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Abstract  

In this work, we put forward a novel cathode host for Li-S batteries by loading titanium 

nitride (TiN) nanoparticles into the pores of N-doped carbon as a proof-of-concept.  The 

selection of TiN arises from its strong binding ability with polysulfide and its exceptionally 

high conductivity of 5×10
6
 S/m.  As for N-doped porous carbon, it provides necessary 

physical adsorption and extra chemical adsorption sites from the N-doping.  Besides the 

above advantages, the most substantial merit endowed to this structure is the pore-loaded TiN 

design.  The carbon pore size confines the TiN precursors to the nanoscale and prevents 

otherwise subsequent agglomeration of TiN nanoparticles.  Moreover, the pore-loaded TiN 

design, with fully exposed adsorptive surface and highly dispersed adsorptive sites, guards 

against the blocking of future sulfur infiltration and Li
+
 diffusion.  The advantages of the TiN 
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loaded N-doped carbon are finally confirmed by electrochemical evaluations.  The capacity is 

found up to be 1338 mAh/g at a current density of 0.2C and 690 mAh/g at a current density of 

5C (where 1C = 1672 mAh/g).  For durability evaluations, the capacity is maintained at 700 

mAh/g after 800 cycles with a mere decay of 0.04 % per cycle.  Lastly, the feasibility of a 

high mass loading with 7 mg/cm
2
 is demonstrated. 
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Finding an alternative energy source to replace fossil fuels is becoming a necessity for a 

sustainable society [1, 2].   Nowadays, Li-ion batteries (LIBs) have gained tremendous 

success in the portable electronics and electric vehicles market [3, 4].   Albeit the fact that 

LIBs have been commercialized for over 27 years, the energy density of 387 Wh/kg have 

persistently been unable to meet the ever-increasing requirement of a longer discharge time 

[5-7].  For this reason, researchers have begun to refocus their attention to Li-S batteries, 

which possess a significantly higher theoretical energy density, of up to 2600 Wh/kg [8-10].  

However, the higher energy density does not guarantee a satisfactory substitute for LIBs 

unless the drawbacks of Li-S batteries are addressed.  Li-S batteries are based on a conversion 

reaction between a Li-metal anode and a sulfur cathode with polysulfide as the intermediate 

product [11].  As widely known, the sharp drop in the capacity under a high current density is 

due to the higher overpotential required to compensate for the insulating S8 and Li2S products 

when charging and discharging, respectively.  Moreover, constant dissolution of polysulfide 

and related shuttle effects lead to a capacity fading and low Coulombic efficiency [12].  Thus, 

increasing conductivity and decreasing polysulfide dissolution are the two promising 

strategies to address the aforementioned deficiencies on the cathode side of Li-S batteries [13]. 

 

Researchers have found that the low conductivity of S8/Li2S can be dramatically improved by 

depositing sulfur on a conductive substrate, or more preferably, infiltrating sulfur into a 

porous carbon host [14, 15].  As for polysulfide dissolution, it cannot be solved solely by 

chemical adsorption based on polar-polar interaction nor only by physical confinement from 

the porous framework [16, 17].  Rather, combining physical adsorption and chemical 

adsorption has proven to be highly effective, which may include doping heteroatoms into 

porous carbon or preparing a porous framework with suitable polarity, considering the 

different polarity requirement from S8 or Li2S precipitation [18-25].  Doping heteroatoms 

increases the chemical adsorption, however, the interaction between heteroatoms and 
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polysulfide is very weak.  Compared with heteroatoms, metal sulfide, carbide, nitride and 

other polysulfide suppressants show unquestionably higher binding energies with polysulfide 

[26-28].  However, the higher molecular weight hinders them when incorporating a sufficient 

amount of the suppressant into a porous structure to achieve the same amount of physical 

confinement as porous carbon.  Therefore, a rationally designed structure for the sulfur host, 

which combines physical confinement with chemical adsorption yet maintain a high 

conductivity, is still lacking.    

 

Herein, we put forward a novel cathode host by loading titanium nitride (TiN) nanoparticles 

into the pores of N-doped carbon as a proof-of-concept.  The rationale behind the selection of 

TiN arise from its strong binding ability with polysulfide and its exceptionally high theoretical 

conductivity of 5×10
6
 S/m, which is four orders of magnitude higher than that of typical 

porous carbon [29-33].  As for N-doped porous carbon, it provides the necessary physical 

adsorption due to the porous structure and extra chemical adsorption sites from the N-doping.  

In addition to the preceding advantages, the most substantial merit endowed to this structure is 

the pore-loaded TiN design.  The carbon pore size confines the TiN precursors to the 

nanoscale and prevents otherwise subsequent agglomeration of TiN nanoparticles in the 

nitridation process.  Compared with bulk TiN, the derived TiN nanoparticles have a much 

stronger polysulfide adsorption capability due to their fully exposed crystal planes, a widely 

recognized surface effect within nanomaterials.[29, 30, 34, 35]  Moreover, the pore-loaded 

TiN design, with fully exposed adsorptive surface and highly dispersed adsorptive sites, 

guards against the blocking of future sulfur infiltration and Li
+
 diffusion assuming TiN 

nanoparticles are loaded into the pores rather than merely on the surface.  The advantages of 

the TiN loaded N-doped carbon are finally confirmed by electrochemical evaluations.  The 

capacity was found to be remarkably high, up to 1338 mAh/g at a current density of 0.2C and 

690 mAh/g at a current density of 5C (where 1C = 1672 mAh/g).  For durability evaluations, 
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the capacity was maintained at 700 mAh/g after 800 cycles with a mere decay of 0.04% per 

cycle.  Lastly, the feasibility of a high mass loading of 7 mg/cm
2
 was demonstrated.  

Experimental Section 

Materials Synthesis 

Preparation of RF: RF carbon is prepared using a typical hard-template method.  Specifically, 

Ludox colloidal silica of 7 nm and 22 nm is mixed at a weight ratio of 1.66 g : 32 g under 

sonication for 24h.  After dried at room temperature for one week, the obtained SiO2 template 

is immersed into a Resorcinol/Formaldehyde solution at a mole ratio 1:2 in an ice bath for 3h.  

Subsequently, the infiltrated SiO2 is dried under 85 ºC for 24h and 120 ºC for 24h.  With 

another repeated infiltration process, the twice-infiltrated SiO2 is heated under Argon 

atmosphere at 900 ºC for 4h with a ramping rate of 10 ºC /min.  Finally, RF carbon is obtained 

after removal of the SiO2 template via dilute HF washing.   

Preparation of RF-TiN: Firstly, As-prepared RF absorbs water vapor at 80 ºC, then is 

immersed into titanium tetraisopropoxide/1, 3 dioxolane solution with 5 vol% for 1h.  After 

filtration in the glove box, the collected sample is heated NH3 in the tube furnace at 850 ºC for 

5h. 

Preparation of TiN-NP: TiN-NP is synthesized by heating commercial 5nm TiO2 powder 

under NH3 in the tube furnace at 850 ºC for 1h.  

Characterization Methods 

X-ray diffraction (XRD) patterns were recorded using a MiniFlex 600 Rigaku Diffractometer 

with Cu Kα irradiation (λ= 1.5406 Å).  To collect Raman spectra, a 514 nm laser source was 

employed.  The morphology was investigated by SEM (LEO FESEM 1530).  Transmission 

electron microscopy (TEM) images were collected by TEM (JEOL 2010F TEM/STEM).  

Nitrogen sorption measurements were performed on Autosorb iQ Station 1.  XPS 
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measurements were performed in a Thermo Scientific K-Alpha spectrometer.  For the 

electronic conductivity, sample powder was measured by the direct current polarization test 

under 2 tons pressure in the stainless steel cell of 10 mm diameter.  

Electrochemical Measurements:  

RF, RF-TiN, and TiN-NP was impregnated with sulfur of 70 wt% at 155 ºC for 6h. The slurry 

consist of 80 wt% sulfur@host, 10 wt% carbon black (Super-P) and 10 wt% polyvinylidene 

fluoride (PVDF) as the binder.  Via the doctor-blade method, the slurry was coated on 

aluminum foil and subsequently dried at 60 °C overnight under vacuum conditions and 

transferred into the glove box immediately after the drying process.  Coin cells (2032) were 

assembled: with the as-prepared electrode (14 mm in diameter) as the working electrode, 

lithium metal as the counter/reference electrode, Celegard 2500 membrane as a separator and 

stainless steel spring (1mm in thickness) and spacer (1mm in thickness) as a spacer, in an 

argon-filled glove box.  The electrolyte was prepared by dissolving 1M LiTFSI with 0.2 M 

lithium nitrate into a mixture of 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) (1:1 

by volume).  The active mass loading was around 1.5 mg/cm
2
 for the tests of galvanostatic 

charge-discharge, CV, EIS, rate capability and long cycle life in Figure 4 and Figure 5.  The 

active mass loading was around 1.5, 3, 5, and 7 mg/cm
2
 for the tests of high-mass loading in 

Figure 6.  The ratio for electrolyte/sulfur in each cell is about 16 ml/gsulfur for the mass loading 

of 1.5 mg/cm
2
 while 10 ml/gsulfur for the mass loading of 3.1 mg/cm

2
, 4.8 mg/cm

2
 and 7.0 

mg/cm
2
.  [36]. The electrochemical measurements were performed on LAND battery cycler 

for galvanostatic charge-discharge test and Gamry 5000E workstation for CV test, where the 

voltage range was from 0.01 to 2 V versus Li
+
/Li.  EIS results were obtained by Gamry 5000E 

workstation with the frequency range of 0.1 Hz–100 kHz. 

Result and Discussion 
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The porous carbon was prepared from the carbonization of resorcinol-formaldehyde resin 

after removing SiO2 template, which will be referred to as RF with morphology shown in 

Figure S1.  Then, the as-prepared RF with absorbed water vapor was soaked in titanium (IV) 

isopropoxide organic solution, during which TiO2 was loaded into the RF pores.  After 

nitridation in the ammonia, the TiO2-loaded RF is converted into TiN-loaded N-doped RF, 

which will herein be referred to as RF-TiN, the morphology of which is shown in Figure S2.  

The whole process and RF-TiN nanostructure is depicted in Schematic 1.  As a reference, 

pure TiN nanoparticle (TiN-NP) was also synthesized after nitridation of commercial TiO2 

nanoparticle, the morphology of which is shown in Figure S3.  

 

Schematic 1 Schematic of the preparation of RF-TiN and S@RF-TiN and its application in 
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the Li-S battery.  The black host is the RF carbon, while particles are loaded TiN nanoparticles, 

cyan dots represent the doped N atoms, and yellow spheres correspond to the infiltrated sulfur 

molecules.    

 

As the X-ray diffraction (XRD) results shown, the newly formed peaks of RF-TiN in Figure 

1a can be indexed to the TiN cubic structure with a space group Fm-3m (225).  Based on the 

Scherrer equation, the average crystallite size was estimated to be 7.5 nm along the (200) 

direction and 25.5 nm along the (111) direction, respectively.  Moreover, the carbon host was 

confirmed by the (002) peak around 26º, a typical feature for carbon.  It should be noted here 

that the average crystallite size along (002) direction of the carbon host in RF-TiN compared 

with RF, increased from 1.24 nm to 1.46 nm.  This change was due to the preferential etching 

of smaller carbon crystallites by NH3 [37, 38].  With the addition of TiN and the increased 

crystallite size of carbon host, the conductivity of RF-TiN was measured at 63 S/m, much 

higher than the 23 S/m of RF. 

 

Aside from XRD, the existence of TiN was also confirmed by the well-matching Raman 

bands of RF-TiN and TiN NP, located between 160 cm
-1

 to 610 cm
-1

 in Figure 1b.  As for the 

carbon host, the D band at 1350 cm
-1

 and G band 1580 cm
-1

 are assigned to the A1g vibration 

mode of C6 ring defects and E2g mode of sp
2
 carbon, respectively [39-41].  Thus far, the 

TiN/carbon composite has been completely confirmed by the XRD and Raman results.  Based 

on the thermal gravimetric analysis (TGA) result in Figure S4, the amount of loaded TiN was 

determined to be 27 wt. %.   
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Figure 1 (a) XRD patterns of RF and RF-TiN.  (b) Raman spectra of RF, RF-TiN and TiN-NP.  

(c) Nitrogen sorption isotherms of RF, RF-TiN and TiN-NP..  (d) Corresponding pore size 

distribution of RF, RF-TiN and TiN-NP. 

 

To find out whether TiN nanoparticles were loaded on the surface or in the pores of the porous 

carbon, the porosity was investigated by the Brunauer–Emmett–Teller (BET) test.  As 

measured by a N2 adsorption/desorption, the surface area of RF is about 900 m
2
/g with a pore 

volume of 4.12 cm
3
/g.  Figure 1c shows a type IV isotherm for mesoporous carbon with a 

characteristic hysteresis between adsorption/desorption curves in the medium relative pressure 

range.  Correspondingly, the pore size distribution (PSD) result displays only one peak at 42 

nm in Figure 1d, indicating a very narrow pore size distribution.  After TiN incorporation, the 

surface area drops to 831 m
2
/g while the pore volume shrinks to 3.14 cm

3
/g.  These changes 

were also reflected in the isotherm curve and PSD plot, which maintained similar shapes 

except with decreased absorbed pore volumes.  The above BET results confirm that TiN 

nanoparticles were precisely loaded into the pores.  This small crystallite size benefits from 
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the water vapor confined in the pores of porous carbon; the limited amount of which further 

determines the crystallite size of TiO2 as the product of hydrolysis reaction.  In the subsequent 

nitridation reaction, TiO2 was converted directly into TiN without particle agglomeration and 

crystallite growth due to the pore confinement effect.  Different from RF-TiN, the poor 

porosity and low surface area of TiN-NP was due to the particle agglomeration without carbon 

pore confinement in the RF-TiN case.  

 

 

Figure 2 (a) TEM images of RF-TiN.  (b), (c) TEM images of RF-TiN at high resolution.  (d) 

Carbon, nitrogen and titanium EELS mappings of RF-TiN.   

 

As shown in the transmission electron microscopy (TEM) images of Figure 2a, the dark 

particles of TiN, proved by electron energy loss spectroscopy (EELS) mapping in Figure 2d, 
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were distributed throughout the porous carbon host.  At a higher resolution, the pore-loaded 

TiN structure is clearly seen in Figure 2b, with a d-spacing of 2.4 Å along (111) direction in 

Figure 2c.  Compared with EELS mapping result, the signals of Ti are scarcely detected in 

the x-ray photoelectron spectroscopy (XPS) in Figure 3a.  However, these seemingly 

contradictory results between EELS and XPS actually confirm the pore-loaded TiN structure 

since XPS is only a surface characterization method, further confirming TiN nanoparticles 

loaded inside the pores rather than on the carbon surface.  The above TEM images and 

contrasting XPS/EELS results correspond well with the PSD results. 

 

Figure 3 (a) XPS survey of RF-TiN.  (b) XPS C1s spectra of RF-TiN.  (c) XPS N1s spectra of 

RF-TiN.  (d) XPS Ti 2p spectra of RF-TiN. 

 

Till now, the pore-loaded TiN structure was fully demonstrated by the XRD, Raman, BET, 

and TEM characterizations.  However, the detailed chemical bonding information of this 

novel structure is still inadequate although the XPS survey and EELS provided some 

preliminary results of element distribution.  Under the high resolution XPS in Figure 3b, the 
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carbon 1s peak was deconvoluted into three peaks located at 284.6 eV, 285.7 eV, and 288.8 eV 

for C-C, C-N and C-O bonding, respectively.  Especially, the existence of C-N bonding 

indicated the doping of N atoms into the carbon lattice fringe [42].  With respect to the N 1s 

and Ti 2p high resolution spectra, the existence of Ti-N bonding was confirmed in Figure 3c 

and Figure 3d.  Here, it should be noted that inevitable surface oxidation of TiN during 

handling leads to the formation of Ti-N-O and Ti-O bonding [43].  

 

Thus far, these complementary results highlight the loading of TiN nanoparticles into the 

recesses of the pores of N-doped carbon.  This particular structural design possesses the 

following advantages in the electrochemical characterizations.  Firstly, the high electronic 

conductivity from the TiN nanoparticles and NH3-trimmed carbon host, greatly facilitate 

electron transfer.  Secondly, loading TiN nanoparticles into the pore’s recesses rather than 

onto the surface will fully expose the adsorptive sites and prevent TiN aggregation near the 

pore opening, which would otherwise lead to blocking future sulfur infiltration and Li
+
 

diffusion.  Most importantly, the physical adsorption from the pore structure and chemical 

adsorption from nanosized TiN and N-doping enables a strong binding with polysulfide.   

 

The above advantages suggests RF-TiN as a desirable cathode host for Li-S batteries.  To 

prove this, RF-TiN was impregnated with sulfur, at a 70% mass content from TGA 

measurement in Figure S5, after heating the RF-TiN/ sulfur mixture under air at 155 ºC for 

12h under Ar.  Revealed by scanning electron microscope (SEM), energy dispersive 

spectroscopy (EDS) and XRD patterns analysis in Figure S6 and Figure S7, sulfur was 

uniformly distributed on the RF-TiN host.  Then, the electrodes were prepared by the doctor-

blade method and assembled with Li-metal in coin cells.  As a control, RF and TiN-NP as 

cathode hosts were also tested in a Li-S battery prepared by the same process.  All three hosts 

impregnated with sulfur are denoted as S@RF-TiN, S@RF, and S@TiN-NP, respectively. 
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In Figure 4a at a current density of 0.1C (1C=1672 mAh/g), S@RF-TiN shows a typical 

potential profile for Li-S batteries in the galvanostatic charge–discharge test.  In the first 

discharge cycle, the plateau located at 2.3 V (vs. Li
+
/Li, hereinafter inclusive) corresponds to 

the conversion from sulfur to Li2Sx (4≤x≤8).  With further discharge, another plateau appears 

at 2.14 V, corresponding to the formation of Li2Sx (2≤x≤4) and lastly, Li2S.  In the subsequent 

charge process, the two plateaus seemingly merged into one slope, each of which corresponds 

to the short-chain polysulfide and long-chain polysulfide formation, respectively.  With a 

discharge capacity of 1338 mAh/g and a charge capacity of 1265 mAh/g, the Coulombic 

efficiency is approximately 94.46 %, which is due to the partial dissolution of polysulfide into 

the electrolyte.  This high charge capacity benefits from catalytic role of the TiN nanoparticles 

inside the carbon pores in accelerating the electrochemical reaction kinetics at the second 

plateau, a redox mediator effect on transferring of S8 to polysulfides and back to Li2S, which 

have been demonstrated before [34].  Compared with S@RF-TiN, S@RF and S@TiN-NP 

exhibit similar charge/discharge curves in the first cycle.  However, the potential hysteresis of 

S@RF and S@TiN-NP is larger than that of S@RF-TiN, which is attributed to the slower 

reaction kinetics and associated electron transfer/Li
+
 diffusion.  Specifically, the low 

electronic conductivity of RF could not match the faster Li
+
 diffusion capability and leads to 

an increased overpotential, though RF, with a larger surface area and pore volumes than RF-

TiN, may possess a little higher Li
+
 diffusion capabilities.  As for TiN-NP, there is hardly any 

Li
+
 diffusion pathway, proved by its poor porosity in Figure 1d, in the nonporous structure 

albeit TiN-NP possessing a much higher conductivity than RF-TiN.  Therefore, the extremely 

poor Li
+
 diffusion circumstance of TiN-NP results in a significantly larger potential hysteresis, 

in agreement with the lack of kink at the end of discharge, which corresponding to irreversible 

decomposition of LiNO3 in the RF-TiN and RF cases [44, 45].  With respect to capacity, 

S@RF delivers a discharge capacity of 1102 mAh/g, while S@TiN-NP possesses a discharge 



  

15 

 

capacity of 800 mAh/g.  As we know, an increased overpotential leads to an incomplete 

electrochemical reaction, and subsequently, a lowered capacity, which appears to be the case 

for S@RF and S@TiN-NP.   

 

Figure 4 (a) Galvanostatic charge/discharge potential profiles of S@RF, S@RF-TiN and 

S@TiN-NP in the potential range of 1.8–2.6 V vs. Li
+
/ Li at a current density of 0.1C.  (b) CV 

curves of S@RF, S@RF-TiN and S@TiN-NP at a scanning rate of 0.05 mV/s.  (c) Rate 

performance for S@RF, S@RF-TiN and S@TiN-NP at current density from 0.1C, 0.2C, 0.5C, 

1C, 2C, 3C and 4C to 5C.  (d) Nyquist plots of S@RF, S@RF-TiN and S@TiN-NP.  All the 

electrochemical tests in the Figure 4 are obtained by using 1.5 mg/cm
2
 active mass loading 

with a electrolyte/sulfur ratio of 16 ml/gsulfur. 

 

The electrochemical discrepancy in the galvanostatic charge–discharge test among S@RF-

TiN, S@RF and S@TiN-NP is further expounded in the cyclic voltammetry (CV) test in 

Figure 4b.  Compared with S@RF-TiN, the redox peak of S@RF and S@TiN-NP shift 



  

16 

 

downwards during the anodic scan and upwards during the cathodic scan, which is a result of 

the deficient electron transfer or Li
+
 diffusion discussed previously.  Moreover, the area 

changes amongst S@RF-TiN, S@RF and S@TiN-NP under redox peaks in Figure 4b are in 

line with the capacity variation in Figure 4a.  

 

As discussed above, the advantage of RF-TiN with its fast and balanced electron transfer/Li
+
 

diffusion has been revealed under the galvanostatic test at a 0.1C current density.  This merit 

was derived from the precise structural design, which was further confirmed under the rate 

test shown in Figure 4c.  Notably, the high capacity was retained at 690 mAh/g under a 5C 

current density for S@RF-TiN.  However, these values only reach 490 and 180 mAh/g for 

S@RF and S@TiN-NP, respectively.  Based on the ratio between capacities under 0.1C and 

5C, the capacity retention is about 53% for S@RF-TiN while only 44.4% for S@RF and 22.5% 

for S@TiN-NP.   

 

This fast and balanced electron transfer/Li
+
 diffusion of RF-TiN is not only demonstrated in 

the rate test, but also confirmed in the electrochemical impedance spectroscopy (EIS).  From 

Figure 4d, we find that the Nyquist plots in the complex plane are comprised of a semicircle 

and a line, corresponding to the charge transfer resistance and Li
+
 diffusion in the bulk 

electrolyte, respectively.  In particular, the charge transfer resistance of S@RF-TiN is only 

about 31Ω, which is much smaller than 38Ω for S@RF and 51Ω for S@TiN-NP.  It should be 

noted that the charge transfer resistance is determined by the electronic conductivity and Li
+
 

diffusion capability.  Therefore, we can conclude that S@RF-TiN contributes to a faster 

electron transfer and Li
+
 diffusion than S@RF and S@TiN-NP.  In summation, the results of: 

the decreased potential hysteresis and increased capacity from the galvanostatic test, the 

decreased overpotential from the CV test, and decreased charge transfer resistance from the 

EIS test, suggest that RF-TiN enables a faster and more balanced electron transfer/Li
+
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diffusion, and thus better electrochemical kinetics than RF and TiN-NP.  

 

Figure 5 (a) Long-term cycling performance of S@RF, S@RF-TiN and S@TiN-NP at a 

current density of 0.2 C.  (b) UV-vis absorption spectra of the Li2Sx in DOL/DME solution 

after absorption by RF, RF-TiN and TiN-NP, respectively.  Inset: Corresponding optical 

images.  (c) XPS S 2p spectra of polysulfide before and after adsorption by RF-TiN.  (d) XPS 

Li 1s spectra of polysulfide before and after adsorption by RF-TiN.  (e) Long-term cycling 

performance of S@RF-TiN at a current density of 1C.  All the electrochemical tests in the 

Figure 5 are obtained by using 1.5 mg/cm
2
 active mass loading with a electrolyte/sulfur ratio 

of 16 ml/gsulfur. 
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Thus far, we have demonstrated that the rational design of RF-TiN is conducive to a higher 

capacity and better rate capability.  As described previously, this combination of a porous 

structure, N-doping and TiN loading also leads to a strong polysulfide adsorption.  It can be 

seen from the data in Figure 5a that the capacity of S@RF-TiN drops from 1163 mAh/g to 

1036 mAh/g with retention of 89.1 % after 50 cycles under a current density of 0.2 C.  In 

contrast with S@RF-TiN, the capacity of S@RF can only be maintained at 63.3 %, dropping 

from 1022 mAh/g to 648 mAh/g after 50 cycles under the same testing conditions.  Based on 

the prior comparison, it is clear that the polysulfide dissolution decreased after the additional 

synergic chemical adsorption from the N-doping and TiN nanoparticles found within the 

pores.  As for S@TiN-NP, the capacity retention was only 69.4 % based on an initial capacity 

of 736 mAh/g and capacity of the fiftieth cycle.  This result should be ascribed to the 

insufficient physical adsorption of TiN-NP due to its low surface area as shown in Figure 1c 

and resulting active sites restriction, despite the strong binding energy between TiN and 

polysulfide, which has already been affirmed by theoretical calculations [34].  The polysulfide 

reservoir of RF-TiN is superior to RF and TiN-NP, which is further demonstrated in Figure 

5b inset.  After immersing RF-TiN, RF, and TiN-NP in Li2Sx in 1,2-dimethoxyethane (DME) 

and 1,3-dioxolane (DOL) (1:1 by volume) for 12 hours, the polysulfide adsorption capability 

among these three samples were visually distinguishable.  The color of the Li2Sx solution in 

the RF-TiN vial became colorless, while Li2Sx in the RF and TiN-NP vials remained 

yellowish.  The quantitative comparison is further revealed by ultraviolet (UV) spectroscopy.  

As shown in Figure 5b, the intensity of the peaks at 270 nm coincide with the amount of 

lingering S4
2-

/S6
2-

 species after 12 hours of adsorption.  In addition to the color change, RF-

TiN showed the strongest polysulfide adsorption ability, attributing to the combined physical 

adsorption from porous structure and chemical adsorption from N-doping/TiN anchor.  From 

another aspect, the strong polysulfide adsorption of RF-TiN is also revealed by XPS results.  
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Compared with Li2S6 in Figure 5c, both terminal (ST) and bridging sulfur (SB), after 

adsorption by RF-TiN, shifted to a higher binding energy location indicating a reduction in the 

electron cloud density from the attraction of N-doping or TiN nanoparticles [46, 47].   A more 

substantial evidence for polysulfide adsorption was supported by the appearance of Ti-S 

bonding at 162 eV [48].  Moreover, the Li 1s XPS spectra in Figure 5d experienced similar 

upshifts to the S 2p spectra due to the existence of Li-N bonding [49, 50].   Finally, the strong 

polysulfide immobilization of S@RF-TiN was confirmed at a 0.04% capacity fading per cycle 

under a 1C current density in Figure 5e.  The capacity merely dropped from 1030 mAh/g to 

700 mAh/g after 800 cycles.   

 

Figure 6 (a) Galvanostatic charge/discharge profiles of S@RF-TiN and (b) cycling 

performance of S@RF-TiN at various mass loadings at a current density of 0.2 C. (c) Long 

cycling performance of S@TiN-NP at a mass loading of 4.8 mg/cm
2
 under current density of 

0.2C. (d) Rate performance of S@TiN-NP at a mass loading of 4.8 mg/cm
2
 under current 

density from 0.2C, 0.5C, 1C, to 2C.  The ratio for electrolyte/sulfur in each cell is about 16 

ml/gsulfur for the mass loading of 1.5 mg/cm
2
 while 10 ml/gsulfur for the mass loading of 3.1 
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mg/cm
2
, 4.8 mg/cm

2
 and 7.0 mg/cm

2
. 

 

As mentioned beforehand, Li-S batteries may potentially become the primary power source 

for electric vehicles and portable electronics in replacing LIBs, therefore a high mass-loaded 

prototyping is required.  To prove the feasibility of RF-TiN, we prepared electrodes with 

different sulfur loadings: at 1.5 mg/cm
2
, 3.1 mg/cm

2
, 4.8 mg/cm

2
 to 7 mg/cm

2
.  With the 

increased sulfur loadings in Figure 6a, the corresponding area capacity also increased from 

2.5 mAh/cm
2
 to 3.5 mAh/cm

2
, 4.5 mAh/cm

2
, and 7 mAh/cm

2
, well above the levels of 

commercial LIBs.  Compared with common mass loading of 1.5 mg/cm
2
, the high mass 

loading of 7 mg/cm
2
 did not lead to a substantial drop in capacity nor elevated overpotential, 

which should be attributed to the pivotally high electronic conductivity and facile Li
+
 

diffusion ability.  Moreover, the cycling performance at a high mass loading was also 

demonstrated in Figure 6b.  With the proficient polysulfide anchoring in preventing large 

amounts of polysulfide dissolution, the cycling of the high mass loaded cell showed 

impressive areal capacity retention.  As a result, the areal capacity of 7 mg/cm
2
 mass loading 

could still remain 5.9 mAh/cm
2
 after 50 cycles.  Moreover, the area capacity retention can be 

high up to 88.8% after 200 cycles, under a relatively low mass loading of 4.8 mg/cm
2
 as 

shown Figure 6c.  Finally, the rate capability under high mass loading of 4.8 mg/cm
2
 was 

examined in Figure 6d.  At various current densities from 0.2C, 0.5C, 1C, to 2C, the 

corresponding area capacity was around 4 mAh/cm
2
, 3.5 mAh/cm

2
, 2.6 mAh/cm

2
 and 4 

mAh/cm
2
, 2.1 mAh/cm

2 
respectively.  The excellent rate performance under high mass 

loading and high current density fully demonstrated the advanced kinetic behaviors of RF-TiN, 

which is due to its high electronic conductivity and fast Li
+
 diffusion ability.  

 

Conclusion 

In conclusion, this is the first report of TiN embedded within the pores of N-doped carbon, 
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which acted as a cathode host for Li-S batteries, and exhibited excellent electrochemical 

performance.  After nitridation of water vapor loaded TiO2, the TiN nanoparticles confined 

within the pores of N-doped carbon offered the following advantages: a high electronic 

conductivity inherited from the TiN/carbon host, strong polysulfide anchoring realized by the 

physical adsorption of the porous carbon structure, and chemical adsorption from N-

doping/TiN.  Moreover, TiN nanoparticles were loaded into the pore recesses, rather than onto 

the surface, which prevents the blockage of subsequent sulfur infiltration and Li
+
 ion diffusion.  

In the consequent electrochemical tests, the high capacity of 1338 mAh/g (at a current density 

of 0.1 C), decent rate capability, and high mass loading (up to 7 mg/cm
2
), all benefitted from 

the fast electron transfer and facile Li
+
 ion diffusion.  In addition, the stable cycling with a 

decay of 0.04% per cycle over 800 cycles can be attributed to the combined physical and 

chemical polysulfide adsorption.  Finally, this special structure of TiN nanoparticles 

embedded in carbon pores can potentially possess wider applications in metal air batteries, 

fuel cells and other energy storage areas.  
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Highlights 

 

1  First recessed deposition of TiN into N-doped carbon as Li-S battery cathode host 

 

 

2.  High conductivity and advanced chemical/physical polysulfide adsorption ability  

 

 

3.  Stable long cycling performance after 800 cycles and high mass loading up to 7 

mg/cm
2
 

 

 

 




