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ABSTRACT 

A Kinetic Monte Carlo (KMC) simulation approach was adopted in this study to 

capture evolutionary events in the course of free radical copolymerization, through 

which batch and starved-feed semibatch processes were compared. The 

implementation of the KMC code developed in this work: (i) enables satisfactory 

control of the molecular weight of the copolymer by tracking the profiles of 

concentrations of macroradicals, monomers, and polymer as well as degree of 

polymerization, polydispersity, and chain length distribution; (ii) captures the 

bivariate distribution of chain length and copolymer composition; (iii) 

comprehensively tracks and analyzes detailed information on the molecular 

architecture of the growing chains, thus distinguishing between sequence length and 

polydispersity of chains produced in batch and starved-feed semibatch operations; (iv) 

makes possible the screening of products, based on such details as the number and 

weight fractions of products having different comonomer units located at various 

positions along the copolymer chains. The aforementioned characteristics were 

achieved by stochastic calculations through code developed in-house. This KMC 

simulator becomes a very useful tool for the development of tailored copolymers 

through free radical polymerization, with blocks separated with single units of a 

different type. 

Keywords: Free radical copolymerization; Starved-feed polymerization; Semibatch 

polymerization; Kinetic Monte Carlo simulation; Bivariate distribution; Tailored 

copolymer properties 
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1. INTRODUCTION 

Control of microstructural features of copolymer (or terpolymer) chains in free radical 

polymerization is not easy and, despite recent advances in mathematical modeling and 

prediction of copolymer properties, far from perfect. The typical dilemma of batch-to-

batch variability is a serious concern: two batches with the same average copolymer 

composition show different properties and final behavior, depending on the 

differences between sequential arrangements of monomer units along the respective 

copolymer chains. 

Theoretically, one would be able to manipulate and control the microstructure of the 

copolymer chains, if one had complete information on the copolymer composition 

distribution (CCD) and chain length distribution (CLD), both instantaneous and 

cumulative. However, experimental efforts hardly ever have such complete 

information, and this makes the practical implementation (of whatever techniques one 

may devise in order to compensate for this lack of information) quite complicated 

(e.g., see the procedures, main concepts and background assumptions put forward in 

references [1] to [10]). 

The question still remains: with so many deterministic and stochastic modeling 

approaches and algorithms, what computational modeling algorithm will offer a 

satisfactory, yet comprehensive, overview of the polymeric chain detail needed? 

In recent studies, we developed a Monte Carlo (MC) computer code capable of giving 

detailed information on the copolymerization kinetics and microstructural evolution 

and obtained extremely promising results on chain architectural development [11-13]. 

It was shown that the kinetic Mote Carlo (KMC) simulation approach can provide 

sufficient information to predict and better identify events taking place at the 

molecular level. This undoubtedly demands a detailed computer program with the 

potential to track a large volume of simulations and necessitates simultaneous control 

of three important features: (i) the quality of CPU data storage and transfer; (ii) the 

quality of RAM storage; and (iii) the speed of writing on and/or reading from hard 

disk drives. 

In the current work, we discuss and put into practice the idea of quantifying 

microstructural changes during copolymerization. For a given system with A and B as 
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comonomers, there are many possibilities for B units to be arranged in the growing 

copolymer chains depending on the monomer reactivities and polymerization method. 

Thus, it would be of premier importance to start from simple and well-understood 

cases and then move to more complex ones to guarantee generalization to scenarios 

with, for instance, significant compositional drift. With this in mind, we start with 

starved-feed semibatch free radical copolymerization where reactivity ratios are set to 

unity enabling comparison of our model results with those recently reported by Parsa 

et al. [10]. The developed KMC code satisfactorily enables synthesis and screening in 

terms of the number and weight fractions of products having different comonomer 

units located at various positions along the copolymer chains. Comparison of 

molecular-level features of a starved-feed semibatch with those of a batch process 

provides sufficient insight into the nature of the former process when one wishes to 

control the degree of polymerization. The developed code is executed to stochastically 

produce and screen macromolecules in terms of evolutionary weight distribution and 

bivariate copolymer composition-chain length (CC-CL) distribution of chains having 

different numbers (sequences) of B units. We also theoretically tailor copolymer 

chains, in which B units can take various positions in the growing chain, which will 

be of vital importance from an engineering angle. 

 

2. MODELING AND SIMULATION 

2.1 Model Development and Simulation 

The key determining factor in KMC simulation studies is the functionality of the 

algorithm designed to select the most probable reaction channel, manage the 

reactants’ consumption and products’ generation, and update and restore the 

information of the simulation volume [14-15]. Considering the fact that in 

copolymerizations macromolecules with various architectural features are produced, 

an appropriate identification card capable of storing maximum possible topological 

characteristics of the generated chains should be defined and issued. In addition, the 

data storage algorithm and corresponding computer code are of vital importance and 

must be designed to improve the calculation speed of the KMC simulator. 

The main advantages of the KMC simulation approach are as follows: 

(1) Certain assumptions like the quasi-steady state approximation (QSSA) and long 

chain approximation (LCA) applied during deterministic modeling of polymerizations 

are not required in the KMC approach. In other words, the stochastic algorithm 
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developed in the KMC simulation approach is capable of tracking and recording a 

comprehensive image of all macromolecular species individually. 

(2) While the method of moments results in the averages of molecular weight 

distribution (MWD) and CCD, the KMC simulation approach is able to predict and 

construct time-dependent distributions of various molecular characteristics during the 

course of polymerization. 

(3) Despite the fact that many numerical deterministic methods, especially the discrete 

Galerkin h-p algorithm, are successfully employed in describing polymerizations, they 

cannot track and record all topological/architectural characteristics of individual 

macromolecules in the simulation volume. On the other hand, applying the KMC 

simulation approach, a very specially tailored algorithm and computer code can be 

developed for any particular polymerization system. Accordingly, the dynamic 

topological features of all macromolecules inside the simulation volume can easily 

and individually be visualized in detail. 

In the current work, the free radical copolymerization was studied of monomer A and 

comonomer B, with minimum compositional drift, and copolymers with 

predetermined chain length and molecular architecture were virtually synthesized 

applying Gillespie’s algorithm [10, 16]. The target microstructure is depicted in Table 

1 (Cases I and II) and defined as a linear binary copolymer with chain length of 20 

ending in a B comonomer. Case I corresponds to batch operation, whereas Case II is a 

starved-feed semibatch policy. 

 

Table 1. Molecular architecture of target copolymers 

 Target Architecture ASLn(A)1 ASLn(B)2 fB,optimum
3 

Case I AAAAAAAAAAAAAAAAAAAB 19 1 0.053 

Case II AAAAAAAAAAAAAAAAAAAB 19 1 0.053 
1 Average sequence length of "A" units. 

2 Average sequence length of "B" units. 

3 Optimum mole fraction of "B" component in the feed to meet predetermined architecture. 

 

To produce copolymer chains with minimum compositional drift, the 

copolymerization scheme and conditions used by Parsa et al. [10] were adopted (see 

Scheme 1). In the proposed scheme, one can see the initiation, propagation, chain 

transfer (to monomer and solvent), and termination reaction channels. 
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Scheme 1. Reaction scheme applied to copolymerization [10] 

 

In order to select a macroradical for propagation, a selection probability was assigned 

to each growing chain present in the simulation volume [11-13]. A random number, r, 

was generated and the mth growing chain of type h (terminal monomer unit) was 

selected for propagation provided the following criterion was satisfied: 
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In this criterion, pj,h is the selection probability of the jth growing chain of type h and 

Rh is the total number of macroradicals of type h in the simulation volume. Generally, 

in linear binary free radical copolymerizations two distinct types of macroradicals, 

i.e., radicals ending in A or B repeat units, can be recognized in the reaction medium. 

To propagate the selected growing chain at the given time interval, the selection 

probabilities of A and B were determined based on the instantaneous propagation 

reaction rates (relative to the total polymerization rate). In this way, the incorporation 

probability of monomer and comonomer to the growing chains was precisely 

determined. Considering the classical statistical copolymerization equations, these 

probabilities are related to the reactivity ratios and concentrations of 

monomer/comonomer at that specific moment [17]. The selection mechanism of 

radical chains to participate in transfer and termination reaction channels is exactly 
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similar to the aforementioned mechanism employed to simulate the propagation 

channel. 

The number of initial A molecules was chosen as the basis to define and construct the 

simulation volume. To do this, a total of 1012 initial A monomer units was used as the 

initial input value to the computer code. Considering the initial conditions listed in 

Table 2, the numbers of initial B molecules, initiator, and solvent molecules were 

computed accordingly. 

 

Table 2. Copolymerization simulation characteristics [10] 

Parameter Value Unit 

Solvent (xylene) initial mass 200 g 

Total (monomer and initiator) initial mass 500 g 

Monomer to initiator molar ratio 20 - 

Molecular weight of monomer A 142 g mol-1 

Molecular weight of comonomer B 142 g mol-1 

Initiator molecular weight 132 g mol-1 

Solvent molecular weight 106 g mol-1 

Density of monomer A 0.786 g cm-3 

Density of comonomer B 0.786 g cm-3 

Initiator density 0.885 g cm-3 

Solvent density 0.713 g cm-3 

Copolymer density 1.078 g cm-3 

Target nDP  20 - 

Copolymerization temperature 138 °C 

 

The algorithm allowed the simulation of a statistically large sample size with a 

computationally cost-effective execution time. The values of required reaction rate 

constants were extracted from the literature and are summarized in Table 3 [10]. 

 

Table 3. Kinetic characteristics used in copolymerization simulation [10] 

Parameter Value Unit 

Initiator dissociation rate constant (kd) 1.32×10-3 sec-1 

Initiator efficiency (f) 0.515 - 

Initiation rate constant (ki) 4.69×103 lit mol-1 sec-1 

Homo-propagation rate constant (A, kp,AA) 4.69×103 lit mol-1 sec-1 

Homo-propagation rate constant (B, kp,BB) 4.69×103 lit mol-1 sec-1 

Reactivity ratio of A (rA) 1 - 

Reactivity ratio of B (rB) 1 - 

Chain transfer to monomer rate constant (ktM,ij) 0.266 lit mol-1 sec-1 

Chain transfer to Solvent rate constant (ktS) 1.66026 lit mol-1 sec-1 

Termination by combination rate constant (ktc) 1.7115×107 lit mol-1 sec-1 

Termination by disproportionation rate constant (ktd) 3.1785×107 lit mol-1 sec-1 
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2.2 Model for placement of B comonomer in the copolymer chain 

In linear binary free radical copolymerizations the arrangement of monomer units 

along the copolymer chains is dictated by the reactivity ratios and instantaneous 

concentrations of the monomer and comonomer. Considering the fact that the 

reactivity ratios are intrinsic characteristics of any set of monomer/comonomer at any 

given copolymerization conditions, the relative instantaneous concentrations of 

monomer and comonomer, i.e., initial feed composition, is the main operational factor 

to adjust their insertion frequency into a growing macroradical. As the instantaneous 

consumption rates of monomer and comonomer is not the same, the feed composition 

experiences a continuous change (drift) during the course of copolymerization, which 

significantly influence the microstructure of the growing copolymer molecules. In 

other words, copolymer chains with different microstructures are produced at the 

course of copolymerization if the feed composition drift is not continuously corrected. 

Hence, to generate architecturally uniform copolymer chains, the feed composition 

must be precisely adjusted by addition of monomer/comonomer in regular time 

intervals during the course of copolymerization, except for the ideal random free 

radical copolymerization case, i.e., when both reactivity ratios are equal to unity. 

In this simulation work the reactivity ratios of A monomer and B comonomer are set 

to be unity, that is the instantaneous feed composition and copolymer composition 

remain unchanged over the entire copolymerization time. Hence, the initial feed 

composition is the key factor controlling the architectural properties of the final 

product and should be precisely evaluated for each predetermined microstructure. 

According to the classical statistical free radical copolymerization equations, the 

instantaneous number average sequence length distribution of monomer and 

comonomer can easily be obtained as follows [17]: 

   





1i

iAn NiAASL                                                                                                    (2) 

where (NA)i denotes the mole fraction of a sequence of monomer A units of length i in 

a linear binary copolymer. More specifically, this represents the number sequence 

length distribution of monomer A, SLDn(A), and is obtained by calculation of the 

formation probability of such a sequence: 
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In equation (3), pAA and pAB are the probabilities of a radical chain ending in monomer 

A to take on an A or B monomer unit, respectively. Moreover, rA is the reactivity ratio 

of monomer A, while fA and fB are the molar fractions of A and B comonomers in the 

feed, respectively. 

To evaluate the required initial feed composition leading to a predetermined 

copolymer microstructure (Table 1), the number average sequence length distribution 

of the target binary copolymer was calculated applying equations 2 and 3. To do this, 

a computer program was developed to calculate various sequence lengths of A and B 

applying equation 3. Computing different sequence lengths, the computer code 

precisely constructs the number SLD of monomer and comonomer. It should be noted 

that the maximum allowed A and B sequence lengths was set to 107, which is 

physically and statistically large enough to produce reliable and accurate number 

average sequence lengths. Afterwards, the number average sequence lengths were 

calculated employing equation 2. 

To find an optimum initial feed composition, the computer code calculates the A and 

B number average sequence lengths for all possible initial feed compositions and 

compares the results with the A and B number average sequence lengths of the target 

copolymer. This scanning process was set to be initiated from 0.001 with an 

increment of 0.001 within the range of all possible feed compositions. It is obvious 

that the optimum feed composition is the feed composition that results in the 

identification of a minimum value in the following error function: 

      2
,

arg



BAi

calculatednettnA iASLiASLferF                                                               (4) 

This error function determines the difference between the calculated number average 

sequence lengths and the predetermined values of the target copolymer. The feed 

composition at the identified minimum is the optimum initial feed composition in 

synthesizing binary copolymers that have the most similar architecture to the target 

copolymer. The simulation flow chart searching for the optimum initial feed 

composition is depicted in Scheme 2. 
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Scheme 2. The simulation flow chart to synthesize binary copolymers 
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Figure 1 shows the number sequence length distributions of A and B, based on the 

calculated initial feed composition of the target copolymer cited in Table 1. The 

calculated optimum value of the initial B mole percent was 5.30 % for both batch and 

starved-feed semibatch operations. 
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Figure 1. Calculated number sequence length distributions of monomer A, (NA)i, and 

comonomer B, (NB)i, at optimum initial feed composition 

 

The total simulation time used, i.e., the free radical copolymerization reaction time 

(tf), was 240 minutes. The computer code can stop the polymerization whenever it 

encounters monomer or radical depletion. 

A computer program, according to the computational algorithm and flow chart 

presented in Scheme 2, was written in Pascal programming language and compiled 

into 64-bit executable code using FPC 2.6.2. A subroutine based on the “Mother-of-all 

Pseudo Random Number Generators” algorithm [18] was exploited to produce the 

required random numbers for the simulation. The random number generation 

subroutine satisfied the tests of uniformity and serial correlation with high resolution. 

The cycle length of the random number generator was 3×1047. 
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Simulations were performed with a desktop computer with Intel Core i7-3770K (3.50 

GHz), 32 GB of memory (2133 MHz), under Windows 7 Ultimate 64-bit operating 

system. The runtime was approximately 2.46 and 3.27 hours for starved-feed 

semibatch and batch operations, respectively. 

 

3. RESULTS AND DISCUSSION 

As mentioned in the previous sections, the developed model was applied to both batch 

and starved-feed semibatch operations to capture molecular-level features in the 

course of free radical copolymerization. To appropriately reflect the ability of the 

model in anticipating the evolutionary events as well as the difference between batch 

and starved-feed process, the simulation results are categorized into two subsections. 

In the first part, we discuss in depth the advantages of the starved-feed semibatch 

process against batch in terms of statistical patterns revealed by the KMC approach. 

In the second part, it is shown that the developed model is capable of producing 

tailored copolymers with different comonomer arrangements along the copolymer 

chains (a very useful guide for product design). 

 

3.1 Starved-feed semibatch vs. batch copolymerization: Generic features of the 

KMC algorithm 

Figure 2 shows typical operational profiles from starved-feed semibatch and batch 

processes. Figure 2a demonstrates the variation of the number-average degree of 

polymerization (DPn on the left-hand side axis) and polydispersity index (PDI on the 

right-hand side axis) for a starved-feed semibatch copolymerization process. Figure 

2b does the same thing for a batch copolymerization. The insets in both plots show 

monomer A consumption rate. Figure 2 captures clearly the expected differences 

between semibatch and batch operation, along with the advantages of the former in 

both the PDI level and the ability to produce a controlled (and hence predetermined) 

copolymer chain length. The profiles of Figure 2 can be explained if one looks at the 

corresponding profiles of Figure 3. Figure 3a shows monomer to initiator molar ratio 

for a starved-feed semibatch copolymerization (batch process in the inset), whereas 

Figure 3b plots the ratio of moles of monomer consumed instantaneously (related to 

monomer consumption rate), d[M], to the corresponding total primary radical 

concentration, [PRº], for the same cases. One can confirm from Figure 2 and Figure 

3b the correspondence between chain length and the ratio of monomer concentration 
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change to radical concentration. The operational characteristics simulated in Figures 2 

and 3 mimic the copolymerizations described in [19]. 

 

 

Figure 2. Variation of number-average degree of polymerization (DPn) and 

polydispersity index (PDI) of copolymer chains together with monomer A 

consumption rate (inset) during starved-feed semibatch (a) and batch (b) 

copolymerization processes 

 

 

Figure 3. Variation of monomer to initiator molar ratio (a) and moles of monomer 

consumed to primary radical concentration ratio (b) during the course of starved-feed 

semibatch and batch (inset) copolymerization processes 

 

With respect to copolymer product quality, Figure 4 shows chain length distribution 

information (as W(Log(DP)), with W denoting weight fraction and DP degree of 

polymerization), whereas Figure 5 is related to the sequence length picture. The 

semibatch strategy results in a narrower chain length distribution (Figure 4) and a 
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narrower sequence length distribution of A units (Figure 5). The curves overlap in the 

case of sequence length distribution of B units (Figure 5, inset). 
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Figure 4. Distribution of copolymer chain length produced via batch and starved-feed 

semibatch copolymerization routes 
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Figure 5. Distribution of A and B (inset) sequence lengths in the copolymer product of 

batch and starved-feed semibatch copolymerization 

 

Figures 6 and 7 show several more operational characteristics and comparisons 

between the starved-feed semibatch and batch copolymerization processes. The 

profiles are all reasonable and shed light on the behavior of the two types of reactor 

operation. Figure 7 is a confirmation of the reasonable performance of the developed 

KMC algorithm. Figure 8 confirms that the semibatch operation yields higher 

productivity (its polymer concentration is 1.6 times higher than the corresponding 

batch one), while at the same time maintains the average chain length on target (see 

Figure 2). 
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Figure 6. Variation of (a) initiator molar concentration, (b) concentration of radicals A 

and B, and their total concentration, (c) total number of radicals, and (d) ratio of 

reaction volume over its initial value in the course of starved-feed semibatch and 

batch (inset) copolymerization processes 
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Figure 7. Variation of (a) polymer concentration and conversion (insets) in the course 

of starved-feed semibatch and batch methods; (b) concentration of monomers in the 

course of starved-feed semibatch and batch (inset) copolymerization processes 

 

3.2 Starved-feed semibatch vs. batch copolymerization: Advanced features of the 

KMC algorithm 

After the generic features of the KMC algorithm (essentially, after confirming that the 

developed KMC algorithm can reasonably capture typical features of semibatch and 

batch copolymerizations) in the previous subsection, a discussion of several advanced 

features of the KMC approach is now in order. One can now employ the KMC 

algorithm to produce copolymer molecules with tailored microstructures and track the 

evolution of weight fraction patterns in terms, for instance, of the number of B units 

per copolymer chain, or follow the bivariate chain length/copolymer composition 

distribution. These can be performed in cases where the quasi-steady-state-assumption 

(QSSA) for radicals and the long-chain-approximation (LCA) are not valid, and also 

without any other simplifications commonly used, as described in [8, 20]. 

The developed KMC simulator can fractionate, based on the number and weight of 

molecules, all the produced copolymer chains having 0, 1, 2, 3 … and n B units along 

the copolymer chain. In each case, it was also possible to predict the placement of B 

comonomer units in the copolymer chains, which made it possible to architecturally 

fractionate the copolymers having n B units based on the number and/or weight of 

fragments. Figure 8 compares the time varying weight fraction distributions of 

copolymers having different degrees of incorporation of B units per chain obtained in 

the simulation of batch and starved-feed semibatch processes. These plots are 

illustrative of the evolution of copolymer chains having n B units in their backbone 

and offer more insight in the state of each process for different operating conditions. 

For example, homopolymer molecules of type A increasingly populate the batch 

system over reaction time (see Figure 8a), while the corresponding product resulting 

from the starved-feed semibatch operation (see Figure 8b) follows a different trend, in 

which the weight fraction of homopolymer molecules of type A declines over time. It 

is also possible to compare cases based on the chain length of the copolymer 

molecules obtained at the end-of-batch (see Figure 9). In the batch process, the 

growing chains captured about 94 B units in the copolymer chain, and a wide range of 

copolymer chains having different number of comonomer units were produced. On 
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the other hand, the starved-feed semibatch process was successful in controlling the 

number of B units with a maximum of 27 B units per chain, which is characteristic of 

a well-controlled chain length in such operations. 

 

 

Figure 8. Time varying weight fraction distributions of copolymer chains with 

different B units per chain produced via (a) batch and (b) starved-feed semibatch 

copolymerization 

 

The KMC simulation algorithm was also capable of describing the bivariate molecular 

weight-copolymer composition distribution (see Figure 9). The weight distribution of 

copolymers having specified B units is obviously narrower in the case of starved-feed 

semibatch copolymerization; meanwhile the potential of such a system in producing 

copolymer chains with more than 5 B units in the growing copolymer chain is indeed 

limited. Another important feature would be the well-controlled length of copolymers 

produced in the case of starved-feed semibatch copolymerization (see contour plots in 

Figure 9b). The results of Figure 9 will be further clarified with the two tables that 

follow (Tables 4 and 5) and the corresponding case studies they describe (Case I 

(batch) and Case II (semibatch); see also Table 1). 
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Figure 9. Weight fraction distributions (normal letters) and corresponding contour 

plots (primed letters) of chains with different lengths comprising varying number of B 

units per chain produced via (a, a') batch, and (b, b') starved-feed semibatch 

copolymerization. Colour codes in (a') and (b') refer to the weight fraction of chains. 

 

Tables 4 and 5 compare the copolymer chains produced in Cases I and II, 

respectively, and give more details based on the differences between number 

fractions, sequence lengths, and polydispersity values of different chains obtained 

from the two different operations. 
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Table 4. Mole fractionation of copolymer chains based on the number of B units, 

molecular architecture, and differences between sequence length and polydispersity of 

chains virtually produced in batch (Case I, see Table 1) 

CASE I B units located at chain ends  

Number of 

B per chain Number-fraction (%) No end unit (%) 

One end 

(%) 

Both ends 

(%) DPn PDI 

0 50.3078 50.3078 0 0 18.4015 1.8453 

1 18.8406 13.9205 4.9201 0 33.9728 1.4727 

2 9.1646 7.4882 1.5584 0.1179 50.4107 1.3139 

3 5.6162 4.7346 0.8384 0.0432 66.8866 1.2347 

4 3.7953 3.2429 0.5292 0.0232 83.4081 1.1874 

5 2.7258 2.3468 0.3637 0.0153 99.9088 1.1565 

6 2.0141 1.7431 0.2611 0.0099 116.4229 1.1339 

7 1.5299 1.3269 0.1956 0.0073 132.8309 1.1173 

8 1.1802 1.0277 0.1472 0.0054 149.4518 1.1041 

9 0.9264 0.8072 0.1148 0.0044 165.6778 1.0939 

10 0.7320 0.6389 0.0899 0.0032 181.9996 1.0852 

11-94 3.1671 2.7738 0.3801 0.0132 - - 

 

Table 5. Mole fractionation of copolymer chains based on the number of B units, 

molecular architecture, and differences between sequence length and polydispersity of 

chains virtually produced in starved-feed semibatch (Case II, see Table 1) 

CASE II B units located at chain ends  

Number of 

B per chain Number-fraction (%) No end unit (%) 

One end 

(%) 

Both ends 

(%) DPn PDI 

0 46.0504 46.0504 0 0 19.3560 1.4894 

1 26.4155 21.5145 4.9010 0 28.8156 1.3259 

2 13.5663 11.0301 2.4059 0.1302 38.5531 1.2397 

3 6.9143 5.6126 1.2339 0.0678 48.3118 1.1899 

4 3.5082 2.8446 0.6292 0.0344 58.0512 1.1566 

5 1.7697 1.4327 0.3195 0.0175 67.8135 1.1338 

6 0.8882 0.7183 0.1608 0.0089 77.5557 1.1161 

7 0.4448 0.3603 0.0799 0.0046 87.5621 1.1030 

8 0.2225 0.1796 0.0406 0.0023 97.1144 1.0936 

9 0.1107 0.0897 0.0199 0.0011 107.2298 1.0857 

10 0.0550 0.0444 0.0101 0.0006 116.9506 1.0783 

11-27 0.0544 0.04390 0.0100 0.0005 - - 

 

Scrutinizing the entries of Tables 4 and 5 illustrates that copolymer chains produced 

in the batch process show, in general, more diversity in the number of B units per 

chain. A similar trend can be seen in the average degree of polymerization. In spite of 

the large difference in the number of B units per chain (94 for batch and 27 for 

starved-feed semibatch), the mole fraction of A homopolymer molecules in each case 

has remained almost the same. In contrast, the polydispersity index of A 

homopolymer molecules from the starved-feed process is lower. A comparison 
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between chains with 1 or 2 B units per chain also shows a difference between the two 

cases. Another important output of the developed simulator is concerned with the 

positioning of B units in each case. This can be clearly observed by comparing, for 

instance, the chains having 2 B units. In the batch process, the number-fraction of 

these chains is about 9.1% (see Table 4, 3rd row). Among these copolymer chains, 

approximately 7.5% contain no B units at the end of the grown chains, 1.5% have 1 B 

unit at the chain ends, and 0.11% have 2 B units at both ends of each chain. On the 

other hand, the corresponding values in the starved-feed semibatch case (see Table 5, 

3rd row again) are respectively calculated by the KMC algorithm as 13.5, 11, 2.4, and 

0.13%. Such detailed information is of critical importance in view of applications of 

synthesized macromolecules. Detailed information on the positioning of comonomer 

B along the copolymer chains associated with the ability to screening copolymer 

chains in terms of mole (or weight) fraction could bring more insights into the nature 

of addition of monomer units in the course of a typical free radical copolymerization, 

thus leading to tailored macromolecules and essentially guaranteeing predetermined 

characteristics. This is the topic of the subsection that follows. 

 

3.3 Additional advanced features of KMC: Positioning of B comonomer in the 

copolymer chains 

Table 6 shows four target architectures (Cases III to VI) having different target 

characteristics to be simulated in the starved-feed (SF) semibatch process. In all cases, 

the target copolymer chain length was set to 20, where one, two, three, and four B 

units were allowed to enter the chains of cases III to VI, respectively. Also, no B units 

were allowed to appear in the chain ends. 

 

Table 6. Molecular architecture of target copolymers expected from starved-feed (SF) 

semibatch operation 

 Process Target Architecture ASLn(A) ASLn(B) fB,optimum 

Case III SF AAAABAAAAAAAAAAAAAAA 9.5 1 0.105 

Case IV SF AAAAABAAAAAAAAABAAAA 6.0 1 0.167 

Case V SF AABAAAAABAAAABAAAAAA 4.25 1 0.235 

Case VI SF AABAAABAAAABAAAABAAA 3.2 1 0.312 

 

Figure 10 compares the evolution of weight fraction of simulated copolymer chains 

having different B units per chain corresponding to the various architectures defined 



 23 

in Table 6. As the number of B units in the copolymer chains increases going from 

Case III to Case VI (and from Figure 10a to 10d), the weight fraction of copolymer 

chains having more B units increases significantly. In addition, the weight fraction 

distributions of the aforementioned target molecules with the corresponding contour 

plots are compared in Figure 11. The obtained patterns show peaks at higher chain 

lengths as the number of B unit increases (moving from case III to VI and Figure 11a 

to Figure 11d, respectively). 

 

 

Figure 10. Time varying weight fraction distributions of copolymers with different B 

units per chain corresponding to cases III (a), IV (b), V (c), and VI (d) described in 

Table 6 
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Figure 11. Weight fraction distributions (normal letters) and corresponding contour 

plots (primed letters) of target copolymers with different B units per chain for cases 
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III (a, a'), IV (b, b'), V (c, c'), and VI (d, d') of Table 6. Colour codes in (a'- d') refer to 

the weight fraction of chains. 

 

Detailed features of these copolymer chain architectures are available by the KMC 

simulator for screening copolymer chains based on their bivariate distribution plots. 

These are summarized and compared in Table 7. 

 

Table 7. Architectural developments of the cases of Table 6 and the corresponding 

number and weight fractions of different comonomer placements 

Case No. Case III Case IV Case V Case VI 
Chains having no B (mol%) 28.8245 19.1050 13.3379 9.4187 
Chains having no B (wt%) 9.51402 4.4992 2.3888 1.3262 
     
Chains having no B at the ends (mol%) 80.5415 70.0478 59.3664 48.3368 
Chains having no B at the ends (wt%) 80.1217 69.4277 58.5674 47.3749 
     
*Chains with only one B at one end (mol%) 6.2754 6.8753 7.0895 7.0833 
*Chains with only one B at one end (wt%) 2.2099 1.7663 1.4144 1.1328 
     
*Chains with only two B at both ends (mol%) 0.3375 0.6121 0.9206 1.2714 
*Chains with only two B at both ends (wt%) 0.1274 0.1736 0.2093 0.2404 
     
**Chains with at least one B at the end (mol%) 18.4096 27.2961 35.3702 42.3889 
**Chains with at least one B at the end (wt%) 18.7790 27.7946 35.9249 42.9150 
     
**Chains with at least two B at the end (mol%) 1.0489 2.6561 5.2634 9.2744 
**Chains with at least two B at the end (wt%) 1.0993 2.7778 5.5078 9.7101 
     
Target microstructure (mol%) 16.8075 9.1055 5.5404 3.4756 
Target microstructure (wt%) 11.8542 6.8460 4.2234 2.6085 

*having no B unit at the middle 
** having some B units at the middle 

 

A few comments are now in order on the entries of Table 7, for illustrating how useful 

the information of Table 7 is with respect to delivering a controlled microstructure 

and desired product for different applications. According to the results obtained in 

Table 7, 28.82 mole% (equivalent of 9.51 wt%) of the virtually synthesized chains 

have no functionality (i.e., they include zero B units) in case III. On the other hand, 

80.54 mol% (equal to 80.12 wt%) of the produced chains possess no B unit at the 

ends of chains. Also, case III results in copolymer chains from which 6.27 and 0.34 

mole% have exactly one and two B unit(s) located at the end(s) of the chains, 

respectively. More interestingly, in Case III, 18.41 and 1.05 mol% of chains have at 



 26 

least one and two functional end(s), respectively. The other outstanding feature of the 

developed model is related to the difference between target macromolecules in molar 

or weight fractions. It is evident that the optimal feed composition satisfying 

production of copolymer chains having two B units placed in the middle of the chain 

reduces, as expected, the contribution of homopolymerization (chains with zero B 

units) from 28.82 mole% in case III to 19.10 in case IV. This trend will continue, 

reaching 13.33 and 9.41 mole fractions for cases V and VI, respectively. Similarly, 

the percentage of copolymer chains possessing no B units located at the chain ends 

will fall from 80.54 to 48.33 mole% moving from case III to VI. On the other hand, 

the contribution of chains possessing exactly one B at one end or those having only 

two B units located at both ends of the copolymer chains shows a very slight increase 

in mole fraction from 6.27 to 7.08, and from 0.33 to 1.27, respectively. This means 

that the contribution of such architectures to the total number or weight of produced 

copolymer chains is low. In turn, comparison of cases III to VI reveals a significant 

difference in the mole or weight fraction of chains having at least one or two B units 

situated at the ends. Interestingly enough, it can be seen that even when applying an 

optimal feed to the starved-feed semibatch process, the percentage of target 

macromolecules is still low and follows a decreasing trend from 16.80 to 3.47 mol% 

(11.85 to 2.60 wt%) as we move from case III to IV. Since production of target 

macromolecules through the starved-feed semibatch free radical copolymerization is 

associated with development of copolymer chains having less or more B units than 

those desired, the comparison of weight fraction distributions of copolymers having n 

B units in their backbone and those having specified B units all situated at the middle 

of the copolymer chains can be very informative (see Figure 12). It is obvious that 

increasing the number of B units widens the weight fraction distribution of copolymer 

chains having different number of comonomers. Despite the fact that production of 

polymers with controlled chain length is the characteristic of a starved-feed process, 

the diversity of copolymer chains in view of B units incorporated into the growing 

chains should be taken into equal consideration. The distribution of copolymers 

having n B units at the middle peaks at around the number of B units in the target 

macromolecule (see inset plot in Figure 12).  To conclude, the differences between 

target cases should be analyzed in view of the detailed information provided in either 

Table 7 or Figure 12. It is to be noted that the developed code can appropriately 

capture fluctuations in the architecture of growing chains when reactivity ratios are 
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not equal to unity, which will be the subject of a future investigation, and which will 

offer additional insights into the nature of comonomer addition and positioning. 
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Figure 12. Weight fraction distributions of chains having n B units and those 

possessing n B units placed at the middle (inset plot) for the different target 

copolymers of Table 6 

 

4. CONCLUSION 

We introduced an algorithm based upon a Kinetic Monte Carlo (KMC) simulation 

approach capable of quantifying the architectural evolution of chains during starved-

feed semibatch free radical copolymerization, through which a large number of 

copolymer chains was produced, screened, and analyzed in a computationally cost-

effective manner. The developed model was implemented on either batch or starved-

feed semibatch operations with an optimized feed. This optimized feed enabled 

achieving microstructures exhibiting prespecified number and sequence length 

distributions of comonomers with a minimum deviation from target copolymer chains. 

Comparisons of evolutionary trends in the average degree of polymerization, 

polydispersity index, chain length distribution, and the rate of different reaction 

pathways confirmed the uniformity of copolymer chains produced through starved-
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feed operations (and yielded the expected Flory-Shultz distribution patterns). Three-

dimensional plots corresponding to time varying weight fraction distributions of 

copolymers having different degrees of incorporation of B comonomer units per 

copolymer chain revealed populations of homopolymers in the batch system, whereas 

the starved-feed operation achieved optimal results as per the different targets. The 

detailed information obtained on the chain architectures, including the number and 

weight fractions of chains having n B units together with different positioning 

(placement) of the comonomer units, e.g., chains with zero, one or two B 

comonomer(s) located at the end(s), shed light on the many different and useful 

features of the developed MKC computer code in tracking the detailed architectural 

development of the different copolymer chains during the course of starved-feed 

semibatch copolymerization. 
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