utilized instead of using inverse probability weighting.

5.1 Framework for Quantile Treatment Effect

In this chapter, we use p to denote the probability level and m to denote the dimension

of the covariate vector. Let Ft(·) be the marginal cumulative distribution function (CDF)

of Y (t), the potential outcome under treatment T = t. Let Ft|s(·) be the conditional

distribution of Y (t) given T = s. In a binary treatment setting, the quantile treatment

effect for the 100× pth (0 < p < 1) percentile (pth quantile) is defined as the difference in

population quantiles between potential outcomes:

δp = F−1
1 (p)− F−1

0 (p) = ξp,1 − ξp,0

where F−1
t (p) = inf{q : Ft(q) ≥ p} for t = 0, 1.

The quantile treatment effect in the treated for the 100× pth percentile is defined as:

δp|1 = F−1
1|1 (p)− F−1

0|1 (p).

F1|1(q) can be estimated using the empirical CDF without adjusting but not F0|1(q).
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QTE or QTET evaluated at different p levels are not necessarily equivalent. Let us

take QTE as our quantity of interest. Within the potential outcome framework, we can

only estimate F1|1(q) or F0|0(q) based on the observed outcomes. We define the difference

in quantiles (DIQ) as:

∆p = F−1
1|1 (p)− F−1

0|0 (p).

We can now see that DIQ would equal QTE if

F1|1(p) = F1(p) (5.1)

F0|0(p) = F0(p). (5.2)

5.2 Proposed Approach

The DIQ can be modified to equal the QTE or QTET with appropriate weights adjustment.

Let Gt(q|x) be the distribution function of Y (t) conditioned on covariate vector x with

dimension m. Let H(x) be the joint CDF of the covariates and H(x|T = t) be the

conditional CDF of X|T = t, then:

Ft(q) = P (Y (t) ≤ q)

= E [E [I{Y (t) ≤ q|x}]]
= E [P {Y (t) ≤ q|x}]

=

∫
Gt(q|x)dH(x)

= Ex {Gt(q|x)} ,

and

Ft|t(q) = P {Y (t) ≤ q|T = t}

=

∫
Gt(q|x)dH(x|T = t)

= Ex|T=t {Gt(q|x)} , t = 0, 1.

The Equations (5.1) and (5.2) implies that

Ex {Gt(q|x)} = Ex|T=t {Gt(q|x)} , for t = 0, 1.
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We make Ft(q) and Ft|t(q) equivalent so that we can estimate QTE by estimating DIQ.

We can achieve the mean balance of Gt(q|x) by weighting when estimating the QTE. Hence,

the sample condition for the above balancing condition is given by

1

n

n∑
i=1

Gt(q|xi) =
∑
i∈St

Gt(q|xi)wi, t = 0, 1, (5.3)

where St = {i : Ti = t, i = 1, . . . , n} is the set of observations for treatment or control

groups. The conditional distribution function Gt(q|x) can be modelled by

Gt(q|x,βt) = Φ(q − g(x)ᵀβt)

for t = 0, 1 where Φ(·) is the CDF of standard normal distribution. Here g(x) is a vector

function of covariates. In addition to standard normal CDF, other CDF functions are

available and standard normal CDF through Box-Cox transformation can also be applied

(Zhang et al., 2010). We can estimate Gt(q|x) as an empirical CDF with parameter β.

In addition to having constraints on Gt(q|x), we may also want to incorporate infor-

mation from a propensity score model. Let πl(x) be an arbitrary propensity score model

and π(x) be the true propensity score model. We have the following fact:

E

[
T

π(x)

[
πl(x)− E{πl(x)}

]]
= 0.

It can be easily verified that the above equation can be simplified to

E

[
1

π(x)

[
πl(x)− E{πl(x)}

]
|T = 1

]
= 0. (5.4)

Replacing 1
π(x)

by a general weight wi which sum to 1 in set St, we can have the empirical

version of Equation (5.4):

∑
i∈St

wiπ
l(xi) =

1

n

n∑
i=1

πl(xi). (5.5)

Equation (5.5) is the balancing condition on arbitrary propensity score model, which is

also derived in Qin and Zhang (2007) and Han and Wang (2013) and similar to the co-

variate balancing equation in covariate balancing propensity score (Imai and Ratkovic,
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2014). Based on the idea of multiple robust estimator, combining Equations (5.3) for

multiple candidate conditional CDFs of Y (t) using different forms of g(x) and balanc-

ing constraints (5.5) on multiple candidate propensity score models, we use the empirical

likelihood approach to estimate wi by maximizing Πn
i∈Stwi subject to balancing constraints:

n∑
i∈St

wi = 1, (5.6)

1

n

n∑
i=1

Gk
t (q̂

k
p,t|xi, β̂k) =

∑
i∈St

Gk
t (q̂

k
p,t|xi, β̂k)wi, k = 1, . . . , K, (5.7)

1

n

n∑
i=1

πl(α̂l,xi) =
∑
i∈St

πl(α̂l,xi)wi, l = 1, . . . , L, (5.8)

when t = 1 or t = 0, we can estimate the weights for the treatment units or control units

separately. Here πl(α̂l,xi) denotes the lth candidate propensity score model with esti-

mated parameter α̂l. Gk
t (q̂

k
p,t|xi, β̂k) denotes the kth candidate conditional CDF with the

corresponding estimated β̂k and estimated pth quantile q̂kp,t of kth conditional CDF solved

from 1
n

∑
i∈St Φ

(
q − (1,xᵀ

i )β̂
k
)

= p. Let nt be the number of observations in treatment

(t=1) or control (t=0) groups.

By the Lagrange multiplier method, we can find that

ŵi =
1

nt

1

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)

/∑
i∈St

1

nt

1

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)
.

A simple derivation can show that the denominator above is 1 and simplify the above

equation:

ŵi =
1

nt

1

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)
.
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By defining ψ̂k = 1
n

∑n
i=1G

k
t (q̂

k
p,t|xi, β̂k), θ̂l = 1

n

∑n
i=1 π

l(α̂l,xi), we get

r̂i(α̂, β̂, q̂p,t) =



π1(α̂1,xi)− θ̂1

...

πL(α̂L,xi)− θ̂L

G1
t (q̂

1
p,t|xi, β̂1)− ψ̂1

...

GK
t (q̂Kp,t|xi, β̂K)− ψ̂K


,

where α̂ = (α̂1, . . . , α̂L)ᵀ, β̂ = (β̂1, . . . , β̂K)ᵀ, and q̂p,t = (q̂1
p,t, . . . , q̂

K
p,t)

ᵀ. Here λ̂ᵀ =

(λ̂1, . . . , λ̂K+L)ᵀ satisfies

∑
i∈St

1

nt

r̂i(α̂, β̂, q̂p,t)

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)
= 0. (5.9)

Equation (5.9) may have multiple roots for λᵀ. For implementation, an easy way to solve

Equation (5.9) is to find the unique λᵀ that minimizes

H = −
∑
i∈St

log
{

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)
}

under the constraint 1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t) > 0, where H is a convex function. The derivative

of H is proportional to the left hand side of Equation (5.9). Finally the estimated δ̂p is

derived

δ̂p = ξ̂p,1 − ξ̂p,0

and covariate balance is achieved simultaneously, where ξ̂p,t = F̂−1
n,t (p) = inf{q : F̂n,t(q) ≥

p} and F̂n,t(q) =
∑

i∈St ŵiI(yi ≤ q), t = 0, 1.

5.2.1 Entropy Measure Approach

In addition to empirical likelihood, other distance measures like entropy measure are also

available. We propose to use the entropy measure as the objective function under the same
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sets of constraints (5.6), (5.7), and (5.8). The entropy measure to minimize is defined as:

L =
∑
i∈St

wi log(wi/pi) (5.10)

under initial weights pi. The loss function, w log(w/p), belongs to a general class of empir-

ical minimum discrepancy estimators defined by Cressie–Read (CR) divergence (Read and

Cressie, 2012). The entropy measure approach involves a reweighting scheme that searches

for the optimal set of weights. The entropy measure is minimized when wi = pi. By mini-

mizing the entropy measure, the scheme searches for a set of weights that is adjusted far

enough to satisfy the balancing constraints and as close as possible to the initial weights

in order to retain efficiency (Hainmueller, 2012). Normally, we set uniform initial weights:

pi = 1/nt. With the Lagrange multiplier method, we can also derive the optimal weight:

ŵi = pie
−λ̂ᵀr̂i

/∑
i∈St

pie
−λ̂ᵀr̂i ,

where r̂i = r̂i(α̂, β̂, q̂p,t). The λ̂ᵀ satisfies∑
i∈St

pie
−λ̂ᵀr̂i r̂i = 0.

The Lagrange multiplier can also be solved in a similar way. With the optimal weights,

we can estimate the QTE through weighted empirical cumulative distribution functions of

observed outcomes of treatment and control groups.

5.3 Theoretical Properties

The derivations here are based on weights derived under empirical likelihood method,

although the theoretical results can also be extended to the entropy measure approach.

5.3.1 Consistency of the Quantile Estimator

The following theorems establish the consistency of the estimated quantile of Ft(ξ): ξ̂p,t =

inf{q : F̂n,t(q) ≥ p}. Hence, the corresponding QTE estimator, δ̂p, is also consistent under

the conditions. The theorems can also be applied to the QTET estimator.
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Theorem 5.3.1. If one of the propensity score models, πl(x) for l = 1, . . . , L, is correctly

specified, α̂, β̂, and q̂p,t are estimated from their corresponding specified models, then ξ̂p,t
p−→

ξp,t as n→∞ for t = 0, 1.

The detailed derivation can be found in Section 5.7. The following theorem shows the

consistency when one of the conditional CDFs is correctly specified.

Theorem 5.3.2. If one of the conditional CDFs, Gk
t (q|x) for k = 1, . . . , K, is correctly

specified, α̂, β̂, and q̂p,t are estimated from their corresponding specified models, then ξ̂p,t
p−→

ξp,t as n→∞ for t = 0, 1.

The detailed derivation is provided in Section 5.7. The consistency of the quantile

estimators can be easily extended to the consistency of QTE estimator. Combining The-

orems 5.3.1 and 5.3.2, we can conclude the proposed QTE estimator is multiple robust as

long as one of the models is correctly specified regardless of the correctness of all other

models.

5.3.2 Asymptotic Normality of the Quantile Estimator

The asymptotic normality depends on which of the candidate propensity score model or

conditional CDF is correctly specified. Under the suitable regularity conditions, we can

have the asymptotic normal distributions for our estimator.

Theorem 5.3.3. When one of the propensity score model is correctly specified, then ξ̂p,t
d−→

N
(

0,
σ2
F

f2t (ξp,t)

)
as n→∞ for t = 0, 1.

Here σ2
F is the asymptotic variance of empirical CDF which will be introduced in

Section 5.7 and ft(·) is the density function of Ft(·). The asymptotic normality of ξ̂p,t

depends on the asymptotic normality of empirical CDF. The asymptotic normality of

empirical CDF is well established, although our estimator is based on weighted empirical

CDF. We establish the asymptotic normality of weighted empirical CDF in the proof of

Theorem 5.3.3 in Section 5.7.
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Theorem 5.3.4. When one of the conditional CDFs is correctly specified, then ξ̂p,t
d−→

N
(

0
σ2
F

f2t (ξp,t)

)
as n→∞ for t = 0, 1.

Here σ2
F is the asymptotic variance of empirical CDF which will be introduced in

Section 5.7 but the construction is a little bit different from σ2
F in Theorem 5.3.3. A

sketch of proof is provided in the Subsection 5.7.4.

5.4 Simulation Studies

5.4.1 Simulation Setup

In this section, we conduct a set of simulation studies to evaluate the performance of the

proposed QTE estimator under the empirical likelihood framework compared with the

double robust estimator proposed by Zhang et al. (2012). The simulation setting is the

combination of Stuart et al. (2013) and Kang and Schafer (2007) with some modifications.

There are nine continuous covariates: four are confounders, two are related only to the

treatment indicator T , and two are only related to the outcome variable Y . The last one

is neither related to treatment nor outcome. There are no unmeasured confounders. The

causal diagram is the same as what is shown in Figure 4.1. The six covariates related to the

treatment indicator follow a mixture normal distribution: 1/2×N(−1, 1) + 1/2×N(1, 1)

except X1. Here X1 and the rest of the covariates follow a N(0, 1) distribution.

Three propensity score models (model 1, 2, and 3) and three outcome models (model

A, B, and C) are used with different settings of h(X) and g(X) such that:

logit {P (T = 1|X)} = h(X)ᵀα

and

Y = g(X)ᵀβ + µX1 ∗ T + ε.
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where ε follows N(0, 1). The simulation propensity score models are given below:

Model 1: logit{P (T = 1|X)} = β1X1 + β2X2 + β3X4 + β4X5 + β5X7 + β6X8,

Model 2: logit{P (T = 1|X)} = β1W1 + β2X2 + β3W4 + β4W5 + β5X7 + β6W8,

with transformation:W1 = exp (X1/3), W4 = X1 −X4 + 3,

W5 = X1X5/10 + 0.5, W8 = − exp (X8/2),

Model 3: logit{P (T = 1|X)} = β1W1 + β2W2 + β3W4 + β4W5 + β5X7 + β6W8,

with transformation:W1 = exp (X1), W2 = X2
2 , W4 = −2X4/(1 + exp(X1)) + 0.5,

W5 = −X4X5/2− 2, W8 = |X8| − 1.

The outcome models are given below:

Model A: Y = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6 + µX1 + ε.

Model B: Y = α0 + α1X1 + α2W2 + α3X3 + α4W4 + α5W5 + α6X6 + α1X
2
1 + µX1 + ε,

with transformation:W2 = exp (X2/2), W4 = exp (X4/3), W5 = X5X6.

Model C: Y = α0 + α1X1 + α2W2 + α3W3 + α4W4 + α5X5 + α6W6 + α1X
3
1/3 + µX1 + ε,

with transformation:W2 = X2
2 , W3 = exp (X3/3), W4 = |X4|, W6 = X2

6 .

Here µ is set to 5 while other parameters, α and β, follow the same values as in Tables 4.1

and 4.2.

We explore the performance of our estimator using different combinations of the above

models. There are five scenarios for data generation: 1A, 2A, 1B, 2B, and 3C. The first

four scenarios are enough to verify the consistency of the quantile estimator and the last

scenario is used to study the performance of proposed estimator when no model is correctly

specified. For example, if 1A is the true data generating scenario, then 1B is enough to

study the consistency when only propensity score model is correctly specified and 1C is

not necessary. There is no explicit solution for the true quantile treatment effect, δp. To
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evaluate the performance of our proposed QTE estimator, we use a Monte Carlo simula-

tion of 10, 000 replications with a sample size of 1, 000, 000 to get a numerical solution to

δp as a benchmark. We evaluate our proposed QTE estimator and DR estimator using

this benchmark. In this study, we focus on the quantile treatment effect for 50th per-

centile. Simulation studies on other percentiles (25th, 75th, and 95th) can also be found

in Appendix A.2. There are five proposed QTE estimators and four double robust (DR)

estimators. Each DR estimator includes one propensity score model and one outcome

model. For example, DR 1A indicates propensity score model 1 and outcome model A are

specified in this estimator. Estimator DR 1A has at least one model correctly specified in

data scenarios 1A, 2A, and 1B. Our QTE estimators can include more than two models.

We use a notation like QTE 12A to indicate that propensity score models 1, 2 and outcome

model A are specified as constraints to construct the corresponding estimator.

5.4.2 Simulation Results

The simulation results with 5 scenarios are shown in Tables 5.1 - 5.5 with 1000 replications

and a sample size of n = 1000. More simulation results (other quantiles, n = 5000, and

n = 200) are given in Appendix A.2. We evaluated our proposed QTE estimators by

including some of the correctly specified propensity score models or outcome models. By

matching the scenarios, each QTE estimator has at least one model correctly specified.

While for DR estimator, for example, DR 2B does not have any models correctly specified

in scenario 1A. The results are evaluated using bias, empirical standard error (ESE), root

mean squared error (RMSE), bootstrapped standard error (BSE), and coverage rate (CR)

based on bootstrapped standard error. We include scenario 3C when studying the quantile

treatment effect for 50th percentile.

First, we compared the performance in scenarios 1A, 2A, 1B, and 2B. In terms of bias,

our proposed QTE estimators achieve consistency in all scenarios. DR 1A in scenario 2B,

DR 2A in scenario 1B, DR 1B in scenario 2A, and DR 2B in scenario 1A are not consistent.

For DR 1B in scenario 2A, the bias looks small but actually both the estimated quantiles

for treatment and control happen to have nearly equal biases in the same direction. In

Appendix A.2.1, we show the simulation results for other percentiles (25th, 75th, and 95th).
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Some DR estimators have large biases even when one of the models is correctly specified

for 25th, 75th, and 95th percentiles with sample size equal to 1000. A further study

(results not shown) shows that the biases from those DR estimators approach zero when

we increase the sample size to 5000. On the other hand, most of our proposed estimators

always have biases close to zero no matter whether the sample size is 1000 or 5000 for low

or high percentiles. The reason for the large biases is due to the sparsity of observations at

25th, 75th or 95th percentiles of the potential outcome distributions. The DR estimators

show large biases when sample size is small, which is also verified by the small sample size

studies in the Appendix A.2. The empirical performance on other quantiles showed that

the convergence rate of QTE estimators is higher than the rate of DR estimators. QTE

estimator is more robust against the sparsity of observations at the tails of the observed

outcome distributions.

In terms of RMSE, QTE estimators show small RMSE or the same efficiency as most DR

estimators. The QTE estimators have smaller ESE compared to DR estimators when the

true outcome model is included. In terms of coverage rate for 95% bootstrapped confidence

interval, all QTE estimators have coverage rates close to 95%, while the inconsistent DR

estimators show much lower coverage rates.

We include the scenario 3C in Tables 5.5, A.19, and A.24 when estimating quantile

treatment effect for 50th percentile in which none of the estimators are correctly specified.

When no model is correctly specified, none of the DR estimators or QTE estimators are

consistent. The QTE estimators generally result in smaller standard errors.

5.5 Application

In this section, we considered an investigation by Koenker and Hallock (2001) and Abrevaya

(2001) on the impact of various demographic characteristics and maternal behaviour on

the birthweight of infants born in United States. It is based on the June 1997 Detailed

Natality Data published by National Center for Health Statistics. The smoking status

of mother is considered the treatment indicator here. The birthweight of infants is the

outcome variable and is recorded in grams. The quantile treatment effect is defined as the

quantile difference of infants’ birthweight distributions between treatment (mother smokes)
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Table 5.1: Scenario 1A: Simulation Results of QTE and DR Estimators with 50th Percentile

(n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0010 0.3592 0.3592 0.3641 0.944

QTE 12B -0.0174 0.4790 0.4793 0.4860 0.941

QTE 1AB 0.0017 0.3589 0.3589 0.3635 0.945

QTE 2AB 0.0047 0.3505 0.3505 0.3570 0.952

QTE 12AB 0.0013 0.3590 0.3590 0.3640 0.945

DR 1A 0.0030 0.3763 0.3763 0.4029 0.964

DR 2A -0.0059 0.3797 0.3797 0.4365 0.965

DR 1B -0.0411 0.5180 0.5197 0.5596 0.954

DR 2B 1.0682 0.5505 1.2017 0.5674 0.514

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table 5.2: Scenario 2A: Simulation Results of QTE and DR Estimators with 50th Percentile

(n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0147 0.4181 0.4183 0.4252 0.943

QTE 12B 0.0051 0.7329 0.7330 0.7059 0.937

QTE 1AB 0.0127 0.4169 0.4171 0.4239 0.948

QTE 2AB 0.0133 0.4053 0.4056 0.4207 0.948

QTE 12AB 0.0126 0.4082 0.4084 0.4245 0.947

DR 1A 0.0053 0.3467 0.3468 0.3764 0.958

DR 2A 0.0258 0.4354 0.4362 0.4780 0.968

DR 1B 0.0263 0.5025 0.5032 0.5314 0.965

DR 2B -0.0027 0.7705 0.7706 0.8022 0.966

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table 5.3: Scenario 1B: Simulation Results of QTE and DR Estimators with 50th Percentile

(n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0385 0.4757 0.4772 0.4791 0.946

QTE 12B 0.0043 0.3210 0.3210 0.3402 0.945

QTE 1AB 0.0055 0.3234 0.3235 0.3396 0.944

QTE 2AB -0.0001 0.3149 0.3149 0.3301 0.947

QTE 12AB 0.0045 0.3240 0.3240 0.3399 0.945

DR 1A 0.0283 0.5490 0.5498 0.5922 0.956

DR 2A 0.6621 1.7098 1.8335 0.8085 0.841

DR 1B 0.0067 0.3886 0.3886 0.3895 0.970

DR 2B 0.0034 0.3207 0.3208 0.3671 0.967

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table 5.4: Scenario 2B: Simulation Results of QTE and DR Estimators with 50th Percentile

(n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0179 0.5719 0.5721 0.5993 0.954

QTE 12B -0.0073 0.3674 0.3674 0.3813 0.948

QTE 1AB -0.0010 0.3733 0.3733 0.3800 0.945

QTE 2AB -0.0032 0.3621 0.3621 0.3761 0.943

QTE 12AB -0.0044 0.3662 0.3662 0.3799 0.949

DR 1A 0.6086 0.4696 0.7687 0.5145 0.803

DR 2A 0.0224 0.6667 0.6670 0.7838 0.973

DR 1B 0.0026 0.3101 0.3101 0.3518 0.972

DR 2B 0.0223 0.4385 0.4391 0.4873 0.976

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table 5.5: Scenario 3C: Simulation Results of QTE and DR Estimators with 50th Percentile

(n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.8458 0.6800 1.0852 0.7051 0.774

QTE 12B -0.9043 0.7452 1.1717 0.7588 0.779

QTE 1AB -0.7007 0.7018 0.9917 0.7168 0.826

QTE 2AB -0.9568 0.6495 1.1564 0.6770 0.702

QTE 12AB -0.8383 0.6788 1.0786 0.7034 0.780

DR 1A -0.6531 0.7186 0.9710 0.8126 0.888

DR 2A -0.8990 0.8478 1.2357 1.0524 0.886

DR 1B -0.4525 0.8088 0.9268 0.8989 0.839

DR 2B -0.8843 0.9714 1.3137 1.1203 0.902

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

and control (mother does not smoke) groups. Previous studies show that low birthweight

is associated with a wide range of subsequent health issues, economic issues due to high

cost, and long duration of health care (Koenker and Hallock, 2001). Consequently, there

has been a great deal of interest in studying the low tail quantile treatment effect on infant

birthweight. The empirical distributions of birthweight between treatment and control

groups are shown in Figure 5.1.

There is a total of 50, 000 observations in the data set with eight covariates. The eight

covariates include: Married (mother’s marriage status), Black (mother’s race recorded as

either black or white), Boy (gender of the infant, 1 for boy), MomAge (mother’s age),

CigsPerDay (number of cigarettes smoked per day), MomWtGain (mother’s pregnancy

weight gain), MomEdLevel (mother’s education level: less than high school, high school,

some college, and college graduate), and Visit (prenatal visit with four categories: no visit,

first visit in the first trimester of the pregnancy, first visit in the second trimester of the

pregnancy, and first visit in the last trimester). CigsPerDay is removed from analysis

due to the collinearity with treatment indicator. We assumed all confounders related to
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Figure 5.1: Infant Birthweight Distributions for Smoking and Non-smoking Mother Groups

93



the treatment indicator and outcome variable are among the basic demographic variables

and all other measured covariates. For example, MomEdLevel, as a socioeconomic factor,

usually will affect both mothers’ smoking status and their babies’ birthweight. A direct

comparison of infants birthweight between treatment and control groups is not reliable due

to the existence of confounders.

We evaluated our proposed QTE estimator in comparison with the DR estimator. We

employ only one QTE estimator which includes all the propensity score models and outcome

models. For the propensity score models, three link functions are employed including logit

link, cloglog link, and probit link. For each link function, we also have three different

model specifications. For example, propensity score model is denoted as PS1, PS2, and

PS3 models under logit link. PS1 model only includes main effects; PS2 model has a

few more squared and interaction terms compared to PS1 model; PS3 model has more

squared and interaction terms compared to PS2 model. Similarly, we apply the same

model specifications under each of the other two link functions (PS4-PS6 under probit link

and PS7-PS9 under cloglog link). Hence, we have a total of nine propensity score models.

For outcome models, we apply the same three model specifications described in the

propensity score models for the deterministic component of our outcome models. We

only use the identity link function for outcome models. The outcome models are denoted

as: OCM1, OCM2, and OCM3. A histogram of the outcome variable shows that the

birthweight is normally distributed so that any other link function is not useful. We

conducted preliminary studies on comparing the propensity scores generated by different

propensity score models (results not shown). The three propensity score models using the

same link function generally generated quite different propensity score for each other. The

propensity scores generated from models with the same model deterministic component but

different link functions are very close to each other. On the other hand, the DR estimator

can only include one propensity score model and outcome model. So we specified three

different DR estimators based on different link functions used for propensity score model:

DR logit, DR probit, and DR cloglog. Each DR estimator is a combination of PS3, PS6,

and PS9 combined with OCM3.

The results are shown in Table 5.6 focusing on 50th percentile with bootstrapped stan-

dard errors based on 500 bootstrapped samples. The quantile treatment effect estimates
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Table 5.6: Quantile Treatment Effect Estimate for 50th Percentile with Birthweight Data

Method Estimate BSE CI

QTE -206.0 15.8 (-237.0, -175.0)

DR logit -194.0 22.3 (-237.7, -150.3)

DR probit -218.8 22.8 (-263.5, -174.1)

DR cloglog -215.0 21.7 (-257.5, -172.5)

BSE: Bootstrapped standard error, CI: 95% bootstrapped confidence interval.

from QTE and all DR estimators are within (−220,−190). The negative value of QTE

estimate indicates that the 50th percentile of the infant birthweight if the mother smokes

is about 206 grams smaller than the 50th percentile of infant birthweight if the mother

does not smoke. All the methods have no zero included in their 95% bootstrapped con-

fidence intervals which indicates a significant effect between mother’s smoking behaviour

and the baby’s birthweight. Due to the inclusion of more propensity score models and

outcome models, our proposed QTE method is more efficient than DR estimator here. We

also study the quantile treatment effects ranging from 5th to 95th percentiles shown in

Figure 5.2 with 95% confidence bounds for our proposed QTE method. The confidence

bounds for our proposed method are much wider at lower or higher tail quantile treatment

effects. The lower tail quantile treatment effect is about 20-30 grams smaller compared to

50th quantile treatment effect but the difference is not significant based on the figure.

5.6 Conclusion

The current statistical literature focuses on the population mean of potential outcomes. We

propose a quantile treatment effect estimator which achieves balance in the covariates using

a set of conditions on: (1) the propensity score, and (2) the conditional distributions of

potential outcomes. There are several nice features of our proposed methods. Our proposed

method shows more protection against model misspecification compared to DR estimator.

When the true outcome model is correctly specified, our proposed QTE estimator achieves
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Figure 5.2: Quantile Treatment Effect Estimates for Different Probability Levels
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a higher efficiency compared to DR estimator. Our proposed estimators also have faster

convergence rates compared to DR estimators since many DR estimators show biased

results when estimating low or high percentiles at small sample sizes even with true model

included. Besides, our proposed estimators tend to have good simulation performance with

higher efficiency even when no model is correctly specified as pointed out by Han and Wang

(2013) and verified by our simulation studies.

Both empirical likelihood and entropy measure can be used with the same theoretical

properties. Some other measures between two probability measures may also be utilized

including kernel distance, Kullback-Leibler distance, chi-squared distance, and generalized

pseudo empirical likelihood (Tan and Wu, 2015) .

5.7 Theorems and Proofs

5.7.1 Proof of Theorem 5.3.1

Theorem. If one of the propensity score models, πl(x) for l = 1, . . . , L, is correctly speci-

fied, α̂, β̂, and q̂p,t are estimated from their corresponding specified models, then ξ̂p,t
p−→ ξp,t

as n→∞ for t = 0, 1.

We prove this theorem for t = 1, the derivation is same for t = 0 and we assume a

true propensity score model π1(α1
0) = π(x) and α1

0 is the true parameter in the correctly

specified propensity score model. For simplification, let π1
i (α̂

1) = π1(α̂1,xi).

Proof. We reparameterize the Lagrange multiplier λ̂ᵀ by λ̂ᵀ = ( τ̂1+1

θ̂1
, τ̂2
θ̂1
, . . . , τ̂K+L

θ̂1
) =

1

θ̂1
{(1, 0, . . . , 0) + τ̂ ᵀ}, where θ̂ =

∑n
i=1 π

1
i (α̂

1)/n and θ1
0 = E {π1(α1

0)} = P (T = 1).
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From Equation (5.9), we have

0 =
∑
i∈S1

1

n1

r̂i(α̂, β̂, q̂p,1)

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,1)

=
∑
i∈S1

1

n1

r̂i(α̂, β̂, q̂p,1)

1 +
π1
i (α̂

1)− θ̂1

θ̂1
+
τ̂ ᵀ

θ̂1
r̂i(α̂, β̂, q̂p,1)

=
∑
i∈S1

1

n1

r̂i(α̂, β̂, q̂p,1)

1 +
π1
i (α̂

1)− θ̂1

θ̂1
+
τ̂ ᵀ

θ̂1
r̂i(α̂, β̂, q̂p,1)

θ̂1

θ̂1

= θ̂1 n

n1

1

n

n∑
i=1

{
Ti

π1
i (α̂

1)

r̂i(α̂, β̂, q̂p,1)

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1
i (α̂

1)

}
= Dn(τ̂ ᵀ)

p−→ D(τ ᵀ),

since θ̂1 p−→ P (T = 1) and n/n1
p−→ 1/P (T = 1).

Using the results of White (1982), α̂l
p−→ αl∗, β̂

k p−→ βk∗ , α
1
∗ = α1

0, and q̂kp,1
p−→ qk1,p,∗. And

D(τ ᵀ) = E

{
T

π1(α1
0)

ri(α∗,β∗,qp,1,∗)

1 + τ ᵀri(α∗,β∗,qp,1,∗)/π1
i (α

1
0)

}
is the limiting value of Dn(τ̂ ᵀ) with

ri(α∗,β∗,qp,1,∗) =



π1(α1
0,xi)− θ1

0
...

πL(αL∗ ,xi)− θL

G1
t (q

1
p,1,∗|xi,β1

∗)− ψ1

...

GK
t q

K
p,1,∗|xi,βK∗ )− ψK ,


.

Here θl and ψk are limiting values of θ̂l and ψ̂k and τ ᵀ
∗ = 0 is a solution to D(τ ᵀ) = 0.

Based on empirical likelihood theory and suitable regularity conditions, it can be easy

verified that τ̂ ᵀ p−→ 0 by Qin and Lawless (1994) and Han and Wang (2013) and even

τ̂ ᵀ = Op(n
−1/2) similar to Theorem 1 of Qin and Lawless (1994).
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Here, we show how to simply the estimated weight wi by showing that
∑

i∈St
1
nt

1

1+λ̂ᵀr̂i(α̂,β̂,q̂p,t)
=

1: ∑
i∈St

1

nt

1

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)
=
∑
i∈St

1

nt

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)− λ̂ᵀr̂i(α̂, β̂, q̂p,t)

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)

=
1

nt

∑
i∈St

{
1− λ̂ᵀr̂i(α̂, β̂, q̂p,t)

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,t)

}
= 1.

Next we are going to prove the consistency of weighted empirical CDF: F̂n,1(q)
p−→ F1(q).

The estimated weight can be expressed as

ŵi =
1

n1

θ̂1/π1
i (α̂

1)

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1
i (α̂

1)
.

F̂n,1(q) =
∑
i∈S1

ŵiI(Yi ≤ q)

=
∑
i∈S1

1

n1

θ̂1/π1
i (α̂

1)

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1
i (α̂

1)
I(Yi ≤ q)

=
θ̂1

n1/n

1

n

n∑
i=1

Ti
π1
i (α̂

1)

1

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1
i (α̂

1)
I(Yi ≤ q).

All parameters converge in probability to some limiting values. So we have Ti/π
1
i (α̂

1) =

Ti/π
1
i (α

1
0) + op(1), 1

/ {
1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1

i (α̂
1)
}

= 1 + op(1) and θ̂1

n1/n
= 1 + op(1).

So we can simplify F̂n,1(q):

F̂n,1(q) =
1

n

n∑
i=1

{
Ti

π1
i (α

1
0)

+ op(1)

}
{1 + op(1)} I(Yi ≤ q)

=
1

n

n∑
i=1

Ti
π1
i (α

1
0)
I(Yi ≤ q) + op(1)

Using TiI(Yi ≤ q) = TI{Y (1) ≤ q},
p−→ E

[
T

π1(α1
0)
I{Y (1) ≤ q}

]
= P{Y (1) ≤ q} = F1(q).
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For the last step, we are going to prove ξ̂p,1
p−→ ξp,1 as n → ∞ through the definition.

First we have F̂n,1(q)− F1(q) = op(1) for any q, which means ∀ ε, δ > 0, ∃n, when n ≥ N ,

we have P
{
|F̂n,1(q)− F1(q)| > ε

}
< δ for any q.

So ∀ε∗, δ > 0, we want to prove P (|ξ̂p,1− ξp,1| > ε∗) < δ, we prove in one direction first.

P (ξ̂p,1 − ξp,1 > ε∗) = P (ξ̂p,1 > ξp,1 + ε∗)

ξ̂p,1 > ξp,1 + ε∗ iff F̂n,1(ε∗ + ξp,1) < p

= P
{
F̂n,1(ε∗ + ξp,1) < p

}
= P

{
F̂n,1(ε∗ + ξp,1)− F1(ε∗ + ξp,1) < p− F1(ε∗ + ξp,1)

}
Notice that p− F1(ε∗ + ξp,1) < 0

≤ P
{∣∣∣F̂n,1(ε∗ + ξp,1)− F1(ε∗ + ξp,1)

∣∣∣ > |p− F1(ε∗ + ξp,1)|
}

< δ If ε ≤ |p− F1(ε∗ + ξp,1)|,
which means ∀ ε∗ we just need to select ε such that ε ≤ F1(ε∗ + ξp,1)− p.

Similarly we can get if ε ≤ p− F1(ξp,1 − ε∗) then P (ξ̂p,1 − ξp,1 < −ε∗) < δ. If we select

ε = min {F1(ε∗ + ξp,1)− p, p− F1(ξp,1 − ε∗)}, then we finish the proof for the consistency

of QTE estimator.

5.7.2 Proof of Theorem 5.3.2

Theorem. If one of the conditional CDFs, Gk
t (q|x) for k = 1, . . . , K, is correctly specified,

α̂, β̂, and q̂p,t are estimated from their corresponding specified models, then ξ̂p,t
p−→ ξp,t as

n→∞ for t = 0, 1.

Proof. Let’s assume G1
1(q|x,β1

0) is the true specified conditional CDF for treatment group

with true parameter β1
0. So β̂1 p−→ β1

0 as n→∞.
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F̂n,1(q) =
∑
i∈S1

ŵiI(Yi ≤ q)

=
∑
i∈S1

ŵi

{
I(Yi ≤ q)−G1

1(q|xi, β̂1)
}

+
∑
i∈S1

ŵiĜ
1
1(q|x, β̂1)

We replace the second term according to constraint (5.7),

=
n

n1

1

n

n∑
i=1

Ti

{
I(Yi ≤ q)−G1

1(q|xi, β̂1)
}

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,1)
+

1

n

n∑
i=1

G1
1(q|xi, β̂1).

Replace TI(Y ≤ q) by TI(Y (1) ≤ q), the above equation becomes

F̂n,1(q)
p−→ P (T = 1)E

[
T {I(Y (1) ≤ q)−G1

1(q|x,β1
0)}

1 + λᵀ
∗r(α∗,β∗,qp,1,∗)

]
+ E

{
G1

1(q|x,β1
0)
}

= P (T = 1)E

[
E

[
T {I(Y (1) ≤ q)−G1

1(q|x,β1
0)}

1 + λᵀ
∗r(α∗,β∗,qp,1,∗)

∣∣∣∣∣ x

]]
+ F1(q)

= P (T = 1)E

[
E (T |x)

1 + λᵀ
∗r(α∗,β∗,qp,1,∗)

E

[
I{Y (1) ≤ q} −G1

1(q|x)

∣∣∣∣∣ x

]]
+ F1(q)

= P (T = 1)E

[
E (T |x)

1 + λᵀ
∗r(α∗,β∗,qp,1,∗)

{
G1

1(q|x)−G1
1(q|x)

}]
+ F1(q)

= F1(q)

After we derive the consistency of F̂n,1(q) to F1(q), we can similarly construct that

ξ̂p,1
p−→ ξp,1 as n→∞ when a conditional CDF is correctly specified.

5.7.3 Proof of Theorem 5.3.3

Theorem. When one of the propensity score model is correctly specified, then ξ̂p,t
d−→

N
(

0,
σ2
F

f2t (ξp,t)

)
as n→∞ for t = 0, 1.
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Proof. We derive the asymptotic normality for t = 1. The proofs are not different for

t = 0. Let’s assume f1(y) is the probability density function for F1(y). For any c,

P
{√

n(ξ̂p,1 − ξp,1) ≤ c
}

= P
{
ξ̂p,1 ≤ ξp,1 + c/

√
n
}

ξ̂p,1 ≤ ξp,1 + c/
√
n iff p ≤ F̂n,1(ξp,1 + c/

√
n)

= P
{
F̂n,1(ξp,1 + c/

√
n) ≥ p

}
= P

{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n) ≤ F1(ξp,1 + c/

√
n)− p

}
= P

[√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}
≤
√
n
{
F1(ξp,1 + c/

√
n)− p

}]
We notice that

√
n
{
F1(ξp,1 + c/

√
n)− p

}
=
√
n
{
F1(ξp,1 + c/

√
n)− F1(ξp,1)

}
=
√
nf1(ηp,n) ∗ c√

n
,

where ηp,n is a value between ξp,1 + c/
√
n and ξp,1. By mean value theorem, we have

ηp,n → ξp,1 as n → ∞. So we can write
√
n {F1(ξp,1 + c/

√
n)− p} = cf1(ξp,1) + op(1). We

can further derive that

P
{√

n(ξ̂p,1 − ξp,1) ≤ c
}

= P
[√

n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

+ op(1) ≤ cf1(ξp,1)
]

Hence we only need to prove that
√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

+ op(1)
d−→

N(0, σ2
F ). σ2

F is the asymptotic variance and will be defined in the following derivation.

Let θ̂1
0 =

∑n
i=1 π

1
i (α

1
0). We have the following Taylor expansion of F̂n,1(ξp,1 + c/

√
n) at
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(0,α∗,β∗,qp,1,∗) where α∗ = (α1
0,α

2
∗, . . . ,α

L
∗ )ᵀ and τ = 0:

F̂n,1(ξp,1 + c/
√
n)

=
θ̂1

n1

n∑
i=1

{
Ti

π1
i (α̂

1)

I(Yi ≤ ξp,1 + c/
√
n)

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/π1
i (α̂

1)

}

=
nθ̂1

0

n1

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

− nθ̂1
0

n1

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

r̂ᵀi (α∗,β∗,qp,1,∗)

π1
i (α

1
0)

(τ̂ − 0)

+
1
n

∑n
h=1

∂π1
h(α1

0)

∂α1,ᵀ

n1/n

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

(α̂1 −α1
0)

−
1
n

∑n
h=1 π

1
h(α

1
0)

n1/n

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

{π1
i (α

1
0)}2

∂π1
i (α

1
0)

∂α1,ᵀ
(α̂1 −α1

0)

+Op(n
−1)

By using the fact that
θ̂10
n1/n

= 1 + op(1), 1
n

∑n
h=1

∂π1
h(α1

0)

∂α1,ᵀ = E {∂π1(α1
0)/∂α1,ᵀ} + op(1),

1
n

∑n
h=1 π

1
h(α

1
0) = θ0 + op(1), and r̂ᵀi (α∗,β∗,qp,1,∗) = rᵀi (α∗,β∗,qp,1,∗) + op(1), we can sim-

plify F̂n,1(ξp,1 + c/
√
n):
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F̂n,1(ξp,1 + c/
√
n)

=
1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

− 1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)rᵀi (α∗,β∗,qp,1,∗)

{π1
i (α

1
0)}2 (τ̂ − 0)

+
E {∂π1(α1

0)/∂α1,ᵀ}
θ0

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

(α̂1 −α1
0)

− 1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

{π1
i (α

1
0)}2

∂π1
i (α

1
0)

∂α1,ᵀ
(α̂1 −α1

0) + op(n
−1/2)

=
1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

− E

[
TI(Y ≤ ξp,1 + c/

√
n)rᵀ(α∗,β∗,qp,1,∗)

{π1(α1
0)}2

]
(τ̂ − 0)

+
E {∂π1(α1

0)/∂α1,ᵀ}
θ0

E

{
TI(Y ≤ ξp,1 + c/

√
n)

π1(α1
0)

}
(α̂1 −α1

0)

− E

[
TI(Y ≤ ξp,1 + c/

√
n)

{π1(α1
0)}2

∂π1(α1
0)

∂α1,ᵀ

]
(α̂1 −α1

0) + op(n
−1/2)

To simply the above equation, let A = E

[
TI(Y ≤ ξp,1 + c/

√
n)rᵀ(α∗,β∗,qp,1,∗)

{π1(α1
0)}2

]
,

B =
E {∂π1(α1

0)/∂α1,ᵀ}
θ0

E

{
TI(Y ≤ ξp,1 + c/

√
n)

π1(α1
0)

}
− E

[
TI(Y ≤ ξp,1 + c/

√
n)

{π1(α1
0)}2

∂π1(α1
0)

∂α1,ᵀ

]
.

Then we get:

√
nF̂n,1(ξp,1 + c/

√
n) =

√
n

1

n

n∑
i=1

TiI(Yi ≤ ξp,1 + c/
√
n)

π1
i (α

1
0)

−A
√
n(τ̂ ᵀ − 0) + B

√
n(α̂1 −α1

0) + op(1).

In the following steps, we are able to construct the asymptotic normality of

√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

with the asymptotic normality of
√
nF̂n,1(ξp,1+

c/
√
n).
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√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

=
√
n

1

n

n∑
i=1

{
F1(ξp,1 + c/

√
n)− Ti

π1
i (α

1
0)
I(Yi ≤ ξp,1 + c/

√
n)

}
+ A
√
n(τ̂ ᵀ − 0)−B

√
n(α̂1 −α1

0) + op(1)

=
√
n

1

n

n∑
i=1

Zn,i + A
√
n(τ̂ ᵀ − 0)−B

√
n(α̂1 −α1

0) + op(1)

where Zn,i = F1(ξp,1 + c/
√
n)− Ti

π1
i (α1

0)
I(Yi ≤ ξp,1 + c/

√
n).

So {Zn,i, i = 1, . . . , n;n = 1, . . . ,∞} is triangular array. The Lyapunov central limit

theorem can be employed here.

We will prove that
∑n

i=1 {Zn,i − E(Zn,i)}

/
{
∑n

i=1 Var(Zn,i)}1/2 p−→ N(0, 1) by check-

ing the Lyapunov condition. First we can derive that E(Zn,i) = 0. It can be verified that

TiI(Yi ≤ ξp,1 + c/
√
n) = TiI{Yi(1) ≤ ξp,1 + c/

√
n} under strongly ignorable treatment

assignment given in Chapter 1. Also we can derive the variance,
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Var(Zn,i)

= E

[
T 2
i

{π1
i (α

1
0)}2

I{Yi(1) ≤ ξp,1 + c/
√
n}
]
− E2

[
Ti

π1
i (α

1
0)
I
{
Yi(1) ≤ ξp,1 + c/

√
n
}]

= E

[
E

[
Ti

{π1
i (α

1
0)}2

I
{
Yi(1) ≤ ξp,1 + c/

√
n
} ∣∣∣∣∣ xi

]]

−

[
E

[
E

[
Ti

π1
i (α

1
0)
I
{
Yi(1) ≤ ξp,1 + c/

√
n
} ∣∣∣∣∣ xi

]]]2

= E

[
E (Ti|xi)
{π1

i (α
1
0)}2

E

[
I
{
Yi(1) ≤ ξp,1 + c/

√
n
} ∣∣∣∣∣ xi

]]

−

[
E

[
E (Ti|xi)
π1
i (α

1
0)

E

[
I
{
Yi(1) ≤ ξp,1 + c/

√
n
} ∣∣∣∣∣ xi

]]]2

= E

{
1

π1
i (α

1
0)
G1(ξp,1 + c/

√
n|xi)

}
−

[
E

[
E

[
I
{
Yi(1) ≤ ξp,1 + c/

√
n
} ∣∣∣∣∣ xi

]]]2

= E

{
1

π1(α1
0)
G1(ξp,1 + c/

√
n|x)

}
−
{
F1(ξp,1 + c/

√
n)
}2
,

which is a finite constant and denoted by σ2
z . Next we are going to check

limn→∞
∑n

i=1 E
{
|Zn,i − E(Zn,i)|2+ε}/ {

∑n
i=1 Var(Zn,i)}1+ε/2

= 0 for some ε > 0.

Based on the weak common support assumption: a < π(x) < 1− a for some a > 0, we

know

Zn,i = F1(ξp,1 + c/
√
n)− Ti

π1
i (α

1
0)
I(Yi ≤ ξp,1 + c/

√
n)

≤ F1(ξp,1 + c/
√
n) +

Ti
π1
i (α

1
0)
I(Yi ≤ ξp,1 + c/

√
n)

≤ 1 +
1

a
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Similarly, we get |Zn,i| ≤ 1 + 1/a. So |Zn,i − 0|2+ε ≤ |1 + 1/a|2+ε, so we can get

n∑
i=1

E
{
|Zn,i − E(Zn,i)|2+ε}/ {

n∑
i=1

Var(Zn,i)

}1+ε/2

≤ n|1 +
1

a
|2+ε

/ (
nσ2

z

)1+ε/2 → 0

as n → ∞. So we can conclude that
√
n 1
n

∑n
i=1 Zn,i√
σ2
z

d−→ N(0, 1). Since A
√
n(τ̂ ᵀ − 0) and

B
√
n(α̂1 −α1

0) all approximate normal distribution, we can conclude that
√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

d−→ N(0, σ2
F ), where σ2

F is the asymptotic vari-

ance which will include both variances and covariances among
√
n 1
n

∑n
i=1 Zn,i,

√
n(τ̂ ᵀ−0),

and
√
n(α̂1 −α1

0) .Finally by Slutsky’s theorem

P
{√

n(ξ̂p,1 − ξp,1) ≤ c
}

= P
[√

n
{
F (ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

+ op(1) ≤ cf1(ξp,1)
]

→ P
{
N(0, σ2

F/f
2
1 (ξp,1)) ≤ c

}

√
n(ξ̂p,1 − ξp,1)

d−→ N

(
0,

σ2
F

f 2
1 (ξp,1)

)
.

5.7.4 Proof of Theorem 5.3.4

Theorem. When one of the conditional CDFs is correctly specified, then ξ̂p,t
d−→ N

(
0

σ2
F

f2t (ξp,t)

)
as n→∞ for t = 0, 1.

Proof. For t = 1, assume G1
1(q|x) is the correctly specified conditional CDF and β1

0

is the true parameter vector, we reparameterize the Lagrange multiplier λ̂ᵀ by λ̂ᵀ =
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( τ̂1+1

ψ̂1
, τ̂2
ψ̂1
, . . . , τ̂K+L

ψ̂1
) = 1

ψ̂1
[(1, 0, . . . , 0) + τ̂ ᵀ] and rearrange:

r̂i(α̂, β̂, q̂p,t) =



G1
1(q̂1

p,1|xi, β̂1)− ψ̂1

...

GK
1 (q̂Kp,1|xi, β̂K)− ψ̂K

π1(α̂1,xi)− θ̂1

...

πL(α̂L,xi)− θ̂L


.

Let G1
1,i(β̂

1) = G1
1(q̂1

p,1|xi, β̂1). Similar to the proof in Theorem 5.3.3, we can derive the

asymptotic normality of
√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

+ op(1) by Taylor expansion of

F̂n,1(ξp,1 + c/
√
n) =

1

n1

n∑
i=1

Ti {I(Yi ≤ ξp,1 + c/
√
n)}

1 + λ̂ᵀr̂i(α̂, β̂, q̂p,1)

=
ψ̂1

n1

n∑
i=1

{
Ti

G1
1,i(β̂

1)

I(Yi ≤ ξp,1 + c/
√
n)

1 + τ̂ ᵀr̂i(α̂, β̂, q̂p,1)/G1
1,i(β̂

1)

}

at (0,α∗,β∗,qp,1,∗) where β∗ = (β1
0,β

2
∗, . . . ,β

K
∗ )ᵀ. Hence, we can also derive that

ξ̂p,1
d−→ N

(
0

σ2
F

f 2
1 (ξp,1)

)
as n→∞.

σ2
F is the asymptotic variance of

√
n
{
F1(ξp,1 + c/

√
n)− F̂n,1(ξp,1 + c/

√
n)
}

.
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Chapter 6

Discussion and Future work

6.1 Discussion

In this thesis, we proposed causal inference approaches to estimate average causal effects

or quantile treatment effects specifically focusing on covariate balancing problems. First,

we combined a parametric and a nonparametric model to estimate the propensity score.

Second, we proposed to optimize kernel distance between the covariate distributions of

treatment and control groups. Finally, we studied the quantile treatment effect estimator

with covariate balancing constraints under the empirical likelihood or entropy measure

framework.

The model averaging approach combines logistic regression and random forest models

to estimate the propensity score with a mixing parameter λ. The optimal λ is selected using

a grid search such that a certain covariate balance measure is optimized such as average

value of absolute standardized mean difference (ASMD) and mean Kolmogorov-Smirnov

(KS) test statistic. With the varying degree of nonlinearity of treatment models, model

averaging methods, especially the model averaging method with the objective to minimize

mean KS statistic, have consistently better performance than conventional propensity score

approaches, especially when there is model misspecification in the logistic regression model.

Combining two or more different propensity score models has the advantage to reduce

bias, standard error, and imbalance in covariates without doing balance checking. Second,
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combining several propensity score models can provide more protection against model

misspecification.

In addition to commonly used balance measures like ASMD and KS statistic, the ker-

nel distance is known to measure the discrepancy between two distributions. The kernel

distance is zero as long as two distributions are equivalent. Previous simulation studies

have shown that it has the strongest correlation with absolute bias in estimating the causal

effect compared to other balance measures. The kernel distance propensity score approach

used the kernel distance as a measure of covariate balance and achieved the balance in

the covariate distributions between treated and control groups. Optimal parameters can

be derived to optimize the modified kernel distance under the generalized method of mo-

ments or empirical likelihood framework. The Kernel function can be expressed as an

inner product of two infinite-dimensional basis functions, so minimizing kernel distance is

not just balancing finite moment of covariates. It can be treated as balancing all infinite

dimensions. The covariate balancing propensity score (CBPS) is proposed to achieve the

balance only in first or second moment conditions but not the overall distributions. The

simulation results show that when the imbalance between treated and control groups are

considerable, our kernel approaches are more likely to reduce the bias and variance.

In the third project, we studied the quantile treatment effect (QTE) estimation with

the same idea of covariate balancing. QTE estimation is another hot topic in statistical

practice but not many methods have been developed to balance the quantiles of conditional

cumulative distribution functions of outcomes in observational studies. We propose a

quantile treatment effect estimator which achieves balance in the covariates using two

sets of constraints on: (1) the propensity score, and (2) the conditional distributions of

potential outcomes. The inverse probability weighting (IPW) approach is sensitive to

model misspecification. Unlike IPW approaches, we can either optimize the empirical

likelihood or entropy measure with the balancing constraints to obtain the optimal weights

which will reduce the effect of misspecification. Based on the idea of multiple robustness,

there are several nice features from our proposed methods. Our proposed method shows

more protection against model misspecification compared to double robust estimator. Our

proposed estimator also have faster convergence rate compared to double robust estimator

when estimating low or high percentiles. These quantities are of more interest than median
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or average causal effect in many real applications.

Throughout this thesis, we explored the covariate balancing problems in causal infer-

ence. However, our proposed methods in this thesis are constructed within the potential

outcome framework with certain conditions. The conditions should always be checked care-

fully. The assumptions about the absence of unmeasured confounding and others should

be carefully qualified to emphasize the assumptions. In any application to real world data

set, discussion about the possibility of unobserved confounding and other assumptions is

essential and arguments should be provided about why it can safely be ignored.

6.2 Future work

There are some interesting extensions and questions left unsolved from this thesis that we

can employ in the exploration of future work. The order of these suggestions is listed in

accordance with the order of the projects:

In the simulation studies of model averaging approach, the standard error from the

sandwich formula is too conservative and leads to higher than the nominal coverage rates

of true treatment effect. Therefore, in the data analysis of Chapter 3, we focus on the

bootstrapping approach to obtain standard errors. Some future work may include the

construction of a valid variance estimator.

The covariates that affect the treatment assignment are the most important to be bal-

anced. Covariate balancing should focus more on treatment related covariates. Assessing

the correlation to treatment assignment mechanism is important. As stated in the conclu-

sion of Chapter 3, we can assign weights to each covariate to focus on achieving balance

on important covariates.

More than two models can be combined, e.g., êc(X) =
∑k

i=1 λiêi(X) subject to
∑k

i=1 λi =

1, where êi(X) is the estimated propensity score from the ith model. It is believed that

more propensity score models can provide more protection to misspecification and higher

efficiency.

In Chapter 4, we use combined kernel functions to replace a single Gaussian kernel. In

the combined estimator estimator, we treat each kernel function equally. How to weight
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each kernel and how to choose the tuning parameters like the σ2 in Gaussian kernel are

also worth exploration. Hazlett (2015) discussed the bias-variance trade-off of the σ2 on

mean balance of outcome variable in the control group. A larger σ2 may leads to smaller

variance but larger bias, while a smaller σ2 can lead to smaller bias but larger variance.

Although our simulation studies showed that median of σ2 can be a good choice, a further

study can explore a data driven and automatic selection for σ2.

The first two projects only consider the modification based on IPW approach to reduce

the effect of misspecification. Actually there are many double robust methods available.

Targeted maximum likelihood estimation (TMLE) has been developed to estimate average

causal effect. We can also incorporate our approaches with the TMLE method to estimate

the causal effect we are interested in.

Application of covariate balancing idea in dynamic treatment regimes (DTR) problem

can be a future direction. Multi-stage treatment is necessary in cancer treatment and some

chronic illnesses. A dynamic treatment regime consists of a sequence of decision rules on

the treatment assignment. Finding the optimal combination of treatment is important

and relies on the correct estimation of treatment effect at each stage. IPW approaches and

some double robust estimation of DTR have been applied to study optimal DTR problem

(Moodie et al., 2012; Wallace and Moodie, 2015). A further study may include incorpo-

rating the idea of covariate balancing optimization and multiple robustness into each stage

of DTR problem to adjust for confounding effect and reduce model misspecification effect

since traditional IPW methods are sensitive to model misspecification.
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Appendix A

More Simulation Results

A.1 Appendix for Chapter 3

A.1.1 More Simulation Results for Chapter 3
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Table A.1: Performance of Measures by Propensity Score Models in 1000 Simulated Data

Sets with n = 100 (Estimation of ACE)

Measure Method Scenarios

(×100) A B C D E F G

Mean of

absolute biases

in percentage

C1 13.02 13.01 10.75 15.20 15.43 15.16 11.62

C2 13.44 13.30 10.98 15.54 15.59 15.22 11.82

C3 13.32 13.11 10.93 15.46 15.46 14.78 11.62

C4 13.65 13.13 11.21 15.09 15.38 14.72 11.31

LR 16.18 16.71 14.17 20.83 20.17 19.71 17.73

RF 20.10 18.95 19.14 20.20 20.14 19.71 18.73

CBPS 17.54 16.90 16.08 18.39 18.63 19.15 16.85

GBM 26.42 24.31 23.63 27.62 25.81 26.22 24.05

Empirical

standard error

C1 6.51 6.32 5.59 7.64 7.58 7.58 6.03

C2 6.79 6.48 5.71 7.83 7.73 7.70 6.21

C3 6.66 6.49 5.72 7.72 7.66 7.26 6.10

C4 6.62 6.16 5.64 7.38 7.36 7.11 5.81

LR 9.44 9.54 8.63 12.42 11.59 11.26 11.45

RF 9.86 9.19 9.57 10.1 10.51 10.0 9.47

CBPS 6.90 6.80 6.77 7.06 7.51 7.28 7.15

GBM 9.55 8.85 9.58 9.63 9.79 9.43 9.80

Absolute bias of

average ACE

C1 2.02 2.28 1.09 1.93 2.40 2.19 0.01

C2 2.12 2.36 1.13 1.93 2.42 2.04 0.01

C3 2.06 2.18 1.21 1.97 2.31 2.38 0.04

C4 2.51 2.72 1.55 2.49 3.01 2.67 0.53

LR 0.82 1.08 0.08 0.16 1.13 0.53 2.54

RF 2.16 2.31 1.54 1.94 1.97 2.09 1.04

CBPS 5.24 4.93 4.25 5.69 5.32 5.92 4.31

GBM 8.76 8.12 7.08 9.38 8.42 9.13 6.70

Mean

squared error

C1 0.46 0.45 0.32 0.62 0.63 0.62 0.36

C2 0.51 0.48 0.34 0.65 0.66 0.63 0.39

C3 0.49 0.47 0.34 0.63 0.64 0.58 0.37

C4 0.50 0.45 0.34 0.61 0.63 0.58 0.34

LR 0.90 0.92 0.74 1.54 1.36 1.27 1.38

RF 1.02 0.90 0.94 1.06 1.14 1.04 0.91

CBPS 0.75 0.71 0.64 0.82 0.85 0.88 0.70

GBM 1.68 1.44 1.42 1.81 1.67 1.72 1.41

Average λ

C1 85.95 86.76 88.56 87.05 87.20 87.79 87.74

C2 80.43 80.22 84.46 81.85 82.47 81.54 83.76

C3 82.83 82.81 85.21 82.08 82.15 81.43 82.92

C4 70.54 71.17 77.09 73.15 72.11 74.07 77.30

In each cell, all the numbers are multiplied by 100. C1: Model averaging method with mean ASMD ; C2: Model averaging

method with median ASMD; C3: Model averaging method with max ASMD; C4: Model averaging method with mean

KS statistic; LR: Logistic regression; RF: Random forest; CBPS: Covariate balancing propensity score; GBM: Generalized

boosted model; CI: Confidence interval.
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Table A.2: Performance of Measures by Propensity Score Models in 1000 Simulated Data

Sets with n = 5000 (Estimation of ACE)

Measure Method Scenarios

A B C D E F G

Mean of

absolute biases

in percentage

(×100)

C1 1.55 1.54 0.92 2.02 1.85 1.96 2.81

C2 1.56 1.57 1.00 2.02 1.90 1.95 3.46

C3 1.51 1.51 0.91 2.03 1.86 2.02 2.30

C4 1.51 1.58 3.41 1.91 2.08 1.62 2.24

LR 1.69 1.66 1.51 2.48 2.23 3.20 6.32

RF 5.64 5.40 5.94 6.52 5.20 6.29 4.83

CBPS 2.13 2.38 1.95 2.36 3.16 2.01 2.81

GBM 5.20 5.85 6.40 6.52 7.58 6.48 7.84

Empirical

standard error

(×100)

C1 0.77 0.75 0.45 1.00 0.93 0.78 0.53

C2 0.78 0.77 0.48 1.00 0.95 0.83 0.94

C3 0.75 0.73 0.46 1.00 0.93 0.80 0.49

C4 0.75 0.77 1.31 0.96 1.05 0.78 1.12

LR 0.87 0.83 0.59 1.21 1.14 1.08 0.83

RF 1.30 1.43 1.90 1.80 1.78 1.80 1.91

CBPS 0.86 0.88 0.75 1.05 1.02 0.87 0.90

GBM 0.74 0.81 0.98 0.88 0.90 0.86 1.02

Absolute bias of

average ACE

(×100)

C1 0.07 0.19 0.13 0.13 0.15 0.56 1.12

C2 0.06 0.19 0.18 0.14 0.14 0.52 1.31

C3 0.08 0.20 0.04 0.14 0.16 0.60 0.91

C4 0.10 0.20 1.07 0.003 0.08 0.21 0.08

LR 0.02 0.08 0.49 0.39 0.14 1.15 2.53

RF 2.22 2.08 2.19 2.53 1.88 2.39 1.54

CBPS 0.62 0.81 0.58 0.62 1.15 0.56 1.04

GBM 2.08 2.34 2.55 2.60 3.03 2.59 3.14

Mean

squared error

(×104)

C1 0.60 0.60 0.22 1.02 0.89 0.92 1.54

C2 0.61 0.63 0.26 1.02 0.92 0.96 2.60

C3 0.57 0.57 0.21 1.02 0.89 1.00 1.07

C4 0.57 0.63 2.86 0.92 1.11 0.65 1.26

LR 0.76 0.70 0.59 1.62 1.32 2.49 7.09

RF 6.62 6.37 8.41 9.64 6.70 8.95 6.02

CBPS 1.12 1.43 0.90 1.49 2.36 1.07 1.89

GBM 4.87 6.13 7.46 7.53 9.99 7.45 10.90

Average λ

(×100)

C1 95.77 96.52 95.56 94.31 95.90 90.42 90.82

C2 93.01 94.69 95.77 91.03 92.84 82.40 86.47

C3 94.30 95.62 94.19 93.25 95.32 90.40 88.94

C4 90.03 83.95 10.47 83.03 63.06 78.21 24.99

In each cell, the numbers are multiplied by 100, except for mean squared error, the numbers are multiplied by 10000. C1:

Model averaging method with mean ASMD ; C2: Model averaging method with median ASMD; C3: Model averaging method

with max ASMD; C4: Model averaging method with mean KS statistic; LR: Logistic regression; RF: Random forest; CBPS:

Covariate balancing propensity score; GBM: Generalized boosted model; CI: Confidence interval.
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A.2 Appendix for Chapter 5

A.2.1 More Simulation Results

Simulation with n = 1000 for other Quantiles

Table A.3: Scenario 1A: Simulation Results of QTE and DR Estimators with 25th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0086 0.3982 0.3983 0.4120 0.962

QTE 12B -0.0022 0.5516 0.5516 0.5651 0.946

QTE 1AB 0.0086 0.4007 0.4008 0.4111 0.961

QTE 2AB 0.0097 0.3965 0.3967 0.4065 0.963

QTE 12AB 0.0077 0.3986 0.3986 0.4114 0.965

DR 1A -0.0390 0.6718 0.6729 0.7008 0.964

DR 2A -0.1678 0.7968 0.8143 0.7910 0.949

DR 1B -0.0616 0.9085 0.9106 0.9344 0.967

DR 2B -0.9280 1.0667 1.4138 1.1223 0.874

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.4: Scenario 2A: Simulation Results of QTE and DR Estimators with 25th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.0110 0.4408 0.4410 0.4566 0.951

QTE 12B 0.0224 0.7748 0.7752 0.7437 0.928

QTE 1AB -0.0029 0.4397 0.4398 0.4496 0.952

QTE 2AB -0.0098 0.4403 0.4404 0.4539 0.949

QTE 12AB -0.0103 0.4418 0.4419 0.4550 0.952

DR 1A 0.2165 0.7965 0.8254 0.7014 0.938

DR 2A -0.0840 0.9080 0.9118 0.8779 0.953

DR 1B 0.9787 0.7390 1.2264 0.7415 0.743

DR 2B -0.0647 1.0932 1.0951 1.1687 0.968

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.5: Scenario 1B: Simulation Results of QTE and DR Estimators with 25th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0437 0.4977 0.4997 0.4942 0.930

QTE 12B 0.0076 0.3245 0.3246 0.3346 0.955

QTE 1AB 0.0075 0.3251 0.3252 0.3342 0.960

QTE 2AB 0.0067 0.3171 0.3172 0.3271 0.954

QTE 12AB 0.0075 0.3254 0.3255 0.3347 0.958

DR 1A 0.1672 1.3324 1.3429 1.2196 0.968

DR 2A 0.9229 2.0104 2.2122 1.1880 0.844

DR 1B 0.0403 0.6235 0.6248 0.7702 0.979

DR 2B -0.0159 0.6534 0.6536 0.7960 0.979

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.6: Scenario 2B: Simulation Results of QTE and DR Estimators with 25th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0235 0.5583 0.5588 0.5541 0.934

QTE 12B 0.0056 0.3376 0.3376 0.3583 0.958

QTE 1AB 0.0041 0.3401 0.3401 0.3519 0.958

QTE 2AB 0.0024 0.3337 0.3337 0.3558 0.960

QTE 12AB 0.0051 0.3364 0.3364 0.3577 0.959

DR 1A 0.7380 1.0137 1.2539 1.1228 0.910

DR 2A -0.0001 1.1040 1.1040 1.1087 0.973

DR 1B 0.0667 0.6837 0.6870 0.7646 0.984

DR 2B -0.0221 0.7374 0.7377 0.7714 0.984

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.7: Scenario 1A: Simulation Results of QTE and DR Estimators with 75th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.0100 0.4069 0.4070 0.4282 0.951

QTE 12B -0.0415 0.5712 0.5727 0.5971 0.944

QTE 1AB -0.0149 0.4056 0.4059 0.4268 0.949

QTE 2AB -0.0073 0.3999 0.3999 0.4213 0.955

QTE 12AB -0.0150 0.4035 0.4037 0.4273 0.948

DR 1A -0.0546 0.6924 0.6946 0.7252 0.967

DR 2A -0.1364 0.8440 0.8550 0.8170 0.947

DR 1B -0.0453 0.8195 0.8208 0.9489 0.962

DR 2B -1.6571 0.9458 1.9080 0.9633 0.570

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.8: Scenario 2A: Simulation Results of QTE and DR Estimators with 75th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0057 0.4750 0.4750 0.4713 0.936

QTE 12B -0.0211 0.7842 0.7845 0.7931 0.947

QTE 1AB -0.0009 0.4741 0.4741 0.4673 0.939

QTE 2AB 0.0063 0.4628 0.4629 0.4678 0.939

QTE 12AB 0.0029 0.4695 0.4695 0.4696 0.934

DR 1A -0.1449 0.6203 0.6370 0.6686 0.971

DR 2A 0.0463 0.8580 0.8592 0.8259 0.970

DR 1B -0.7435 0.7271 1.0399 0.7578 0.832

DR 2B 0.0664 1.0383 1.0405 1.176 0.982

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.9: Scenario 1B: Simulation Results of QTE and DR Estimators with 75th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0300 0.6375 0.6382 0.6599 0.955

QTE 12B 0.0093 0.4149 0.4150 0.4507 0.956

QTE 1AB 0.0077 0.4158 0.4158 0.4499 0.958

QTE 2AB 0.0057 0.4023 0.4023 0.4372 0.961

QTE 12AB 0.0079 0.4150 0.4150 0.4500 0.956

DR 1A 0.4607 1.9962 2.0486 2.0338 0.964

DR 2A 1.5120 4.0672 4.3392 2.9629 0.950

DR 1B 0.1625 1.3719 1.3815 1.3957 0.965

DR 2B 0.1303 1.3526 1.3589 1.4482 0.969

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.10: Scenario 2B: Simulation Results of QTE and DR Estimators with 75th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.0036 0.8519 0.8519 0.8646 0.948

QTE 12B 0.0025 0.4753 0.4753 0.5026 0.947

QTE 1AB -0.0065 0.4952 0.4953 0.5031 0.938

QTE 2AB 0.0042 0.4739 0.4739 0.4982 0.943

QTE 12AB -0.0002 0.4774 0.4774 0.5022 0.941

DR 1A -0.5870 1.4110 1.5282 1.4702 0.956

DR 2A 0.6528 2.1846 2.2801 2.2491 0.958

DR 1B -0.2286 1.2058 1.2273 1.2119 0.965

DR 2B 0.3690 1.6036 1.6455 1.5336 0.952

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.11: Scenario 1A: Simulation Results of QTE and DR Estimators with 95th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0469 0.8023 0.8037 0.8679 0.964

QTE 12B -0.0510 1.3685 1.3695 1.3484 0.918

QTE 1AB 0.0402 0.7991 0.8001 0.9068 0.975

QTE 2AB 0.1214 0.7962 0.8054 0.9162 0.970

QTE 12AB 0.0403 0.8005 0.8015 0.9167 0.977

DR 1A 0.0942 1.0157 1.0200 1.1220 0.972

DR 2A -0.1186 1.0907 1.0971 1.1444 0.969

DR 1B 0.0936 1.6344 1.6371 1.6937 0.963

DR 2B -1.9303 1.7712 2.6198 1.7689 0.805

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.12: Scenario 2A: Simulation Results of QTE and DR Estimators with 95th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.0268 0.7775 0.7779 0.8067 0.950

QTE 12B -0.0549 1.3104 1.3115 1.3166 0.939

QTE 1AB -0.0328 0.7719 0.7726 0.8087 0.957

QTE 2AB -0.0313 0.7961 0.7968 0.8175 0.957

QTE 12AB -0.0288 0.7942 0.7948 0.8178 0.959

DR 1A -0.3326 0.8208 0.8856 0.9387 0.963

DR 2A 0.1132 1.0412 1.0473 1.1349 0.970

DR 1B -1.3326 1.1545 1.7631 1.2849 0.815

DR 2B 0.1000 1.5586 1.5618 1.6996 0.975

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.13: Scenario 1B: Simulation Results of QTE and DR Estimators with 95th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A 0.0004 1.7401 1.7401 1.7114 0.943

QTE 12B 0.0207 0.9364 0.9366 0.9908 0.960

QTE 1AB 0.0263 0.9440 0.9444 1.0076 0.964

QTE 2AB 0.0178 0.9252 0.9254 1.0078 0.967

QTE 12AB 0.0209 0.9418 0.9420 1.0136 0.962

DR 1A 0.2486 2.9823 2.9927 2.6733 0.947

DR 2A 0.6615 4.1385 4.1910 3.4288 0.948

DR 1B 0.1421 1.2084 1.2167 1.4297 0.974

DR 2B 0.2063 1.4297 1.4445 1.5918 0.978

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.14: Scenario 2B: Simulation Results of QTE and DR Estimators with 95th Per-

centile (n = 1000)

BIAS ESE RMSE BSE CR

QTE 12A -0.1375 2.0235 2.0281 1.9224 0.934

QTE 12B -0.0271 0.9844 0.9847 1.0708 0.973

QTE 1AB -0.0435 0.9834 0.9844 1.1427 0.977

QTE 2AB -0.0374 0.9902 0.9909 1.1413 0.976

QTE 12AB -0.0311 0.9947 0.9952 1.1588 0.973

DR 1A -4.2657 1.9529 4.6914 1.9865 0.311

DR 2A -0.0324 2.9554 2.9556 2.910 0.952

DR 1B -0.3879 1.1983 1.2595 1.2661 0.957

DR 2B 0.0670 1.4033 1.4049 1.4993 0.979

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Simulation with Large Sample Size: n = 5000
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Table A.15: Scenario 1A: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 5000)

BIAS ESE RMSE

QTE 12A -0.0031 0.1535 0.1536

QTE 12B -0.0036 0.2045 0.2045

QTE 1AB -0.0029 0.1535 0.1535

QTE 2AB -0.0035 0.1482 0.1482

QTE 12AB -0.0031 0.1536 0.1536

DR 1A -0.0050 0.1587 0.1588

DR 2A -0.0074 0.1692 0.1693

DR 1B -0.0042 0.2260 0.2261

DR 2B -1.0471 0.2416 1.0746

RMSE: Root mean squared error, ESE: Empirical standard error.

Table A.16: Scenario 2A: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 5000)

BIAS ESE RMSE

QTE 12A 0.0103 0.1869 0.1872

QTE 12B 0.0046 0.3250 0.3251

QTE 1AB 0.0134 0.2345 0.2349

QTE 2AB 0.0095 0.1850 0.1852

QTE 12AB 0.0098 0.1874 0.1877

DR 1A 0.0044 0.1551 0.1551

DR 2A 0.0062 0.1912 0.1913

DR 1B 0.0335 0.2295 0.2319

DR 2B 0.0068 0.3398 0.3399

RMSE: Root mean squared error, ESE: Empirical standard error.
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Table A.17: Scenario 1B: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 5000)

BIAS ESE RMSE

QTE 12A -0.0017 0.2092 0.2092

QTE 12B -0.0056 0.1416 0.1417

QTE 1AB -0.0057 0.1417 0.1418

QTE 2AB -0.0042 0.1417 0.1417

QTE 12AB -0.0058 0.1416 0.1417

DR 1A -0.0030 0.2299 0.2299

DR 2A 0.6945 2.0006 2.1178

DR 1B -0.0058 0.1495 0.1496

DR 2B -0.0046 0.1375 0.1375

RMSE: Root mean squared error, ESE: Empirical standard error.

Table A.18: Scenario 2B: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 5000)

BIAS ESE RMSE

QTE 12A 0.0032 0.2520 0.2520

QTE 12B -0.0059 0.1652 0.1653

QTE 1AB -0.0042 0.1933 0.1933

QTE 2AB -0.0062 0.1635 0.1636

QTE 12AB -0.0058 0.1641 0.1642

DR 1A 0.6287 0.2096 0.6627

DR 2A 0.0021 0.2592 0.2592

DR 1B -0.0016 0.1451 0.1451

DR 2B -0.0052 0.1729 0.1730

RMSE: Root mean squared error, ESE: Empirical standard error.
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Table A.19: Scenario 3C: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 5000)

BIAS ESE RMSE

QTE 12A -2.7931 0.3135 2.8106

QTE 12B -2.8283 0.3404 2.8487

QTE 1AB -2.5969 0.3452 2.6197

QTE 2AB -2.8644 0.3002 2.8800

QTE 12AB -2.7763 0.3122 2.7938

DR 1A -2.5469 0.3194 2.5668

DR 2A -2.8299 0.3955 2.8574

DR 1B -2.3356 0.3847 2.3671

DR 2B -2.8915 0.4349 2.9241

RMSE: Root mean squared error, ESE: Empirical standard error.

Simulation with Small Sample Size: n = 200
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Table A.20: Scenario 1A: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 200)

BIAS ESE RMSE BSE CR

QTE 12A -0.0021 0.7495 0.7495 0.8502 0.073

QTE 12B -0.0259 1.0903 1.0906 1.1848 0.970

QTE 1AB 0.0033 0.7459 0.7459 0.8505 0.972

QTE 2AB 0.0082 0.7407 0.7407 0.8413 0.968

QTE 12AB -0.0051 0.7498 0.7498 0.8545 0.970

DR 1A -0.0365 0.8220 0.8228 1.0230 0.989

DR 2A -0.0407 0.8814 0.8824 1.0550 0.978

DR 1B 0.0224 1.3896 1.3898 1.6112 0.985

DR 2B -0.9911 1.2184 1.5706 1.4856 0.934

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.21: Scenario 2A: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 200)

BIAS ESE RMSE BSE CR

QTE 12A -0.0081 0.8626 0.8627 0.9590 0.969

QTE 12B 0.0937 1.5214 1.5243 1.5349 0.960

QTE 1AB -0.0110 0.8538 0.8538 1.0111 0.975

QTE 2AB -0.0090 0.8583 0.8583 1.0012 0.974

QTE 12AB -0.0128 0.8617 0.8618 1.0440 0.974

DR 1A -0.0357 0.8016 0.8024 0.9430 0.983

DR 2A -0.0431 1.0378 1.0387 1.1773 0.983

DR 1B 0.0461 1.1464 1.1473 1.4441 0.988

DR 2B 0.0468 1.8903 1.8909 1.9645 0.973

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.22: Scenario 1B: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 200)

BIAS ESE RMSE BSE CR

QTE 12A 0.1807 1.0704 1.0855 1.1330 0.961

QTE 12B 0.0150 0.7245 0.7246 0.7830 0.964

QTE 1AB 0.0177 0.7250 0.7252 0.7828 0.962

QTE 2AB 0.0081 0.6976 0.6976 0.7683 0.965

QTE 12AB 0.0219 0.7143 0.7146 0.7852 0.964

DR 1A 0.2873 1.4366 1.4650 1.6664 0.981

DR 2A 0.7314 1.4243 1.6011 1.6589 0.967

DR 1B 0.0656 0.8221 0.8248 1.0196 0.979

DR 2B 0.0507 0.7673 0.7690 0.9572 0.980

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.

Table A.23: Scenario 2B: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 200)

BIAS ESE RMSE BSE CR

QTE 12A 0.1282 1.4204 1.4262 1.4608 0.960

QTE 12B -0.0017 0.8004 0.8004 0.8789 0.967

QTE 1AB -0.0085 0.7890 0.7891 0.9059 0.969

QTE 2AB -0.0153 0.7876 0.7877 0.8965 0.969

QTE 12AB -0.0142 0.7963 0.7964 0.9414 0.972

DR 1A 0.4553 1.1600 1.2462 1.4727 0.975

DR 2A 0.3122 1.7746 1.8018 1.8862 0.974

DR 1B -0.0515 0.7166 0.7185 0.8884 0.979

DR 2B 0.0763 1.0265 1.0293 1.1279 0.975

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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Table A.24: Scenario 3C: Simulation Results of QTE and DR Estimators with 50th Per-

centile (n = 200)

BIAS ESE RMSE BSE CR

QTE 12A -0.8620 1.6408 1.8535 1.7346 0.918

QTE 12B -0.9034 1.7983 2.0125 1.9202 0.927

QTE 1AB -0.7826 1.6362 1.8137 1.7230 0.916

QTE 2AB -1.0007 1.5436 1.8396 1.6495 0.895

QTE 12AB -0.8271 1.6432 1.8396 1.7527 0.916

DR 1A -0.9912 2.3116 2.5152 2.1615 0.970

DR 2A -0.8293 2.2777 2.4240 2.4778 0.964

DR 1B -0.8727 2.1542 2.3243 2.3227 0.946

DR 2B -0.7914 2.4588 2.5830 2.6190 0.966

RMSE: Root mean squared error, ESE: Empirical standard error, BSE: Bootstrapped standard error, CR:

Coverage rate for 95% bootstrapped confidence interval.
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