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Abstract 

High-Manganese austenite-containing steels with superior combination of strength and ductility have shown 

potential for enhancement of passenger safety and body-in-white (BIW) weight reduction. Even though Zn-

coated austenitic steels have improved corrosion resistance, they are highly susceptible to liquid metal 

embrittlement (LME) during welding. The present work is aimed to address LME susceptibility during 

restrained laser lap joining of high-Mn twinning induced plasticity (TWIP) and medium-Mn transformation 

induced plasticity (MMn-TRIP) steels. Electron probe micro-analysis (EPMA) results showed that stress-

assisted diffusion of Zn into the austenite grain boundaries and further liquid Zn formation by a peritectic 

reaction lead to grain boundary decohesion. Electron backscatter diffraction (EBSD) results demonstrated that 

high angle and special coincidence site lattice (CSL) grain boundaries are more prone to Zn-penetration within 

the heat-affected-zone (HAZ). Additionally, LME sensitivity was observed to be highly dependent on the 

magnitude of applied stress. 
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1. Introduction 

In recent years, austenite-containing advanced high strength steels (AHSSs) have 

received significant commercial and research interest because of their exceptional combination 

of strength and ductility for automotive applications. Among the best known are the classes of 

twinning induced plasticity (TWIP) and medium-Mn transformation induced plasticity (MMn-

TRIP) steels, in which the austenite phase is stabilized by the addition of high amounts of Mn 

[1,2]. High volume fraction of austenite provides a high work-hardening rate through mechanical 

twinning and the deformation-induced martensitic transformation in TWIP and TRIP steels, 

respectively [3–6]. Zn-based coatings are most commonly used to protect TWIP and MMn-TRIP 

steels from environmental corrosion; however, the co-presence of a high austenite fraction and 

Zn-coating has been found to result in severe sensitivity to liquid metal embrittlement (LME) 

during resistance spot welding [7–9]. This has impeded the adoption of these steels into 

automotive designs. 

Based on Gleeble thermomechanical simulation results, Beal et al. [10] reported a drastic 

reduction in fracture strength and ductility in electrogalvanized (EG) 22Mn-0.6C full austenitic 

TWIP steel between 700 and 950°C. Moreover, LME became more severe when Gleeble tests 

were carried out with reducing holding times at elevated temperatures before the application of 

tensile stress. At longer holding times, the formation of Fe-Mn-Zn intermetallic compounds at 

the steel-Zn interface suppressed embrittlement [10]. In other words, by consumption of liquid 

Zn through the formation of intermetallic compounds, a lower amount of liquid Zn remaining for 

embrittlement under stress. It was also suggested that the presence of intermetallic phases could 

act as a barrier between the steel and liquid Zn [10]. From a practical point of view, during 

welding, areas of the weld zone are exposed to tensile loading and a temperature range of 700-
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950°C for short times. Resistance spot welding (RSW) and laser beam welding (LBW) are 

considered as the main joining methods for thin sheets in the automotive industries. So far, 

several researchers showed that Zn-coated TWIP steels are prone to liquid zinc embrittlement 

during RSW. Ashiri et al. [11] showed that, LME could considerably affect the weldable current 

range of Fe-15Mn-0.5C-2Al TWIP steel. Higher peak temperatures induced by the high 

electrical resistivity of TWIP steel (rapid nugget growth) and simultaneous presence of liquid Zn 

resulted in a severe LME cracking. Moreover, it has been shown that the sensitivity of Zn-LME 

is highly reliant on Zn-coating type. In this regard, GI-coated TWIP steel possesses the highest 

susceptibility, compared to Galvannealed (GA) and Electrogalvanized (EG) coatings [12]. The 

current range of GI-coated TWIP steel was found to be reduced by over 77% to prevent LME 

cracking while still producing acceptable quality weld nuggets [11].  

In contrast to several studies on LME susceptibility during RSW of TWIP and TRIP 

steels [11–14], there is a lack of knowledge on LME sensitivity during LBW of austenitic TWIP 

and the new class of austenitic-ferritic MMn-TRIP steels. It is suspected that the presence of 

liquid Zn during laser welding and the stress generated due to clamping could lead to LME crack 

formation and therefore, affects the structural integrity of the joints and performance of the parts. 

Hence, the main motivation of the present study is to provide an understanding of LME during 

restrained laser welding of TWIP and MMn-TRIP steels and the underlying embrittlement 

mechanism. 

2. Material and experimental procedure 

The chemical compositions of the experimental TWIP and MMn-TRIP steels are given in 

Table 1. The MMn-TRIP steel sheets (1.45 mm thick) were GI-coated (coating weight of 50 

g/m
2
 per side) and the TWIP steel sheets (1.2 mm thick) were bare. Laser welding was 
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performed using a fiber laser system (YLS-6000-S2) with a maximum power output of 6 kW, 

equipped with a Panasonic robotic arm. The fiber core diameter, the spot size, and the beam 

focal length were 0.3, 0.6, and 200 mm, respectively. During all welding trials, the laser beam 

remained focused on the surface of the upper sheet. The constraint setup, specimen, and laser 

welding head configuration are depicted schematically in Fig. 1a. The lap-joining specimen 

geometry is shown in Fig. 1b. To investigate LME cracks and microstructure, samples parallel to 

the welding direction were prepared for analysis. Of particular interest were observations of the 

heat-affected zone (HAZ). LME cracks were studied by means of scanning electron microscopy 

(SEM), equipped with energy-dispersive spectroscopy (EDS) and wavelength-dispersive 

spectroscopy (WDS).  Detailed analysis of the microstructure and the grain boundaries was 

performed by electron backscatter diffraction (EBSD) technique. The EBSD samples were 

mechanically polished using oxide polishing suspension (OPS) suspension. The EBSD analysis 

was carried out by JEOL JSM 7000f field-emission gun SEM equipped with the HKL 

Technology EBSD system. The acquisition of data was carried out by the Oxford Instruments 

Aztec software. For EBSD measurements, a step size of 0.25 µm, working distance of about 15 

mm and an accelerating voltage of 20 kV were used. The post-processing of the collected data 

was performed by a HKL Channel 5 software. Low-angle boundaries (LABs) and high-angle 

boundaries (HABs) were defined as grain boundaries with a misorientation of 0.7° < θ < 15° and 

θ > 15°, respectively. To determine the LME cracking susceptibility various criteria such as the 

maximum crack length, overall number of cracks and total length of cracks have been used by 

others [15]. In the present study to determine the LME sensitivity, the maximum crack length 

criterion has been used as longer cracks could propagate much rapidly under the applied tensile 

stresses. Fig. 2 shows the engineering stress vs. strain curve of the as-received TWIP and MMn-
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TRIP steel. The results showed yield strength of about 530 and 1100 MPa for TWIP and MMn-

TRIP steel, respectively. 

3.  Results and discussion 

3.1 As-received microstructure 

The initial microstructures of the as-received TWIP and MMn-TRIP steels are shown in 

Fig. 3. According to Fig. 3a, the MMn-TRIP steel microstructure consisted of an ultrafine 

lamellar austenite in a ferritic matrix. The mean austenite lamella width was approximately 120 

nm. By means of image processing, the austenite volume fraction in the initial structure was 

determined to be about 50%. The lamellar austenite structure agrees with previous research on 

MMn-TRIP steel [16]. In contrast, the EBSD analysis confirmed a full austenitic microstructure 

of TWIP steel with a mean grain size of about 3 µm (Fig. 3b). 

 

3.2 Effect of the external tensile stress on LME susceptibility 

As described by several researchers [10,17,18], the simultaneous presence of sufficiently 

high tensile stresses and a liquid film in a sensitive polycrystalline material leads to grain 

boundary decohesion. To investigate the role of a tensile load on the LME cracking, LBW trials 

have been performed under different external loading conditions. The average maximum length 

of LME-cracks in TWIP and MMn-TRIP steel versus the applied external load is depicted in Fig. 

4. The results show that the LME crack length increases with increasing applied load, where 

TWIP steel shows longer cracks compared to TRIP steel (i.e. higher LME susceptibility in the 

TWIP steel). According to Fig. 2, the yield strength of TWIP steel is much lower than that of the 

TRIP steel. Hence, in addition to higher austenite volume fraction in the TWIP steel, higher 
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LME susceptibility in the TWIP steel can be attributed to lower yield strength of the material. 

The observed correlation between the applied stress and crack length is in accordance with the 

proposed mechanism of LME in the present study. 

 

3.3 LME crack characterization 

Fig. 5 illustrates the occurrence of multiple LME cracks with different lengths after 

restrained LBW. As described before, sectioning and grinding were carried out parallel to the 

welding direction to analyze LME crack within the HAZ. The results from various welding 

conditions indicated that all LME cracks initiated from the TWIP-TRIP interface (Fig. 5a and b), 

where Zn-coating from the TRIP side of the joint penetrated into the TWIP side. Even though 

TWIP steel is not coated, the liquid zinc from the TRIP side of the joint penetrated along the 

grain boundaries within the HAZ from the joint interface and created several LME cracks under 

the applied external stress. The length of the LME cracks are of the order of 100 µm (Fig. 5c), 

which is much longer than the acceptable crack length of 10 µm [19]. In addition, as Fig. 5d 

shows LME cracking has also occurred in the TRIP side of the joint; however, it has been 

observed that the total number of LME cracks and the maximum crack length are lower than on 

the TWIP side of the joint.  

Fig. 6a shows EDS Fe and Zn element mapping of a representative LME crack region in 

the TWIP side of the joint. As seen, a considerable amount of Zn is present inside the crack 

where it penetrated very deep along the crack. The temperature within the HAZ during fiber laser 

welding of AHSSs exceeds 700°C, where it falls between Zn melting and boiling points of 419 

and 907°C, respectively [20]. Accordingly, the GI-coating transforms into liquid phase above 

HAZ and penetrates along the grain boundaries during LBW. Fig. 6b and c demonstrate the 
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detailed electron probe micro-analysis (EPMA) Zn distribution maps at the middle and the tip of 

the LME crack. From Fig. 6b and c, it may be seen that the Zn content at the tip of the crack is 

less than at the middle length of the crack. Ashiri et al. [12] and Kang et al. [21] also observed a 

similar change in Zn concentration along the LME crack length. As described earlier [12], a 

lower Zn content at the crack tip is an indication that grain boundary based diffusion is mainly 

responsible for the Zn-penetration. The line profiles in Fig. 6d reveal the Zn content inside the 

LME crack match the composition of the Γ-(Fe,Mn)3Zn10 phase (72-76.5 wt% Zn) [21]. 

Moreover, the elemental analysis confirmed the presence of 4-5 wt.% of Mn and ~ 1wt.% of Al 

inside the crack. The existence of Mn and Al shows that liquid-Zn phases dissolved Mn and Al 

from the austenite matrix. In agreement with Fe-Mn-Zn ternary phase diagrams [22], the 

previous studies [21,23] also indicated the presence of Γ-(Fe,Mn)3Zn10 phase in the central 

regions of LME-cracks. According to Kang et al. [21], during high temperature processing of 

austenitic TWIP steel one may expect multiple formation and propagation stages. First, in the 

heating cycle of LBW η-phase (main phase of GI-coating) transforms into the liquid phase. 

Second, Zn penetrates into the austenite grain boundaries through the stress-assisted diffusion 

mechanism. The presence of a much lower Zn content at the tip of the crack is also evidence of a 

diffusion-based mechanism of Zn penetration. However, the very large penetration depth of Zn 

(hundreds of micrometers) cannot be justified by only Zn-diffusivity along the austenite grain 

boundaries. In other words, the observed depth of Zn penetration is orders of magnitude higher 

than the predicted solid-state diffusion distance of Zn atoms in the short time period of laser 

welding. Therefore, the considerable depth of Zn penetration is attributed to the stress-assisted 

diffusion mechanism [21,24]. As a result of Zn accumulation in the grain boundary, Zn content 

exceeds the maximum solubility limit in austenite [21]. Over the maximum solubility limit, 
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liquid-Zn starts to form along the austenite grain boundaries. Afterwards, as a consequence of 

liquid-Zn film presence along grain boundaries, the metallic bond weakening takes place due to 

the adsorption-induced decohesion theory [18], and subsequently, the initial LME crack opens 

up. It is most likely that by the crack opening, more liquid-Zn from the melted GI-coating flow 

into the crack through a well-established capillarity effect. More fresh liquid-Zn inside the crack 

promotes further Zn-penetration and eventually under the applied tensile stresses LME-crack 

could propagates even more rapidly. During the cooling phase of the weld cycle, after crack 

propagation ended, the liquid phase inside the crack and the austenite matrix in the vicinity of 

crack composed of Fe and Mn in addition to Zn due to matrix solid-state diffusion tend to 

transform into Γ-(Fe,Mn)3Zn10 phase through the following peritectic reaction: 

γ(Fe, Mn, Zn)+Liq. Zn (Fe, Mn-saturated)→ Γ-(Fe, Mn)3Zn10 

The proposed mechanism is consistent with the Zn alloy inside the crack has a Zn content of 

~70%, and therefore forms Γ-(Fe,Mn)3Zn10-phase. Even though Zn is a strong ferrite stabilizer, 

the presence of a significant Mn-content (austenite stabilizer) in the TWIP and MMn-TRIP 

steels, means that no α-Fe(Zn) phase forms in the vicinity of the LME crack. The formation of α-

Fe(Zn) within the LME cracking area has been reported in Zn-coated 22MnB5 press-hardening 

steel [25,26]. 

The lesser extent to which LME cracking is observed in the TRIP counterpart is 

attributed to the initial microstructure of its base material. According to Fig. 3a, the initial 

microstructure of the MMn-TRIP steel is comprised of fine needle-like austenite phase 

surrounded by a ferrite matrix, and most of the boundaries are inter-phase type. In contrast, the 

initial structure of the TWIP steel is fully austenitic (Fig. 3b) and therefore, the occurrence of 
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LME is not dependent on the Ac3 temperature. In this regard, the plausible explanation for the 

occurrence of the LME-cracking in the TRIP counterpart relies on the austenite grain boundaries 

emerged within the HAZ during the heating cycle of LBW. A full austenitic structure would 

appear within the upper critical HAZ (UCHAZ), where the temperature exceeds the Ac3 

temperature of the material (~780°C). The η-phase as the main phase of GI-coating tends to 

vaporize around 900°C [27]. Therefore, the temperature window (~750-900°C) for the 

concurrency of the presence of liquid Zn and susceptible microstructure (two main prerequisites 

of LME) is narrow. This, in turn, justifies lower potential of LME-induced cracks in the TRIP-

side of the joint. 

 

3.4 Grain boundary analysis 

Fig. 7a and b depicts the EBSD orientation and corresponding Zn penetration map of a 

representative LME crack in the TWIP side of the joint. According to the image quality (IQ) 

micrograph in Fig. 7c, the LME crack propagated intergranularly along austenite HABs (black 

lines). The overall LME crack propagation path is governed by the direction of the applied 

tensile stress; however, the local propagation path is governed by the grain boundaries. Hence, to 

determine the misorientation angle of grain boundaries in which Zn has penetrated, matching 

grains in both sides of the LME crack has been found. Subsequently, by keeping one of the 

grains as the reference, the local orientation change between each pair of the matched grains has 

been compared (Fig. 7d). The distribution of misorientation angles in all the matched grains is 

shown in Fig. 7e. As is seen, Zn penetration only has occurred in HABs, and none of the LABs 

contributed in the cracking. Moreover, it has been observed that a considerable fraction of Zn-

penetrated grain boundaries showing misorientation angles of about 60°. This is attributed to the 
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presence of coincidence site lattice (CSL) boundaries in the initial microstructure of the TWIP 

steel. It is well-established that due to low stacking fault energy (SFE), TWIP steel shows a high 

fraction of twinning with a Σ3 (60° [111]) relationship [28,29]. Therefore, it can be concluded 

that in addition to the general HABs, Σ3 twinning boundaries also play a major role in Zn 

penetration along the boundaries. As denoted by Ludwig et al. [30], the thermodynamic driving 

force (FD) for the liquid metal penetration along the grain boundaries is the energy reduction 

according to the following equation: 

                                          𝐹𝐷 = 𝛾𝐺𝐵 − 2𝛾𝑆/𝐿                                                  (1) 

where γGB is the energy of the grain boundary and γS/L is the solid/liquid interface energy [30]. 

Therefore, one may expect that large-misorientation grain boundaries with the higher γGB end in 

a higher embrittlement driving force. This explains the occurrence of Zn penetration along 

general HABs over a certain threshold misorientation angle. 

As pointed out, stress-assisted diffusion is responsible for significant Zn diffusion deep 

into the matrix (up to 450 µm). It is claimed [21] that the grain boundary diffusion distance in 

austenite would be around 2 µm/sec; however, the observed penetration depth of Zn in the 

present study is two orders of magnitude higher than the predicted diffusion distance based on 

the actual welding time. 

4. Conclusions 

The present study explains mechanism on the formation of LME cracks during restrained 

laser lap joining of high-manganese TWIP and medium-manganese TRIP steel sheets. The major 

findings are summarized below: 
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(a) A direct correlation between the applied external load and LME susceptibility was 

observed in the TWIP and TRIP steels, however, the TWIP side of the joint showed a 

higher LME sensitivity compared to the TRIP side. 

 

(b) Detailed EPMA results indicated the presence of Γ-(Fe,Mn)3Zn10 phase inside the 

cracks, showing the penetration of liquid zinc during welding. Based on the crack tip 

analysis, the stress-assisted diffusion of Zn into the austenite grain boundaries and 

further liquid-Zn formation by a peritectic reaction was determined as the LME-

cracking mechanism. 

(c) The distribution of misorientation angles confirmed that Zn penetration only occurs at 

high angle grain boundaries; however, Σ3 twinning (60°) boundaries also play a 

major role in Zn penetration. 
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 Figure and table captions: 

Fig. 1. (a) The developed setup to apply external loading during laser lap welding, and (b) 

schematic illustrations of the lap joining specimen geometry and configuration. 

Fig. 2. Engineering stress-strain curve of the experimental TWIP and TRIP steels. 

Fig. 3. The initial microstructure of (a) MMn-TRIP, and (b) TWIP steels (A: austenite and F: 

ferrite). 

Fig. 4. Mean crack length versus the applied load in TWIP and TRIP side of the joint. 

Fig. 5. SEM micrographs showing (a) overview of LME cracks formed within the HAZ, (b) Zn-

coating between two sheets, (c) LME cracks in TWIP side of the joint, (d) the propagation of 

LME cracks into the FZ, and (e) black arrow shows a representative LME crack in MMn-TRIP 

side of the joint. 

Fig. 6. (a) EDS element-map showing Zn-penetration in the LME-crack, EPMA results at (b) tip, 

(c) middle part of the LME crack, and (d) Zn concentration profile in various regions of the LME 

crack and Γ-phase Zn-content range. 

Fig. 7. The overview of EBSD analysis of a representative LME crack, (b) Zn-penetration along 

the LME crack, (c) IQ map at the tip of the LME crack showing the propagation along the 

austenite grain boundaries, (d) comparing the matching grains on either side of the LME crack, 

(e) distribution of misorientation angles of matched grains along the LME crack. 

Table 1. The chemical composition (wt%) of the experimental TWIP and MMn TRIP steel 
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Table 1. The chemical composition (wt.%) of the experimental TWIP and MMn TRIP steels. 

 

  

Steel C Mn Si P S Al Fe 

TWIP 0.48 14.1 0.04 0.01 0.001 1.95 Bal. 

MMn-TRIP 0.15 10.4 0.17 0.01 0.010 1.49 Bal 
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Research Highlights 

 This work shows liquid metal embrittlement in externally loaded laser lap welding. 

 Results confirmed a direct relation between external load and LME susceptibility. 

 TWIP steel showed a higher LME susceptibility compared to medium-Mn TRIP steel. 

 Results indicated stress-assisted diffusion of Zn into austenite grain boundaries. 

 High angle grain and Σ3 twinning boundaries play major role in Zn penetration. 
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