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Abstract

This thesis deals with statistical issues in the analysis of complex life history processes

which have characteristics of heterogeneity and dependence. We are motivated, in this the-

sis, by three specific types of processes; i) processes featuring recurrent episodic conditions

ii) multi-type recurrent events, and iii) clustered multi state processes as arise in family

studies.

In chronic diseases featuring recurrent episodic conditions, symptom onset is followed

by a period during which symptoms are present until recovery. In the analysis of data

from such processes, analysis is often based only on the recurrent onset of disease, ignoring

the duration of symptoms. This loss of information may lead to incorrect conclusions

in the analysis of this data. In Chapter 2, we propose a novel model for an alternating

two-state process including symptom-free state and symptomatic state to recognize the

duration of symptoms. This approach reflects the dynamics of individual’s disease process

and helps to understand a course of disease. Intensity-based models with multiplicative

random effects are considered where the disease onset time is governed by a conditionally

Markov intensity and the time of recovery is governed by a conditionally semi-Markov

intensity. A bivariate random effect with one multiplicative component for each intensity

is introduced to accommodate between-individual heterogeneity and a dependence between

bivariate random effect variables offers a natural and more general framework for modeling

the two state process. A copula function is used for the joint distribution of random effects

which retains the marginal features and gives flexible choices of dependence structure.

The proposed model is a semiparametric model for which estimation is carried out using

an expectation-maximization algorithm.

The aforementioned problem leads us to investigate the impact of ignoring symptom

duration in a randomized trial setting. In Chapter 3, we define two risk sets for recurrent

event analyses: one involves including individuals during their symptomatic period, and

the other excluding individuals from the risk set during symptomatic periods. In a clinical

trial, the balance between treatment groups in unmeasured confounders present at the

time of randomization can be lost following randomization as the risk set changes, thus,

retaining individuals in the risk set is a common approach. Here we examine asymptotic
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and empirical biases of estimators from the rate-based models when two different risk sets

are applied. We assume that the true underlying process is an alternating two-state process

where the true risk set is the one that excludes individuals when they are experiencing an

exacerbation. We consider two scenarios of the true model. First, there is no between-

variation for each process and no dependence between two processes. The second scenario is

to use the proposed dependent alternating two-states model in Chapter 2. Issues of model

misspecification and causal inference are considered. When focus is on clinical trials, power

implications of risk set misspecification is of interest.

In Chapter 4, attention is directed at multiple recurrent events where each endpoint

is of interest. The use of composite endpoint which is the time point of the first event

of any type is a simple way to analyse such data. However, when multiple events are of

comparable importance, use of a composite endpoint analysis may not be suitable. We

propose a copula-based model for multi-type recurrent events where each type of recurrent

event process arises from a mixed-Poisson model and random effects linking the events

through a copula function. When more than two types of events are considered, composite

likelihood is adopted to ease the computational burden, and simultaneous and two-stage

estimation are explored.

An aim of family studies is typically to gain knowledge about factors governing the

inheritance of diseases. One may be interested in examining a dependence of disease onset

between family members, and in identifying genetic markers associated with heritable dis-

ease. A common procedure is to collect families is through probands in which such affected

individuals are selected from a disease registry and their family members (non-probands)

are, then, recruited for examination. This approach to sampling families motivates us to

consider the disease onset process along with survival since the proband must be diseased

and alive to be recruited, and family members may need to be alive. In Chapter 5, we

propose a model for a clustered illness-death process for family studies which accounts for

the semi-competing risks problem for disease onset as well as biased sampling. We model

within-family association in the age of disease onset via a copula function and applied to the

possibly latent disease onset time and incorporate survival through a marginal illness-death

model. The ascertainment condition is reflected in the likelihood or composite likelihood

construction. Two study designs regarding the recruitment of family members are consid-
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ered. One involves the collection of disease history from family members via the proband

or medical records. The other requires family members to undergo a medical examination

in which case they must be alive at the time of the family study. Family data alone are

insufficient to estimate all of the parameters of the illness-death processes. We therefore

make use of auxiliary data including the population mortality data and additional registry

data to address the estimatability issue. Another source of auxiliary data is current status

survey. The issue of missing genetic markers is also addressed in each study design.
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Chapter 1

Introduction

1.1 Overview

Individuals experience events during their lifetimes, and it is important to analyze such data

to understand the processes governing events occurrence. The methods for analysis depend

on the nature of data and how that data are acquired and such issues are particularly

important for the analysis of life history data. In many settings, it is of interest to study

the dynamics of disease processes over the course of an individual’s lifetime, variation in

patterns across individuals, how interventions may affect such processes, and relationships

between more than two processes. From a statistical point of view, estimation of the

probability of disease incidence and event occurrence, covariate effects, and measures of

dependence are often of interest. This thesis is concerned with three different problems: i)

analysis of recurrent episodic conditions reflecting the onset and duration of symptomatic

periods in studies of chronic diseases, ii) multiple recurrent events possibly arising due to

the same underlying cause which are therefore associated, and iii) clustered multi-state

data arising in the conduct of family studies. Dependence modeling and dealing with

heterogeneity are themes in each of these problems. Other themes are the impact of biased

sampling schemes and the use of auxiliary data which arise in the third problem.

This introductory chapter begins with an overview of statistical methods for lifetime
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data, describes the motivating problems which are used in the thesis, and briefly discuss

the contents of the thesis.

1.2 Brief Overview of Lifetime Data Analysis

Methods for the analysis of lifetime processes have been extensively developed to deal

with problems in medicine, economics, actuarial science, and engineering. Examples of

such processes include in health research the onset and progression of cancer, recurrent

hospitalizations, destruction of joints over time in arthritis, etc. In this thesis, we focus

on recurrent event processes and multistate processes. There are several frameworks for

recurrent event data analysis including intensity-based methods, rate-based models and

random effects models (Lawless and Nadeau, 1995; Cook and Lawless, 2007). We review

these briefly in Section 1.2.1. Multi-state processes are of use for competing risks or the

study of progressive or reversible disease processes. We review related statistical methods

for multi-state processes in Section 1.2.2.

1.2.1 Recurrent Event Data

Recurrent event processes generate events repeatedly over time. Such processes arise in

many fields within health research including the occurrence of asthma attacks in respirology

trials, epileptic seizures in neurology studies, and recurrent hospitalizations in affective

disorders (Cook and Lawless, 2007). Statistical models for recurrent events can be specified

in terms of intensity functions for point processes which offers a useful framework for the

analysis of such data (Andersen and others , 1993).

Let Tik denote the time of the kth event for individual i in a sample of n independent

individuals, i = 1, . . . , n. Let Ni(t) =
∑∞

k=1 I(Tik ≤ t) count the number of events occurring

over [0, t] for individual i where dNi(t) = 1 if an event occurs at time t, and dNi(t) = 0

otherwise. If Xi(t) is a vector of covariates for individual i, {Xi(t), 0 < t} denotes the

covariate process. We let Hi(t) = {Ni(s), Xi(s), 0 ≤ s < t}. If we let Ci denote the right

censoring time, Yi(t) = I(t ≤ Ci) is an at risk indicator for the event. Throughout this
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thesis we suppose the observation process {Yi(t), 0 ≤ t} is independent of the event process

{dNi(t), 0 ≤ t} given Xi(s). We let dN̄i(t) = Yi(t)dNi(t) and N̄i(t) =
∫ t

0
dN̄i(s).

Intensity Functions

Let H̄i(t) = {Yi(s), N̄i(s), Xi(s), 0 ≤ s < t} denote the history of the observation, observed

event process, and external covariate process at time t; we assume for simplicity the co-

variate process is external. Then the intensity function is defined as the instantaneous

probability of event occurrence at time t given the process history, and is written as

lim
∆t↓0

P (∆N̄i(t) = 1|H̄i(t))

∆t
= Yi(t)λ(t|Hi(t))

where ∆N̄i(t) = N̄i(t + ∆t−) − N̄i(t
−) is the observed number of events over the interval

[t, t+ ∆t). Here

λ(t|Hi(t)) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))

∆t

is the intensity function for the underlying recurrent event process. Full specification of

the intensity function requires one to condition on the history of event process. For the

examination of treatment effects in clinical trials this therefore is not an ideal basis for

analysis (Kalbfleisch and Prentice, 2011).

Under the assumption of modulated Poisson processes, the rate function given fixed

covariates, say, where Hi(t) = {Ni(s), 0 ≤ s < t,Xi} is defined as

λ(t|Hi(t)) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))

∆t
= lim

∆t↓0

P (∆Ni(t) = 1|Xi)

∆t
= ρi(t),

and the corresponding mean function is µi(t) = E[Ni(t)|Xi] =
∫ t

0
ρi(s)ds. The most com-

mon framework for modeling covariate effects is multiplicative models of the form

ρi(t) = ρ0(t) exp(x′iβ).

The baseline rate function can be parametrized or semiparametric models can be specified.

Andersen and Gill (1982) proposed a semiparametric Cox-type model and provided the
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large sample properties of estimators through martingale theory. The partial likelihood

score function is defined as

U(β, t) =
n∑
i=1

∫ t

0

Yi(u) {xi(u)− x̄(β, u)} dNi(u) (1.1)

where x̄(β, t) = S(1)(β, t)/S(0)(β, t) with S(k)(β, t) = n−1
∑n

i=1 Yi(t)xi(t)
⊗k exp(x′i(t)β), k =

0, 1, 2.

Random Effects Models

To accommodate between-subject variability, we introduce random effects into the Poisson

model to obtain a mixed Poisson model of the form

λ(t|Hi(t), ui) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t), ui)

∆t
= uiρi(t)

where Ui is an unobservable nonnegative random variable independent of Xi(t) with mean

1 and variance φ. Note that the interpretation of covariates effects are conditional on

random effects ui, which means that the marginal covariate effects are more complicated.

The unconditional intensity function for a mixed Poisson process is of the form

λ(t|Hi(t)) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))

∆t
= ρi(t)E[Ui|Hi(t)]

which depends on the precise random effects distribution adopted. A number of distri-

butions for Ui are available with commonly adopted ones including the gamma, inverse

Gaussian, positive stable, and log-normal distributions (Hougaard, 2000).

Robust Marginal Methods

If interest lies in marginal features such as the rate or mean functions in order to as-

sess covariate effects, robust methods are often preferable (Cook and Lawless, 2007). Lin

and others (2000) proposed semiparametric multiplicative models for the mean and rate
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functions for the counting process with fixed covariates xi(t) = xi. This has the form

E[dNi(t)|Yi(t), xi)) = ρ0(t)dt exp(x′iβ).

The estimating equation for β is equivalent to (1.1) under the Poisson assumption. To

provide protection against extra-Poisson variation or other forms of misspecification, robust

variance estimates are required for valid inferences.

1.2.2 Multi-state Processes

A multi-state model is a model for a stochastic process with a discrete states which is often

used to describe life history processes changing over a period of time (Hougaard, 1999). It

is a useful framework describing the progression of retinopathy in diabetes, joint damage in

psoriatic arthritis, or cancer and death in oncology (Cook and Lawless, 2018). Multi-state

processes often enable one to calculate transition probabilities over a period of time, or

marginal state occupancy probabilities. We introduce various multi-state models in this

section. Note that we are primarily concerned with fixed covariates here.

Intensity functions

Let Zi(t) denote the state occupied at time t for an individual i with state space {1, 2, . . . , K}.
and Hi(t) = {Zi(u), 0 ≤ u < t, xi} denote the history of state occupancy over [0, t] where

xi is a vector of fixed covariates. Then, the intensity function of state k to l transitions is

defined as

lim
∆t↓0

P (Zi(t+ ∆t−) = l|Zi(t−) = k,Hi(t))

∆t
= λkl(t|Hi(t))

for all k 6= l and k, l ∈ {1, . . . , K}. We can construct the likelihood for a specific individual

sample path using intensity functions.
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Markov and Semi-Markov Models

Markov processes are commonly used, for which the transition intensities depend on only

the state currently occupied. In this setting, the time scale is the global time (i.e. the time

since the origin of the process). Then, the transition intensities are of the form

λkl(t|Hi(t)) = Yik(t)λkl(t|xi)

where Yik(t) = I(Zi(t
−) = k), k = 1, . . . , K. If we let Λkl(t|xi) =

∫ t
0
λkl(u|xi)du, then the

transition probability matrix P (s, t|xi) can be obtained by product integration as

P (s, t|xi) =
∏
(s,t]

{I + dΛ(u|xi)}

where Λ(t|xi) is a K ×K matrix with Λkl(t|xi) in the(k, l) entry, j 6= k, −
∑

l 6=k Λkl(t|xi)
in the diagonal entries, and I is an identity matrix of size K (Andersen and others , 1993).

Sometime it is more natural to use the time since the most recent transition as the time

scale. Examples of such settings include studies of the duration for recurrent infections in

chronic bronchitis, studies of the duration of recurrent hospitalizations, and the duration of

depressive episodes among individuals with affective disorder. For semi-Markov processes,

λkl(t|Hi(t)) = Yik(t)hkl(Bik(t)|xi),

where Bik(t) is the time since entry to the current state k.

Heterogeneity and Dependence Modeling

Sometimes individual life history paths exhibit substantial heterogeneity defined by the

presence of considerably more variation than can be accounted for by some base model.

In this case random effects are often useful to accommodate between-subject variation.

This approach is often used in life history as shown in Section 1.2.1 with the conditional

intensity given individual unobservable variables. In a similar fashion with multiplicative
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models, the conditional transition intensities are of the form

λkl(t|Hi(t), uikl) = uiklYik(t)λkl(t|xi)

where Uikl is a latent non-negative random variable introduced to account for variation

between individuals, and uikl is its realized value.

When an individual experiences multiple processes, interest may lie in jointly model-

ing them and measuring the dependence between them. One approach readily adopted

involves random effects where the multiple processes are linked via latent variables. While

quite common, this framework does not provide easily interpretable marginal covariate ef-

fects or measures of association. Copula models offer a natural alternative where marginal

processes are jointly modeled by copula functions (Joe, 1997). This formulation deter-

mines a dependence structure only through the copula while retaining the simplicity of the

marginal models.

A copula function C(v1, . . . , vK) in K dimensions is defined as a multivariate distribution

function with marginal uniform [0, 1] distribution; i.e. V1, . . . , VK are uniform [0, 1] random

variables (Joe, 1997). We can then write

C(v1, . . . , vK) = P (V1 ≤ v1, . . . , VK ≤ vK).

For simplicity of illustration, we consider the progressive K + 1 state process and let Wk

be a the sojourn time in state k, k = 1, . . . , K (He and Lawless, 2003). Let Fk(t|x) be the

survival function of Wk given X = x. Then the joint survival function F(w1, . . . , wK |x) =

P (W1 ≥ w1, . . . ,WK ≥ wK |x) can be specified via a copula as

F(w1, . . . , wK |x) = C(F1(w1|x), . . . ,FK(wK |x)).

As a commonly used measure of dependence for two pairs of random variables (T1j, T1k)

and (T2j, T2k), Kendall’s τ is defined as

τ = P ((T1j − T2j)(T1k − T2k) > 0)− P ((T1j − T2j)(T1k − T2k) < 0),
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and this is often used in copula modeling as the summary dependence measure. One of

the widely used classes of copula function is the Gaussian copula, which has the form

C(v1, . . . , vK) = ΦR(Φ−1(v1), . . . ,Φ−1(vK)),

where ΦR is a joint cumulative distribution function of a multivariate normal distribution

with mean zero and correlation matrix R and Φ(·) is the standard normal distribution

function. The Archimedean copula family is also popular, in which the copula functions

have the form

C(v1, . . . , vK) = ψ−1(ψ(v1;φ) + . . .+ ψ(vK ;φ);φ),

where ψ(·;φ) is a so-called the generator function and φ is a dependence parameter. The

Clayton copula is a member of the Archimedean family (Genest and Rivest, 1993), given

by

C(v1, . . . , vK) = (v−φ1 + . . .+ v−φK −K + 1)−1/φ.

1.3 Studies and Motivating Applications

Here we will briefly describe some motivating problems which will be revisited in this thesis.

1.3.1 Recurrent Hospitalizations in Affective Disorder

The data of a registry of recurrent hospitalizations in Denmark were collected over the

period 1994-1999 to study affective disorder (Kessing and others , 2004). All patients who

entered the study had been diagnosed with having affective disorder and being hospitalized

at least once between 1994 and 1999. This selection condition was applied to a total of

10,523 patients. The number of males is 6,721 (63.9%) and the number of females is 3,802

(36.1%). Over the study window the average number of admissions is 1.62 (SD = 1.72),

with a minimum of 1 and a maximum of 90. The data is collected prospectively following

the start of the first hospitalization.

Figure 1.1 illustrates profiles for a sample of 10 patients. The solid line indicates the
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Figure 1.1: Profiles of patients from the Danish psychiatric hospitalization study

state of being in hospital and the dotted line indicates state of being out of hospital.

From this plot, we observe that some hospitalizations are of an appreciable duration,

which motivates the use of an alternating two-state process. The data were censored

at the time of the end of the study on December 31, 1999, at the time of death, or if

patients were diagnosed with organic disorder, schizophrenia or schizo-affective disorder.

The classification of the type of affective disorder was made at the date of discharge from

the hospital, thus the type of disorder was time-dependent; patients were hospitalized with

a diagnosis of unipolar or a diagnosis of bipolar affective disorder. A total of 9417 patients

had been diagnosed with unipolar disorder and 1106 patients had been diagnosed with

mania or bipolar disorder at the first discharge. The number of total re-admissions is 6498

and the the duration of the subsequent hospitalizations varied from 0 to 1253 days (mean

= 43.9, SD =56.4) (Kessing and others , 2004). We revisit this study in Chapter 2 to

illustrate the fitting of an alternating two-state model we develop in that Chapter.

9



1.3.2 A Herpes Simplex Trial

Herpes simplex virus infection causes recurrent outbreaks of symptoms lasting typically

two to four weeks of duration. A multicenter open-label randomized two-period crossover

trial was conducted to compare the efficacy of suppressive therapy versus episodic therapy

(Romanowski and others , 2003). Suppressive therapy was valacyclovir at a dosage of 500

mg once daily and episodic therapy was valacyclovir at a dosage of 500 mg twice daily for 5

days after the outbreaks of symptoms. If herpes outbreaks in the suppressive arm patients

received episodic therapy for 5 days and returned to suppressive therapy after 5 days. A

total of 202 patients completed the study for two 24-week period of study out of a total

of 225 patients at enrollment. After the first period of study patients switched to another

therapy so that each patients received both treatments for the 48-week study period. The

mean of total number of outbreaks for the first period is 4.019 with the standard error

of 3.898. The mean of symptom duration is 24.1 days with a minimum of 1 day and a

maximum of 175 days. The variation of the duration of symptom inspires us to investigate

different approaches to defining the risk sets (i.e. including or excluding individuals when

they are experiencing events). We revisit this study in Chapter 3.

1.3.3 Iron Supplementation in Malnourished Children

Malnutrition in children in low-income countries has been identified as a cause of immune

deficiency and susceptibility to infectious diseases since activation of the immune system

in response to infection requires additional energy. Examples of infectious diseases arising

due to malnutrition are opportunistic pathogens and fungus, noma, respiratory, intestinal

infections, tuberculosis, measles and other chronic infections (Ambrus, 2004; Schaible and

Stefan, 2007). Iron deficiency, which is also prevalent in developing countries, causes anemia

and a deficiency of red blood cells. Lemaire and others (2011) conducted a study to examine

the efficacy of iron-containing micro-nutrient powder (iron MNP) on the risk of infections in

malnourished children. In a randomized clinical trial, 268 Bangladeshi children, aged 12-24

month, and moderately-to-severely malnourished with a hemoglobin concentration between

70 and 110 g/L, were recruited in two phases, 12/2007-06/2008 and 07/2008-01/2009,

respectively. Iron MNP were provided to 136 children daily for 2 months and the remaining
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children were provided placebo powder. The primary endpoint was the occurrence of

infections and associated symptoms such as diarrhea, dysentery, lower respiratory tract

infections (LRTIs), cough and fever. During the 2 months intervention period, the incidence

of infections was assessed every other day, whereas after the intervention period, it was

assessed weekly. Interest may lie in measuring dependence between the onset of multiple

infections, which motivates a joint model for multi-type recurrent events. We revisit this

study in Chapter 4 to illustrate the use of a multi-type recurrent event model.

1.3.4 Psoriatic Arthritis Family Study

PsA(psoriatic arthrists) is an immune-mediated inflammatory disease occurring commonly

in patients with psoriasis. Its symptoms include peripheral joints and spinal pain or

stiffness, enthesis, and dactylitis (Gladman, 1991). The Centre for Prognosis Studies in

Rheumatic Disease at the University of Toronto maintains a Psoriatic Arthritis Clinic,

which was established in 1976 and has been following patients since its formation. Upon

entry to the clinic, patients undergo a detailed examination and provide serum samples.

Follow-up clinical and radiological assessments are scheduled annually and biannually to

track the changes in joint damage and functional ability, and serum samples are taken at

clinic visits to measure the changes of markers (Cook and Lawless, 2014). As of April of

2017, 1436 patients have been recruited to University of Toronto Psoriatic Arthritis Reg-

istry (UTPAR) with the range of the date of birth from 1893 to 1997. A median of age at

the first assessment is 44.1 and the mean of age at PsA is 38.0 (SD = 13.6). A family study

was carried out at this registry to examine familial aggregation in the occurrence of PsA.

Among the 1436 individuals, 150 were selected for family studies as probands. Figure 1.2

gives an example Lexis diagram for a family in the PsA family studies. The proband was

sampled from the UTPAR in 2001 and two parents of the proband were recruited to the

family study in 2007; the father and mother were born in 1929 and 1934, respectively, and

the proband (son) was born in 1955. We revisit this family study data in Chapter 5 where

we develop methods for clustered family data where each individual follows a marginal

illness-death process.
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Figure 1.2: Lexis diagram for a family with 3 members; one proband and parents

1.4 Contents of the Thesis

In Chapter 2, we develop models for the analysis of alternating two-state processes, mo-

tivated by studies of chronic diseases in which affected individuals experience recurrent

symptomatic periods, each of which may last for an appreciable time. We formulate a

copula-based model to link a subject-specific multiplicative random effect acting on con-

ditionally Markov intensity for the onset of exacerbations, with a random effect acting

on a conditionally semi-Markov intensity for exacerbation durations. An expectation-

maximization algorithm is described for fitting a joint semiparametric model for the onset

and resolution of exacerbations. An application is given to a study of recurrent hospital-

ization in patients with affective disorder (Kessing and others , 2004).

While marginal rate-based analyses have considerable appeal for the analysis of recur-
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rent exacerbation in clinical trials, relatively little work has been carried out on how to

best handle the duration of symptomatic periods. In chapter 3, we derive the asymptotic

bias of the Nelson-Aalen estimator of cumulative mean function as well as regression coeffi-

cients under an Andersen-Gill model as a function of parameters of an underlying two-state

process. We investigate the impact of the mean duration of the exacerbation durations,

heterogeneity, and dependence on the asymptotic and empirical biases of parameter es-

timates. An application to a trial of individuals with herpes simplex virus is given for

illustration (Romanowski and others , 2003).

When several types of recurrent events may arise, interest often lies in marginal mod-

eling and studying the nature of the dependence structure. In Chapter 4, we propose mul-

tivariate mixed-Poisson model with the dependence between event type-specific random

effects accommodated through a Gaussian copula. Such models retain the simple inter-

pretation of marginal features, separately reflect the heterogeneity in risk for each type

of event, and provide insight into the dependence between the different types of events.

Inference is proposed based on composite likelihood to avoid high dimensional integration.

The relative efficiency of estimators obtained from simultaneous and two-stage estimation

is examined. An application to a study of nutritional supplements in malnourished chil-

dren is given in which the goal is to evaluate the reduction in the rate of several types of

infection (Lemaire and others , 2011).

Chapter 5 considers family studies where accommodating within-family association in

the age of disease onset is critical when studying the genetic basis of chronic disease. In

family studies families are typically recruited by the identification of an affected individual

from a disease registry, called the proband, whose disease onset time is right-truncated. The

disease status, and possibly onset times of other family members, called non-probands, is

then collected; sometimes this is retrospectively reported and sometimes non-probands are

required to undergo examination to determine their disease status. Relatively little work

has been done on the effect of mortality on inferences about the dependence of disease

processes. We construct likelihoods for family data based on a marginal illness-death

model where the joint distribution of the age at disease onset is considered under complex

sampling schemes. When the disease is rare and data are insufficient, auxiliary data can be

used to augment the likelihood and facilitate estimation. We apply the proposed methods
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to the analysis of a family study of psoriatic arthritis carried out at the University of

Toronto (Pollock and others , 2015; Zhong and Cook, 2016).

Chapter 6 reviews the conclusions of the thesis and discusses further research topics for

each area.
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Chapter 2

Heterogeneity and Dependence

Modeling for Alternating Two-state

Processes Via Copulas

2.1 Introduction

Many chronic diseases are characterized by recurrent periods of time during which symp-

toms are manifest. Examples include recurrent exacerbations in individuals with respira-

tory disease (Grossman and others , 1998), recurrent bouts of depression among individuals

with affective disorder (Garber and others , 1988), or recurrent hospitalization in patients

with cardiovascular disease (Borer and others , 2012). In such settings, maximum like-

lihood estimation requires joint modeling of both the onset and duration of recurrent

symptomatic periods. For convenience we use the term “exacerbation” to represent the

condition in which the disease is in an “active” state to represent infections, flares of

symptoms, hospitalizations, etc.

Intensity functions play a central role in the analysis of data from multistate processes

(Andersen and others , 1993) and intensity-based models can provide useful insight into fac-

tors governing event occurrence (Aalen and others , 2008). For processes featuring recurrent
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alternating sojourns in states, however, several aspects must be addressed including the

time scale of the intensity functions. For conditions such as chronic bronchitis or chronic

obstructive pulmonary disease, there is a gradual increase in lung damage due to repeated

exacerbations which increase the risk of symptom outbreaks over time. Likewise, for pa-

tients with cardiovascular disease, as the condition deteriorates individuals are at increased

risk of hospitalization. We therefore consider a model in which the risk of symptom onset

for each individual can be characterized by a modulated Markov intensity function to allow

the risk to change as the time with the disease condition increases. When symptomatic

periods arise, they often follow a natural course, as is the case with episodic infections

leading to symptom exacerbation in respiratory disease. Moreover, upon the onset of an

exacerbation standard interventions may be delivered to ameliorate symptoms and resolve

the symptomatic period. In both cases the resolution process begins upon the onset of

the symptomatic period motivating the use of a modulated semi-Markov model for the

duration of symptomatic periods.

A second complication is that there can be considerable unexplained heterogeneity

between individuals in the propensity for, and duration of, symptomatic periods. Moreover,

individuals at higher risk of exacerbations may also tend to have shorter sojourn times in

the exacerbation state; in studies of infectious disease this can arise if some individuals

live in an area putting them at high risk of reinfection, for example. To accommodate

this type of heterogeneity we introduce a bivariate random effect in which one component

acts multiplicatively on the Markov intensity for the onset of symptoms and the other acts

multiplicatively on the semi-Markov intensity for symptom duration.

The primary purpose of this Chapter is to present a model for an alternating two-state

process which has a suitable time scale for the two intensities, accommodates heterogene-

ity in the propensity for and duration of symptomatic periods, and allows for correlated

random effects for the two conditional intensities. The remainder of this chapter is orga-

nized as follows. In Section 2.2 the formulation of the model is given in detail including

the copula model used to accommodate dependence in the random effects. The marginal

likelihood is derived and an expectation-maximization algorithm (Dempster and others ,

1977) is given to facilitate semi-parametric analysis; variance estimation is also given with

details provided in the Appendix 2.A. Simulation studies are described and reported on
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in Section 2.3 where we study the impact of misspecifying the random effect distribution.

In Section 2.4 we fit the model to data from a Danish study on repeated hospitalizations

in individuals with affective disorder (Kessing and others , 2004). Concluding remarks are

given in Section 2.5.

2.2 Modeling Heterogeneous Hybrid Markov/Semi-

Markov Processes via Copulas

Figure 2.1: A two-state diagram for chronic diseases with recurrent symptomatic episodes

Consider the two-state diagram in Figure 2.1. We suppose each individual i in a sample

of m independent individuals starts their process at time t = 0, which corresponds to

the time of disease onset i = 1, . . . ,m. Let Sik be the onset (start) time for the kth

exacerbation, Tik denote the resolution time of the kth exacerbation, andWik = Tik−Sik the

duration of kth exacerbation. The counting process {Nij(u), 0 < u} records the cumulative

number of j → 3− j transitions experienced by individual i over (0, t], for j = 1, 2, where

Ni1(t) =
∑∞

k=1 I(Sik ≤ t) and Ni2(t) =
∑∞

k=1 I(Tik ≤ t). Let Zi(s) = 1 if individual i is

symptom-free at s > 0, Zi(s) = 2 if they are symptomatic, and Yij(s) = I(Zi(s
−) = j),

j = 1, 2. Moreover, we let Xi1(t) and Xi2(t) be column vectors of external time-dependent

covariates (Kalbfleisch and Prentice, 2011) and Xi(s) = (X ′i1(s), X ′i2(s))′. The history of

the process is denoted Hi(t) = {(Ni1(s), Ni2(s)), Xi(s), 0 < s < t}. The complete intensity

function for j → 3− j transitions for individual i is

lim
∆t↓0

P (∆Nij(t) = 1|Hi(t))

∆t
= Yij(t)λij(t|Hi(t)) (2.2.1)
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where ∆Nij(t) = Nij(t+ ∆t−)−Nij(t
−), j = 1, 2, i = 1, 2, . . . ,m.

If interest lies in events occurring over the period (0, A], where A is a common ad-

ministrative censoring time, let C†i denote a random censoring time assumed to be inde-

pendent of the multistate process. We then let, Ci = min(A,C†i ), denote the net censor-

ing time, Yi(s) = I(s ≤ Ci), and Ȳij(s) = Yi(s)Yij(s). We let N̄ij(t) =
∫ t

0
Ȳij(s)dNij(s)

for j = 1, 2, N̄i(t) = (N̄i1(t), N̄i2(t)), and {N̄i(s), 0 < s} denote the observed bivariate

counting process. We assume that censoring can occur at any state. We, here, define

Wi,Ni2(Ci)+1 = Ci − SiNi1(Ci) as a censoring time if censoring occurs during exacerbation;

otherwise Wi,Ni2(Ci)+1 = 0. The complete history of the observation and event processes

is then H̄i(t) = {N̄i(s), Yi(s), Xi(s), 0 ≤ s < t}. We assume that two transitions cannot

occur at the same time.

Let Ui = (Ui1, Ui2)′ denote a bivariate individual specific random effect and consider a

conditional intensity given Ui = ui as

lim
∆t↓0

P (∆N̄ij(t) = 1|H̄i(t), ui)

∆t
= λ̄ij(t)|H̄i(t), ui).

Under independent censoring (Kalbfleisch and Prentice, 2011) we can write

λ̄ij(t)|H̄i(t), ui) = Ȳij(t)λij(t|Hi(t), ui).

The role of the random effect here is to accommodate heterogeneity in the risk and the

duration of events and to account for the dependence between the two processes.

Multiplicative semiparametric models can be expressed as follows. For the conditionally

Markov intensity for 1→ 2 transition corresponding to the onset of symptoms, we let

λi1(t|Hi(t), ui1) = ui1Yi1(t)dΛ01(t) exp(x′i1(t)β1).

For the conditionally semi-Markov intensity for 2 → 1 transitions representing resolution

of symptoms, we let

λi2(t|Hi(t), ui2) = ui2Yi2(t)dΛ02(Bi(t)) exp(x′i2(t)β2)
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with Bi(t) = t − SNi1(t−) represents the time since symptom onset. Note that the terms

Λ0j(·) are infinite dimensional functions, but we informally write θj = (Λ0j(·), β′j)′, for

j = 1, 2 and let θ = (θ′1, θ
′
2)′.

A bivariate random effects distribution can be formed through the use of a copula

function C(v1, v2), a bivariate distribution function with uniform [0, 1] margins (Joe, 1997).

The copula enables us to link any pair of marginal random effect distributions to obtain a

bivariate distribution. The Gaussian copula is widely used and has the form C(v1, v2; ρ) =

Φρ(Φ
−1(v1),Φ−1(v2)) where Φρ(·) is a joint cumulative distribution function of a bivariate

normal random variable with mean (0,0)’, variances of one, and correlation coefficient ρ.

The Archimedean family of copulas (Genest and Rivest, 1993) include the Clayton copula

C(v1, v2; ρ) = (v−ρ1 + v−ρ2 − 1)−1/ρ which is widely used in survival analysis. If we let

Gj(uj;σj) denote the marginal c.d.f for Uj for j = 1, 2, then

P (U1 < u1, U2 < u2;φ) = G(u;φ) = C(G1(u1;φ1), G2(u2;φ2); ρ) (2.2.2)

denote the bivariate c.d.f indexed by φ = (φ1, φ2, ρ)′ (Nelsen, 2006); we then let ψ = (θ′, φ′)′.

The bivariate density function can then be written as

dG(u;φ) = g1(u1;φ1)g2(u2;φ2)
∂2C(v1, v2; ρ)

∂v1∂v2

∣∣∣∣
(v1,v2)=(G1(u1;φ1),G2(u2;φ2))

.

where gj(uj) is the marginal p.d.f for Uj for j = 1, 2. We consider both the Gaussian

copula and the Clayton copula for which Kendall’s τ is given by 2arcsin(ρ)/π and ρ/(2+ρ),

respectively. If there is a strong positive correlation between the two transitions, individuals

at increased risk of 1 → 2 transition are at increased risk in 2 → 1 transitions (e.g. the

resolution of exacerbation) which results in frequent short exacerbations. This pattern

is often seen empirically. The severity of the chronic condition can be measured by the

number of occurrence of excerbations; but this must be examined in concert with the

sojourn time distribution.
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The marginal likelihood for individual i is∫ ∞
0

∫ ∞
0

P (Zi(s), 0 < s < Ci|ui, xi(s), 0 < s < Ci; θ)dG(ui;φ). (2.2.3)

If we let

L12
i1 ∝

Ni1(Ci)∏
k=1

ui1λ01(sik) exp(x′i1(sik)β1) exp

(
−
∫ ∞

0
ui1Ȳi1(v) exp(x′i1(v)β1)dΛ01(v)

)

and

L21
i1 ∝

Ni2(Ci)∏
k=1

ui2λ02(wik) exp(x′i2(sik +wik)β2) exp

(
−
∫ ∞

0
ui2Ȳi2(v) exp(x′i2(v)β2)dΛ02(Bi(v))

)
,

then P (Zi(s), 0 < s < Ci|ui, xi(s), 0 < s < Ci; θ) = L12
i1L

21
i1 , i = 1, . . . ,m.

Since dG(ui;φ) cannot be factored, direct maximization of (2.2.3) is challenging. We

adopt an expectation-maximization algorithm (Dempster and others , 1977) to facilitate

semiparametric analyses.

Given the random effects we decompose the complete data log-likelihood into two parts

as

lC(ψ) = l1(θ) + l2(φ) (2.2.4)

where

l1(θ) =
m∑
i=1

{logL12
i1 + logL21

i1 }

l2(φ) =
m∑
i=1

log dG(ui;φ).

To implement the EM algorithm, we treat the random effects as missing data and the data

on the event process as observed. Let ψ(k) = (θ′(k), φ′(k))′ denote the estimate of ψ at the

kth iteration. In the E-step, we take the expectation of the complete log-likelihood (2.2.4)
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with respect to ui given the history Hi(Ci). Let

Q(ψ;ψ(k)) = Q1(θ;ψ(k)) +Q2(φ;ψ(k)) (2.2.5)

whereQ(ψ;ψ(k)) = E[lC(ψ)|Hi(Ci);ψ
(k)], Q1(θ;ψ(k)) = E[l1(θ)|Hi(Ci);ψ

(k)], andQ2(φ;ψ(k)) =

E[l2(φ)|Hi(Ci);ψ
(k)]. Then evaluating (2.2.5) requires calculation of

i) E[Uij|Hi(Ci);ψ
(k)]

ii) E[logUij|Hi(Ci);ψ
(k)]

iii) E[log dG(Ui)|Hi(Ci);ψ
(k)].

For example,

E[Uij|Hi(Ci);ψ
(k)] =

∫∞
0

∫∞
0
uijP (Hi(Ci)|ui, xi(s), 0 < s < Ci; θ

(k))dG(ui;φ
(k))∫∞

0

∫∞
0
P (Hi(Ci)|ui, xi(s), 0 < s < Ci; θ(k))dG(ui;φ(k))

(2.2.6)

where we write P (Hi(Ci)|ui, xi(s), 0 < s < Ci; θ) for P (Zi(s), 0 < s < Ci|ui, xi(s), 0 < s <

Ci; θ) for convenience. The integrals in the numerator and denominator of (2.2.6) do not

have closed forms so we use numerical integration by Gaussian-Quadrature with 32 nodes

for each dimension. Here we exploited OpenMP in C++ to make use of open multi-processing.

We let ν
(k)
ij = logE[Uij|Hi(Ci);ψ

(k)] at the kth iteration. At the (k + 1)th M-step, we

solve equations Uβ1(β1;ψ(k)) = 0 and Uβ2(β2;ψ(k)) = 0 for β
(k+1)
1 and β

(k+1)
2 where

Uβ1(β1;ψ(k)) =
m∑
i=1

∫ ∞
0

Ȳi1(s)

(
xi1(s)−

∑m
i=1 R

(1,k)
1 (s; β1)∑m

i=1 R
(0,k)
1 (s; β1)

)
dNi1(s) (2.2.7)

with

R
(r,k)
1 (s; β1) =

m∑
i=1

Ȳi1(s)x⊗ri1 (s) exp(x′i1(s)β1 + ν
(k)
i1 ), r = 0, 1,

and

Uβ2(β2;ψ(k)) =
m∑
i=1

Ni2(Ci)∑
j=1

(
xi2(sij + wij)−

R
(1,k)
2 (wij; β2)

R
(0,k)
2 (wij; β2)

)
(2.2.8)
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with

R
(r,k)
2 (wij; β2) =

m∑
h=1

Nh2(Ch)+1∑
`=1

I(wh` ≥ wij)x
⊗r
h2 (sh` + wij) exp(x′h2(sh` + wij)β2 + ν

(k)
h2 ),

for r = 0, 1.

Given β̂
(k+1)
j , j = 1, 2, the estimates of the cumulative baseline intensities have the

forms of Breslow profile likelihood estimates

Λ̂
(k+1)
01 (t) =

m∑
i=1

∫ t

0

dN̄i1(s)∑m
h=1 Ȳh1(s) exp(x′h1(s)β̂

(k)
1 + ν

(k)
h1 )

and

Λ̂
(k+1)
02 (w) =

m∑
i=1

Ni2(Ci)∑
j=1

I(w = wij)
m∑
h=1

Nh2(Ch)+1∑̀
=1

I(wh` ≥ wij) exp(x′h2(shl + wij)β̂
(k)
2 + ν

(k)
h2 )

for the onset and duration of exacerbations respectively. The maximization of (2.2.5) in

the semi-parametric setting can be easily carried out since Q1(θ;ψ(k)) can be maximized

using the coxreg function in R with ν
(k)
ij treated as an offset term. The estimate φ̂(k+1) is

obtained by maximizing the auxiliary function

m∑
i=1

E[log dG(Ui;φ)|Hi(Ci);ψ
(k)] (2.2.9)

using a general optimization software such as the optim function in R. The E-step and

M-step are repeated iteratively until the following stopping rule is satisfied:

max(|ψ(k+1) − ψ(k)|) ≤ ε

where ε = 10−4 is used here.

To estimate standard errors, we use Louis’s formula since the EM algorithm does not

provide the observed information matrix directly (Louis, 1982). The observed information
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matrix I(ψ̂) is given as

I(ψ̂) =
m∑
i=1

{
− E

[
∂2lC(ψ)

∂ψ∂ψ′

∣∣∣∣Hi(Ci)

]
− V AR

[
∂lC(ψ)

∂ψ

∣∣∣∣Hi(Ci)

]}∣∣∣∣
ψ=ψ̂

(2.2.10)

where ψ̂ is the estimate of ψ. The score functions and the partial derivatives of score

functions are provided in Appendix 2.A. The asymptotic distribution of estimators arising

from a semiparametric model with Gamma frailty was investigated by Parner and others

(1998) but the asymptotic distribution for bivariate frailty model requires development. We

will show subsequently that the empirical performance is very good. Since the dimension of

I(ψ̂) increases as the number of individuals in the dataset increases, a convenient alternative

is to use a model with piecewise constant baseline intensities.

2.3 Simulation Studies

Simulation studies were conducted to evaluate the finite sample performance of the es-

timators and the validity of the variance estimates from the joint analysis of Section 2.2

using the Gaussian copula, and the Clayton copula. We also examined the impact of model

misspecification through the use of an independence model. The independence model is

obtained by setting Ui1 ⊥ Ui2; the model becomes the two independent frailty models.

We let A = 2 denote an administrative censoring time for individual i and generate data

over the interval (0,2], We adopt an independent random censoring Ci which follows an

exponential distribution with rate − log(0.9)/2 giving 10% censoring i.e. P (Ci < 2) = 0.1.

We consider the case of a fixed covariate and let xi be the indicator of a randomized treat-

ment where xi = 1 if they are assigned to receive experimental treatment and xi = 0

otherwise.

Under a time-homogeneous model, the intensity for the onset of exacerbations is λi1(t|Hi(t), ui) =

ui1λ01 exp(xiβ1) and the resolution of exacerbations is governed by a hazard function

λi2(t|Hi(t), ui) = ui2λ02 exp(xiβ2). We set λ01 = 2, λ02 = 10, β1 = log(0.75), and

β2 = log(1.25). We let Uij have log-normal or gamma distributions with E(Uij) = 1

and Var(Uij) = φj = 0.4 for j = 1, 2, and we link ui1 and ui2 with the Gaussian copula or
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the Clayton copula. Settings considered include with Kendall’s τ = (−0.25, 0, 0.25) for the

Gaussian copula and Kendall’s τ = (0.25, 0.5) for the Clayton copula. We generate 1000

replicates in each scenario with sample sizes of m = 500 individuals.

Table 2.1, 2.2, and 2.3 reports results from the joint copula model and the misspecified

independent frailty model with Ui1 ⊥ Ui2. The empirical biases from the joint model are

small, the empirical and average estimated standard errors of the parameters are in good

agreement, and the empirical coverage probabilities are close to the nominal 95% level

for all scenarios. From the independent frailty model, we observe that small biases in β1

and β2 and the empirical coverage probabilities are close to the nominal level. However,

the frailty variance of resolution of exacerbation, φ2, has non-negligible bias and the lower

empirical coverage probabilities than the nominal 95% level, particularly when Kendall’s

τ is negative with the Gaussian copula and a strong positive dependence is present with

the Clayton copula.

We also conducted additional simulation studies to assess the sensitivity of the analysis

to misspecification of a copula function. The data were generated based on i) the Gaussian

copula and ii) the Clayton copula with the gamma marginal distributions E(Uij) = 1

and Var(Uij) = φj = 0.4 and the remaining parameters were unchanged. We use the

Clayton copula for i), and the Gaussian copula for ii), respectively. Table 2.4 shows the

results under this model misspecification. We note that the estimates of β1, β2 show little

biases whereas φ2 and Kendall’s τ have biases. Therefore, if interest lies in the treatment

effect on the onset of exacerbation or the resolution of exacerbation based on this limited

study, the model provides a modest degree of robustness to misspecification of the copula

function. The variance parameters and the dependence parameters for the two random

effects, however, appear sensitive to misspecification of the copula function. This is in line

with finding of others (McCulloch and Neuhaus, 2011). Note that one could also examine

the empirical bias in estimate of the cumulative baseline Markov transition intensity for

the onset of exacerbations as well as the cumulative hazard for the sojourn times in the

exacerbation state. We do not do this here.
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Table 2.1: Finite sample performance of estimators from semiparametric analyses
of Markov/semi-Markov model under the Gaussian copula with log-normal margins
and a (misspecified) independence model

Gaussian Copula - LN Margin Independence - LN Margin

τ PARAM† BIAS ESE ASE ECP BIAS ESE ASE ECP

-0.25 β1 -0.002 0.080 0.078 0.947 0.003 0.080 0.078 0.941

β2 0.001 0.082 0.085 0.956 -0.013 0.084 0.084 0.939

φ1 -0.001 0.071 0.070 0.947 -0.018 0.068 0.068 0.925

φ2 -0.013 0.101 0.098 0.921 -0.053 0.088 0.089 0.862

τ -0.005 0.083 0.080 0.949

0.00 β1 -0.003 0.076 0.078 0.948 -0.002 0.078 0.078 0.951

β2 -0.001 0.084 0.085 0.944 -0.002 0.087 0.085 0.943

φ1 -0.003 0.070 0.068 0.931 0.000 0.069 0.068 0.947

φ2 -0.012 0.091 0.094 0.935 -0.011 0.090 0.093 0.940

τ 0.003 0.081 0.079 0.945

0.25 β1 0.000 0.076 0.077 0.960 -0.002 0.076 0.078 0.950

β2 0.001 0.082 0.084 0.954 0.015 0.088 0.085 0.939

φ1 -0.002 0.068 0.067 0.940 0.007 0.069 0.067 0.938

φ2 -0.005 0.088 0.090 0.948 0.027 0.096 0.095 0.970

τ 0.011 0.083 0.081 0.945

† True values are β1 = −0.2877, β2 = 0.2231, φ1 = 0.4, φ2 = 0.4.

25



Table 2.2: Finite sample performance of estimators from semiparametric analyses of
Markov/semi-Markov model under the Gaussian copula with gamma margins and a (mis-
specified) independence model

Gaussian Copula - Gamma Margin Independence - Gamma Margin

τ PARAM† BIAS ESE ASE ECP BIAS ESE ASE ECP

-0.25 β1 -0.001 0.080 0.080 0.954 0.004 0.080 0.080 0.954

β2 0.000 0.091 0.094 0.962 -0.015 0.089 0.092 0.960

φ1 -0.004 0.054 0.054 0.944 -0.021 0.053 0.053 0.915

φ2 -0.010 0.065 0.065 0.944 -0.034 0.063 0.064 0.896

τ -0.001 0.080 0.078 0.946

0.00 β1 -0.001 0.079 0.080 0.954 -0.001 0.079 0.080 0.954

β2 0.002 0.090 0.092 0.956 0.002 0.091 0.092 0.954

φ1 -0.004 0.051 0.052 0.948 -0.004 0.051 0.052 0.947

φ2 -0.012 0.064 0.064 0.933 -0.012 0.064 0.064 0.935

τ 0.005 0.077 0.079 0.948

0.25 β1 0.000 0.079 0.079 0.950 -0.004 0.079 0.080 0.951

β2 0.000 0.087 0.090 0.961 0.015 0.088 0.091 0.955

φ1 -0.004 0.052 0.051 0.945 0.003 0.052 0.052 0.950

φ2 -0.007 0.066 0.064 0.949 -0.001 0.065 0.063 0.947

τ 0.011 0.079 0.080 0.956

† True values are β1 = −0.2877, β2 = 0.2231, φ1 = 0.4, φ2 = 0.4.
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Table 2.3: Finite sample performance of estimators from semiparametric analyses of
Markov/semi-Markov model under the Clayton copula with gamma margins and a (mis-
specified) independence model

Clayton Copula - Gamma Margin Independence - Gamma Margin

τ PARAM† BIAS ESE ASE ECP BIAS ESE ASE ECP

0.25 β1 0.002 0.079 0.079 0.953 -0.001 0.080 0.079 0.952

β2 -0.001 0.086 0.087 0.956 0.010 0.087 0.088 0.953

φ1 -0.003 0.050 0.051 0.950 -0.003 0.050 0.051 0.948

φ2 -0.013 0.066 0.067 0.932 -0.054 0.059 0.060 0.813

τ 0.001 0.091 0.094 0.949

0.50 β1 -0.001 0.079 0.078 0.958 -0.006 0.079 0.079 0.954

β2 0.003 0.083 0.083 0.943 0.022 0.084 0.085 0.936

φ1 -0.001 0.053 0.051 0.940 -0.003 0.053 0.051 0.939

φ2 -0.011 0.066 0.068 0.933 -0.076 0.056 0.058 0.695

τ 0.007 0.107 0.096 0.944

† True values are β1 = −0.2877, β2 = 0.2231, φ1 = 0.4, φ2 = 0.4.
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Table 2.4: Empirical results of semiparametric modeling under a misspecified copula model
where data are generated by i) the Gaussian copula and ii) the Clayton copula. For i) the
Clayton copula is used and for ii) the Gaussian copula is used for analysis; Kendall’s τ =
0.25

Analysis i) Clayton Copula - Gamma Margin ii) Gaussian Copula - Gamma Margin

PARAM† BIAS ESE ASE ECP BIAS ESE ASE ECP

β1 0.000 0.079 0.079 0.949 0.001 0.079 0.079 0.952

β2 0.001 0.087 0.090 0.961 -0.001 0.086 0.087 0.957

φ1 0.003 0.053 0.052 0.949 -0.008 0.050 0.051 0.942

φ2 0.050 0.074 0.073 0.925 -0.059 0.060 0.060 0.804

τ 0.049 0.096 0.095 0.919 -0.053 0.078 0.081 0.904

† True values are β1 = −0.2877, β2 = 0.2231, φ1 = 0.4, φ2 = 0.4, τ = 0.25.

2.4 Recurrent Hospitalization Among Individuals with

Affective Disorder

To investigate the course of depressive or bipolar disorder, the Danish Psychiatric Central

Research Register collected patients experiencing hospitalization with affective disorder

over the period 1994-1999 (Kessing and others , 2004). A total of 10523 patients were re-

cruited and individual data were recorded from the start of the first hospitalization. Kessing

and others (2004) and Cook and Lawless (2013) analyzed this data set by stratification

on the number of prior admissions or by incorporating it as covariate, and concluded an

increased risk of admission with increasing numbers of prior hospitalizations. However, this

does not fully explain the nature of hospitalization process since the duration of the hospi-

talization was not considered. We applied our proposed model to data from a psychiatric

hospital re-admission studies to address this here.

Figure 2.2 displays the histogram of the numbers of hospitalizations experienced by
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Figure 2.2: A crude summary of the distributions of the numbers of hospitalizations for
individuals (left panel) and Kaplan–Meier estimates of the survivor functions for the du-
ration of hospitalization stratified by the number of admissions (right panel) in the Danish
Psychiatric Registry

individuals (panel a) and naive Kaplan–Meier estimates stratified by the number of prior

admissions (panel b). The number of prior admissions were categorized into 1, 2, 3, 4, 5, 6,

7, and 8 or more prior admissions. The majority of patients experienced one or two admis-

sions. The right panel in Figure 2.2 shows Kaplan-Meier estimates of the survivor functions

Sj(t) = P (Wij ≥ w) for j = 1, . . . , 7 and S8(t) = P (Wik ≥ w) for k ≥ 8, which indicates

that the duration of hospitalizations tends to be shorter as the number of hospitalization

increases. However, this crude summary of the data is misleading because it does not

account for heterogeneity in the risk of admission or the duration of hospitalizations. As a

consequence the Kaplan-Meier estimates are biased. While inverse probability of censoring

weights can be used to correct for dependent gap times in the recurrent event setting (Lin

and others , 1999; Cook and Lawless, 2007, Sec. 4.4.1), with alternating processes this is

considerably more challenging and modeling the process offers a more convenient approach

for dealing with this.

We consider the data from the admission of the first hospitalization. Gender, age at

first diagnosis, type of disorder at the first discharge and cumulative number of admissions
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Table 2.5: Analysis of hospital re-admission data among individuals with affective disorder
under a Gaussian copula with gamma margins

Admission Discharge

Covariate EST SE p EST SE p

Sex : Female vs. Male 0.186 0.033 < 0.001 -0.184 0.021 < 0.001

Age at first hospitalization (Ref: [0, 20))

[20, 40) -0.202 0.099 0.041 -0.065 0.066 0.325

[40, 60) -0.382 0.098 < 0.001 -0.037 0.066 0.575

[60, 80) -0.433 0.099 < 0.001 -0.095 0.066 0.150

[80,∞) -0.372 0.109 < 0.001 -0.141 0.072 0.050

Type of disorder (Ref: depression)

Bipolar 0.299 0.043 < 0.001 -0.024 0.029 0.408

Cumulative number of admissions (Ref: 1)

2 0.625 0.046 < 0.001 0.095 0.024 < 0.001

3 1.047 0.064 < 0.001 0.243 0.035 < 0.001

4 1.506 0.079 < 0.001 0.309 0.049 < 0.001

5 1.682 0.096 < 0.001 0.580 0.064 < 0.001

6 1.872 0.116 < 0.001 0.705 0.081 < 0.001

7 2.220 0.140 < 0.001 1.042 0.107 < 0.001

≥ 8 3.101 0.090 < 0.001 1.572 0.071 < 0.001

Frailty Variance 0.861 0.055 0.200 0.013

Kendall’s τ -0.367 0.018 < 0.001

were included as covariates. Age at first hospitalization was categorized as age < 20, 20−
40, 40−60, 60−80 and 80 or over. The median of age at first hospitalization is 52 with range

from 10 to 110. The objective of this analysis is to properly address the patients’ cycle of

hospitalization using an alternating two-state models and to identify the risk factors for

the re-admission to a psychiatric hospital and the discharge.

The results of fitting the proposed model are reported in Table 2.5. We found that age

at first discharge had a significant negative effect on the risk of re-admission, however, no

significant effect on the rate of discharge from the hospital; older pateints have a lower rate
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of re-admission and stayed longer in hospital. Patients with a diagnosis of bipolar disorder

are at higher risk for re-admission (RR=1.35; 95% CI: 0.216, 0.38; p < 0.001) and at lower

risk for discharge from the hospital (RR=0.98; 95% CI: −0.08, 0.03; p = 0.408). This result

is consistent with the findings of Cook and Lawless (2013). Sex had a significant impact on

patients’ cycle; men had a higher rate of re-admission (RR= 1.20; 95% CI: 0.12, 0.25; p <

0.001) and a shorter duration of hospitalization (RR= 0.83, 95% CI: −0.23,−0.14; p <

0.001). Here we see a significant increasing trend in the risk of admission and discharge

with increasing number of prior admissions. There are great subject-to-subject variations

in the re-admission rate and the discharge rate among patients (φ̂1 = 0.861, φ̂2 = 0.20).

The estimated Kendall’s τ is −0.367, which means the transition times between the two

states are negatively correlated. Therefore if an individual tends to have a higher rate of

admission to hospital, the one has a lower rate of discharge from hospital leading to the

longer duration of hospitalization.
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Figure 2.3: Cumulative baseline rate function and cumulative mean function

The solid line in Figure 2.3 displays the estimated baseline cumulative hazard function

of the time to re-admission and time to discharge for males with a depressive disorder aged

[0-20). For the admission to hospital the two functions increases rapidly following the start
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of the first hospitalization reflecting the risk of rapid re-admission. The mean function

increases at a slower rate since individuals included in the risk set may still be admitted

and hence not truly at risk of admission. Beyond this initial period the curves depart at

a much slower rate in part due to the relatively short typical durations of admissions in

relation to the total period of observation. Interest often lies in the marginal mean function

for re-admissions given by

E(Ni1(t)|xi(t)) =

∫ t

0

E(dNi1(s)|xi(s))

where

E(dNi1(s)|xi(s)) =

∫ ∞
0

∫ ∞
0

ui1P (Yi1(s) = 1|ui, xi(s))dΛ01(s) exp(x′i1(s)β1)dG(ui)

Since the estimation is based on the semi-parametric model, P (Yi1(s) = 1|ui, xi(s)) is

difficult to calculate; we obtain it via a simulation as follows. First, we generate a data set

of 10,000 individuals based on the estimates obtained for each process upto the follow-up

time. Due to the initial condition, the data were generated from the start of the first

hospitalization. Next, we count the individuals who are in the symptom-free state and

divide it by the total number of individuals at each time point. The dotted line in Figure

2.3 shows the estimated mean function for males with a depressive disorder aged [0-20).

Clearly, it is less than the cumulative hazard function in which the mean function accounts

for the risk set for the onset of re-admission.

Figure 2.4 contains plots of the baseline distributions for the durations of successive

hospitalizations based on the fitted models. These are obtained by estimating the baseline

hazard for the first 7 and then the 8th and subsequent hospitalizations and using these

estimates to compute the corresponding semiparametric estimates of the survival functions.

Compared to the right panel of Figure 2.3, the evidence of a trend is much lower from the

fitted model, in part because the modeled and unexplained sources of heterogeneity have

been accounted for.
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Figure 2.4: Survivor functions for the durations of successive hospitalizations based on the
proposed model

2.5 Discussion

We have described a flexible bivariate random effect for the analysis of alternating two-state

processes. This model is appealing when a long duration of episodes is observed and there

is an association between the onset and the resolution of episodes. In particular, patients

may receive treatments while experiencing episodes, which can affect subsequent relapses.

In this setting, the accommodation of duration is sensible in recurrent data analysis. Also

this model is more attractive since we can implement global hypothesis tests for treatment

effects across two processes.

We viewed the recurrent episodes as an alternating two-state processes and formulated

the intensity-based model in Section 2.2 using bivariate mixed models. The time since
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onset of a chronic disease was used as the time-scale for the intensity governing the onset

of exacerbations and a semi-Markov time scale was used for the intensity governing the

resolution of exacerbations. The dependency between two processes is captured by intro-

ducing a copula function for random effects. The EM algorithm was conducted to obtain

maximum likelihood estimators under the semi-parametric setting. The optimization of

parameters for the variance of random effects and Kendall’s τ is computationally intensive

since the evaluation of (2.2.9) is required at every iteration during optimization.

Random effect models have a useful role when modeling multistate processes involving

recurrent sojourns in one or more states when intensity-based analyses are not of interest

(Putter and van Houwelingen, 2015). In the illustrative application insights are gained

into the extent of heterogeneity and the nature of the dependencies. In settings where

mortality rates are appreciable, such as in individuals with advanced chronic obstructive

pulmonary disease, it may be of interest to generalize this model to incorporate a third state

representing death; this would lead to a reversible illness-death model (Cook and Lawless,

2018). When estimating the cumulative mean function in this context, the terminal effect

of death will naturally be accommodated. For the current model a difficulty arose in the

estimation of P (Yi1(t) = 1|ui, xi(t)) so we used resampling techniques to address this. This

could be adopted in the context of a reversible illness-death model as well, but alternative

approaches could also be investigated.
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Appendix 2.A: The Score Functions and the Partial

Derivatives of Score Functions

The observed information in (2.2.10) can be written as

I(ψ̂) =
n∑
i=1

−E

[
∂2lC(ψ)

∂ψ∂ψ′

∣∣∣∣Hi(Ci)

]∣∣∣∣
ψ=ψ̂

−
n∑
i=1

E

[
∂lC(ψ)

∂ψ

∂lC(ψ)

∂ψ

∣∣∣∣Hi(Ci)

]∣∣∣∣
ψ=ψ̂

+
n∑
i=1

E

[
∂lC(ψ)

∂ψ

∣∣∣∣Hi(Ci)

]∣∣∣∣
ψ=ψ̂

E

[
∂lC(ψ)

∂ψ

∣∣∣∣Hi(Ci)

]∣∣∣∣
ψ=ψ̂

where ∂lC(ψ)
∂ψ

=

 ∂l1(θ)
∂θ

∂l2(φ)
∂φ

 and −∂2lC(ψ)
∂ψ∂ψ′

=

−∂2l1(θ)
∂θ∂θ′

0

0 −∂2l2(φ)
∂φ∂φ′

 .

For simplicity, consider the case of a time-independent covariate vector.

The conditional score vector ∂l1(θ)/∂θ for β1, β2, dΛ01(·), dΛ02(·) has elements

∂l1(θ)

∂β1

=
m∑
i=1

{
Ni1(Ci)xi1 − ui1

∫ ∞
0

Ȳi1(v)xi1 exp(x′i1β1)dΛ01(v)
}
,

∂l1(θ)

∂dΛ01(tk)
=

1

dΛ01(tk)
−

m∑
i=1

ui1Ȳi1(tk) exp(x′i1β1),

∂l1(θ)

∂β2

=
m∑
i=1

{
Ni2(Ci)xi2 − ui2

∫ ∞
0

Ȳi2(v)xi2 exp(x′i2β2)dΛ02(Bi(v))
}
,

∂l1(θ)

∂dΛ02(wk)
=

1

dΛ02(wk)
−

m∑
i=1

Ni2(Ci)∑
j=1

ui2I(wij ≥ wk) exp(x′i2β2),

where tk is the kth time of transition from 1→ 2 and wk is the kth gap time of transition
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from 2→ 1.

The components of the conditional information matrix −∂2l1(θ)/∂θ∂θ′ are as follows.

− ∂
2l1(θ)

∂β1∂β′1
=

m∑
i=1

ui1

∫ ∞
0

Ȳi1(v)xi1x
′
i1 exp(x′i1β1)dΛ01(v),

− ∂2l1(θ)

∂β1∂dΛ01(tk)
=

m∑
i=1

ui1Ȳi1(tk)xi1 exp(x′i1β1),

− ∂2l1(θ)

∂{dΛ01(tk)}2
=

1

dΛ01(tk)2
,

− ∂
2l1(θ)

∂β2∂β′2
=

m∑
i=1

ui2

∫ ∞
0

Ȳi2(v)xi2x
′
i2 exp(x′i2β2)dΛ02(Bi(v)),

− ∂2l1(θ)

∂β2∂dΛ02(wk)

=
m∑
i=1

Ni2(Ci)∑
j=1

ui2I(wij ≥ wk)xi2 exp(x′i2β2),

− ∂2l1(θ)

∂{dΛ02(wk)}2
=

1

dΛ02(wk)2
.

The form of l2(φ) depends on the marginal distribution of Ui, and the copula function.

Note that for Gaussian copula with gamma margins or the Clayton copula with gamma

margins, the score functions and the second derivatives of l2(φ) with respect to φ do not

have closed forms and numerical derivatives were obtained using the grad and hessian

functions in R.

The conditional score vector and the components of the conditional information matrix

for the Gaussian copula function with log-normal margins are present here. For conve-

nience, we denote σj = Var(log(Uij) =
√

log(φj + 1) and compute the conditional score

vector and the conditional information matrix with respect to σj and obtain variance of

φj using the delta method.
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The log-likelihood function l2(φ) is given as

l2(φ) =
m∑
i=1

[
1

2
log(ui1)− log2(ui1)

2σ2
1

− log(σ1)− σ2
1

8
+

1

2
log(ui2)− log2(ui2)

2σ2
2

− log(σ2)− σ2
2

8

− log(1− ρ2)

2
− ρ2(σ2

1 + σ2
2)

8(1− ρ2)
+

ρσ1σ2

4(1− ρ2)

− ρ2

2(1− ρ2)

{
log2(ui1)

σ2
1

+ log(ui1) +
log2(ui2)

σ2
2

+ log(ui2)

}
+

ρ

1− ρ2

{
log(ui1) log(ui2)

σ1σ2

+
σ2 log(ui1)

2σ1

+
σ1 log(ui2)

2σ2

}]

The components of the conditional score vector ∂l2(φ)/∂φ are given as follows.

∂l2(φ)

∂σ1

= −m
σ1

− mσ1

4(1− ρ2)
+

mρσ2

4(1− ρ2)

+
m∑
i=1

log2(ui1)

(1− ρ2)σ3
1

−
m∑
i=1

ρ log(ui1) log(ui2)

(1− ρ2)σ2
1σ2

+
ρ

1− ρ2

m∑
i=1

{
−σ2 log(ui1)

2σ2
1

+
log(ui2)

2σ2

}
,

∂l2(φ)

∂σ2

= −m
σ2

− mσ2

4(1− ρ2)
+

mρσ1

4(1− ρ2)

+
m∑
i=1

log2(ui2)

(1− φ2
0)σ3

2

−
m∑
i=1

φ0 log(ui1) log(ui2)

(1− φ2
0)σ1σ2

2

+
ρ

1− ρ2

m∑
i=1

{
−σ1 log(ui2)

2σ2
2

+
log(ui1)

2σ1

}
,

∂l2(φ)

∂ρ
=

mρ

1− ρ2
− mρ(σ2

1 + σ2
2)

4(1− ρ2)2
+
mσ1σ2(1 + ρ2)

4(1− ρ2)2

− ρ

(1− ρ2)2

m∑
i=1

{
log2(ui1)

σ2
1

+
log2(ui2)

σ2
2

+ log(ui1) + log(ui2)

}
+

1 + ρ2

(1− ρ2)2

m∑
i=1

{
log(ui1) log(ui2)

σ1σ2

+
σ2 log(ui1)

2σ1

+
σ1 log(ui2)

2σ2

}
.

37



The elements of the conditional information matrix −∂2l2(φ)/∂φ∂φ′ are as follows.

−∂
2l2(φ)

∂σ1∂σ1

= −m
σ2

1

+
m

4(1− ρ2)
+

m∑
i=1

3 log2(ui1)

σ4
1(1− φ2

0)
−

m∑
i=1

2ρ log(ui1) log(ui2)

(1− ρ2)σ3
1σ2

− ρ

1− ρ2

m∑
i=1

σ2 log(ui1)

σ3
1

,

−∂
2l2(φ)

∂σ2∂σ2

= −m
σ2

2

+
m

4(1− ρ2)
+

m∑
i=1

3 log2(ui2)

σ4
2(1− ρ2)

−
m∑
i=1

2ρ log(ui1) log(ui2)

(1− ρ2)σ1σ2

− ρ

1− ρ2

m∑
i=1

σ1 log(ui2)

σ3
2

,

−∂
2l2(φ)

∂σ1∂σ2

= − mρ

4(1− ρ2)
−

m∑
i=1

ρ log(ui1) log(ui2)

(1− ρ2)σ2
1σ

2
2

+
ρ

1− ρ2

m∑
i=1

{
log(ui1)

2σ2
1

+
log(ui2)

2σ2
2

}
,

−∂
2l2(φ)

∂σ1∂ρ
=

mρσ1

2(1− ρ2)2
− mσ2(1 + ρ2)

4(1− ρ2)2
−

m∑
i=1

2ρ log2(ui1)

(1− ρ)2σ3
1

+
(1 + ρ2)

(1− ρ2)2

m∑
i=1

{
log(ui1) log(ui2)

σ2
1σ2

− σ2 log(ui1)

σ2
1

+
log(ui2)

2σ2

}
,

−∂
2l2(φ)

∂σ2∂ρ
=

mρσ1

2(1− ρ2)2
−

m∑
i=1

2ρ log2(ui2)

(1− ρ)2σ3
2

+
(1 + ρ2)

(1− ρ2)2

m∑
i=1

{
log(ui1) log(ui2)

σ1σ2
2

− σ1 log(ui2)

σ2
2

+
log(ui1)

2σ2

}
,

−∂l2(φ)

∂ρ∂ρ
= −m(1 + ρ2)

(1− ρ2)2
+

(σ2
1 + σ2

2)(1 + 3ρ2)

4(1− ρ2)3
− σ1σ2(3ρ+ ρ3)

2(1− ρ2)3

+
1 + 3ρ2

(1− ρ2)3

m∑
i=1

{
log2(ui1)

σ2
1

+
log2(ui2)

σ2
2

+ log(ui1) + log(ui2)

}
− 2ρ(3 + ρ2)

(1− ρ2)3

m∑
i=1

{
log(ui1) log(ui2)

σ1σ2

+
σ2 log(ui1)

2σ1

+
σ1 log(ui2)

2σ2

}
.
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Chapter 3

Bias from Misspecified

Semiparametric Rate-based Analysis

of Recurrent Episodic Conditions

3.1 Introduction

In many chronic diseases individuals are at risk of recurrent episodic flares of symptoms.

Statistical methods for recurrent event analyses have seen widespread application in such

settings, including methods based on the semiparametric Andersen-Gill model (Andersen

and others , 1993), marginal methods based on rate or mean functions (Lawless and Nadeau,

1995; Lin and others , 2000), and frailty models (Lawless, 1987; Klein, 1992; Wienke, 2010).

These methods are geared towards the analysis of recurrent events which are instantaneous,

but in many applications the events signal the onset of a symptomatic period (Hu and oth-

ers , 2011) during which individuals are not at risk of an event. Examples include recurrent

exacerbations of symptoms in individuals with chronic bronchitis (Grossman and others ,

1998), recurrent bouts of depressive episodes in affective disorder (Kessing and others ,

1999), and recurrent outbreaks of symptoms among individuals with herpes simplex virus

infection (Romanowski and others , 2003). There are three approaches to how to han-

dle these risk-free periods in the analyses of data from clinical trials. One may i) retain
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individuals in the risk set for events, as is done in many medical studies, ii) simply re-

move individuals from the risk set while they are experiencing an episode, or iii) model

the onset and duration times based on a two-state model. Alternating renewal processes

were considered by Cox (1967) where the two types of sojourn times are assumed statis-

tically independent. Several random effects (frailty) models have been developed to relax

these independence conditions (Ng and Cook, 1997; Xue and Brookmeyer, 1996; Lee and

Cook, 2018). Intensity-based two-state models offer a powerful framework for studying

and describing the process dynamics, but since they require conditioning on the the pro-

cess history they do not admit estimates of treatment effect with a causal interpretation.

Although marginal methods can be robust to misspecification of the variance function or

dependence structure, they cannot protect against misspecification of the risk set. Hu and

others (2011) modeled the risk of recurrent hospitalizations, excluded individuals from the

risk set during each admission, and fitted generalizations of the Prentice and others (1981)

and Andersen and Gill (1982) models; since they were not interested in covariate effects

on the duration of hospitalizations they did not model this feature. When interest lies

in estimating the expected number of events over a period of follow-up or estimating the

effects of associated covariates, it can be useful to model the probability of being in the

symptom-free state which is obtainable from a more complete model for the onset and

resolution of exacerbations. In clinical trials, however, intensity-based models do not offer

a useful basis for causal inference when average treatment effects are the focus (Hernán

and Robins, 2016).

Our objective is to study the asymptotic and empirical biases when standard recurrent

event analyses (Andersen and others , 1993; Klein, 1992) are used in which individuals

are considered in the risk set during episodes. Through specification of an alternating

two-state process for the onset and resolution of exacerbations, we study the factors that

lead to biases in semiparametric rate-based models. In the model which accommodates

dependence in the risk for and duration of exacerbations we investigate the impact of the

dependence on standard analyses with the adjusted risk set.

The remainder of this Chapter is organized as follows. In Section 3.2 we define notation

and intensity functions for an alternating two-state process. In Section 3.3 we present the

Andersen-Gill model, the associated estimating functions and the large sample results
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for the estimated regression coefficients. The effect of misspecifying the risk set on the

limiting behaviour of estimators is derived in Section 3.4 for both the one-sample problem

and the regression setting. Section 3.4.1 considers the setting where the data are generated

according to a homogeneous two-state model while Section 3.4.1 considers the case where

there is heterogeneity in the risk for the onset and duration of exacerbations as well as

dependence between associated random effects. The application of rate-based models is

common in randomized clinical trials, so we study the implications on study power in

Section 3.5. An application to a clinical trial involving individuals with herpes simplex

virus infection is given in Section 3.6 and concluding remarks are made in Section 3.7.

3.2 Notation and an Alternating Two-state Model

Here we define a two-state which we consider as representing the underlying data generating

process in order to study and characterize the factors which determine the biases in rate-

based analyses.

Suppose individuals alternate between two states, a symptom-free state and a symp-

tomatic state. Let Zi(s) = 1 if individual i is symptom-free at s > 0, Zi(s) = 2 if they

are symptomatic, and suppose individuals start in state 1 at time t=0. Let Yij(s) =

I(Zi(s
−) = j), j = 1, 2. We let Sik and Tik denote the onset time and resolution time of

the kth exacerbation for individual i, and Wik = Tik − Sik be the duration of kth exacer-

bation k = 1, . . . . The counting process {Nij(u), 0 < u} records the cumulative number of

j → 3− j transitions they experienced over (0, t], j = 1, 2, where Ni1(t) =
∑∞

k=1 I(Sik ≤ t)

records the cumulative number of onset times which are often the events of interest which

interventions may be directed at preventing and Ni2(t) =
∑∞

k=1 I(Tik ≤ t) records the cu-

mulative number of resolution times; Ni(s) = (Ni1(s), Ni2(s))′ is then a bivariate counting

process. Let Xi be a set of fixed covariates, and Hi(t) = {Ni(s), 0 < s < t,Xi}.

Let C denote fixed administrative censoring time, C†i a random censoring time, and

Ci = min(C,C†i ). We assume that the censoring process is independent of the event process

{Ni(s), 0 < s}, given covariates Xi. We let Yi(s) = I(s ≤ Ci), Ȳij(s) = Yi(s)Yij(s) and

N̄ij(t) =
∫ t

0
Ȳij(s)dNij(s). If N̄i(t) = (N̄i1(t), N̄i2(t))′ then the complete history of the
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observation and event processes is H̄i(t) = {N̄i(s), Yi(s), 0 < s < t,Xi}. The complete

intensity function for j → 3− j transitions for individual i can then be written as

lim
∆t↓0

P (∆N̄ij(t) = 1|H̄i(t))

∆t
= Ȳij(t)λij(t|Hi(t)), j = 1, 2, (3.2.1)

under the condition of independence censoring (Kalbfleisch and Prentice, 2011).

Figure 3.1: A two-state diagram for chronic diseases with recurrent symptomatic episodes

Conditional on the censoring time, the probability of a particular sample path (Cook

and Lawless, 2007) for individual i is

Ni1(Ci)∏
k=1

λi1(sik|Hi(sik)) exp

(
−
∫ Ci

0
Ȳi1(u)λi1(u|Hi(u))du

)Ni2(Ci)∏
l=1

λi2(til|Hi(til))

exp

(
−
∫ Ci

0
Ȳi2(u)λi2(u|Hi(u))du

)
.

While likelihood based inference could be carried based on this specification our interest

lies primarily in the settings of clinical trials where intensity-based analyses are undesirable.

As pointed out by Kalbfleisch and Prentice (2011) conditioning on internal features of a life

history process is undesirable when evaluating the effects of interventions. We emphasize

therefore that the two-state model is to be used to derive limiting properties of estimators

arising from marginal recurrent event analyses which are widely used in the clinical trial

areas.

To study the potential bias of estimators arising from standard recurrent event analyses

when there are risk-free periods, we consider two risk-set definitions (RSD) depicted in

Figure 3.2. In RSD-A individuals are included in risk set for transitions from state 1 to state

2 event during symptomatic periods (i.e. Ȳ A
i (t) = Yi(t)); this represents a misspecification
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Figure 3.2: A schematic of a hypothetical timeline diagram with risk set definition (RSD)
A and B

of the risk set in the sense that individuals are not truly at risk for the event (onset of

episode) when they are in the midst of an episode an exacerbation. In RSD-B individuals

are excluded from the risk during symptomatic periods (i.e. Ȳ B
i (t) = Ȳi1(t) = Yi(t)Yi1(t)).

In many ways RSD-B seems sensible since it is in alignment with how these periods would be

treated in a multistate analysis. However in randomized clinical trials analyses are based on

estimating marginal features, and exclusion of individuals from the risk set based on their

status after randomization (which is possibly influenced by the treatment received) induces

confounding and thereby compromising the ability to make causal statements (Cook and

Lawless, 2018, Section 8.4). In the terminology of causal inference, whether an individual

is at risk or not of an exacerbation is a collider in the causal path for effects of treatment on

the onset of exacerbations (Cole and others , 2009; Hernán and Robins, 2016). In summary,

excluding individuals from the risk set when they are experiencing an excerbation seems

sensible since they truly are not at risk, but this precludes the ability to make direct causal

statements about marginal features that may be of interest. Retaining individuals in the

risk set is unnatural, but enables one to make a causal inference in a setting where the

treatment effect has a natural interpretation. These points motivate us to explore the

nature of biases induced when adopting the two approaches for defining the risk sets in

marginal rate-based analyses, which we do in the context of a plausible underlying model

for an alternating two-state process which we discuss in Section 3.4.

43



3.3 Standard Recurrent Event Analyses

3.3.1 The Semiparametric Andersen-Gill Model

The semiparametric Andersen-Gill model (Andersen and Gill, 1982) is based on a working

Poisson model with a multiplicative covariate effect so that the rate function is given by

E(dNi1(t)|Hi(t)) = E(dNi1(t)|xi) = dR01(t) exp(x′iγ1)

where the baseline rate function dR01(t) is not specified to have any particular para-

metric form. With a sample of m independent individuals the estimating functions for the

AG model are

m∑
i=1

Ȳ A
i (t){dNi1(t)− dRi1(t)} = 0 (3.3.1)

m∑
i=1

∫ ∞
0

Ȳ A
i (t){dNi1(t)− dRi1(t)}xi1 = 0 (3.3.2)

where dRi1(t) = dR01(t) exp(x′iγ1) and R01(t) =
∫ t

0
dR01(s)ds. Solving (3.3.1) with fixed γ1

gives the profile ”Breslow” estimate

dR̃A
01(t; γ) =

∑m
i=1 Ȳ

A
i (t)dNi1(t)∑m

i=1 Ȳ
A
i (t) exp(x′iγ1)

, (3.3.3)

and substituting (3.3.3) into (3.3.2) gives an estimating function for γ1 of the form

UA(γ1) =
m∑
i=1

∫ ∞
0

Ȳ A
i (s)

{
xi −

∑m
i=1 Ȳ

A
i (t) exp(x′iγ1)xi∑m

i=1 Ȳ
A
i (t) exp(x′i1γ1)

}
dNi1(t). (3.3.4)

We obtain γ̂A1 by solving (3.3.4) and substitute γ̂A1 into (3.3.3) to estimate R̂A
01(t) as

R̂A
01(t) =

∫ t

0

∑m
i=1 Ȳ

A
i (u)dNi1(u)∑m

i=1 Ȳ
A
i (u) exp(x′iγ̂

A
1 )
.
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These results correspond to the setting for which the AG method was intended: where

the events have no duration associated with them. Subject to the assumption of multi-

plicative covariate effects being correct this represents a valid analysis in such a setting.

More generally (i.e. when the events signal the onset of a symptomatic period.), however,

the properties of the resulting estimators have not been studied. If risk set definition B

is used in an analysis, we proceed in the same fashion but replace Ȳ A
i (t) with Ȳ B

i (t) in

(3.3.1) and (3.3.2).

3.3.2 Large Sample Robust Variance Formula and its Estimation

The estimating equations for the Andersen-Gill model are justified originally based on the

working assumption that the events are generated by a Poisson process. Robust variance

estimation is crucial, however, to provide protection from simple forms of model misspec-

ification within the class of multiplicative rate-based models (Lawless and Nadeau, 1995;

Lin and others , 2000). To obtain robust variance estimates, the model assumptions are

relaxed to be simply E(dNi1(t)|xi) = dR01(t) exp(x′iγ1). To accommodate different ways to

define the risk set, we use Ȳ h
i (t) as the risk set indicator in the estimating equation (3.3.4)

and write as the estimating function for γr1

Uh(γ1) =
m∑
i=1

∫ ∞
0

Ȳ h
i (t)

{
xi1 −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dNi1(t) (3.3.5)

where S(k,h)(γ1, t) =
∑n

i=1 Ȳ
h
i (t) exp(x′iγ1)x

⊗
k

i for k = 1, 2, in which a
⊗

2 means aa′ and

a
⊗

1 = a, and a
⊗

0 represents a scalar 1. We let γ̂h1 be the solution to Uh(γ1) = 0, and let

γh1 denote its limiting value which is determined by the solution to E[Uh(γ1)] = 0 where

the expectation is taken with respect to the true model. By adopting working model

E(dNi1(t)|xi, Ȳ h
i (t) = 1) = dR01(t) exp(x′iγ1) following Lin and others (2000), (3.3.5) can

be written as

Uh(γ1) =
m∑
i=1

∫ ∞
0

{
xi1 −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dMh

i1(t)

where dMh
i1(t) = Ȳ h

i (t){dNi1(t)− dR01(t) exp(x′i1γ1)}. Since Ȳ h
i (t) is a predictable process

(Andersen and others , 1993), n−1/2Uh(γ1) is asymptotically N(0,B(γ1)) in distribution
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where

B(γ1) = E

[(∫ ∞
0

{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}
dMh

i1(s)

)(∫ ∞
0

{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}′
dMh

i1(t)

)]
,

and s(k,h)(t) = E[S(k,h)(γ1, t)] where here the expectation is taken with respect to the

model given in Section 3.2. Since n1/2(γ̂h1 −γh1 ) ' A−1(γh1 )n−1/2U(γh1 ) by Taylor expansion,

n1/2(γ̂h1 − γh1 ) converges to MVN(0,A−1(γh1 )B(γh1 )A−1(γh1 )) in distribution where

A(γ1) = E

[∫ ∞
0

Ȳ h
i (t)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗
2

s(0,h)(γ1, t)2

}
dNi1(t)

]
.

The robust varianceA−1(γh1 )B(γh1 )A−1(γh1 ) is empirically estimated by Â−1(γ̂h1 )B̂(γ̂h1 )Â−1(γ̂h1 )

in finite samples where

Â(γ̂1) =
1

m

m∑
i=1

(∫ ∞
0

Ȳ h
i (t)

{
S(2,h)(γ1, t)

S(0,h)(γ1, t)
− S(1,h)(γ1, t)

⊗
2

S(0,h)(γ1, t)2

}
dNi1(t)

)∣∣∣∣
γ1=γ̂h1

,

B̂(γ̂1) =
1

m

m∑
i=1

(∫ ∞
0

{
xi1 −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dM̂h

i1(t)

)(∫ ∞
0

{
xi1 −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}′
dM̂h

i1(t)

)∣∣∣∣
γ1=γ̂h1

,

and dM̂h
i1(t) = Ȳ h

i (t){dNi1(t)−dR̂h
01(t) exp(xiγ̂

h
1 )} where dR̂h

01(t) is the estimate of dR01(t)

based on the RSD-h for h = A,B. Then

âsvar(n1/2(γ̂h1 − γh1 )) = Â−1(γ̂h1 )B̂(γ̂h1 )Â−1(γ̂h1 )

is used as a basis for inference.

3.4 Bias in Estimation of Mean Function and Regres-

sion Coefficients

Here we investigate the asymptotic bias of estimators under independent censoring when

the marginal estimating equation is based on the Andersen-Gill model with a working in-
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dependence assumption. We consider settings involving: a Markov/semi-Markov model for

the onset and duration of recurrent exacerbations (Section 3.4.1), and a mixed model with

dependent bivariate random effects modulating the baseline transition intensities (Section

3.4.2). Under each scenario, we obtain the asymptotic bias of the estimated mean function

and the regression coefficients under the Andersen-Gill model.

3.4.1 Risk-set Misspecification in a Markov/Semi-Markov Model

When the intensity for the onset of exacerbations is based on a Markov model (3.2.1)

reduces to the form

lim
∆t↓0

P (∆N̄i1(t) = 1|H̄i(t))

∆t
= Ȳi1(t)λi1(t), (3.4.1)

where t is a total time (calendar time). If the resolution of exacerbations is governed by a

semi-Markov model we obtain

lim
∆t↓0

P (∆N̄i2(t) = 1|H̄i(t))

∆t
= Ȳi2(t)λi2(Bi(t)) (3.4.2)

where Bi(t) = t− SNi1(t−) is the time since symptom onset. For this specific investigation,

we assume a time-homogeneous Poisson model for the onset of exacerbations and that

exacerbation durations follow a Gamma distribution. Hu and others (2011) examined the

asymptotic properties and convergence to the true value in the RSD-B setting so we focus

on the asymptotic bias in RSD-A.

Marginal Rate and Mean Function Estimates

We consider the setting with no covariates first. In this case we have a single rate function

estimate of interest dR01(t) and we consider a simplified version of (3.3.1) with a general

at risk indicator Ȳ A
i (t):

m∑
i=1

Ȳ A
i (t){dNi(t)− dR01(t)}
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Taking the expectation of a single individual’s contribution gives

E[Ȳ A
i (t)(dNi1(t)− dR01(t))] = E[E[Ȳ A

i (t)(dNi1(t)− dR01(t))|Ȳ A
i (t)]]

= P (Ȳ A
i (t) = 1)(E[dNi1(t)|Ȳ A

i (t) = 1]− dR01(t)). (3.4.3)

where the expectations and probabilities are computed based on the full model given in

(3.3.1) under the assumptions in (3.4.1) and (3.4.2). We assume that the true transition

intensity function λi1(t) is time-homogeneous so that let λi1(t) = λ01 and under completely

independent censoring, equation (3.4.3) has solution

dRA
01(t) = P (Yi1(t) = 1)λ01dt (3.4.4)

and we note that RA
01(t) =

∫ t
0
dRA

01(s) is the mean function for the counting process

{Ni1(u), 0 < u}. The standard Nelson-Aalen estimator with RSD-A is consistent for the

cumulative mean function under independent right censoring (Nelson, 1995; Lawless and

Nadeau, 1995). It is therefore reasonable to use the Nelson-Aalen estimate when including

individuals in the risk set to estimate the expected number of exacerbations. However,

the estimator R̂A
01(t) will be asymptotically biased (conservative) for the true cumulative

intensity (rate) function Λ01(t) =
∫ t

0
λ01ds = λ01t. In other words, if P (Yi1(t) = 1) is small

(i.e. if there is a high probability of being in the exacerbation state) the bias can get large.

Since we assume that Wik ∼ GAM(2, λ02) and using the fact that a Gamma random vari-

able can be represented as a sum of independent exponential random variables we can use

this to calculate P (Yi1(t) = 1). The details of the calculation of P (Yi1(t) = 1) is given in

Appendix 3.A for a particular model with a Gamma distributed sojourn time distribution

in state 2. We note that when t ↑ ∞, P (Yi1(t) = 1) converges to λ02/(2λ01 + λ02) for

the one sample problem. Figure 3.3 shows that the asymptotic bias of the Nelson-Aalen

estimators decreases when the mean sojourn time in the exacerbation state decreases, in

which case the effect of misspecification of the risk set is reduced.
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Figure 3.3: The limiting values and the asymptotic bias of Nelson-Aalen estimator under
the RSD-A setting as a function of t with E(Wik) = 0.1 (left panel) and as a function of
E(Wik) at t=2 (right panel) at fixed values of λ01 = 2, C=2, and 20% random censoring

Estimation in the Regression Setting

If we consider covariates, the expectation of the estimating equation (3.3.1) is given by∫
xi

P (Ȳ h
i (t) = 1|xi){Eh[dNi1(t)|Ȳ h

i (t) = 1, xi]− dRi1(t)}f(xi)dxi = 0 (3.4.5)

where here this is taken with respect to the model given by (3.4.1) and (3.4.2). The

proportional rate model with RSD-A does not account for the duration of exacerbations,

so it is worthwhile to consider the asymptotic bias for γ̂A1 . In the sequel, we examine the

limiting value, and asymptotic bias of R̂A
01(t), and γ̂A1 .

Consider a randomized clinical trial where Xi is a binary variable with P (Xi = 0) =

P (Xi = 1) = 0.5. We let dRA
i1(t) = dRA

01(t) exp(xiγ
A
1 ) denote the value to which dR̂i1(t)

converges. Specifically we obtain

dRA
01(t; γA1 ) =

∑1
x=0 P (xi = x)P (Yi1(t) = 1|x)λ01 exp(xβ1)dt∑1

x=0 P (xi = x) exp(xγA1 )
. (3.4.6)
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The limiting value of γ̂A1 , denoted by γA1 can be obtained by solving∫ ∞
0

{
s(1,A)(u)− s(1,A)(γ1, u)

s(0,A)(γ1, u)
s(0,A)(u)

}
du = 0, (3.4.7)

where we define s(k,A)(u) = E[Ȳ A
i (t)xki dNi1(u)], and s(k,A)(γ1, u) = E[Ȳ A

i (t)xki exp(xiγ1)]

for k = 1, 2. Specifically,

s(0,A)(t) =
1∑

xi=0

P (xi)P (Ȳi1(t) = 1|xi)λ01(t) exp(xiβ1), (3.4.8)

s(1,A)(t) = P (xi = 1)P (Ȳi1(t) = 1|xi = 1)λ01(t) exp(β1), (3.4.9)

s
(0,A)
1 (γ1, t) =

1∑
xi=0

P (Yi(t) = 1)P (xi) exp(xiγ1),

s
(1,A)
1 (γ1, t) = P (xi = 1)P (Yi(t) = 1) exp(γ1).

Note that s(k,A)(t) = s(k,B)(t). If we solve (3.4.7), we obtain

γA1 = β1 + log

(∫∞
0
P (Ȳi1(u) = 1|xi = 1)du∫∞

0
P (Ȳi1(u) = 1|xi = 0)du

)
, (3.4.10)

where the detail of derivation is presented in Appendix 3.B. Here we assume the multi-

plicative model under the time-homogeneous assumption in (3.4.1) in which λi1(t|xi) =

λ01 exp(x′iβ1), and we assume Wik ∼ GAM(2, λ02 exp(x′iβ2)) where Wik is the duration of

kth exacerbation. It suggests that in addition to the baseline functions, the magnitude of β1

and β2 determines the asymptotic bias of γ̂A1 since P (Ȳi1(t) = 1|xi) is a function of λi1(t|xi)
and λi2(t|xi). The limiting value of robust covariance matrix is A−1(γA1 )B(γA1 )A−1(γA1 ) the

calculation of which is presented in Appendix 3.B.

Figure 3.4a shows that the asymptotic biases of coefficient decreases as the mean sojourn

time for the exacerbation decreases under the setting λ01 = 2, β1 = log(0.75), and β2 =

log(1.25) with C=2 and 20% random censoring. Even though the asymptotic bias becomes
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smaller, it does not converge to the true value. Figure 3.4b shows how the limiting value

changes as a function of β2 − β1 in the setting where λ01 = 2,E(Wik|Xi = 0) = 0.1

(λ02 = 20), β1 = log(0.75). The sign of bias for the coefficients depends on the difference

between β1 and β2. If treatment significantly reduces the risk of the exacerbation and

shortens the duration of symptoms, the misspecification of the risk set will lead to an

underestimation of the treatment effect.

Simulation Studies

Simulation studies were conducted to examine the empirical bias and the performance

of the robust variance estimator under misspecification of the risk set. To be specific

the data are generated according to the two-state model in order for the data to rep-

resent that arising from episodic conditions. we are primarily interested in the perfor-

mance of the AG type analyses with the original formulation using RSD-A and using

the modified RSD-B to correspond to the common ad hoc approach for dealing with the

duration of the episode and use of the AG model formulation. We set λ01 = 2, and
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β1 = log(0.75) where λi1(t|xi) = λ01 exp(xiβ1), E[Wik|xi = 0] = 0.1, 0.25, and 0.5 where

Wik|xi ∼ GAM(2, λ02 exp(xiβ2)). We also set C=2 and introduced 20% random censoring

with a sample of size m = 1000 and a total of nsim = 1000 samples simulated. For in-

dividual i, we generate Si1 ∼ EXP (λ01 exp(xiβ1)) followed by Ti1 = Si1 + Wi1 where Wi1

is generated by GAM(2, λ02 exp(xiβ2)). For j > 1, we generate Sij|Sij > Tij by truncated

exponential distribution with rate λ01 exp(xiβ1) and Wik ∼ GAM(2, λ02 exp(xiβ2)). We

repeat this until either Sij > Ci or Tij > Ci for j = 1, . . . with a censoring time Ci. The

results are reported in Table 3.1 under the RSD-A and RSD-B setting.

As expected from the asymptotic calculations the empirical bias of the estimated re-

gression coefficients under RSD-A is positive when β1 < β2. This is because the positive

effect of β2 on the resolution of the exacerbation is reflected by the effect of β1 resulting in

β̂1 increasing. In other words, the average treatment effect under RSD-A in the spirit of

causal inference is attenuated by the positive treatment effect for the resolution of disease.

When β1 = β2, the empirical bias is low. Thus misspecification of the risk set is a signifi-

cant matter if interest lies in the estimates of treatment effects. In a biological sense, the

mechanism of occurrence and resolution of exacerbations may be different and it requires

to reckon with a target of intrinsic treatment effects. Therefore, it needs caution to make

a simple causal statement in this spirit. Interestingly, the use of a robust standard error

induces lower empirical coverage probabilities than that of naive standard error since in

this case the robust standard error is smaller than the naive standard error. From the

formula of asymptotic variance in Appendix 3.C, when we use RSD-A, A(γA1 ) = BA
1 and

BA
3 = BA

4 , which means B(γB1 ) = A(γA1 ) + BA
2 − BA

4 . However, BA
2 < BA

4 with RSD-A

because E(dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1) in BA
2 conditions that a subject should

be at risk and in the exacerbation-free state at s and t where the exacerbation occurs at s,

which implies that there is a transition from state 1 to 2 at s and another transition occurs

from 2 to 1 between s+ and t, whereas RA
01(s) and RA

01(t) in BA
4 only condition on being

at risk and in the exacerbation-free state at s and t, separately. Thus, A(γA1 ) > B(γA1 )

so that the naive standard error is greater than the robust standard error. Robust vari-

ance estimates ensure protection against model misspecification provided the rate function

is correctly specified. However, if the risk set is misspecified inconsistent estimates are

obtained and robust variance estimation does not provide protection against this formed
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misspecification. As a result, the misspecification of risk set leads to significant biases

and serious departure of empirical coverage probabilities. With RSD-B, the estimates of

coefficients converge to the true value as indicated in Hu and others (2011).

3.4.2 Misspecification under Heterogeneity and Dependence

When there exists heterogeneity in the risk of exacerbation and the sojourn time distribu-

tion in the exacerbation state, a dependence between the two counting processes can be

introduced. These features are typically ignored in recurrent event analyses so we further

investigate the asymptotic bias of the Andersen-Gill estimators in this setting.

Suppose Ui = (Ui1, Ui2)′ is a bivariate random effect for an alternating process so that

under the assumption of independent censoring, the conditional intensity functions (3.2.1)

take the form

lim
∆t↓0

P (∆N̄i1(t) = 1|H̄i(t), ui)

∆t
= ui1Ȳi1(t)λi1(t)

and

lim
∆t↓0

P (∆N̄i2(t) = 1|H̄i(t), ui)

∆t
= ui2Ȳi2(t)λi2(Bi(t))

where Uij is gamma distributed with E(Uij) = 1 and Var(Uij) = φj, for j = 1, 2 with the

bivariate p.d.f g(Ui).

Marginal Rate and Mean Function Estimates

In the absence of covariates, we assume λi1(t) = ui1λ01 and Wik ∼ GAM(2, ui2λ02). Then

(3.4.4) becomes

dRh
01(t) = Eh(Ui1|Ȳ h

i (t) = 1)λ01dt (3.4.11)

for h = A,B, where EA[Ui1|Ȳ A
i (t) = 1] = EUi,Yi1(t)=1|Yi(t)=1[Ui1|Yi(t) = 1] can be computed

by∫ ∞
0

∫ ∞
0

ui1g(ui, Yi1(t) = 1|Yi(t) = 1)dui1dui2 =

∫ ∞
0

∫ ∞
0

ui1g(ui)P (Yi1(t) = 1|ui)dui1dui2,
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and EB[Ui1|Ȳ B
i (t) = 1] = EUi|Ȳi1(t)=1[Ui1|Ȳi1(t) = 1] is given by∫ ∞

0

∫ ∞
0

ui1g(ui|Ȳi1(t) = 1)dui1dui2 =

∫ ∞
0

∫ ∞
0

ui1
g(ui)P (Yi1(t) = 1|ui)

P (Yi1(t) = 1)
dui1dui2,

where

P (Yi1(t) = 1) =

∫ ∞
0

∫ ∞
0

g(ui)P (Yi1(t) = 1|ui)dui1dui2.

We obtain P (Yi1(t) = 1|ui) from the formula (3.A.2) or (3.A.3) in Appendix 3.A by re-

placing λ01 and λ02 with ui1λ01 and ui2λ02, respectively.

Figure 3.5a shows the limiting value of cumulative baseline function over the window (0,2]

with 20% random censoring, λ01 = 2,E[Wik|xi = 0] = 0.25. The true cumulative baseline

hazard indicates Λ01(t) = λ01t. Figure 3.5b shows the asymptotic bias of cumulative

baseline function at t=2 with 20% random censoring, λ01 = 2 as a function of the mean

sojourn time in the exacerbation state. In both settings, we assume that Uij is gamma

distributed with mean 1 and variance φj = 0.4 for j = 1, 2 and we link Ui1 and Ui2

with the Gaussian copula having Kendall’s τ=-0.25, 0, and 0.25. Here the cumulative

mean function is not equal to the cumulative intensity function due to symptom duration.

We note that RA
01(t = 2) and RB

01(t = 2) are smaller than the true value of cumulative

intensity function Λ01(t = 2) and the bias also decreases as Kendall’s τ increases; a strong

positive association between Ui1 and Ui2 implies that the duration of exacerbations tends to

decrease as the risk of exacerbations increases. As the mean sojourn time for exacerbations

increases the bias increases in both RSD-A and RSD-B settings. Also, the use of RSD-B

yields smaller bias than that of RSD-A. The Nelson-Aalen estimate with RSD-B shows a

little departure from the true cumulative baseline hazard where the bias arises because of

the impact of model misspecification in terms of individual heterogeneity and dependence

between random effects for an alternating process.
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Figure 3.5: The limiting value of the Nelson-Aalen estimate and the true cumulative base-
line hazard under dependence sojourn time models due to correlated random effects
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Estimation in the Regression Setting

With covariates, we assume λi1(t|ui1, xi) = ui1λ01 exp(β1) andWik|ui2, xi ∼ GAM(2, ui2λ02 exp(β2)).

56



Then dRh
i1(t) = dRh

01(t) exp(xiγ
h
1 ) can be expressed as

dRh
01(t) =

∑1
xi=0 P (xi)P (Ȳ h

i (t) = 1|xi)Eh[Ui1|Ȳ h
i (t) = 1, xi]λ01 exp(xiβ1)∑1

xi=0 P (xi)P (Ȳ h
i (t) = 1|xi) exp(xiγh1 )

for h = A,B under a randomized clinical trial, where Xi is a binary variable with P (Xi =

0) = P (Xi = 1) = 0.5. The limiting value γh1 for h = A,B can then be obtained by solving

the equation (3.4.7) where

s(0,h)(t) =
1∑

xi=0

P (xi)P (Ȳ h
i (t) = 1|xi)Eh[Ui1|Ȳ h

i (t) = 1, xi]λ01(t) exp(xiβ1),

s(1,h)(t) = P (xi = 1)P (Ȳ h
i (t) = 1|xi = 1)Eh[Ui1|Ȳ h

i (t) = 1, xi = 1]λ01(t) exp(β1),

s
(0,h)
1 (γ1, t) =

1∑
xi=0

P (xi)P (Ȳ h
i (t) = 1|xi) exp(xiγ1),

s
(1,h)
1 (γ1, t) = P (xi = 1)P (Ȳ h

i (t) = 1|xi = 1) exp(γ1),

for h = A,B. Note that s(k,A)(t) = s(k,B)(t). We can simplify γA1 here as

γA1 = β1 + log

(∫∞
0
P (Ȳ A

i (u) = 1)EA[Ui1|Ȳ A
i (u) = 1, xi = 1]du∫∞

0
P (Ȳ A

i (u) = 1)EA[Ui1|Ȳ A
i (u) = 1, xi = 0]du

)
.

Likewise, the limiting value of the covariance estimator is given as A−1(γh1 )B(γh1 )A−1(γh1 )

and the estimated variance is Â−1(γ̂h1 )B̂(γ̂h1 )Â−1(γ̂h1 ) as shown in Section 3.3.2.

Figure 3.6 display the the asymptotic bias of regression coefficient γA, γB when the

Andersen-Gill model is fitted. The bigger the mean sojourn time in the exacerbation

state, the larger the bias is. For the second setting with β1 < 0, the bias increases as β2 is

farther from β1 and when β2 > β1, the bias is positive. Therefore, the effect of treatment

for the risk of disease occurrence may be reduced if treatment decreases the occurrence of

episodes and increases the recovery of episode under the Andersen-Gill model. Note that

as Kendall’s τ increases, the bias decreases.
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Figure 3.6: The asymptotic bias of γA and γB under the Andersen-Gill model for RSD-A
and RSD-B with different β2, E(Wik) and Kendall’s τ
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We conduct simulation studies to study the empirical bias and the performance of

robust variance arising from the misspecification of risk set as well as frailty and dependence

between alternating processes. The data is generated based on correlated random effects via

a copula model. We set λ01 = 2, β1 = log(0.75) where λi1(t|Hi(t), ui) = ui1λ01 exp(xiβ1),

E(Wik|xi = 0) = 0.1, 0.25, and 0.5 where Wik|ui, xi ∼ GAM(2, ui2λ02 exp(xiβ2)), and Uij

is gamma distributed with E(Uij) = 1,Var(Uij) = 0.4 for j = 1, 2. We use the Gaussian

copula with Kendall’s τ=-0.25, 0.00, and 0.25 for the bivariate distribution of Ui. We also

set the administrative censoring time C=2, 20% random censoring with m=1000, and a

total of 1000 samples were simulated. The results are reported in Table 3.2 under the

RSD-A and RSD-B setting.

Table 3.2 shows that the means of estimated coefficients are almost equal to their lim-

iting values. It is apparent that the impact of using an incorrect definition of the risk set

can be appreciable, consistent with the result in Table 3.1. However, no concern of de-

pendence between two alternating processes yields bias under the correct risk set RSD-B.

As we observed in Figure 3.6, the bias decreases as Kendall’s τ increases, the longer the

mean sojourn time and the farther β2 from β1 the bigger the bias. There are differences

between the naive standard errors and robust standard errors due to the model misspeci-

fication from the true model, but there is good agreement between the empirical standard

error and the average robust standard error compared to the average naive standard error.

Under the “correct” RSD-B, the robust variance estimates performed fairly well compared

to the naive variance estimates although the empirical coverage probabilities are not in

acceptable range when E[Wik|xi = 0] is appreciable. However, the robust standard errors

do not guarantee the protection against the misspecification of the risk indicator. When

RSD-A is used, a serious bias and lower coverage probabilities are obtained in this setting.

As a result it is important to take into account the duration of symptoms when specifying

the risk set.
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3.5 Impact of the Episode Duration Distribution on

Power

We previously examined the impact of misspecification of risk set on point estimates and the

asymptotic variance of estimates. In this section we explore the impact of misspecification

of the risk set on study power.

Consider the design of a randomized trial with recurrent responses. At the design stage,

we assume a mixed Poisson model and calculate a sample size based on λi1(t|ui1, Hi(t)) =

ui1λ01 exp(β1xi) with Ui1 ∼ Gamma(1/φ1, 1/φ1) (Cook and Lawless, 2007). If we want

to test if an intervention has an effect on event occurrence we test H0 : β1 = β10 = 0

vs. HA : β1 = β1A. However, the true underlying model requires one to consider the

exacerbation duration. Hence interest lies in the change of power due to the duration of

the exacerbation as well as the association between the occurrence of exacerbation and the

recovery of exacerbation. As previous sections, we consider the Andersen-Gill model with

a robust standard error with RSD-A and RSD-B for analysis and use the two-sided Wald

test.

Suppose we consider the hypotheses H0 : β1 = β10 = 0 vs. HA : β1 = β1A = log(0.75)

under a two-sided test at the α1 = 0.05 level of significance and the power of 1−α2 = 0.8.

Assume λ01 = 2, φ1 = 0.4 and a randomized trial gives P (Xi = 1) = P (Xi = 0) = 0.5.

Then we can calculate the sample size under the assumption of mixed Poisson model given

as

m ≥

zα1/2

√
asvar0(

√
m(β̂1 − β10)) + zα2

√
asvarA(

√
m(β̂1 − β1A)

β1A


2

, (3.5.1)

where zp represents the (1 − p)-quantile for a standard normal distribution. asvar0(·)
and asvarA(·) denote the asymptotic variance under the null and alternative hypotheses,

respectively, where

asvar(
√
m(β̂1 − β1)) =

1∑
xi=0

{
P (Xi = xi)E

[
λ01 exp(β1xi)Ci

1 + φ1λ01 exp(β1xi)Ci

]}−1

.
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Table 3.3: Empirical rejection rates for tests of treatment for occurrence of exacerbations
where sample size is estimated based on the mixed Poisson model with E[N̄i1(2)|xi = 0] =
4, φ1 = 0.4, β10 = 0, β1A = log(0.75), E(Wik|xi = 0)=0.10, 0.25, and 0.50, φ2 = 0.4 and
Kendall’s tau -0.25, 0, and 0.25 over (0,2] with 20% random censoring, nsim = 2000

τ=-0.25 τ = 0 τ = 0.25

β2 E(Wik|xi = 0) RSD-A RSD-B RSD-A RSD-B RSD-A RSD-B

log(0.75) 0.10 92.1 81.5 88.2 79.4 85.8 79.1

0.25 96.8 80.3 93.1 79.0 90.5 78.0

0.50 97.2 72.4 95.4 72.3 92.3 73.2

0 0.10 77.4 77.8 73.5 77.1 72.6 77.0

0.25 66.5 73.5 60.7 74.1 59.5 75.5

0.50 34.5 64.4 34.2 67.7 30.9 67.8

log(1.25) 0.10 60.0 72.8 61.2 75.0 61.3 76.6

0.25 28.3 68.7 29.7 69.5 30.6 73.1

0.50 5.9 58.6 5.1 61.2 5.3 62.9

We next conduct simulation studies to investigate the impact of a misspecifed risk

set and heterogeneity on power with the sample size calculated based on (3.5.1) where

E[N̄i1(2)] = 4 with φ1 = 0.4 and 20% random censoring under the mixed Poisson model.

We simulated data from a conditionally the Markov/semi-Markov model with correlated

random effects via a copula model with the calculated sample size where E[N̄i1(2)] = 4 is

fixed and φ1 = φ2 = 0.4. We consider different mean sojourn times for exacerbation state

in the control arm of E(Wik|xi = 0) = 0.1, 0.25, 0.5 and different Kendall’s τ=-0.25, 0, and

0.25.
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Figure 3.7: Power curves based on RSD-A (left panel) and RSD-B (right panel) with
Kendall’s τ -0.25, 0, and 0.25 where the sample size is calculated based on the mixed
Poisson model with E[N̄i1(2)|xi = 0] = 4, β10 = 0, β1A = log(0.75), φ1 = 0.4, φ2 = 0.4
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With the generated data, we fit the Andersen-Gill model using RSD-A and RSD-B and

conduct the hypothesis testing using robust standard errors based on a two-sided Wald

test. A total number of 2000 replicates were generated and the empirical rejection rates

(REJ%), defined as the percentage of replicates leading to rejection of the null hypothesis

were computed; see Table 3.3.

The power decreases as the mean sojourn time for exacerbation-state increases for the

settings with β1 6= β2. It is worth noting that the power significantly depends on the

value of β2 with RSD-A; as β2 is farther from the β1 the loss in power increases. Note

that when β1 = β2 we observe overpower with RSD-A. Using RSD-B reduces loss in power

compared to RSD-A. As Kendall’s τ increases there is a greater loss in power when β2 = 0

under RSD-A. When β1 6= β2, the increase in Kendall’s τ decreases loss in power under

the RSD-B.

Figure 3.7 shows power curves with the same setting as the empirical study. The effect

of Kendall’s τ on power relies on the mean sojourn time in the exacerbation-free state and

the value of β2. When β1 6= β2, the increase in the mean sojourn time in the exacerbation-

state reduces power, however, when β1 = β2 power is greater than 80% with RSD-A. The

loss in power with RSD-B is smaller than the one with RSD-A when β1 6= β2.

3.6 Application to a Herpes Simplex Trial

Herpes simplex is an infectious disease resulting in blisters on the infected part of the body.

We consider the data from Romanowski and others (2003) who conducted a randomized

two-period crossover trial to examine the effect of suppressive therapy versus episodic

therapy. Here we only consider the first 24-week study period, therefore, each patients

only had one treatment, suppressive or episodic therapy. We also include sex (female vs.

male), virus type (HSV1 or HSV2) as covariates in addition to treatment (episodic therapy

vs. suppressive therapy). In Table 3.4, we report on analyses of herpes simplex study using

the Andersen-Gill model with RSD-A and RSD-B described in 3.3.1, respectively .
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Table 3.4: Analysis of occurrence of herpes simplex using RSD-A and RSD-B based
on the Andersen-Gill model

RSD-A (Ȳ A
i (t) = Yi(t)) RSD-B (Ȳ B

i (t) = Yi(t)Yi1(t))

Covariate EST SE1 SE2 p3 EST SE1 SE2 p3

Treatment -1.875 0.200 0.240 < 0.001 -1.871 0.145 0.186 < 0.001

Sex -0.189 0.135 0.173 0.276 -0.303 0.115 0.166 0.067

Virus Type 0.159 0.121 0.146 0.277 0.071 0.107 0.148 0.632

1 Naive standard error
2 Robust standard error
3 p-values based on robust standard error
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Figure 3.8: Cumulative baseline rate function with RSD-A (Inclusion) and RSD-B (Exclu-
sion)

First of all, treatment has a significant effect on the occurrence of herpes simplex with

both RSD-A (RR = 0.15; 95% CI: -2.35, -1.40; p < 0.001), RSD-B (RR = 0.15; 95%
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CI: -2.24, -1.51; p < 0.001), where two estimates are in very close agreement. Whereas

the estimates for sex with RSD-A (RR = 0.83; 95% CI: -0.53, 0.15; p = 0.276) differ

from the one with RSD-B (RR = 0.74; 95% CI: -0.63, 0.02; p = 0.067). Also there

are differences in the estimates for virus type between RSD-A (RR = 1.17; 95% CI: -

0.13, 0.45; p = 0.277) and RSD-B (RR = 1.07; 95% CI: -0.22, 0.36; p = 0.632). These

differences arise due to the impact of misspecification of risk set. We also note that the

naive standard errors and robust standard errors are not identical, which tells that there

is heterogeneity between subjects and possible dependence between the onset and recovery

of episode processes. Figure 3.8 contains a plot of the estimated cumulative baseline rate

function with the Andersen-Gill analysis based on RSD-A and RSD-B. The slope of the

cumulative baseline rate function with RSD-B is slightly greater than the one with RSD-A,

suggestive of a higher rate for the occurrence of outbreaks with RSD-B than RSD-A (Cook

and Lawless, 2007, Chapter 5, p. 177). However, the median of duration of episodes is

5 days indicating a short duration of episodes, therefore, the impact of misspecification

of risk set on the estimate of cumulative baseline rate function is small. Note that with

RSD-A, the cumulative baseline rate function can be naively interpreted as an estimate of

the cumulative baseline mean function.

3.7 Discussion

In this Chapter we have pointed out that estimators of mean function and covariate effects

from the naive use of the Andersen-Gill model (Andersen and others , 1993) are sensitive

to the handling of risk-free periods as well as strength of the association between the

onset and duration of episodic events. Misspecification of at risk indicators can lead to

inconsistent estimators of regression coefficients and the use of robust standard errors does

not guarantee protection against misspecification of the duration dependent processes. The

biases we refer to for the mean function are specified in relation to the cumulative intensity

for the onset of episodes, or the actual mean function reflected the expected number of

events over time. In the regression setting we refer to the bias of estimators of the regression

coefficient for the transition intensity for the onset of episodes.
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Full specification of the intensities for an alternating two-state process is challenging in

practice and it is impossible to achieve robustness in this framework since correct model

specification is required to ensure the partial likelihood estimating equations are unbiased.

Causal inference can be based on the expected number of events at a land-mark time or

based on proportional rate function models but there is a tension between the need for

full specification of models to advance scientific understanding and the need for simple

models supporting causal conclusions. Lee and Cook (2018) develop a model for a mixed

two-state process for characterizing recurrent episodic conditions which features a Markov

time-scale for the onset of exacerbations and a semi-Markov time-scale for the duration of

the exacerbations. Correlated random effects enable one to assess the need to accommodate

heterogeneity and allow for a dependence between the sojourn times in the exacerbation

state and the risk for the onset of events.

When mortality rates are appreciable, as is the case among individuals with advanced

chronic obstructive pulmonary disease, it is considerably more challenging to model the

onset and duration of exacerbations and summarize the effects of interventions. In the

multistate framework an absorbing state representing death can be added, and random

effects can be considered in the intensities for death. However expressing treatment effects

robustly on the onset of exacerbations is very challenging. Much work has been carried out

in this area for recurrent transient events (Cook and Lawless, 1997; Ghosh and Lin, 2000,

2002) but utility-based analyses may be preferable when events have a duration associated

with them (Cook and others , 2003).

An alternative approach in these more complex settings is to focus on estimation of state

occupancy probabilities using nonparametric methods. Cook and Lawless (2018, Sections

3.4 and 4.3) discuss this for one-sample problems and consider marginal regression models

for state occupancy probabilities based on direct binomial regression (Scheike and others ,

2008). Utility-based analyses are also of possible value (Cook and others , 2003, Cook and

Lawless, 2018, Section 8.1). These and other marginal quantities, such as features of state

entry time or sojourn time distributions, may offer a more convenient basis for causal

inference since they are not defined inherently in terms of conditional probabilities. As

always, the choice of the estimand must be made based on interpretation and it must be

meaningful for the problem at hand. Inverse probability weighting can often be useful to
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correct for some selection biases and confounding.
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Appendix 3.A: Computation of State Occupancy Prob-

abilities

P (Yi1(t) = 1|xi) is difficult to calculate under the assumption of semi-Markov model,

especially when the distribution of the duration of exacerbations is not exponential. Here,

we decompose state 2 into two states to exploit the property of Gamma distribution which

can be expressed as a sum of exponential distribution. We define a new state process

{Z̄(t), 0 < t} on the extended state space {1, 2A, 2B} (Cook and others , 2009), and let

Z(t) = 1 if Z̄(t) = 1 and Z(t) = 2 if Z̄(t) = 2A or Z̄(t) = 2B as shown in Figure 3.9.

Then, P (Yi1(t) = 1|xi) can be expressed by

P (Yi1(t) = 1|xi) = P (Z(t) = 1|Z(0) = 1, xi)

= 1−
∑

r=2A,2B

P (Z̄(t) = r|Z̄(0) = 1, xi) = P (Z̄(t) = 1|Z̄(0) = 1, xi).

Figure 3.9: State diagram for recurrent exacerbations with extended Markov models

The term P (Z̄(t) = 1|Z̄(0) = 1, xi) is calculated by the transition probability ma-

trix P(0, t|xi) = P(t|xi) = [pij(t|xi)], for i, j = 1, 2A, 2B. Here we consider the time-

homogeneous case. We assume that the duration of the kth exacerbation is Wik = Wik2A +

Wik2B where Wikl ∼ EXP (λi2) for l = 2A, 2B and Wik2A ⊥ Wik2B, so Wik ∼ GAM(2, λi2).

Under the multiplicative model, we let λi1 = λ01 exp(xiβ1) and λi2 = λ02 exp(xiβ2). It is

noted that there is a common covariate for the development and resolution of exacerba-

tions. The time-homogeneous transition intensity matrix of {Z̄(t), 0 < t} on state space
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{1, 2A, 2B} is

Q =


−λi1 λi1 0

0 −λi2 λi2

λi2 0 −λi2

 .
We let P12A(t) = P (Z̄(t) = 2A|Z̄(0) = 1, xi), P12B(t) = P (Z̄(t) = 2B|Z̄(0) = 1, xi), and

P11(t) = P (Z̄(t) = 1|Z̄(0) = 1, xi). Using the Kolmogorov forward equations (Cox and

Miller, 1965), we note

P ′12A(t) = −λi2P12A(t) + λi1P11(t)

P ′12B(t) = λi2P12A(t)− λi2P12B(t)

P ′11(t) = λi2P12B(t)− λi1P11(t)

P12A(t) + P12B(t) + P11(t) = 1, P11(0) = 1 (3.A.1)

By solving the systems of equation of (3.A.1) we obtain P11(t) if the term λi1−λi2/4 < 0

as

P11(t) =
(λi2)2

a2 + b2
+ exp(−at) cos(bt)

(
2λi1λi2
a2 + b2

)
+ exp(−at) sin(bt)

(
2λi1λi2(λi2 − λi1)

(a2 + b2)2b

)
(3.A.2)

where a = λi1/2 + λi2 and b =
√
λi1λi2 − (λi1)2/4. If λi1 − λi2/4 > 0 it can be written as

follows using Euler’s formula,

P11(t) =
(λi2)2

a2 − (b′)2
+ exp(−at) cosh(b′t)

(
2λi1λi2
a2 − (b′)2

)
(3.A.3)

+ exp(−at) sinh(b′t)

(
2λi1λi2(λi2 − λi1)

(a2 − (b′)2)2b′

)
where b′ = bi. Likewise, if λi1 − λi2/4 < 0, P21(t) is given as

P21(t) =
λi2

2λi1 + λi2
− λi2

2λi1 + λi2
exp(−at) cos(bt)− 2λ2

i2 + λi1λi2
(2λi1 + λi2)2b

exp(−at) sin(bt)
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else

P21(t) =
λi2

2λi1 + λi2
− λi2

2λi1 + λi2
exp(−at) cosh(b′t)− 2λ2

i2 + λi1λi2
(2λi1 + λi2)2b′

exp(−at) sinh(b′t)

Appendix 3.B: Calculation of Asymptotic Bias of γ̂A1

We, here, derive γA1 = β1+log
(∫∞

0 P (Ȳi1(u)=1|xi=1)du∫∞
0 P (Ȳi1(u)=1|xi=0)du

)
in (3.4.10). By plugging s(0,A)(u), s(1,A)(u),

s(0,A)(γ1, u), and s(1,A)(γ1, u) into (3.4.7), we have∫ ∞
0

{
P (Ȳi1(u) = 1|xi = 1)λ01 exp(β1)− exp(γ1)

1 + exp(γ1)

(
P (Ȳi1(u) = 1|xi = 1)λ01 exp(β1)

+ P (Ȳi1(u) = 1|xi = 0)λ01

)}
du = 0

Then,

exp(γ1)

1 + exp(γ1)
=

∫∞
0
P (Ȳi1(u) = 1|xi = 1)λ01 exp(β1)du∫∞

0

(
P (Ȳi1(u) = 1|xi = 1)λ01 exp(β1) + P (Ȳi1(u) = 1|xi = 0)λ01

)
du

(3.B.1)

We arrange (3.B.1) in terms of γ1 so that

exp(γ1) = exp(β1)

∫∞
0
P (Ȳi1(u) = 1|xi = 1)du∫∞

0
P (Ȳi1(u) = 1|xi = 0)du

,

which has the final form as (3.4.10) by taking log() for both sides.
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Appendix 3.C: Derivation of The Sandwich Covariance

Matrix

Let dMh
i1(t) = Ȳ h

i (t){dNi1(t)− dR01(t) exp(xi1γ1)dt}. Then

A(γ1) = E

[∫ ∞
0

Ȳ h
i (t)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗
2

s(0,h)(γ1, t)2

}
dNi1(t)

]
=
∑
xi

[∫ C

0

P (xi)P (Ȳ h
i (t) = 1|xi)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗
2

s(0,h)(γ1, t)2

}
E(dNi1(t)|xi, Ȳ h

i (t) = 1)

]
,

B(γ1) = E

[(∫ ∞
0

{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}
dMh

i1(s)

)(∫ ∞
0

{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
dMh

i1(t)

)]
= E

[∫ ∞
0

∫ ∞
0

{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
dMh

i1(s)dMh
i1(t)

]
,

= Bh
1 +Bh

2 − 2Bh
3 +Bh

4 (3.B.2)

where

Bh
1 =

∑
xi

∫ C

0

P (xi)P (Ȳ h
i (t) = 1|xi)

{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}2

E(dN2
i1(t)|xi, Ȳ h

i (t) = 1),

Bh
2 =

∫ C

0

∫ C

0

P (xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1|xi)
{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
× E(dNi1(s)dNi1(t)|xi, Ȳ h

i (s) = 1, Ȳ h
i (t) = 1),

Bh
3 =

∫ C

0

∫ C

0

P (xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1|xi)
{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
× E(dNi1(s)|xi, Ȳ h

i (s) = 1, Ȳ h
i (t) = 1)dRh

01(t)exiγ1 ,

and

Bh
4 =

∫ C

0

∫ C

0

P (xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1)

{
xi1 −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi1 −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
× e2xiγ1dR01(s)dR01(t).
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In Section 3.4.1 and under the assumption of time-homogeneous rate function for the

two processes,

E(dN2
i1(t)|xi, Ȳ A

i (t) = 1) = E(dNi1(t)|xi, Ȳ A
i (t)) = P (Yi1(t) = 1|xi)λ01 exp(xiβ1),

and

E(dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1)

= P (Z̄i(s
−) = 1|Z̄i(0) = 1, xi)P (Z̄i(t

−) = 1|Z̄i(s) = 2, xi)λ
2
01 exp(2xiβ1)

for s < t, where P (Yi1(t) = 1|xi) = P (Z̄i(t
−) = 1|Z̄i(0) = 1, x1), and P (Z̄i(t

−) = 1|Z̄i(s) =

2, xi) is given in Appendix 3.A. In the setting of Section 3.4.2 with dependent random

effects,

E(dN2
i1(t)|xi, Ȳ A

i (t) = 1) = E(dNi1(t)|xi, Ȳ A
i (t) = 1)

=

∫ ∞
0

∫ ∞
0

ui1P (Yi1(t) = 1|ui, xi)λ01(t) exp(xiβ1)dG(ui),

and E(dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1) is given by∫ ∞
0

∫ ∞
0

u2
i1P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 2, xi, ui)λ

2
01 exp(2xiβ1)dG(ui)

for s < t. Moreover

E(dN2
i1(t)|xi, Ȳ B

i (t) = 1) =
E(dN2

i1(t)|xi, Ȳ A
i (t) = 1)

P (Yi1(t) = 1|xi)
,

and

E(dNi1(s)dNi1(t)|xi, Ȳ B
i (s) = 1, Ȳ B

i (t) = 1) =
E(dNi1(s)dNi1(t)|xi, Ȳ A

i (s) = 1, Ȳ A
i (t) = 1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)
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for s < t, where E(dNi1(s)|xi, Ȳ B
i (s) = 1, Ȳ B

i (t) = 1) is given by∫∞
0

∫∞
0
ui1g(ui)P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 2, xi, ui)dui1dui2λ01 exp(xiβ1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)

for s < t or∫∞
0

∫∞
0
ui1g(ui)P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 1, xi, ui)dui1dui2λ01 exp(xiβ1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)

for t < s.
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Chapter 4

Dependence Modeling for

Multi-Type Recurrent Events Via

Copulas

4.1 Introduction

4.1.1 Overview

In many chronic diseases individuals are at risk of several distinct types of potentially

recurring events. In asthma, for example, individuals are at risk of different types of

recurrent exacerbations (Jayaram and others , 2006), individuals with diabetes are at risk

recurrent complications in eyes and kidneys (The Diabetes Control and Complications Trial

Research Group, 1986), and cancer patients are at risk of metastases in different locations

of the body (Hortobagyi, 1998). In public health studies there is interest in modeling

the occurrence of different kinds of infections in populations at risk such as children in

developing countries (Lemaire and others , 2011). A natural goal is to carry out a marginal

analysis by estimating the rate of onset for each type of infection. However, the different

types of infections may arise due to the same underlying risk factors (e.g. a compromised
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immune system due to malnutrition, exposure to contaminated areas, etc.). It can therefore

be informative to model the association between different types of infections.

Cai and Schaubel (2004) proposed semi-parametric marginal models for multi-type re-

current events data and develop robust standard errors. Chen and others (2012) developed

additive marginal models, proved the consistency of estimators, and derived their asymp-

totic distribution under a working independence assumption. Cook and others (2010)

proposed a copula-based bivariate mixed Poisson model with correlated random effects.

Mazroui and others (2013) also considered bivariate frailty models for two types of recurrent

events and death associated with two types of events based on maximum likelihood with

a piecewise baseline hazard function and maximum penalized likelihood. Also (Cook and

Lawless, 2007, Chapter 6) introduces different approaches in multitype recurrent events.

Even though the asymptotic theory is typically developed for multi-type recurrent event

data for the general setting, applications provided typically deal with only two types of

events. Frequentist methods based on flexible multivariate frailty models can be challenging

to implement with more than 2 event types, particularly when semiparametric methods

are of interest. We address this by developing a joint model for multiple types of recurrent

events using a multivariate random effects distribution constructed using a copula model to

link the component-specific random effects. This structure is appealing in that it enables

separate modeling of heterogeneity and dependence and offers a natural basis for use of

a composite “pairwise” likelihood approach to avoid the computational burden of the

full likelihood. We also investigate an even more computationally convenient two-stage

estimation procedure based on pairwise likelihood in which marginal models are fitted for

each type of event at the first stage, and the dependence parameters are estimated at the

second stage. Large sample theory is developed for both of these approaches.

The remainder of the Chapter is organized as follows. In the next sub-Section we

provide a brief review of composite likelihood. In Section 4.2 we introduce notation, pro-

vide details on the model formulation, and give the full and composite likelihoods. An

expectation-maximization algorithm is given in Section 4.3 for semiparametric analysis

based on multiplicative rate function models; variance estimation is given in an Appendix

4.A. Section 4.4 reports on simulation studies investigating the finite sample properties of

the simultaneous and two-stage estimation procedure based on pairwise composite likeli-
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hood and an application is given in Section 4.5 on a motivating study on the effect of iron

supplementation on the occurrence of different types of infections in malnourished children.

Concluding remarks are made in Section 4.6.

4.1.2 Review of Composite Likelihood

We let θ denote a p × 1 parameter of interest. In modeling multivariate data or in other

settings involving complex dependence structures, the full likelihood may be complex or

too computationally demanding to work with. As an alternative to full likelihood, Lindsay

(1988) propose using a composite likelihood defined as

CL(θ; y) =
J∏
j=1

Lj(θ; y)wj , (4.1.1)

a weighted product of marginal or conditional likelihood contributions Lj(θ; y); this may be

viewed as an as the extension of the concept of pseudo-likelihood (Besag, 1974). Each term

Lj(θ; y) is determined by the selection of {A1, . . . , AJ}, a set of marginal or conditional

events, where Lj(θ; y) ∝ f(y ∈ Aj; θ) (Varin and others , 2011). Varin (2008) provided the

excellent review of composite likelihood in different fields and classified composite likeli-

hood contributions as based on conditional or marginal likelihoods. Composite conditional

likelihoods are based on the product of conditional densities given conditions which the

analyst specifies, whereas the latter is constructed from marginal densities.

As in ordinary likelihood, the composite likelihood score equations are unbiased esti-

mating equations under mild regularity conditions. The maximum composite likelihood

estimator θ̂, obtained by solving the p× 1 equation

S(θ) = ∂ logCL(θ; y)/∂θ = 0,

is therefore consistent for θ. The robust covariance matrix has the form

G(θ) = A′(θ)B−1(θ)A(θ)
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where A(θ) = E(−∂S(θ)/dθ′) and B(θ) = E(S ′(θ)S(θ)) are p× p matrices and G(θ) is the

Godambe information matrix (Godambe, 1960).

4.2 Likelihood and Composite Likelihood Formula-

tion

4.2.1 Notation and Model Specification

Figure 4.1: Timeline diagrams for J different recurrent event processes and a common
censoring time

Suppose individuals are at risk of J types of events and let Tijk denote the time of the

kth occurrence type j event for an individual with label i. We let

dNij(s) = I(a type j event occurred at time s for individual i)

and let Nij(t) =
∫ t

0
dNij(s) record the cumulative number of type j events experienced by

individual i over (0, t]; the corresponding counting process is represented as {Nij(u), 0 < u}.
To consider all J events simultaneously we let dNi(s) = (dNi1(s), . . . , dNij(s))

′. A p × 1
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vector of fixed covariates, possibly unique for type j events, is denoted by xij and we let

xi = (x′i1, . . . , x
′
iJ)′. The history for type j events is Hij(t) = {Nij(s), 0 ≤ s < t, xij} and

the full history of all types of events is Hi(t) = {Hi1(t), . . . , HiJ(t), 0 ≤ s < t}.

The complete intensity function for a type j event for individual i is

lim
∆t↓0

P (∆Nij(t) = 1|Hi(t))

∆t
= λij(t|Hi(t)),

j = 1, . . . , J , i = 1, . . . , n.

Suppose each individual in a sample of n independent individuals is to be followed

over (0, A] where A is an administrative censoring time. To accommodate possible early

study withdrawal, assumed to be conditionally independent of the event processes given

Xi, we define a random censoring time C†i for individual i and let Ci = min(C†i , A)

and Yi(s) = I(s ≤ Ci), i = 1, . . . , n. We then let dN̄ij(s) = Yi(s)dNij(s), dN̄i(s) =

(dN̄i1(s), . . . , dN̄iJ(s))′, and N̄ij(t) =
∫ t

0
dN̄ij(s) which is the observed number of type j

events. We let H̄ij(t) = {N̄ij(s), Yi(s), 0 ≤ s < t, xij} and define the observed history

H̄i(t) = {H̄i1(t), . . . , H̄iJ(t), 0 ≤ s < t}.

In medical research, it is sometimes not possible to fully explain variation between

individuals simply by the incorporation of available covariates. To account for variation in

risk between individuals we consider a mixed Poisson model in which we introduce random

effects; this framework also allows for a dependence between event counts over disjoint

intervals (Lawless, 1987; Klein, 1992). We let Uij be a random effect for type j events for

individual i. Under a mixed Poisson model subject to independent right censoring, the

conditional intensity for observed type j events given the random effect Uij = uij is

lim
∆t↓0

P (∆N̄ij(t) = 1|H̄i(t), uij)

∆t
= uijYi(t)λj0(t;αj) exp(x′ijβj) (4.2.1)

where λj0(t;αj) denotes the baseline event rate function and the covariates have a multi-

plicative effect. We let θj = (α′j, β
′
j)
′ and θ = (θ′1, . . . , θ

′
J)′.

We letGj(uij;σj) be the c.d.f. for Uij which are i.i.d. for all individuals, and consider the

special case in which Uij are log-normal random with E(Uij) = 1 and Var(log(Uij)) = σ2
j .
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To take into account the dependence between different types of events we consider the

joint density of U i = (Ui1, . . . , UiJ)′ obtained using a Gaussian copula model (Nelsen,

2006). Specifically we let

dG(ui;σ, ρ) =
J∏
j=1

dGj(uij;σj)c(G1(ui1;σ1), . . . , GJ(uiJ ;σJ); ρ)

where σ = (σ1, . . . , σJ)′, Gj(uij;σj) is the marginal cumulative distribution function of Uij,
j = 1, . . . , J , and c(G1(ui1;σ1), . . . , GJ(uiJ ;σJ); ρ) can be written as

c(G1(ui1;σ1), . . . , GJ(uiJ ;σJ); ρ) =
1√

detR
exp

− 1
2


Φ−1(G1(ui1;σ1))

...

Φ−1(GJ(uiJ ;σJ))


′

(R−1 − I)


Φ−1(G1(ui1;σ1))

...

Φ−1(GJ(uiJ ;σJ))




where Φ−1(·) is the inverse cumulative distribution function of a standard normal and

R is a correlation matrix with (j, k) component ρjk explaining the association between

Gj(Uij;σj) and Gk(Uik;σk); we let ρ = (ρ12, . . . , ρ(J−1)J). We let ψj = (θ′j, σj)
′ be the

marginal parameters, and ψ = (ψ′1, . . . , ψ
′
J), and let φ = (σ′, ρ′)′, and overall parameters

Ω = (ψ′, ρ′)′. The marginal likelihood for n independent individual processes is written as

L(Ω) =
n∏
i=1

∫ ∞
0

. . .

∫ ∞
0

{
J∏
j=1

Lij(θj|uij)

}
dG(ui;φ) (4.2.2)

where the conditional likelihood Lij(θj|uij) is given by

Lij(θj|uij) =

Nij(Ci)∏
k=1

uijλj0(tijk;αj) exp(x′ijβj) exp

(
−
∫ ∞

0

uijYi(v)λj0(v;αj) exp(x′ijβj)dv

)
.
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4.3 Estimation Based on Composite Likelihood

4.3.1 Composite Likelihood Construction

In this setting, when the dimension of J increases, the inference of this model is computa-

tionally intractable as there is no closed-form for the full likelihood. We adopt composite

likelihood methods to resolve the computational difficulty in estimation. Thus instead of

maximizing the full log-likelihood (4.2.2), a pairwise log-likelihood is used for inference.

In this case, we consider each pair of events together to determine the composite pairwise

likelihood as

CL2(Ω) =
n∏
i=1

∏
(j,k)∈M

Lijk(ηjk)
wjk (4.3.1)

where

Lijk(ηjk) =

∫ ∞
0

∫ ∞
0

Lij(θj|uij)Lik(θk|uik)dGjk(uij, uik;φjk),

dGjk(uij, uik;φjk) = dGj(uij;σj)dGk(uik;σk)c(Gj(uij;σ1), Gk(uik;σk); ρjk),

ηjk = (ψj, ψk, ρjk)
′, φjk = (σj, σk, ρjk)

′ andM is the collection of J(J − 1) pairs of (j, k) of

event types. We note that wjk = 1/(J−1) is chosen to make a single effective contribution

of each type of event for each individual to the composite likelihood.

4.3.2 A Semiparametric EM Algorithm for Estimation with Pair-

wise Likelihood

When margins are specified semiparametrically even solving (4.3.1) directly is difficult due

to the high dimension of the parameters. Here we adopt an expectation-maximization al-

gorithm in which we treat random effects as missing data and the data on the event process

as observed (Dempster and others , 1977). We specify, in this case, λj0(tjk) = dΛj0(tjk) as

an unspecified function and we estimate dΛj0(tjk) ≡ αjk and let θj = (dΛ′j0, β
′
j)
′. Given

random effects we decompose the complete pairwise composite log-likelihood in (4.3.1) into
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the following parts as

logCL2(Ω) =
n∑
i=1

∑
(j,k)∈M

wjk
(

logLij(θj|uij) + logLik(θk|uik) + log dGjk(uij, uik;φjk)
)

(4.3.2)

In the E-step, we take the conditional expectation of the complete pairwise composite

log-likelihood given the corresponding paired observed data. Here we define Hi,jk(t) =

{Hij(s), Hik(s), 0 < s < t}′ as the history of j and k types of events for an individual i.

Then

E[logCL2(Ω)|Hi,jk(Ci); Ω̂(r−1)] =
n∑
i=1

∑
(j,k)∈M

wjk
(
E[logLij(θj|uij)|Hi,jk(Ci); Ω̂(r−1)] (4.3.3)

+ E[logLik(θk|uik)|Hi,jk(Ci); Ω̂(r−1)] + E[log dGjk(uij, uik;φjk)
)
|Hi,jk(Ci); Ω̂(r−1)]

)
where Ω̂(r−1) is an estimate of Ω at the (r− 1)st iteration. The estimating equation in the

M-step at the rth iteration (Klein, 1992) is

U
(r−1)
j (βj) =

n∑
i=1

∫ ∞
0

J∑
k=1,j 6=k

wjkȲi(s)W
(r−1)
ij (s; βj)dNij(s) (4.3.4)

where

W
(r−1)
ij (s; βj) =

(
xij −

R
(1,r−1)
j (s; βj)

R
(0,r−1)
j (s; βj)

)
, (4.3.5)

and we set

R
(h,r)
j (s; βj) =

n∑
i=1

Ȳi(s)

[ J∑
k=1,j 6=k

wjkE[Uij|Hi,jk(Ci), Ω̂
(r)]

]
exp(x′ijβj)x

h
ij. (4.3.6)
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The calculation of E[Uij|Hi,jk(Ci), Ω̂
(r)] is given as

E[Uij|Hi,jk(Ci); Ω̂(r)] =

∫∞
0

∫∞
0
uijP (Hi,jk(Ci)|uij, uik, xij, xik; θ̂(r)

j , θ̂
(r)
k )dGjk(uij, uik; φ̂

(r)
jk )∫∞

0

∫∞
0
P (Hi,jk(Ci)|uij, uik, xij, xik; θ̂(r)

j , θ̂
(r)
k )dGjk(uij, uik; φ̂

(r)
jk )

(4.3.7)

where P (Hi,jk(Ci)|uij, uik, xij, xik; θj, θk) = Lij(θj|uij)Lik(θk|uik) and θ̂
(r)
j , θ̂

(r)
k and φ̂

(r)
jk are

the estimates of θj, θk, and φjk at the r-th iteration, respectively. Let β̂
(r)
j denote the

solution to U
(r−1)
j (βj) = 0 in (4.3.4). The cumulative baseline rates are then estimated

using the Breslow formula as

Λ̂
(r)
j0 (s) =

n∑
i=1

∫ ∞
0

J∑
k=1,j 6=k

wjkȲi(s)dNij(s)/R
(0,r−1)
j (s; β̂

(r)
j ) (4.3.8)

The maximization of (4.3.3) in semi-parametric setting can be easily carried out using the

coxreg function in R with log((E[Uij|Hi,jk(Ci)] + E[Uik|Hi,jk(Ci)])/2) treated as an offset

term. The variance of the random effects and the dependence parameter are estimated by

maximizing
n∑
i=1

∑
(j,k)∈M

wjkE[log dGjk(uij, uik;φjk)|Hi,jk(Ci), Ω̂
(r−1)] (4.3.9)

using the standard optimization software such as the optim function in R. The E-step and

M-step are repeated iteratively until the following stopping rule is satisfied;

max(|Ω̂(r+1) − Ω̂(r)|) ≤ 10−4.

The variances of parameter estimates are obtained by the Godambe information matrix

(Godambe, 1960) which is written here as

Ĝ(Ω) = Â(Ω)′B̂(Ω)−1Â(Ω) (4.3.10)
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where the estimates of A takes the form using Louis’ method (Louis, 1982)

Â =
n∑
i=1

∑
(j,k)∈M

wjk

{
−E
[
∂2 logCL2

i,jk

∂Ω∂Ω′

∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

−V AR
[
∂ logCL2

i,jk

∂Ω

∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

}
(4.3.11)

and

B̂ =
n∑
i=1

{ ∑
(j,k)∈M

wjkE

[
∂ logCL2

i,jk

∂Ω

∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

}{ ∑
(j,k)∈M

wjkE

[
∂ logCL2

i,jk

∂Ω

∣∣∣∣Hi,jk(Ci)

]∣∣∣∣′
Ω=Ω̂

}
(4.3.12)

where logCL2
i,jk = logLij(θj|uij) + logLik(θk|uik) + log dGjk(uij, uik;φjk). The details of

the variance estimation are presented in the Appendix 4.A. The calculation of conditional

expectation in (4.3.7), (4.3.9), (4.3.11), and (4.3.12) requires to use numerical integra-

tion. To facilitate shared-memory multi-processor, we implement OpenMP (Open Multi-

Processing) interface in C++ to obtain numerical integration by Gaussian-Quadrature with

20 nodes for each dimension.

4.3.3 Two-stage Semiparametric Estimation with Pairwise Like-

lihood

The implementation of a two-stage estimation procedure can ease computation (Zhao and

Joe, 2005; Andersen, 2004). In the first stage, the parameters for each type of event,

ψj = (θj, σj)
′, are estimated under a working independence assumption. We also use the

expectation-maximization algorithm treating a random effect for each type as missing data

to obtain ψ̂j. Given a random effect uij, the complete likelihood function for each type is

Lij(θj|uij). In the E-step, we obtain the conditional expectation given the observed data

for each type

E[logLij(θj|uij)|Hij(Ci), ψ̂
(r)] (4.3.13)
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at the r-th iteration. In the M-step, the estimating equation (4.3.4) changes to

U
(r−1)
j (βj) =

n∑
i=1

∫ ∞
0

Ȳi(s)W
(r−1)
ij (s; βj)dNij(s)

where R
(h,r)
j (s; βj) in (4.3.6) becomes

R
(h,r)
j (s; βj) =

n∑
i=1

Ȳi(s)E[Uij|Hij(Ci), ψ̂
(r)
j ] exp(x′ijβj)x

h
ij. (4.3.14)

We calculate E[Uij|Hij(Ci); ψ̂
(r)
j ] as

E[Uij|Hij(Ci); ψ̂
(r)
j ] =

∫∞
0
uijP (Hij(Ci)|uij, xij; θ̂(r)

j )dGj(uij; σ̂
(r)
j )∫∞

0
P (Hij(Ci)|uij, xij; θ̂(r)

j )dGj(uij; σ̂
(r)
j )

where P (Hij(Ci)|uij, xij; θ) = Lij(θj|uij). The estimated cumulative baseline rates are then

obtained as

Λ̂
(r)
j0 (s) =

n∑
i=1

∫ ∞
0

Ȳi(s)dNij(s)/R
(0,r−1)
j (s; β̂

(r)
j ).

The procedure is iterated until convergence. In the second stage, we solve the composite

score function from the pairwise likelihood with respect to ρ plugging the estimates ψ̂ from

the stage 1. Again, we implement the expectation-maximization algorithm with random

effects treated as missing data in which we obtain the dependence parameter by maximizing

the following estimating equation given the the estimates of marginal parameters

n∑
i=1

∑
(j,k)∈M

wjkE[log dGjk(uij, uik;σj, σk, ρjk)|Hi,jk(Ci), ρ̂
(r−1), ψ̂j, ψ̂k].

Zhao and Joe (2005) commented that two-stage estimation in composite likelihood is rec-

ommended with a weak dependence. In a strong dependence case, the simultaneous esti-

mation method gives better estimates. The variance estimates in two-stage estimation are

present in Appendix 4.A. The code is available from the author upon request.
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4.4 Simulation Studies

Simulation studies were conducted to evaluate the performance of estimators from the joint

models introduced in Section 4.2. We consider three different types of infections (J=3). For

a randomized treatment, we let xi the indicator of treatment where xi = 1 having treatment

otherwise xi = 0 where P (Xi = 1) = 0.5. We generate the data over the interval (0, 1] with

an independent random censoring Ci. We assume that Ci follows an exponential distribu-

tion with rate − log(0.9) indicating 10% censoring. The marginal rate functions are of the

form αλtα−1 exp(−λtα). We set (λ1, α1) = (1, 1), (λ2, α2) = (1.5, 1.25), (λ3, α3) = (2, 1.25)

and the coefficients β1 = β2 = β3 = log(0.8). We consider the Gaussian copula with

log-normal margins for random effects where E(Uij) = 1 and Var(log(Uij)) = σ2
j . We

set the frailty parameters as σ1 = 0.4, σ2 = 0.4, σ3 = 0.4, and the association param-

eters as (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25), and (ρ12, ρ13, ρ23) = (−0.25,−0.25, 0.25). We

generated 500 samples of 1000 individuals. For each data set, parametric and semi-

parametric analyses are carried out based on the pairwise likelihood likelihoods in Sec-

tion 4.3.2, and two-stage estimation based on the pairwise likelihood in Section 4.3.3.

For models with parametric baseline rate functions such as Weibull model, the marginal

parameters θj = (λj, αj, βj)
′ can be obtained by maximizing (4.3.3) or (4.3.13) where

λj0(s) = αjλ
αj
j s

αj−1 using standard optimization software such as the optim function in

R. The empirical bias (EBIAS), average asymptotic (large sample) standard error (ASE),

empirical standard error (ESE) and empirical coverage probability (ECP) are evaluated

for all parameter estimates and reported in Table 4.1 and 4.2.

The empirical biases are very small for all estimates of parameters and empirical stan-

dard errors and average estimated standard errors are in good agreement. The empirical

coverage probability are close to the nominal confidence level of 95%. Comparing para-

metric and semi-parametric model, we find that all estimates and standard errors are very

close between two models. However, to protect from the model misspecification, semi-

parametric model is recommended although the computation is intense compared to the

parametric model. The standard errors of estimators of marginal parameters are very close

between the pairwise simultaneous and two-stage model whereas there is some efficiency

gain in dependence parameters with the simultaneous model compared to the two-stage
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Table 4.1: Frequency properties of estimators obtained by fitting a Weibull-model using
the pairwise likelihood and two-stage estimation based on the pairwise likelihood with the
sample size 1000 and nsim = 500; (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25)

Pairwise Likelihood Two-stage Pairwise Likelihood

TYPE PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Weibull Model

1

λ1 0.000 0.050 0.050 0.952 -0.001 0.050 0.050 0.950
α1 0.000 0.035 0.034 0.944 0.001 0.035 0.034 0.942
β1 -0.003 0.072 0.074 0.958 -0.002 0.072 0.074 0.958
σ1 -0.002 0.064 0.069 0.962 -0.003 0.064 0.070 0.968

2

λ2 -0.006 0.062 0.063 0.944 -0.007 0.061 0.063 0.950
α2 0.000 0.035 0.035 0.948 0.001 0.036 0.035 0.948
β2 0.003 0.060 0.062 0.958 0.004 0.060 0.063 0.958
σ2 -0.003 0.048 0.051 0.970 -0.002 0.048 0.051 0.974

3

λ3 -0.007 0.078 0.075 0.934 -0.006 0.077 0.075 0.938
α3 0.001 0.031 0.030 0.944 0.001 0.031 0.030 0.942
β3 0.005 0.054 0.056 0.956 0.004 0.053 0.056 0.962
σ3 -0.003 0.040 0.041 0.960 -0.003 0.040 0.041 0.966

Copula
ρ12 -0.012 0.213 0.234 0.966 -0.008 0.220 0.235 0.960
ρ13 0.003 0.189 0.207 0.962 0.009 0.194 0.208 0.960
ρ23 0.007 0.168 0.172 0.956 0.010 0.168 0.172 0.958

Semiparametric Model

1
Λ1(1) 0.000 0.051 0.050 0.934 -0.001 0.051 0.050 0.934
β1 -0.005 0.073 0.074 0.946 -0.006 0.073 0.074 0.946
σ1 -0.006 0.062 0.069 0.964 -0.007 0.062 0.070 0.972

2
Λ2(1) 0.003 0.061 0.063 0.952 0.003 0.061 0.063 0.950
β2 -0.003 0.061 0.062 0.948 -0.003 0.061 0.062 0.948
σ2 -0.007 0.052 0.051 0.950 -0.005 0.052 0.051 0.954

3
Λ3(1) 0.002 0.082 0.075 0.914 0.002 0.082 0.075 0.912
β3 -0.004 0.055 0.056 0.954 -0.004 0.055 0.056 0.956
σ3 -0.005 0.039 0.041 0.974 -0.005 0.039 0.041 0.970

Copula
ρ12 -0.010 0.221 0.239 0.964 -0.005 0.226 0.240 0.960
ρ13 0.009 0.193 0.210 0.966 0.013 0.197 0.212 0.968
ρ23 0.016 0.171 0.175 0.964 0.017 0.174 0.175 0.958
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Table 4.2: Frequency properties of estimators obtained by fitting a Weibull-model using
the pairwise likelihood and two-stage estimation based on the pairwise likelihood with the
sample size 1000 and nsim = 500; (ρ12, ρ13, ρ23) = (−0.25,−0.25, 0.25)

Pairwise Likelihood Two-stage Pairwise Likelihood

TYPE PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Weibull Model

1

λ1 -0.001 0.053 0.049 0.940 -0.001 0.053 0.049 0.940
α1 0.002 0.035 0.034 0.950 0.002 0.034 0.034 0.950
β1 -0.005 0.073 0.074 0.954 -0.005 0.073 0.074 0.954
σ1 -0.009 0.061 0.069 0.966 -0.011 0.062 0.071 0.972

2

λ2 0.002 0.063 0.063 0.952 0.002 0.063 0.063 0.954
α2 0.001 0.033 0.035 0.952 0.001 0.034 0.035 0.952
β2 -0.003 0.062 0.062 0.938 -0.003 0.062 0.062 0.938
σ2 -0.006 0.050 0.050 0.958 -0.006 0.051 0.051 0.962

3

λ3 0.000 0.078 0.075 0.938 0.000 0.078 0.075 0.936
α3 0.002 0.029 0.030 0.946 0.001 0.029 0.030 0.946
β3 -0.002 0.056 0.056 0.948 -0.002 0.056 0.056 0.950
σ3 -0.005 0.040 0.041 0.942 -0.006 0.040 0.041 0.946

Copula
ρ12 -0.011 0.214 0.244 0.980 -0.018 0.219 0.248 0.980
ρ13 0.007 0.203 0.216 0.964 0.002 0.209 0.232 0.964
ρ23 -0.011 0.169 0.174 0.958 -0.010 0.170 0.174 0.956

Semiparametric Model

Type1
Λ1(1) -0.001 0.053 0.049 0.940 -0.001 0.053 0.049 0.938
β1 -0.005 0.073 0.074 0.956 0.002 0.073 0.074 0.954
σ1 -0.009 0.062 0.069 0.960 -0.011 0.062 0.071 0.972

Type2
Λ2(1) 0.002 0.063 0.065 0.956 0.002 0.063 0.063 0.952
β2 -0.004 0.062 0.062 0.936 -0.003 0.062 0.062 0.936
σ2 -0.006 0.050 0.053 0.952 -0.006 0.050 0.051 0.962

Type3
Λ3(1) 0.001 0.078 0.077 0.936 0.000 0.078 0.075 0.936
β3 -0.002 0.056 0.056 0.950 -0.002 0.056 0.056 0.948
σ3 -0.005 0.041 0.042 0.938 -0.005 0.040 0.041 0.946

Copula
ρ12 -0.012 0.213 0.245 0.970 -0.018 0.219 0.248 0.980
ρ13 0.008 0.203 0.217 0.936 0.002 0.209 0.230 0.966
ρ23 -0.011 0.169 0.174 0.936 -0.010 0.170 0.174 0.956
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model. In this simulation studies, we only consider three types of events in which pair-wise

likelihood approach is feasible. However, if more than three events are analyzed two-stage

methods are plausible.

4.5 Recurrent Infections in a Pediatric Trial of Iron

Supplementation

Lemaire and others (2011) conducted a randomized clinical trial of 268 Bangladeshi mal-

nourished children, aged 12-24 month in which children were randomly given iron-containing

micro-nutrient powder (iron MNP) or a placebo powder as mentioned in Section 1.3.3.

Given this data, interest lies on how to examine the effect of treatment on the incidence of

multiple diseases which are caused by malnutrition and iron deficiency. An analysis based

on a composite score is feasible (Lemaire and others , 2011), however it leads to losing in-

formation on distinct episodes. Often interest lies in a treatment effect on specific disease,

however, since the lack of nutrition directly or indirectly affects the immune system, the

different types of infections in consequence of malnutrition may be associated. Therefore

somewhat related diseases should be considered together.

Figure 4.2: Diarrhea, dysentery event plots for phase 1 and phase 2 showing the onset and
the duration of episodes
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Table 4.3: Joint analysis of three types of infections based on semiparametric model;
diarrhea, dysentery and cough with covariates iron and phase

Semiparametric Pairwise Likelihood Two-stage PW Likelihood

TYPE Covariate EST SE p EST SE p

Coefficients

Diarrhea
Iron -0.265 0.140 0.058 -0.265 0.140 0.058

Phase 0.310 0.138 0.025 0.310 0.138 0.025

Dysentery
Iron 0.200 0.244 0.412 0.202 0.244 0.407

Phase 0.562 0.248 0.023 0.564 0.246 0.022

Cough
Iron -0.163 0.108 0.131 -0.163 0.108 0.131

Phase 0.380 0.109 < 0.001 0.380 0.109 < 0.001

Random effects

(σ1, σ2, σ3) (0.405, 0.530, 0.314) (0.372, 0.526, 0.313)

(0.094) (0.117) (0.092) (0.120) (0.218) (0.089)

Dependence Parameters

(ρ12, ρ13, ρ23) 0.906 -0.250 -0.379 0.885 -0.276 -0.379

(0.211) (0.492) (0.617) (0.196) (0.529) (0.609)

Figure 4.2 displays diarrhea and dysentery data for each individual with two-phase

where lines represent a period of diseases. The onset of diarrhea and dysentery may be

correlated, which should be taken into account for an analysis of this data. In our analysis,

we select three types of events; diarrhea, dysentery, and cough. Since Figure 4.2 shows

that different phase may influence the occurrence of infections we first consider the iron

supplement and iron as covariates. We conduct full likelihood and pairwise likelihood in

application since the number of subjects is only 268 so that full likelihood is also feasible.

The results using the proposed methods are summarized in Table 4.3. We observe
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the iron supplements do not have significant effects on the occurrence of all three types of

events. The iron supplements reduce the occurrence of diarrhea (RR : 0.77; 95% CI: (-0.54,

0.01), p = 0.058 with pairwise likelihood) and cough (RR : 0.85; 95% CI: (-0.38, 0.05),

p = 0.131 with pairwise likelihood) whereas it increases the onset of dysentery (RR : 1.22;

95% CI: (-0.28, 0.68), p = 0.412 with pairwise likelihood). We note that the change of

phase from 1 to 2 significantly increases the occurrence of all type of events; phase 2 repre-

sents the winter period so that viral diarrhea increases onset of diarrhea (RR : 1.36; 95%

CI: (0.04, 0.58), p = 0.025 with pairwise likelihood) and dysentery (RR : 1.75; 95% CI:

(0.08, 1.05), p = 0.023 with pairwise likelihood). Also the onset of cough may increases due

to seasonal factors (RR : 1.46; 95% CI: (0.16, 0.60), p < 0.001 with pairwise likelihood).

All three types of infections show heterogeneity where σ̂1 = 0.41, σ̂2 = 0.53, σ̂3 = 0.31 with

pairwise likelihood. From the estimates of dependence parameters, diarrhea infection have

a strong positive association with both diarrhea infections (ρ̂12 = 0.91 with pairwise like-

lihood). There are negative associations between gastrointestinal infections (diarrhea and

dysentery) and cough (ρ̂13 = −0.26, ρ̂23 = −0.38 with pairwise likelihood). If the depen-

dence parameter is close to 1, it may be better to combine two events since the underlying

mechanism of two events may be identical. We note that the estimates of covariate effects

based on pairwise likelihood and two-stage pairwise likelihood are almost identical, which

indicates that marginal covariate effects are robust to dependence parameter.

Figure 4.3 shows the expected number of each episode under the pairwise likelihood

for phase 1 and 2, respectively. The infection of diarrhea and cough for the placebo group

have approximately 1 event occurrence for the period 12/2007-06/2008 (phase 1) and the

iron supplement group has lower expected number of episodes. The expected number of

events of dysentery for the placebo group is approximately 0.2 which has low incidence

compared to the onset of diarrhea.

4.6 Discussion

We propose the use of a multivariate random effects distribution to model heterogeneity in

the risk of several types of recurrent events based on a mixed Poisson model formulation.
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Figure 4.3: Plots of estimated expected number of diarrhea, dysentery, and cough events
for placebo and iron MNP group with two phase for the pairwise likelihood analysis using
the joint model
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The joint distribution of the random effects is constructed via a Gaussian copula model

which means that the measures of overdispersion for each type of event are functionally

independent and that the dependence structure is quite general. Semiparametric estimation

is carried out using a composite likelihood expectation-maximization algorithm; an even

more computationally efficient two-stage estimation procedure is also developed which

simply uses a working independence assumption at the first stage. Large sample variance

estimates are derived for both approaches and are shown to be valid in finite samples in

empirical studies. The approach is particularly appealing for use in settings with many

different types of events. From intermittent inspection, interval-censoring naturally arises

in longitudinal data. We can extend our methods to incorporate this feature of data.
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Appendix 4.A: Calculation of the Variance Estimates

1. Expressions for Simultaneous Estimation

To obtain the estimates of covariance matrix in (4.3.10), we need to calculate Â and B̂ in

(4.3.11) and (4.3.12), respectively. To be specific,

(i)
∑

(j,k)∈M
wjkE

[
∂2 logCL2i,jk

∂Ω∂Ω′

∣∣∣∣Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

= A1,

(ii)
∑

(j,k)∈M
wjkVAR

[
∂ logCL2i,jk

∂Ω

∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

= A2, and

(iii)
∑

(j,k)∈M
wjkE

[
∂ logCL2

i,jk

∂Ω
|Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

= B1

can be obtained as follows. First, we let

A1 =

A1,11 0

0 A1,22

 (4.A.1)

where

A1,11 = diag

 ∑
(1,k)∈M

w1kE

[
∂2 logLi1(θ1|uij)

∂θ2
1

∣∣∣∣Hi,1k(Ci)

] ∣∣∣∣
Ω=Ω̂

, . . . ,
∑

(J,k)∈M
wJkE

[
∂2 logLiJ (θJ |uiJ )

∂θ2
J

∣∣∣∣Hi,Jk(Ci)

] ∣∣∣∣
Ω=Ω̂

 ,

and

A1,22 =
∑

(j,k)∈M

wjkE

[
∂2 log dG(uij, uik;φjk)

∂φ∂φ′

∣∣∣∣Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

.

We also let

A2 =

A2,11 A2,12

A2,21 A2,22

 (4.A.2)
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where

A2,11 =


wjkCov

[(
∂ logLij(θj |uij)

∂θj

)
,
(
∂ logLik(θk|uik)

∂θk

) ∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

off-diagonal (j, k) component∑
(j,k)∈M

wjkVar

[(
∂ logLij(θj |uij)

∂θj

) ∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

diagonal (j, j) component
,

A2,12 = A′2,21

,

A2,21 =
∑

(j,k)∈M

wjkCov

[(
∂ log dG(uij , uik;φjk)

∂φ

)
,

(
∂ logLij(θj |uij)Lik(θk|uik)

∂θ

) ∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

)
, and

A2,22 =
∑

(j,k)∈M

wjkCov

[(
∂ log dG(uij , uik;φjk)

∂φ

)
,

(
∂ log dG(uij , uik;σj , σk, ρjk)

∂φ

) ∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

)
.

We also let

B1 =

 ∑
(j,k)∈M

wjkE

[
∂ logL(θj ;uij)

∂θj
|Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

, j = 1, . . . , J

 ,
∑

(j,k)∈M
wjkE

[
∂ log dG(uij , uik;φjk)

∂φ

∣∣∣∣Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

′ .

2. Two-stage Estimation

In two-stage estimation, A1,11 and A1,22 in (4.A.1) can be written as

A1,11 = diag

(
E

[
∂2 logLi1(θ1|uij)

∂θ2
1

∣∣∣∣Hi1(Ci)

] ∣∣∣∣
ψ1=ψ̂1

, . . . ,E

[
∂2 logLiJ(θJ |uiJ)

∂θ2
J

∣∣∣∣HiJ(Ci)

] ∣∣∣∣
ψJ=ψ̂J

)
,

and

A1,22 =


diag

(
E

[
∂2 logG(uij ;σj)

∂σ2
j

|Hij(Ci)
] ∣∣∣∣
ψj=ψ̂j

; j = 1, . . . , J

)
0

∑
(j,k)∈M

wjkE

[
∂2 log c(uij ,uik;φjk)

∂ρjk∂σ
′ |Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

diag

(
wjkE

[
∂2 log c(uij ,uik;φjk)

∂ρ2
jk

|Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

; (j, k) ∈M
)
 .

96



Also, in (4.A.2) A2,11 becomes

A2,11 = diag

(
Var

[
∂ logLij(θj;uij)

∂θj
|Hij(Ci)

] ∣∣∣∣
ψj=ψ̂j

; j = 1, . . . , J

)
,

A2,12 =

(
diag

(
Cov

[
∂ logLij(θj ;uij)

∂θj
,
∂ logG(uij ;σj)

∂σj
|Hij(Ci)

] ∣∣∣∣
ψj=ψ̂j

; j = 1, . . . , J

)
0

)
,

A2,21 =


diag

(
Cov

[
∂ logG(uij ;σj)

∂σj
,
∂ logLij(θj ;uij)

∂θj
|Hij(Ci)

] ∣∣∣∣
ψj=ψ̂j

; j = 1, . . . , J

)
∑

(j,k)∈M
wjkCov

[(
∂ log dG(uij ,uik;φjk)

∂φ

)
,
(
∂ logLij(θj |uij)Lik(θk|uik)

∂θ

) ∣∣∣∣Hi,jk(Ci),

]∣∣∣∣
Ω=Ω̂

)
 ,

and

A2,22 =


diag

(
Var

[
∂ logG(uij ;σj)

∂σj
|Hij(Ci)

] ∣∣∣∣
ψj=ψ̂j

, j = 1, . . . , J

)
0

∑
(j,k)∈M

wjkCov

[(
∂ log dG(uij ,uik;φjk)

∂ρjk

)
,
(
∂ log dG(uij ,uik;φjk)

∂φ

) ∣∣∣∣Hi,jk(Ci)

]∣∣∣∣
Ω=Ω̂

 .

In addition, B1 can be written as

B1 =

[(
E

[
∂ logL(θj ;uij)

∂θj
|Hij(Ci)

] ∣∣∣∣
ψ1=ψ̂1

, j = 1, . . . , J

)
,

(
E

[
∂ log dG(uij ;σj)

∂σj

∣∣∣∣Hij(Ci)

] ∣∣∣∣
ψJ=ψ̂J

, j = 1, . . . , J

)
, ∑

(j,k)∈M

wjkE

[
∂ log c(uij , uik;φjk)

∂ρjk
|Hi,jk(Ci)

] ∣∣∣∣
Ω=Ω̂

; (j, k) ∈M

]′.
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3. The Conditional Score Vector and the Conditional Information

Matrix

The conditional score vector ∂Lij(θj|uij)/∂θj for βj, dΛj0(·) in the complete pairwise like-

lihood (4.3.2) are given as

∂Lij(θj|uij)
∂βj

=
n∑
i=1

{
Nij(Ci)xij − uij

∫ ∞
0

Ȳi(v)xij exp(x′ijβj)dΛj0(v)
}
,

∂Lij(θj|uij)
∂dΛj0(tjk)

=
1

dΛj0(tjk)
−

n∑
i=1

uijȲi(tjk) exp(x′ijβj),

where tjk is the kth time of type j event occurrence.

The components of the conditional information matrix −∂2Lij(θj|uij)/∂θj∂θ′j are as

follows.

−∂
2Lij(θj|uij)
∂βj∂β′j

=
n∑
i=1

uij

∫ ∞
0

Ȳi(v)xijx
′
ij exp(x′ijβj)dΛj0(v),

− ∂2Lij(θj|uij)
∂βj∂dΛj0(tjk)

=
n∑
i=1

uijȲi(tjk)xij exp(x′ijβj), and

− ∂2Lij(θj|uij)
∂{dΛj0(tjk)}2

=
1

dΛj0(tjk)2
.

In (4.3.2), log dG(uij, uik;φjk) is given as

log dG(uij, uik;φjk) =
n∑
i=1

[
1

2
log(uij)−

log2(uij)

2σ2
j

− log(σj)−
σ2
j

8
+

1

2
log(uik)−

log2(uik)

2σ2
k
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− log(σk)−
σ2
k

8
−

log(1− ρ2
jk)

2
−
ρ2
jk(σ

2
j + σ2

k)

8(1− ρ2
jk)

+
ρjkσjσk

4(1− ρ2
jk)

−
ρ2
jk

2(1− ρ2
jk)

{
log2(uij)

σ2
j

+ log(uij) +
log2(uik)

σ2
k

+ log(uik)

}
+

ρjk
1− ρ2

jk

{
log(uij) log(uik)

σjσk
+
σk log(uij)

2σj
+
σj log(uik)

2σk

}]
.

The components of the conditional score vector ∂ log dG(uij, uik;φjk)/∂φjk are given as

follows.

∂ log dG(uij, uik;φjk)

∂σj
= − n

σj
− nσj

4(1− ρ2
jk)

+
nρjkσk

4(1− ρ2
jk)

+
n∑
i=1

log2(uij)

(1− ρ2
jk)σ

3
j

−
n∑
i=1

ρjk log(uij) log(uik)

(1− ρ2
jk)σ

2
jσk

+
ρjk

1− ρ2
jk

n∑
i=1

{
−σk log(uij)

2σ2
j

+
log(uik)

2σk

}
,

∂ log dG(uij, uik;φjk)

∂σk
= − n

σk
− nσk

4(1− ρ2
jk)

+
nρjkσj

4(1− ρ2
jk)

+
n∑
i=1

log2(uik)

(1− φ2
0)σ3

k

−
n∑
i=1

φ0 log(uij) log(uik)

(1− φ2
0)σjσ2

k

+
ρjk

1− ρ2
jk

n∑
i=1

{
−σj log(uik)

2σ2
k

+
log(uij)

2σj

}
,

and

∂ log dG(uij, uik;φjk)

∂ρjk
=

nρjk
1− ρ2

jk

−
nρjk(σ

2
j + σ2

k)

4(1− ρ2
jk)

2
+
nσjσk(1 + ρ2

jk)

4(1− ρ2
jk)

2

− ρjk
(1− ρ2

jk)
2

n∑
i=1

{
log2(uij)

σ2
j

+
log2(uik)

σ2
k

+ log(uij) + log(uik)

}
+

1 + ρ2
jk

(1− ρ2
jk)

2

n∑
i=1

{
log(uij) log(uik)

σjσk
+
σk log(uij)

2σj
+
σj log(uik)

2σk

}
.

99



The elements of the conditional information matrix −∂2 log dG(uij, uik;φjk)/∂φjk∂φ
′
jk

are as follows.

−∂
2 log dG(uij, uik;φjk)

∂σj∂σj
= − n

σ2
j

+
n

4(1− ρ2
jk)

+
n∑
i=1

3 log2(uij)

σ4
j (1− φ2

0)

−
n∑
i=1

2ρjk log(uij) log(uik)

(1− ρ2
jk)σ

3
jσk

− ρjk
1− ρ2

jk

n∑
i=1

σk log(uij)

σ3
j

,

−∂
2 log dG(uij, uik;φjk)

∂σk∂σk
= − n

σ2
k

+
n

4(1− ρ2
jk)

+
n∑
i=1

3 log2(uik)

σ4
k(1− ρ2

jk)

−
n∑
i=1

2ρjk log(uij) log(uik)

(1− ρ2
jk)σjσk

− ρjk
1− ρ2

jk

n∑
i=1

σj log(uik)

σ3
k

,

−∂
2 log dG(uij, uik;φjk)

∂σj∂σk
= − nρjk

4(1− ρ2
jk)
−

n∑
i=1

ρjk log(uij) log(uik)

(1− ρ2
jk)σ

2
jσ

2
k

+
ρjk

1− ρ2
jk

n∑
i=1

{
log(uij)

2σ2
j

+
log(uik)

2σ2
k

}
,

−∂
2 log dG(uij, uik;φjk)

∂σj∂ρjk
=

nρjkσj
2(1− ρ2

jk)
2
−
nσk(1 + ρ2

jk)

4(1− ρ2
jk)

2
−

n∑
i=1

2ρjk log2(uij)

(1− ρjk)2σ3
j

+
(1 + ρ2

jk)

(1− ρ2
jk)

2

n∑
i=1

{
log(uij) log(uik)

σ2
jσk

− σk log(uij)

σ2
j

+
log(uik)

2σk

}
,
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−∂
2 log dG(uij, uik;φjk)

∂σk∂ρjk
=

nρjkσj
2(1− ρ2

jk)
2
−

n∑
i=1

2ρjk log2(uik)

(1− ρjk)2σ3
k

+
(1 + ρ2

jk)

(1− ρ2
jk)

2

n∑
i=1

{
log(uij) log(uik)

σjσ2
k

− σj log(uik)

σ2
k

+
log(uij)

2σk

}
, and

−∂ log dG(uij, uik;φjk)

∂ρjk∂ρjk
= −

n(1 + ρ2
jk)

(1− ρ2
jk)

2
+

(σ2
j + σ2

k)(1 + 3ρ2
jk)

4(1− ρ2
jk)

3
−
σjσk(3ρjk + ρ3

jk)

2(1− ρ2
jk)

3

+
1 + 3ρ2

jk

(1− ρ2
jk)

3

n∑
i=1

{
log2(uij)

σ2
j

+
log2(uik)

σ2
k

+ log(uij) + log(uik)

}
−

2ρjk(3 + ρ2
jk)

(1− ρ2
jk)

3

n∑
i=1

{
log(uij) log(uik)

σjσk
+
σk log(uij)

2σj
+
σj log(uik)

2σk

}
.

In two-stage estimation, log dG(uij;σj) is given as

log dG(uij;σj) =
n∑
i=1

[
1

2
log(uij)−

log2(uij)

2σ2
j

− log(σj)−
σ2
j

8

]
.

The conditional score function and the conditional information function for σj from

log dG(uij;σj) are given as

∂ log dG(uij;σj)

∂σj
= − n

σj
+

log2(uij)

σ3
j

−
σ3
j

4
, and

−∂
2 log dG(uij;σj)

∂σj∂σj
= − n

σ2
j

+
3 log2(uij)

σ4
j

+
3σ4

j

4
.
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Chapter 5

The Illness-Death Model for Family

Studies

5.1 Introduction

Family studies are conducted to assess the nature and extent of familial aggregation of

disease, as well as the effect of genetic factors on disease onset. When present, familial

aggregation suggests a shared genetic or environmental basis of disease (Li and others ,

1998; Liang and Beaty, 2000). For valid inference in such settings, however, it is important

to address the sampling scheme by which family members are recruited. Typically an

individual with the disease, called the proband, is recruited to the study and provides a

detailed disease history including the age of disease onset. The disease onset time for this

individual is right-truncated since they had to be affected to be sampled, but their survival

time is left-truncated. The family members of the proband, called non-probands, are then

selected for the family study. In some settings the proband may report the disease history

of their family members, but it may alternatively be acquired through clinical examination

conducted by a physician.

A variety of methods for the analysis of multivariate failure time data methods have

been developed (Hougaard, 2000). A non-parametric estimate was suggested by Dabrowska
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(1988). Wei and others (1989) introduced marginal models for different types of failure and

developed methods for the robust estimation of standard errors. The marginal apporach for

the analysis of clustered failure time data has been developed in general by Lee and others

(1992) and by Liang and others (1993) for family studies. Clayton (1978) suggested use of

the cross-ratio as a dependence measure, and Oakes (1989) showed the connection between

frailty models and the cross-ratio hazard function. Frailty models have been widely used in

the analysis of case-control family studies (Hsu and others , 2004; Hsu and Gorfine, 2005)

where a frailty variance is interpreted as a measure of dependence in the age of onset within

family members. Copula models can alternatively be used, in which case the multivariate

joint distribution is formulated in terms of the marginal distributions and a copula function

(Joe, 1997; Shih and Louis, 1995). Li and others (1998), Shih and Chatterjee (2002), and

Chatterjee and others (2006) developed the copula models for case-control family studies

considering the ascertainment of case-control probands. Zhong and Cook (2016) used

copula functions and composite likelihood for the analysis of right-censored and current

status family data while addressing complex sampling schemes. Zhong and Cook (2017)

developed estimating function methods and considered the implications of different forms

of the estimating functions in terms of robustness and efficiency.

The aforementioned methods focus on modeling familial aggregation in disease onset

times in the simple framework of time to event data. More recent work has dealt with

clustered failure time data in the semi-competing risks setting, where disease onset and

disease-free death are considered as competing events. Bandeen-Roche and Liang (2002)

suggested a modified conditional hazard ratio to account for the cause of failure based on

a frailty model and applied it to a population cohort study of dementia. Shih and Albert

(2010) extended the work of Bandeen-Roche and Liang (2002) and considered two types

of dependence measures with one to model the dependence in terms of the failure time of

paired members and a second to model the association between the failure types given the

time; they suggested use of a time-varying piecewise constant dependence measure. To

examine sibship association in disease onset, Cheng and others (2009) developed nonpara-

metric association analysis using the bivariate cumulative incidence function defined by the

cause-specific hazard function to account for the exchangeable clustered competing risks

setting. Zhou and others (2012) proposed a marginal proportional subdistribution hazard
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model in the clustered competing risks setting. Scheike and others (2010) and Scheike

and Sun (2012) studied a semiparametric additive model and explored a cross-odds ratio-

type measure on the probability scale as the association parameters for the Danish twin

data; Scheike and others (2014) extended the model to accommodate delayed entry and to

accommodate genetic and environmental effects.

Multi-state models offer another framework for dependence modeling. Aalen and others

(1980) applied the Schweder (1970) concept of local dependence to understand the inter-

action between two life history events by comparing the transition intensities. Hougaard

and others (1992) and Hougaard (1999) considered dependence modeling in the life times

of twins via multistate models under the Markov or semi-Markov assumption.

There has been little work on the use of illness-death models in the setting of family

or twin studies. The illness-death model is a useful framework for event history analysis

when not only disease incidence but also mortality is considered for better understanding of

the life history process (Andersen, 1988). Dependence modeling of correlated illness-death

processes is necessary when data are clustered as in family studies. (Cook and Lawless,

2018, Section 6.2) discuss a variety of methods for dependence modeling for clustered or

otherwise correlated multistate processes. Some of these apply generally while much of the

discussions invlovles progressive process. Jiang and Haneuse (2017) proposed an illness-

death model with a non-parametric frailty distribution where the non-terminal event times

and terminal event times are correlated.

In this chapter, we develop an illness-death model using the latent variable formulation

of the competing risk model for the first event (disease onset or disease-free death). A cop-

ula model is used to accommodate clustering in the ages of disease onset within families.

Methods are described which account for incomplete data under two types of biased sam-

pling schemes. The use of auxiliary data is highlighted to address identifiability problems

and to increase the efficiency. Finally, we show how to account for incomplete genetic data

when auxiliary data do not have genotype information available.

The remainder of this contribution is organized as follows. In Section 5.2 we define no-

tation and present the joint model. Two study designs under the biased sampling schemes

are then described and the associated likelihood is presented; composite likelihood is pro-
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posed for settings where some family sizes are large. The use of auxiliary data is discussed

in Section 5.3 to facilitate estimation of transition intensities to the death state, and simu-

lation studies are reported in Section 5.4. In Section 5.5, we extend the proposed methods

to incorporate genotype information and present the results of further simulation stud-

ies. An application to a family study on the onset of psoriatic arthritis (PsA) from the

University of Toronto is given in Section 5.6 and concluding remarks are given in Section

5.7. Remarks on computational methods are given in Appendix 5.A and the method for

modeling missing genetic data is described brifely in Appendix 5.B

5.2 Model Formulation

5.2.1 Notation and Model Formulation

We consider a four-state model illness-death model to describe the joint distribution of

disease onset and death (Datta and others , 2000; Xu and others , 2010). We let state

0 represent a healthy state, state 1 represent a diseased state, state 2 represent death

post-disease, and state 3 represent disease-free death; see Figure 5.1. Our initial interest

lies in modeling the dependence between family members in the age of disease onset. To

discuss the joint model in the greatest simplicity, we first consider dependence modeling

for individuals labeled j and k in family i, and define variables for individual j without loss

of generality. We let Xij1 denote the age of disease onset, Xij2 the age at death following

disease, Xij3 the age at disease-free death. Note that this is a latent variable formulation

of the semi-competing risks problem for transition out of state 0 in that Xij1 may not be

observed (or realized) if Xij3 < Xij1. While unconventional and not without limitations in

terms of its connection with observable features, we adopt this formulation here since the

association in the age of disease onset is most naturally modeled in terms of the 0 → 1

transition times. Finally we let Bij be the calendar time of birth for individual j in family

i, j = 1, 2, and let Bi = (Bij, Bik)
′ be the vector of calendar times of births for individuals

j and k in family i.

It is also helpful to use notation for multistate models and so we let Zij(a) denote the

state occupied at age a and calendar time Bij + a for individual j in family i = 1, . . . , nF
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Figure 5.1: A four-state representation of an illness-death model

where nF is the number of families recruited. We let Vij denote covariates for individual

j in family i and V i = (Vij, Vik)
′. Let Hij(a) = {Zij(s), 0 ≤ s < a,Bij, Vij} denote the

history for individual j in family i over age [0, a) whose calendar time of birth is Bij. The

age- and calendar time-specific marginal transition intensity function from state h into l is

defined as

lim
∆a↓0

P (Zij(a+ ∆a−) = l|Zij(a−) = h,Hij(a))

∆a
= λijl(t, a|Hij(a))

with t = Bij + a where (h, l) ∈ {(0, 1), (0, 3), (1, 2)}. If the disease process for each family

member is Markov given the date of birth and the covariates, we can write

λij(t, a|Hij(a)) = λl(t, a|bij, vij), l = 1, 2, 3.

If we assume that λ3(t, a|bij, vij) = λ2(t, a|bij, vij), the disease is incidental in that it does

not change the risk of death, but if λ3(t, a|bij, vij) 6= λ2(t, a|bij, vij), then survival is locally

dependent of the disease process (Aalen, 2012); in this case, typically, λ2(t, a|bij, vij) >
λ3(t, a|bij, vij). Andersen and others (1985) use a Cox model to accommodate proportional
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mortality among diseased and disease-free individuals. In the present context, this has the

form

λ2(t, a|bij, vij) = λ3(t, a|bij)ν0(a) exp(v′ijβ2), (5.2.1)

where λ3(t, a|bij) is the age- and calendar-time specific baseline population mortality rate.

The term ν0(a) reflects a proportional change in mortality in terms of age. We adopt the

model (5.2.1) and let λ3(t, a|bij, vij) = λ3(t, a|bij) so that the subject-specific disease-free

mortality rate does not depend on the covariates and can be therefore easily estimated

based on the population rates. If the disease does not alter the mortality trend in age in

the population, we may assume ν0(a) = ν.

Here, the transition times Xij1 and Xij3 are defined to be statistically independent,

and we note that we only observe min(Xij1, Xij3) (Kalbfleisch and Prentice, 2011). For

transitions from the healthy to diseased state, we assume that the intensity does not depend

only on calendar time, in which case we may write λ1(t, a|bij, vij) = λ1(a) exp(v′ijβ1). Under

the assumption of independent competing risks, we denote the survival functions for the

latent disease onset time as F(a|Vij;φ1) = 1−exp(−
∫ a

0
λ1(a|Vij)da), and let f(a|Vij;φ1) =

−∂F(a|Vij;φ1)/∂a where φ1 indexes the marginal intensity for disease onset. To identify

the nature of familial aggregation in the age of disease onset, we construct a joint model

for Xij1 and Xik1 using a copula function (Joe, 1997) in which

P (Xij1 > aj, Xik1 > ak;V i, ϕ) = C(F(aj|Vij;φ1),F(ak|Vik;φ1); ρ), (5.2.2)

where ρ indexes the copula function and ϕ = (φ′1, ρ)′. We define φ = (φ′1, φ
′
2)′ where φ2

indexes the transition intensity from the diseased to death state and ψ = (φ′, ρ). The joint

density function can be written as

P (Xij1 = aj, Xik1 = ak;V i, ϕ) =c(F(aj|Vij;φ1),F(ak|Vik;φ1); ρ)f(aj|Vij;φ1)f(ak|Vik;φ1),

where c(·, ·; ρ) is the density of the copula. We here consider the Clayton copula which has

the form

C(u1, u2; ρ) = (u−ρ1 + u−ρ2 − 1)−1/ρ

with Kendall’s τ = ρ/(ρ + 2). Mesfioui and Quessy (2008) showed that the conditional

107



Clayton copula has an invariance property; in the present context, if Xi1 = (Xij1, Xik1, Xil1)

follows a joint distribution with a dependence model governed by the Clayton copula,

then the distribution of Xij1, Xik1|Xil1 = xil1 follows the Clayton copula with parameter

ρ/(1 + ρ), so,

P (Xij1 > aj, Xik1 > ak|Xil1 = al, Vij, Vik, Vil) (5.2.3)

= C(F(aj|Xil1 = al, Vij, Vil;φ1, ρ),F(ak|Xil1 = al, Vik, Vil;φ1, ρ); ρ∗),

where ρ∗ = ρ/(1 + ρ) and

F(aj|Xil1 = al, Vij, Vil;φ1, ρ) =
∂C(F(aj|Vij;φ1),F(xl|Vil;φ1); ρ)

∂xl

∣∣∣∣
xl=al

.

As a measure of dependence of the age of disease onset between two individuals, we

consider the cross ratio for (Xij1, Xik1) (Oakes, 1989) which takes the form of

θ(aj, ak) =
λ1(ak|Xij1 = aj;V i, ϕ)

λ1(ak|Xij1 > aj;V i, ϕ)
(5.2.4)

=
P (Xij1 = aj, Xik1 = ak;V i, ϕ)P (Xij1 > aj, Xik1 > ak;V i, ϕ)

P (Xij1 = aj, Xik1 > ak;V i, ϕ)P (Xij1 > aj, Xik1 = ak;V i, ϕ)
.

We note that under the Clayton copula, θ(aj, ak) = 1 + ρ. We assume that the (possibly

latent) age at disease-free death for an individual is independent from the life history of

other family members. This assumption may not be valid in settings where the occurrence

of death might be affected by shared environmental factors in a family. Nevertheless we

adopt it here, recognizing that there is a within-family dependence in the marginal time of

death (min(Xij2, Xij3)) accommodated. Note that under the assumption of i) conditionally

independent competing risks, Xij1 ⊥ Xij3|Vij, and ii) Xij3 ⊥ {Zik(s), 0 < s}|Bi,V i for

j 6= k, a cause-specific cross-ratio θ11(aj, ak) for the age of disease onset between two

individuals is the same as the cross odds ratio θ(aj, ak) in (5.2.4). This is true since

P (Xij1 = aj, Xij3 > aj, Xik1 = ak, Xik3 > ak;Bi,V i, ϕ) = P (Xij1 = aj, Xik1 = ak;V i, ϕ)
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and

θ11(aj, ak) =
λ11(ak|Xij1 = aj, Xij3 > aj;Bi,V i, ϕ)

λ11(ak|Xij1 > aj, Xij3 > aj;Bi,V i, ϕ)
=
λ1(ak|Xij1 = aj;V i, ϕ)

λ1(ak|Xij1 > aj;V i, ϕ)
,

where θ11(·) represents the cause-specific hazard ratio for the transition from 0 to 1 for

two members, λ1(ak|Xij1 = aj, Xij3 > aj;Bi,V i, ϕ) is the conditional hazard at disease

age ak given the other family member has disease at age aj, and λ1(ak|Xij1 > aj, Xij3 >

aj;Bi,V i, ϕ) is the conditional hazard at disease age ak given the other family member is

in healthy state at age aj under the semi-competing risks setting. Here, we consider the

Clayton copula and we let θ(aj, ak) = θ11(aj, ak) = θ = 1 + ρ. Note that since the age

of disease onset between family members are correlated, Xij2 may not be independent of

Xik2.

Scheike and others (2010) introduced a cross-odds ratio for the age of disease onset

under the competing risks setting given by

π(a) =
ODDS(Xik1 ≤ a,Xik1 < Xik3|Xij1 ≤ a,Xij1 < Xij3;Bi,V i)

ODDS(Xik1 ≤ a,Xik1 < Xik3, Bik, Vik)
,

where

P (Xik1 ≤ a,Xik1 < Xik3, Bik, Vik) (5.2.5)

is the marginal cumulative incidence function for the age of disease onset. Note that

π(a) does not have a simple expression even with θ(a, a) = 1 + ρ under the Clayton cop-

ula, because the cumulative incidence functions are obtained by the cause-specific hazards

λ1(·), λ2(·), and λ3(·).

5.2.2 Likelihood Construction for Family Studies

We now extend the model to deal with all members of a family. We let mi + 1 denote

the total number of members of family i with the subscript 0 used to denote the proband

in the family. Let X i1 = (Xi01, Xi11, . . . , Ximi1)′ denote the vector of possibly latent

onset times within family i, X i3 = (Xi03, Xi13, . . . , Ximi3)′,X i2 = (Xi02, Xi12, . . . , Ximi2)′,

Bi = (Bi0, . . . , Bimi)
′, and V i = (Vi0, . . . , Vimi)

′. Then (5.2.2) extends tomi+1 dimensional
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survival copula function as

P (Xi01 > a0, . . . , Ximi1 > ami |V i;ϕ) = C(F(a0|Vi0;φ1), . . . ,F(ami |Vimi ;φ1); ρ).

We consider studies in which families are sampled by the selection of the proband from

a disease registry. We label the proband j = 0 and selected family members by j =

1, . . . ,mi, i = 1, . . . , nF . We let Ri0 denote the calendar time of screening and recruitment

of the proband to the registry and Ci0 = Ri0−Bi0 the age of the proband at calendar time

Ri0. To be in the registry, the proband must be alive with disease at age Ci0. Let Ri be the

calendar time of the second stage of sampling of the proband from the registry for inclusion

in the family study, and Ai0, and Ai = (Ai0, Ai1, . . . , Aimi)
′ denote the age at calendar time

Ri for the proband and all family members, respectively; let A−i = (Ai1, . . . , Aimi)
′ denote

the elements of Ai excluding the proband. More generally a superscript “-” denotes a

vector with the entry for the proband excluded.

Given the life history of the proband, we obtain data from the non-probands. If a non-

proband died before Ri, it is often possible to obtain disease history data from medical

records or via the proband. Anderson (1961) compared the accuracy of reports about

disease histories of family members with diagnosis data from physicians, and found that

obtaining information from physicians is necessary to ensure accurate reporting is made for

non-probands. We therefore also consider designs in which physicians must interview non-

probands at calendar time Ri to carry out medical examinations. In this second design,

non-probands would have to be alive at the family recruitment time Ri.

The Lexis diagram plays a central role in describing the incidence, path, and sampling of

disease processes in a population using a calendar time × age co-ordinate system (Keiding,

1990, 2006). Figure 5.2 shows possible scenarios for family data on illness-death processes

under the biased sampling scheme. In this figure, the dashed lines represent periods of

calendar time and ages at which the healthy state is occupied, and the solid lines represent

periods in which the diseased state is occupied. The proband, depicted in red, provides

their retrospectively recorded age of disease onset, and like other individuals in the registry

may be followed until death or censoring. Non-probands may give a mixed type of data.

Some may give retrospectively reported ages of disease onset, some may be disease-free at
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the time of examination, and for some we may simply know their date of death if they

did not live long enough to be recruited and examined at the calendar time of the family

study.

Figure 5.2: A Lexis diagram for family data obtained under a biased sample scheme; Ri0

denotes the calendar time of recruitment of a proband to a registry and Ri is the date of
the family study.

We construct the likelihood function for two particular study designs under the biased

sampling schemes, depending on whether we collect all history of non-probands at Ri or

only examine non-probands who are alive at Ri. If si = (si0, si1, . . . , simi)
′ denotes a vector

of ages of individuals in family i, we let Zi(si) = (Zi0(si0), Zi1(si1), . . . , Zimi(simi))
′. In

both designs the likelihood contribution of the proband is

Li0(φ) = P (Z̄i0(Ai0)|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;φ), (5.2.6)

where Z̄i0(Ai0) = {Zi0(u), 0 < u ≤ Ai0}. In the first design we suppose the disease history

and covariates for all non-probands are available at calendar time Ri at which the family

study is conducted. The likelihood is then given as

LIi (ψ) ∝Li0(φ)P (Z̄
−
i (A−i )|Z̄i0(Ai0), Zi0(Ai0) = 1,Ai,Bi,V i;ψ), (5.2.7)
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where Z̄i(si) = {Zij(u), 0 < u ≤ sij, j = 0, . . . ,mi} and Z̄ij(s) = {Zij(u), 0 < u ≤ s}.

In the second design we consider a study in which non-probands must be alive to be

examined and participate in the family study. This gives

LIIi (ψ) ∝ Li0(φ)P (Z̄
−
i (A−i )|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−i (A−i ) ∈ {0, 1}mi ,Ai,Bi,V i;ψ).

(5.2.8)

In what follows we omit the superscript I and II indicating the design and take it as

understood that Li represents either LIi or LIIi in a particular setting. The score vector is

S(ψ) =
nF∑
i=1

Si(ψ) =
nF∑
i=1

∂ logLi/∂ψ and the information matrix is

I(ψ) = −
nF∑
i=1

Ii(ψ) = −
nF∑
i=1

∂2 logLi(ψ)/∂ψ∂ψ′,

respectively. We obtain the maximum likelihood estimator ψ̂ by solving S(ψ) = 0 and

asymptotically
√
nF (ψ̂ − ψ) ∼ N(0, I−1(ψ)) where I(ψ) = E[Ii(ψ)].

When mi is large the computational burden of evaluating the joint probability of the

life histories of family members may be considerable, so we consider use of “pairwise” con-

ditional composite likelihood (Varin and others , 2011) in which pairs are comprised of two

non-probands and the models condition on the proband data for this respective family. In

particular, in the second design in (5.2.8) where non-probands are only selected if they are

alive, the composite likelihood is exploited to address the difficulty of calculating the con-

dition P (Z̄i0(Ai0), Zi0(Ai0) = 1,Z−i (A−i ) ∈ {0, 1}mi ,Ai,Bi,V i). Then, the contribution

to the conditional composite likelihood of family i for design k is

CLki (ψ) ∝ Li0(φ)
∏

1≤j<l≤mi

{
Lkijl(ψ)

} 1
mi−1

,
k = I, II, (5.2.9)

where Li0 is given by (5.2.6); the weight 1/(mi−1) ensures the contribution to the marginal

function for non-probands is appropriate. In design I,

LIijl(ψ) = P (Z̄
−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,V ijl;ψ)
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and in design II,

LIIijl(ψ) = P (Z̄
−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−ijl(A

−
ijl) ∈ {0, 1}

2,Aijl,Bijl,V ijl;ψ)

=
P (Z̄

−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,V ijl;ψ)

P (Z−ijl(A
−
ijl) ∈ {0, 1}2|Z̄i0(Ai0), Zi0(Ai0) = 1,Aijl,Bijl,V ijl;ψ)

with Aijl = (Ai0, Aij, Ail)
′,Bijl = (Bi0, Bij, Bil)

′,V ijl = (V ′i0, V
′
ij, V

′
il)
′, Z̄ijl(sijl) = {Zih(u), 0 <

u ≤ sih, h = 0, j, l;Bijl}. We calculate Lkijl(ψ) using the conditional Clayton copula func-

tion based on (5.2.3). The detail of computation of composite likelihood is given in Ap-

pendix 5.A. Again we suppress the superscript I or II when discussing a generic setting we

write CLi(ψ). The score vector for the composite likelihood is then U(ψ) =
nF∑
i=1

Ui(ψ) =

nF∑
i=1

∂ logCLi(ψ)/∂ψ = and the maximum composite likelihood estimator ψ̃ is obtained by

solving U(ψ) = 0. The estimated variance of ψ̃ is given as n−1
F A−1(ψ̃)B(ψ̃)A−1(ψ̃) where

A(ψ) = −n−1
F

nF∑
i=1

∂Ui(ψ)/∂ψ′, and B(ψ) = n−1
F

nF∑
i=1

Ui(ψ)U ′i(ψ).

5.3 Augmented Composite likelihood

In the context of family study, the low incidence of disease onset among non-probands and

bias sampling scheme pose difficulty for analysis due to the lack of data. To overcome this

difficulty, auxiliary data can provide additional source of data and strengthen the analysis.

The combination of data from different sources in family study has been suggested (Pfeiffer

and others , 2008; Zheng and others , 2010; Balliu and others , 2012) in which the case-control

studies or the twin-based studies are incorporated with the family-based studies. In our

motivating example, University of Toronto Psoriatic Arthritis Registry (UTPAR) provides

data with right-truncated disease onset time and the left-truncated and right-censored

time to death (Wong and others , 1997). The UTPAR also conducts tracing studies, which

aim to yield further data on survival times for PsA patients. Another source of auxiliary

data is a national cross-sectional survey conducted by the National Psoriasis Foundation

in the United States; it yields current disease status data (Gelfand and others , 2005).

Although this study provides only marginal information, the efficiency can be enhanced
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by augmenting the likelihood. Since we have no data available on the time to disease-free

death, we use national mortality statistics to estimate the disease-free mortality rate; the

data are population-level data and so we treat λ3(·, ·) as known and define them to be the

population mortality rates. We thus consider i) registry data with follow-up ii) a cross-

sectional survey yielding current status data on disease state, and iii) national statistics

for the mortality rate.

Let A1 the set of individuals in the registry, A2 the set of individuals from the cross-

sectional survey. We multiply CLk(ψ) in (5.2.9) by the corresponding marginal likelihood

LA1 , LA2 based on auxiliary data i), ii), respectively. For the individuals in the registry

except the probands in i), we let Xr1 denote the age at onset, Cr the age at recruitment,

Xr2 the age at death following disease (if available), A∗r = min(C∗r , Xr2) with C∗r the

last assessment time, Br the calendar time of birth, and Vr a vector of covariates for an

individual r. Then, LA1 is given as

LA1 ∝
nR∏
r

P (Z̄r(A
∗
r)|Zr(Cr) = 1, Cr, Br, Vr;φ)

where nR is a size of registry data.

In the case of ii), if Cr denotes the age at contact for the survey, then LA2 is written as

LA2 ∝
nS∏
r

∏
h∈{0,1}

P (Zr(Cr) = h|Zr(Cr) ∈ {0, 1}, Br, Vr;φ)I(Zr(Cr)=h)

where nS is the sample size of the survey. In the case of iii), we obtain λ3(t, a) using the

published population data which is calculated by the number of deaths in age-, calendar

time- divided by the exposure-to-risk in age-, calendar time- (Robert, 2017). Figures 5.3

shows the age-specific population mortality rates across calendar periods between 1921

to 2011. A decreasing trend in the age-specific mortality rates over the last 90 years is

apparent, therefore, if the registry includes individuals born over a wide range of calendar

time, age- and time-specific mortality rates should be considered.

To examine the asymptotic distribution of the estimator ψ̃, we construct the augmented
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Figure 5.3: Age-specific population mortality rates by calendar period in Canada from
1921 to 2011

composite likelihood

ACL(ψ) ∝
nF∏
i=1

CLi(ψ)

nR∏
r=1

LA1,r(φ)

nS∏
r=1

LA2,r(φ), k = I, II, (5.2.10)

and we may write

UF ,i(ψ) =
∂ logCLi(ψ)

∂ψ
,

UA1,r(φ) =
∂ logLA1,r(φ)

∂ψ
,
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and

UA2,r(φ) =
∂ logLA2,r(φ)

∂ψ
.

The score vector for the augmented composite likelihood is

Ū(ψ) =

nF∑
i=1

UF ,i(ψ) +

nR∑
r=1

UA1,r(φ) +

nS∑
r=1

UA2,r(φ)

and the maximum augmented pairwise likelihood estimator ψ̃ is obtained by solving Ū(ψ) =

0. The estimated variance of ψ̃ is given as n−1A−1(ψ̃)B(ψ̃)A−1(ψ̃)′ where

A(ψ) = − 1

n

(
nF∑
i=1

∂2 logCLi(ψ)

∂ψ∂ψ′
+

nR∑
r=1

∂2 logLA1,r(φ)

∂ψ∂ψ′
+

nS∑
r=1

∂2 logLA2,r(φ)

∂ψ∂ψ′

)
,

and

B(ψ) =
1

n

(
nF∑
i=1

UF ,i(ψ)U ′F ,i(ψ) +

nR∑
r=1

UA1,r(φ)U ′A1,r
(φ) +

nS∑
r=1

UA2,r(φ)U ′A2,r
(φ)

)

with n = nF + nR + nS.

5.4 Simulation Studies

Here we assess the performance of the methods introduced in Section 5.2 and 5.3 through

simulation studies. To mimic more closely the PsA study, we consider the age and calendar

time-specific mortality rates based on the population mortality rates λ3(t, a) and assume

λ2(t, a) = νλ3(t, a). We set the rate of occurrence of disease λ1 = 0.01 as a constant value.

We consider the Clayton copula with Kendall’s τ = 0.2 and 0.4. We generate the time to

disease-free death from the age and time-specific population mortality rates with ν = 1.1.

We generate the family size with 4 or 6 members having two parents and 2 or 4 children

in family where P (mi + 1 = 4) = 2/3 and P (mi + 1 = 6) = 1/3. Then we randomly choose

an individual from the family members and generate the date of birth from the uniform

distribution (1920, 1950) if the individual is a parent or (1950, 1980) otherwise. Then we
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generate an individual path from the marginal distribution. We generate the individual

sampling date from the uniform distribution (1980, 2010) and select those who are alive

and diseased at the sampling date and repeat for the registry with the family sample size

nR + nF . Among nR + nF individuals who are alive at the family sampling date on July

1st of 2010, we randomly select probands and generate the data for non-probands given

the proband data with the family size nF . If the proband is a parent, the birth dates of

spouse or children are obtained by adding the uniform distribution (0, 10) or (20, 30) to

the birth date of proband, respectively, and conduct similarly when the proband is a child.

In design I, we include all non-probands data in analysis, whereas we only include alive

non-probands data in design II. In this simulation, we consider both types of auxiliary

data: the registry data with follow-up and the current status survey data. The registry

follow-up data including probands are assumed to be collected until July 1st of 2010 with

the record of death post disease. For the current status survey data, we generate the date

of birth from the uniform distribution (1930, 1980) and set the sampling date as July 1st

of 2000. We set the family sample size nF = 1000, the size of registry nR = 2000, and the

survey size nS = 1000. Here, the augmented pairwise estimations were carried out and the

results are reported in Table 5.1 for design I, and Table 5.2 for design II, respectively.

For all methods in two designs, the biases are negligible, the empirical standard errors

(ESEs) are in a good agreement with the average standard errors (ASEs), and the em-

pirical coverage probability (ECP) of nominal 95% confidence intervals are all within an

acceptable range. The estimators under the full likelihood have smaller ASEs compared

to the pairwise likelihood with the registry data; however, the current status auxiliary

data improve efficiency so that the estimators obtained by the pairwise likelihood are as

efficient as those by the full likelihood. Since the current status auxiliary data have no

time to death data, the efficiency of ν is not improved. Comparing design I and II, the

estimators have better efficiency under design I. Also, the estimators λ1 and τ under design

II are as nearly as efficient as those under design I with current status data.
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Table 5.1: Frequency properties of estimators based on the augmented pairwise likelihood
for family data given λ3(·, ·) under biased sampling scheme for the proband and disease
history of non-probands available (design I) with two auxiliary data: the registry follow-
up data and the current status survey data; Clayton copula with Kendall’s τ=0.2, 0.4;
nF = 1000, nR = 2000, nS = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Full Likelihood

0.2 log(λ1) -0.003 0.057 0.058 0.951 -0.001 0.040 0.040 0.948

log(ν) -0.001 0.038 0.037 0.947 -0.001 0.038 0.037 0.950

τ 0.001 0.028 0.028 0.947 -0.000 0.022 0.022 0.956

0.4 log(λ1) -0.003 0.079 0.080 0.960 -0.000 0.044 0.045 0.954

log(ν) -0.002 0.037 0.036 0.952 -0.002 0.037 0.036 0.948

τ 0.002 0.033 0.033 0.950 0.001 0.021 0.021 0.953

Pairwise Likelihood

0.2 log(λ1) -0.003 0.059 0.061 0.953 -0.001 0.040 0.041 0.959

log(ν) -0.001 0.038 0.037 0.943 -0.001 0.038 0.037 0.946

τ 0.001 0.030 0.030 0.950 -0.000 0.023 0.023 0.961

0.4 log(λ1) -0.004 0.081 0.082 0.963 -0.001 0.044 0.045 0.954

log(ν) -0.002 0.037 0.036 0.951 -0.002 0.037 0.036 0.951

τ 0.002 0.035 0.034 0.957 0.001 0.022 0.021 0.962
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Table 5.2: Frequency properties of estimators based on the augmented pairwise likelihood
for family data given λ3(·, ·) under biased sampling scheme for the proband and alive non-
probands data available (design II) with two auxiliary data: the registry follow-up data
and the current status survey data; Clayton copula with Kendall’s τ=0.2, 0.4; nF = 1000,
nR = 2000, nS = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log(λ1) -0.006 0.065 0.066 0.949 -0.001 0.042 0.042 0.948

log(ν) -0.001 0.048 0.046 0.957 -0.001 0.048 0.046 0.940

τ 0.003 0.033 0.033 0.951 0.000 0.024 0.025 0.952

0.4 log(λ1) -0.002 0.085 0.086 0.962 0.000 0.045 0.046 0.957

log(ν) -0.002 0.048 0.046 0.937 -0.002 0.046 0.047 0.938

τ 0.002 0.036 0.037 0.950 0.002 0.023 0.022 0.958

5.5 Assessment of Genetic Risk Factors

If familial aggregation is identified by the proposed model in Section 5.2 and 5.3, interest

may lie in the effect of genetic factors on disease onset to explain familial aggregation.

However, if some individuals in the study are not genotyped, incomplete genetic data must

be dealt with. For example, in design I, we may obtain the disease history for non-probands

who died but cannot sample their DNA. Also, the national current status survey data do

not provide the genetic information. Chatterjee and others (2006) proposed an analysis for

a kin-cohort case-control and case-only family data with genotype and phenotype. Gong

and others (2010) categorized two family designs: the population and the clinic designs

and present the simulation studies to examine the performance of phenotype/genotype-

based methods. Zhang and others (2010) suggested statistical methods in estimating age-

dependent penetrance under a case-family design.

In this section, we accommodate genetic data in our model but deal with missing

genetic information. We let Gij denote the genotype (gene carrier indicator), which is
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tentatively related to disease with P (Gij = 0) = q2, P (Gij = 1) = p2 + 2pq with the allele

frequency p and q = 1 − p for individual j in family i and Gi = (Gi0, . . . , Gimi)
′. We

denote Wij = (V ′ij, Gij)
′ a vector of covariates and genotypes and W i = (V ′i,G

′
i)
′. The

transition intensities, then, are written as λl(t, a|bij, wij) for l = 1, 2, 3 where vij is replaced

with wij. The joint probability of disease onset also needs to replace V i with W i but the

cross-ratio or cause-specific hazard ratio under the Clayton copula remains the same as

θ. We make the following additional assumptions: i) The process is in Hardy-Weinberg

equilibrium and the Mendelian law holds, ii) Gij ⊥ Vij, iii) Z̄ij(s)|Gij ⊥ Gik ∀s for j 6= k,

iv) λ1(t, a|bij, wij) = λ1(a) exp(gijα + v′ijβ1), and v) λ2(t, a|bij, wij) = λ2(t, a|bij, vij) and

λ3(t, a|bij, wij) = λ3(t, a|bij).

5.5.1 Composite Likelihood with Incomplete Genetic Data

Here, we focus on the augmented pairwise conditional likelihood in Section 5.3. First, we

consider design II with two sources of auxiliary data: i) the family study data and the

registry data and ii) the family study data, the registry data, and current status data

from the survey. In the former case, all individuals are genotyped in the family study and

the registry since they are all examined, so we can assume that the genotypes are given

and the pairwise composite likelihood does not change the form of likelihood which has

the genotype variable as a covariate. However, the genotype data are not available in the

survey, so in the latter setting, we need to model Gij. The contribution of the proband to

the likelihood is then

Li0(φ) = P (Z̄i0(Ai0), Gi0|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;φ)

=
P (Z̄i0(Ai0)|Gi0, Ci0, Bi0, Vi0;φ)P (Gi0)∑

g∈(0,1)

P (Zi0(Ci0) = 1|Ci0, Bi0, Gi0 = g, Vi0;φ)P (Gi0 = g)
, (5.2.11)
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where we select the proband based only on phenotype (disease status) at Ri0. Then the
contribution from the non-probands LIIi (ψ) is

LIIijl(ψ) = P (Z̄
−
ijl(A

−
ijl),G

−
ijl|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,Z

−
ijl(A

−
ijl) ∈ {0, 1}

2,Aijl,Bijl,V ijl;ψ)

=
P (Z̄

−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Gijl,Aijl,Bijl,V ijl;ψ)P (G−ijl|Gi0)∑

g∈{0,1}2
P (Z−ijl(A

−
ijl) ∈ {0, 1}2|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,G

−
ijl = g,Aijl,Bijl,V ijl;ψ)P (G−ijl = g|Gi0)

where Gijl = (Gi0, Gij, Gil)
′ and P (G−ijl|Gi0) can be calculated using the allele frequency

f and family structure; see Appendix 5.B. For the auxiliary data, we let Gr denote the

genotype of individual r in A1 or A2 in Section 5.3. The likelihood terms based on the

auxiliary data LA1 and LA2 are then given as

LA1 ∝
nR∏
r

P (Z̄r(A
∗
r), Gr|Zr(Cr) = 1, Cr, Br, Vr),

and

LA2 ∝
nS∏
r

∏
h∈{0,1}

{∑
g

P (Zr(Cr) = h|Zr(Cr) ∈ {0, 1}, Br, Gr = g, Vr)

× P (Gr = g|Zr(Cr) ∈ {0, 1}, Br, Vr)

}I(Zr(Cr)=h)

where

P (Gr = g|Zr(Cr), Br, Vr) =
P (Zr(Cr)|Gr = g,Br, Vr)P (Gr = g)∑

g∈{0,1}
P (Zr(Cr)|Gr = g,Br, Vr)P (Gr = g)

.

Secondly, we only observe the genotype of non-probands who are alive in design I, and

non-probands who did not survive to Ri are not genotyped. In this case

LIijl(ψ) = P (Z̄
−
ijl(A

−
ijl),G

o−
ijl |Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,Aijl,Bijl,V ijl;ψ)

=
∑
Gm
ijl

P (Z̄
−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Gijl,Aijl,Bijl,V ijl;ψ)P (G−ijl|Gi0)
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where Go
ijl is a vector of observed genotype in family i for the pair of family member j and

l with the proband genotype on the first component, Gm
ijl is a vector of missing genotypes

for the family member j and l in family i, and Gijl = (Go′

ijl,G
m′

ijl )
′.

5.5.2 Simulation Studies

We conducted further simulation studies to assess performance of the proposed model with

genetic risk factors. We considered a binary indicator Gij with the allele frequency p = 0.06

with a hazard ratio = exp(α) = 1.5; we do not consider additional covariates for simplicity

and otherwise adopt the same simulation settings as in Section 5.4.

We first generate the genotype for family members based on the family structure under

the Mendelian law and given the genotype we generate family members’ lifetime paths

based on the proposed model. The selection criteria remains the same as in Section 5.4.

The empirical properties of the estimators for the parameters based on design I and II are

reported in Table 5.3 and 5.4, respectively.

Here we can observe the same findings pointed out in Section 5.5. The current status

survey data do not affect the efficiency α and p because the genetic marker is not available

in the survey, however, they increase the efficiency of λ1 and Kendall’s τ in design I. This

highlights the value of the current status data when disease onset times are right-truncated

even for the dependence parameter. In design II, the current status data improve efficiency

of each estimator except the one for ν. It is therefore advantageous for score tests, in

particular, when interest lies in testing genetic effects on disease onset as it may increase

the power of such tests.

5.6 Application to the Psoriatic Arthritis Family Study

Psoriasis is an inflammatory skin disease occurring about 2-3% of the general population

and PsA(Psoriatic Arthrists) is an inflammatory arthritis disease affecting about 30% of

patients with psoriasis (Gladman, 1991; Langley and others , 2005; Eder and others , 2012).

Patients with PsA are at higher risk for death compared to the general population of
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Table 5.3: Frequency properties of estimators based on the augmented pairwise likelihood
for family data with genotype information given λ3(·, ·) under biased sampling scheme for
the proband and disease history of non-probands available (design I) with two auxiliary
data: the registry follow-up data and the current status survey data; Clayton copula with
Kendall’s τ=0.2, 0.4; nF = 1000, nR = 2000, nS = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log(λ1) 0.002 0.057 0.059 0.952 -0.000 0.041 0.040 0.954

α -0.003 0.064 0.064 0.948 -0.002 0.064 0.064 0.947

log(ν) -0.001 0.037 0.037 0.956 -0.001 0.037 0.037 0.957

log(p) 0.002 0.055 0.056 0.947 0.002 0.055 0.055 0.947

τ -0.000 0.028 0.029 0.963 0.001 0.023 0.023 0.953

0.4 log(λ1) 0.002 0.076 0.078 0.950 0.000 0.045 0.044 0.952

α -0.002 0.057 0.058 0.948 -0.002 0.058 0.058 0.945

log(ν) -0.001 0.035 0.036 0.952 -0.001 0.035 0.036 0.946

log(p) 0.002 0.053 0.054 0.946 -0.003 0.053 0.053 0.947

τ -0.001 0.032 0.033 0.953 -0.000 0.022 0.022 0.949
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Table 5.4: Frequency properties of estimators based on the augmented pairwise likelihood
for family data with genotype information given λ3(·, ·) under biased sampling scheme for
the proband and alive non-probands data available (design II) with two auxiliary data: the
registry follow-up data and the current status survey data; Clayton copula with Kendall’s
τ=0.2, 0.4; nF = 1000, nR = 2000, nS = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log(λ1) 0.001 0.061 0.064 0.951 -0.000 0.042 0.042 0.941

α -0.003 0.070 0.071 0.953 -0.003 0.065 0.065 0.949

log(ν) -0.001 0.047 0.046 0.951 -0.001 0.046 0.046 0.949

log(p) - - - - 0.002 0.055 0.055 0.949

τ 0.000 0.030 0.032 0.956 0.001 0.024 0.024 0.952

0.4 log(λ1) 0.004 0.081 0.082 0.955 0.001 0.046 0.045 0.951

α -0.001 0.063 0.062 0.949 -0.002 0.059 0.058 0.948

log(ν) -0.002 0.047 0.046 0.948 -0.002 0.046 0.046 0.950

log(p) - - - - 0.002 0.053 0.053 0.942

τ -0.001 0.035 0.035 0.949 0.001 0.023 0.023 0.941
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Ontario with a standardised mortality ratio of 1.36 (Gladman, 2008). Many studies showed

that psoriasis is a heritable disease; Pedersen and others (2008) reported an increased

concordance measure in monozygotic relative to dizygotic twins and Chandran and others

(2009) confirmed a high familial recurrence risk of PsA based on family studies as shown

in Moll and Wright (1973). To obtain a better sense of heredity, Gladman and Farewell

(1995); Pedersen and others (2008); Chandran and Raychaudhuri (2010); Eder and others

(2012) identified genes related to psoriasis and PsA and explored environmental factors

which increase the risk of PsA. We consider the Human Leucocyte Antigens (HLA)- B27,

and HLA-C06 by the findings of the genetic aetiology of psoriasis and psoriatic arthritis in

the literature.

We consider data from the Centre for Prognosis Studies in Rheumatic Disease at the

University of Toronto which recruited the Psoriatic Arthritis Toronto Cohort and among

1436 individuals from the registry, 150 were selected for family studies as probands. In

this family studies, family members were recruited to conduct a thorough examination

including genotype information, therefore, this study design belongs to the biased sampling

scheme design II. To simplify the analysis, we generate a number of 168 pseudo-families

from the original 150 families where two-generation families are considered with the non-

missing date of birth and genotype information and we use this pseudo-family data. In

the pseudo-family data, the family sizes range from 2 to 7 individuals; 56 families have

2 family members (1 proband and 1 non-proband), and 112 families have at least three

members. 193 individuals were diagnosed with PsA among a total of 532 individuals. 145

families have one member with PsA (i.e. proband), 21 families having two members with

PsA, and 2 families with three PsA patients in their family.

As a source of auxiliary data, we use the survey of US population in which Gelfand and

others (2005) reported the prevalence of psoriatic arthritis in 2001. In this survey, subjects

with 18 years of age or older were randomly selected and provided the status of psoriasis

and psoriatic arthritis; 328 have psoriatic arthritis among 15,307 respondents.

We begin with the model not using the genotype information. We fit a marginal model

for the age at PsA onset with piecewise constant hazards with a cut-point 40 to distinguish

early and late onset of PsA and assume λ2(t, a) = λ3(t, a)ν and λ3(t, a) is given as the age-

, calendar time- population mortality (Robert, 2017). In the registry data, individuals
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Table 5.5: Estimates of parameters based on the augmented pairwise likelihood; auxiliary
data include the University of Toronto Psoriatic Arthritis Registry and the survey from
Gelfand et al. (2005) without/with genotype variable under the Exponential model and
piecewise constant marginal model for age at PsA onset with a cut point 40

MARKER αmarker ν τ pmarker

- - 1.152 (0.016) 0.362 (0.083) -

B27 0.605 (0.239) 1.155 (0.080) 0.345 (0.085) 0.054 (0.012)

C06 0.117 (0.086) 1.155 (0.060) 0.362 (0.089) 0.115 (0.011)

with missing genotype are dealt with similarly in the survey data. Table 5.5 summarizes

the estimates of fitted model without genetic variable in the first column followed by two

univariate models with genotype HLA-B27, and HLA-C06 variables including the allele

frequency p for each genetic markers.

First, based on the model without genetic markers, we find that ν̂ = 1.152 indicating

that the ratio of the hazard of death post PsA to PsA-free death is 1.152, which is lower

than the reported value in Gladman (2008). As expected, PsA is not lethal while it

increases the risk of death. The estimate of dependence parameter is τ̂ = 0.362 ( 95% CI:

0.199, 0.525; p< 0.001) which indicates significant association between family members.

The cross ratio or the cause-specific cross ratio is θ̂ = 2.134 (95% CI: 1.354, 2.914; p

< 0.001), corresponding to 2.134 times higher risk of PsA with a family history of PsA.

We find that HLA-B27 has a significant effect on PsA onset (RR = 1.831; 95% CI: 0.137,

1.073; p=0.011) but HLA-C06 positive is not associated with an increased risk of PsA

(RR = 1.124; 95% CI: -0.052, 0.286; p=0.174). This findings are reported in literature

that HLA-C06 increases the risk of psorisis but PsA (Chandran, 2013). The allele frequency

of HLA-B27 is 0.054, which is compatible with the value of 0.061 from the national USA

prevalence of HLA-B27 (Reveille and others , 2012). HLA-C06 has the allele frequency

0.115 which is more prevalent that HLA-B27. After adjusted significant genetic marker

HLA-B27, Kendall’s τ̂ decreases to 0.345 (95% CI: 0.178, 0.512; p< 0.001) since HLA-B27

partially explains the residual familial aggregation.
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Figure 5.4: The cross-odds ratio for two siblings born in the same year 1930, 1940, 1950,
1960 (the right panel) and a child born in 1930, 1940, 1950, or 1960 given a parent born
in 1905, 1915, 1925, or 1935 (the left panel) based on the fitted model with no effect of a
genetic marker

Figure 5.4 shows the cross-odds ratio for a sibling given other sibling born in the same

year 1930, 1940, 1950, 1960 (the left panel) and a child born in 1930, 1940, 1950, 1960 given

a parent born in 1905, 1915, 1925, 1935, respectively. For the sibling pairs, two siblings

are governed by the same mortality rates belonging the same birth cohort. The cross-odds

ratio before 40 almost plateaus but showed a decreasing trend as they age because the

mortality rate increases. There is a drastic decrease in the cross-odds ratio as age increases

for the child-parent pairs compared to the sibling pairs. This difference arises due to the

higher mortality rates for parents; see Figure 5.3. Similar patterns of the cross-odds ratio

for different birth cohorts are observed, but the variation exists.

Figure 5.5 shows the marginal probability of death (state 2 and 3) and the cumulative

incidence function for the age of PsA defined in (5.2.5) for different birth cohorts at 1930,

1940, 1950, and 1960. We find that PsA itself is a rare disease with the low cumulative

incidence function.
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Figure 5.5: The marginal probability of death and the cumulative incidence of PsA by the
year of birth of 1930, 1940, 1950, or 1960 based on the fitted model with no effect of a
genetic marker

5.7 Discussion

In this Chapter we have proposed an illness-death model for family studies incorporating

within-family dependence in the age at disease onset via a copula model The illness-death

model offers a natural framework to consider survival bias and the Clayton copula models

retain simple interpretations of cross ratio/cause-specific cross ratio and marginal interpre-

tations of estimates of covariance. We explore two study designs for family studies with

biased sampling schemes and developed statistical methods for analysis. Pairwise compos-
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ite likelihood is utilized to ease the computational burden. We exploit auxiliary data to

address identifiability and estimability issues. Age- and calendar time-specific population

mortality rates adequately address the trend of mortality rates in family studies where

more than two generations are considered. We extend our model to study the effect of

genetic markers on risk of disease in which the availability of genotype data depends on

the study design. To be more flexible, if the motivating example concerns lethal diseases

such as cancer, we allow ν(a) to be an age-dependent function.

We restrict our attention to the case-only probands family studies. If the case-control

probands are available, it would be useful to compare the robustness to misspecification

of model assumption (Chatterjee and others , 2006) and compare the efficiency with the

case-only probands family studies. It is natural to extend our model to allow for different

dependence structures in families using a more flexible Gaussian copula (Zhong and Cook,

2016; Lakhal-Chaieb and others , 2018). It may also be useful to adopt age-, time-, and

sex-specific population mortality rates. As a future work we can examine the effect of

ignoring the survival biases arising from the case II design in standard methods of analysis

(Zhong and Cook, 2016). The sensitivity of inferences in both standard methods and the

proposed methods to within-family dependence in mortality can also be investigated using

large sample theory and simulation. As we have shown in the simulation studies in Section

5.3 and 5.5.2, the use of auxiliary data improves efficiency in estimating the marginal

parameters related to disease onset and the dependence parameter, so examination of

power improvement with auxiliary data would be of interest.

In our motivating example, we focus on the occurrence of psoriatic arthritis. However,

PsA occurs in 10-20% of patients with psoriasis and the genetic marker HLA-C06 mostly

contributes to develop psoriasis (Queiro and others , 2015). To distinguish the genetic risk

factors for psoriasis with those for PsA, we may introduce the state of psoriasis in our

analysis. Another extension would be to use multiple allele in our analysis. This leads to

computational burden due to the summation of all possible combination of genetic markers

for missing genotypes. We may use other sources of population studies to calculate the

allele frequency and we may exploit this value to assume that the allele frequency p is

known in our proposed model. This will reduce the number of parameters to estimate.
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Appendix 5.A. An Illustration of Composite Likelihood

Construction

Here we give an illustrative of how to construct the composite conditional likelihood,

described in Section 5.3. We omit the subscript i labelling family for simplicity and consider

no covariates. We consider a particular family consisting of two parents and two children

where

• the father died without disease at age of death x13 before the family recruitment time

R,

• the mother developed the disease at age x21 and survived to the time of family

recruitment at R,

• the first child, the proband, developed the disease at age x01 and survived to the

family recruitment time R, and

• the second child was disease-free and alive at the family recruitment time R.

The likelihood contribution (5.2.6) of the proband can written as

P (Z̄0(A0)|Z0(C0) = 1, C0, B0;φ) =
P (Z̄0(A0), B0;φ)

P (Z0(C0) = 1, C0, B0;φ)
. (5.A.1)

Then, numerator of (5.A.1) is given as

P (Z̄0(A0), B0;φ) = P (X01 = x01, X03 > x01, X02 > A0, B0;φ)

= λ1(x01) exp

(
−
∫ x01

0

λ1(s)ds

)
exp

(
−
∫ x01

0

λ3(B0 + s, s)ds

)
exp

(
−
∫ A0

x01

λ2(B0 + s, s)ds

)
,

and the denominator of (5.A.1) is given as

P (Z0(C0) = 1, C0, B0;φ) = P (X01 < C0, X01 < X03, X02 > C0, B0;φ) (5.A.2)

=

∫ C0

0

λ1(s) exp(−
∫ s

0

λ1(u)du) exp(−
∫ s

0

λ3(B0 + u, u)du) exp(−
∫ C0

s

λ2(B0 + u, u)du)ds.
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In design I, we include information from all family members where we assume that

the disease history of the father is available. The contribution of non-probands given the

proband data in (5.2.9) is then∏
1≤j<l≤3

{LIjl(ψ)}1/2 =
∏

1≤j<l≤3

{P (Z̄
−
jl(A

−
jl)|Z̄0(A0), Z0(A0) = 1,Ajl,Bjl;ψ)}1/2 (5.A.3)

which is given explicitly as

{P (X11 > x13, X13 = x13, X21 = x21, X23 > x21, X22 > A2|X01 = x01, X03 > x01, X02 > A0;ψ)

× P (X11 > x13, X13 = x13, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)

× P (X21 = x21, X23 > x21, X22 > A2, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)}1/2.

As an example, we show how to calculate the first term in above. Using the Clayton

copula and its invariance property in (5.2.2), we can write

P (X11 > x13, X13 = x13, X21 = x21, X23 > x21, X22 > A2|X01 = x01, X03 > x01, X02 > A0;ψ)

=
∂C(F(x13|X01 = x01;φ1, ρ),F(u|X01 = x01;φ1, ρ); ρ∗)

∂u

∣∣∣∣
u=x21

exp

(
−
∫ x13

0

λ3(B1 + s, s)ds

)
× λ3(B1 + x13, x13) exp

(
−
∫ x21

0

λ3(B2 + s, s)ds

)
exp

(
−
∫ A2

x21

λ2(B2 + s, s)ds

)
,

where ρ∗ = ρ/(1 + ρ), and F(u|X01 = x01;φ1, ρ) = C(F(u;φ1),F(x01;φ1); ρ)/F(x01;φ1).

In design II, we exclude information from the father since he died before the family

recruitment time R. The contribution to the augmented composite likelihood can then be

written as

LII23(ψ) =
P (Z̄

−
23(A−23)|Z̄0(A0), Z0(A0) = 1,A23,B23;ψ)

P (Z−23(A−23) ∈ {0, 1}2|Z̄0(A0), Z0(A0) = 1,A23,B23;ψ)
,

where the numerator is given as

P (X21 = x21, X23 > x21, X22 > A2, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ),
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and the denominator is given as

P (X21 > A2, X23 > A2, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ) (5.A.4)

+ P (X21 < A2, X23 > A2, X22 > A2, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)

+ P (X21 > A2, X23 > A2, X31 < A3, X33 > A3, X32 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)

+ P (X21 < A2, X23 > A2, X22 > A2, X31 < A3, X33 > A3, X32 > A3|X01 = x01, X03 > x01, X02 > A0;ψ).

We here show how to obtain the second and the last term in (5.A.4) since the first term

in (5.A.4) is straightforward.

P (X21 < A2, X23 > A2, X22 > A2, X31 > A3, X33 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)

=

∫ A2

0

∂C(F(u|X01 = x01;φ1, ρ),F(A3|X01 = x01;φ1, ρ); ρ∗)

∂u

∣∣∣∣
u=s

exp

(
−
∫ s

0

λ3(B2 + v, v)dv

)
× exp

(
−
∫ A2

s

λ2(B2 + v, v)dv

)
exp

(
−
∫ A3

0

λ3(B3 + v, v)dv

)
ds,

and

P (X21 < A2, X23 > A2, X22 > A2, X31 < A3, X33 > A3, X32 > A3|X01 = x01, X03 > x01, X02 > A0;ψ)

=

∫ A3

0

∫ A2

0

∂2C(F(u|X01 = x01;φ1, ρ),F(w|X01 = x01;φ1, ρ); ρ∗)

∂u∂w

∣∣∣∣
u=s,w=y

× exp

(
−
∫ s

0
λ3(B2 + v, v)dv

)
exp

(
−
∫ A2

s
λ2(B2 + v, v)dv

)
exp

(
−
∫ y

0
λ3(B2 + v, v)dv

)
× exp

(
−
∫ A3

y
λ2(B3 + v, v)dv

)
dsdy.

We suppose that two auxiliary data are used as introduced in Section 5.3. We consider

a particular individual in registry data who developed the disease at age xr1 and died at

age xr2. The likelihood contribution is

P (Z̄r(A
∗
r)|Zr(Cr) = 1, Cr, Br;φ) =

P (Z̄r(xr3), B0;φ)

P (Zr(Cr) = 1, Cr, Br;φ)
. (5.A.5)
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Then, numerator of (5.A.5) is given as

P (Z̄0(xr3), Br;φ) = P (Xr1 = xr1, Xr3 > xr1, Xr2 = xr2, Br;φ)

= λ1(xr1) exp

(
−
∫ xr1

0
λ1(s)ds

)
exp

(
−
∫ xr1

0
λ3(Br + s, s)ds

)
exp

(
−
∫ xr2

xr1

λ2(Br + s, s)ds

)
,

and the denominator of (5.A.5) has the same form as (5.A.2) From the cross-sectional

survey, we consider an individual who developed the disease by the age at contact for

survey Cr. The likelihood contribution is

P (Zr(Cr) = 1|Zr(Cr) ∈ {0, 1}, Br) =
P (Zr(Cr) = 1, Br;φ)

P (Zr(Cr) = 0;φ) + P (Zr(Cr) = 1;φ)

where

P (Zr(Cr) = 0, Br;φ) = exp

(
−
∫ Cr

0

λ1(u)du

)
exp

(
−
∫ Cr

0

λ3(B0 + u, u)du

)
,

and

P (Zr(Cr) = 1, Br;φ) =

∫ Cr

0

λ1(s) exp

(
−
∫ s

0

λ1(u)du

)
exp

(
−
∫ s

0

λ3(B0 + u, u)du

)
× exp

(
−
∫ Cr

s

λ2(B0 + u, u)du

)
ds.

To compute a one dimensional integral we use the intergral function in R, and for two

dimensional integrals we directly code Gaussian-Quadrature a numerical integration algo-

rithm with 40 nodes.

Appendix 5.B. Calculation of P (Gijl)

Recall Gijl = (Gi0, Gij, Gil)
′ is a vector of genetic markers for the proband and members j

and l of family i; for families with two members we let Gij = (Gi0, Gij)
′. We can calculate

P (Gijl) based on the assumption that the process is in Hardy-Weinberg equilibrium and

following Mendel’s law, with a risk allele frequency p (Elandt-Johnson, 1971). Here, we

133



consider two or three members per family for the pairwise likelihood in which we denote

Gp, Gc the genotype of a parent as Gp and the genotype of the child as Gs.

Joint distribution of alleles for different types of pairs of family members

G P (Gp, Gp) P (Gp, Gc) P (Gc, Gc)

1 1 (1− q2)2 p2q + p 1
4
p2(1 + p)2 + pq(2p+ 1)

1 0 (1− q2)q2 pq2 1
4
p2q2 + 1

2
pq2(1 + q)

0 1 (1− q2)q2 pq2 1
4
p2q2 + 1

2
pq2(1 + q)

0 0 q4 q3 1
4
q2(1 + q)2

Joint distribution of alleles for different types of triples of family members

G P (Gp1 , Gp2 , Gc) P (Gp, Gc1 , Gc2) P (Gc1 , Gc2 , Gc3)

1 1 1 p2(1 + 2q) 1
4
p2(1 + p)(5− 3p) + 1

2
pq(p+ pq + 1) 1

16
p2(1 + 3p)(7− 3p) + 1

4
pq(6p+ 3pq + 2)

1 1 0 p2q2 1
4
p2q2 + 1

2
pq2 5

16
p2q2 + 1

4
pq2(1 + q)

1 0 1 pq2 1
4
p2q2 + 1

2
pq2 5

16
p2q2 + 1

4
pq2(1 + q)

1 0 0 pq3 1
4
pq2(1 + q) 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 1 1 pq2 1
2
pq2(1 + p) 5

16
p2q2 + 1

4
pq2(1 + q)

0 1 0 pq3 1
2
pq3 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 0 1 0 1
2
pq3 1

16
p2q2 + 1

8
pq2(1 + 3q)

0 0 0 q4 1
2
q3(1 + q) 1

16
q2(1 + 3q)2

Table 5.6: Joint probability model for genetic markers for two (top) or three (bottom)
family members according to their relationships
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Chapter 6

Remarks and Future Research

6.1 Overview

This thesis develops new statistical methods for different types of data arising from life

history processes to address heterogeneity and dependence. In Chapter 2, motivated by

the common setting in which recurrent exacerbations arise of an appreciable duration, we

propose a bivariate random effects model for an alternating two-state process. The time

scale governing onset of exacerbations is the time since the onset of the process (i.e. it is

conditionally Markov) whereas a conditionally semi-Markov intensity is used for recovery

from exacerbations. The individual-specific random effects address both heterogeneity for

each type of transition, and a copula model is used to accommodate dependence between

the two component random effects. Different combinations of marginal random effect

distributions and copula functions are considered, and the effect of misspecification of the

copula function is examined.

In Chapter 3, we consider the setting of a randomized clinical trial where the onset

and resolution of recurrent exacerbations are governed by the two-state process of Chapter

2, but where semiparametric marginal rate-based models are used for the analysis of the

recurrent onset times only. This is motivated by the fact that such data are routinely

analysed in this way in clinical trials but in such settings the recurrent event analysis means
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that misspecified models are being used. We examine the effect of using two different risk

set definitions, including or excluding individuals from the risk set during symptomatic

periods. We also study the impact of misspecification of risk sets on power in a clinical

trial since this represents the area of most common application.

The analysis of multiple types of recurrent events arising due to the same cause was

addressed in Chapter 4. A multivariate mixed-Poisson model was adopted to accommo-

date between-individual variation in the event and copula functions were used to link event

type-specific random effects to capture dependence between the different types of events.

A semiparametric estimation procedure is developed via an expectation-maximization al-

gorithm. For more than 2 types of events, inferences are described based on pairwise

composite likelihood with both simultaneous and two-stage estimation procedures.

In Chapter 5, attention was directed to modeling familial aggregation in the (possibly

latent) age of onset in framework of a marginal illness-death model. The dependence

structure for the (latent) age of disease onset between family members is modeled again via

copula functions. In family studies, biased sampling schemes are typically employed in the

recruitment of family members. An individual with disease is recruited first to the study

where the right-truncated disease onset times and the left-truncated survival times are

observed. Then, families of this individual, called the proband, are recruited. Depending

on the study design, complete retrospective data of non-probands may be available, or only

data from family members who can attend a clinic may be available. Both designs involve

biased sampling and raise identifiability and estimability issues. Auxiliary data is of use

to address this issue and improve efficiency of estimators. To study the genetic basis of

disease, we also accommodate genetic factors as covariates while missing genotypes were

addressed.

In the following sections we outline further research for each topic.

6.2 Ongoing Work in Alternating Two-state Processes

Several extensions are possible for alternating two-state processes. When the mortality

comes into play as is the case with chronic obstructive pulmonary disease in elderly indi-
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viduals for example,a death state may be added as an absorbing state to create a three

state process. The cumulative mean function should condition on survival states explic-

itly or marginalized over the possible times of death in this context. In the application

in Chapter 2, sampled individuals are required to have experienced hospitalizations and

individual data are accessible from the beginning of hospitalization over the subsequent

study period. The model of Chapter 2 can be generalized to reflect this sampling scheme

in the likelihood construction.

In the motivating example in Chapter 3, individuals in treatment and control arms

received the same treatment during symptomatic periods. Therefore, to examine the effi-

cacy of treatment, a focus is the treatment effect on the onset of exacerbation. However

it is challenging to obtain robust multiplicative rate-based treatment effect estimators on

symptom onset because the models are typically misspecified in a way that inconsistent

estimates are obtained. Utility-based model (Cook and others , 2003) or methods based on

the expected length of time in a particular state (Grand and Putter, 2016) are potential

frameworks worthy of further consideration.

6.3 Ongoing Work in Multi-type Recurrent Events

This general approach can be naturally extended to accommodate multi-type interval-

censored recurrent event data of the sort studied by Chen and others (2005) where the

exact event times are unavailable but counts of the number of events in consecutive intervals

of each type is known. The fact that this method is implemented using an expectation-

maximization algorithm means that it can also be naturally generalized to accommodate

settings where the event types are partially missing; see Chen and Cook (2009). An

alternative framework for analyzing multi-type recurrent events is via marginal methods

and estimating functions (Cai and Schaubel, 2004). While this can be appealing because it

is based on partially specified models it does not lend itself naturally to prediction. Fully

specified models, even when fitted under composite likelihood, can facilitate prediction of

future events of any type or all types, and exploits the history of the joint processes which

should yield more accurate and precise predictions of features of interest (Fredette and
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Lawless, 2007).

Another extension is to obtain a global estimate of a treatment effect on multi-type

events. Several approaches summarized in Wei and Glidden (1997) can be exploited for

global test statistics and we can develop sample size calculation for multiple events. This

was not explored here.

Recently, Claggett and others (2018) proposed a method for nonparametric inference

for multiple events based on a reverse counting process. This approach is appealing to have

a simple interpretation of a global treatment effect on individual’s disease process. This

method could be adopted to deal with recurrent events where the events occur repeatedly.

6.4 Ongoing Work in Family Studies

There are several exciting extensions for the works on family studies. A natural extension

is to consider multivariate genetic markers which may affect the age of disease onset. This

leads to computational burden due to the summation of all possible combination of genetic

markers for missing genotypes. We may use other sources of population studies to calculate

the allele frequency and we may exploit this value to assume that the allele frequency p is

known in our proposed model. This will reduce the number of parameters to estimate.

Another extension is to allow a different dependence structure in families using, for

example, the Gaussian copula function; this was done in Zhong and Cook (2016). The

degree of dependence may differ depending on which pair of individuals is being considered;

a weaker dependence is expected between parents than parent-child pairs from a genetic

point of view. However, in that case, a simple form of a cross ratio is not available.

Two-stage estimation is a plausible extension where registry data, the current status

survey data, and mortality rates are used to estimate marginal parameters, and at the

second stage a dependence parameter is estimated given the marginal parameter estimates.

This approach is natural in that the two sources of auxiliary data do not have information

with respect to the familial association.

Finally one may also examine how much power improves when testing genetic effects by

using additional current status survey data in design II. As shown in simulation studies,
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the efficiency of estimators increases with the survey data in design II even if sampled

individuals are not genotyped.
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Rondeau, V. (2013). Multivariate frailty models for two types of recurrent events with a

dependent terminal event: application to breast cancer data. Biometrical Journal 55(6),

866–884.

149



McCulloch, C. E. and Neuhaus, J. M. (2011). Prediction of random effects in linear

and generalized linear models under model misspecification. Biometrics 67(1), 270–279.

Mesfioui, M. and Quessy, J. (2008). Dependence structure of conditional Archimedean

copulas. Journal of Multivariate Analysis 99(3), 372–385.

Moll, J. M. and Wright, V. (1973). Familial occurrence of psoriatic arthritis. Annals

of the Rheumatic Diseases 32(3), 181.

Nelsen, R. B. (2006). An Introduction to Copulas . New York: Springer.

Nelson, W. (1995). Confidence limits for recurrence data-applied to cost or number of

product repairs. Technometrics 37(2), 147–157.

Ng, E. and Cook, R. J. (1997). Modeling two-state disease processes with random

effects. Lifetime Data Analysis 3(4), 315–335.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American

Statistical Association 84(406), 487–493.

O’Keeffe, A. G., Tom, B. DM. and Farewell, V. T. (2011). A case-study in

the clinical epidemiology of psoriatic arthritis: multistate models and causal arguments.

Journal of the Royal Statistical Society: Series C 60(5), 675–699.

Olesen, A. V. and Parner, E. T. (2006). Correcting for selection using frailty models.

Statistics in Medicine 25(10), 1672–1684.

Parner, E. and others . (1998). Asymptotic theory for the correlated gamma-frailty

model. The Annals of Statistics 26(1), 183–214.

Pedersen, O. B., Svendsen, A. Jø., Ejstrup, L., Skytthe, A. and Junker, P.

(2008). On the heritability of psoriatic arthritis. Disease concordance among monozygotic

and dizygotic twins. Annals of the Rheumatic Diseases 67(10), 1417–1421.

Pfeiffer, R. M., Pee, D. and Landi, M. T. (2008). On combining family and case-

control studies. Genetic Epidemiology 32(7), 638–646.

150



Pollock, R., Chandran, V., Barrett, J., Eder, L., Pellett, F., Yao, C.,

Lino, M., Shanmugarajah, S., Farewell, V. T. and Gladman, D. D. (2011).

Differential major histocompatibility complex class i chain-related a allele associations

with skin and joint manifestations of psoriatic disease. Tissue Antigens 77(6), 554–561.

Pollock, R. A., Thavaneswaran, A., Pellett, F., Chandran, V., Petronis,

A., Rahman, P. and Gladman, D. D. (2015). Further evidence supporting a parent-

of-origin effect in psoriatic disease. Arthritis Care & Research 67(11), 1586–1590.

Prentice, R. L., Kalbfleisch, J. D., Peterson Jr, A. V., Flournoy, N.,

Farewell, V. T. and Breslow, N. E. (1978). The analysis of failure times in

the presence of competing risks. Biometrics 34(4), 541–554.

Prentice, R. L., Williams, B. J. and Peterson, A. V. (1981). On the regression

analysis of multivariate failure time data. Biometrika 68(2), 373–379.

Putter, H., Fiocco, M. and Geskus, R. B. (2007). Tutorial in biostatistics: com-

peting risks and multi-state models. Statistics in Medicine 26(11), 2389–2430.

Putter, H. and van Houwelingen, H. C. (2015). Frailties in multi-state models:

Are they identifiable? do we need them? Statistical Methods in Medical Research 24(6),

675–692.

Queiro, R., Morante, I., Cabezas, I. and Acasuso, B. (2015). HLA-B27 and

psoriatic disease: a modern view of an old relationship. Rheumatology 55(2), 221–229.

Queiro, R., Sarasqueta, C., Torre, J., Tinturé, T. and Lopez-Lagunas, I.
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