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Abstract

This thesis covers the parametric estimation of models with stochastic

volatility, jumps, and stochastic jump intensity, by FFT. The first primary

contribution is a parametric minimum relative entropy optimal Q-measure

for affine stochastic volatility jump-diffusion (ASVJD). Other attempts in

the literature have minimized the relative entropy of Q given P either by

nonparametric methods, or by numerical PDEs. These methods are often

difficult to implement. We construct the relative entropy of Q given P

from the Lebesgue densities under P and Q, respectively, where these can

be retrieved by FFT from the closed form log-price characteristic function

of any ASVJD model. We proceed by first estimating the fixed parameters

of the P-measure by the Approximate Maximum Likelihood (AML) method

of Bates (2006), and prove that the integrability conditions required for

each Fourier inversion are satisfied. Then by using a structure preserving

parametric model under the Q-measure, we minimize the relative entropy

of Q given P with respect to the model parameters under Q. AML can be

used to estimate P within the ASVJD class. Since, AML is much faster

than MCMC, our main supporting contributions are to the theory of AML.

The second main contribution of this thesis is a non-affine model for time

changed jumps with stochastic jump intensity called the Leveraged Jump

Intensity (LJI) model. The jump intensity in the LJI model is modeled by

the CIR process. Leverage occurs in the LJI model, since the Brownian

motion driving the CIR process also appears in the log-price with a negative

coefficient. Models with a leverage effect of this type are usually affine, but

model the intensity with an Ornstein-Uhlenbeck process. The conditional

characteristic function of the LJI log-price given the intensity is known in

closed form. Thus, we price LJI call options by conditional Monte Carlo,

using the Carr and Madan (1999) FFT formula for conditional pricing.
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Chapter 1

Introduction to the Thesis

Motivation

At least since Mandelbrot (1963) it has been known that the log-return

distribution of financial assets exhibits thicker than normal tails. This is

one criticism of the Black-Scholes (1973) paradigm. Merton (1976) answered

this by modeling the return process with jump-diffusion. Moreover, Black

(1976) finds that the latent volatility should follow its own stochastic process.

Indeed, Black (1976), see p. 179, argues that if the stock price falls then the

relative level of the debt of the firm rises, and this causes the volatility for

the firm to rise. Consequently, the negative correlation between the latent

volatility and the stock price is known as the leverage effect. The Heston

(1993) stochastic volatility model with ρ < 0 has become synonymous with

the leverage effect, although Heston (1993) never uses the word leverage.

Apart from the Paretian stable processes of Mandelbrot (1963) there

have been many attempts to find an alternative to normally distributed

log-returns. For example McLeish (1982), the Variance Gamma model of

Madan, Carr, and Chang (1998), the NIG of Barndorff-Nielsen (1998), and

the CGMY model of Carr, Geman, Madan, and Yor (2002). All of these

1



models are for jumps with infinite-activity, and each was originally seen as a

replacement for, rather than a complement to, Brownian motion. This was

particularly the case in Carr, Geman, Madan, and Yor (2002). However,

Brownian stochastic volatility models that include jumps in the log-price of

either finite-activity or infinite-activity have been successfully estimated, for

example in Huang and Wu (2004) under the Q-measure using historical daily

options price data, and by Li, Wells, and Yu (2008) under the P-measure

using historical daily log-return data. Furthermore, Huang and Wu (2004)

considers the possibility introduced in Bates (2000) that the jumps have

a stochastic jump intensity modeled by the integrated variance, and Bates

(2006) successfully estimates this model under the P-measure. Thus, the

estimation of stock price models with a diffusion, stochastic volatility, jumps,

and stochastic jump intensity is a reasonable proposition. Moreover, in this

thesis we do so entirely by fast Fourier transform techniques.

This thesis considers two main problems, and their solutions. First, if

there is an additional latent factor such as volatility or jump intensity, then

there is an additional source of randomness and the model for the market is

incomplete. Thus, an optimal martingale measure needs to be selected. We

provide an easily computable solution for this problem called the Parametric

Minimum Entropy Martingale Measure (PMEMM). Secondly, consider the

stochastic exponential time changed Lévy process model of Carr, Geman,

Madan, and Yor (2003), with continuous stochastic jump intensity modeled

by the CIR process of Cox, Ingersoll, and Ross (1985). By relaxing the

assumption of an affine log-price characteristic function, we generalize this

model so that it has a leverage effect. Our solution is called the Leveraged

Jump Intensity model (LJI). We are able to price by a specialized method

of conditional Monte Carlo. Furthermore, as we introduce the key themes

of this thesis below, further supporting contributions will be revealed.
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Key Themes

The six central themes of this thesis are as follows:

1. The Fast Fourier Transform

2. Estimation for the Affine Markov Models

3. Infinite-Activity Jumps

4. Incomplete Markets

5. Estimation for Stochastic Jump Intensity with Leverage

6. Joint Characteristic Functions

These six key themes will draw a complete picture of the thesis below.

The two main contributions are highlighted again following the key themes.

The Fast Fourier Transform

We apply Fourier inversion via FFT in all estimation methods of this thesis.

A detailed description of Fourier inversion, and our FFT contribution is

provided in Chapter 3. Our method is based on the non-centred and shifted

FFT implementation of Carr and Madan (1999), p. 68, and Carr, Geman,

Madan, and Yor (2002), p. 320, with one important difference. We use

the trapezoidal rule for quadrature, see Briggs and Henson (1995), p. 360.

We find in Chapter 5 that Simpson’s rule, as advocated in Carr and Madan

(1999), p. 68, is what leads to the problem, identified in Carr and Madan

(2009), Table 2, p. 60, of a negative call price deep out-of-the-money.

Estimation for the Affine Markov Models

There are five specific affine Markov models estimated in this thesis. These

are the Heston model, the Heston model with three respectively different
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independent jump types in the log-price (SVJ), and the Heston model with

compound Poisson Merton (1976) jumps in the log-price, time changed by

the integrated variance (SVSJ). The three SVJ independent jump types

are Merton (1976), Huang and Wu (2004) type Variance Gamma, and the

Meixner jumps of Schoutens and Teugels (1998). An introduction to these

five models and their properties is given in Chapter 2. The P-measure and

the Q-measure of Apple stock are estimated separately under each of the

five the affine Markov models in Chapter 4 and Chapter 5 respectively.

In Chapter 4 we estimate the P-measure by the Bates (2006) method of

Approximate Maximum Likelihood (AML). This method is a subsequence

of three Fourier inversions evaluated iteratively through the data. The first

inversion recovers the current point of the likelihood, and then the filtered

volatility is updated by the second and third inversions. We contribute

proof in subsection 4.3.1 that for the affine Markov models of this thesis,

the L1 integrability conditions sufficient for inversion of all three Fourier

transforms of the AML method are met. In Appendix D of this thesis,

we also contribute proof that for the five affine Markov models, the primary

Fourier transform of the AML method may be twice differentiated under the

integral with respect to the second transform variable, v ∈ (u, v), as required

by AML. We perform each Fourier inversion by FFT and approximate each

inverse transform with a spline. There are two main advantages of AML

over the Markov Chain Monte Carlo (MCMC), see for example Li, Wells,

and Yu (2008) for MCMC. These are the speed of estimation and the

authenticity of the filtered volatility. We also perform simulated estimation

under AML on both the Apple stock daily log-returns (1991-2011), and the

Dow-Jones Industrial Average (DJIA) daily log-returns (1988-2007).

In Chapter 5 we take a first step towards our ultimate goal of attaining

a set of optimal Q-measures for Apple stock under the five affine Markov
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models. We estimate the option implied Q-measures under least squares

normal likelihood using our version of the Carr and Madan (1999) FFT

formula with the trapezoidal rule for quadrature. We estimate based on a

selection spot call options from the daily closing book on Apple stock from

January 19th, 2011, the last day in the Apple stock (1991-2011) log-return

data set. While these spot option results show the SVSJ Merton model to

be slightly better than the others, the evidence from Chapter 4 under the

P-measure is that Apple stock clearly has infinite-activity jumps.

Infinite-Activity Jumps

In addition to the P-measures for the DJIA (1988-2007) and Apple stock

(1991-2011), in Chapter 4 we also use AML to estimate the P-measures of

the S&P 500 (1988-2007), and six other major stock symbols for individual

stocks (1988-2007). Thus, we make a contribution to the debate over jump

types in models with continuous stochastic volatility and jumps. For a

summary, see subsection 4.6.3. We find, consistent with Aı̈t-Sahalia and

Jacod (2012), that the DJIA has finite-activity jumps. But, we also find,

consistent with Huang and Wu (2004), that the S&P 500 appears to contain

an infinite variation pure jump process. Moreover, we find that banking and

technology stocks are well suited to an infinite-activity jump component, and

this is particularly the case for Apple stock (1991-2011). This is consistent

with Aı̈t-Sahalia and Jacod (2012), where it is suggested that individual

DJIA components have infinite-activity jumps.

In Chapter 8 we consider the problem of simulating daily increments for

the infinite variation Meixner process of Schoutens and Teugels (1998). We

considered both Grigoletto and Provasi (2009), and Madan and Yor (2008),

but found their methods to only be suitable for large Meixner increments.

The Meixner scale parameter does not scale time, so it is not possible to
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scale larger Meixner increments into smaller Meixner increments. Thus, in

Chapter 8 we contribute a new method called least squares rejection, with

an NIG rejection density, suitable for simulating daily Meixner increments.

We use this method for the simulated AML estimations of Chapter 4.

Incomplete Markets

Estimation for incomplete market models is often handled by the simulta-

neous estimation jointly under P and Q of the log-return data and a time

series of nearest to the money historical options prices, see for example Li,

Wells, and Yu (2011). The measure change is accounted for by estimating

the market prices of risk. The key problem with this approach is that the

market prices of risk are generally not estimable, even for the Heston model,

see Aı̈t-Sahalia and Kimmel (2007), p. 442. Hence, in Chapter 6 we pursue

an optimal martingale measure, similar in nature to the Minimal Entropy

Martingale Measure (MEMM) of Frittelli (2000), only we propose something

more easily computable.

For Lévy processes, and each of the five respective affine Markov models

of this thesis, a description of the incomplete markets phenomenon is given

in Chapter 2. For each model, we choose a structure preserving martingale

measure such that the respective models under P and Q have the same

characteristic function when the drift µ0 = r, but under the assumption

that the parameters θP ∈ ΩP and θQ ∈ ΩQ may differ. We prove in

Chapter 3 that the log-price characteristic functions for the affine Markov

models are L1. This implies that the respective measures P and Q are

each absolutely continuous, so that for fixed θP ∈ ΩP we can compute the

relative entropy of Q given P as a function of θQ ∈ ΩQ, in terms of the

Lebesgue densities retrieved via FFT. More specifically, we can compute

the symmetric relative entropy, which is simply the sum of two relative
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entropies with reversed arguments. The quantity that we minimize is the

average of symmetric relative entropies, AS (θQ), between Pt and Qt on a

uniform grid for t ∈ (0, T ]. We stabilize the minimization of AS (θQ) with a

with a quadratic penalty function γ
∥∥∥θQ − θ∗Q∥∥∥2

, for some γ > 0. This is also

known as Tikhonov regularization, see Engl, Hanke, and Neubauer (1996),

pp. 241-43. The idea is that the fixed penalty parameter θ∗Q is formed by

the least squares option implied parameters under each of the five respective

affine Markov models. These estimates were made in Chapter 5 for Apple

stock. Correspondingly, θP was estimated in Chapter 4 for Apple stock,

and is fixed. The stabilized minimizer,

θ̃Q = arg min
θQ∈ΩQ

[
AS (θQ) + γ

∥∥θQ − θ∗Q∥∥2
]

,

is the Parametric Minimum Entropy Martingale Measure (PMEMM).

Estimation for Stochastic Jump Intensity with Leverage

The Leveraged Jump Intensity model (LJI) is introduced in Chapter 2, along

with the Barndorff-Nielsen and Shephard (2001) stochastic volatility model

(BN-S). The proposed LJI model is compared on the basis of calibration

performance to the BN-S and SVSJ Merton models in Chapter 7. The LJI

model consists of time changed Lévy jumps, with a Brownian motion in the

log-price perfectly negatively correlated with the driver of the continuous

stochastic jump intensity, modeled by the CIR process. The LJI model is

non-affine, but we show in this thesis that the LJI model appears to provide

a better model for the leverage effect than the BN-S model does, due in part

to the inherent skewness of the time changed jumps. There are two other

well known alternative leverage models from the literature that we mention

here, that are not included in this thesis. First, we mention the α-stable

Lévy motion with β = −1, time changed by a an integrated CBI type process
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for the intensity, driven by the same time changed α-stable Lévy motion,

only with β = 1, see Carr and Wu (2004), pp. 134-35. The advantage

of this model over the LJI model is that it is affine. But, the intensity

of this model only takes the CIR process as a special case. Secondly, we

mention the “double-jump” model of Duffie, Pan, and Singleton (2000), see

pp. 1360-62, with simultaneous Poisson jumps in the log-price and the jump

intensity. In the conclusion to Chapter 7 we propose a modified LJI model

with simultaneous Poisson jumps similar to the “double-jump” model.

As the LJI model is non-affine, it requires a specialized pricing technique.

For this purpose, in Chapter 7 we contribute a new conditional Monte Carlo

pricing method called conditional FFT. The method allows us to condition

on the jump intensity, yielding an affine conditional log-price characteristic

function. Hence, we apply a conditional version of the Carr and Madan

(1999) formula. However, instead of taking the mean of the conditional

call prices, we take the mean of the respective Fourier transforms of the

conditional damped call prices. Thus, conditional FFT only requires one

fast Fourier transform to execute. We also contribute proof that the mean

in the transform domain converges almost surely to the Fourier transform

of the damped call price. Hence, we are able to calibrate the LJI model to

the Apple stock spot call options data set from Chapter 5.

Joint Characteristic Functions

The AML method of Bates (2006), which we cover in Chapter 4, is atypical

in the sense that for the affine Markov models, it requires the joint CF of

the log-price and the latent variance given by

φT (u, v) = exp
[
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

]
,

rather than simply the marginal log-price CF given by φT (u, 0), as we use

in Chapter 5 and Chapter 6. In Appendix A we present a set of joint affine
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coefficients, C (u, v; τ) and D (u, v; τ), for the five affine Markov models, that

are shown to be equivalent to Bates (2006), pp. 953-55, in the SVJ Merton

and SVSJ Merton model cases. Then in Appendix B and Appendix C,

by specializing and extending the arguments of Lord and Kahl (2010), and

Kahl and Jäckel (2005), we contribute proof that our joint affine coefficients

for the affine Markov models of this thesis are continuous on the principal

branch. To the best of our knowledge, this argument has never before been

made for the joint affine coefficients, and in particular this argument has

never been made for the SVSJ Merton model. The above three appendices

are cited in Section 3.3, and Section 4.3, both on L1 integrability. They are

also cited in Appendix D covering our contributed proof that the primary

Fourier transform of AML is differentiable twice under the integral.

Summary of Main Contributions

There are two main contributions of this thesis that we wish to focus on,

among the many supporting contributions highlighted above. These are:

1. The Parametric Minimum Entropy Martingale Measure of Chapter 6.

2. The Leveraged Jump Intensity Model (LJI) of Chapter 7.

The PMEMM of Chapter 6 is our original contribution to the solution

of the incomplete markets problem for the five affine Markov models of this

thesis. Note that the PMEMM requires an estimate of the P-measure, and

an estimate of the option implied Q-measure. These are provided by results

from Chapter 4 and Chapter 5. Though not equivalent, the PMEMM is

similar in nature to the Minimal Entropy Martingale Measure (MEMM)

of Frittelli (2000). The practical difference is that the PMEMM is easily

computable by fast Fourier transform techniques.
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The LJI model of Chapter 7 is our original contribution to the problem of

modeling a leverage effect when the log-price contains time changed jumps,

and the jump intensity is modeled by the purely continuous CIR process.

We have provided a specialized conditional Monte Carlo pricing technique

for the LJI model, and we successfully argue that the LJI model outperforms

the Barndorff-Nielsen and Shephard (2001) stochastic volatility model on the

basis of calibration to spot options prices on Apple stock.

Thesis Outline

The rest of the thesis is structured as follows. Part I: In Chapter 2 we

construct, and give properties for, the five affine Markov models, and the

LJI model. In Chapter 3 we describe how Fourier inversion via FFT will

be carried out in this thesis. Part II: In Chapter 4, we make theoretical

contributions to the Bates (2006) method of AML. Then, based on daily

log-return data, we estimate the P-measures for Apple stock (1991-2011),

and several other assets, under the five affine Markov models, by the AML

method. In Chapter 5 we calibrate the option implied Q-measures, under

the five affine Markov models, to spot call options prices selected from the

daily close on Apple stock, January 19th, 2011, by our modified version of

the Carr and Madan (1999) formula. Then in Chapter 6 we combine the

results from Chapter 4 and Chapter 5 to construct optimal Q-measures, for

each of the five affine Markov models, under our newly proposed Parametric

Minimum Entropy Martingale Measure (PMEMM). Part III: In Chapter 7

we calibrate the newly proposed LJI model to the Apple stock spot call

options data from Chapter 5 by a specialized method of conditional Monte

Carlo, that we refer to as conditional FFT. Lastly, in Chapter 8 we present

our least squares rejection technique for the simulation of Meixner process

increments. Part IV is the conclusion of the thesis.
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Part I

Model Building and Applied

Fourier Analysis
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Preface to Part I

The goal for Chapter 2 of this part is to lay down the technical foundations

for the financial log-price models to be estimated in this thesis. Models

from both the affine class, and the non-affine class, are proposed. From

the affine class we have adapted two stochastic volatility jump models from

Bates (2006), one featuring independent jumps of arbitrary type, and the

other having Merton jumps time changed by the integrated variance. From

our three proposed independent jump types, the Meixner jumps of Schoutens

and Teugels (1998) have, to the best of our knowledge, not yet been seen

in the stochastic volatility jump literature. We further propose a new

non-affine model for the log-price featuring stochastic jump intensity with

a leverage effect. This model uses the CIR process for the jump intensity,

and generalizes the stochastic exponential time changed Lévy model of Carr,

Geman, Madan, and Yor (2003). The leverage technique was inspired by

the Barndorff-Nielsen and Shephard (2001) stochastic volatility model. The

goal for Chapter 3 of this part is to establish the fast Fourier transform

(FFT) as a refined technique. Fourier inversion plays the defining role in

every estimation method proposed in this thesis. Hence, we have devoted

a foundational chapter to this topic. Estimation of the affine models is the

subject of Part II. Then, since it applies Monte Carlo methods, estimation

of our non-affine model is treated in Part III.
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Chapter 2

Construction of the Models

2.1 Introduction

In this chapter we develop the models of this thesis under the assumption

that the log stock price has both a continuous component, and jumps. This

is consistent with the S&P 500 index options price study of Carr and Wu

(2003), see p. 2602, as well as the ultra-high frequency log-return study of

the DJIA and each of its components found in Aı̈t-Sahalia and Jacod (2012),

see p. 1040. Carr and Wu (2003), see p. 2606-2608, also finds that both

stochastic volatility and stochastic jump intensity can model the change in

the relative sizes of the continuous and jump components over time. We

will denote the three main models of this thesis as follows:

• SVJ: The Heston stochastic volatility model with independent jumps.

• SVSJ: The Heston stochastic volatility model with Merton jumps

time changed by the integrated variance.

• LJI: Time changed Lévy jumps with a Brownian motion in the log-

price perfectly negatively correlated with the driver of the continuous

stochastic jump intensity process.
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The SVJ model originated in Bates (1996) with Merton jumps. Later,

the SVJ model appeared in Huang and Wu (2004), as well as Li, Wells, and

Yu (2008), both under Merton, Variance Gamma, and log-stable jumps.

Here we will consider the SVJ model under Merton, Variance Gamma, and

the Meixner jumps of Schoutens and Teugels (1998). These choices were

motivated by the observation in Aı̈t-Sahalia and Jacod (2012), see p. 1037,

that individual stock components of the DJIA appear to exhibit a diffusion

with infinite-activity jumps. However, Carr and Wu (2003), see p. 2597,

warns that infinite-activity jumps with infinite variation can be difficult to

distinguish from the continuous component of the model.

The SVSJ Merton model first appeared in Bates (2000), and was the

main model introducing Approximate Maximum Likelihood (AML) in Bates

(2006). It also appeared in Pan (2002) with Merton jumps, and in Huang

and Wu (2004) with Merton, Variance Gamma, and log-stable jumps. We

treat the SVSJ model with time changed Merton jumps, and show that this

coincides with the affine jump-diffusion representation from Bates (2006),

see p. 953, due to the nature of finite-activity compound Poisson jumps.

The Leveraged Jump Intensity (LJI) model is new to the literature and

represents one of the main contributions of this thesis. The LJI model is a

combination of the time changed stochastic exponential Lévy model of Carr,

Geman, Madan, and Yor (2003), see pp. 358-59, with the CIR process as

the jump intensity, and the method of modeling a leverage effect taken from

the Barndorff-Nielsen and Shephard (2001) stochastic volatility model.

The Huang and Wu (2004) study was based on S&P 500 index options

data. They find that finite-activity jumps are inferior to infinite-activity

jumps in the SVJ model for index data, see Table III, p. 1425. Under

log-return data, we find that this is not true for the DJIA, but that it is

true for the S&P 500. However, their results suggest that the SVSJ Merton
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model is slightly better than the SVJ Merton model for index data, see Table

V, p. 1427, and we agree. The main conclusion of interest to this thesis

in the Huang and Wu (2004) study is that stochastic jump intensity, also

called jump volatility, has little explanatory power on its own in the absence

of a leverage effect for the jump intensity, see p. 1429. As mentioned in

Chapter 1 above, Carr and Wu (2004), pp. 134-35, offers a solution to this

problem in terms of time changed α-stable processes. But, in this chapter

we introduce LJI model which features a more flexible choice of jumps, and

models the intensity by the CIR process.

The remainder of this chapter is structured as follows. Section 2.2

covers Lévy processes. In Section 2.3 we present details of the three main

jump types of this thesis. Section 2.4 briefly covers affine Markov processes.

Then in Section 2.5 we cover the CIR process, the Heston stochastic volatility

model, and time changed Lévy processes. In Section 2.6 we formally define

the SVJ and SVSJ models and their properties. In Section 2.7 we present

the Barndorff-Nielsen and Shephard stochastic volatility model, and the new

Leveraged Jump Intensity (LJI) model. Section 2.8 concludes.

2.2 Lévy Processes

2.2.1 Basic Properties

In this subsection we present the main definitions and properties of Lévy

processes, as applied in this thesis.

Definition 2.1 (Lévy Process) A càdlàg stochastic process Yt is called a

Lévy process when

i) the law of Yt+h − Yt does not depend on t (stationary increments)

ii) the increments are independent.

(Cont and Tankov (2004a), §3.1, p. 68)
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Remark 2.2 (Additive Process) A stochastic process Yt which has inde-

pendent increments, but is not necessarily càdlàg, and does not necessarily

have stationary increments, is called an additive process. Thus, every Lévy

process is an additive process (see Sato (1999), p. 3).

In the finance literature, when the assumptions of Definition 2.1 are

appropriate, a Lévy process

Yt = Y0 + µt+ σWt +Xt, (2.1)

where Wt is Brownian motion, and Xt is a pure jump Lévy process, is used

to model the log of a stock price. By Applebaum (2009), p. 123, the

continuous part of a Lévy process must be Brownian motion.

Definition 2.3 (Lévy Measure) Let R0 denote R\ {0}. A Borel measure

ν (dx) on R0 is called a Lévy measure if∫
R0

(
1 ∧ x2

)
ν (dx) <∞. (2.2)

(Applebaum (2009), §1.2, p. 29)

Remark 2.4 (Lévy Triplet) For a Lévy process Yt as in equation (2.1),

a result called the Lévy-Itô decomposition, see Cont and Tankov (2004a),

pp. 79-82, guarantees the existence of a Lévy triplet (µ, σ, ν) where µ ∈ R,

σ > 0, and ν is the Lévy measure for the jumps in Yt.

Theorem 2.5 (Lévy-Khinchin Formula) Let Yt be a Lévy process with

Y0 = 0, and Lévy triplet (µ, σ, ν). Then the characteristic function Yt,

where φYt (u) = E
[
eiuYt

]
, is given by

φYt (u) = etψY (u), with (2.3)

ψY (u) = iuµ− 1

2
σ2u2 +

∫ ∞
−∞

(
eiux − 1− iux1|x|≤1

)
ν (dx) , (2.4)

where h(x) = 1|x|≤1 is referred to as a truncation function for the small

jumps, see Cont and Tankov (2004a), §3.4, p. 83.
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Remark 2.6 The truncation function h (x) in Theorem 2.5 above allows

the Lévy measure to have a singularity at x = 0. Moreover, any bounded

measurable function h : R → R that satisfies h (x) = 1 + o (|x|) as x → 0

and h (x) = 1 + O
(

1
|x|

)
as x → ∞ is admissible as a truncation function,

see Cont and Tankov (2004a), §3.4, p. 83. Furthermore, one may replace

equation (2.4) in the Lévy-Khinchin formula above with

ψY (u) = iuµh − 1

2
σ2u2 +

∫ ∞
−∞

(
eiux − 1− iuxh (x)

)
ν (dx)h (x) , (2.5)

where µh is defined relative to the choice of truncation function h (x) and

is thus not necessarily unique. However, the other two parameters, σ and

ν, of the Lévy triplet
(
µh, σ, ν

)
are uniquely defined for all choices of the

truncation function h (x), see Cont and Tankov (2004a), §3.4, p. 83.

Pursuant to the above remark, if the choice h (x) of a suitable truncation

function is not otherwise clear, then the P-dynamics of the log-price Yt under

a Lévy process model may be written simply as

dYt = µhdt+ σdWt + dXt. (2.6)

Proposition 2.7 Let Xt be a Lévy process. Then

1. Xt is Markov with respect to the natural filtration.

2. Xt is a semimartingale.

Proof. 1. Every additive process is Markov, see Sato (1999), Thm. 10.4,

pp. 55-57. Thus, the result follows by Remark 2.2.

2. Every Lévy triplet
(
µh, σ, ν

)
corresponds to a non-stochastic set of

characteristics
(
Bh, C, ν

)
for a semimartingale process with stationary and

independent increments. This is given in Barndorff-Nielsen and Shiryaev

(2010), see p. 108.
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2.2.2 Classification of Pure Jump Lévy Processes

For pure jump Lévy processes σ2 = 0, and there are three main cases to

consider. These are finite-activity jumps, infinite-activity jumps of finite

variation, and infinite-activity jumps of infinite variation.

Finite-Activity Jumps

If

∫ 1

−1
ν (dx) < ∞, then none of the jumps need to be compensated and no

truncation of the small jumps in the neighbourhood of zero is required, see

Schoutens (2003), p. 45. This means that no truncation function h (x) is

required, and the parameter µ is uniquely determined. Moreover, in this

case the jump sizes Yj have a density g(x) that exists. Thus, a finite-activity

jump process is given by a compound Poisson process

Xt =

Nt∑
j=1

Yj , (2.7)

where Nt is a Poisson process with constant intensity λ. Also, the Lévy

measure for finite-activity jumps is given by

ν (dx) = λg (x) dx. (2.8)

Aı̈t-Sahalia and Jacod (2012) classify all finite-activity jump processes as

having a stability index of zero, see p. 1022.

Infinite-Activity Jumps of Finite Variation

If

∫ 1

−1
|x| ν (dx) < ∞, but we find that

∫ 1

−1
ν (dx) = ∞, then some small

jumps are compensated and truncation of the small jumps is required, see

Schoutens (2003), p. 45. In this case the Lévy measure ν (dx) is not defined

at zero, thus there are finite intervals about zero which contain infinitely

many small jumps. Therefore, we say that these jumps have infinite-activity.
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In the finite variation case the rate at which the density corresponding to

the Lévy measure diverges from zero, assuming that this density exists, is

slower. Hence, the singularity at zero in ν (dx) is removable. Moreover, on

any interval of finite length, the process can have at most countably many

jumps. Consequently, this case is less difficult to distinguish from Brownian

motion. Aı̈t-Sahalia and Jacod (2012) classifies the finite variation case as

having a stability index strictly less than one, see p. 1027.

Infinite-Activity Jumps of Infinite Variation

If the singularity at zero in the Lévy measure ν (dx) is not removable, such

that we have ∫
|x|≤1

|x| ν (dx) =∞, (2.9)

then the jumps have infinite variation, see Schoutens (2003), p. 45. This

means that over any interval of finite length, the number of jumps of the

process has cardinality of the real line. Hence, this case can be more

difficult to distinguish from Brownian motion. Aı̈t-Sahalia and Jacod (2012)

classifies the infinite variation case as having a stability index greater than

or equal to one, but strictly less than two, see p. 1027.

2.2.3 Exponential Lévy Martingales

The distribution of the log-price Yt = log (St) is used for estimation of

models for the stock price St under the objective measure P in Chapter 4.

In Chapter 5, Chapter 6, and also Chapter 7, the focus is on the risk-neutral

measure Q. For the moment assume that the model under P is given by

Yt = Y0 + µdt+ σWt +Xt, (2.10)

where Wt is Brownian motion, and Xt is a pure jump Lévy process. The

problem we now face in specifying a model under the Q-measure is that due
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to the presence of the jumps under P in equation (2.10) there are infinitely

many possible equivalent martingale measures. Indeed the risk-neutral

model under Q need not even be a Lévy process, see Cont and Tankov

(2004a), pp. 306-307. Therefore, we must choose an equivalent martingale

measure Q such that the discounted stock price,

e−rtSt = e−rt exp (Yt) , (2.11)

is a martingale where r is the risk-free rate, from among the infinite collection

of possibilities. In this thesis we choose a structure preserving martingale

measure similar to the choice made in Merton (1976). That is, we choose

to model the log-price Yt under the Q-measure as

Yt = Y0 +

(
r − 1

2
σ2 − ψX (−i)

)
dt+ σWt +Xt. (2.12)

Note that in this thesis we estimate the P and Q measures separately.

Hence, we also make the assumption that the respective models under P

and Q may have different parameters, outside of any constraints imposed

by equivalence. The following three well known results lead to verification

that under the log-price model for the Q-measure in equation (2.12) above,

the discounted stock price is a martingale.

Proposition 2.8 Let Yt be a Lévy process with Y0 = 0 and ψY (−i) < ∞.

Then the process

Mt = eYt−tψY (−i) (2.13)

is a martingale.

Proof. If ψY (−i) <∞, then by Theorem 2.5,

E [Mt|M0] =
E
[
eYt
]

etψY (−i) =
etψY (−i)

etψY (−i) = 1.

Hence, since Yt has independent increments, the result follows.

20



Theorem 2.9 (Exponential Lévy Martingale) Consider a Lévy process

Yt = µt+ σWt +Xt with Y0 = 0. Then the process exp (Yt) is a martingale

if and only if ψY (−i) <∞, and

µ = −1

2
σ2 −

∫ ∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx) (2.14)

with ψY (−i) defined from equation (2.4) in the Lévy-Khinchin formula.

Proof. Let Yt = µt+σWt+Xt be a Lévy process, and assume that exp (Yt)

is a martingale. Then by Theorem 2.5, E
[
eYt
]

= φYt (−i) = etψY (−i) = 1

implies that ψY (−i) = 0 <∞. Moreover, by equation (2.4)

ψY (−i) = µ+
1

2
σ2 +

∫ ∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx) = 0.

This implies µ = −1
2σ

2 −
∫∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx). Now assume that

ψY (−i) <∞, and µ = −1
2σ

2 −
∫∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx). Since Yt is a

Lévy process with ψY (−i) <∞, Proposition 2.8 implies that

Mt = eYt−tψY (−i)

is a martingale. But then µ = −1
2σ

2−
∫∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx) implies

that ψY (−i) = 0 by equation (2.4), and Mt = exp (Yt) is a martingale.

Corollary 2.10 Let the log-price Yt be a Lévy process with volatility σ, pure

jump component Xt, and drift µ given by

µ = r − 1

2
σ2 − ψX (−i) , where (2.15)

ψX (−i) =

∫ ∞
−∞

(
ex − 1− x1|x|≤1

)
ν (dx) . (2.16)

Then if ψY (−i) <∞, the discounted stock price process under Q,

e−rtSt = S0 exp

(
σWt −

1

2
σ2t+Xt − ψX (−i) t

)
, (2.17)

is a martingale. Moreover, the Q-dynamics of Yt are given by

dYt =

(
r − 1

2
σ2 − ψX (−i)

)
dt+ σdWt + dXt. (2.18)
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Remark 2.11 (Exponential Compensators) The processes given by 1
2σ

2t

and ψX (−i) t respectively are referred to as the exponential compensators for

Brownian motion and the pure jump Lévy process Xt.

(see Jacod and Shiryaev (2003), II.8, p.141)

2.3 Specific Types of Jumps

In this section we consider both the strengths and the weaknesses, and

give technical details, of the three jump types that are to be analyzed in

this thesis. The finite-activity, infinite-activity with finite variation, and

infinite-activity with infinite variation cases will respectively be represented

by Merton (1976) jumps in subsection 2.3.1, the Huang and Wu (2004)

version of Variance Gamma jumps in subsection 2.3.2, and the Meixner

jumps of Schoutens and Teugels (1998) in subsection 2.3.3.

The marginal density for each type of jump process in this section is

derived with drift parameter µ. To obtain the marginal density for an

exponential Lévy martingale process as in Corollary 2.10, simply set

µ = µ0 − ψX (−i) . (2.19)

In brief, the Merton jumps are of finite-activity, thus having a stability index

of zero, see Aı̈t-Sahalia and Jacod (2012), p. 1022, the Variance Gamma

jumps also happen to have a stability index of zero, see Aı̈t-Sahalia and

Jacod (2012), p. 1025, and the Meixner jumps have a stability index of one,

see Madan and Yor (2008), p. 43.

Theorem 2.12 (Continuous Density) Let Yt = σWt + Xt be a Lévy

process. If σ > 0 or Xt has infinite-activity, then Yt has a continuous

marginal density ft (y).

(Cont and Tankov (2004a), Prop. 3.12, p. 90)
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2.3.1 Merton Jumps

Merton jumps are large and occur rarely. Along with a diffusion component,

they are often used for modeling stock indices, in particular market crashes

and other wide tailed phenomena. But, they are less good at modeling day

to day events such as company announcements that lead to smaller jumps,

and Merton jumps must be accompanied by a diffusion to be realistic.

The finite-activity compound Poisson jumps of Merton (1976) are con-

structed as a random sum given by

Xt =

Nt∑
j=1

εj . (2.20)

The process Nt is Poisson with intensity λ > 0, where each εj is i.i.d. normal

N
(
β, α2

)
, so the jump size density is given by

g(x) =
1

α
√

2π
e−

1
2(x−βα )

2

. (2.21)

Thus, from equation (2.8) the Lévy measure is given by

ν (dx) = λg (x) dx =
λ

α
√

2π
e−

1
2(x−βα )

2

dx. (2.22)

From Cont and Tankov (2004a), p. 112, the characteristic exponent is

ψX (u) = λ

(
exp

(
iβu− 1

2
α2u2

)
− 1

)
. (2.23)

Hence, the compensator is given by

ψX (−i) = λ

(
exp

(
β +

1

2
α2

)
− 1

)
. (2.24)

Notice in (2.24) that for Merton jumps the compensator ψX (−i) is finite

for all λ > 0, α > 0, and β ∈ R. However, Merton jumps do not have a

continuous marginal density (see Cont and Tankov (2004a), p. 90).

The following lemma is used to obtain the representation of a Merton

jump process by a Poisson driven integral.
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Lemma 2.13 (Compound Poisson Integration Formula) Let Xt be

a compound Poisson process with zero drift and X0 = 0. Then if f ∈ C1

and f (0) = 0 we have

f (Xt) =

∫ t

0
(f (Xs)− f (Xs−)) dNs, (2.25)

where Ns is a homogeneous Poisson process.

Proof. See Jeanblanc, Yor, and Chesney (2009), p. 484.

So consider Xt to be a compound Poisson Merton process as in equation

(2.20) above. Then by equation (2.25) of Lemma 2.13 above with f equal

to the identity function we have

Xt =

∫ t

0
εsdNs, (2.26)

where εs ∼ Normal
(
β, α2

)
, for all s ∈ [0, t], and Ns is a homogeneous

Poisson process with intensity λ > 0.

2.3.2 Variance Gamma Jumps

Variance Gamma jumps are of infinite-activity, and can model small jumps.

But, they have a low activity rate so they can also model less frequent

medium to large size jumps. They can be used with or without a diffusion,

but have a rough density when ∆t is small, see Proposition 3.13, item 2.

VG jumps are of finite variation, and decompose into the difference of two

independent gamma processes, see Madan, Carr, and Chang (1998), p. 81.

The Variance Gamma jumps may be constructed as the following time

changed Brownian motion

Xt = βGt + αWGt , (2.27)

where the time change Gt is a gamma process, α > 0, and β ∈ R.
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Remark 2.14 (Gamma Distribution) Throughout this thesis we assume

that the Γ (a, b) distribution is parameterized such that it has a characteristic

function (C.F.) given by

φ (u) =

(
1

1− ibu

)a
. (2.28)

This implies that the Γ (a, b) distribution has mean ab and variance ab2.

In the Huang and Wu (2004) version of Variance Gamma that we use in

this thesis, the distribution of the gamma process Gt in equation (2.27) is

given by

Gt ∼ Γ (λt, 1) , with λ > 0. (2.29)

Note that the above implies E [Gt] = λt for Huang and Wu (2004) type

Variance Gamma jumps. Moreover, as given in Huang and Wu (2004), see

p. 1413, the Lévy measure for this version of the Variance Gamma process

may be written as

ν (dx) = λ
exp

(
−|x|
A±

)
|x|

dx, where (2.30)

A± =
1

2

(√
β2 + 2α2 ± β

)
.

Also from Huang and Wu (2004), p. 1414, the characteristic exponent is

ψX (u) = −λ log

(
1− iβu+

1

2
α2u2

)
. (2.31)

Hence, the compensator is given by

ψX (−i) = −λ log

(
1− β − 1

2
α2

)
. (2.32)

Notice in (2.32) that for compensated VG jumps of Huang and Wu type,

ψX (−i) <∞ only if
1

2
α2 + β < 1, and λ > 0. (2.33)
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However, in estimation with financial data the main constraint in (2.33) is

almost always met during estimation, because the estimated value of α will

be small and β will be either small or negative.

Results for the marginal density of a Brownian motion time changed by

a gamma process were given independently in McLeish (1982) (pp. 90-91)

and Madan, Carr, and Chang (1998) (pp. 87 & 98). Here we prove the

result for the Huang and Wu (2004) version of Variance Gamma.

Consider the log-price process Yt with µ > 0, given by

dYt = µdt+ dXt, (2.34)

where Xt is from equation (2.27). The following lemma is needed to prove

the main result in Theorem 2.16 for the VG density.

Lemma 2.15 Let Kν (z) denote the modified Bessel function of the second

kind with order ν. Assume that Re a > 0 and Re b > 0. Then∫ ∞
0

xν−1e−
a
x
−bxdx = 2

(a
b

) ν
2
Kν

(
2
√
ab
)

. (2.35)

(Gradshteyn and Ryzhik (1965), 3.47.9, p. 340)

Theorem 2.16 (VG Density) The log-price process Yt for the model (2.34)

has a continuous marginal density given by

ft (y) =
2e

β(y−µt)
α2

α
√

2πΓ (λt)

(
|y − µt|

δ

)λt− 1
2

Kλt− 1
2

(
δ |y − µt|

α2

)
, (2.36)

δ =
√

2α2 + β2, α > 0, β ∈ R, λ > 0.

Proof. By the model (2.34) with jumps defined by (2.27) and (2.29)

Yt| (Gt = γ) ∼ N
(
µt+ βγ, α2γ

)
, with

Gt ∼ Γ (λt, 1) . Therefore,

ft (y) =
1

α
√

2πΓ (λt)

∫ ∞
0

γ(λt− 1
2)−1e

− (y−µt−βγ)2

2α2γ
−γ
dγ. (2.37)
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Equation (2.36) follows from equation (2.37) by Lemma 2.15 with

ν = λt− 1

2
, a =

(y − µt)2

2α2
, and b =

δ2

2α2
.

The marginal density is continuous by Theorem 2.12.

2.3.3 Meixner Jumps

Meixner jumps are of infinite-activity with infinite variation, hence they can

model very small and rapid movements. In this thesis we take the position

that Meixner jumps can be modeled with or without a diffusion. But, since

these jumps have infinite variation, they can create identification problems

in the presence of a diffusion, see Carr and Wu (2003). For log-return data

under a diffusion with stochastic volatility and independent jumps, Meixner

jumps outperform Variance Gamma jumps only in unusual circumstances.

The Meixner jumps were first seen in Schoutens and Teugels (1998).

They have a closed form representation in terms their Lévy measure which

is given by

ν (dx) = λ
exp

(
βx
α

)
x sinh

(
πx
α

)dx, (2.38)

where λ > 0, |β| < π, and α > 0 is the scale parameter of the marginal

density. The Meixner jumps may also be expressed as a time changed

Brownian motion, see Madan and Yor (2008). The Meixner characteristic

exponent is given by

ψX (u) = 2λ log

 cos
(
β
2

)
cosh

(
1
2 (αu− iβ)

)
 , (2.39)

see Schoutens and Teugels (1998), p. 346. It follows that the compensator

is given by

ψX (−i) = 2λ log

 cos
(
β
2

)
cos
(
α+β

2

)
 . (2.40)
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Compensated jumps require ψX (−i) <∞ in (2.40). The constraints

log

 cos
(
β
2

)
cos
(
α+β

2

)
 <∞, for all α > 0 and all − π < β < π, (2.41)

further imply that |α+ β| < π. However, unlike the Merton and Variance

Gamma cases, the Meixner parameter β ∈ (−π, π) has finite support and

the additional constraint

|α+ β| < π, (2.42)

imposed by the condition ψX (−i) <∞, can occasionally be breached during

estimation.

The closed form solution for the marginal density of the Meixner process

is given in Grigelionis (1999) (Eq. 4 of Theorem 1, p. 34). Below we

provide a more detailed version of the proof of this result for completeness.

Consider the Meixner log-price process Yt with µ > 0, given by

dYt = µdt+ dXt, (2.43)

where Xt is a Meixner jump process. Lemma 2.17 below is needed to prove

Lemma 2.18 that follows which in turn proves the main result Theorem 2.19

for the closed form Meixner density.

Lemma 2.17 For the complex-valued gamma function∫ +∞

−∞
eiθz |Γ (λ+ iz)|2 dz = 2πΓ (2λ)

(
1

2 cosh
(
θ
2

))2λ

. (2.44)

(Grigelionis (1999), Eq. 5, p. 34)

Lemma 2.18 Let Z be a Meixner Y1 random variable with drift µ = 0 and

scale parameter α = 1. The density of Z is given by

f (z) =

(
2 cos

(
β
2

))2λ
eβz

2πΓ (2λ)
|Γ [λ+ iz]|2 . (2.45)
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Proof. The C.F. of Z obtained from (2.39) with α = 1 is

φZ (u) =

 cos
(
β
2

)
cosh

(
1
2 (u− iβ)

)
2λ

.

Thus, by Lemma 2.17 with θ = u− iβ

φZ (u) =

(
2 cos

(
β
2

))2λ

2πΓ (2λ)

∫ +∞

−∞
eiθz |Γ (λ+ iz)|2 dz

=

∫ +∞

−∞
eiuz

(
2 cos

(
β
2

))2λ
eβz

2πΓ (2λ)
|Γ (λ+ iz)|2 dz.

The result for f (z) follows by the definition of a characteristic function.

Theorem 2.19 (Meixner Density) The log-price process Yt for the model

(2.43) has a continuous marginal density given by

ft (y) =

(
2 cos

(
β
2

))2λt
eβ(

y−µt
α )

2πΓ (2λt)

∣∣∣∣Γ [λt+ i

(
y − µt
α

)]∣∣∣∣2 . (2.46)

Proof. The density of Y1 follows from Lemma 2.18 where (µ, α) is a location-

scale parameter pair. Secondly, the model (2.43) has C.F.

φYt (u) = eiuµtφXt (u)

where φXt (u) is obtain from equation (2.39). The main result (2.46) follows.

The marginal density is continuous by Theorem 2.12.

2.3.4 Jump Moments

In this subsection we summarize our introduction to the three main jump

processes of this thesis. In Table 2.1 below, we give the theoretical moments,

in the zero drift case, for the Merton, Huang and Wu (2004) type Variance

Gamma, and Meixner processes. The moments in Table 2.1 are derived from
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the respective moment generating functions of the three Lévy processes. By

Theorem 2.5, each MGF is given by

Mt (u) = exp (tψX (−iu)) , (2.47)

where the respective characteristic exponents ψX (u) were given in equations

(2.23), (2.31), and (2.39), above. The algebraic results in Table 2.1 above

have been verified with mathematical software, and the Meixner moments

are also given in Schoutens (2003), p. 63.

Merton Variance Gamma Meixner

Mean λtβ λtβ λtα tan
(
β
2

)
Variance λt

(
α2 + β2

)
λt
(
α2 + β2

)
λtα

2

2 cos−2
(
β
2

)
Skewness β√

λt

(3α2+β2)

(α2+β2)
3
2

β√
λt

(3α2+2β2)

(α2+β2)
3
2

√
2
λt sin

(
β
2

)
Excess Kurtosis 1

λt

(
1 +

2α2(α2+2β2)
(α2+β2)2

)
3
λt

(
1 +

β2(2α2+β2)
(α2+β2)2

)
1
λt (2− cos (β))

Table 2.1: Jump Process Moments: Zero Drift.

Notice in Table 2.1 above that for all three jump processes, λt scales the

mean and the variance, the skewness has a coefficient proportional to 1√
λt

,

and the excess kurtosis has a coefficient proportional to 1
λt . That is, as λ

gets large, the skewness and excess kurtosis become smaller in magnitude,

hence the jumps will tend to become more balanced, with less kurtosis.

2.4 Affine Markov Processes

The Heston model to be defined in subsection 2.5.2 below, the SVJ model to

be defined in subsection 2.6.1 below, and the SVSJ Merton model with time

changed compound Poisson jumps to be treated in subsection 2.6.2 below,

are all special cases of the affine Markov processes. This section takes a

brief moment to explain precisely what an affine Markov process is.
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In this thesis we will view the class of affine processes as a subset of the

class of all Markov processes, consistent with Duffie, Filipović, and Schacher-

mayer (2003). We only require two main definitions, thus this section will

be brief. The advantage of financial modeling with affine Markov processes

is that an affine Markov process has an exponentially affine conditional char-

acteristic function for the terminal state given the initial state that can be

known in closed form, subject to a set of regularity conditions. The follow-

ing definition of an affine Markov process is adapted from Duffie, Filipović,

and Schachermayer (2003), see Definition 12.1, p. 1038. We have added

the notion of a terminal state for clarity of exposition, and consider only the

two dimensional case.

Definition 2.20 (Affine Markov Process) Let Zt =
(
Yt, σ

2
t

)
be a time

homogeneous Markov process with state space H = R × (0,∞), and initial

state Zt0 =
(
Yt0 , σ

2
t0

)
∈ H. For some T ≥ t0, let ZT ∈ H be the terminal

state where we define τ = T − t0 as the gap time. We say that Zt is affine

if for each τ ≥ 0 and (u, v) ∈ R2 there exists a set of joint affine coefficients

C (u, v; τ), D0 (u, v; τ), and D (u, v; τ) such that

φZT |Zt0 (u, v) = E
[
eiuYT+ivσ2

T |
((
Yt0 , σ

2
t0

))]
= exp

(
C (u, v; τ) +D0 (u, v; τ)Yt0 +D (u, v; τ)σ2

t0

)
(2.48)

is exponentially affine in
(
Yt0 , σ

2
t0

)
.

Remark 2.21 For the affine models of this thesis where Zt =
(
Yt, σ

2
t

)
and

Yt models the log stock price, the affine coefficient D0 (u, v; τ) in equation

(2.48) of Definition 2.20 above turns out to be trivial. That is, we typically

have D0 (u, v; τ) = iu. Thus, we write

φZT |Zt0 (u, v) = exp
(
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

)
. (2.49)
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When an affine Markov process Zt, affine in the sense of Definition

2.20 above, is stochastically continuous, and the right-hand derivative of

φZT |Zt0 (u, v) in equation (2.48) above exists at (u, v) = (0, 0), then Zt is said

to be regular affine, see Duffie, Filipović, and Schachermayer (2003), p. 990.

In this case the affine coefficients C (u, v; τ), D0 (u, v; τ), and D (u, v; τ) are

the solution to an affine system of generalized Riccati equations, provided

this system has admissible parameters, see Duffie, Filipović, and Schacher-

mayer (2003), pp. 991-92. This is a formalization of the method used to

solve for the affine coefficients in Heston (1993), see pp. 340-42.

The second main definition of this section is for the Affine Jump-Diffusion

class as adapted from Duffie, Pan, and Singleton (2000), see pp. 1349-50.

This class contains many affine stochastic volatility jump models, but only

treats Poisson type jumps. However, it treats stochastic jump intensity, and

shows that a particular representation of the SVSJ Merton model which we

propose in subsection 2.6.2 is an affine Markov process. Once again, we will

stick to only two dimensional processes.

Definition 2.22 (Affine Jump-Diffusion) Fix Ft = σ
{
Yt, σ

2
t

}
as the

filtration, and let Zt =
(
Yt, σ

2
t

)
be a Markov process with respect to Ft on

state space H = R× (0,∞) solving the SDE given by

dZt = µ (Zt) dt+ σ (Zt) dWt + νsdÑt (2.50)

where Wt is a two dimensional standard Brownian motion, µ : H → R2,

σ : H → R2×2, νs is the random jump size independent of Ñt, and Ñt is a

non-homogeneous Poisson process with stochastic jump intensity given by

λt = b (Zt) , (2.51)

with a : H → (0,∞). When the functions µ, σσT , and b are all affine on

the state space H, we say that with respect to Ft, the Markov process Zt is

an affine jump-diffusion.
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2.5 Latent Factor Models

A latent factor refers to a secondary process of the model for the stock price

that cannot be directly observed from stock price data. In this thesis we

will consider stochastic volatility, and stochastic jump intensity as latent

factors. Our main model for the latent factor is the CIR process from Cox,

Ingersoll, and Ross (1985) which originated in Feller (1951).

2.5.1 The CIR Process

Definition 2.23 The CIR process is a diffusion solving the SDE

dvt = κ (η − vt) dt+ ω
√
vtdWt, (2.52)

where Wt is Brownian motion. The solution to the SDE (2.52) is a deter-

ministically time changed squared Bessel process

vt = e−κtBESQδ
(
ω2

4κ

(
eκt − 1

))
(2.53)

with order δ = 4κη
ω2 (see Jeanblanc, Yor, and Chesney (2009), p. 357). The

integrated CIR process (ICIR) is given by

Vt =

∫ t

0
vsds. (2.54)

The CIR parameter vector is θ = (v0, κ, η, ω). In this thesis we assume that

the parameter space for the CIR process is given by

Ω =
{
θ ∈ R4|v0 > 0, κ > 0, η > 0, ω > 0

}
. (2.55)

Proposition 2.24 (CIR Properties) Assume that vt is given by (2.53)

from Definition 2.23.

1. If 2κη > ω2 with v0 > 0, then for all t ≥ 0 Pr [vt > 0] = 1. This

property is known as the Feller condition.
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2. E [vt] = η + (v0 − η) e−κt.

3. If κ > 0 then the process {vt, t ≥ 0} is mean-reverting.

4. The process {vt, t ≥ 0} is a Markov process.

5. For t > s, vt|vs follows a scaled non-central chi-squared distribution.

6. The limiting distribution is v ∼ Γ
(

2κη
ω2 ,

ω2

2κ

)
where v = lim

t→∞
vt.

Proof. 1. This follows from equation (2.53) in Definition 2.23 (see Jean-

blanc, Yor, and Chesney (2009), p.357). This property was originally proven

in Feller (1951), p. 178. Hence, it is called the Feller condition.

2. See Jeanblanc, Yor, and Chesney (2009), p. 360.

3. See Jeanblanc, Yor, and Chesney (2009), p. 361.

4. Since it solves the SDE (2.52), the process {vt, t ≥ 0} is a Markov

diffusion. This class of processes is a particular extension of continuous-

time Markov chains to continuous-time Markov processes with a continuous

state-space, see McLeish (2005), p.148.

5. Let F
χ
′2
d (λ)

(x) be the distribution function of a noncentral chi-squared

random variable with degrees of freedom d and noncentrality parameter λ.

Consider the conditional distribution given by

d =
4κη

ω2
, (2.56)

λ =
4κe−κ(t−s)

ω2
(
1− e−κ(t−s)

)vs, and (2.57)

Pr [vt ≤ y|vs] = F
χ
′2
d (λ)

(
4κ

ω2
(
1− e−κ(t−s)

)y) . (2.58)

Equation (2.58) is the distribution function corresponding to the transition

density of the Markov process {vt, t ≥ 0}. Equation (2.58) above, and the

transition law itself, are both given in Glasserman (2004), see p. 122.
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6. For all s ≥ 0, as t → ∞, λ → 0 in equation (2.57), while the scalar

4κ
ω2(1−e−κ(t−s))

→ 4κ
ω2 in equation (2.58). This implies that the scaled non-

central chi-squared distribution becomes a scaled chi-squared distribution

which is a gamma distribution, see Glasserman (2004), p. 122. The limit-

ing distribution is Γ
(

2κη
ω2 ,

ω2

2κ

)
, see McLeish (2005), p.149.

This ends the proof of Proposition 2.24.

Proposition 2.25 (Integrated CIR Properties) Assume that Vt is given

by (2.54) from Definition 2.23.

1. E [Vt] = ηt+ (v0 − η)
(1−e−κt)

κ .

2. Vt =
∫ t

0 vsds remains finite for all finite t ≥ 0.

Proof. 1. This result follows by integrating the first part of Property 2.

from Proposition 2.24 over [0, t].

2. By Property 1. clearly E [Vt] < ∞ for all finite t ≥ 0. This implies

that Pr[Vt =∞] = 0 for all finite t ≥ 0.

2.5.2 Stochastic Volatility

The main stochastic volatility model of this thesis is the Heston (1993)

model which forms the continuous part of both the SVJ model introduced

in subsection 2.6.1 and the SVSJ model introduced in subsection 2.6.2. We

define the Heston model under the P-measure in log-price form as

dYt =

(
µ0 −

1

2
σ2
t

)
dt+ σtdW

(S)
t (2.59)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t

ρdt = E
[
dW

(S)
t dW

(V )
t

]
.
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In the Heston model the squared volatility, denoted by σ2
t , follows a CIR

process, and the correlation coefficient ρ ∈ [−1, 1] is the leverage parameter.

The Heston parameter vector is θ =
(
σ2

0, κ, η, ω, ρ
)
. In this thesis we assume

that the parameter space for the Heston model is given by

Ω =
{
θ ∈ R5|σ2

0 > 0, κ > 0, η > 0, ω > 0, − 1 ≤ ρ ≤ 1
}

. (2.60)

Notice also in equation (2.59) above for the Heston P-measure that the drift

is µ0 − 1
2σ

2
t rather than the usual µ0 + bσ2

t for some additional parameter

b ∈ R. We do this for two reasons. First, according to Aı̈t-Sahalia and

Kimmel (2007), see p. 442, the parameter b is not identifiable from log-return

and options data combined. Secondly, the log-price in equation (2.59) above

has the property that St = S0e
Yt under the ordinary exponential.

But, the Q-measure is not unique, and this is precisely because of the

additional source of randomness under P in equation (2.59) above that is

induced by the presence of stochastic volatility as a non-traded asset, see

Björk (2009), p. 122. Infinitely many equivalent martingale measures

exist. Moreover, the risk-neutral model under Q need not be a Heston

process, see for example the Heston minimal entropy martingale measure

(MEMM) in Hobson (2004), p. 554. Thus, we must choose arbitrarily

an equivalent martingale measure Q such that the discounted stock price,

e−rtSt = e−rt exp (Yt), is a martingale where r is the risk-free rate. In this

thesis we choose a structure preserving Heston martingale measure. That

is, we choose to model the Heston Q-measure of the form

dYt =

(
r − 1

2
σ2
t

)
dt+ σtdW

(S)
t (2.61)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t

ρdt = E
[
dW

(S)
t dW

(V )
t

]
.
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Note that in this thesis we estimate the P and Q measures separately.

Hence, we also make the assumption that the respective models under P

and Q may have different parameters. The following result offers direct

verification that under the Heston model for the Q-measure in equation

(2.61) above, the discounted stock price is a martingale.

Theorem 2.26 If ω2 < 2κη then the discounted stock price e−rtSt for the

Heston model in equation (2.61) above is a martingale for all ρ ∈ [−1, 1].

Proof. See Proposition 5.1, pp. 18, of Bernard, Cui, and McLeish (2014).

In the special case ω2 < 2κη the state space is (0,∞) and the process does

not need to be stopped. Prop. 5.1 of Bernard, Cui, and McLeish (2014) is

consistent with Andersen and Piterbarg (2007) Proposition 2.5, p. 34.

Proposition 2.27 The Heston process is affine Markov w.r.t. σ
{
Yt, σ

2
t

}
.

Proof. The Heston model is a special case, with no jumps, of the Affine

Jump-Diffusion model in Definition 2.22 of Section 2.4.

Remark 2.28 Due to our choices for the Heston P and Q measures in

equations (2.59) and (2.61) respectively above, these models have the same

characteristic function when µ0 = r, albeit with different parameters.

2.5.3 Stochastic Jump Intensity

In this subsection we construct a general notion of stochastic jump intensity,

suitable for all Lévy processes, around the stochastic exponential model for

time changed Lévy processes from §4.3 of Carr, Geman, Madan, and Yor

(2003). Under this model the intensity is uncorrelated with the jumps,

hence there is no direct provision for a leverage effect. But, the stochastic

jump intensity is assumed to follow a CIR process. In particular, we treat
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the martingale aspects of time changed jumps. We show separately in

subsection 2.6.2 below that the SVSJ Merton model with finite-activity time

changed compound Poisson constitutes a Markov process.

As in section 3, pp. 351-352, of Carr, Geman, Madan, and Yor (2003),

let the latent factor λt follow a CIR process,

dλt = κ (η − λt) dt+ ω
√
λtdWt. (2.62)

The process λt is referred to as the instantaneous rate of time change, but

for reasons that will become clear later on we call it the stochastic jump

intensity. The time change is the integrated CIR process,

Λt =

∫ t

0
λsds. (2.63)

The time changed Lévy stochastic exponential model is developed in Carr,

Geman, Madan, and Yor (2003) §4.3 as follows. Assume for simplicity that

the jumps Xt have a density g (x), and that no truncation is required. Then

we may write

X (Λt) =

∫ t

0

∫ +∞

−∞
xµλ (ds, dx) , (2.64)

where µλ (ds, dx) is a Poisson random measure with a random characteristic

given by the stochastic jump intensity process λs. A predictable compen-

sator is given by

νλ (ds, dx) = λsv (dx) ds = λg (x) dxλsds. (2.65)

Evidently the pure jump process

mt = X (Λt)−
∫ t

0

∫ +∞

−∞
xνλ (ds, dx) = x ∗ (µλ − νλ) (2.66)

is a martingale. Thus, we may define the modified pure jump martingale

Mt = mt + (ex − 1− x) ∗ (µλ − νλ) (2.67)

= (ex − 1) ∗ (µλ − νλ) . (2.68)
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It is shown in Carr, Geman, Madan, and Yor (2003) that the stochastic

exponential of the pure jump martingale Mt in equation (2.67) is given by

E (Mt) = eX(Λt)−ΛtψX(−i). (2.69)

On the basis of equation (2.69) we choose the log-price Q-dynamics of the

unleveraged stochastic jump intensity model to be

dYt = (r − λtψX (−i)) dt+ dX (Λt) , (2.70)

dλt = κ (η − λt) dt+ ωσtdWt,

dΛt = λtdt, λ0 = 1.

Note that to make the parameter λ identifiable in the above model, we

assume that λ0 = 1, see Schoutens (2003), p. 92.

Lemma 2.29 Let Λt be an integrated CIR process, and let X (Λt) be a time

changed Lévy process null at the origin and without drift. Then

E
[
eX(Λt)−ΛtψX(−i)|Λt

]
= 1, for all finite t ≥ 0. (2.71)

Proof.

E
[
eX(Λt)−ΛtψX(−i)|Λt

]
=
E
[
eX(Λt)|Λt

]
eΛtψX(−i)

=
eΛtψX(−i)

eΛtψX(−i) by Theorem 2.5

= 1 for all finite t ≥ 0,

by Property 2. of Proposition 2.25.

Corollary 2.30 If ψX (−i) < ∞, then the discounted price process e−rtSt

in the time changed Lévy model with independent intensity is a martingale.

Proof. E
[
S0e

X(Λt)−ΛtψX(−i)] = E
[
E
[
S0e

X(Λt)−ΛtψX(−i)|Λt
]]

= E [S0] by

Lemma 2.29, and the result is equal to S0 for all finite t ≥ 0.
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2.6 Stochastic Volatility Jump Models

This section presents the SVJ model in subsection 2.6.1, and the SVJ model

is treated under all three jump types from Section 2.3. The Bates (2000)

SVSJ Merton model is covered in subsection 2.6.2.

2.6.1 The Heston Model with Independent Jumps (SVJ)

By combining the Heston P-measure from equation (2.59) in subsection 2.5.2

independently with compensated Lévy process jumps, we obtain a P-measure

for the SVJ model given by

dYt =

(
µ0 −

1

2
σ2
t − ψX (−i)

)
dt+ σtdW

(S)
t + dXt, (2.72)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , ρdt = E

[
dW

(S)
t dW

(V )
t

]
.

However, due to both the presence of stochastic volatility as a latent factor,

and the jumps, the Q-measure for the SVJ model is not unique. In fact,

like both the Heston model and the Lévy model, the SVJ Q-measure may

not even have the same structural form as the SVJ model itself. Since there

are infinitely many possible Q-measures for the SVJ model, we must choose

arbitrarily an equivalent martingale measure Q such that the discounted

stock price, e−rtSt = e−rt exp (Yt), is a martingale where r is the risk-free

rate. We choose a structure preserving SVJ Q-measure of the form

dYt =

(
r − 1

2
σ2
t − ψX (−i)

)
dt+ σtdW

(S)
t + dXt, (2.73)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , ρdt = E

[
dW

(S)
t dW

(V )
t

]
.

Recall that in this thesis we estimate the P and Q measures separately.

Thus, we make the natural assumption that the respective models under P

and Q may have different parameters. The following result verifies that
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under the SVJ Q-measure in equation (2.73) above, the discounted stock

price is a martingale.

Theorem 2.31 (SVJ Martingale) Assume that ω2 < 2κη, and also that

ψX (−i) < ∞. Then the discounted price process e−rtSt, t ≥ 0, defined by

equation (2.73) for SVJ model under the Q-measure, is a martingale.

Proof. Let Ht = σ
{
W

(S)
t ,W

(V )
t , Xt

}
, and let s < t. Then

EQ
[
e−rtSt|Hs

]
= S0E

Q
[
e
∫ t
0 σudW

(S)
u − 1

2

∫ t
0 σ

2
udu+Xt−tψX(−i)|Hs

]
= S0E

Q
[
e
∫ t
0 σudW

(S)
u − 1

2

∫ t
0 σ

2
udu|Hs

]
EQ

[
eXt−tψX(−i)|Hs

]
,

by independent components,

= S0e
∫ s
0 σudW

(S)
u − 1

2

∫ s
0 σ

2
uduEQ

[
eXt−tψX(−i)|Hs

]
, by Theorem 2.26,

= S0e
∫ s
0 σudW

(S)
u − 1

2

∫ s
0 σ

2
udueXs−sψX(−i), by Proposition 2.8,

= e−rsSs, for s < t.

Hence, e−rtSt, t ≥ 0 is a martingale under the Q-measure, as required.

We estimate the SVJ model with Merton (MJ), Variance Gamma (VG),

and Meixner (MX) jumps. These SVJ models will be denoted by SVMJ,

SVVG, and SVMX, respectively in what follows. Note that if the SVJ

model has infinite-activity jumps, then it does not satisfy Definition 2.22 of

Section 2.4 for Affine Jump-Diffusions.

Proposition 2.32 The SVJ model is affine Markov with respect to σ
{
Yt, σ

2
t

}
.

Proof. The SVJ model is a Heston model plus an independent Lévy process.

The Heston part is Markov w.r.t. σ
{
Yt, σ

2
t

}
by Proposition 2.27, and the

Lévy process in Yt is Markov by Proposition 2.7, part 1. Hence, the SVJ

model is Markov w.r.t. σ
{
Yt, σ

2
t

}
. But, the joint C.F. for the SVJ model

as given in Appendix A is exponentially affine in
(
Yt0 , σ

2
t0

)
. Hence, by

Definition 2.20 of Section 2.4, the SVJ model is affine Markov.
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Remark 2.33 Due to our choices for the SVJ model P and Q measures in

equations (2.72) and (2.73) respectively above, these models have the same

characteristic function when µ0 = r, albeit with different parameters.

2.6.2 The Bates Stochastic Jump Intensity Model (SVSJ)

By combining the Heston P-measure from equation (2.59) in subsection 2.5.2

with time changed Merton jumps and electing to compensate the drift in a

suitable manner, we obtain a P-measure for the SVSJ Merton model, as a

special case of Huang and Wu (2004), see p. 1409, given as follows by

dYt =

(
µ0 −

1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) , (2.74)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt.

Once again, due to both the latent factor and the jumps, the equivalent

martingale measure for the SVSJ Merton model is not unique, and we must

arbitrarily choose a Q-measure for the model such that the discounted stock

price, e−rtSt = e−rt exp (Yt), is a martingale where r is the risk-free rate.

We choose a structure preserving Q-measure of the form

dYt =

(
r − 1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) , (2.75)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt.

Since we estimate the P and Q measures separately in this thesis, we assume

that the respective models under P and Q may have different parameters.

The following lemma is used to prove that under the SVSJ Q-measure in

equation (2.75) above, the discounted stock price is a martingale.
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Lemma 2.34 Let Mt be the pure jump martingale process of equation (2.67)

in subsection 2.5.3 such that by equation (2.69) in subsection 2.5.3,

E (Mt) = eX(Vt)−VtψX(−i). (2.76)

Assume that ω2 < 2κη, and that ψX (−i) < ∞, in the SVSJ Merton model

of equation (2.75) above, under the Q-measure. Then

EQ
[
E
(
σt •W (S)

t +Mt

)]
= 1. (2.77)

Proof. First of all,

E
(
σt •W (S)

t +Mt

)
= E

(
σt •W (S)

t

)
E (Mt) , by orthogonality,

= e
∫ t
0 σudW

(S)
u − 1

2
VteX(Vt)−VtψX(−i), by equation (2.76) .

But, by conditioning on Vt under the Q-measure, we obtain

EQ
[
e
∫ t
0 σudW

(S)
u − 1

2
VteX(Vt)−VtψX(−i)

]
= EQ

[
EQ

[
e
∫ t
0 σudW

(S)
u − 1

2
VteX(Vt)−VtψX(−i)|Vt

]]
= EQ

[
EQ

[
e
∫ t
0 σudW

(S)
u − 1

2
Vt |Vt

]
EQ

[
eX(Vt)−VtψX(−i)|Vt

]]
,

by conditional independence,

= EQ
[
EQ

[
e
∫ t
0 σudW

(S)
u − 1

2
Vt |Vt

]
(1)
]

, by Lemma 2.29,

= EQ
[
e
∫ t
0 σudW

(S)
u − 1

2
Vt
]

= 1, by Theorem 2.26.

Hence, equation (2.77) follows, as required.

Theorem 2.35 (SVSJ Martingale) Assume that ω2 < 2κη, and that

ψX (−i) <∞. Also, let the process Mt be defined as in Lemma 2.34 above.

Then the discounted price process e−rtSt, t ≥ 0, defined by equation (2.75)

for the SVSJ Merton model under the Q-measure, is a martingale.
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Proof. Similar to the first part of the proof of Lemma 2.34 above,

e−rtSt = e−rtS0e
Yt

= S0e
∫ t
0 σudW

(S)
u − 1

2
VteX(Vt)−VtψX(−i), by the ordinary exponential,

= S0E
(
σt •W (S)

t

)
E (Mt) , by equation (2.76) of Lemma 2.34,

= S0E
(
σt •W (S)

t +Mt

)
, by orthogonality.

But, upon letting Ht = σ
{
W

(S)
t ,W

(V )
t , Xt

}
, it may be observed that the

processes σt • W (S)
t and Mt are both Q-martingales with respect to Ht.

Hence, letting s < t,

EQ
[
σt •W (S)

t |Hs

]
= σs •W (S)

s , and

EQ [Mt|Hs] = Ms, therefore

EQ
[
σt •W (S)

t +Mt|Hs

]
= σs •W (S)

s +Ms.

That is, the process σt •W (S)
t + Mt is a Q-martingale with respect to Ht.

But, by Lemma 2.34,

EQ
[
E
(
σt •W (S)

t +Mt

)]
= 1.

Hence, e−rtSt, t ≥ 0 is a martingale under the Q-measure, as required.

To show that the SVSJ Merton model is affine Markov, we will show

that it is an Affine Jump-Diffusion by Definition 2.22 of Section 2.4. Recall

that by equation (2.26) from subsection 2.3.1 a compound Poisson Merton

process Xt may be written as

Xt =

∫ t

0
εsdNs, (2.78)

where εs ∼ Normal
(
β, α2

)
, for all s ∈ [0, t], and Ns is a homogeneous

Poisson process with intensity λ > 0. So let

Λt =

∫ t

0
λsds, (2.79)
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be a random change of time where λs, s ∈ [0, t], is some nonnegative random

process. Then by equation (2.78) above, since on the right hand side only

the Poisson process Ns itself is time changed, we obtain

X (Λt) =

∫ t

0
εsdN (Λs) , (2.80)

where N is a homogeneous Poisson process, and εs ∼ Normal
(
β, α2

)
. But,

a time changed homogeneous Poisson process N (Λs) may be written as a

non-homogenous Poisson process Ñ with stochastic jump intensity λs, see

Jeanblanc, Yor, and Chesney (2009), p. 476. Therefore, equation (2.80)

above becomes

X (Λt) =

∫ t

0
εsdÑs, (2.81)

where Ñ is a non-homogenous Poisson process with stochastic jump intensity

λs, and εs ∼ Normal
(
β, α2

)
. Based on equation (2.81) the SVSJ model

from equation (2.74) above may equivalently be written as

dYt =

(
µ0 −

1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + εsdÑt, (2.82)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

λt = λσ2
t , as in Bates (2006), see p. 953.

Proposition 2.36 The SVSJ model is affine Markov with respect to σ
{
Yt, σ

2
t

}
.

Proof. The SVSJ model in equation (2.74) is equivalent to equation (2.82)

which satisfies Definition 2.22 for an Affine Jump-Diffusion. Thus, the

SVSJ model is affine Markov with respect to σ
{
Yt, σ

2
t

}
. Also, the SVSJ

joint C.F. as given in Appendix A is exponentially affine in
(
Yt0 , σ

2
t0

)
.

Remark 2.37 Due to our choices for the SVSJ model P and Q measures in

equations (2.74) and (2.75) respectively above, these models have the same

characteristic function when µ0 = r, albeit with different parameters.
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2.7 Alternative Leverage Models

The classical leverage effect is best embraced by the Heston model with

ρ < 0 in equation (2.59) of subsection 2.5.2 above. When the volatility σt

rises in the Heston model with ρ < 0, the log-price Yt tends to fall, and this

fall is amplified by the larger value of σt. Conversely, if σt falls then Yt tends

to rise, but this rise is damped by the smaller value of σt. The result is a

distribution for the log-price that is skewed to the left, see Heston (1993),

p. 337. This section covers models with alternative forms of leverage, in

particular, the Barndorff-Nielsen and Shephard (2001) stochastic volatility

model (BN-S), see subsection 2.7.1. The newly proposed Leveraged Jump

Intensity model (LJI) appears in subsection 2.7.2.

2.7.1 The Barndorff-Nielsen and Shephard Model

As adapted from Nicolato and Venardos (2003), p. 454, the structure pre-

serving Q-dynamics of the Barndorff-Nielsen and Shephard (2001) stochastic

volatility model are given by

dYt =

(
r − κψU (−iρ; ν, δ)− 1

2
σ2
t

)
dt+ σtdWt + ρdU (ν, δ;κt) , (2.83)

dσ2
t = −κσ2

t dt+ dU (ν, δ;κt) , with ρ < 0, (2.84)

where ψU (−iρ; ν, δ) = logE
[
eρU(ν,δ:1)

]
is the compensator for the positive

Lévy process Uκt = U (ν, δ;κt), and the leverage parameter ρ < 0 gives the

jumps a negative coefficient in the log-price equation (2.83). The variance in

equation (2.84) is a non-Gaussian Ornstein-Uhlenbeck (OU) process. The

joint model in equations (2.83) and (2.84) is commonly referred to as the

BN-S model. In this thesis we examine the stationary gamma version of

the BN-S. In this case there is a positive Lévy process Uκt such that the OU

equation (2.84) has a Γ (ν, δ) stationary distribution with shape parameter

ν > 0, see Barndorff-Nielsen and Shephard (2001), pp. 171-172.
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The positive Lévy process Uκt driving the variance in the BN-S model

is uncorrelated with the Brownian motion Wt in the log-price Yt. Thus,

the leverage effect depends entirely on ρUκt in the log-price Yt with ρ < 0.

This is effective for large values of σt, where Uκt will be large, and any fall

in Yt will be amplified. But on the opposite side, when σt is small, Uκt will

also be small, so that the remainder of the log-price Yt is determined by an

uncorrelated diffusion which has a symmetric effect. The net effect is not

necessarily a damped rise in Yt. Thus, while the non-Gaussian OU process

for the BN-S variance is good for modeling volatility spikes, the BN-S model

is less than ideal for modeling the leverage effect.

2.7.2 The Leveraged Jump Intensity Model

In this subsection we introduce the Leveraged Jump Intensity model which

improves upon the leverage structure of the Barndorff-Nielsen and Shephard

(2001) stochastic volatility model. In the SVJ and SVSJ models, leverage

comes from the Heston component. Moreover, Carr and Wu (2004), pp.

130-131 states that if the jump intensity is continuous and the log-price

is purely discontinuous then Heston style correlation and leverage is not

possible. The Leveraged Jump Intensity model (LJI) that we propose has

time changed jumps in the log-price, and uses a continuous CIR process for

the jump intensity. Similar to the BN-S model, we obtain leverage in the

LJI model by placing the driver of the jump intensity process in the log-price

with a negative coefficient. The proposed Q-dynamics of the LJI model are

given by

dYt =

(
r − λtψX (−i)− 1

2
γ2

)
dt+ dX (Λt)− γdWt, (2.85)

dλt = κ (η − λt) dt+ ω
√
λtdWt, (2.86)

dΛt = λtdt , λ0 = 1, with γ > 0. (2.87)
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The process Xt in the LJI model log-price equation (2.85) above is any pure

jump Lévy process whose characteristic exponent ψX (u) is known in closed

form. The Lévy process Xt in the LJI log-price is also time changed by the

integrated intensity process Λt. The intensity process λt in equation (2.86)

above is modeled by the CIR process. The driver of the CIR intensity is

taken to be the Brownian motion Wt, and the reflection of Wt also appears

in the log-price equation. This is the basis of the LJI leverage effect.

The LJI leverage effect improves on the BN-S model for two main rea-

sons. First, Wt in the log-price of the LJI takes on both positive and

negative values, whereas Uκt in the log-price of the BN-S takes positive val-

ues only. To make the second point more clearly, we define the discrete

increment of the time changed jumps to be

∆X (Λt) , X (Λt+1)−X (Λt)

law
= X (Λt+1 − Λt)

≈ X
(∑t

j=0
λj∆t−

∑t−1

j=0
λj∆t

)
law
= X (λt∆t) , (2.88)

leading to the above approximation based on the discrete time intensity

process. Note that the underlying jumps Xt in the LJI model have inherent

skewness which will be negative. Hence, as the intensity λt gets large this

inherent skewness will dissipate, and as λt gets small this inherent skewness

will grow in magnitude, see Table 2.1 in subsection 2.3.4. Meanwhile the

diffusion in the BN-S is always symmetric for all values of σ2
t . Therefore,

for the LJI model when λt is small, −γWt is clearly positive and the log-

price Yt tends to rise. But, this rise is damped by the time changed jump

increment with strongly negative skewness. Conversely, when λt is large,

−γWt is clearly negative and the log-price Yt will tend to fall. Moreover,

the jumps are more neutral in this case. Thus, they tend to leave the fall in
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the log-price as is. Altogether, the LJI model appears to be slightly better

than the BN-S model when it comes to the leverage effect.

The LJI model C.F. depends on the joint distribution of (Λt,Wt) about

which nothing is known. Thus, we say it is non-affine. The following lemma

is used to prove that the discounted stock price is a martingale under the

Q-measure in the LJI model.

Lemma 2.38 Let Mt be the pure jump martingale process of equation (2.67)

in subsection 2.5.3 such that by equation (2.69) in subsection 2.5.3,

E (Mt) = eX(Λt)−ΛtψX(−i). (2.89)

Assume that ω2 < 2κη, and that ψX (−i) <∞, in the LJI model of equations

(2.85) to (2.87) above, under the Q-measure. Then

EQ [E (Mt − γWt)] = 1. (2.90)

Proof. First note that,

E (Mt − γWt) = E (Mt) E (−γWt) , by orthogonality,

= eX(Λt)−ΛtψX(−i)e−γWt− 1
2
γ2t, by equation (2.89) .

Then, by conditioning on Wt under the Q-measure, we obtain

EQ
[
eX(Λt)−ΛtψX(−i)e−γWt− 1

2
γ2t
]

= EQ
[
EQ

[
eX(Λt)−ΛtψX(−i)e−γWt− 1

2
γ2t|Wt

]]
EQ

[
EQ

[
eX(Λt)−ΛtψX(−i)|Wt

]
e−γWt− 1

2
γ2t
]

= EQ
[
(1) e−γWt− 1

2
γ2t
]

, by Lemma 2.29 since Λt ∈ σ (Wt) ,

= 1, since e−γWt is log-normal with mean e
1
2
γ2t.

Hence, equation (2.90) follows, as required.
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Theorem 2.39 (LJI Martingale) Assume that ω2 < 2κη, and also that

ψX (−i) < ∞. Moreover, let the process Mt be defined as in Lemma 2.38

above. Then the discounted price process e−rtSt, t ≥ 0, defined by equations

(2.85) to (2.87) for the LJI model under the Q-measure, is a martingale.

Proof. By reversing the first part the proof of Lemma 2.38,

e−rtSt = e−rtS0e
Yt

= S0e
X(Λt)−ΛtψX(−i)e−γWt− 1

2
γ2t, by the ordinary exponential,

= S0E (Mt) E (−γWt) , by equation (2.89) of Lemma 2.38,

= S0E (Mt − γWt) , by orthogonality.

However, if we let Ht = σ {Xt,Wt}, then it may be observed that the two

processes Mt and −γWt are both martingales with respect to Ht, under the

Q-measure . Thus, if we let s < t, then

EQ [Mt|Hs] = Ms, and

EQ [−γWt|Hs] = −γWs, therefore

EQ [Mt − γWt] = Ms − γWs.

That is, the process Mt−γWt is a martingale with respect to Ht, under the

Q-measure. But, by Lemma 2.38,

EQ [E (Mt − γWt)] = 1.

Hence, e−rtSt, t ≥ 0 is a martingale under the Q-measure, as required.

2.8 Conclusion

1. The Heston, SVJ, and SVSJ Merton models are all affine Markov

under both the P-measure, and also the structure preserving choice
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of Q-measure, as outlined above in this chapter. This means that

each of these models may be estimated by the FFT based methods of

Chapter 4, Chapter 5, and Chapter 6, respectively in Part II.

2. The discounted price process is a martingale under the Q-measure

for each of the Heston, SVJ, SVSJ Merton, and LJI models. This

is of particular importance for the Heston, SVJ, and SVSJ Merton

models in Chapter 6 of Part II where the parametric minimum entropy

martingale measure (PMEMM) is introduced.

3. The time changed stochastic exponential Lévy model of Carr, Geman,

Madan, and Yor (2003), the Barndorff-Nielsen and Shephard (2001)

stochastic volatility (BN-S) model, and the newly proposed Leveraged

Jump Intensity (LJI) model have all been introduced. The LJI model

appears to provide a better treatment of the leverage effect than the

BN-S model does. These models will be compared on the basis of

options price calibration performance in Chapter 7 of Part III where

a new FFT based conditional Monte Carlo options price method will

be introduced to treat the non-affine LJI model.

4. The infinite-activity with infinite variation Meixner Lévy process of

Schoutens and Teugels (1998) has been introduced. A new acceptance-

rejection method for simulating the increments of this process will be

presented in Chapter 8 of Part III.
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Chapter 3

Fourier Analysis and the

Fast Fourier Transform

3.1 Introduction

Every estimation method in this thesis uses Fourier inversion via FFT as

a means to an end, and this chapter provides the technical background.

We insist that both the Fourier transform and its inverse transform be L1

to match the hypotheses of the Fourier inversion theorem. While these

conditions are sometimes met by damping, in the absence of any special

techniques, L1 integrability must be proven. An exception occurs when the

inverse transform is a density. Densities are L1 by definition. In this case

the Fourier transform is a characteristic function, and it must be proven that

the C.F. is L1. When the C.F. is L1, the corresponding density is continuous

on the real line. Regarding quadrature in the FFT, main line theory from

Carr and Madan (1999), see p. 68, advocates Simpson’s rule. We diverge

here, and propose the trapezoidal rule in place of Simpson’s rule, see for

example Briggs and Henson (1995), pp. 358-360. We find that Simpson’s
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rule leads to sudden negativity in the deep tails of the inverse transform,

specifically in the non-centred and shifted version of FFT as proposed by

Carr and Madan (1999), see pp. 67-68. We propose to keep the non-centred

and shifted version of FFT, but use it with the trapezoidal rule instead of

Simpson’s rule. We find, by way of example, that if the inverse transform

has only semi-heavy tails, then this change does not appear to actually lose

much accuracy on the interior of the domain of the inverse transform.

The remainder of this chapter is organized as follows. In Section 3.2 we

cover Fourier inversion and its approximation via FFT. In Section 3.3 we

prove that the marginal log-price C.F. is L1 integrable in both the SVJ and

SVSJ models. Then in Section 3.4 we advocate in favour of the trapezoidal

rule as the choice of quadrature method in the non-centred and shifted FFT

integral approximation. Section 3.5 briefly concludes.

3.2 Transform Theory

3.2.1 Fourier Transforms

In this thesis we use the Fourier transform on L1 = L1 (R) where

L1 =

{
f |
∫ +∞

−∞
|f (x)| dx <∞

}
. (3.1)

We will denote the Fourier transform by f̂ (u), under the following definition.

Definition 3.1 (Fourier Transform) Let f : R → C be a function. If

f ∈ L1 then the improper integral

f̂ (u) =

∫ +∞

−∞
eiuxf (x) dx <∞ (3.2)

is well defined for all u ∈ R. We refer to f̂ (u) as the Fourier transform of

the function f (x), see Rudin (1987), §9.1, p. 178.
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Remark 3.2 If f ∈ L1, then equation (3.2) in Definition 3.1 above defines

f̂ (u) unambiguously for all u ∈ R. However, if f ∈ L2 and not L1, then

equality holds in equation (3.2) of Definition 3.1 above only in the almost

everywhere sense, see Rudin (1987), p. 188.

Lemma 3.3 If f ∈ L1, then the Fourier transform f̂ (u) in equation (3.2)

is uniformly continuous on R.

Proof. From equation (3.2)∣∣∣f̂ (u+ h)− f̂ (u)
∣∣∣ ≤ ∫ +∞

−∞

∣∣∣(eihx − 1
)
f (x)

∣∣∣ dx. (3.3)

But,
∣∣(eihx − 1

)
f (x)

∣∣ ≤ 2 |f (x)| <∞ since f ∈ L1. Moreover,∣∣∣(eihx − 1
)
f (x)

∣∣∣→ 0 as h→ 0 for all x ∈ R.

Therefore, by the dominated convergence theorem∫ +∞

−∞

∣∣∣(eihx − 1
)
f (x)

∣∣∣ dx→ 0 as h→ 0. (3.4)

The inequality (3.3) and the limit (3.4) imply that f̂ (u) is continuous.

Moreover, the right hand side of (3.3) does not depend on u. Thus, f̂ (u)

is uniformly continuous, see Kawata (1972), §2.7, pp. 62-63.

Remark 3.4 (Rudin (1987), §9.4, p. 181) Similar to Definition 3.1 above,

if f̂ ∈ L1, we may assert that

g (x) =
1

2π

∫ +∞

−∞
e−iuxf̂ (u) du, (3.5)

for some well defined function g (x). The fact that f (x) = g (x) precisely

when f and f̂ are both L1 is the Fourier inversion theorem which we will

come to momentarily.

Selected properties of the Fourier transform on L1 that are used in this

thesis are summarized as follows.
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Proposition 3.5 (Fourier Transform Properties) Let f ∈ L1. Then

1. f̂ (0) =
∫ +∞
−∞ f (x) dx ≤

∫ +∞
−∞ |f (x)| dx <∞.

2.
∣∣∣f̂ (u)

∣∣∣ ≤ ∫ +∞
−∞ |f (x)| dx <∞ for all u ∈ R.

3. f̂ (u) is uniformly continuous on R.

4. If f is also continuous, then f̂ (u)→ 0 as |u| → ∞.

5. If f is purely real then f̂ (u) = f̂ (−u).

6. If f is purely complex then f̂ (u) = −f̂ (−u).

Proof. 1. and 2. follow from equation (3.2) since f ∈ L1.

3. This is Lemma 3.3 above.

4. This is the Riemann-Lebesgue lemma (see Körner (1989), p. 263).

5. By Definition 3.1 of the Fourier transform,

f̂ (u) =

∫ +∞

−∞
eiuxf (x)dx =

∫ +∞

−∞
e−iuxf (x)dx = f̂ (−u) ,

since f is purely real.

6. By Definition 3.1 again,

f̂ (u) =

∫ +∞

−∞
eiuxf (x)dx =

∫ +∞

−∞
e−iuxf (x)dx = −f̂ (−u) ,

since f is purely complex.

The Fourier inversion theorem is one of the most important results in

classical analysis. The version of the theorem that we have selected, Rudin

(1987), Theorem 9.11, p. 185, takes the continuity of the underlying function

f as a conclusion. Other versions, for example Körner (1989), Theorem

60.1, p. 296, take the continuity of f as a hypothesis. The latter is often

impractical when f is known only through its Fourier transform. This has

typically been the case in mathematical finance since Heston (1993).
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Theorem 3.6 (Fourier Inversion Theorem) Let the functions f and f̂

both be L1. Then

f (x) =
1

2π

∫ +∞

−∞
e−iuxf̂ (u) du a.e. (3.6)

Moreover, f (x) is continuous for all x ∈ R, see Rudin (1987), §9.4, p.185.

Corollary 3.7 1. If f is purely real then for all x ∈ R

f (x) =
1

π
Re

∫ ∞
0

e−iuxf̂ (u) du (3.7)

=
1

π

∫ ∞
0

[
cos (ux) Re f̂ (u) + sin (ux) Im f̂ (u)

]
du. (3.8)

2. If f is purely complex then for all x ∈ R

f (x) =
i

π
Im

∫ ∞
0

e−iuxf̂ (u) du (3.9)

=
i

π

∫ ∞
0

[
cos (ux) Im f̂ (u)− sin (ux) Re f̂ (u)

]
du. (3.10)

Proof. 1. Equation (3.7) is obtained from Theorem 3.6 as follows.

f (x) =
1

2π

[∫ 0

−∞
e−iuxf̂ (u) du+

∫ ∞
0

e−iuxf̂ (u) du

]
=

1

2π

[∫ ∞
0

eiuxf̂ (−u) du+

∫ ∞
0

e−iuxf̂ (u) du

]
=

1

2π

[∫ ∞
0

e−iuxf̂ (u)du+

∫ ∞
0

e−iuxf̂ (u) du

]
, by 5. in Proposition 3.5,

=
1

π
Re

∫ ∞
0

e−iuxf̂ (u) du , by the identity z + z = 2 Re (z) .

Equation (3.8) follows from Re (z1z2) = Re z1 Re z2 − Im z1 Im z2.

2. Is similar to the above using 6. from Proposition 3.5, z−z = 2i Im (z),

and the property Im (z1z2) = Re z1 Im z2 + Im z1 Re z2.

The next result is the last of this subsection on Fourier transforms. It

provides the key to the proof, see Appendix D of this thesis, that we may dif-

ferentiate twice under the Fourier integral in the Bates (2006) Approximate

Maximum Likelihood method of Chapter 4.
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Lemma 3.8 (Uniform Convergence) Assume that f , f̂ ∈ L1. Then

the improper integral in equation (3.6) of Theorem 3.6 converges uniformly

and absolutely for each x ∈ R.

Proof. Since f ∈ L1, Lemma 3.3 implies that f̂ (u) is uniformly continuous.

Moreover, since both f and f̂ are L1, Theorem 3.6 implies that f (x) is

continuous. Hence, from Körner (1989), pp. 296-97,∣∣∣∣ 1

2π

∫ +∞

−∞
e−iuxf̂ (u) du− 1

2π

∫ S

−R
e−iuxf̂ (u) du

∣∣∣∣
=

1

2π

∣∣∣∣∫
u>S or u<−R

e−iuxf̂ (u) du

∣∣∣∣ ≤ 1

2π

∫
u>S or u<−R

∣∣∣e−iuxf̂ (u)
∣∣∣ du

=
1

2π

∫
u>S or u<−R

∣∣∣f̂ (u)
∣∣∣ du→ 0 as R, S → +∞,

and, since f̂ (u) is uniformly continuous, this implies that the improper

integral
1

2π

∫ +∞

−∞
e−iuxf̂ (u) du,

converges uniformly and absolutely for each x ∈ R, as required.

3.2.2 Characteristic Functions

Definition 3.9 (Characteristic Function) Let X be a random variable

with distribution function F . Then

φ (u) = E
[
eiuX

]
=

∫ +∞

−∞
eiuxdF , u ∈ R (3.11)

is the characteristic function of X. (Stuart and Ord (1994), Vol. 1, p. 80)

The characteristic function exists and inverts for any random variable.

Theorem 3.10 (Characteristic Inversion) If φ (u) is given by (3.11) then

F (x)− F (0) =
1

2π

∫ ∞
−∞

1− e−iux

iu
φ (u) du, and
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if F is everywhere continuous with dF = f (x) dx then

f (x) =
1

2π

∫ +∞

−∞
e−iuxφ (u) du. (3.12)

(Stuart and Ord (1994), Vol. 1, §4.1, pp. 125-126)

WhenX is a continuous random variable on the real line, F is everywhere

continuous with dF = f (x) dx. Thus, by equation (3.11) of Definition 3.9,

the characteristic function of a continuous random variable on the real line is

a special case of the Fourier transform, and equation (3.12) of Theorem 3.10

may be viewed as the inverse Fourier transform.

Proposition 3.11 (Characteristic Function Properties) Let X be any

random variable. Then

1. φ (0) = 1.

2. |φ (u)| ≤ 1 for all u ∈ R.

3. φ (u) is uniformly continuous on R.

4. If X is continuous on the real line, then φ (u)→ 0 as |u| → ∞.

5. φ (u) = φ (−u).

Proof. The proof is similar to the proof of Proposition 3.5.

3.2.3 The Discrete Fourier Transform

Definition 3.12 (Standard DFT) Consider a pair of sequences {fj}Nj=1

and {Fk}Nk=1 for positive integer N . The standard N -point discrete Fourier

transform is given by

Fk =
∑N

j=1
e−i

2π
N

(j−1)(k−1)fj. (3.13)

(Walker (1996), §2.1, p. 36)
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In this thesis we use the standard discrete Fourier transform (DFT) to

approximate the integral function

g (x) =

∫ ∞
0

e−iuxf̂ (u) du (3.14)

along the left-endpoint discretization of x ∈ [−b, b] given by

xk = −b+ (k − 1) ∆x , k = 1, 2, ..., N , where b =
N

2
∆x. (3.15)

This leads to an approximation for the integral in the inverse transform

given by either equation (3.7) or (3.9).

Under the standard DFT, this choice of xk leads to a non-centred and

shifted discretization scheme as in Carr and Madan (1999) pp. 67-69. The

domain of integration is discretized by

uj = (j − 1) ∆u , j = 1, 2, ..., N (3.16)

intending a left-endpoint Riemann approximation to (3.14) for each xk. The

approximate domain of integration becomes

[0, A] , where A = N∆u. (3.17)

Nyquist optimal sampling (see Fang and Oosterlee (2008), p. 828) specifies

∆x∆u =
2π

N
. (3.18)

The DFT also requires the sampling width ∆u to be fixed. Carr and Madan

(1999) p. 69 recommends ∆u = 1
4 . We use this value throughout this thesis.

Under Nyquist sampling this choice of ∆u implies

∆x =
2π

A
=

8π

N
, (3.19)

and b =
N

2
∆x =

π

∆u
= 4π. (3.20)
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The two main choices of N are N = 214 for daily log-return precision (see

Carr, Geman, Madan, and Yor (2002), p. 320) and N = 212 for high-speed

options price calibration (see Carr and Madan (1999), p. 69).

For each xk the Riemann approximation with quadrature weights wj for

the integral in equation (3.14) is given by

g (xk) ≈
∫ A

0
e−iuxk f̂ (u) du

≈
∑N

j=1
e−iujxk f̂ (uj)wj∆u, k = 1, 2, ..., N . (3.21)

To suit the standard DFT, Carr and Madan (1999) p. 68 shows that

g (xk) ≈
∑N

j=1
e−iujxk f̂ (uj)wj∆u

=
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj f̂ (uj)wj∆u, (3.22)

for each xk, k = 1, 2, ..., N .

For the wj Carr and Madan (1999) p. 68 proposes Simpson’s rule. We

propose a different quadrature rule in subsection 3.4.1.

3.2.4 The Fast Fourier Transform

The fast Fourier transform (FFT) is an algorithm for the DFT that was

proposed in Cooley and Tukey (1965). The complexity of the FFT algorithm

is O (N log2N) when N = 2p, whereas the DFT has complexity O
(
N2
)
.

The FFT is unbeatable when every element of the transform is in use.

For simplicity, first assume that the inverse transform f (x) is purely

real. This is the case when f̂ (u) is a characteristic function, or also if f̂ (u)

is a damped call price. The latter leads to the Carr and Madan (1999)

formula, which will be introduced in Chapter 5. If f (x) is purely real, then

by equation (3.7) of Corollary 3.7,

f (x) =
1

π
Re

∫ ∞
0

e−iuxf̂ (u) du, for all x ∈ R.
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Hence, similar to the argument in subsection 3.2.3 on the DFT, leading to

the approximation in (3.22),

f (xk) ≈
1

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj f̂ (uj)wj∆u, (3.23)

for each xk, k = 1, 2, ..., N .

If f̂ (u) = φ (u) is a C.F. then (3.23) is the FFT approximation to the density.

This will be applied to the conditional C.F. of the log-return density given

the price history in Chapter 4, and to both the risk-neutral and objective

characteristic functions for the log-price density in Chapter 6. Also, the Carr

and Madan (1999) FFT formula is used in Chapter 5, and again in Chapter 7

for conditional call pricing under the LJI model of subsection 2.7.2.

The other simple case of the FFT approximation occurs when the inverse

transform f (x) is purely imaginary. In this case equation (3.8) of Corollary

3.7 gives

f (x) =
i

π
Im

∫ ∞
0

e−iuxf̂ (u) du, for all x ∈ R.

Hence, similar to (3.23),

f (xk) ≈
i

π
Im
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj f̂ (uj)wj∆u, (3.24)

for each xk, k = 1, 2, ..., N .

The approximation in (3.24) arises in the Bates (2006) volatility filter in

Chapter 4, since we use the C.F. in place of the M.G.F. to extract moments.

3.3 L1 Characteristic Functions

In this section we consider the L1 criterion for the pure jump models of

Section 2.3, as well as the marginal log-price characteristic functions for the

SVJ and SVSJ models used to be applied in Chapter 6 of this thesis. The

conditional characteristic functions and joint transforms of the Bates (2006)

AML method will be treated in Chapter 4.

61



3.3.1 Jump Characteristic Functions

Let φXt (u) be the characteristic function of a pure jump process. As the

following proposition illustrates, the condition that φXt (u) ∈ L1 depends

on the degree of activity of the jumps.

Proposition 3.13 Consider the pure jump processes analyzed in Section 2.3.

1. For Merton jumps φXt (u) /∈ L1.

2. For Variance Gamma jumps φXt (u) ∈ L1 only if λt > 1
2 .

3. For Meixner jumps |φXt (u)| has exponential tails; hence, φXt (u) ∈ L1.

Proof. 1. For Merton jumps, equation (2.23) in subsection 2.3.1 yields

φXt (u) = exp
(
λt
(
e(iβu−

1
2
α2u2) − 1

))
.

However, the complex exponential is bounded such that∣∣∣Re e(iβu−
1
2
α2u2)

∣∣∣ = e−
1
2
α2u2 |cos (βu)| ≤ e−

1
2
α2u2

,

and
∣∣∣Im e(iβu−

1
2
α2u2)

∣∣∣ = e−
1
2
α2u2 |sin (βu)| ≤ e−

1
2
α2u2

.

Hence, e(iβu−
1
2
α2u2) → 0 as |u| → ∞.

This implies φXt (u)→ e−λt as |u| → ∞. Thus,
∫ +∞
−∞ |φXt (u)| du =∞.

2. For VG jumps, equation (2.31) in subsection 2.3.2 yields

φXt (u) =

(
1− iuβ +

1

2
α2u2

)−λt
,

so that |φXt (u)| =
(

1 +
(
α2 + β2

)
u2 +

1

4
α4u4

)−λt
2

. (3.25)

Note that by Property 5. of Proposition 3.11, |φXt (u)| is even on R. Thus,

for all characteristic functions∫ +∞

−∞
|φXt (u)| du = 2

∫ 1

0
|φXt (u)| du+ 2

∫ ∞
1
|φXt (u)| du. (3.26)
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Moreover, since |φXt (u)| ≤ 1 for all u ∈ R,
∫ 1

0 |φXt (u)| du <∞ for any C.F.

However, in the Variance Gamma case

|φXt (u)| =
(

1 +
(
α2 + β2

)
u2 +

1

4
α4u4

)−λt
2

∼ K 1

u2λt

for some K > 0, as u→ +∞.

But,

∫ ∞
1

1

u2λt
du

diverges for 2λt ≤ 1, and converges for 2λt > 1.

Hence, φXt (u) ∈ L1 only if λt > 1
2 .

3. For Meixner jumps, equation (2.39) in subsection 2.3.3 yields

φXt (u) =

 cos
(
β
2

)
cosh

(
1
2 (αu− iβ)

)
2λt

. (3.27)

From Brown and Churchill (2007), p. 106, for z = x+ iy

|cosh (z)|2 = sinh2 (x) + cos2 (y) . (3.28)

Hence, we obtain for the Meixner

|φXt (u)| =

 cos2
(
β
2

)
sinh2

(
αu
2

)
+ cos2

(
β
2

)
λt

, (3.29)

and indeed, |φXt (0)| = 1 < ∞. Again by Property 5. of Proposition 3.11,

|φXt (u)| is even on R. Thus, we may focus on the right tail. Now since

sinh2
(αu

2

)
=
eαu + e−αu − 1

4
∼ 1

4
eαu for large u > 0,

we obtain |φXt (u)| ≤ Ke−αλtu, as u→∞, for some K > 0.

That is, for the Meixner, the function |φXt (u)| has exponential tails with

decay rate αλt > 0. And since |φXt (u)| ≤ 1, this implies φXt (u) ∈ L1.
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The next result is a formality to be used in L1 proofs concerning the SVJ

model where the jumps are an independent process. First, some definitions.

For a pure jump process Xt, equation (A.4) in Appendix A defines the

compensated characteristic exponent to be

ψ̂X (u) = ψX (u)− iuψX (−i) . (3.30)

Hence, by Theorem 2.5 the compensated characteristic function of the jumps

is given by

φ̂Xt (u) = etψX(u)−iutψX(−i) = φXt (u) e−iutψX(−i). (3.31)

Lemma 3.14 For any pure jump Lévy process Xt∥∥∥φ̂Xt (u)
∥∥∥
∞
< M <∞. (3.32)

Proof. By equation (3.31) and Proposition 3.11 2.∣∣∣φ̂Xt (u)
∣∣∣ =

∣∣∣φXt (u) e−iutψX(−i)
∣∣∣ = |φXt (u)| ≤ 1.

The result follows by definition of the essential supremum.

3.3.2 Exponentially Affine Characteristic Functions

Let τ = T − t0 > 0. As given in equation (A.3) of Appendix A, for both

the SVJ and SVSJ models, the joint conditional C.F. of the log-price and

the latent factor has an exponentially affine form given by

φYT ,σ2
T |Yt0 ,σ

2
t0

(u, v) = exp
[
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

]
. (3.33)

In this thesis we denote the joint affine coefficients with an underscore,

C = C (u, v; τ) and D = D (u, v; τ) , (3.34)

and the marginal log-price affine coefficients with no underscore,

C (u; τ) = C (u, 0; τ) and D (u; τ) = D (u, 0; τ) . (3.35)
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The affine coefficients C (u, v; τ) and D (u, v; τ) are derived in Bates (2006),

see pp. 953-955. Our version is given in Appendix A of this thesis. The

Bates (2006) AML method of Chapter 4 uses the affine joint conditional

C.F. given in equation (3.33) above. But, when the initial point
(
Yt0 , σ

2
t0

)
is a known quantity, we simply denote the affine joint C.F. by

φYT ,σ2
T

(u, v) = exp
[
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

]
. (3.36)

In the analysis in Chapter 5 and Chapter 6,
(
Yt0 , σ

2
t0

)
is a known, hence we

denote the marginal log-price C.F. by

φYT (u) = exp
[
iuYt0 + C (u, τ) +D (u, τ)σ2

t0

]
. (3.37)

Notice that for the each of the above SVJ and SVSJ model affine CFs, the

coefficient of Yt0 is triviallly equal to the purely complex number iu. This

leads to the following very useful theoretical result.

Lemma 3.15 Let τ > 0. For the joint C.F. in equation (3.33), assume

that the coefficients C (u, v; τ) and D (u, v; τ) do not depend on either Yt0 or

σ2
t0, and that ρ < 0. Then, for all (u, v) ∈ R× (−δ, δ), and for some δ > 0,

ReC (u, v; τ) ≤ 0 and ReD (u, v; τ) ≤ 0. Moreover, when v = 0,

ReC (u, τ) ≤ 0 and ReD (u; τ) ≤ 0, for all u ∈ R.

Proof. First, by Proposition C.12 of Appendix C.3, since ρ < 0 in the SVJ

and SVSJ models, and τ > 0, we have that C (u, v; τ) and D (u, v; τ) are

both continuous on the principal branch, for all (u, v) ∈ R× (−δ, δ), and for

some δ > 0. Second, for any σ2
t0 > 0, we must have

∣∣∣φYT ,σ2
T |Yt0 ,σ

2
t0

(u, v)
∣∣∣ ≤ 1,

since equation (3.33) defines a C.F. Thus, by taking the logarithm of the

norm of the exponential on the right hand side of equation (3.33),

ReC (u, v; τ) + ReD (u, v; τ)σ2
t0 ≤ 0. (3.38)
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However, (3.38) implies that at most one of ReC (u, v; τ) and ReD (u, v; τ)

can be positive. Thus, suppose that ReC (u, v; τ) > 0. Then there exists

σ2
t0 > 0 such that (3.38) is false. Similarly, if ReD (u, v; τ) > 0 then there

exists σ2
t0 > 0 such that (3.38) is false. It follows that

ReC (u, v; τ) ≤ 0 and ReD (u, v; τ) ≤ 0, (3.39)

for all (u, v) ∈ R× (−δ, δ), and for some δ > 0, as required.

3.3.3 SVJ and SVSJ Log-Price Characteristic Functions

In this subsection we prove that the log-price C.F.s for the SVJ and SVSJ

models to be used in Chapter 6 are L1. In Chapter 5 damping will satisfy

integrability. Consider a maturity date T = τ > 0, and initial time t0 = 0.

Let S0 be the initial stock price, and define

ZT = log

(
ST
S0

)
. (3.40)

Then by equation (3.37) we obtain the normalized log-price C.F. as

φZT (u) = exp
[
C (u; τ) +D (u; τ)σ2

0

]
. (3.41)

The following are conventions of this thesis. A superscript J0 indicates the

SVJ case, a superscript J1 indicates the SVSJ case, and either a superscript

ψ or no superscript indicates both. A superscript SV denotes the Heston

model. The affine coefficients of the log-price C.F.,

C (u) =

 CJ0 (u)

CJ1 (u)

 =

 CSV (u)

CJ1 (u)

+ 1SV J ψ̂X (u) τ , (3.42)

and D (u) = Dψ (u) , (3.43)

for the SVJ and SVSJ models, are fully defined in Appendix A, in terms of

their constituent auxiliary variables. By Proposition B.16, since τ > 0, the
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hypothesis ρ < 0 is sufficient for principal branch continuity of the log-price

coefficients C (u) and D (u), see Appendix B.2. In the proof of the next

result, we refer to the modified C (u) coefficient given by

C̃ (u) = C (u)− 1SV J ψ̂X (u) τ =

 CSV (u; τ)

CJ1 (u; τ)

 , (3.44)

from equation (C.18) in Appendix C. This is done because the jumps in

the SVJ model are an external independent process, whereas in the SVSJ

model the jumps are internal, see equations (A.4) to (A.11) of Appendix

A.1. The following result is also used in Chapter 4.

Lemma 3.16 Let τ > 0. For the SVJ and SVSJ models, if ρ < 0, then

the affine coefficient C (u) has the property

eC(u) ∈ L1.

Proof. First we prove that eC̃(u) ∈ L1. Since τ > 0 and ρ < 0, Proposition

B.16 1. in Appendix B.2 gives that C (u) is continuous on the principal

branch. But, by Lemma B.1, ψ̂X (u) is continuous. Hence, by equation

(3.44) above, C̃ (u) is continuous on the principal branch. It follows that

on the principal branch,∫ M

−M

∣∣∣eC̃(u)
∣∣∣ du <∞, for all finite M > 0.

However, since τ > 0 and ρ < 0, Lemma C.6 in Appendix C.1 implies that

C̃ (u) ∼ ∓κητ
ω

√
1− ρ2u+ iτ

(
µ0 −

κηρ

ω

)
u, as u→ ±∞. (3.45)

Therefore, ∣∣∣eC̃(u)
∣∣∣ = eRe C̃(u) ∼ e∓

κητ
ω

√
1−ρ2u, as u→ ±∞. (3.46)

This implies that ∫ +∞

−∞

∣∣∣eC̃(u)
∣∣∣ du <∞. (3.47)
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Note that (3.47) is sufficient for the SVSJ case by equation (3.44). Thus,

eC
J1(u) ∈ L1. (3.48)

However, (3.47) also implies that

eC
SV (u) ∈ L1, where (3.49)

CJ0 (u) = CSV (u) + ψ̂X (u) τ . (3.50)

Moreover, by equation (3.41)

eψ̂X(u)τ = φ̂Xτ (u) , (3.51)

and, by Lemma 3.14, for any jump type,∥∥∥φ̂Xt (u)
∥∥∥
∞
<∞. (3.52)

Therefore, by Hölder’s inequality∫ +∞

−∞

∣∣∣eCJ0(u)
∣∣∣ du =

∫ +∞

−∞

∣∣∣eCSV (u)
∣∣∣ ∣∣∣eψ̂X(u)τ

∣∣∣ du
≤
∥∥∥eCSV (u)

∥∥∥
1

∥∥∥φ̂Xτ (u)
∥∥∥
∞
<∞,

by (3.49) and (3.52), as required.

Theorem 3.17 Let T = τ > 0 be a maturity date, with initial time t0 = 0,

and let S0 be the initial stock price. Define for the SVJ and SVSJ models

ZT = log

(
ST
S0

)
.

Then, under the assumption that ρ < 0,

φZT (u) = eC(u)+D(u)σ2
0 ∈ L1. (3.53)

Proof. By Lemma 3.16, if τ > 0 and ρ < 0, then∥∥∥eC(u)
∥∥∥

1
=

∫ +∞

−∞

∣∣∣eC(u)
∣∣∣ du <∞. (3.54)

68



Moreover, by Lemma 3.15, for the SVJ and SVSJ models, τ > 0 with ρ < 0

implies

ReD (u) ≤ 0, for all u ∈ R. (3.55)

Since we assume that σ2
0 > 0, this implies that∥∥∥eD(u)σ2

0

∥∥∥
∞

= sup
u∈R

∣∣∣eD(u)σ2
0

∣∣∣ = sup
u∈R

[
eReD(u)σ2

0

]
<∞. (3.56)

Therefore, by Hölder’s inequality∫ +∞

−∞

∣∣∣eC(u)+D(u)σ2
0

∣∣∣ du =

∫ +∞

−∞

∣∣∣eC(u)
∣∣∣ ∣∣∣eD(u)σ2

0

∣∣∣ du
≤
∥∥∥eC(u)

∥∥∥
1

∥∥∥eD(u)σ2
0

∥∥∥
∞
<∞,

by (3.54) and (3.56), as required.

3.4 The FFT Approximation in Practice

3.4.1 The Trapezoidal Rule

For simplicity, consider the integral on the half real line given by

g (x) =

∫ ∞
0

e−iuxf̂ (u) du, (3.57)

from equation (3.14). Note that g (x) in equation (3.57) may have both

real and imaginary parts. By following the argument in equations (3.15) to

(3.22) of subsection 3.2.3, and setting N = 2p, we obtain for the integral in

(3.57), the FFT approximation with quadrature weights wj given by

g (xk) ≈
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj f̂ (uj)wj∆u, (3.58)

for each xk, k = 1, 2, ..., N .

The FFT approximations in (3.23) and (3.24) of subsection 3.2.4 are merely

special cases of (3.58). In this subsection we give the standard theoretical
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argument, from Briggs and Henson (1995), in favour of using the trapezoidal

rule for the quadrature weights wj in the FFT approximation (3.58). The

main idea here is that the trapezoidal rule properly weights the sampled

endpoints, f̂ (0) and f̂ (A). That is, we show in this subsection that the

sampled endpoints should each be weighted by one 1
2 .

Definition 3.18 (Periodic Extension) Let [0, A] be the domain of h.

Then the function hA defined by

hA (x+mA) = h (x) , x ∈ [0, A] , m = 0,± 1,± 2,... (3.59)

is periodic with period A, and is called the A-periodic extension of h.

(Briggs and Henson (1995), §2.4, p. 38)

Definition 3.19 (Fourier Series) Let f be an A-periodic function. The

non-centred Fourier coefficients of f are given by

ck =
1

A

∫ A

0
e−i

2π
A
kxf (x) dx, k = 0,± 1,± 2,... , and (3.60)

SM (x) =
M∑

k=−M
cke

i 2π
A
kx (3.61)

is the M th partial sum of the Fourier series for f (x). (Walker (1996), p.4)

Theorem 3.20 (Pointwise Convergence) Let f be piecewise smooth and

A-periodic. Then

M∑
k=−M

cke
i 2π
A
kx → f (x+) + f (x−)

2
(3.62)

pointwise as M →∞, for all x. (Briggs and Henson (1995), pp. 37-38)

The key point raised in §3.4 pp. 93-95 of Briggs and Henson (1995) is

that the periodic extension f̂A (u) should be sampled from in place of f̂ (u)
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in the FFT approximation. In so doing we can apply Theorem 3.20 to

obtain the correct weights for the sampled endpoints, f̂ (0) and f̂ (A).

By Theorem 3.20 in the limit as M →∞

f̂A (0) = f̂A (A) =
f̂A (0) + f̂A (A)

2
=
f̂ (0) + f̂ (A)

2
. (3.63)

However, since f̂A (u) is A-periodic, the interval [0, A] should be sampled

only at one endpoint. Consequently, in order to sample correctly from

f̂ (u) on [0, A] we should sample from the auxiliary function

f∗ (u) =

 f̂ (u) if u ∈ (0, A)
f̂(0)+f̂(A)

2 if u = A

 , on (0, A] , (3.64)

see Briggs and Henson (1995) §3.4 p. 95. Observe that this prescription

is met by sampling uniformly from f̂ (u) on [0, A] and then weighting each

endpoint by one 1
2 . The most direct way to apply this in practice is to

simply use the trapezoidal rule. This choice is critical in the non-centred

and shifted scheme of Carr and Madan (1999), pp. 67-68, where f̂ (0) and

f̂ (A) do not match, see Briggs and Henson (1995), p. 95 and p. 360.

3.4.2 Comparison to Simpson’s Rule

Consider the standard normal distribution which has a characteristic func-

tion and a probability density function, each respectively given by

φ (u) = e−
1
2
u2

, and (3.65)

f (x) =
1√
2π
e−

1
2
x2

. (3.66)

Since the C.F. in equation (3.65) is obviously L1, Fourier inversion applies,

and we have

f (x) =
1

2π

∫ +∞

−∞
e−iuxφ (u) du. (3.67)
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By equation (3.23) from subsection 3.2.4 the FFT approximation is

f (xk) ≈
1

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujφ (uj)wj∆u, (3.68)

for each xk, k = 1, 2, ..., N .

For the FFT approximation in (3.68) we consider two quadrature rules:

1. Simpson’s rule w1 = 1
3 , and wj =

 2
3 if j is odd

4
3 if j is even

, j = 2, 3, ..., N

(cf. Carr and Madan (1999), p. 68)

2. The trapezoidal rule w1 = wN = 1
2 , and wj = 1, for j = 2, 3, ..., N − 1

(recommended in Briggs and Henson (1995), pp. 19-20).

Table 3.1 below confirms that the trapezoidal rule performs at high pre-

cision, for each xk, k = 1, 2, ..., N . However, Simpson’s rule does not.

N = 214 Total Abs Err Mean Abs Err

Trapezoidal Rule 7.23E-13 4.41E-17

Simpson’s Rule 217.29 0.01326

Table 3.1: Errors in the FFT Approximation: Standard Normal.

In Figure 3.1 below, the error in Simpson’s rule is clearly illustrated for

the standard normal FFT approximation. Simpson’s rule goes strongly

negative in the deep tails. Moreover, as will be shown in Chapter 5, this

is also why the Carr and Madan (1999) formula gives a negative European

call option price deep out-of-the-money. According to Briggs and Henson

(1995) §3.4, pp. 93-95, this type of error is expected whenever the sampled

endpoints, in this case f̂ (0) and f̂ (A), are not matched. Briggs and Henson

(1995), p. 360, recommends the trapezoidal rule in the event of such a

mismatch. Moreover, such a mismatch is inherent in the non-centred and

shifted FFT scheme of Carr and Madan (1999).
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Figure 3.1: FFT Quadrature Rules: Standard Normal Density.

We turn now to the accuracy of the trapezoidal versus Simpson’s rule on

the interior of the inverse transform domain. Standard quadrature theory,

see for example Burden and Faires (1997), pp. 201-203, states that the

order of the absolute error for Simpson’s rule in the general case is O
(
∆u4

)
,

whereas the same measure is only O
(
∆u2

)
for the trapezoidal rule. But,

as we will show, the advantage to Simpson’s rule can pass by unfulfilled

in certain circumstances. For example, if the integrand is periodic, then

the absolute error in the trapezoidal rule decays geometrically with N , see

Davis and Rabinowitz (1984), pp. 315-16. Recall from equation (3.57) in

subsection 3.4.1 that the integral that we intend to approximate using FFT

is given by

g (x) =

∫ ∞
0

e−iuxf̂ (u) du (3.69)

=

∫ ∞
0

[
cos (ux) f̂ (u)− i sin (ux) f̂ (u)

]
du. (3.70)
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Since the integrand in equation (3.70) above exhibits damped oscillation on

(0,∞), the trapezoidal rule may outperform the error rate of O
(
∆u2

)
for

the FFT approximation. We now consider two log-return distributions, for

which the exact density is known in closed form, and examine the error in the

FFT approximation. The two distributions are the Meixner which has semi-

heavy density tails, see Schoutens (2003), p. 63, and the Cauchy distribution

which is known to have very heavy density tails. From subsection 2.3.3, the

Meixner log-return distribution has a C.F. and a density given by

φ (u; ∆t) = eiuµ∆t

 cos
(
β
2

)
cosh

(
1
2 (αu− iβ)

)
2λ∆t

, and (3.71)

f (y; ∆t) =

(
2 cos

(
β
2

))2λ∆t
eβ(

y−µ∆t
α )

2πΓ (2λ∆t)

∣∣∣∣Γ [λ∆t+ i

(
y − µ∆t

α

)]∣∣∣∣2 . (3.72)

By Proposition 3.13, 3., |φ (u; ∆t)| has exponential tails, thus φ (u; ∆t) ∈ L1.

Hence, Fourier inversion applies. We assume the non-centred and shifted

FFT setup from subsection 3.2.3, and set N = 214. But, we truncate the

density range down to
[
−π

4 ,
π
4

]
, so that the contaminated part of Simpson’s

rule is discarded. That is, we apply the FFT approximation from (3.23) in

subsection 3.2.4 for yk ∈ [−4π, 4π], then discard values to obtain

f (yk; ∆t) ≈ 1

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujφ (uj ; ∆t)wj∆u, (3.73)

for each yk ∈
[
−π

4
,
π

4

]
.

∆u = 2.5× 10−1 Exact Points yk Midpoints
yk+yk+1

2

Trapezoidal Rule 2.79E-14 2.28E-07

Simpson’s Rule 2.78E-14 2.28E-07

Table 3.2: Average FFT Approximation Errors: Meixner Density.
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In Table 3.2 above, the average absolute errors are computed for the

exact yk ∈
[
−π

4 ,
π
4

]
, and a spline is used for the midpoints. Table 3.2

shows that for the Meixner density there is essentially no difference between

the trapezoidal rule and Simpson’s rule on the interior points of the FFT

approximation. The parameters of the Meixner density in Table 3.2 are

(µ, α, β, λ) = (−.0485, .0702, .0790, 92.48), estimated by ML on an annual

basis with ∆t = 1
252 from the daily log returns on Apple stock (1991-2011),

see subsection 4.4.2. Next we pursue a similar treatment for the Cauchy

distribution which has a C.F. and a density function given by

φ (u; ∆t) = eiuµ∆t−β∆t|u|, and (3.74)

f (y; ∆t) =
1

β∆tπ

[
1 +

(
y−µ∆t
β∆t

)2
] . (3.75)

By equation (3.74), |φ (u; ∆t)| =
∣∣eiuµ∆t−β∆t|u|∣∣ = e−β∆t|u|, so that clearly

φ (u; ∆t) ∈ L1. Thus, Fourier inversion applies. We now proceed exactly

as we did for the Meixner density, with the FFT approximation restricted

to yk ∈
[
−π

4 ,
π
4

]
and a spline interpolant within this range. The annual

parameters (µ, β) = (.1173, 3.790) were estimated by ML from the daily log

returns on Apple stock (1991-2011), see subsection 4.4.2.

∆u = 2.5× 10−1 Exact Points yk Midpoints
yk+yk+1

2

Trapezoidal Rule 2.49E-05 3.33E-05

Simpson’s Rule 6.45E-08 8.84E-06

Table 3.3: Average FFT Approximation Errors: Cauchy Density.

In Table 3.3, Simpson’s rule is better for the Cauchy. But, the Cauchy

trapezoidal error is better than the rate of O
(
∆u4

)
typifying Simpson’s rule.

The difference here appears to be that the Meixner density has semi-heavy

tails, while the Cauchy density has heavy tails.
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Lastly, let ∆t = 1
252 , and let Y1 = log

(
S∆t
S0

)
be the first log return.

Then by equation (3.41) the SVSJ model with σ2
0 = η has a C.F. given by

φY1 (u; ∆t) = exp [C (u; ∆t) +D (u; ∆t) η] , (3.76)

for a suitable set of affine coefficients C (u) and D (u) from Appendix A. By

Theorem 3.17, φY1 (u; ∆t) ∈ L1. Hence, by Fourier inversion we are able to

obtain the SVSJ Merton first log-return density. Approximate Maximum

Likelihood parameter estimates for Apple stock daily log returns (1991-2011)

under the SVSJ Merton model are taken from Table 4.2 in subsection 4.4.2.

In Figure 3.2 below, we use FFT to graph log-density of the SVSJ Merton

first log-return under these parameters, and compare with the Meixner and

Cauchy log-return densities. Observe that the SVSJ Merton first log-return

log-density is much closer to the Meixner log-density than it is to the Cauchy.

This suggests that the SVSJ Merton model has semi-heavy tails, and that

the trapezoidal rule will perform well for FFT in this case. We expect the

same for the SVJ model.
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Figure 3.2: Log-Densities: SVSJ Merton vs. Cauchy and Meixner.
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3.5 Conclusion

1. The marginal log-price characteristic function for the SVJ and SVSJ

Merton models is L1 integrable. Moreover, the Heston model is a

special case of each of these models with no jumps. Furthermore, by

Remarks 2.28, 2.33, and 2.37, this holds for the SVJ and SVSJ Merton

models under both the P and Q measures. This information will be

used in Chapter 6 of Part II for Fourier inversion via FFT, and also

to show that both the P and Q measures of these respective models

are absolutely continuous with respect to the Lebesgue measure.

2. The trapezoidal rule is a much safer alternative to the usual Simpson’s

rule for quadrature in the FFT approximation. Moreover, we find

that in practice the trapezoidal rule should be suitably accurate on

the interior of the inverse transform domain, provided that the tails

of the inverse transform are not too heavy. This is likely because the

inverse Fourier integrand exhibits damped oscillation which is similar

to periodicity. The trapezoidal rule is known to converge geometrically

for periodic integrands. For the remainder of this thesis, we use the

trapezoidal rule for quadrature in FFT, outside of further illustration

of the drawbacks to Simpson’s rule in Chapter 5 of Part II.
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Part II

Estimation and Relative

Entropy
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Preface to Part II

The focus of this part is on estimation and the change of measure for the

five affine Markov models defined in Chapter 2 above. Recall that these

are the Heston model, the SVJ model with independent Merton, Variance

Gamma, and Meixner jumps, respectively, as well as the SVSJ model with

time changed compound Poisson Merton jumps. Each chapter in this part

uses the FFT method established in Chapter 3 above for Fourier inversion

in respectively different ways. In Chapter 4 we estimate the P-measures,

under the five affine Markov models, from the log-returns on two indices,

and seven individual stocks, using the Bates (2006) method of Approximate

Maximum Likelihood (AML). We use FFT to invert each of the three main

Fourier transforms of the AML method. Also, we prove that the requisite

L1 integrability conditions for Fourier inversion hold for each of the three

transforms of the five affine Markov models, under the AML method. Of

the nine assets estimated under the P-measure in Chapter 4, the best fit of

the log-returns for the SVJ model with infinite-activity jumps is Apple stock

(1991-2011). Moreover, the rest of the thesis considers only Apple stock.

In Chapter 5 we estimate the option implied Q-measures, by calibration

using least squares normal likelihood, under the five affine Markov models,

from spot options prices on Apple stock, as selected from the daily closing

options price book of January 19th, 2011. This is the last day in the Apple
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stock (1991-2011) log-return data set. For pricing, we employ the Carr and

Madan (1999) formula, thus inverting the Fourier transform of the damped

call price by FFT. We also propose a modest improvement that appears

to solve the known problem of negative call prices deep out-of-the-money

in the Carr and Madan (1999) formula. Moreover, we find that for spot

options on the daily closing book of Apple stock, the SVSJ Merton model

with stochastic jump intensity has a slightly better fit than the other affine

Markov models. Lastly, in Chapter 6 we present our contribution to the

change of measure problem posed by the presence of incomplete markets

in the five affine Markov models. By combining the estimated Apple stock

P-measures from Chapter 4, in a unique way with the estimated Apple stock

implied option Q-measures from Chapter 5, we construct what we refer to

as the parametric minimum entropy martingale measure (PMEMM). The

PMEMM is similar to the minimal entropy martingale measure (MEMM) of

Frittelli (2000), only the PMEMM is much more easily computable. Since

we assume a structure preserving Q-measure, the risk-neutral log-price CF

is known in closed form. Thus, we can compute the relative entropy from

the densities corresponding to the absolutely continuous measures P and

Q, respectively, as obtained by Fourier inversion from their log-price CFs

via FFT. These marginal log-price CFs were shown to be L1 in Chapter 3.

We also make forecasts of at-the-money discounted call option payoffs on

Apple stock, thus comparing the PMEMM to the option implied Q-measure.

Relative to actual discounted call option payoffs computed from the future

Apple stock price, the PMEMM forecast outperforms for long dated options,

but the option implied Q-measure is better for short term options.
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Chapter 4

Approximate Maximum

Likelihood

4.1 Introduction

This chapter covers estimation under the P-measure, using daily log-return

data, for the five affine Markov models defined in Chapter 2 above. These

are the Heston model, the SVJ model under Merton, Variance Gamma, and

Meixner jumps, and the SVSJ Merton model. We often refer to these five

models simply as the SVJ and SVSJ models, where the Heston model is

a special case of either with no jumps. In the literature, MCMC based

methods dominate for estimation of the P-measure under these models, see

for example Eraker, Johannes, and Polson (2003). But, we have chosen the

Fourier based method of Approximate Maximum Likelihood (AML) from

Bates (2006) to estimate the P-measures required in this thesis. Since they

are affine, and also as required by the AML method, the SVJ and SVSJ

models have a known joint characteristic function for the log-price and the

latent factor, see Appendix A of this thesis.
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In this thesis we have made substantial contributions to the theory of

AML. First, in Appendix A.2 we give an equivalent set of affine coefficients

for the joint characteristic function of the SVJ and SVSJ models. Our affine

coefficients are shown to be continuous on the principal branch, as proven

in Appendix B and Appendix C.3. Equivalence to the Bates (2006) version

is proven in Theorem A.1 of Appendix A.3. Secondly, in Section 4.3 below,

we prove that for the SVJ and SVSJ models all three Fourier transforms

of the AML method are both continuous on the principal branch, and L1

integrable. Furthermore, we prove in Section 4.3 that the three respective

inverse transforms are also L1. A consequence of these results is that by

Lemma 3.8 of subsection 3.2.1, the primary Fourier integral of the AML

method converges uniformly. This last result leads, in Appendix D of this

thesis, to proof that the right hand side of the conditional transform for the

latent factor in the AML volatility filter can be differentiated twice under

the integral. Based on these two key differentiability results, the theory of

AML for the SVJ and SVSJ models is complete.

We also make a number of empirical contributions in this chapter using

AML for estimation. Consistent with Eraker, Johannes, and Polson (2003),

our standard sample size is about 5,000 daily log-returns covering twenty

years of daily data. Table 4.2 and Table 4.3 in subsection 4.4.2 cover AML

estimation, under each of the five SVJ and SVSJ models, for Apple stock

(1991-2011) and the DJIA (1988-2007), respectively. These estimates are

used for the true values in the corresponding pair of simulated AML estima-

tion studies of subsection 4.4.3. Each study covers all five of the SVJ and

SVSJ models, and the simulation results are based on 100 model data sets

of 5,000 simulated log-returns. The SVJ and SVSJ model path simulation

methods are given in Appendix E. These are based on Bates (2006), pp.

957-958, Broadie and Kaya (2006), pp. 221-22, and Glasserman (2004), pp.

82



138-144. For simulation of the Meixner process, see Chapter 8 of this thesis.

In Table 4.15 of subsection 4.5.1 we cover AML estimation of the S&P 500

(1988-2007) for the five SVJ and SVSJ models. The immediate purpose of

these estimates is to present the AML filtered volatility as compared to the

VIX index in subsection 4.5.2. Furthermore, in Table 4.16 to Table 4.21 of

subsection 4.6.1 we provide the AML estimates for each of the five SVJ and

SVSJ models, under the daily log-returns of six additional individual stocks,

over the 1988-2007 period. Five of these six stocks have been components

of the Dow-Jones Industrial Average since at least 2001. British Petroleum

(BP) is the other stock. Based on the analysis of Aı̈t-Sahalia and Jacod

(2012), see pp. 1036-37, we expect to find that at least some of these DJIA

components will fit the SVJ model with infinite-activity jumps well. We

find this to be the case for banking and technology stocks. In particular, the

main asset of this thesis, Apple stock (1991-2011), fits the SVJ model with

infinite-activity jumps exceptionally well. We also find that the model for

the S&P 500 (1988-2007) daily log-returns with the highest log-likelihood,

including a constraint for the Feller condition, is the infinite variation SVJ

Meixner model, see Table 4.24 in subsection 4.6.2.

The remainder of the chapter is structured as follows. In Section 4.2

we cover AML theory from Bates (2006). In Section 4.3 we present our

improvements to AML theory, and give our FFT based AML implementation

in subsection 4.3.2. Section 4.4 covers the two AML simulated estimation

studies, and also our comparisons to results from the Heston, SVJ, and

SVSJ model literature. Section 4.5 treats the AML filtered volatility. In

particular, we estimate the Heston and SVSJ models from S&P 500 index

daily log-returns by AML, and compare AML filtered volatilities to the

VIX. In Section 4.6 we table the additional AML estimates, and provide an

analysis of all AML estimates from this chapter. Section 4.7 concludes.
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4.2 The AML Method

4.2.1 Introduction

The method of Approximate Maximum Likelihood (AML) was pioneered in

Bates (2006) where it was used to estimate affine models similar to our SVJ

and SVSJ models defined in equations (4.1) and (4.2) below. The AML

method succeeds in filtering the latent factor from the history of the log-

price, so that the likelihood may be computed from the log-price data alone.

The method employs conditional characteristic functions, and consequently

Fourier analysis, for both the likelihood and the filtration of the latent factor.

Recall from equation (2.72) in subsection 2.6.1 that for an arbitrary Lévy

process Xt the continuous-time SVJ model under the P-measure is given by

dYt =

(
µ0 −

1

2
σ2
t − ψX (−i)

)
dt+ σtdW

(S)
t + dXt, (4.1)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , ρdt = E

[
dW

(S)
t dW

(V )
t

]
,

and that by Proposition 2.32 from subsection 2.6.1 the SVJ model is affine

Markov with respect to σ
{
Yt, σ

2
t

}
. Moreover, we have from equation (2.74)

in subsection 2.6.2 that the continuous-time SVSJ time changed compound

Poisson Merton model under the P-measure is given by

dYt =

(
µ0 −

1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) , (4.2)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt,

where in subsection 2.6.2 we argue that the SVSJ Merton model may be

written as an Affine Jump-Diffusion. Thus, by Proposition 2.36 it is affine

Markov with respect to σ
{
Yt, σ

2
t

}
, see also Bates (2006), pp. 913 & 926.
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Note that the Heston model is a special case of either the SVJ model or the

SVSJ model, with no jumps. For the SVJ and SVSJ models, define the

continuous-time process given by

Zt =
(
Yt, σ

2
t

)
, t ≥ 0. (4.3)

From equation (A.3) in Appendix A, the continuous-time joint affine condi-

tional characteristic function for the SVJ and SVSJ models is given by

φZT |Zt0 (u, v) = E
[
eiuYT+ivσ2

T |
(
Yt0 , σ

2
t0

)]
(4.4)

= exp
[
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

]
, (4.5)

where T > 0 is the terminal time, t0 ≥ 0 is the initial time, and τ = T−t0 > 0

is the gap time. The functional forms

C = C (u, v; τ) , and D = D (u, v; τ) , (4.6)

are referred to as the joint affine coefficients.

In subsection 4.2.2 below we treat the transition from the continuous-

time models in equations (4.1) and (4.2) above to the discrete case, and

summarize the main assumptions of the AML method. The transition

to discrete-time is facilitated by the joint affine conditional characteristic

function in equation (4.5) above. In subsection 4.2.3 we show how the

AML method provides an approximation for the conditional distribution of

the latent factor given the log-price history, yielding a joint C.F. conditional

on the log-price history alone. Since the latent factor in the SVJ and SVSJ

models is positive, and follows a CIR process, the gamma approximation is

the most appropriate choice, see Bates (2006), p. 920. Then, since the log-

return history augmented by the initial log-price, and the log-price history

itself, each contain the same information, we switch to the augmented log-

return history for convenience. In subsection 4.2.4 we present a result
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from Bartlett (1938), p. 63, that the Bates (2006) AML method uses to

obtain an expression for the partial inverse Fourier transform of the joint

C.F. conditional on the log-price history. This allows the AML method to

obtain the first two noncentral moments of the conditional distribution of

the latent factor by the gamma approximation from subsection 4.2.3. The

first moment is the filtered volatility squared. Furthermore, the parameters

of the gamma approximation for the conditional distribution are sequentially

updated by the method of moments, as the method proceeds through the

log-return history. In subsection 4.2.5 we present the theoretical version of

the Approximate Maximum Likelihood algorithm. A technical version of

this algorithm, with FFT, is given in subsection 4.3.2.

4.2.2 The Discrete Time Joint Conditional C.F.

We wish to estimate the continuous-time latent factor SVJ and SVSJ models

in equations (4.1) and (4.2) above. However, the continuous-time log-price

Yt is discretely observed, and the continuous-time latent factor σ2
t is also

filtered discretely from the log-price data. Thus, for the SVJ and SVSJ

models, where the joint continuous-time process is Zt =
(
Yt, σ

2
t

)
, t ≥ 0, we

consider a collection of observation points in continuous time given by

tn = n∆t, n = 0, 1, 2, ..., (4.7)

where ∆t > 0. Then we define the process given by

Zn =
(
Yn, σ

2
n

)
, n = 0, 1, 2, ..., (4.8)

such that Zn = Ztn , n = 0, 1, 2, ..., (4.9)

where Zn =
(
Yn, σ

2
n

)
, n = 0, 1, 2, ..., is the desired discrete-time process

for the SVJ and SVSJ models. Observe that a step from time n to time

n+ 1 under the discrete-time process Zn, n = 0, 1, 2, ..., corresponds exactly
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to a time step of length ∆t under the continuous-time process Zt, t ≥ 0.

This implies that for the SVJ and SVSJ models the process Zn =
(
Yn, σ

2
n

)
inherits the Markov property from the process Zt =

(
Yt, σ

2
t

)
.

The key point of the AML method is that we only need to know the

model for the discrete-time process Zn =
(
Yn, σ

2
n

)
, n = 0, 1, 2, ..., through

its joint conditional characteristic function. Moreover, since we assume

daily data, the gap time τ is a constant such that

τ = ∆t =
1

252
, per annum. (4.10)

Hence, the continuous-time joint affine conditional characteristic function

from equation (4.5) above takes the special case

φZn+1|Zn (u, v) = E
[
eiuYn+1+ivσ2

n+1 |
(
Yn, σ

2
n

)]
(4.11)

= exp
[
iuYn + C (u, v; ∆t) +D (u, v; ∆t)σ2

n

]
, (4.12)

which is precisely the discrete-time joint conditional characteristic function

of the process Zn =
(
Yn, σ

2
n

)
.

The final assumption of the AML method is that the process σ2
n, where

by equation (4.7) above

σ2
n = σ2

tn , n = 0, 1, 2, ..., (4.13)

is strictly stationary and strongly ergodic. Since the continuous-time pro-

cess σ2
t is a CIR process in both the SVJ and the SVSJ models, the process

σ2
n inherits the Markov property, similar to Zn. Moreover, equations (4.7)

and (4.9) above imply that the Markov process σ2
n, n = 0, 1, 2, ..., has a

j-step transition law given by

σ2
n+j =

ω2
(
1− e−κj∆t

)
4κ

χ′2d

(
4κe−κj∆t

ω2 (1− e−κj∆t)
σ2
n

)
, j = 0, 1, 2, ..., (4.14)
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where d = 4κη
ω2 , and χ′2d (ξ) is a noncentral chi-squared random variable with

noncentrality parameter

ξ =
4κe−κj∆t

ω2 (1− e−κj∆t)
σ2
n, (4.15)

as adapted from Glasserman (2004), see p. 122. Define

σ2
n = lim

j→∞
σ2
n+j . (4.16)

Similar to the proof of Proposition 2.24, item 6, from subsection 2.5.1, it

can be shown by equation (4.14) above that as j →∞, ξ → 0, such that σ2
n

is chi-squared random variable with degrees of freedom d = 4κη
ω2 , and scaled

by a factor of ω2

4κ . This implies that for σ2
n in equation (4.16) above

σ2
n ∼ Γ

(
2κη

ω2
,
ω2

2κ

)
. (4.17)

The following lemma shows that the final AML assumption holds for the

SVJ and SVSJ Merton models, as discussed in Bates (2006), see p. 917.

Lemma 4.1 For the SVJ and SVSJ Merton models, consider the discrete-

time variance process σ2
n in equation (4.13) above, and let σ2

n0
∼ Γ

(
2κη
ω2 ,

ω2

2κ

)
have the limiting distribution from equation (4.17). If the Feller condition,

2κη > ω2, holds for the underlying continuous-time CIR process σ2
t , t ≥ 0,

then σ2
n, n = 0, 1, 2, ..., is strictly stationary and strongly ergodic.

Proof. The process σ2
n, n = 0, 1, 2, ..., inherits the boundaries of σ2

t , t ≥ 0.

Thus, since the Feller condition holds for σ2
t , t ≥ 0, we have 2κη

ω2 > 1, and

no mass escapes at zero from the limiting gamma density of σ2
n. Hence, σ2

n

is positive ergodic, see Karlin and Taylor (1981), p. 221. Also, the initial

points σ2
n0

and σ2
t0are the same, and have the same distribution. Thus,

since σ2
n0
∼ Γ

(
2κη
ω2 ,

ω2

2κ

)
, and the Feller condition holds for σ2

t , t ≥ 0, the

process σ2
n never touches zero. Moreover, since ∞ is a natural boundary
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for both processes, the limiting distribution of σ2
n is a unique stationary

distribution, and the process σ2
n, n = 0, 1, 2, ..., is strongly ergodic, see

Karlin and Taylor (1981), pp. 240-241. Furthermore, with j = 1, equation

(4.14) is the one-step transition law of σ2
n, n = 0, 1, 2, ..., so the process

is Markov. Also, we proved above that σ2
n, n = 0, 1, 2, ..., has a unique

stationary distribution, and this is given by σ2
n ∼ Γ

(
2κη
ω2 ,

ω2

2κ

)
. Thus, since

σ2
n0
∼ Γ

(
2κη
ω2 ,

ω2

2κ

)
has this unique stationary distribution, every pair of finite

dimensional distributions must be the same, and σ2
n, n = 0, 1, 2, ..., is strictly

stationary, see Grimmett and Stirzaker (2001), p. 362.

Remark 4.2 (Summary of AML Assumptions) Let Zn =
(
Yn, σ

2
n

)
be

the discrete-time estimation model under AML. The following assumptions

are made, see Bates (2006) pp. 912-13.

1. The joint process Zn =
(
Yn, σ

2
n

)
is Markov.

2. The conditional joint C.F. φZn+1|Zn (u, v), with gap time τ = ∆t, is

exponentially affine in Yn, and σ2
n such that

φZn+1|Zn (u, v) = E
[
eiuYn+1+ivσ2

n+1 |
(
Yn, σ

2
n

)]
= exp

[
iuYn + C (u, v; ∆t) +D (u, v; ∆t)σ2

n

]
. (4.18)

3. The latent factor σ2
n is strictly stationary and strongly ergodic.

4.2.3 The Gamma Approximation

The Bates (2006) approximation to the joint conditional C.F. of equations

(4.11) and (4.12) requires the following. Let

Y H
n = {Y1, Y2, ..., Yn} (4.19)

be the history of the log-price Yn at time n. Then for n ≥ m, let

Gσ2
n|Y Hm (v) = E

[
evσ

2
n |Y H

m

]
(4.20)
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be the conditional moment generating function of the latent factor σ2
n given

the log-price history Y H
m at time m ≤ n. Hence, we find in the both the

SVJ and SVSJ cases, since Zn =
(
Yn, σ

2
n

)
has the Markov property, that

the affine structure in equation (4.12), combined with the definition of the

conditional MGF in (4.20), leads by iterated expectations to

φZn+1|Y Hn (u, v) = E
[
eiuYn+1+ivσ2

n+1 |Y H
n

]
= E

[
E
[
eiuYn+1+ivσ2

n+1 |
(
Yn, σ

2
n

)]
|Y H
n

]
= E

[
eiuYn+C(u,v;∆t)+D(u,v;∆t)σ2

n |Y H
n

]
= eiuYn+C(u,v;∆t)Gσ2

n|Y Hn [D (u, v; ∆t)] . (4.21)

Thus, in both the SVJ and SVSJ cases, equation (4.21) provides a joint

conditional C.F. for Zn+1 =
(
Yn+1, σ

2
n+1

)
at time n + 1, given only the

log-price history Y H
n at time n.

We now define

yn+1 = ∆Yn+1 = Yn+1 − Yn (4.22)

to be the log-return process at time n+ 1, and

yHn = {Y0, y1, y2, ..., yn} (4.23)

to be the log-return history at time n, augmented by the initial log-price.

Observe that the log-price history Y H
n and the augmented log-return history

yHn each contain the same information. This implies that

σ2
n|Y H

n = σ2
n|yHn . (4.24)

Thus, for the rest of this thesis we will condition on the augmented log-

return history instead, and for simplicity we will refer to yHn in equation

(4.23) simply as the log-return history. Furthermore, for convenience we

will denote the conditional moment generating function of the latent factor
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σ2
n given the log-return history yHn at time n by

Gn|n (v) = E
[
evσ

2
n |yHn

]
. (4.25)

Hence, by equation (4.21) for the SVJ and SVSJ models, using equations

(4.22) to (4.25) above, we obtain

E
[
eiuyn+1+ivσ2

n+1 |yHn
]

= eC(u,v;∆t)Gn|n [D (u, v; ∆t)] (4.26)

as the joint conditional C.F. of the log-return and the latent factor at time

n+ 1, given only the log-return history at time n. Thus, we define

F
(
u, v|yHn

)
= E

[
eiuyn+1+ivσ2

n+1 |yHn
]

= eC(u,v;∆t)Gn|n [D (u, v; ∆t)] . (4.27)

For the SVJ and SVSJ models, the distribution of σ2
n|yHn defining Gn|n (v) in

equation (4.25), and F
(
u, v|yHn

)
in equation (4.27) is not suitably tractable

for practical purposes. Thus, as an approximation, we assume that σ2
n|yHn

has a gamma distribution, see Bates (2006), pp. 919-921. In subsection 4.2.4

we reveal that this choice has a Bayesian interpretation. The distribution

of σ2
n|yHn can be viewed as a prior, with the distribution of σ2

n+1|yHn+1 being

the posterior. Thus, it is practical to choose a conjugate prior, for example

a gamma prior, see Bates (2006), p. 920. In view of this, recall also that

the latent factor is modeled by the CIR process in both the SVJ and SVSJ

models. Moreover, by equation (4.16) above, the limiting distribution of

σ2
n, n = 0, 1, 2, ..., is Γ

(
2κη
ω2 ,

ω2

2κ

)
. This further suggests that the gamma

distribution with C.F. given by

Gn|n (v) =

(
1

1− bnv

)an
, (4.28)

for some prior gamma parameters (an, bn), is a reasonable approximation

for the conditional distribution of σ2
n|yHn . However, note that the affine
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coefficient D (u, v; ∆t) is a complex-valued function. This means that

Gn|n [D (u, v; ∆t)], as it appears in equation (4.27), is a generalized trans-

form in the sense that it is an MGF with a parameter that has both real and

imaginary parts. Hence, we need to show the values of u and v for which

Gn|n [D (u, v; ∆t)] is well defined. We show in Lemma 4.6 of subsection 4.3.1

on L1 transforms below, that Gn|n [D (u, v; ∆t)] is continuous and bounded

for all (u, v) ∈ R× (−δ, δ), for some δ > 0.

4.2.4 Bayesian Updating and Volatility Filtering

The following theorem and its proof are adapted from Bates (2006), pp.

915-916. This is regarded as an extension of Bayes’ rule. We will let pY (y)

denote the density of a continuous random variable Y .

Theorem 4.3 (Bartlett (1938), p. 63) If it exists, the partial inverse

Fourier transform in the u-variable of the joint characteristic function

φY,X (u, v) = E
[
eiuY+ivX

]
(4.29)

may be written as[
φX|Y (v) pY (y)

]
=

1

2π

∫ +∞

−∞
e−iuyφY,X (u, v) du, (4.30)

where φX|Y (v) is the conditional characteristic function of X given Y , and

pY (y) is the density of Y .

Proof. Since the conditional C.F. is defined by

φX|Y (v) = E
[
eivX |Y

]
=

∫ +∞

−∞
eivxpX|Y (x|y) dx, (4.31)

we have by Bayes’ rule that the joint C.F. may be written as

φY,X (u, v) = E
[
eiuY+ivX

]
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=

∫ +∞

−∞

∫ +∞

−∞
eiuy+ivxpY,X (y, x) dydx

=

∫ +∞

−∞

∫ +∞

−∞
eiuy+ivxpX|Y (x|y) pY (y) dxdy

=

∫ +∞

−∞
eiuy

[∫ +∞

−∞
eivxpX|Y (x|y) dx

]
pY (y) dy

=

∫ +∞

−∞
eiuyφX|Y (v) pY (y) dy. (4.32)

Thus, since the Fourier inversion theorem holds by hypothesis, we have

[
φX|Y (v) pY (y)

]
=

1

2π

∫ +∞

−∞
e−iuyφY,X (u, v) du,

as required.

In this subsection we introduce the three inverse Fourier transform pairs

of the AML method. Recall from equation (4.27) in subsection 4.2.3 that

under the gamma approximation from equation (4.28),

F
(
u, v|yHn

)
= E

[
eiuyn+1+ivσ2

n+1 |yHn
]

(4.33)

= eC(u,v;∆t)Gn|n [D (u, v; ∆t)] (4.34)

= eC(u,v;∆t) [1− bnD (u, v; ∆t)]−an , (4.35)

is the joint characteristic function of the time n + 1 log-return and latent

factor, conditional on the time n log-return history. This leads to our first

inverse Fourier transform pair. As in Bates (2006), p. 917, assuming that

Fourier inversion holds, we obtain

p
(
yn+1|yHn

)
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, 0|yHn

)
du, (4.36)

as the time n+1 log-return density, conditional on the history yHn . Equation

(4.36) only partially defines the likelihood. The sequence of gamma param-

eters (an, bn), defining F
(
u, v|yHn

)
for n = 1, 2, ..., Ny needs to be updated.

We proceed as follows. By shifting time n to n + 1 in equation (4.25) we
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obtain

φn+1|n+1 (v) = Gn+1|n+1 (iv) = E
[
eivσ

2
n+1 |yHn+1

]
, (4.37)

as the time n + 1 characteristic function of the latent factor, conditional

on the history yHn . Hence, using equation (4.33) for F
(
u, v|yHn

)
, equation

(4.36) for p
(
yn+1|yHn

)
, and equation (4.37) above, if Fourier inversion holds,

then after a minor re-arrangement Theorem 4.3 implies

φn+1|n+1 (v) =
1

2π

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du

p (yn+1|yHn )
(4.38)

=
1

2π

∫ +∞
−∞ e−iuyn+1+C(u,v;∆t)Gn|n [D (u, v; ∆t)] du

p (yn+1|yHn )
, (4.39)

see Bates (2006), p. 918. Note, equation (4.39) follows from the definition

of F
(
u, v|yHn

)
in equation (4.34). From Bates (2006), p. 918, equations

(4.38) and (4.39) form a Bayesian updating mechanism. At time n under

the gamma approximation, σ2
n|yHn has a prior Γ (an, bn) distribution, with

a conditional gamma MGF Gn|n (v) = E
[
evσ

2
n |yHn

]
. Then, at time n + 1,

σ2
n+1|yHn+1 has a posterior Γ (an+1, bn+1) distribution, with a conditional

MGF Gn+1|n+1 (v) = E
[
evσ

2
n+1 |yHn+1

]
, or equivalently a conditional C.F.

φn+1|n+1 (v) = E
[
eivσ

2
n+1 |yHn+1

]
. The posterior parameters may be obtained

through equations (4.38) and (4.39) given the prior, and these equations are

a realization of Theorem 4.3 above, which is proven by Bayes’ rule. The

filtered volatility squared is the posterior mean given by

σ̃2
n+1 = E

[
σ2
n+1|yHn+1

]
= an+1bn+1. (4.40)

Since the prior and the posterior are both gamma, it is recommended in

Bates (2006), pp. 919-920 and pp. 955-956, that the updated posterior

parameters (an+1, bn+1) be obtained by the method of moments using an

MGF version of equations (4.38) and (4.39). However, in this thesis we

obtain the requisite moments from equations (4.38) and (4.39) using the
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conditional C.F. instead of the conditional MGF. This choice implies that

F
(
u, v|yHn

)
, as it appears in the right hand side of equation (4.38), is a joint

conditional C.F. rather than a mixed transform. This has some theoretical

advantages, although the two methods are equivalent in practice. Since all

moments exist for the gamma distribution, the noncentral moments obtained

from the gamma C.F. in equation (4.38) are governed by

ikm′k,n+1 =
∂k

∂vk
φn+1|n+1 (v) |v=0, (4.41)

k = 1, 2, ...,

see Grimmett and Stirzaker (2001), p. 183. We only need the first two

noncentral moments. However, we will need to differentiate under the

Fourier integral twice on the right hand side of equation (4.38) to obtain

∂

∂v

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du (4.42)

=

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du

and

∂2

∂v2

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du (4.43)

=

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du.

We prove in Appendix D of this thesis that for both the SVJ model and

the SVSJ model, differentiation under the integral holds in equations (4.42)

and (4.43) above. Hence, the remaining two inverse Fourier transform pairs

are both simply re-arrangements of equation (4.38), differentiated on both

sides with respect to v. The first case is the first derivative, and the second

case is the second derivative. However, to show that Fourier inversion holds

in each case, one needs to arrange the equations such that it is clear what

needs to be L1 integrable. A detailed treatment of L1 integrability for each
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inverse Fourier transform pair is deferred until subsection 4.3.1. For the

rest of this thesis we denote the following derivatives by

φ
(1)
n+1|n+1 (v) =

∂

∂v
φn+1|n+1 (v) , (4.44)

and φ
(2)
n+1|n+1 (v) =

∂2

∂v2
φn+1|n+1 (v) . (4.45)

Again, since F
(
u, v|yHn

)
= E

[
eiuyn+1+ivσ2

n+1 |yHn
]

is a joint characteristic

function, if Fourier inversion holds, then similar to equation (4.38), we have

by Theorem 4.3 that

[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du. (4.46)

But, by equation (4.36), p
(
yn+1|yHn

)
does not depend on v. Hence, assum-

ing we can differentiate twice under the integral as in equations (4.42) and

(4.43), and that Fourier inversion holds in each case, equation (4.46) implies[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du, and (4.47)[

φ
(2)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du. (4.48)

Equations (4.47) and (4.48) are, respectively, the second and third inverse

transform pairs of the AML method. Moreover, by equation (4.41), esti-

mates for the first two noncentral gamma posterior moments, m̂′1,n+1 and

m̂′2,n+1, of the AML filtration process may be obtained from

im̂′1,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1F v

(
u, 0|yHn

)
du

p (yn+1|yHn )
, and (4.49)

−m̂′2,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1F vv

(
u, 0|yHn

)
du

p (yn+1|yHn )
. (4.50)

We are now in a position to finalize the updating mechanism. Recall that

by equation (4.34), under the gamma approximation of equation (4.28),

96



F
(
u, v|yHn

)
= E

[
eiuyn+1+ivσ2

n+1 |yHn
]

= eC(u,v;∆t)Gn|n [D (u, v; ∆t)]

= eC(u,v;∆t)

(
1

1− bnD (u, v; ∆t)

)an
. (4.51)

Expressions for F v
(
u, v|yHn

)
and F vv

(
u, v|yHn

)
in terms of the prior gamma

parameters (an, bn), the affine coefficients, and their v-derivatives, will be

given in subsection 4.3.1 below. The update to the posterior gamma param-

eters (an+1, bn+1) is made from equations (4.49) and (4.50), by a moment

match involving the first two noncentral gamma moments. We set

m̂′1,n+1 = an+1bn+1

m̂′2,n+1 = an+1b
2
n+1 (1 + an+1) .

Thus, we obtain

bn+1 =
m̂′2,n+1 −

(
m̂′1,n+1

)2
m̂′1,n+1

, and an+1 =
m̂′1,n+1

bn+1
. (4.52)

4.2.5 Log-Likelihood I

The AML algorithm for the joint likelihood given θ is a subsequence of three

inverse Fourier transforms, evaluated sequentially through the data. The

first inverse transform is for the current likelihood. The second inverse

transform filters the volatility squared, and the third inverse transform al-

lows the parameters (an, bn) of the gamma approximation to be updated.

For the SVJ and SVSJ models, θ = (µ, κ, η, ω, ρ, λ, α, β), and under AML

the initial variance σ2
n0

is random. But, given θ, we can specify the distribu-

tion of σ2
n0

. Recall from Remark 4.2 3., that under AML, σ2
n, n = 0, 1, 2, ...,

must be strictly stationary and strongly ergodic. Moreover, by Lemma 4.1

from subsection 4.2.2, these conditions are met when the Feller condition,
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2κη > ω2, holds for the underlying CIR process σ2
t , t ≥ 0, and when for σ2

n

we have that σ2
n0
∼ Γ

(
2κη
ω2 ,

ω2

2κ

)
has the limiting distribution from equation

(4.16) in subsection 4.2.2. Given θ, this implies that we should choose

(a0, b0) =

(
2κη

ω2
,
ω2

2κ

)
, (4.53)

to initialize the sequence of gamma parameters for the gamma approxima-

tion, see Bates (2006), p. 916 and p. 955. Algorithm 4.4 below summarizes

the results from this section.

Algorithm 4.4 (Log-Likelihood I) Given θ = (µ, κ, η, ω, ρ, λ, α, β)

(a0, b0) =
(

2κη
ω2 ,

ω2

2κ

)
p (y1|θ) = 1

2π

∫ +∞
−∞ e−iuy1+C(u,0;∆t) [1− b0D (u, 0; ∆t)]−a0 du

BEGIN FOR n = 1 to Ny − 1

p
(
yn+1|yHn , θ

)
= 1

2π

∫ +∞
−∞ e−iuyn+1F

(
u, 0|yHn

)
du

m̂′1,n+1 =
−i
2π

∫+∞
−∞ e−iuyn+1F v(u,0|yHn )du

p(yn+1|yHn )

m̂′2,n+1 =
−1
2π

∫+∞
−∞ e−iuyn+1F vv(u,0|yHn )du

p(yn+1|yHn )

bn+1 =
m̂′2,n+1−(m̂′1,n+1)

2

m̂′1,n+1
, an+1 =

m̂′1,n+1

bn+1

END FOR

` (θ) = `0 + log p (y1|θ) +
∑Ny−1

n=1 log p
(
yn+1|yHn , θ

)
4.3 L1 Transforms and FFT

For AML to be stable, the Fourier inversion theorem must hold for each

transform. Thus, in subsection 4.3.1 we prove that for the SVJ and SVSJ

models, the three Fourier transforms of the AML method, and their inverse

transforms, are each L1. Since Appendix D proves that we can differentiate

twice under the integral on the right hand side of equation (4.46), equations

(4.47) and (4.48) of subsection 4.2.4 hold, and in subsection 4.3.2 we apply

FFT. In this section we take the hypothesis τ = ∆t > 0 to be given.
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4.3.1 L1 Transforms in the AML Method

Definitions and results from this subsection are used again in subsection 4.3.2

below, and also for the two proofs that we may differentiate under the in-

tegral as in equations (4.42) and (4.43). The proofs for each of the first

and second derivatives both appear in Appendix D of this thesis. From

equations (A.12) and (A.13) in Appendix A.1 we have

C = C (u, v) = C (u)− 2κη

ω2
log (1−K (u) iv) , and (4.54)

D = D (u, v) = D (u) +
R (u) iv

1−K (u) iv
, (4.55)

where the log-price coefficients C (u) and D (u), given respectively by equa-

tions (A.22) and (A.23) of Appendix A.2, do not depend on v. In what

follows, the assumption ρ < 0 primarily ensures the principal branch con-

tinuity of C (u) and D (u), see Proposition B.16. It also arises in Lemma

C.11, and Proposition C.12 on the continuity of the joint affine coefficients.

The auxiliary variables K (u) and R (u), given respectively by equations

(A.24) and (A.25) of Appendix A.2, also do not depend on v. The coeffi-

cients C = C (u, v) and D = D (u, v), in equations (4.54) and (4.55) above,

are the joint affine coefficients for the SVJ and SVSJ models. Moreover,

from equations (4.54) and (4.55) above, the first and second derivatives with

respect to v of the joint affine coefficients are given by

Cv =
∂

∂v
C (u, v) =

2κη
ω2 K (u) i

1−K (u) iv
, (4.56)

Cvv =
∂2

∂v2
C (u, v) =

−2κη
ω2 K (u)2

(1−K (u) iv)2 , (4.57)

Dv =
∂

∂v
D (u, v) =

R (u) i

(1−K (u) iv)2 , and (4.58)

Dvv =
∂2

∂v2
D (u, v) =

−2K (u)R (u)

(1−K (u) iv)3 . (4.59)
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Proposition 4.5 Let ρ < 0. Then the first and second derivatives with

respect to v of the joint affine coefficients C = C (u, v) and D = D (u, v),

denoted by Cv, Cvv, Dv, and Dvv, in equations (4.56) to (4.59) above, are

each continuous and bounded for all (u, v) ∈ R× (−δ, δ), for some δ > 0.

Proof. Under the hypothesis ρ < 0, by Lemma C.11, Re (1−K (u) iv) > 0,

for all (u, v) ∈ R× (−δ, δ), for some δ > 0. Hence, the denominator is never

zero in any of the four derivatives, on the domain in question. Moreover,

if ρ < 0, then by Proposition B.14, items 2. and 3., the auxiliary variables

K (u) and R (u) are both continuous for all u ∈ R. Thus, each of the

four derivatives is continuous, for all (u, v) ∈ R × (−δ, δ), for some δ > 0.

Furthermore, by Lemmas C.9 and C.10, respectively,

lim
u→±∞

K (u) = 0 and lim
u→±∞

R (u) = 0.

Thus, given that each derivative is continuous, each of the four derivatives

defined in equations (4.56) to (4.59) is also bounded for all u ∈ R, and for

all |v| < δ, for some δ > 0, as required.

We now turn our attention to the derivatives with respect to v of the

main conditional characteristic function F
(
u, v|yHn

)
. Recall from equation

(4.51) that under the gamma approximation in equation (4.28),

F = F
(
u, v|yHn

)
= E

[
eiuyn+1+ivσ2

n+1 |yHn
]

(4.60)

= eC(u,v)Gn|n [D (u, v)] (4.61)

= eC(u,v)

(
1

1− bnD (u, v)

)an
(4.62)

= eC(u,v)−an log[1−bnD(u,v)] (4.63)

Based on equation (4.63) we define

f = f
(
u, v|yHn

)
= logF

(
u, v|yHn

)
(4.64)

= C (u, v)− an log [1− bnD (u, v)] . (4.65)
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Taking the derivative with respect to v in equation (4.65) we obtain

f
v

=
∂

∂v
f
(
u, v|yHn

)
= Cv +

anbnDv

1− bnD
, (4.66)

and for the second derivative we obtain,

f
vv

=
∂2

∂v2
f
(
u, v|yHn

)
= Cvv +

anbnDv + anb
2
n

(
D2
v −DDvv

)
(1− bnD)2 . (4.67)

It now follows from the definition of f in equation (4.64) that

F = F
(
u, v|yHn

)
= ef(u,v|y

H
n ), leading directly to (4.68)

F v =
∂

∂v
F
(
u, v|yHn

)
= f

v
F , and (4.69)

F vv =
∂2

∂v2
F
(
u, v|yHn

)
=
(
f
vv

+ f2
v

)
F . (4.70)

Lemma 4.6 Assume that ρ < 0 in the SVJ and SVSJ models. Let u ∈ R,

and let δ > 0. Then for each fixed v ∈ (−δ, δ),

sup
u∈R

∣∣Gn|n [D (u, v)]
∣∣ =

∥∥Gn|n [D (u, v)]
∥∥
∞ <∞, (4.71)

where Gn|n [•] has the form of a gamma MGF as in equation (4.28), and

D (u, v) is defined in equation (4.55) above. Moreover, Gn|n [D (u, v)] is

continuous for all (u, v) ∈ R× (−δ, δ).

Proof. By equation (4.28) we have

Gn|n [D (u, v)] =

(
1

1− bnD (u, v)

)an
. (4.72)

But, ρ < 0. Thus, for all u ∈ R, and for each fixed v ∈ (−δ, δ), for some

δ > 0, we have both that D (u, v) is continuous by Proposition C.12 2., and

ReD (u, v) ≤ 0 by Lemma 3.15. Hence, since bn > 0,

Re [1− bnD (u, v)] > 0,
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for all u ∈ R, and for each fixed v ∈ (−δ, δ), for some δ > 0. Therefore,

since an > 0, Gn|n [D (u, v; ∆t)] is continuous for all (u, v) ∈ R× (−δ, δ), for

some δ > 0, and∣∣Gn|n [D (u, v; ∆t)]
∣∣ =

(
1

|1− bnD (u, v; ∆t)|

)an
<∞,

for all u ∈ R, and for each fixed v ∈ (−δ, δ), for some δ > 0, as required.

Lemma 4.7 Assume that ρ < 0 in the SVJ and SVSJ models. Let u ∈ R,

and let δ > 0. Then for each fixed v ∈ (−δ, δ),∫ +∞

−∞

∣∣∣eC(u,v)
∣∣∣ du <∞. (4.73)

Proof. By equation (4.54),

C (u, v) = C (u)− 2κη

ω2
log (1−K (u) iv) , (4.74)

and, since ρ < 0, Lemma C.11 implies that Re (1−K (u) iv) > 0, for all

(u, v) ∈ R× (−δ, δ), for some δ > 0. Thus,

eC(u,v) = eC(u)

(
1

1−K (u) iv

) 2κη

ω2

. (4.75)

But, Re (1−K (u) iv) > 0 on this domain, and 2κη
ω2 > 0. Hence,∣∣∣∣∣

(
1

1−K (u) iv

) 2κη

ω2

∣∣∣∣∣ =

(
1

|1−K (u) iv|

) 2κη

ω2

<∞, (4.76)

for all u ∈ R, and for each fixed v ∈ (−δ, δ), for some δ > 0. Moreover,

recall from subsection 3.3.3 that if ρ < 0, then eC(u) ∈ L1 by Lemma 3.16.

Therefore, by Hölder’s inequality,∫ +∞

−∞

∣∣∣eC(u,v)
∣∣∣ du =

∫ +∞

−∞

∣∣∣∣∣eC(u)

(
1

1−K (u) iv

) 2κη

ω2

∣∣∣∣∣ du
≤
∥∥∥eC(u)

∥∥∥
1

∥∥∥∥∥
(

1

1−K (u) iv

) 2κη

ω2

∥∥∥∥∥
∞

<∞,

for each fixed v ∈ (−δ, δ), for some δ > 0, as required.
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Lemma 4.8 Assume that ρ < 0 in the SVJ and SVSJ models. From

equation (4.61), define

F
(
u, v|yHn

)
= eC(u,v)Gn|n [D (u, v)] ,

where Gn|n [D (u, v)] is defined as in Lemma 4.6 above. Then, for some

δ > 0, we have both that F
(
u, v|yHn

)
is continuous on the principal branch

for all (u, v) ∈ R× (−δ, δ), and∫ +∞

−∞

∣∣F (u, v|yHn )∣∣ du <∞, for each fixed v ∈ (−δ, δ) . (4.77)

In the latter case we shall say that F
(
u, v|yHn

)
is L1 in the u-variable.

Proof. Since ρ < 0, by Proposition C.12, for all (u, v) ∈ R×(−δ, δ), for some

δ > 0, C (u, v) is principal branch continuous, and D (u, v) is continuous.

Therefore, on this domain, clearly eC(u,v) is principal branch continuous,

and, since ρ < 0, Gn|n [D (u, v)] is also continuous, by Lemma 4.6 above.

Hence, F
(
u, v|yHn

)
is principal branch continuous, for all (u, v) ∈ R×(−δ, δ),

for some δ̇ > 0. Moreover, since ρ < 0, Lemma 4.7 implies that eC(u,v) ∈ L1

in the u-variable for each fixed v ∈ (−δ, δ), for some δ > 0. Also, since

ρ < 0, Lemma 4.6 implies that if u ∈ R, then
∥∥Gn|n [D (u, v)]

∥∥
∞ < ∞, for

each fixed v ∈ (−δ, δ), for some δ > 0. Hence, by Hölder’s inequality,∫ +∞

−∞

∣∣F (u, v|yHn )∣∣ du =

∫ +∞

−∞

∣∣∣eC(u,v)Gn|n [D (u, v)]
∣∣∣ du

≤
∥∥∥eC(u,v)

∥∥∥
1

∥∥Gn|n [D (u, v)]
∥∥
∞ <∞,

for each fixed v ∈ (−δ, δ), for some δ > 0, as required.

Proposition 4.9 Assume that ρ < 0 in the SVJ and SVSJ models. As in

equations (4.66) and (4.67), define

f
v

=
∂

∂v
f
(
u, v|yHn

)
= Cv +

anbnDv

1− bnD
, and

f
vv

=
∂2

∂v2
f
(
u, v|yHn

)
= Cvv +

anbnDvv + anb
2
n

(
D2
v −DDvv

)
(1− bnD)2 ,
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where f
(
u, v|yHn

)
= logF

(
u, v|yHn

)
. Then, for some δ > 0, each of

f
v

(
u, v|yHn

)
and f

vv

(
u, v|yHn

)
is continuous for all (u, v) ∈ R × (−δ, δ).

Moreover, if we let u ∈ R, then∥∥∥f
v

(
u, v|yHn

)∥∥∥
∞
<∞, and∥∥∥f

vv

(
u, v|yHn

)∥∥∥
∞
<∞, both for each fixed v ∈ (−δ, δ) .

Proof. By the gamma approximation, bn > 0. Moreover, since ρ < 0,

by Lemma 3.15 ReD ≤ 0, for all (u, v) ∈ R × (−δ, δ), for some δ > 0.

Therefore,

Re (1− bnD) > 0,

in the denominator of the second term for each of f
v

and f
vv

. Furthermore,

since ρ < 0, by Proposition 4.5, each derivative Cv, Cvv, Dv, and Dvv, used

in the definitions of f
v

and f
vv

above, is continuous and bounded for all

(u, v) ∈ R× (−δ, δ), for some δ > 0. Thus, f
v

and f
vv

are both continuous

and bounded, for all (u, v) ∈ R× (−δ, δ), for some δ > 0, as required.

Proposition 4.10 Assume that ρ < 0 in the SVJ and SVSJ models. As

in equations (4.69) and (4.70), define

F v =
∂

∂v
F
(
u, v|yHn

)
= f

v
F , and

F vv =
∂2

∂v2
F
(
u, v|yHn

)
=
(
f
vv

+ f2
v

)
F ,

where F = F
(
u, v|yHn

)
. Then, each of F v

(
u, v|yHn

)
and F vv

(
u, v|yHn

)
is

continuous on the principal branch for all (u, v) ∈ R × (−δ, δ), for some

δ > 0. Moreover,∫ +∞

−∞

∣∣F v (u, v|yHn )∣∣ du <∞, and∫ +∞

−∞

∣∣F vv (u, v|yHn )∣∣ du <∞, both for each fixed v ∈ (−δ, δ) .

That is, F v and F vv are both L1 in the u-variable.
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Proof. Consider (u, v) ∈ R × (−δ, δ), for some δ > 0. Since ρ < 0, we

have by Lemma 4.8 that F is continuous on the principal branch, and by

Proposition 4.9 both f
v

and f
vv

are continuous, on this domain. Therefore,

clearly both F v and F vv are continuous on the principal branch, for all

(u, v) ∈ R× (−δ, δ), for some δ > 0. Moreover, since ρ < 0, on this domain

F is L1 in the u-variable, by Lemma 4.8, and both
∥∥∥f

v

∥∥∥
∞

and
∥∥∥f

vv

∥∥∥
∞

are

finite by Proposition 4.9. Therefore, by Hölder’s inequality,∫ +∞

−∞

∣∣F v (u, v|yHn )∣∣ du =

∫ +∞

−∞

∣∣∣f
v
F
∣∣∣ du

≤ ‖F‖1
∥∥∥f

v

∥∥∥
∞
<∞,

and again by Hölder’s inequality,∫ +∞

−∞

∣∣F vv (u, v|yHn )∣∣ du =

∫ +∞

−∞

∣∣∣(f
vv

+ f2
v

)
F
∣∣∣ du

≤ ‖F‖1
∥∥∥f

vv
+ f2

v

∥∥∥
∞

≤ ‖F‖1
(∥∥∥f

vv

∥∥∥
∞

+
∥∥∥f

v

∥∥∥2

∞

)
<∞,

in both cases, for each fixed v ∈ (−δ, δ), for some δ > 0, as required.

We have shown that the three Fourier transforms of the AML method,

F , F v, and F vv, respectively are, for some δ > 0, each continuous for all

(u, v) ∈ R×(−δ, δ), and each L1 in the u-variable, for each fixed v ∈ (−δ, δ).

The respective inverse transforms will now be shown to be both continuous

and L1 within the context of the following two propositions. These two

propositions complete the theory of the AML method.

Recall from equation (4.38) in subsection 4.2.4 that by Theorem 4.3,

under the assumption that Fourier inversion holds,[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du. (4.78)

Proposition 4.11 (Density Transform) Assume that ρ < 0 in the SVJ

and SVSJ models. Then, for some δ > 0, the following hold.
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1.
∫ +∞
−∞

∣∣φn+1|n+1 (v) p
(
yn+1|yHn

)∣∣ dyn+1 <∞, for each fixed v ∈ (−δ, δ).

That is,
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
is L1 in yn+1.

2.
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
= 1

2π

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du a.e., and[

φn+1|n+1 (v) p
(
yn+1|yHn

)]
is continuous for all (v, yn+1) ∈ (−δ, δ)×R.

That is, Fourier inversion holds.

3.
∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du converges uniformly, for every v ∈ (−δ, δ).

Proof. Let δ > 0, and for each fixed v ∈ (−δ, δ) consider∫ +∞

−∞

∣∣φn+1|n+1 (v) p
(
yn+1|yHn

)∣∣ dyn+1

=

∫ +∞

−∞

∣∣∣∣∫ +∞

−∞
eivσ

2
n+1p

(
σ2
n+1|yHn

)
dσ2

n+1

∣∣∣∣ p (yn+1|yHn
)
dyn+1

≤
∫ +∞

−∞

∫ +∞

−∞

∣∣∣eivσ2
n+1p

(
σ2
n+1|yHn

)
dσ2

n+1

∣∣∣ p (yn+1|yHn
)
dyn+1

=

∫ +∞

−∞

∫ +∞

−∞
p
(
σ2
n+1|yHn

)
dσ2

n+1p
(
yn+1|yHn

)
dyn+1

=

∫ +∞

−∞
p
(
σ2
n+1|yHn

)
dσ2

n+1

∫ +∞

−∞
p
(
yn+1|yHn

)
dyn+1 = 1 <∞.

This proves 1. But, since ρ < 0, by Lemma 4.8, F is L1 in the u-variable,

for each fixed v ∈ (−δ, δ). Hence, since
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
is also

L1 in yn+1 by 1., Theorem 3.6, the Fourier inversion theorem, implies 2.

Lastly, since we have established both that F is L1 in the u-variable, for

each fixed v ∈ (−δ, δ), and
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
is L1 in yn+1, Lemma

3.8 from subsection 3.2.1 implies that∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du converges uniformly,

for every v ∈ (−δ, δ), for some δ > 0, as required.
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Remark 4.12 In Proposition 4.11 above,
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
is L1

in yn+1, and F
(
u, v|yHn

)
is the corresponding Fourier transform in u. Thus,

by Lemma 3.3, F
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R, for

each v ∈ (−δ, δ), for some δ > 0.

Remark 4.13 The results from Proposition 4.11 above hold when v = 0.

That is, since p
(
yn+1|yHn

)
∈ L1, when F

(
u, 0|yHn

)
is also L1

p
(
yn+1|yHn

)
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, 0|yHn

)
du a.e., (4.79)

and p
(
yn+1|yHn

)
is continuous, by the Fourier inversion theorem.

We now show that Fourier inversion holds for the two filtering transforms.

Recall from equations (4.47) and (4.48) in subsection 4.2.4, that if the right

hand side of equation (4.78) above can be differentiated twice under the

integral, and the Fourier inversion theorem holds in each case, then we

obtain the two Fourier transform pairs[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du, and (4.80)[

φ
(2)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du. (4.81)

Proposition 4.14 (Filtering Transforms) Assume that ρ < 0 in the

SVJ and SVSJ models. Further assume that from equation (4.37),

φn+1|n+1 (v) =

(
1

1− ivbn+1

)an+1

,

by the gamma approximation of subsection 4.2.3. Then, for some δ > 0,

the following hold.

1. Each of
[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
and

[
φ

(2)
n+1|n+1 (v) p

(
yn+1|yHn

)]
is

L1 in the variable yn+1 for each fixed v ∈ (−δ, δ).
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2. ∂
∂v

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du, holds

for every v ∈ (−δ, δ). Moreover,[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du a.e.,

and the left hand side is continuous for all (v, yn+1) ∈ (−δ, δ) × R.

That is, Fourier inversion holds.

3. ∂2

∂v2

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞
−∞ e−iuyn+1F vv

(
u, v|yHn

)
du, holds

for every v ∈ (−δ, δ). Moreover,[
φ

(2)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=

1

2π

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du a.e.,

and the left hand side is continuous for all (v, yn+1) ∈ (−δ, δ) × R.

That is, Fourier inversion holds.

Proof. To prove 1., observe that

∂

∂v

[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
=
[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=
ian+1bn+1

1− ivbn+1

[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
, and (4.82)

∂2

∂v2

[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
=
[
φ

(2)
n+1|n+1 (v) p

(
yn+1|yHn

)]
=
− (1 + an+1) an+1b

2
n+1

(1− ivbn+1)2

[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
. (4.83)

But, Re (1− ivbn+1) > 0, for all v ∈ (−δ, δ), and for any δ > 0. Hence,

ian+1bn+1

1−ivbn+1
and

−(1+an+1)an+1b2n+1

(1−ivbn+1)2 are continuous and bounded for all v ∈ R,

and neither of them depends on the variable yn+1. However, since ρ < 0,

by Proposition 4.11, item 1., for some δ > 0,
[
φn+1|n+1 (v) p

(
yn+1|yHn

)]
is

L1 in the variable yn+1 for each fixed v ∈ (−δ, δ). Therefore, by equations
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(4.82) and (4.83) above, for each fixed v ∈ (−δ, δ), for some δ > 0,∫ +∞

−∞

∣∣∣φ(1)
n+1|n+1 (v) p

(
yn+1|yHn

)∣∣∣ dyn+1

=
ian+1bn+1

1− ivbn+1

∫ +∞

−∞

∣∣φn+1|n+1 (v) p
(
yn+1|yHn

)∣∣ dyn+1 <∞,

and

∫ +∞

−∞

∣∣∣φ(2)
n+1|n+1 (v) p

(
yn+1|yHn

)∣∣∣ dyn+1

=
− (1 + an+1) an+1b

2
n+1

(1− ivbn+1)2

∫ +∞

−∞

∣∣φn+1|n+1 (v) p
(
yn+1|yHn

)∣∣ dyn+1 <∞.

For 2., since ρ < 0, by Lemma 4.8, F is L1 in u, by Remark 4.12, F
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R, and by Proposition 4.11 item 3.,∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du converges uniformly, (4.84)

where each of the above holds for all v ∈ (−δ, δ), for some δ > 0. Therefore,

by Theorem D.7 from Appendix D, we have that F v
(
u, v|yHn

)
is uniformly

continuous in u, for all u ∈ R,∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly, and (4.85)

∂

∂v

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du, (4.86)

where each of the above holds for all v ∈ (−δ, δ), for some δ > 0. Moreover,

since ρ < 0, by Proposition 4.10, F v
(
u, v|yHn

)
is L1 in u, for v ∈ (−δ, δ).

Hence, since
[
φ

(1)
n+1|n+1 (v) p

(
yn+1|yHn

)]
is also L1 in yn+1 by 1., the rest of

2. follows from Theorem 3.6, the Fourier inversion theorem. To prove 3.,

since ρ < 0, we may use the same hypotheses as for Theorem D.7 above,

plus the result F v is L1 in u from Proposition 4.10. Then by Theorem D.13

from Appendix D we have that.

∂2

∂v2

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du. (4.87)

The rest is similar to the proof of 2. This completes the proof.
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4.3.2 Log-Likelihood II (FFT)

In this subsection we describe our FFT based implementation of AML. This

is summarized in Algorithm 4.15 below. By letting v = 0 in equations (4.78),

(4.80), and (4.81) of subsection 4.3.1 above, and by using the result (4.41)

from subsection 4.2.4, we obtain

p
(
yn+1|yHn

)
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, 0|yHn

)
du, (4.88)

im̂′1,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1F v

(
u, 0|yHn

)
du

p (yn+1|yHn )
, and (4.89)

−m̂′2,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1F vv

(
u, 0|yHn

)
du

p (yn+1|yHn )
, (4.90)

where m̂′1,n+1 and m̂′2,n+1 are the estimates of the first two noncentral gamma

posterior moments of the AML filtration process, and p
(
yn+1|yHn

)
is simply

the conditional log-return density. Alternatively, if we had used the MGF

φn+1|n+1 (−iv) in equation (4.41) from subsection 4.2.4 to obtain moments

instead of the C.F. then we would have

p
(
yn+1|yHn

)
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, 0|yHn

)
du,

m̂′1,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1 ∂

∂vF
(
u,−iv|yHn

)
|v=0du

p (yn+1|yHn )
, and

m̂′2,n+1 =
1

2π

∫ +∞
−∞ e−iuyn+1 ∂2

∂v2F
(
u,−iv|yHn

)
|v=0du

p (yn+1|yHn )
.

While the latter system is somewhat simpler to implement, equations (4.88),

(4.89), and (4.90) above maintain the assumption that F
(
u, v|yHn

)
in each

integrand is a joint characteristic function. The system of equations (4.88),

(4.89), and (4.90) above is no different from Algorithm 4.4 in subsection 4.2.5.

But, we now know from Propositions 4.11 and 4.14, of subsection 4.3.1, that

the hypotheses of the Fourier inversion theorem are met in each of equa-

tions (4.88), (4.89), and (4.90) above. These two propositions also tell us,
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via Theorem D.7 and Theorem D.13 from Appendix D of this thesis, that

differentiation under the integral holds in equations (4.42) and (4.43) from

subsection 4.2.4, in some neighbourhood of v = 0. This defines the right

hand side of each of equations (4.80) and (4.81), thus also the right hand

sides of equations (4.89) and (4.90). These properties ensure evaluation of

equations (4.88), (4.89), and (4.90) above by a numerical integration scheme,

such as FFT or quadrature, will be stable.

The FFT scheme proposed in Chapter 3 assumes the domain of integra-

tion is [0,∞). The above three integrals can be reduced to this domain as

follows. By the Fourier inversion theorem, Theorem 3.6,

f (x) =
1

2π

∫ +∞

−∞
e−iuxf̂ (u) du.

However, by Corollary 3.7 to Theorem 3.6, from subsection 3.2.1,

If f is purely real, then f (x) =
1

π
Re

∫ ∞
0

e−iuxf̂ (u) du, and

if f is purely imaginary, then f (x) =
i

π
Im

∫ ∞
0

e−iuxf̂ (u) du.

Hence, since the left hand sides of (4.88) and (4.90) are purely real, and the

left hand side of (4.89) is purely imaginary,

p
(
yn+1|yHn

)
=

1

π
Re

∫ ∞
0

e−iuyn+1F
(
u, 0|yHn

)
du, (4.91)

m̂′1,n+1 =
1
π Im

∫∞
0 e−iuyn+1F v

(
u, 0|yHn

)
du

p (yn+1|yHn )
, and (4.92)

m̂′2,n+1 =
−1
π Re

∫∞
0 e−iuyn+1F vv

(
u, 0|yHn

)
du

p (yn+1|yHn )
. (4.93)

Recall from subsection 3.2.3 that we approximate g : R→ C given by

g (x) =

∫ ∞
0

e−iuxf̂ (u) du, (4.94)
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along the left-endpoint discretization xk = −b+ (k − 1) ∆x, k = 1, 2, ..., N ,

by the DFT, or equivalently by FFT when N = 2p, such that

g̃ (xk) =
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj f̂ (uj)wj∆u, (4.95)

k = 1, 2, ..., N ,

as in equation (3.22), where uj = (j − 1) ∆u, j = 1, 2, ..., N . Following

Carr, Geman, Madan, and Yor (2002), p. 320, we choose N = 214 and

∆u = 1
4 . By equations (3.19) and (3.20), of subsection 3.2.3 respectively,

this implies ∆x = π
2048 , and b = 4π. For the wj we proposed the trapezoidal

rule, w1 = wN = 1
2 , wj = 1 otherwise, in subsection 3.4.1.

In Algorithm 4.15 below, we use the FFT approximation in equation

(4.95) to evaluate equations (4.91), (4.92), and (4.93) above, thus forming

an FFT approximation for the AML likelihood. Since the output of FFT

is a grid rather than the exact point of interest, in each step of Algorithm

4.15 below we use a spline interpolant based on a subset,

xk ∈
[
−π

4
,
π

4

]
,

of the FFT discretized points. The end-points of the above sub-grid are

implicitly given by x7680 = −π
4 and x8704 = π

4 . These can be obtained, with

∆x = π
2048 , from the main FFT grid given by,

xk = −4π + (k − 1) ∆x, k = 1, 2, ..., N = 214.

The interior points follow by the uniformity of the grid. Thus, each cu-

bic spline provides a continuous approximation to the function of interest,

for x ∈
[
−π

4 ,
π
4

]
. Moreover, at each step, our version of AML uses only

1,025 of the 16,384 values computed by FFT. Since 1,025 is a sufficiently

small number of points, the cost of the cubic spline interpolant is negligible

compared to the cost of FFT.
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Algorithm 4.15 (Log-Likelihood II) FFT Version

Given θ = (µ, κ, η, ω, ρ, λ, α, β)

(a0, b0) =
(

2κη
ω2 ,

ω2

2κ

)
, F 0

(
u, 0|yHn

)
= eC(u,0;∆t) [1− b0D (u, 0; ∆t)]−a0

STEP 0:

h0 (xk) = 1
π Re

∑N
j=1 e

−i 2π
N

(j−1)(k−1)eibujF 0

(
uj , 0|yHn

)
wj∆u,

k = 1, 2, ..., N

S0 (x) = Spline {(xk, h0 (xk))}8704
k=7680, x ∈

[
−π

4 ,
π
4

]
p (y1|θ) = S0 (y1)

BEGIN FOR n = 1 TO Ny − 1

STEP 1:

h1 (xk) = 1
π Re

∑N
j=1 e

−i 2π
N

(j−1)(k−1)eibujF
(
uj , 0|yHn

)
wj∆u,

k = 1, 2, ..., N

S1 (x) = Spline {(xk, h1 (xk))}8704
k=7680, x ∈

[
−π

4 ,
π
4

]
p
(
yn+1|yHn , θ

)
= S1 (yn+1)

STEP 2:

h2 (xk) = 1
π Im

∑N
j=1 e

−i 2π
N

(j−1)(k−1)eibujF v
(
uj , 0|yHn

)
wj∆u,

k = 1, 2, ..., N

S2 (x) = Spline {(xk, h2 (xk))}8704
k=7680, x ∈

[
−π

4 ,
π
4

]
m̂′1,n+1 = S2(yn+1)

p(yn+1|yHn ,θ)

STEP 3:

h3 (xk) = −1
π Re

∑N
j=1 e

−i 2π
N

(j−1)(k−1)eibujF vv
(
uj , 0|yHn

)
wj∆u,

k = 1, 2, ..., N

S3 (x) = Spline {(xk, h3 (xk))}8704
k=7680, x ∈

[
−π

4 ,
π
4

]
m̂′2,n+1 = S3(yn+1)

p(yn+1|yHn ,θ)

UPDATE:

bn+1 =
m̂′2,n+1−(m̂′1,n+1)

2

m̂′1,n+1
, an+1 =

m̂′1,n+1

bn+1

END FOR

` (θ) = `0 + log p (y1|θ) +
∑Ny−1

n=1 log p
(
yn+1|yHn , θ

)
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4.4 Simulation and Comparative Results

4.4.1 Implementation Details

The computations in this chapter were all completed using an Intel Xeon

2xE5-2643v3 dual processor at 3.4 GHz on 12 cores. The code was written

and executed in Matlab R2016a running on Windows 10 Pro. For all AML

estimations in this chapter, except those reported in subsection 4.4.5 where

quadrature was used, the negative log-likelihood was computed by FFT

using Algorithm 4.15. The negative log-likelihood was minimized, subject to

bound constraints only, by the ’active-set’ algorithm of the Matlab function

fmincon. The ’active-set’ algorithm uses sequential quadratic programming

(SQP). Under suitable conditions it will behave like a Newton method, see

Nocedal and Wright (2006), p. 533. We employed moderately loose bound

constraints so that the final Lagrange multipliers were suitably close to zero.

Therefore, the final Hessian of the Lagrangian served as close approximation

to the final Hessian of the unconstrained problem. Moreover, these bounds

were enlarged in the event of any breach, and in this sense, for simplicity,

we will refer to the problem as being unconstrained.

Two types of parallel processing were employed. For individual estima-

tion the elements of each gradient were computed in parallel. This allowed

us to match, using FFT, a stated average estimation time from Bates (2006),

p. 928. For group estimation of simulated data, the Monte Carlo loop was

run in parallel. Within a parallel program, both methods cannot be used

simultaneously. In subsection 4.4.2 below, and in the remainder of this

chapter, exact estimation times, as well as number of iterations, are both

tabled for all individual estimation results. Likewise, for group estimation,

as in the simulation studies presented in subsection 4.4.3 and subsection 4.4.5

below, the total simulation time is reported. To illustrate the benefits of
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parallel processing, we need to compare to the sequential case which does

not use parallel processing at all. This case is considered, under the DJIA

1988-2007 daily log-return data, at the top of Table 4.1 below.

Estimation Type Model Type Effective Time No. of Obs.

Sequential FFT SVSJ Merton 68.95 min 5,042

Parallel Gradient FFT SVSJ Merton 36.63 min 5,042

Parallel Simulation FFT SVSJ Merton 14.96 min 5,042

Table 4.1: AML FFT Estimation Times: DJIA 1988-2007.

As shown in Table 4.1 above, for about 5,000 observations with FFT, the

advantage of parallel gradients over a sequential program is about a factor

of 2. For parallel simulation Table 4.1 reports the total simulation time

in parallel divided by number of paths, and the benefit is almost a factor

of 5 over a sequential program. However, we find in subsection 4.4.5 that

the cost of FFT becomes too high if we double the number of observations.

Bates (2006), p. 928, reports an average sequential AML estimation time

of 29 minutes for 4,000 log-returns simulated under the SVJ Merton model

estimates for the S&P 500, 1980-1999, from Eraker, Johannes, and Polson

(2003). Adjusting for the model type, and the number of observations, this

is similar to our parallel gradient FFT time reported in Table 4.1 above.

4.4.2 Estimation Results

In preparation for the two simulated AML estimation studies presented in

subsection 4.4.3 below, this subsection provides the AML estimates for the

true values of the parameters under the SVJ Merton, SVJ Variance Gamma,

SVJ Meixner, SVSJ Merton, and Heston models, based on two respective

real world data sets. These five models were described in Chapter 2 above.

Our trading day data is from Bloomberg L.P. The first data set covers
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Apple stock (AAPL) from January 2nd, 1991 to January 19th, 2011. The

log-return for September 29th, 2000, is excluded. Thus, there are 5,052 log-

returns, and this is the main data set of this thesis. On September 29th,

2000, Apple lost just over half its value in one day due to an unfavourable

earnings report. The log-return for that day is -0.7312 which is more than

22 standard deviations away from the mean based on the complete data.

We elected to remove this outlier from the data, and this is the only case in

which this was done. The second data set covers the Dow-Jones Industrial

Average (INDU) from January 4th, 1988 to December 31st, 2007, for a

total of 5,042 log-returns. This is the main secondary time period used in

this chapter. In order to be consistent with other P-measure estimation

studies in the literature, of models similar to the SVJ and SVSJ models,

we have chosen a sample size of approximately 5,000 daily log-returns, see

for example Eraker, Johannes, and Polson (2003), p. 1279, and Li, Wells,

and Yu (2008), p. 2364. For internal consistency we also chose 5,000 daily

log-returns for the Heston model, although in the Heston case 2,500 might

lead to a better fit, see Lysy (2012) as cited in subsection 4.4.4 below.

For Apple stock (1991-2011), Table 4.2 below reports the AML estimates

for the true values of the parameters under each of the five respective models.

Similarly, Table 4.3 below reports the same for the Dow-Jones Industrial

Average (1988-2007). For all maximum likelihood estimates in this thesis,

the Euclidean norm of the final gradient of the log-likelihood, denoted by

‖O` (θ)‖
θ=θ̂

, (4.96)

is reported. When ‖O` (θ)‖
θ=θ̂

is not sufficiently close to zero, we say that

the numerical estimate of θ is neither a local nor a global maximum. In this

situation there is also no guarantee that the inverse of the final Hessian is

a good approximation for the observed information. Thus, standard errors

based on the final Hessian may be incorrect in this case.
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AML Estimates of True Values: Apple Stock

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.361 3.990 0.175 0.726 -0.268 10.20 0.070 0.007

Std. Err. 0.098 1.031 0.018 0.105 0.082 2.53 0.008 0.006

Estimation Time 31.60 min ‖O` (θ)‖
θ=θ̂

0.070

Number of Iterations 23 max ` (θ) 11,019

SVJ Variance Gamma

Estimate 0.367 3.420 0.161 0.691 -0.293 13.50 0.068 0.008

Std. Err. 0.101 1.101 0.019 0.120 0.090 4.71 0.012 0.006

Estimation Time 27.93 min ‖O` (θ)‖
θ=θ̂

0.030

Number of Iterations 19 max ` (θ) 11,026

SVJ Meixner

Estimate 0.368 3.260 0.152 0.715 -0.299 5.23 0.166 0.277

Std. Err. 0.095 0.991 0.020 0.120 0.089 1.74 0.027 0.212

Estimation Time 28.08 min ‖O` (θ)‖
θ=θ̂

0.015

Number of Iterations 21 max ` (θ) 11,027

SVSJ Merton

Estimate 0.360 3.850 0.167 0.643 -0.278 91.4 0.062 0.009

Std. Err. 0.089 1.095 0.016 0.103 0.076 29.19 0.008 0.005

Estimation Time 32.63 min ‖O` (θ)‖
θ=θ̂

0.021

Number of Iterations 20 max ` (θ) 11,023

Heston

Estimate 0.254 22.000 0.226 2.430 -0.125 -

Std. Err. 0.074 3.510 0.012 0.241 0.044 -

Estimation Time 22.39 min ‖O` (θ)‖
θ=θ̂

0.033

Number of Iterations 16 max ` (θ) 10,949

Table 4.2: Apple Inc. (AAPL) 1991-2011: Estimation Results.
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AML Estimates of True Values: Dow-Jones Index

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.059 3.390 0.024 0.282 -0.697 1.540 0.030 -0.015

Std. Err. 0.029 0.643 0.003 0.026 0.041 0.739 0.006 0.009

Estimation Time 27.35 min ‖O` (θ)‖
θ=θ̂

0.017

Number of Iterations 13 max ` (θ) 16,851

SVJ Variance Gamma

Estimate 0.060 3.220 0.024 0.277 -0.705 2.220 0.028 -0.013

Std. Err. 0.030 0.697 0.003 0.028 0.045 2.005 0.010 0.010

Estimation Time 35.64 min ‖O` (θ)‖
θ=θ̂

0.015

Number of Iterations 22 max ` (θ) 16,851

SVJ Meixner

Estimate 0.060 3.170 0.024 0.280 -0.719 1.330 0.057 -0.849

Std. Err. 0.029 0.674 0.003 0.027 0.044 1.165 0.021 0.416

Estimation Time 31.64 min ‖O` (θ)‖
θ=θ̂

0.123

Number of Iterations 16 max ` (θ) 16,852

SVSJ Merton

Estimate 0.064 3.560 0.023 0.274 -0.703 134.0 0.028 -0.010

Std. Err. 0.027 0.644 0.002 0.026 0.038 51.78 0.005 0.006

Estimation Time 36.63 min ‖O` (θ)‖
θ=θ̂

0.026

Number of Iterations 23 max ` (θ) 16,855

Heston

Estimate 0.046 5.460 0.027 0.373 -0.679 -

Std. Err. 0.017 0.113 0.002 0.019 0.045 -

Estimation Time 23.27 min ‖O` (θ)‖
θ=θ̂

11.7

Number of Iterations 10 max ` (θ) 16,819

Table 4.3: DJIA Index (INDU) 1988-2007: Estimation Results.
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Estimation Remarks

Notice that the estimated maximum log-likelihood values for Apple stock

(1991-2011), in Table 4.2 above, suggest that infinite-activity jumps are a

good fit. On the other hand, for the DJIA index (1988-2007) in Table 4.3,

there appears to be no advantage in choosing infinite-activity jumps. This

will be discussed further in subsection 4.6.3 below.

4.4.3 Simulation Results

In this subsection we present two simulated AML estimation studies based

on the AML estimated true values from subsection 4.4.2 above for the SVJ

Merton, SVJ Variance Gamma, SVJ Meixner, SVSJ Merton, and Heston

models, where these five models were described in Chapter 2 above. The

first study uses the AML estimated true values for Apple stock (1991-2011)

under each of the five models, where these estimates were reported above

in Table 4.2. Similarly, the second study covers the Dow-Jones Industrial

Average (1988-2007), and these estimates were reported in Table 4.3 above.

For each of the two studies, using the simulation methods described in

Appendix E, and also Chapter 8 for simulating Meixner jumps, 100 paths,

each with 5,000 log-returns, were simulated under the five models listed

above, using the AML estimated true values from subsection 4.4.2 above,

for Apple stock (1991-2011), and the DJIA (1988-2007), respectively. Then,

the AML estimated true values from subsection 4.4.2 above were also used

as the starting values for AML estimation along each path, where this was

also done in Bates (2006), see p. 927. Below, for Apple stock (1991-2011),

Table 4.4 reports the simulation results, and Table 4.5 considers the standard

errors. For the Dow-Jones Industrial Average (1988-2007), these results are

reported in Table 4.6, and Table 4.7, respectively below. A simulation

analysis is given following the two sets of tables.
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Simulation Results: Apple Stock

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

True Value 0.361 3.990 0.175 0.726 -0.268 10.20 0.070 0.007

Bias 0.001 0.229 0.001 -0.003 -0.023 0.359 -0.001 0.000

RMSE 0.101 1.119 0.018 0.072 0.077 2.027 0.006 0.007

Total Simulation Time 16.47 hours

SVJ Variance Gamma

True Value 0.367 3.420 0.161 0.691 -0.293 13.50 0.068 0.008

Bias -0.012 0.345 -0.002 -0.008 -0.001 0.834 0.000 0.000

RMSE 0.099 1.140 0.019 0.086 0.081 4.86 0.011 0.006

Total Simulation Time 18.50 hours

SVJ Meixner

True Value 0.368 3.260 0.152 0.715 -0.299 5.23 0.166 0.277

Bias -0.013 0.262 0.002 0.011 0.002 0.267 0.005 -0.014

RMSE 0.089 0.851 0.021 0.077 0.089 1.896 0.032 0.198

Total Simulation Time 18.32 hours

SVSJ Merton

True Value 0.360 3.850 0.167 0.643 -0.278 91.4 0.062 0.009

Bias 0.001 0.341 -0.003 -0.006 0.004 3.37 0.000 -0.001

RMSE 0.082 1.122 0.015 0.068 0.092 24.36 0.006 0.005

Total Simulation Time 21.64 hours

Heston

True Value 0.254 22.000 0.226 2.430 -0.125 -

Bias 0.005 1.739 -0.002 0.029 0.001 -

RMSE 0.087 3.413 0.013 0.180 0.050 -

Total Simulation Time 8.24 hours -

Table 4.4: Apple Inc. (AAPL) 1991-2011: Simulation Results.
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Standard Errors: Apple Stock

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Sim.SE 0.101 1.095 0.017 0.072 0.073 1.995 0.006 0.007

Asym.SE 0.098 1.031 0.018 0.105 0.082 2.530 0.008 0.006

Asym.SE 0.099 1.036 0.018 0.083 0.079 2.122 0.006 0.007

SVJ Variance Gamma

Sim.SE 0.098 1.087 0.019 0.085 0.081 4.783 0.011 0.006

Asym.SE 0.101 1.101 0.019 0.120 0.090 4.707 0.012 0.006

Asym.SE 0.105 1.214 0.019 0.099 0.097 4.884 0.012 0.007

SVJ Meixner

Sim.SE 0.089 0.810 0.020 0.076 0.089 1.877 0.031 0.197

Asym.SE 0.095 0.991 0.020 0.120 0.089 1.735 0.027 0.212

Asym.SE 0.099 0.899 0.021 0.082 0.093 1.931 0.031 0.210

SVSJ Merton

Sim.SE 0.082 1.069 0.014 0.068 0.092 24.12 0.006 0.005

Asym.SE 0.089 1.095 0.016 0.103 0.076 29.19 0.008 0.005

Asym.SE 0.093 1.009 0.015 0.076 0.081 23.47 0.006 0.005

Heston

Sim.SE 0.087 2.936 0.013 0.178 0.050 -

Asym.SE 0.074 3.510 0.012 0.241 0.044 -

Asym.SE 0.092 3.467 0.012 0.206 0.049 -

Notes

Sim.SE =
√
RMSE2 −Bias2 (simulated SE)

Asym.SE = estimated asymptotic standard error

Asym.SE = mean asymptotic standard error over each simulation

Table 4.5: Apple Inc. (AAPL) 1991-2011: Standard Errors.
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Simulation Results: Dow-Jones Index

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

True Value 0.059 3.390 0.024 0.282 -0.697 1.54 0.030 -0.015

Bias -0.003 0.156 0.000 -0.001 -0.003 0.004 -0.004 -0.005

RMSE 0.034 0.658 0.003 0.021 0.042 0.782 0.010 0.015

Total Simulation Time 18.72 hours

SVJ Variance Gamma

True Value 0.060 3.220 0.024 0.277 -0.705 2.22 0.028 -0.013

Bias -0.005 0.264 0.000 0.001 -0.003 0.752 -0.001 -0.003

RMSE 0.031 0.777 0.003 0.023 0.048 2.23 0.011 0.011

Total Simulation Time 19.72 hours

SVJ Meixner

True Value 0.060 3.170 0.024 0.280 -0.719 1.330 0.057 -0.849

Bias -0.003 0.026 0.000 -0.003 -0.002 0.428 -0.000 -0.033

RMSE 0.030 0.538 0.003 0.021 0.046 1.257 0.023 0.506

Total Simulation Time 19.18 hours

SVSJ Merton

True Value 0.064 3.560 0.023 0.274 -0.703 134.0 0.028 -0.010

Bias -0.005 0.255 0.000 -0.002 -0.005 4.64 -0.001 -0.002

RMSE 0.034 0.758 0.003 0.023 0.049 57.02 0.006 0.009

Total Simulation Time 24.94 hours

Heston

True Value 0.046 5.460 0.027 0.373 -0.679 -

Bias -0.003 0.307 0.000 0.004 -0.001 -

RMSE 0.028 0.874 0.002 0.027 0.040 -

Total Simulation Time 8.25 hours -

Table 4.6: DJIA Index (INDU) 1988-2007: Simulation Results.
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Standard Errors: Dow-Jones Index

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Sim.SE 0.034 0.640 0.003 0.021 0.042 0.782 0.009 0.014

Asym.SE 0.029 0.643 0.003 0.026 0.041 0.739 0.006 0.009

Asym.SE 0.030 0.598 0.003 0.021 0.045 0.709 0.006 0.009

SVJ Variance Gamma

Sim.SE 0.031 0.731 0.003 0.023 0.048 2.095 0.011 0.011

Asym.SE 0.030 0.697 0.003 0.028 0.045 2.005 0.010 0.010

Asym.SE 0.031 0.631 0.003 0.022 0.048 2.253 0.015 0.012

SVJ Meixner

Sim.SE 0.030 0.538 0.003 0.021 0.046 1.182 0.023 0.505

Asym.SE 0.029 0.674 0.003 0.027 0.044 1.165 0.021 0.416

Asym.SE 0.032 0.732 0.003 0.024 0.050 1.208 0.023 0.559

SVSJ Merton

Sim.SE 0.033 0.714 0.003 0.022 0.048 56.83 0.006 0.009

Asym.SE 0.027 0.644 0.002 0.026 0.038 51.78 0.005 0.006

Asym.SE 0.030 0.650 0.003 0.022 0.045 57.54 0.005 0.006

Heston

Sim.SE 0.028 0.819 0.002 0.026 0.040 -

Asym.SE 0.017 0.113 0.002 0.019 0.045 ‖O` (θ)‖
θ=θ̂

= 11.7

Asym.SE 0.030 0.852 0.002 0.027 0.040 -

Notes

Sim.SE =
√
RMSE2 −Bias2 (simulated SE)

Asym.SE = estimated asymptotic standard error

Asym.SE = mean asymptotic standard error over each simulation

Table 4.7: DJIA Index (INDU) 1988-2007: Standard Errors.
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Simulation Analysis

In Table 4.4 for Apple stock, and Table 4.6 for the Dow-Jones Industrial

Average, only two parameters show any substantial degree of bias for any

of the models considered. These are the rate of mean-reversion κ, and

the jump intensity λ. From Bates (2006), p. 931, the upward bias to κ

is explained by the noise in the variance process, even more so because we

have filtered the variance from noisy log-return data. This particular bias is

expected to exist even if the variance process is directly observed, although it

is also expected to diminish in samples of log-return data larger than 5,000,

see Bates (2006), p. 931. The noisy variance also gives κ a larger RMSE.

The bias to λ depends on the jump activity-rate present in the data, the

jump activity-rate specified by the model, and in our implementation to a

mild extent on whether or not the jump intensity is stochastic. We will

come back to complications of the λ analysis in a moment.

The following information is useful in explaining the bias and RMSE

of certain parameters estimated by AML. Recall from equations (4.34)

and (4.36) in subsection 4.2.4 above, that the conditional density used to

compute the likelihood under AML is given by

p
(
yn+1|yHn

)
=

1

2π

∫ +∞

−∞
e−iuyn+1F

(
u, 0|yHn

)
du, (4.97)

where F
(
u, 0|yHn

)
= eC(u;∆t)Gn|n [D (u; ∆t)] . (4.98)

That is, by equation (4.98), the log-price coefficient D (u; ∆t) is affected

by the noise in the variance filtration process, whereas the C (u; ∆t) is not.

Further note the following parameter dependencies from Remark A.2 at the

end of Appendix A. For both the SVJ and SVSJ models,

C (u; ∆t) = C (u;µ0, κ, η, ω, ρ, λ, α, β; ∆t) . (4.99)
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Whereas for the D (u; ∆t) coefficient,

DJ0 (u; ∆t) = DJ0 (u;κ, ω, ρ; ∆t) , for the SVJ model, and (4.100)

DJ1 (u; ∆t) = DJ1 (u;κ, ω, ρ, λ, α, β; ∆t) , for the SVSJ model. (4.101)

Specifically, the drift µ0 and long run variance η only appear in C (u; ∆t)

for both models, and the three jump parameters λ, α, and β appear in

DJ1 (u; ∆t) but not DJ0 (u; ∆t).

Again consider Table 4.4 for Apple stock, and Table 4.6 for the Dow-

Jones Industrial Average. We claim that the sole drift parameter µ0 has

low bias because it is not subject to the variance filtration process, but it has

a high RMSE since the drift is typically difficult to estimate. By contrast,

the long run variance η has both low bias and low RMSE. We expect this is

because it only appears in the C (u; ∆t) coefficient, thus is not subject to the

variance filtration process. The volatility of the volatility ω has low bias,

but high RMSE. This is consistent with Bates (2006), p. 931, where it is

stated that this is because of the noise in the filtration process. Observe that

the same is true for ρ, and both ω and ρ appear in the D (u; ∆t) coefficient

in both the SVJ and SVSJ models. Hence, ω and ρ are both subject to the

variance filtration process. Given the small size of some of the estimates,

the jump parameters α, and β also perform quite well, and this is consistent

with Bates (2006), p. 930.

We now return to the subject of λ. According to Aı̈t-Sahalia and Jacod

(2012), §9.2, pp. 1036-37, the DJIA index typically exhibits finite-activity

jumps, whereas the individual stocks comprising the index typically exhibit

infinite-activity jumps, both with a diffusion present, see §9.3, p. 1040 and

§10, p. 1047, respectively. For the DJIA index (1988-2007) in Table 4.6

above, we found that under the SVJ Merton model, the DJIA appears to be

unbiased for λ. This is consistent with Bates (2006), Table 2, p. 928, for

the S&P 500. But, in Table 4.6 for the DJIA index under the SVSJ Merton
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model, λ shows a 3.5% bias. While this is not large, it is larger than Bates

(2006), Table 4, p. 930 predicts for 5,000 log-returns. We attribute this to

the dependence of the D (u; ∆t) coefficient on λ in the SVSJ model, within

the framework of our implementation. More importantly, Table 4.6 shows

that models with infinite-activity jumps are upwardly biased for λ with

data such as the DJIA index, containing only finite-activity jumps. This

occurs since these models classify some part of the many diffusive movements

in index data as small jumps. Consequently, λ is biased upwards. Next

consider Apple Stock (1991-2011) in Table 4.4 above. For the SVSJ Merton

model, with stochastic intensity given by λt = λσ2
t , we will define the long

run intensity to be

λ = λη. (4.102)

For Apple stock (1991-2011) in Table 4.2, λ = 15.26, whereas for the DJIA

index (1988-2007) in Table 4.3, λ = 3.08. This, and other measurements of

λ, all show that Apple stock has many more jumps than the DJIA index.

Thus, since Apple is an individual stock, we will assume that its jumps have

infinite-activity. From Table 4.4 for Apple Stock (1991-2011), λ shows an

upward bias of 3.5% for both the SVJ Merton and SVSJ Merton models.

However, similar to Honoré (1998), §5.1, estimating a diffusion model with

finite-activity jumps can lead to an upward bias in λ when there are too

many jumps, though this occurs here to a much lesser extent given the

latent factor. What is surprising is that in Table 4.4 for Apple Stock a

similar upward bias occurs with infinite-activity, and the relative bias to λ,

though still small, is nearly double what it was for finite-activity. Lastly on

the subject of λ, exposure to the noise from the filtered volatility gives λ a

very high RMSE in the SVSJ Merton model for both Apple stock and the

DJIA index. This is consistent with Bates (2006), p. 930. Moreover, the

RMSE of λ appears to be relatively high in general, since jumps are typically
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more difficult to estimate. We conclude that if the log-returns exhibit finite-

activity jumps, then diffusion models providing for infinite-activity jumps

will be upwardly biased for λ, but if the log-returns exhibit infinite-activity

jumps, then diffusion models providing for infinite-activity jumps will have

a smaller upward bias for λ, both in the presence of a latent factor.

In Table 4.5 for Apple stock, and Table 4.7 for the DJIA index, it is shown

that the asymptotic standard errors from the original AML estimation, and

the mean of the asymptotic standard errors from AML estimations based on

the simulated paths, are both highly consistent with the simulated standard

errors given by Sim.SE =
√
RMSE2 −Bias2. An exception occurs in

Table 4.7 for the DJIA index under the Heston model. In this case the final

gradient of the negative log-likelihood is quite far from zero. This means

that the estimate is neither a local nor a global maximum. Therefore, we

cannot conclude asymptotic normality of the AML estimates in this case,

see for example Lehmann and Casella (1998), Theorem 3.10, pp. 449-50.

Hence, the asymptotic standard errors are not necessarily reliable.

The following concerns exception handling in the simulated estimation

of the SVJ Meixner model, due to numerical instability in the log-price CF

that we describe below. The independent jump part of the SVJ Meixner

log-price characteristic function is given by

φX (u) =

 cos
(
β
2

)
cosh

(
αu−iβ

2

)
λ∆t

, with |β| < π. (4.103)

As β → ±π in equation (4.103) above, cos
(
β
2

)
→ 0. So, either φX (u)→ 0,

or φX (u) becomes numerically undefined as cosh
(
αu−iβ

2

)
also vanishes. It

can be shown that the latter occurs as β → ±π, when u = 0. Either

phenomenon creates instability in the SVJ Meixner density which we retrieve

from its CF. Thus, the log-likelihood can become numerically unreliable.
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Occasionally this leads to estimated values for β that are unrealistically

large either positively or negatively. In these cases, the estimates of the

other SVJ Meixner parameters tend to be unpredictable. We found this

phenomenon to be relatively rare. For the SVJ Meixner, it occurred twice

in the Apple stock simulated estimation in Table 4.4, and once for the DJIA

index simulated estimation in Table 4.6. Estimates for real world data were

not affected by this phenomenon. Our solution was to discard the tainted

simulations and simulate again with new random seeds.

Last of all, we discuss natural constraints. By Proposition 2.24 1. in

subsection 2.5.1, if the Feller condition, 2κη > ω2, holds then the latent

factor in the SVJ and SVSJ models is strictly positive for all t ≥ 0. Also,

by Proposition B.16 in Appendix B.2, the condition ρ < 0 is sufficient for

principal branch continuity of the marginal log-price coefficients, C (u) and

D (u), as defined in Appendix A.2, for the SVJ and SVSJ models. While

in general, we do not use constraints on the likelihood for either the Feller

condition, or the condition ρ < 0, these two conditions were both met by

the original estimates for Apple stock and the DJIA index in Table 4.2 and

Table 4.3, respectively. Also, both conditions were met in nearly all of

the estimates underlying the simulations in Table 4.4 for Apple stock, and

Table 4.6 for the DJIA index. The only exceptions were the three SVJ

Meixner cases discarded for estimated values of β near ±π, as described

above. The situation differs for the other data sets in Section 4.5 and

Section 4.6 below. Here, the condition ρ < 0 is always met, but if λ is

too large, then the Feller condition can fail for the SVJ model with infinite-

activity jumps. The Feller condition does not usually fail in the AML

estimations of subsection 4.5.1 and subsection 4.6.1 below. But, if it does

we re-estimate the model with a Feller constraint. These re-estimation

results are reported separately in Table 4.23 of subsection 4.6.2.
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4.4.4 Comparisons to MCMC Literature

In this brief subsection we compare FFT based AML estimates and asymp-

totic standard errors with two sets of results from the MCMC literature.

Our first comparison is to Eraker, Johannes, and Polson (2003) where the

following alternative version of the SVJ Merton model is used.

dYt = µ0dt+ σtdW
(S)
t + dXMJ

t , (4.104)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t ,

ρdt = E
[
dW

(S)
t dW

(V )
t

]
.

The characteristic function for the model (4.104) is a special case of the one

presented in Appendix A. Simply change ψ̂W (u) in equation (A.5) from

−1
2

(
u2 + iu

)
to −1

2u
2, and assuming Merton jumps, simply change ψ̂X (u)

in equation (A.4) from ψX (u)− iuψX (−i) to ψX (u).

Parameter µ0 κ η ω ρ λ α β

Our Estimation Results: SVJ Merton Model (alternative)

Estimate 0.119 3.450 0.021 0.236 -0.476 1.174 0.055 -0.024

Asym.SE 0.028 0.718 0.002 0.026 0.065 0.301 0.011 0.013

Estimation Time 30.02 min ‖O` (θ)‖
θ=θ̂

0.082

Number of Iterations 15 max ` (θ) 16,951

Eraker et al. (2003), Table III, p. 1280

Estimate 0.125 3.226 0.021 0.240 -0.467 1.512 0.041 -0.026

Std. Err. 0.027 0.983 0.003 0.026 0.058 0.529 0.017 0.013

Table 4.8: S&P 500 Index (SPX) 1980-1999: Comparing AML to MCMC I.

The results from Eraker, Johannes, and Polson (2003), Table III, have been

annualized, see Bates (2006), Table 2, p. 928.
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Bates (2006), Table 2, p. 928, compares to the simulation results from

Eraker et al. (2003). In Table 4.8 above, we compare to the actual estimates.

The data used in Table 4.8 is the S&P 500 index from January 2nd, 1980 to

December 31st, 1999 for a total of 5,054 trading day log-returns, see Eraker

et al. (2003), Table II, p. 1280 for a summary. We used similar data from

Bloomberg L.P. In Table 4.8, according to our AML estimates, the jump

intensity λ is slightly smaller, but α, the standard deviation of the jumps

size, is slightly larger. Otherwise, MCMC and AML are remarkably similar

in this case for both the estimates and asymptotic standard errors.

Our next MCMC comparison is to Lysy (2012), p. 73. In Table 4.9

below, Lysy (2012) treats the Heston model with a drift given by µ0 − 1
2σ

2
t ,

similar to our treatment in this thesis. The data used in Table 4.9 is the

DJIA index from August 4th, 1997 to June 4th, 2007 for a total of 2,472 log-

returns. Table 4.9 below also shows consistency between MCMC and AML.

Notice that the Heston model has a good fit with only 2,500 log-returns.

Parameter µ0 κ η ω ρ

Our Estimation Results: Heston Model

Estimate 0.003 3.204 0.035 0.375 -0.848

Asym.SE 0.042 1.201 0.007 0.044 0.032

Time (min) 11.39 ‖O` (θ)‖
θ=θ̂

0.015

Iterations 18 max ` (θ) 8,019.9

Lysy (2012), Table 4.1, p. 73

Estimate 3.0E-4 3.760 0.032 0.401 -0.823

Std. Err. 0.041 0.997 0.006 0.043 0.037

Table 4.9: DJIA Index (INDU) 1997-2007: Comparing AML to MCMC II.

Standard errors were supplied by Lysy in correspondence, and the long run

variance is reported here in place of the long run volatility.
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4.4.5 Quadrature and the Bates (2006) Results

In this subsection we ultimately replicate the AML estimation results from

Bates (2006), Table 7, p. 938, see Table 4.14 below, and the comments

that follow. But, two preliminary steps are required here. First, we give

the Bates (2006) model in equation (4.105), and introduce the required data

set, the S&P 500 (1953-1996) daily log-returns, from Andersen, Benzoni, and

Lund (2002), see pp. 1250-1252. Secondly, because the data set contains

11,076 log-returns, and is too large for AML by FFT, we modify Algorithm

4.15 above to use five point Newton-Cotes quadrature in place of FFT.

Lastly, for the final replication results in Table 4.14 below, the gradient is

not close to zero, thus we simulate in order to obtain reliable standard errors.

From Bates (2006), eq. A.10, p. 953, the original SVSJ Merton model

in log-price form may be written in the notation from Chapter 2 as

dYt =

(
µ0 +

(
µ1 −

1

2

)
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) ,

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , (4.105)

dVt = σ2
t dt, ρdt = E

[
dW

(S)
t dW

(V )
t

]
.

The characteristic function for the model (4.105) is similar to the one given

in Appendix A. Simply change ψ̂W (u) in equation (A.5) from

−1

2

(
u2 + iu

)
to − 1

2

(
u2 + iu

)
+ iuµ1.

For the data we begin with the S&P 500 from January 2nd, 1953 to

December 31st, 1996, yielding 11,076 log-returns from Bloomberg L.P. The

sample moments of these log-returns are similar to Andersen, Benzoni, and

Lund (2002), Table I, Panel A, p. 1250. Thus, we proceed. Andersen et

al. (2002), Table I, Panel B, provides the autocorrelation function of the

log-return data to six lags. We provide the same in Table 4.10 below.
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Lags 1 2 3 4 5 6

Andersen et al. (2002) .1240 -.0320 -.0084 -.0056 .0222 -.0131

Bloomberg L.P. .1211 -.0321 -.0080 -.0076 .0226 -.0124

Table 4.10: S&P 500 Index 1953-1996: Autocorrelation Function.

It is believed that the significant high order lags are indicative of nonsy-

chronous trading in the stocks underlying the S&P 500 index, see Andersen

et al. (2002), p. 1251. Their prescription is to fit an MA(1) model, and

replace the original returns with the residuals, rescaled to match the sam-

ple mean and variance of the original returns, see Andersen et al. (2002),

p. 1252. Under this prescription, we obtained the data set underlying

Table 4.11 below. This is the data set used in Bates (2006), Table 7.

Mean Std. Dev. Skewness Kurtosis

Filtered Data 0.0301 0.8286 -1.8522 56.7595

Table 4.11: S&P 500 Index 1953-1996: Sample Moments based on MA(1)

Filtered Percentage Daily Log-Return Data.

Quadrature Based AML

To tackle the 11,076 log-returns of the Andersen, Benzoni, and Lund (2002)

S&P 500 data set, we introduce a simple form of quadrature that is faster

and more accurate than FFT. The method is known as composite Boole’s

rule, see Davis and Rabinowitz (1984), p. 70 and p. 78.

` (θ) Eval. Time 5,042 Obs. 11,076 Obs.

Boole’s Rule 6.23 sec 10.65 sec

FFT with Splines 14.87 sec 33.69 sec

Table 4.12: Speed of Boole’s Rule vs. FFT: AML Likelihood Evaluation.
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In Table 4.12 likelihood evaluation times were measured on the final

iteration of the Bates SVSJ model (4.105) defined above. For Table 4.13

below, we estimated the Meixner model from subsection 2.3.3, which has an

exact density, using the MA(1) filtered data underlying Table 4.11 above.

The following errors were taken based on the MA(1) filtered log-returns.

Meixner Mean Abs Error vs. Exact

Boole’s Rule 2.21E-13

FFT with Splines 5.60E-11

Table 4.13: Accuracy of Boole’s Rule vs. FFT: Exact Meixner Density.

FFT appears to be reasonable for 5,000 log-returns, but quadrature is

needed for larger data sets, especially when tails are important. Recall from

subsection 4.3.2 that we applied FFT with splines three times in Algorithm

4.15 to evaluate the Fourier integral (4.94) given by

g (x) =

∫ ∞
0

e−iuxf̂ (u) du, (4.106)

with the Fourier transform f̂ (u) set to each of F
(
u, 0|yHn

)
, F v

(
u, 0|yHn

)
, and

F vv
(
u, 0|yHn

)
, defined in equations (4.63), (4.69), and (4.70), respectively

above. We proved in Section 4.3 that these Fourier transforms are L1, thus

(4.106) converges for all x ∈ R. However, while FFT approximates (4.106)

at a grid of points x surrounding yn+1, quadrature specifies yn+1 precisely

with no interpolation error. Similar to FFT, the composite Boole’s rule

approximates (4.106) with a finite upper bound A = N∆u, and a Riemann

sum. But, Boole’s rule places the weights at the N + 1 end-points of the N

equal subintervals,

g (yn+1) ≈
∫ A

0
e−iuyn+1 f̂ (u) du, (4.107)

≈
∑N+1

j=1
e−iujyn+1 f̂ (uj)wj∆u. (4.108)
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Our implementation of Boole’s rule uses N = 10, 000, and ∆u = 1
4 . The

weights for a single interval of Boole’s rule are well known, see Davis and

Rabinowitz (1984), p. 78. But, for a composite closed Newton-Cotes for-

mula such as Boole’s rule, the end-points of the intervals coincide. Both

weights must be counted at the matching end-points, see Burden and Faires

(1997), pp. 199-201, for the composite Simpson’s rule. Thus, the weights

for the composite Boole’s rule are given by

w1 =
14

45
, w2 =

64

45
, w3 =

24

45
, w4 =

64

45
;

and for k = 1 to
N

4
− 1:

w4k+1 =
28

45
, w4k+2 =

64

45
, w4k+3 =

24

45
, w4k+4 =

64

45
;

then wN+1 =
14

45
.

Algorithm 4.16 (Log-Likelihood III) Given θ = (µ, κ, η, ω, ρ, λ, α, β)

(a0, b0) =
(

2κη
ω2 ,

ω2

2κ

)
F 0

(
u, 0|yHn

)
= eC(u,0;∆t) [1− b0D (u, 0; ∆t)]−a0

p (y1|θ) = 1
π Re

∑N+1
j=1 e−iujyn+1F 0

(
uj , 0|yHn

)
wj∆u

BEGIN FOR n = 1 TO Ny − 1

p
(
yn+1|yHn , θ

)
= 1

π Re
∑N+1

j=1 e−iujyn+1F
(
uj , 0|yHn

)
wj∆u

m̂′1,n+1 =
1
π

Im
∑N+1
j=1 e−iujyn+1F v(uj ,0|yHn )wj∆u

p(yn+1|yHn ,θ)

m̂′2,n+1 =
−1
π

Re
∑N+1
j=1 e−iujyn+1F vv(uj ,0|yHn )wj∆u

p(yn+1|yHn ,θ)

bn+1 =
m̂′2,n+1−(m̂′1,n+1)

2

m̂′1,n+1
, an+1 =

m̂′1,n+1

bn+1

END FOR

` (θ) = `0 + log p (y1|θ) +
∑Ny−1

n=1 log p
(
yn+1|yHn , θ

)
Algorithm 4.16 above executes the AML method using Boole’s rule. It

will only be used for comparison to the Bates (2006) results. In the remain-

der of this chapter, only data sets of 5,042 points are considered for AML

estimation. For continuity, we will let FFT suffice.
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Replication of the Bates (2006) Results

For the Bates (2006) version of the SVSJ Merton model, see model (4.105)

above, Table 4.14 below compares our AML estimates for the Andersen,

Benzoni, and Lund (2002) S&P 500 (1953-1996) data, see Table 4.11 above,

to the estimates from Bates (2006), Table 7, p. 938.

Param µ0 µ1 κ η ω ρ λ α β

Our Estimation Results: SVSJ Merton Model (modified drift)

Est. .045 3.14 4.43 .014 .232 -.596 93.4 .039 -.003

Sim.SE .027 2.59 .620 .001 .012 .031 22.2 .004 .007

Estimation Time 49.14 min ‖O` (θ)‖
θ=θ̂

18.95

Number of Iterations 21 max ` (θ) 39,359

Bates (2006) Estimation Results, Table 7, p. 938

Est. .040 3.09 4.25 .014 .237 -.611 93.4 .039 -.002

Asy.SE .025 2.16 0.59 2E-5 .015 .031 33.4 .008 .006

- max ` (θ) 39,310

Param µ0 µ1 κ η ω ρ λ α β

Our Simulation Results (11,076 log returns, M=100)

True .045 3.14 4.43 .014 .232 -.596 93.4 .039 -.003

Bias -.008 .735 .184 .000 -.001 -.011 3.95 -.001 .000

RMSE .028 2.69 .646 .001 .012 .033 22.6 .004 .007

Bates (2006) Table 4, p. 930 (12,000 log returns, M=100)

True .040 3.09 4.25 .014 .246 -.611 93.4 .039 -.024

Bias .009 2.15 .000 .000 -.002 -.003 -2.7 -.001 -.002

RMSE .027 3.23 .050 2E-5 .011 .038 21.0 .004 .007

Table 4.14: S&P 500 Index (SPX) 1953-1996: Comparison to Bates (2006)

with MA(1) filtered daily data from Andersen, Benzoni, and Lund (2002).
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Notice in the upper panel of Table 4.14 above, that the AML estimates

from Bates (2006), Table 7, p. 938 are reasonably well replicated. Notice

also in the upper panel of Table 4.14 above that our final gradient is not

close to zero. Hence, we ran a simulation to obtain our standard errors.

Details of the simulation are in the lower panel of Table 4.14 above, and are

compared to Bates (2006), Table 4, p. 930. Our standard error for λ in

Table 4.14 is smaller than Bates (2006), Table 7, p. 938. But, otherwise

the estimates and standard errors are quite similar. There are three main

differences in the biases in Table 4.14. First, our bias to κ fails to vanish

at 11,076 observations, whereas it does in Bates (2006), Table 4, p. 930.

Secondly, we still have the small but persistent upward bias to λ, whereas

Bates (2006), Table 4, p. 930 has a negative bias to λ. Lastly, our estimate

of µ1 is surprisingly less biased than Bates (2006), Table 4, p. 930. The

RMSEs in Table 4.14 above are similar to Bates (2006), Table 4, p. 930.

4.5 AML Filtered Volatility and the VIX Index

In subsection 4.5.2 below, we compare the AML filtered volatility for the

S&P 500 daily to the VIX daily index (1988-2007). However, we naturally

begin with the unconstrained AML parameter estimates themselves for the

S&P 500 over this period, in subsection 4.5.1 immediately below.

4.5.1 AML Estimates for the S&P 500

One would expect the AML estimates for the S&P 500 daily log-returns

(1988-2007), given in Table 4.15 below, to be highly similar to the DJIA

estimates from Table 4.3 in subsection 4.4.2. While this is true for most of

the five models that we have estimated, something unusual happens in the

SVJ Meixner with infinite-activity jumps of infinite variation.
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Unconstrained AML Estimates: S&P 500 (SPX)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.046 3.248 0.026 0.300 -0.727 1.504 0.026 -0.014

Std. Err. 0.028 0.699 0.003 0.029 0.038 0.891 0.006 0.010

Estimation Time 28.96 min ‖O` (θ)‖
θ=θ̂

0.013

Number of Iterations 14 max ` (θ) 16,869

SVJ Variance Gamma

Estimate 0.047 3.033 0.025 0.294 -0.745 4.662 0.019 -0.006

Std. Err. 0.029 0.626 0.003 0.029 0.029 1.736 0.004 0.004

Estimation Time 35.95 min ‖O` (θ)‖
θ=θ̂

0.348

Number of Iterations 20 max ` (θ) 16,870

SVJ Meixner (Feller condition fails)

Estimate 0.072 2.710 0.022 0.505 -1.000 83.84 0.013 0.027

Std. Err. 0.029 0.472 0.005 0.055 0.039 19.15 0.002 0.109

Estimation Time 38.37 min ‖O` (θ)‖
θ=θ̂

3.17

Number of Iterations 27 max ` (θ) 16,892

SVSJ Merton

Estimate 0.052 3.346 0.025 0.289 -0.731 134.5 0.024 -0.010

Std. Err. 0.027 0.579 0.003 0.025 0.035 48.51 0.004 0.006

Estimation Time 42.52 min ‖O` (θ)‖
θ=θ̂

0.013

Number of Iterations 28 max ` (θ) 16,872

Heston

Estimate 0.025 5.019 0.028 0.384 -0.706 -

Std. Err. 0.020 0.153 0.002 0.022 0.035 -

Estimation Time 24.28 min ‖O` (θ)‖
θ=θ̂

4.09

Number of Iterations 15 max ` (θ) 16,843

Table 4.15: S&P 500 Index (SPX) 1988-2007: Estimation Results.
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We estimated nine sets of log-returns, including the Apple Inc. stock in

Table 4.2, the DJIA in Table 4.3, and the S&P 500 in Table 4.15 above, by

unconstrained AML estimation, under the five models of this chapter. The

remaining results are given in subsection 4.6.1 below. All forty-five of these

estimates are given with asymptotic standard errors. The Feller condition

fails for the SVJ Meixner model in four cases, including the S&P 500 in

Table 4.15 above. The Feller condition also fails for VG jumps in only two

of these four cases. Thus, the problem appears more likely in the infinite

variation Meixner case. Since the problem occurs when λ is quite large,

and the jumps are quite small, it appears that AML confuses the infinite-

activity process with a second diffusion, see Carr and Wu (2003), p. 2602.

In re-estimating these six cases with a Feller constraint, we found that λ is

smaller, but still quite large. Also, the Feller constraint is binding in all

cases, biasing the Hessian, so that asymptotic standard errors are unreliable.

Hence, we obtained the Feller constrained standard errors by simulation.

The six Feller constrained estimates and their standard errors are reported

separately in Table 4.23 of subsection 4.6.2 below. For the other thirty-

nine sets of log-returns that we estimated, the estimates of λ are lower, and

the Feller condition holds in all five models. An objective for including

jumps in a stochastic volatility model is to make the variance parameters

more reasonable. Adding Merton jumps to the Heston model will make the

volatility of the volatility ω smaller, see Bates (2000), p. 216. We find that

when λ is low enough, adding jumps to the Heston model makes ω smaller,

even for the two infinite-activity models. But, for infinite-activity, if λ is

too large, then typically the Feller condition either fails or may be binding.

Recall from Table 2.1 in subsection 2.3.4 that the theoretical skewness and

excess kurtosis of the jumps both vanish as λ gets large. This may partly

explain the problem with infinite-activity jumps when λ is large.
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4.5.2 The AML Filtered Volatility

Throughout each of the figures in this subsection we follow, with markings,

the five biggest S&P 500 daily losses over 1988-2007. In chronological

order, these are (with log-returns in parentheses): the mini-crash of January

8th, 1988 (-.07008), the Friday October 13th, 1989 mini-crash (-.06321), the

Asian crisis panic of October 27th, 1997 (-.07113), the Russian crisis fall-out

of August 31st, 1998 (-.07044), and the initial burst of the tech-bubble on

April 14th, 2000 (-.06005).

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

-0.05

0

0.05

S&P 500 Log-Returns (1988-2007)

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
0

0.2

0.4
SVSJ Merton Filtered Volatility (1988-2007)

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
0

0.2

0.4
Heston Filtered Volatility (1988-2007)

Figure 4.1: S&P 500 SVSJ Merton and Heston Filtered Volatilities.

As suggested in Figure 4.1 above, the SVSJ Merton filtered volatility is

slightly conservative at the large loss dates. Thus, we will use the SVSJ

Merton filtered volatility as the baseline in the comparisons below. It is

argued in Bates (2006), see pp. 931-33, that the SVSJ Merton filtered

volatility is the most suitable if we wish to attribute large losses to jumps.
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Figure 4.2: SPX Filtered Volatility Differences: SVSJ minus Heston.

As shown in Figure 4.2 above, there is essentially no difference between

the Heston AML filtered volatility and the SVSJ Merton AML filtered

volatility, except immediately following the large loss dates, where the five

biggest daily losses for the S&P 500 over the 1988-2007 period are marked,

as outlined at the start of this subsection. This is consistent with Bates

(2006), see p. 942. Also, Figure 4.2 above shows that the Heston filtered

volatility overshoots the SVSJ filtered volatility immediately following these

dates. This is because for large observations the Heston model has a steeper

volatility news impact curve than the SVSJ model does, see Bates (2006),

pp. 931-32. Thus, the Heston filtered volatility resembles the VIX index

the most. Moreover, for this reason, many people prefer the Heston filtered

volatility to the more conservative SVSJ Merton filtered volatility. But,

Bates (2006) prefers the SVSJ Merton filtered volatility, in the event that

jumps are to be included in the model.
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Figure 4.3: SPX Filtered Volatility Differences: SVSJ minus SVJ Merton.

The scale of the Magnified Difference in Figure 4.3 above is a quarter of

the scale used to compare the Heston and SVSJ filtered volatilities above

in Figure 4.2, and the difference between the SVSJ and the SVJ Merton

filtered volatilities is smaller. However, Bates (2006) maintains that there

is a difference. The SVJ Merton model initially classifies large observations

as jumps. But, the SVJ Merton volatility news impact curve vanishes

for large observations, see Bates (2006), p. 932. Alternatively, while the

SVSJ volatility news impact curve is damped relative to the Heston news

curve, it maintains a positive level for large observations, see Bates (2006), p.

932. These effects dominate when volatility is normal from 1988 to 1998.

Hence, the SVJ Merton filtered volatility undershoots the SVSJ filtered

volatility immediately following the earlier large loss dates, see Figure 4.3

above. However, from 1998 to 2003, the volatility is higher, see Figure 4.3

above. Thus, the Heston component of the SVJ Merton model dominates,
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and due to the sharper Heston news impact curve, the SVJ Merton filtered

volatility now overshoots the SVSJ filtered volatility for the last two large

loss dates, see Figure 4.3 above. Notice that the SVSJ filtered volatility

provides a dynamic adjustment for the volatility regime. Despite this, many

people prefer the SVJ Merton filtered volatility, since, like the Heston filtered

volatility, it more clearly attributes large losses to volatility. At the cost of

being volatility conservative, the SVSJ Merton filtered volatility provides a

more dynamic alternative that attributes large moves to jumps.
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0

0.2

0.4

SVSJ Merton Filtered Volatility

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
0
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1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
-0.05

0

0.05
Magnified Difference (SVSJ-SVVG)

Figure 4.4: SPX Filtered Volatility Differences: SVSJ minus SVVG.

The analysis given with Figure 4.3 for the SVJ Merton case also applies

to Figure 4.4 above for the SVVG versus SVSJ filtered volatilities. The

main difference is that due to the smaller and more frequent infinite-activity

jumps, there are more undershoots from 1988 to 1998, and more overshoots

from 1998 to 2003. However, Figure 4.4 above continues to show that there

is a noticeable impact on the difference at each of the large loss dates.
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Figure 4.5: SPX Filtered Volatility Differences: SVSJ minus SVJ Meixner.

Figure 4.5 above shows the difference between the SVSJ Merton and

SVJ Meixner S&P 500 filtered volatilities, for both the unconstrained SVJ

Meixner estimates in Table 4.15 of subsection 4.5.1 above, and the corre-

sponding Feller constrained estimates in Table 4.23 of subsection 4.6.2 below.

In both cases, the estimate of λ is large, and the estimate of the jump scale

parameter α is small. This suggests that the Meixner jumps are behaving

like a second diffusion. Also, the volatility differences in Figure 4.5 above

resemble both each other, and the Heston case from Figure 4.2 above.

4.5.3 Comparison to the VIX Volatility Index

The VIX market volatility index is a weighted average of Black-Scholes

(1973) implied volatilities computed from a basket of one month near the

money market options. It has been published in real time by the CBOE

since 1993, and the CBOE has backdated it to 1986 using historical data.
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The VIX was originally computed from S&P 100 index options, see Whaley

(2000), pp. 13-15. The VIX underlying formally became the S&P 500 in

2003, see the CBOE website. The VIX became a publicly traded asset in

2004, see Hull (2009), p. 297. Our VIX (1988-2007) historical daily index

data set was obtained directly from the CBOE website.
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0

0.5
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Figure 4.6: S&P 500 SVSJ & Heston Filtered Volatilities vs. the VIX.

The VIX volatility index is obtained from options prices under the risk-

neutral measure Q, whereas AML filters the volatility from historical log-

returns under the objective measure P. However, Figure 4.6 above shows

that the AML filtered S&P 500 daily volatility is quite similar to the VIX.

Also notice in Figure 4.6 that at the large loss dates, the VIX overshoots

the SVSJ volatility, but less so for the Heston volatility. For the 1988-2007

period, the mean of the VIX is 19.27%, the mean of the SVSJ volatility is

13.96%, and the mean of the Heston volatility is 14.50%. This is consistent

with the hypothesis that the volatility is higher under the Q-measure.
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4.6 Results from Stock and Index Returns

In addition to the AML estimates for Apple stock (1991-2011) in Table 4.2 of

subsection 4.4.2, the DJIA index (1988-2007) in Table 4.3 of subsection 4.4.2,

and the S&P 500 index (1988-2007) in Table 4.15 of subsection 4.5.1, this

section provides AML estimates for six additional well known individual

stocks, each over the 1988-2007 period. The six individual stocks are Amer-

ican Express (AXP), British Petroleum (BP), Citigroup (C), Intel (INTC),

JPMorgan Chase (JPM), and Microsoft (MSFT). In each case, estimation

is carried out for the SVJ Merton, SVVG, SVJ Meixner, SVSJ Merton, and

Heston models. In subsection 4.6.1 below, we table the AML estimates

for the six additional stocks. In subsection 4.6.2, Table 4.22 provides the

moments of the percentage log-returns for each of the nine estimated assets,

and Table 4.24 summarizes the maximum log-likelihood values for conve-

nience. In subsection 4.6.3 we give an analysis of the AML estimates for

the nine assets, categorized into four groups, and featuring log-return plots.

Apple stock (1991-2011) is the main example from the technology group.

4.6.1 Additional Estimation Results

The implementation details are identical to subsection 4.4.1 above in all

respects. Algorithm 4.15 from subsection 4.3.2 is used for AML by FFT

with parallel gradients. The AML estimates in Tables 4.16 to 4.21 below are

unconstrained in the sense that unbreached bounds are the only constraints.

In particular, the Feller condition is not initially imposed as a constraint.

The five additional cases in which the Feller condition fails are clearly marked

in Tables 4.16 to 4.21 below. All six cases of infinite-activity SVJ models,

including the S&P 500 under the SVJ Meixner in Table 4.15 above, in which

the Feller condition fails are re-estimated by AML with a Feller constraint.

The results are given in Table 4.23 of subsection 4.6.2 below.
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Unconstrained AML Estimates: American Express (AXP)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.123 1.857 0.092 0.530 -0.505 114.9 0.011 0.004

Std. Err. 0.046 0.242 0.016 0.065 0.085 48.81 0.002 0.001

Estimation Time 49.59 min ‖O` (θ)‖
θ=θ̂

1.94

Number of Iterations 36 max ` (θ) 13,210

SVJ Variance Gamma (Feller condition fails)

Estimate 0.131 1.405 0.089 0.517 -0.559 106.9 0.013 0.004

Std. Err. 0.069 0.226 0.015 0.041 0.109 33.9 0.001 0.002

Estimation Time 41.65 min ‖O` (θ)‖
θ=θ̂

0.154

Number of Iterations 26 max ` (θ) 13,216

SVJ Meixner (Feller condition fails)

Estimate 0.132 1.277 0.089 0.517 -0.568 32.53 0.033 0.729

Std. Err. 0.057 0.414 0.023 0.062 0.103 12.45 0.006 0.190

Estimation Time 33.29 min ‖O` (θ)‖
θ=θ̂

0.174

Number of Iterations 23 max ` (θ) 13,217

SVSJ Merton

Estimate 0.090 1.773 0.080 0.371 -0.471 858.4 0.019 0.005

Std. Err. 0.053 0.465 0.009 0.043 0.093 1.75 0.001 0.002

Estimation Time 30.12 min ‖O` (θ)‖
θ=θ̂

0.063

Number of Iterations 17 max ` (θ) 13,213

Heston

Estimate 0.074 3.578 0.106 0.653 -0.298 -

Std. Err. 0.057 0.921 0.014 0.070 0.074 -

Estimation Time 15.81 min ‖O` (θ)‖
θ=θ̂

0.023

Number of Iterations 11 max ` (θ) 13,182

Table 4.16: American Express (AXP) 1988-2007: Estimation Results.
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Unconstrained AML Estimates: British Petroleum (BP)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.097 2.641 0.050 0.244 -0.421 3.233 0.034 -0.006

Std. Err. 0.049 1.254 0.005 0.052 0.091 2.006 0.009 0.012

Estimation Time 34.03 min ‖O` (θ)‖
θ=θ̂

0.035

Number of Iterations 21 max ` (θ) 14,465

SVJ Variance Gamma

Estimate 0.098 2.672 0.047 0.253 -0.442 10.73 0.024 -0.002

Std. Err. 0.049 0.645 0.005 0.035 0.093 2.44 0.002 0.004

Estimation Time 37.91 min ‖O` (θ)‖
θ=θ̂

0.725

Number of Iterations 21 max ` (θ) 14,466

SVJ Meixner (Feller condition fails)

Estimate 0.104 2.649 0.026 0.594 -0.759 230.4 0.015 0.077

Std. Err. 0.045 0.472 0.007 0.103 0.121 51.49 0.002 0.166

Estimation Time 39.56 min ‖O` (θ)‖
θ=θ̂

0.083

Number of Iterations 31 max ` (θ) 14,479

SVSJ Merton

Estimate 0.101 2.464 0.048 0.221 -0.432 153.5 0.029 -0.002

Std. Err. 0.046 0.686 0.005 0.033 0.086 85.45 0.005 0.004

Estimation Time 38.65 min ‖O` (θ)‖
θ=θ̂

0.152

Number of Iterations 27 max ` (θ) 14,471

Heston

Estimate 0.094 4.228 0.053 0.350 -0.378 -

Std. Err. 0.048 1.244 0.005 0.051 0.079 -

Estimation Time 19.08 min ‖O` (θ)‖
θ=θ̂

0.026

Number of Iterations 15 max ` (θ) 14,451

Table 4.17: British Petroleum (BP) 1988-2007: Estimation Results.
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Unconstrained AML Estimates: Citigroup Inc. (C)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.033 1.585 0.121 0.492 -0.487 2.631 0.067 0.001

Std. Err. 0.057 0.408 0.024 0.049 0.070 1.166 0.012 0.011

Estimation Time 27.18 min ‖O` (θ)‖
θ=θ̂

0.031

Number of Iterations 16 max ` (θ) 13,106

SVJ Variance Gamma

Estimate 0.031 1.434 0.122 0.484 -0.513 2.914 0.066 0.004

Std. Err. 0.056 0.375 0.025 0.046 0.060 0.817 0.013 0.012

Estimation Time 29.32 min ‖O` (θ)‖
θ=θ̂

0.018

Number of Iterations 18 max ` (θ) 13,111

SVJ Meixner

Estimate 0.035 1.347 0.123 0.492 -0.525 1.117 0.163 0.202

Std. Err. 0.055 0.579 0.033 0.056 0.071 0.409 0.037 0.352

Estimation Time 30.29 min ‖O` (θ)‖
θ=θ̂

0.008

Number of Iterations 20 max ` (θ) 13,112

SVSJ Merton

Estimate 0.028 1.561 0.113 0.459 -0.475 47.33 0.060 -0.008

Std. Err. 0.055 0.673 0.027 0.054 0.069 16.82 0.010 0.009

Estimation Time 31.95 min ‖O` (θ)‖
θ=θ̂

0.013

Number of Iterations 20 max ` (θ) 13,107

Heston

Estimate 0.091 8.933 0.101 1.038 -0.360 -

Std. Err. 0.002 0.017 0.000 0.000 0.001 -

Estimation Time 33.84 min ‖O` (θ)‖
θ=θ̂

4,969.2

Number of Iterations 10 max ` (θ) 13,040

Table 4.18: Citigroup Inc. (C) 1988-2007: Estimation Results.
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Unconstrained AML Estimates: Intel Corp. (INTC)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.203 0.981 0.153 0.325 -0.337 5.477 0.063 -0.021

Std. Err. 0.080 0.445 0.028 0.051 0.098 1.538 0.008 0.010

Estimation Time 28.31 min ‖O` (θ)‖
θ=θ̂

0.030

Number of Iterations 17 max ` (θ) 11,732

SVJ Variance Gamma

Estimate 0.202 0.935 0.150 0.323 -0.348 5.466 0.070 -0.024

Std. Err. 0.081 0.255 0.029 0.044 0.096 2.091 0.014 0.012

Estimation Time 27.56 min ‖O` (θ)‖
θ=θ̂

0.032

Number of Iterations 16 max ` (θ) 11,733

SVJ Meixner

Estimate 0.202 0.939 0.147 0.332 -0.363 2.299 0.159 -0.746

Std. Err. 0.082 0.374 0.028 0.051 0.094 1.110 0.037 0.339

Estimation Time 29.93 min ‖O` (θ)‖
θ=θ̂

0.011

Number of Iterations 20 max ` (θ) 11,733

SVSJ Merton

Estimate 0.219 0.953 0.144 0.294 -0.340 69.45 0.056 -0.016

Std. Err. 0.081 0.385 0.028 0.048 0.097 22.58 0.007 0.008

Estimation Time 32.89 min ‖O` (θ)‖
θ=θ̂

0.026

Number of Iterations 21 max ` (θ) 11,737

Heston

Estimate 0.246 5.084 0.173 0.844 -0.257 -

Std. Err. 0.054 0.513 0.016 0.044 0.168 -

Estimation Time 26.54 min ‖O` (θ)‖
θ=θ̂

0.336

Number of Iterations 13 max ` (θ) 11,655

Table 4.19: Intel Corporation (INTC) 1988-2007: Estimation Results.
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Unconstrained AML Estimates: JPMorgan Chase (JPM)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.086 2.302 0.113 0.546 -0.410 3.696 0.042 0.011

Std. Err. 0.060 0.626 0.018 0.059 0.068 2.554 0.014 0.010

Estimation Time 27.18 min ‖O` (θ)‖
θ=θ̂

0.010

Number of Iterations 16 max ` (θ) 13,033

SVJ Variance Gamma (Feller condition fails)

Estimate 0.105 1.657 0.103 0.685 -0.516 163.8 0.011 0.001

Std. Err. 0.058 0.594 0.027 0.077 0.082 56.84 0.002 0.001

Estimation Time 37.19 min ‖O` (θ)‖
θ=θ̂

0.124

Number of Iterations 24 max ` (θ) 13,039

SVJ Meixner (Feller condition fails)

Estimate 0.106 1.619 0.103 0.669 -0.521 38.38 0.033 0.246

Std. Err. 0.055 0.744 0.031 0.070 0.093 11.06 0.004 0.167

Estimation Time 35.22 min ‖O` (θ)‖
θ=θ̂

0.145

Number of Iterations 27 max ` (θ) 13,042

SVSJ Merton

Estimate 0.083 2.054 0.103 0.472 -0.417 137.8 0.035 0.006

Std. Err. 0.055 0.416 0.015 0.044 0.067 58.14 0.006 0.004

Estimation Time 40.91 min ‖O` (θ)‖
θ=θ̂

0.044

Number of Iterations 28 max ` (θ) 13,039

Heston

Estimate 0.060 3.010 0.122 0.664 -0.357 -

Std. Err. 0.062 0.823 0.017 0.067 0.069 -

Estimation Time 16.36 min ‖O` (θ)‖
θ=θ̂

0.742

Number of Iterations 9 max ` (θ) 13,011

Table 4.20: JPMorgan Chase (JPM) 1988-2007: Estimation Results.
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Unconstrained AML Estimates: Microsoft (MSFT)

Parameter µ0 κ η ω ρ λ α β

SVJ Merton

Estimate 0.162 2.112 0.105 0.475 -0.134 6.055 0.053 0.001

Std. Err. 0.067 1.040 0.019 0.085 0.082 1.859 0.008 0.007

Estimation Time 28.26 min ‖O` (θ)‖
θ=θ̂

0.059

Number of Iterations 17 max ` (θ) 12,800

SVJ Variance Gamma

Estimate 0.164 1.872 0.102 0.461 -0.146 5.780 0.059 0.003

Std. Err. 0.057 0.586 0.018 0.059 0.087 0.826 0.006 0.008

Estimation Time 30.18 min ‖O` (θ)‖
θ=θ̂

0.060

Number of Iterations 17 max ` (θ) 12,802

SVJ Meixner

Estimate 0.166 1.743 0.101 0.478 -0.167 2.308 0.140 0.167

Std. Err. 0.068 0.685 0.023 0.066 0.090 1.914 0.064 0.353

Estimation Time 28.09 min ‖O` (θ)‖
θ=θ̂

0.006

Number of Iterations 19 max ` (θ) 12,804

SVSJ Merton

Estimate 0.151 2.039 0.098 0.428 -0.126 123.1 0.045 -0.004

Std. Err. 0.059 0.887 0.015 0.090 0.080 39.08 0.005 0.005

Estimation Time 38.32 min ‖O` (θ)‖
θ=θ̂

0.066

Number of Iterations 25 max ` (θ) 12,805

Heston

Estimate 0.128 5.812 0.117 0.920 -0.051 -

Std. Err. 0.037 0.411 0.022 0.064 0.096 -

Estimation Time 22.51 min ‖O` (θ)‖
θ=θ̂

1.49

Number of Iterations 12 max ` (θ) 12,738

Table 4.21: Microsoft Corp. (MSFT) 1988-2007: Estimation Results.
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4.6.2 Summary of Exceptions and Log-Likelihoods

In Table 4.22 below we give the sample moments of the percentage log-

returns for each of the nine assets estimated in this chapter. As discussed in

subsection 4.5.1 above, the skewness and kurtosis, relative to the standard

deviation, both give some indication as to whether or not λ will become

too large in the SVJ models with infinite-activity jumps. We say that an

exception occurs when the Feller constraint is binding.

Mean Std. Dev. Skewness Kurtosis Feller Constraint

Indices 1988-2007 SVVG SVMX

DJIA 0.0374 0.983 -0.3731 8.247

SPX 0.0346 0.991 -0.2417 7.326 binding

Stocks 1988-2007

AXP 0.0424 2.018 -0.0227 5.985 binding binding

BP 0.0320 1.463 -0.1133 5.680 binding

C 0.0550 2.101 -0.3236 10.943

INTC 0.0679 2.655 -0.4490 8.498

JPM 0.0345 2.162 0.0647 8.356 binding binding

MSFT 0.0896 2.175 -0.1575 7.730

Stocks 1991-2011

AAPL 0.0825 3.0549 0.1059 9.358

Table 4.22: Percentage Log-Return Moments: All Assets: AML.

Table 4.23 below gives the Feller constrained AML estimation results

for the six exceptional infinite-activity SVJ models as shown in Table 4.22

above. In Table 4.23 below, both the unconstrained and Feller constrained

maximum log-likelihoods values are given, and the Feller constrained values

for the maximum log-likelihoods are only a few points less.
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Feller Constrained AML Estimates

Parameter µ0 κ η ω ρ λ α β

SVJ Meixner: S&P 500 (SPX)

Estimate 0.036 2.98 0.025 0.383 -0.91 43.62 0.016 0.017

Std. Err. 0.033 0.481 0.004 0.025 0.049 12.39 0.003 0.187

max ` (θ) Constrained 16,884 Unconstrained 16,892

SVJ Variance Gamma: American Express (AXP)

Estimate 0.127 1.46 0.089 0.510 -0.56 98.89 0.013 0.004

Std. Err. 0.067 0.555 0.023 0.049 0.082 28.85 0.004 0.003

max ` (θ) Constrained 13,216 Unconstrained 13,216

SVJ Meixner: American Express (AXP)

Estimate 0.123 1.43 0.090 0.507 -0.56 27.84 0.034 0.758

Std. Err. 0.054 0.534 0.021 0.053 0.084 12.01 0.010 0.265

max ` (θ) Constrained 13,217 Unconstrained 13,217

SVJ Meixner: British Petroleum (BP)

Estimate 0.091 3.27 0.031 0.449 -0.65 155.7 0.017 0.060

Std. Err. 0.055 0.953 0.007 0.060 0.110 53.05 0.004 0.189

max ` (θ) Constrained 14,475 Unconstrained 14,479

SVJ Variance Gamma: JPMorgan Chase (JPM)

Estimate 0.092 1.97 0.104 0.642 -0.50 107.3 0.013 0.001

Std. Err. 0.053 0.620 0.020 0.052 0.072 28.85 0.003 0.002

max ` (θ) Constrained 13,039 Unconstrained 13,039

SVJ Meixner: JPMorgan Chase (JPM)

Estimate 0.095 1.92 0.104 0.631 -0.50 25.49 0.038 0.303

Std. Err. 0.064 0.574 0.020 0.055 0.075 9.966 0.007 0.219

max ` (θ) Constrained 13,041 Unconstrained 13,042

Table 4.23: Exceptional Cases: Feller Constrained AML Estimates.
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In Table 4.24 below we give a summary of the maximum log-likelihood

values from each estimation in this chapter. This is the main criterion

determining the quality of the fit for the AML estimated models. Where

the Feller constraint is binding, the Feller constrained log-likelihood value,

which is always lower, is used. These entries are marked with an asterisk.

HES SVMJ SVVG SVMX SVSJ

Indices 1988-2007

DJIA 16,819 16,851 16,851 16,852 16,855

SPX 16,843 16,869 16,870 16,884* 16,872

Stocks 1988-2007

AXP 13,182 13,210 13,216* 13,217* 13,213

BP 14,451 14,465 14,466 14,475* 14,471

C 13,040 13,106 13,111 13,112 13,107

INTC 11,655 11,732 11,733 11,733 11,737

JPM 13,011 13,033 13,039* 13,041* 13,039

MSFT 12,738 12,800 12,802 12,804 12,805

Stocks 1991-2011

AAPL 10,949 11,019 11,026 11,027 11,023

Table 4.24: Maximum Log-Likelihood Values: All Assets: AML.

4.6.3 Analysis of AML Estimates

Aı̈t-Sahalia and Jacod (2012) considers a Brownian semimartingale model

with stochastic volatility and independent jumps, see p. 1012. They find

that the DJIA index has finite-activity jumps, but that its components may

have infinite-activity jumps, see pp. 1036-37. Thus, the SVJ model of

subsection 2.6.1, with infinite-activity jumps, might be advantageous for

some individual stocks. In this analysis we identify two types of individual
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stocks, and surprisingly one index, for which infinite-activity jumps lead to

a superior fit. Of the five models that we have considered, the SVJ Meixner

model is the best fit, purely on the basis of likelihood, for six of the nine

cases covered. For the remaining three cases, the Bates (2006) SVSJ Merton

model is the best overall fit.
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Figure 4.7: Index Returns: the DJIA and the S&P 500.

As illustrated in Figure 4.7 above, stock indices typically have relatively

few, large systematic jumps. The likelihood summary in Table 4.24 above

shows that for the DJIA index (1988-2007) there is no likelihood gain for the

SVJ model with infinite-activity jumps, compared to finite-activity Merton

jumps. But, the SVSJ Merton model is the best fit for the DJIA. The

S&P 500 index is closely correlated with the DJIA. But, the SPX contains

500 stocks, while the DJIA contains only 30 stocks. Also, the likelihood

summary in Table 4.24 above indicates that the SVJ Meixner model is the
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best fit for the S&P 500. That is, the S&P 500 (1988-2007) appears to

contain a pure jump process of infinite variation, consistent with the options

price study of Huang and Wu (2004), see pp. 1425-26. We conclude that

while the jumps in stock indices are traditionally best modeled with finite-

activity, consistent with Aı̈t-Sahalia and Jacod (2012), a broad index such as

the S&P 500 may contain an infinite variation pure jump process, consistent

with Carr and Wu (2003).
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Figure 4.8: Diffusive Returns: American Express & British Petroleum.

In Figure 4.8 above, the returns for AXP and BP over the 1988-2007

period appear to exhibit at most only small jumps. Moreover, Table 4.22

indicates that the kurtosis relative to the standard deviation of the returns

is quite small. The likelihood summary in Table 4.24 above states that

the infinite variation SVJ Meixner model is the best fit for AXP and BP.

However, based on the sparse moments for these two stocks in Table 4.22
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above, we believe that the underlying second process is actually a diffusion

in both cases. That is, we believe that there are essentially no jumps in

either AXP or BP over the 1988-2007 period. This suggests that a model

with two diffusions would be superior to a second component with jumps.

For example, the model with two independent Heston processes, see Bates

(2000), p. 202, is what we would advise here.
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Figure 4.9: Bank Stock Returns: Citigroup (C) & JPMorgan Chase (JPM).

In Figure 4.9 above, it appears that the returns of C and JPM both have a

high-activity jump component. Also, Table 4.22 indicates that the kurtosis

relative to the standard deviation of the returns should be large enough

for infinite-activity to succeed, for each of C and JPM. The likelihood

summary, see Table 4.24 above, indicates that for both the returns on C,

and the returns on JPM, the SVJ Meixner model is the best fit. However, it

should be noted that in the case of the JPM returns, the likelihood summary
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in Table 4.24 above indicates that the SVSJ Merton model is also a relatively

good fit. We conclude that the log-returns of some large bank stocks can

be well modeled with an infinite-activity jump component, of either finite

variation or infinite variation.
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-0.2
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0
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INTC Daily Log-Returns (1988-2007)
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Figure 4.10: Tech Stock Returns: Intel (INTC) and Microsoft (MSFT).

The 1988-2007 period is marked by three regimes. This is particularly

the case for INTC and MSFT returns. From 1988 to 1998 there is a bull

market, and from 1998 to 2003 there is high volatility period known as

the tech-bubble. Then from 2003 to 2007, returns are particularly flat for

INTC and MSFT. These regimes make the dynamic jumps of the SVSJ

Merton model more appealing. The likelihood summary, see Table 4.24

above, shows that the SVSJ Merton model is the best fit for both INTC

and MSFT. But, Figure 4.10 also suggests that there might be an infinite-

activity jump component for at least one of INTC and MSFT. According
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to Table 4.24, there is no likelihood advantage to infinite-activity for INTC,

as there are probably too many large jumps in the INTC returns during

the tech-bubble, see Figure 4.10 above. However, Table 4.24 shows that

the SVJ Meixner model is almost equal in likelihood to the SVSJ Merton

model, for the MSFT returns.
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-0.2
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0.2
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Figure 4.11: The Returns on Apple Stock (AAPL) 1991-2011.

Apple stock (1991-2011) is our leading example for stocks with infinite-

activity jumps. Moreover, the crash of 2008 was just another large jump for

AAPL, see Figure 4.11 above. But, recall from subsection 4.4.2 above, that

the AAPL log-return of -0.7312 on September 29th, 2000 was censored from

this sample. Thus, this version of AAPL (1991-2011) does not experience

the burst of the tech-bubble. In Table 4.22 above, AAPL exhibits an

abnormally large mean and standard deviation, as well as relatively ample

skewness and kurtosis. Also, in Figure 4.11 above, AAPL exhibits many

jumps, and few regime effects. Therefore, it is not surprising that in the

likelihood summary, see Table 4.24 above, models with an infinite-activity

jump component fit AAPL log-returns the best. We conclude that the

returns of some technology stocks, especially Apple (1991-2011), may be

well modeled with an infinite-activity jump component.
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The Future of Apple Stock

In this chapter we estimated the P-measure for Apple stock, under five

models, based on the log-returns from January 2nd, 1991 to January 19th,

2011. In Chapter 5 we will estimate the option implied Q-measure for Apple

stock, under the same five models, based on the January 19th, 2011 closing

book of spot options prices. In Chapter 6 we combine each P-measure with

its respective option implied Q-measure to construct an optimal Q-measure

based on relative entropy for each model. Based on the optimal Q-measure

we construct a daily forecast for each model of the realized at-the-money

discounted call payoffs for the two years following January 19th, 2011.

4.7 Conclusion

1. The method of Approximate Maximum Likelihood (AML) of Bates

(2006) is a fast and accurate way to estimate affine models such as the

SVJ and SVSJ models, provided that the joint characteristic function

of the log-price and the latent factor is known in closed form, as in

Bates (2006), or equivalently as in Appendix A of this thesis.

2. For the SVJ and SVSJ models, we have proven that all three Fourier

transform pairs of the AML method satisfy both of the L1 integrability

conditions of the Fourier inversion theorem. In addition to this, we

prove in Appendix D below that the first Fourier transform of the AML

method may be differentiated twice under the integral with respect to

the secondary variable v, as assumed in Bates (2006).

3. Consistent with Aı̈t-Sahalia and Jacod (2012), we have shown that

some individual stocks, in particular banking and technology stocks,

appear to have infinite-activity jumps in addition to a diffusion with

stochastic volatility. Also, consistent with Huang and Wu (2004), we
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find that the S&P 500 may contain an infinite variation pure jump

process in addition to a diffusion with stochastic volatility. However,

the DJIA appears to have finite-activity jumps.

4. We have shown that in AML estimation of the SVJ and SVSJ models,

most of the parameters are relatively unbiased, but there is some small

bias to κ and λ. Nonetheless, we have shown that for AML estimation,

the asymptotic standard errors are reliable.

5. For both the Heston and the SVSJ Merton models, the AML filtered

volatility for the S&P 500 is highly similar to the VIX daily index of

S&P 500 implied volatilities over the 1988-2007 period.

6. Consistent with Eraker, Johannes, and Polson (2003), we find that the

SVJ and SVSJ models can handle 5,000 daily log-returns. Although,

it is possible that the Heston model is better with only 2,500 data

points, see Lysy (2012). However, based on Bates (2006), the SVJ

and SVSJ models with jumps can actually handle 10,000 daily log-

returns or more, with AML implemented by quadrature. For future

research we propose to use AML by quadrature, and daily rather than

annual parameters in the AML method. Daily parameters will allow

data at five minute frequency. We propose three months of five minute

data for a total of just under 5,000 data points, to preserve speed in

AML estimation.

7. Carr, Geman, Madan, and Yor (2003), see p. 364, propose a version of

the Barndorff-Nielsen and Shephard (2001) model with time changed

jumps and an Ornstein-Uhlenbeck equation for the latent factor. This

model is affine, and a joint characteristic function for the log-price and

the latent factor can be found. Thus, for future research, this model

is a candidate for estimation of the P-measure via AML.
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Chapter 5

Least Squares Calibration

5.1 Introduction

Starting with this chapter, and for the remainder of the thesis, the only asset

that we will treat is Apple stock. The main goal of this present chapter

is to calibrate to spot options prices from a single daily close on Apple

stock. This chapter will be the first step in the analysis of the Q-measure

for Apple stock, under the Heston model, all three SVJ models, and the

SVSJ Merton model. We will calibrate using a suitably modified version of

the Carr and Madan (1999) formula, and this needs to be discussed first. It

is well known, see Carr and Madan (2009), Table 2, p. 60, that the Carr and

Madan (1999) formula produces a negative call price deep out-of-the-money.

We show in Table 5.1 of subsection 5.2.3 below that this problem similarly

occurs in the log-moneyness version of the Carr and Madan formula, the

preferred version for this thesis, see subsection 5.2.2 below. That is, we

find, in the Black-Scholes environment of Table 5.1 below, that the log-

moneyness version of the Carr and Madan formula produces a negative call

price deep out-of-the-money when Simpson’s rule is used for quadrature in

FFT. Moreover, we find in Table 5.1 of subsection 5.2.3 below, that similar
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to subsection 3.4.2 above, this problem is corrected by simply using the

trapezoidal rule in place of Simpson’s rule, in the log-moneyness version of

the Carr and Madan formula. That being established, we proceed, similar

to Carr, Geman, Madan, and Yor (2003), see p. 371, to calibrate to a single

daily closing book of call options prices. The main differences are that we

consider Apple stock instead of the S&P 500, we consider the SVJ and SVSJ

models instead of time changed Lévy processes, and we use the trapezoidal

rule in the log-moneyness version of the Carr and Madan formula. Also,

we only consider one book of daily call option closing prices on Apple stock.

The closing date is January 19th, 2011, the last day in the Apple stock

log-return data set from subsection 4.4.2 above.

In Section 5.2 we re-evaluate the Carr and Madan (1999) formula as

discussed above. In Section 5.3 we introduce the Apple stock call options

data set from January 19th, 2011, prepare the data, and then calibrate the

Heston, SVJ, and SVSJ models under this data set. Section 5.4 concludes.

5.2 Accuracy in the Carr and Madan Formula

For theoretical results in this section we rely primarily on Carr and Madan

(1999), as summarized in subsection 5.2.1 below. The log-moneyness version

of the Carr and Madan formula, which appears to have been employed in

Huang and Wu (2004), see p. 1419, is described in full in subsection 5.2.2

below. The only difference here from the original is that the damped call

price domain is the log-moneyness χ = log
(
K
S0

)
in place of the log-strike

log (K) used in the original Carr and Madan (1999) formula. This does not

affect the theoretical results. However, we mention that Carr and Madan

(1999), see p. 63, states that the damped call price is L2, when it can be

shown to be L1 under a condition that they later assume. We pursue this

point in Lemma 7.8 of subsection 7.4.1 below. In subsection 7.4.1 we give a
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formal proof for the log-moneyness version of the Carr and Madan formula,

in a manner suitable for pricing under conditional Monte Carlo, as pursued

in Chapter 7 below. But, the only difference between subsection 5.2.2 below

and subsection 7.4.1 is that in subsection 7.4.1 we condition ZT = log
(
ST
S0

)
on some quantity HT . However, when HT is independent of ZT , the two

treatments coincide.

5.2.1 The Original Carr and Madan Formula

Let YT = log (ST ) be the terminal log-price with risk-neutral density fQT (y),

and and let k = log (K) be the log-strike price. Then for some damping

parameter a > 0, define the damped call price by

CaT (k) = e−rT
∫ +∞

−∞
eak
(
ey − ek

)+
fQT (y) dy. (5.1)

The damped call price CaT (k) in equation (5.1) above is at least L2, see Carr

and Madan (1999), p. 63. Now let φYT (u) be the characteristic function of

the terminal log-price YT . Then the Fourier transform of the damped call

price is given by

ĈaT (u) =
e−rTφYT (u− i (a+ 1))

a2 + a− u2 + iu (2a+ 1)
. (5.2)

Moreover, under the mild assumption that E
[
Sa+1
T

]
<∞, ĈaT (u) ∈ L1, see

Carr and Madan (1999), pp. 64-65. Thus, by an alternative version of the

Fourier inversion theorem, see Rudin (1987), p. 187, we have that

CaT (k) =
1

2π

∫ +∞

−∞
e−iukĈaT (u) du. (5.3)

Hence, when E
[
Sa+1
T

]
<∞, the undamped call price CT (k) is given by

CT (k) =
e−ak

π
Re

∫ ∞
0
e−iukĈaT (u) du, (5.4)
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see Carr and Madan (1999), p. 64. Thus, assuming that E
[
Sa+1
T

]
< ∞,

the Carr and Madan FFT formula is given by

CT (km) ≈ e−akm

π
Re
∑N

j=1
e−i

2π
N

(j−1)(m−1)eibuj ĈaT (uj)wj∆u, (5.5)

m = 1, 2, ..., N ,

where the wj are defined by Simpson’s rule, w1 = 1
3 , and wj =

 2
3 if j is odd

4
3 if j is even

,

j = 2, 3, ..., N , see Carr and Madan (1999), p. 68.

5.2.2 The Log-Moneyness Carr and Madan Formula

This version of the Carr and Madan formula is essentially the same as the

original in subsection 5.2.1 above. However, it is precisely this version that

we use in this chapter and this thesis. Let ZT = log
(
ST
S0

)
have risk-neutral

density fQT (z), and and let χ = log
(
K
S0

)
be the log-moneyness. Then for

some damping parameter a > 0, define the damped call price by

CaT (χ) = S0e
−rT
∫ +∞

−∞
eaχ (ez − eχ)+ fQT (z) dz. (5.6)

If E
[
Sa+1
T

]
<∞, then the damped call price CaT (χ) in equation (5.6) is L1,

see Lemma 7.8 of subsection 7.4.1 below with HT independent of ZT . Now

let φZT (u) be the characteristic function of ZT . Then the Fourier transform

of the damped call price is given by

ĈaT (u) =
S0e
−rTφZT (u− i (a+ 1))

a2 + a− u2 + iu (2a+ 1)
, (5.7)

where similar to Carr and Madan (1999), pp. 64-65, if E
[
Sa+1
T

]
< ∞,

then ĈaT (u) in equation (5.7) above is L1. Thus, by the Fourier inversion

theorem, Theorem 3.6, we have that

CaT (χ) =
1

2π

∫ +∞

−∞
e−iuχĈaT (u) du, (5.8)
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and similar to Carr and Madan (1999), p. 64, if E
[
Sa+1
T

]
< ∞, then the

undamped call price CT (χ) is given by

CT (χ) =
e−aχ

π
Re

∫ ∞
0
e−iuχĈaT (u) du. (5.9)

Again, similar to Carr and Madan (1999), p. 68, when E
[
Sa+1
T

]
< ∞, the

log-moneyness version of the Carr and Madan FFT formula is given by

CT (χk) ≈
e−aχk

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj ĈaT (uj)wj∆u, (5.10)

k = 1, 2, ..., N .

For the log-moneyness version in equation (5.10) above we will allow the wj

to follow either

1. Simpson’s rule: w1 = 1
3 , and wj =

 2
3 if j is odd

4
3 if j is even

, j = 2, 3, ..., N ,

see Carr and Madan (1999), p. 68, or

2. The trapezoidal rule: w1 = wN = 1
2 , and wj = 1, for j = 2, 3, ..., N−1,

see Briggs and Henson (1995), p. 360.

5.2.3 Accuracy Analysis

Table 5.1 below examines the problem of negative call prices computed by

the log-moneyness version of the Carr and Madan formula deep out-of-the-

money, with Simpson’s rule used for the quadrature weights. By using

the exact price from the Black-Scholes model, we have discovered that the

problem in the log-moneyness version of the Carr and Madan formula is

indeed the use of Simpson’s rule, as was recommended in Carr and Madan

(1999), see p. 68, for the original formula. We suspect that the issue is

the same with the original Carr and Madan formula. In Table 5.1 below,

S0 = 100, the risk-free rate is r = 0.03, T = 1 year, and the Black-Scholes
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volatility is σ = 0.30. The FFT parameters are N = 213, and ∆u = 1
4 . In

this thesis we use the value a = 1.5 for the damping parameter. Also in

Table 5.1 below, when a spline interpolant is used to obtain the call price,

it is based on the uniform discretization χk ∈ [−π, π] of the log-moneyness

points. To ensure accuracy in this subsection, all computations were done

on an Intel Xeon 2xE5-2643v3 dual processor at 3.4 GHz.

Call Prices Simpson’s Rule

Strike Price Exact Price FFT Linear FFT Spline

300 2.31144E-03 2.31137E-03 2.31123E-03

400 3.66372E-05 3.64252E-05 3.64201E-05

500 8.17711E-07 6.00932E-07 6.00634E-07

600 2.48365E-08 −1.92239E-07 −1.92240E-07

700 9.83587E-10 −2.16091E-07 −2.16092E-07

Call Prices Trapezoidal Rule

Strike Price Exact Price FFT Linear FFT Spline

300 2.31144E-03 2.31158E-03 2.31144E-03

400 3.66372E-05 3.66422E-05 3.66372E-05

500 8.17711E-07 8.18009E-07 8.17711E-07

600 2.48365E-08 2.48375E-08 2.48365E-08

700 9.83587E-10 9.84007E-10 9.83591E-10

Table 5.1: FFT Call Prices: Black-Scholes DOTM: S0 = 100.

It is clear in the upper panel of Table 5.1 above that Simpson’s rule

leads to a negative FFT call price deep out-of-the-money. However, the

lower panel of Table 5.1 above shows that the trapezoidal based FFT price

does not behave in this way. Moreover, Table 5.1 above also shows that

when combined with spline interpolation the trapezoidal rule is accurate

to four or five significant digits against the Black-Scholes formula, for the
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pricing of call options deep out-of-the-money. Next we consider the pricing

performance of near-the-money call options in the log-moneyness version

of the Carr and Madan (1999) formula. We consider the relative pricing

errors under linear and spline interpolation in the same setting as Table 5.1

above. Specifically, we compare Simpson’s rule to the trapezoidal rule for

the pricing of call options near-the-money, using the log-moneyness version

of the Carr and Madan formula, see Table 5.2 below.

Rel. Errors Simpson’s Rule Trapezoidal Rule

Strike Price Linear Spline Linear Spline

80 8.1E-07 8.6E-09 8.2E-07 1.5E-12

90 3.2E-06 1.2E-08 3.2E-06 5.0E-12

100 1.6E-08 1.6E-08 6.7E-16 6.7E-16

110 3.0E-06 2.3E-08 3.0E-06 2.2E-12

120 1.7E-05 3.4E-08 1.7E-05 4.4E-11

Table 5.2: FFT Relative Call Pricing Errors: Black-Scholes: S0 = 100.

For performance near-the-money Table 5.2 above shows that in the

Black-Scholes case the trapezoidal rule is as good as Simpson’s rule with

linear interpolation, and substantially better with splines. It should be

noted that in Table 5.2 above, the phenomenon that the at-the-money price

is computed to near machine precision under the trapezoidal rule is due to a

special feature of the log-moneyness version of the Carr and Madan formula,

which uses the non-centred and shifted form of FFT. That is, if K = S0,

then χ = log
(
K
S0

)
= 0. It turns out that zero corresponds to the highest

frequency node in the non-centred and shifted version of FFT, see Briggs

and Henson (1995), p. 69. Altogether, we recommend the trapezoidal rule

with splines, and the log-moneyness version of the Carr and Madan formula,

for accuracy in call option pricing by FFT.
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5.3 Calibration to Apple Stock Call Options Data

The ultimate goal of this section is to provide least squares estimates for

the parameters of the Heston model, all three SVJ models, and the SVSJ

Merton model, each under the Q-measure, based on the closing call options

prices of Apple stock on Wednesday, January 19th, 2011. First of all, in

subsection 5.3.1 we provide details on the preparation of the Apple stock call

options data set from the raw data obtained from Market Data Express at

the CBOE. Also, in subsection 5.3.1, we describe the nonlinear least squares

likelihood method used in this chapter. In subsection 5.3.2 we provide the

least squares calibration results, see Table 5.3 below.

5.3.1 Data Preparation and Estimation Methodology

We obtained market closing American options quotes for Apple stock on the

third Wednesday of January 2011, from Market Data Express at the CBOE.

At this time in January 2011, Apple stock was not paying any dividends.

The next dividend date turned out to be August 9, 2012, at which time

dividends became regular. We assume that this policy was unknown to

market participants on January 19, 2011. Hence, we treat Apple stock, on

that date, as a stock with no dividends. American call options on a stock

paying no dividends may be treated as European call options, see Björk

(2009), p. 112. Moreover, estimation based solely on call options should

not unduly bias the results, see Bakshi, Cao, and Chen (1997), p. 2015.

Hence, we discarded the American puts.

The call options were selected as follows. Any contract without strictly

positive open interest, volume, bid price, or ask price was discarded. Then,

only contracts with either substantial volume, or substantial open interest

were retained. Next, contracts were discarded until, at each maturity,

both the bid and ask price came to follow a strictly decreasing sequence
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with respect to an increasing strike price, with volume used as the deciding

factor in the event of a conflict. At this point the call price was taken

to be the mean of the bid price and the ask price. Two more selection

criteria were applied. First, assuming that the call price C is European,

the arbitrage-free condition given by

C ≥ S0 −Ke−rT , (5.11)

was enforced, see Björk (2009), p. 111. Lastly, we insisted that the bid-ask

spread be less than 10% of the call price. The resulting data set includes

194 call options quotes across seven maturities, with exact maturity dates

of 22, 41, 61, 123, 192, 253, and 503 days. Given a 21 day month, these

maturity dates correspond roughly to 1, 2, 3, 6, 9, 12, and 24 months. The

corresponding numbers of options quotes at each maturity are given by 17,

22, 29, 39, 28, 38, and 21. The moneyness range for this data set is

0.69 ≤ S0

K
≤ 1.54, (5.12)

with S0 = 338.84 at the close on January 19, 2011. A few words are in order

here. First, the underlying is Apple stock, and not an index such as the

S&P 500. In general, Apple was widely expected to outperform following

January 2011, and objectively there is some existing liquidity in the data,

further out-of-the-money than usual. Secondly, January 19th, 2011 was

only two days after Steve Jobs announced what turned out to be his final

medical leave of absence due to cancer. Consequently, there is some existing

liquidity in the data, further in-to-the-money than usual. Lastly, in order

to estimate jumps, it is important to include quotes that are both far in-to-

the-money, and far out-of-the-money, see Cont and Tankov (2004b), p. 29.

The risk-free rate was taken to be the average three-month LIBOR rate for

January 2011 minus one tenth of a basis point. This gives r = 0.2934%, see

the fedprimerate website.
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Least Squares Likelihood Methodology

We apply the following estimation methodology. For the Heston, SVJ, and

SVSJ models, the characteristic function of the log-price is known in the

exponentially affine form

φZT (u) = exp
(
C (u) +D (u)σ2

0

)
, with ZT = log (ST /S0) , (5.13)

where µ0 = r in the coefficients C (u) and D (u) taken from Appendix A.

Let EQ
[
Sa+1
T

]
<∞ at each maturity T be assumed. Then, European call

prices can be obtained, as in subsection 5.2.2 above, from the log-moneyness

version of the Carr and Madan formula. Also, though not required by the

Carr and Madan (1999) formula, by Theorem 3.17 from subsection 3.3.3,

assuming ρ < 0, each of these log-price CFs can be shown to be L1. Our

European call price data set is based on the average of the bid price and the

ask price. We represent this data set as the vector C given by

Ch = C (Th,Kh) , h = 1, 2, ..., n, (5.14)

where Th is the exact time to maturity in years, assuming a 252 day year,

and Kh is a strike price at that maturity. The parameter vector for both

the SVJ and SVSJ models is given by

θ =
(
σ2

0, κ, η, ω, ρ, λ, α, β
)

, (5.15)

where the Heston model is a special case with no jumps. Note that similar

to Bakshi, Cao, and Chen (1997), p. 2016, we intend to treat σ2
0 in the

same manner as the other parameters. This distinction was pointed out in

Christoffersen, Heston, and Jacobs (2009), see p. 1925. We believe that

this is the most suitable choice for a small data set. Let the corresponding

vector of model prices be given by C (θ). Then, we may write the sum of

squared pricing errors as

S (θ) = ‖C (θ)− C‖2 . (5.16)
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Under the assumption that the pricing errors are i.i.d. N
(
0, σ2

e

)
, the normal

log-likelihood is given by

`
(
θ, σ2

e

)
= −n

2
log σ2

e −
1

2σ2
e

S (θ) , (5.17)

see Seber and Wild (2003), p. 32. However, for fixed θ, the log-likelihood in

(5.17) is maximized when σ2
e = S(θ)

n . Hence, we may use the concentrated

log-likelihood given by

`M (θ) = `

(
θ,
S (θ)

n

)
= −n

2
logS (θ) +

n

2
(log n− 1) . (5.18)

Since the log-likelihood in (5.18) is maximized when S (θ) is minimized,

σ̂2
e =

S
(
θ̂
)

n
(5.19)

is the MLE of σ2
e . Moreover, it can be shown that the information matrix

IM (θ), based on the concentrated log-likelihood `M (θ), is given by

IM (θ) = −∂
2`M (θ)

∂θ∂θ′
|
θ̂

(5.20)

=
1

2σ̂2
e

∂2S (θ)

∂θ∂θ′
|
θ̂
,

see Seber and Wild (2003), pp. 38-39. On the basis of equation (5.20), we

obtain asymptotic standard errors for the parameter estimates.

5.3.2 Estimates and Standard Errors

All computations in this section were done on an Intel 2xE5-2643v3 at

3.4GHz. The estimates in Table 5.3 below are based on spot options prices

for Apple stock on January 19, 2011, whereas the estimates in Table 4.2

from subsection 4.4.2 are based solely on daily log-return data for Apple

stock from January 2, 1991 to January 19, 2011. When we calibrate to op-

tions prices, the stock price is not observed directly. Moreover, by choosing
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to estimate only from the current book of options prices, we sacrifice the

historical structure of the volatility in favour of current market expectations

for the near future. The most striking difference between Table 5.3 below

and Table 4.2 is in Heston model. In Table 4.2, for the Heston model, both

the rate of mean reversion κ and the volatility of the volatility ω are far

too large, indicating a need for jumps in the model. However, in Table 5.3

below, the Heston model parameter estimates are broadly consistent with

the literature on call options price based least squares estimation. For ex-

ample, see the Heston model parameter estimates based on the S&P 500 in

Christoffersen, Heston, and Jacobs (2009), p. 1922. In Table 5.3 below, the

t-statistics for the jump parameters λ, α, and β in the SVJ and SVSJ mod-

els are weak relative to the t-statistics for the variance parameters. Also,

the RMSE for the Heston model is nearly as low as the RMSE for any of

the jump models. However, the same problem, with the t-statistics for

the jump parameters, exists in the study by Huang and Wu (2004), see pp.

1425-26, where models similar to the SVJ and SVSJ models were calibrated.

Moreover, in the Huang and Wu (2004) study approximately 16,402 options

prices were included in the in-sample data, see p. 1421. Thus, adding

more options prices to the data will not necessarily solve this problem. We

conclude that jumps are difficult to estimate in this setting. Nonetheless,

jumps should be included in options price models, as they provide a better

accounting of the skewness and the kurtosis, see Bakshi, Cao, and Chen

(1997), p. 2017 for the SVJ Merton model, and Bates (2000), p. 216 for

the SVSJ Merton model. Regarding this matter of kurtosis, observe that

in Table 5.3 below, the Heston estimate for ω is nearly twice the value of

the long run volatility. Too much kurtosis has been left to be explained by

the volatility of the volatility ω. However, notice that in Table 5.3 below,

the Feller condition, 2κη > ω2, holds in all five models.
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Apple Stock Call Options Calibration Results

θQ σ2
0 κ η ω ρ λ α β

SVJ Merton

Est 0.058 1.767 0.136 0.567 -0.662 1.637 0.095 -0.008

S.E. 0.005 0.117 0.004 0.035 0.040 1.346 0.027 0.008

t-stat 11.25 15.05 33.74 16.02 -16.7 1.217 3.468 -0.992

Iter 126 Time 12.1 s ‖`M (θ)‖
θ=θ̂

0.024 RMSE 0.1976

SVJ Variance Gamma

Est 0.057 1.736 0.135 0.559 -0.668 1.337 0.111 -0.014

S.E. 0.004 0.124 0.004 0.034 0.041 0.595 0.022 0.011

t-stat 14.90 14.02 36.76 16.28 -16.4 2.248 5.067 -1.330

Iter 165 Time 16.5 s ‖`M (θ)‖
θ=θ̂

7E-04 RMSE 0.1978

SVJ Meixner

Est 0.056 1.720 0.134 0.554 -0.670 0.396 0.293 -0.380

S.E. 0.003 0.121 0.003 0.041 0.039 0.196 0.069 0.217

t-stat 16.48 14.19 39.36 13.46 -17.4 2.019 4.255 -1.750

Iter 346 Time 35.4 s ‖`M (θ)‖
θ=θ̂

0.001 RMSE 0.1979

SVSJ Merton

Est 0.051 1.805 0.103 0.441 -0.706 64.25 0.082 -0.003

S.E. 0.004 0.100 0.009 0.039 0.043 22.64 0.009 0.006

t-stat 12.55 17.98 11.53 11.36 -16.6 2.838 9.171 -0.538

Iter 120 Time 12.4 s ‖`M (θ)‖
θ=θ̂

0.116 RMSE 0.1960

Heston

Est 0.071 1.973 0.148 0.604 -0.556 -

S.E. 0.001 0.079 0.001 0.021 0.011 -

t-stat 125.4 24.99 114.9 29.10 -49.3 -

Iter 44 Time 2.9 s ‖`M (θ)‖
θ=θ̂

7E-04 RMSE 0.2035

Table 5.3: Apple Inc. Call Options January 19, 2011: Calibration Results.
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Remark 5.1 (Asymptotic Distribution) Let the log-likelihood `M (θ) be

given by equation (5.18) above. Then if θ̂n is a consistent root of

∂`M (θ)

∂θ
= 0, (5.21)

an approximate distribution for θ is given by

θ ∼a N
(
θ̂n, IM

(
θ̂n

)−1
)

, (5.22)

where IM (θ) is given by equation (5.20) above.

See Lehmann and Casella (1998), p. 449.

Table 5.3 above further shows that by introducing jumps to assist with

skewness and kurtosis, as in the SVJ and SVSJ models, the estimates of ω

are made smaller, and thus more reasonable. However, regarding skewness,

also notice in Table 5.3 above that the estimate of ρ makes a paradigm

shift to the left whenever jumps are introduced. This shift in ρ is typically

both smaller and to the right with S&P 500 options data, see Bates (2000),

Table 2, p. 203, and Bakshi, Cao, and Chen (1997), Table III, p. 2018.

This discrepancy in the behaviour of ρ is explained by the jump skewness

parameter β. Notice in Table 5.3 above that the estimates of β are relatively

small, indeed quite small compared to Bates (2000), Table 2, p. 203, and

Bakshi, Cao, and Chen (1997), Table III, p. 2018, for the SVJ and SVSJ

Merton models, respectively. Consequently, when jumps are introduced,

ρ moves to the left in Table 5.3 above, for options on Apple stock from

January 19, 2011.

RMSE and the Choice of Jumps

Notice in Table 5.3 above that the SVJ Meixner and SVJ Variance Gamma

models have almost the same RMSE. This is similar to the results for spot

options prices on the S&P 500, see Carr, Geman, Madan, and Yor (2003),
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pp. 373-74, under the time changed NIG and time changed Variance Gamma

models. The NIG and the Meixner processes both have a stability index of

one, see Aı̈t-Sahalia and Jacod (2012), p. 1020, and Madan and Yor (2008),

p. 43, respectively. To obtain an advantage for infinite variation jumps, it

appears to be necessary to introduce a jump model such as the log-stable

process, where the stability index is a model parameter, see for example

Huang and Wu (2004), p. 1425. What is surprising about the Apple stock

call options data set of this thesis is that there appears to be no advantage

in RMSE for infinite-activity jumps over finite-activity Merton jumps. We

attribute this to the smallness of the spot options data set, as there is such

an advantage in the much larger historical data set of Huang and Wu (2004),

see p. 1425. However, we find, when the estimate of λ is suitably large in

the SVSJ Merton model, as it is in Table 5.3 above, that the RMSE for the

SVSJ Merton model is slightly lower than that of the other models.

5.4 Conclusion

1. The first stage of the analysis of the Q-measure for Apple stock is

complete, and the Heston, SVJ, and SVSJ Merton model estimates

from Table 5.3 in subsection 5.3.2 will be used for stabilization in the

Parametric Minimum Entropy Martingale Measure of Chapter 6.

2. Under the Apple stock call options data set of this thesis, on the basis

of RMSE, all of the models with jumps are slightly better than the

Heston model. But, within the SVJ models, no particular model

stands out. However, the SVSJ Merton model is slightly better than

the others on the basis of RMSE.

3. Use of the trapezoidal rule in the log-moneyness version of the Carr and

Madan formula prevents negative call prices deep out-of-the-money.
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Chapter 6

An FFT Based Approach to

Relative Entropy

6.1 Introduction

In this chapter we present a minimum relative entropy method for selecting

an optimal equivalent martingale measure where the model for the market is

incomplete due to the presence of stochastic volatility, jumps, or stochastic

jump intensity. The method was designed to take advantage of the closed

form characteristic function for the normalized log-price as an attribute of

the affine SVJ and SVSJ models. But, the method can be adapted to

any affine model. Our method is parametric, and we give results for the

SVSJ Merton model, the three SVJ models, and the Heston model, based

on the P-measures, denoted here by θP ∈ ΩP , for Apple stock log-returns,

from January 2nd 1991 to January 19th 2011, as estimated for Table 4.2 in

subsection 4.4.2. We offer a computable approximation to an alternative

version of the minimum relative entropy problem. Let T be finite, and for

any t ∈ (0, T ], let t be an option maturity date. Consider the measures
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Qt and Pt corresponding to the respective densities fQ (zt) and fP (zt) of

the normalized log-price process Zt = log
(
St
S0

)
at maturity t. We obtain

these densities by Fourier inversion of their characteristic functions, and thus

obtain the relative entropy of Qt given Pt. More specifically, we use the

symmetric relative entropy, see Kullback and Leibler (1951), p. 81. The

symmetric relative entropy is the sum of two relative entropies with reversed

arguments. As such, it has the property that if finite, then Qt is equivalent

to Pt. After showing how to compute the symmetric relative entropy for

any t ∈ (0, T ], we sample the maturity dates uniformly, m = 1, 2, ...,M , for

some finite M , with t (m) = mT
M , and compute the average of the sample

symmetric relative entropies. The quantity that we minimize is this aver-

age value. Based on the January 19th, 2011 Apple stock call options data

set, we choose T = 2 years, and also M = 24 months, implying monthly

maturities. Alternative choices of M are considered in subsection 6.5.3 be-

low. When the average symmetric relative entropy is finite, the symmetric

relative entropy of Qt(m) given Pt(m) is finite for each m = 1, 2, ...,M , sug-

gesting that Q ∼ P on (0, T ] holds approximately. The P-measure is fixed

by the parameters θP ∈ ΩP from Table 4.2 in subsection 4.4.2 for Apple

stock (1991-2011). Therefore, we minimize the average value with respect

to the risk-neutral parameters θ ∈ ΩQ of the normalized log-price under the

Q-measure. We naturally assume that the parametric form of the model

remains closed to the original form of the model during minimization. This

assumption has a key benefit. For, if the martingale parameter constraints

for the proposed models are known, see Theorem 2.26 in subsection 2.5.2,

Theorem 2.31 in subsection 2.6.1, and Theorem 2.35 in subsection 2.6.2,

then we can ensure that the solution is a martingale simply by imposing

the martingale constraints during numerical minimization. However, the

parametric approach has a drawback. Relative entropy is not necessarily
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convex in the model parameters, see Cont and Tankov (2004b), p. 11. For

this reason we propose a two stage optimization routine to minimize the

average symmetric relative entropy, equivalent to a Tikhonov regularization

scheme, see Engl, Hanke, and Neubauer (1996), p. 250. Within this rou-

tine, the fixed parameters, θ∗Q ∈ ΩQ, implied by call options based on the

closing book of call options prices on Apple stock for the date January 19th

2011, taken from Table 5.3 in subsection 5.3.2, play the role of the prior, see

Section 6.3 below. We refer to our result as the parametric minimum en-

tropy martingale measure (PMEMM). The PMEMM results in Section 6.5

below include forecasts of the at-the-money discounted call option payoffs

on Apple stock for each model. The evaluation day is January 19th, 2011,

and the maturities run from 15 days to 504 days past this date.

The remainder of the chapter is structured as follows. In Section 6.2

we explain how to compute the average symmetric relative entropy. In

Section 6.3 we present our two stage optimization routine, equivalent to

a Tikhonov regularization of the average symmetric relative entropy. In

Section 6.4 we review the main literature on minimum relative entropy.

Section 6.5 gives the PMEMM results along with the forecasts of the at-the-

money discounted call payoffs. Section 6.6 concludes.

6.2 Computing the Average Relative Entropy

6.2.1 Models and Martingale Constraints

Recall from subsection 2.6.1 that the P-dynamics of the SVJ model are given

in log-price form by

dYt =

(
µ0 −

1

2
σ2
t − ψX (−i)

)
dt+ σtdW

(S)
t + dXt, (6.1)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,
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where the jumps Xt are either Merton, Variance Gamma, or Meixner. Also,

from subsection 2.6.2 the P-dynamics of the SVSJ model are

dYt =

(
µ0 −

1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) , (6.2)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt,

where the jumps of the time changed Lévy process X (Vt) are Merton. The

Heston model of equation (2.59) in subsection 2.5.2 may be viewed as a

special case of either the SVJ or SVSJ model with no jumps. Moreover,

since the stochastic jump intensity in the SVSJ model is simply the latent

variance σ2
t scaled by the intensity λ, the SVJ and SVSJ Merton models

share a common parameter space, given the same jumps.

Remark 6.1 (Initial Variance) Recall from subsection 4.2.5 that under

the AML estimated P-measure the initial variance σ2
0 = σ2

n0
is random, and

does not have an estimate. In this chapter we will assume for convenience

that σ2
0 is a parameter under the fixed P-measure with an estimate equal to

the estimated value of the long run variance η.

Based on Remark 6.1 above, we can write the common parameter space

under the P-measure of the SVJ and SVSJ models, apart from the interval

B which depends on the jump type, as

ΩP =

 θ ∈ R9|µ0 ∈ R, σ2
0 > 0, κ > 0, η > 0, ω > 0, ρ ∈ [−1, 1] ,

λ > 0, α > 0, β ∈ B

 . (6.3)

For Merton and Variance Gamma jumpsB = (−∞,+∞), see subsection 2.3.1

and subsection 2.3.2 respectively. However, for Meixner jumps B = (−π, π),

see subsection 2.3.3. Recall Theorem 2.31, from subsection 2.6.1, for the
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SVJ model under the structure preserving Q-measure given by equation

(2.73) of subsection 2.6.1. Also, recall Theorem 2.35, from subsection 2.6.2,

for the SVSJ model under the structure preserving Q-measure given by equa-

tion (2.75) of subsection 2.6.2. Both of these theorems imply that if the

Feller condition holds, and the jumps satisfy ψX (−i) < ∞, then, where µ0

is the risk-free rate of return r, the discounted stock price, e−rtSt, t ≥ 0 is

a martingale. Thus, we write the common risk-neutral parameter space for

the SVJ and SVSJ models as

ΩQ =
{
θ ∈ ΩP |µ0 = r, 2κη > ω2, ψX (−i) <∞

}
. (6.4)

The condition ψX (−i) <∞ is given in the discussion surrounding equations

(2.24), (2.33), and (2.42) for Merton, Variance Gamma, and Meixner jumps,

respectively. These results are summarized in Table 6.1 below.

Jump Type Parameter Constraints for ψX (−i) <∞

Merton λ > 0, α > 0, β ∈ R

Variance Gamma λ > 0, α > 0, 1
2α

2 + β < 1

Meixner λ > 0, α > 0, |α+ β| < π

Table 6.1: Martingale Constraints for the Jump Processes.

Remark 6.2 (Normalized Log-Price Filtration) Since the risk-free rate

r is constant, clearly St, t ≥ 0 and the discounted stock price e−rtSt, t ≥ 0

have the same filtration F . Moreover, by equations (6.1) and (6.2), the

property St = S0e
Yt holds for both the SVJ and SVSJ models, respectively.

Thus, the log-price Yt also has filtration F , and the relative entropies under

St and Yt are equivalent, see Cont and Tankov (2004b), p. 9. Hence, when

S0 is constant, the relative entropy can be obtained under the normalized

log-price Zt = log
(
St
S0

)
, t ≥ 0, and no information will be lost.
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6.2.2 Relative Entropy and Densities

Definition 6.3 (Relative Entropy) Let Q and P be arbitrary measures.

The relative entropy of Q given P is defined by

I (Q|P ) =

 EQ
[
log
(
dQ
dP

)]
= EP

[
dQ
dP log

(
dQ
dP

)]
if Q� P ,

∞ otherwise

 , (6.5)

see Cont and Tankov (2004b), p. 8, and Frittelli (2000), p. 41.

Proposition 6.4 (Properties of Relative Entropy)

1. I (Q|P ) ≥ 0 with I (Q|P ) = 0 if and only if Q = P .

2. The functional Q→ I (Q|P ) is strictly convex.

Proof. See Frittelli (2000), p. 41.

Definition 6.5 (Symmetric Relative Entropy) Again let Q and P be

arbitrary measures. Then the symmetric relative entropy between Q and P

is defined by

IS (Q,P ) = I (Q|P ) + I (P |Q) , (6.6)

see Kullback and Leibler (1951), p. 81.

Proposition 6.6 (Properties of Symmetric Relative Entropy)

1. IS (Q,P ) ≥ 0 with IS (Q,P ) = 0 if and only if Q = P .

2. IS (Q,P ) = IS (P,Q).

3. The functional Q→ IS (Q,P ) is strictly convex.

4. The functional P → IS (P,Q) is also strictly convex.

5. If IS (Q,P ) <∞ then Q ∼ P .
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Proof. For 1. and 2., see Kullback and Leibler (1951), p. 85. For 3.,

Q→ I (Q|P ) is strictly convex by Proposition 6.4, item 2. Then by equation

(6.5), if finite I (P |Q) may be written as EP
[
log
(
dP
dQ

)]
. But the function

f (x) = log
(

1
x

)
is strictly convex since ∂2

∂x2 log
(

1
x

)
= 1

x2 . Thus, with x = dQ
dP ,

log
(
dP
dQ

)
is strictly convex in Q, and the result follows. Lastly, 4. and 5.

both follow by symmetry.

We intend to make a discrete approximation to the continuous case

of symmetric relative entropy. Hence, separate definitions are expedient.

Referring to equation (6.6) above, in the continuous case, we will denote

the symmetric relative entropy by HS (Q,P ). Observe that the quantity

HS (Q,P ) may be written as a single integral with respect to P ,

HS (Q,P ) =


∫
Ω

log
(
dQ
dP

)(
dQ
dP − 1

)
dP if Q ∼ P ,

∞ otherwise

 . (6.7)

Let λ denote the Lebesgue measure. We will assume here both that Q� λ,

and P � λ. This assumption will be justified within the context of this

chapter by Remark 6.8 of subsection 6.2.3 below. Under this assumption,

equation (6.7) may be expressed as

HS (Q,P ) =


+∞∫
−∞

log
(
fQ(z)
fP (z)

) (
fQ (z)− fP (z)

)
dz if Q ∼ P ,

∞ otherwise

 , (6.8)

where the densities fQ (z) and fP (z) are the densities associated with the

absolutely continuous measures Q and P , respectively. In the discrete case

we will denote the symmetric relative entropy by DS (Q,P ) where

DS (Q,P ) =


N∑
k=1

log
(
qk
pk

)
(qk − pk) if Q ∼ P ,

∞ otherwise

 , (6.9)
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see Kapur and Kesavan (1992), p. 159, and Reesor (2001) pp. 21-22.

In this chapter we assume that the absolutely continuous measure P is

fixed, and has a fixed associated density fP (z). However, the absolutely

continuous measure Q (θ) is assumed to depend on the parameter θ, thus

having an associated density fQ (z; θ). For some b > 0, we will consider

a left-endpoint uniform discretization of z ∈ [−b, b] with grid spacing ∆z.

According to this discretization, in equation (6.9) above, set

pk = fP (zk) ∆z, and

qk = fQ (zk; θ) ∆z,

k = 1, 2, ..., N .

Let ∆f (zk; θ) =
(
fQ (zk; θ)− fP (zk)

)
∆z. Then equation (6.9) becomes

DS (Q (θ) , P ) =


N∑
k=1

log
(
fQ(zk;θ)
fP (zk)

)
∆f (zk; θ) if Q ∼ P ,

∞ otherwise

 . (6.10)

The quantity DS (Q (θ) , P ) given in equation (6.10) above forms a Riemann

approximation to the integral in equation (6.8) for the continuous symmetric

relative entropy HS (Q (θ) , P ), where Q (θ) depends on θ.

6.2.3 Computing Symmetric Relative Entropy by FFT

Remark 6.7 (L1 Integrability) Let finite T > 0 be the latest option price

maturity date, and let t be any maturity date on (0, T ]. Assume that the

initial stock price S0 is constant, and define

Zt = log

(
St
S0

)
.

For the SVJ and SVSJ models the characteristic function

φZt (u) = eC(u)+D(u)σ2
0 (6.11)
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is known in closed form with the affine coefficients C (u) and D (u) given in

equations (A.22) and (A.23) respectively in Appendix A. Moreover, for the

SVJ and SVSJ models, since t > 0, by Theorem 3.17 from subsection 3.3.3,

the hypothesis that ρ < 0 implies

φZt (u) ∈ L1. (6.12)

For the SVJ and SVSJ models, we can price an option under the fixed

parameters of the P-measure in ΩP , where ΩP is defined in equation (6.3) of

subsection 6.2.1 above. Moreover by Remark 6.7 above, for any t ∈ (0, T ],

φZPt (u) ∈ L1. Thus, by the Fourier inversion theorem, Theorem 3.6, there

exists a density fP (zt) such that

fP (zt) =
1

2π

∫ +∞

−∞
e−iuxφZPt (u) du, and fP (zt) is continuous. (6.13)

Similarly, for θ ∈ ΩQ, where the risk-neutral parameter space ΩQ is defined

in equation (6.4) of subsection 6.2.1 above, φ
ZQt

(u; θ) ∈ L1, and there exists

a density fQ (zt; θ) such that fQ (zt; θ) is continuous for all θ ∈ ΩQ, and

fQ (zt; θ) =
1

2π

∫ +∞

−∞
e−iuxφ

ZQt
(u; θ) du. (6.14)

Remark 6.8 (Absolute Continuity) Fix t ∈ (0, T ], and let FP (zt) and

FQ (zt; θ) be the distribution functions of ZPt and ZQt respectively. Since

φZPt (u) and φ
ZQt

(u; θ) are both L1, equations (6.13) and (6.14) respectively

imply that each of FP (zt) and FQ (zt; θ) has a continuous and bounded

derivative for each [a, b] ⊂ R. Hence, by the mean value theorem, each of

FP (zt) and FQ (zt; θ) is Lipschitz on each [a, b] ⊂ R. This implies that

each of FP (zt) and FQ (zt; θ) is absolutely continuous on each [a, b] ⊂ R,

see Royden and Fitzpatrick (2010), p. 122. Thus, the measures induced by

FP (zt) and FQ (zt; θ) respectively, are absolutely continuous measures for

all Borel sets B, see Billingsley (1995), p. 413.
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For some fixed t ∈ (0, T ], based on Remark 6.8 above, we define Pt and

Qt (θ) to be the absolutely continuous measures associated with the contin-

uous densities fP (zt) such that fQ (zt; θ) defined respectively by equations

(6.13) and (6.14). Thus, from equation (6.8) in subsection 6.2.2 we obtain

a continuous symmetric relative entropy of the form

HS (Qt (θ) , Pt) =


+∞∫
−∞

log
(
fQ(zt;θ)
fP (zt)

)
∆f (zt; θ) if Qt ∼ Pt,

∞ otherwise

 , (6.15)

where we define ∆f (zt; θ) =
(
fQ (zt; θ)− fP (zt)

)
dzt. In the summary

below we show how to approximate equation (6.15) above with two fast

Fourier transforms. First, we give some necessary details of FFT.

Let t ∈ (0, T ] be fixed. The Fourier inversions in equations (6.13) and

(6.14) above that we wish to approximate by FFT are both of the form

f (zt) =
1

2π

∫ +∞

−∞
e−iuztφZt (u) du. (6.16)

Recall from subsection 3.2.1 that by Corollary 3.7, since a density is purely

real, equation (6.16) above simplifies to

f (zt) =
1

π
Re

∫ ∞
0

e−iuztφZt (u) du. (6.17)

Similar to subsection 3.2.3, the approximation of equation (6.17) under the

DFT begins with the uniform discretization of the domain of integration,

uj = (j − 1) ∆u, j = 1, 2, ..., N , (6.18)

intending a left-endpoint Riemann sum for f (zt,k) at each zt,k ∈ [−b, b] under

the uniform discretization of the transform domain given by

zt,k = −b+ (k − 1) ∆zt, k = 1, 2, ..., N, where b =
N

2
∆zt. (6.19)
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For the relative entropy methods of this chapter, we recommend the choices

N = 212 with ∆u = 1
4 , specified in Carr and Madan (1999), see p. 69. As

in subsection 3.2.3, this leads under Nyquist optimal sampling to

∆zt =
π

512
, and b = 4π. (6.20)

For some t ∈ (0, T ], and for each zt,k ∈ [−b, b], the Riemann approximation

with quadrature weights wj for the real part of the integral in equation

(6.17) above is given by

f (zt,k) ≈ Re

∫ A

0
e−iuzt,kφZt (u) du

≈ Re
∑N

j=1
e−iujzt,kφZt (uj)wj∆u, k = 1, 2, ..., N , (6.21)

where A = N∆u. We use the trapezoidal rule for the quadrature weights wj ,

see subsection 3.4.1. Definition 3.12 in subsection 3.2.3 gives the standard

DFT. From Carr and Madan (1999), p. 68, the Riemann approximation in

equation (6.21) above can be written as a non-centred and shifted standard

DFT. By this analysis, we obtain for each zt,k, k = 1, 2, ..., N ,

f (zt,k) ≈ Re
∑N

j=1
e−iujzt,kφZt (uj)wj∆u

= Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujφZt (uj)wj∆u. (6.22)

Then, since N = 212 is a power of 2, the DFT in equation (6.22) above can

be evaluated using FFT, see subsection 3.2.4. However, for the purposes of

this chapter, we only need a subset of the N points computed by FFT. For

a given t ∈ (0, T ], we will keep only the points corresponding to

zt,k ∈
(
−π
√
t, π
√
t
)

, k = 1, 2, ..., N∗t , (6.23)

where N∗t counts the number of FFT points such that zt,k ∈
(
−π
√
t, π
√
t
)
.
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Summary of FFT Based Evaluation

Fix t ∈ (0, T ]. Then let Pt and Qt (θ) be absolutely continuous measures

with associated densities

fP (zt) =
1

2π

∫ +∞

−∞
e−iuztφZPt (u) du, and (6.24)

fQ (zt; θ) =
1

2π

∫ +∞

−∞
e−iuztφ

ZQt
(u; θ) du, (6.25)

respectively, where Qt (θ) is a risk-neutral measure under the condition

θ ∈ ΩQ, see equation (6.4) in subsection 6.2.1, and where both φZPt (u)

and φ
ZQt

(u; θ) are L1. Define ∆f (zt; θ) =
(
fQ (zt; θ)− fP (zt)

)
dzt. We

approximate the continuous symmetric relative entropy from equation (6.15)

above, given by

HS (Qt (θ) , Pt) =


+∞∫
−∞

log
(
fQ(zt;θ)
fP (zt)

)
∆f (zt; θ) if Qt ∼ Pt,

∞ otherwise

 , (6.26)

on two separate levels, as follows.

First of all, by equation (6.21) above, the densities fP (zt) and fQ (zt; θ),

defined respectively by equations (6.24) and (6.25), have FFT approxima-

tions given by

fP (zt,k) ≈ Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujφZPt (uj)wj∆u, (6.27)

fQ (zt,k; θ) ≈ Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujφ
ZQt

(uj ; θ)wj∆u, (6.28)

both for k = 1, 2, ..., N ,

where in each case zt,k lies on a uniform discretization of the interval [−4π, 4π].

In accordance with equation (6.23) above, given t ∈ (0, T ], for each of the

FFT approximations above, we only retain the points corresponding to the

condition zt,k ∈
(
−π
√
t, π
√
t
)

and this entails that k = 1, 2, ..., N∗t .
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Secondly, for convenience, for k = 1, 2, ..., N∗t , define

∆g (zt,k; θ) = log

(
fQ (zt,k; θ)

fP (zt,k)

)(
fQ (zt,k; θ)− fP (zt,k)

)
∆zt, (6.29)

where ∆zt is the uniform grid spacing under each FFT approximation. Then

we obtain

DS∗ (Qt (θ) , Pt) =


N∗t∑
k=1

∆g (zt,k; θ) if Qt ∼ Pt,

∞ otherwise

 . (6.30)

Notice that the function of θ defined by DS∗ (Qt (θ) , Pt) in equations (6.29)

and (6.30) above forms a Riemann approximation to the continuous sym-

metric relative entropy HS (Qt (θ) , Pt) in equation (6.26). This function

DS∗ (Qt (θ) , Pt) defined above is the function that we will use to approx-

imate the symmetric relative entropy between two absolutely continuous

measures Pt andQt (θ), for some t ∈ (0, T ], and for θ ∈ ΩQ, for the remainder

of this chapter. The next subsection treats the average symmetric relative

entropy in terms of the above approximating function DS∗ (Qt (θ) , Pt).

6.2.4 The Average Symmetric Relative Entropy

Recall that ΩP and ΩQ were respectively defined in equations (6.3) and

(6.4) of subsection 6.2.1 above. The data for the Parametric Minimum

Entropy Martingale Measure (PMEMM) has been filtered into the two sets

of parameter estimates, θP ∈ ΩP and θ∗Q ∈ ΩQ. The estimates for θ∗Q ∈ ΩQ

were obtained from spot call options prices (January 19th, 2011) on Apple

stock, see Table 5.3 in subsection 5.3.2, and will be used as the prior for each

respective model. The role of the prior will be discussed along with the two

stage optimization scheme in Section 6.3 below. The estimates for θP ∈ ΩP

were obtained from historical data on Apple stock log-returns (1991-2011)

by the Approximate Maximum Likelihood method (AML), see Table 4.2 in
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subsection 4.4.2. Recall that our approximation to the symmetric relative

entropy is the function of θ ∈ ΩQ given by DS∗ (Qt (θ) , Pt) in equations

(6.29) and (6.30) from subsection 6.2.3 above, for fixed θP ∈ ΩP . Let

M be the number of annually based maturity dates used to compute the

average symmetric relative entropy, and consider the right endpoint uniform

discretization of the maturity range t ∈ (0, T ] given by

t (m) = m∆t, 1, 2, ...,M , (6.31)

where ∆t =
T

M
.

The function of θ ∈ ΩQ that we effectively minimize is the average symmetric

relative entropy defined by

AS (θ) =
1

M

M∑
m=1

DS∗
(
Qt(m) (θ) , Pt(m)

)
. (6.32)

Notice that by the definition of DS∗
(
Qt(m) (θ) , Pt(m)

)
in equation (6.30)

from subsection 6.2.3 above , if AS (θ) < ∞, then Qt(m) (θ) ∼ Pt(m), for

all m = 1, 2...,M . Based on this, we expect that the stronger condition,

Q (θ) ∼ P , for t ∈ (0, T ], will hold approximately, provided that AS (θ) <∞.

6.3 Minimizing the Average Relative Entropy

Recall from equation (6.32) in subsection 6.2.4 immediately above that we

wish to minimize the average symmetric relative entropy given by

AS (θ) =
1

M

M∑
m=1

DS∗
(
Qt(m) (θ) , Pt(m)

)
, (6.33)

where by equation (6.30) of subsection 6.2.3, DS∗
(
Qt(m) (θ) , Pt(m)

)
is our

proposed FFT approximation to the parametric symmetric relative entropy

at maturity t (m) = m∆t, m = 1, 2, ...,M . But, as we mentioned at the
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outset, relative entropy is not necessarily convex in the model parameters,

see Cont and Tankov (2004b), p. 11. Hence, our function AS (θ), for the

average symmetric relative entropy in equation (6.33) above, may or may not

be convex in the model parameters θ ∈ ΩQ. This is similar to the situation

in Cont and Tankov (2004b), see p. 13, where it is believed that the sum of

squared call options pricing errors, ‖C (θ)− C‖2, is not necessarily convex.

Moreover, it is expected that due to this lack of convexity in the objective

function, nonlinear least squares minimization may exhibit flat regions near

the solution, see Cont and Tankov (2004b), p. 13. Furthermore, there

may be local minima, see Cont and Tankov (2004b), p. 14. Since lack of

convexity makes the minimization of the sum of squared call options pricing

errors, ‖C (θ)− C‖2, an unstable problem in the manner described above, we

expect that minimization of the average symmetric relative entropy, AS (θ),

is also an unstable problem, given that AS (θ) is not necessarily convex.

In subsection 6.3.1 below we propose a two stage optimization routine

to stabilize the minimization of AS (θ). This method is adapted from Engl,

Hanke, and Neubauer (1996), see p. 250. Then in subsection 6.3.2 we show

that our stabilization method is equivalent to the minimization of AS (θ)

combined with a weighted squared L2 norm penalty function. This will

explain why we choose to view θ∗Q as the prior. This equivalence is also

discussed in Engl, Hanke, and Neubauer (1996), see p. 250.

6.3.1 The Two Stage Optimization Routine

Following the same procedure as in Cont and Tankov (2004b), pp. 25-26,

stage one of our stabilization routine for the minimization of the average

symmetric relative entropy AS (θ) consists of estimating the model error δ

by the unstabilized minimum value

δ = min
θ∈ΩQ

AS (θ) . (6.34)
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If AS (θ) suffers from a flat region near the solution, then δ will be an

accurate estimate. However, if AS (θ) suffers from local minima, then

the estimate δ will be high. For the results in Section 6.5 below we also

keep track of the unstabilized solution for the parametric minimum entropy

martingale, PMEMM(0), whose parameter vector we will denote by

θ
(0)
Q = arg min

θ∈ΩQ

AS (θ) . (6.35)

Recall that we refer to θ∗Q ∈ ΩQ as the prior, and for each model this is given

by the parameters implied by call options on Apple stock from January 19th,

2011, see Table 5.3 in subsection 5.3.2. In stage two we obtain

θ̃Q = arg min
θ∈ΩQ

∥∥θ − θ∗Q∥∥2
(6.36)

subject to AS (θ) ≤ δ,

as the stabilized minimizer of AS (θ), see Engl, Hanke, and Neubauer (1996),

Eq. (10.19), p. 250. We refer to θ̃Q as the parametric minimum entropy

martingale (PMEMM). It represents the closest parameterized measure

to the prior θ∗Q such that the average symmetric relative entropy AS (θ)

is bounded above by its unstabilized minimum value δ. The above two

stage optimization routine is what we used to obtain the PMEMM results

in Section 6.5 below.

6.3.2 Equivalence to Tikhonov Regularization

For some value of γ > 0, determined as a function of the model error δ,

a Tikhonov regularization for the minimization of the average symmetric

relative entropy AS (θ), with θ∗Q acting as the prior, is given by

θ̃Q = arg min
θ∈ΩQ

[
AS (θ) + γ

∥∥θ − θ∗Q∥∥2
]

, (6.37)
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see Engl, Hanke, and Neubauer (1996), p. 243. The penalty parameter θ∗Q

is referred to as the prior in this type of regularization scheme, see Cont and

Tankov (2004b), p. 17. The penalty coefficient γ > 0 in equation (6.37) may

be determined from the two stage optimization routine of subsection 6.3.1

above as follows, see Engl, Hanke, and Neubauer (1996), p. 250. Assume

that the model error δ, appearing as the upper bound of the constraint

in equation (6.36) of subsection 6.3.1 above, has been determined in some

suitable fashion. The parameter δ is often called the noise level. The

Lagrangian corresponding to equation (6.36) in the two stage method of

subsection 6.3.1 above is given by

θ̃Q (λ) = arg min
θ∈ΩQ

[∥∥θ − θ∗Q∥∥2
+ λ (AS (θ)− δ)

]
, (6.38)

where λ > 0 is the Lagrange multiplier. Let λ∗ be the optimal Lagrange

multiplier in equation (6.38) above, and let

γ =
1

λ∗
. (6.39)

Then, after re-arranging terms, and ignoring the constant δ, equation (6.38)

above becomes the Tikhonov regularization scheme in equation (6.37). The

idea behind a regularization scheme such as equation (6.37) above is that

for an optimal value of the penalty coefficient γ the penalized minimization

problem becomes sufficiently convex, see Cont and Tankov (2004b), p. 20.

We have illustrated above that we achieve the same thing by using our

two stage optimization routine from subsection 6.3.1 which determines an

optimal Lagrange multiplier λ∗ = 1
γ .

6.4 Relative Entropy in the Finance Literature

In this section we briefly summarize some of the foundational papers from

the literature on relative entropy minimization in finance.
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6.4.1 The Minimum Relative Entropy Distribution

The Minimum Relative Entropy Distribution (MRED), see Reesor (2001),

pp. 22-23, is known from the field of Information Science, see Cover and

Thomas (1991), p. 277, and has been widely adopted in the finance literature

as a nonparametric method to obtain a risk-neutral measure, see for example

Avellaneda (1998), pp. 451-453, and Stutzer (1996), pp. 1639-41. Below

we present the MRED minimization problem in the discrete case. But, it

also generalizes to the continuous case, see Avellaneda (1998), p. 451. The

discrete relative entropy of Q given P is simply the discrete case of equation

(6.5) from subsection 6.2.2 above, given by

D (Q|P ) =


N∑
k=1

log
(
qk
pk

)
qk if Q� P ,

∞ otherwise

 , (6.40)

see Cover and Thomas (1991), p. 277, and Reesor (2001), pp. 20-21.

The Minimum Relative Entropy Distribution (MRED) is the solution, with

D (Q|P ) given by equation (6.40) above, to the problem

min
Q

D (Q|P ) (6.41)

subject to EQ [Gj (X)] = Cj , j = 1, 2, ...,M , (6.42)

qi ≥ 0, i = 1, 2, ..., N , and

N∑
i=1

qi = 1,

see Reesor (2001), p. 22-23. The quantity X in equation (6.42) above is a

state-variable for the economy, and the Cj , j = 1, 2, ...,M , are discounted

cash-flows of traded assets, see Avellaneda (1998), p. 451. The typical

assumption is that the functions Gj (X) in equation (6.42) above are the

discounted payoffs of European call options, e−rT [ST −Kj ]
+, and the Cj

are the corresponding call options prices, see Cont and Tankov (2004b),

p. 21. The problem (6.41) above is convex in Q, and has a closed form
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solution for the MRED in terms of the Lagrangian, see Cover and Thomas

(1991), p. 277, Reesor (2001), p. 23, and Avellaneda (1998), p. 451. The

main drawback of the Minimum Relative Entropy Distribution is that for

a given P-measure, P , the equality constraints in (6.42) above may not be

met within reasonable bounds. In such cases, the solution does not exist,

see Cont and Tankov (2004b), p. 21.

6.4.2 The Method of Cont and Tankov

Cont and Tankov (2004b), see p. 18, considers the least squares options

price calibration problem penalized by relative entropy. A similar prob-

lem was considered in Avellaneda et al (2001), see p. 99. In Cont and

Tankov (2004b), the log-price Yt is modeled as a Lévy process, and further

specialized into a jump-diffusion with finite-activity jumps. This allows the

log-price to be described solely by the volatility σ, and a nonparametric Lévy

measure ν, on a finite grid. After a suitable discretization of the problem,

see Cont and Tankov (2004a) pp. 443-44, pricing is handled by a version of

the Carr and Madan (1999) formula, see Cont and Tankov (2004a) p. 445,

and the relative entropy of Q given P may be expressed as

H (ν) =
T

2σ2

 N∑
j=1

(eyj − 1)
(
νj − νPj

)2

(6.43)

+ T

N∑
j=1

[
νj log

(
νj

νPj

)
+ νPj − νj

]
,

for maturity T , with νQj = νj , see Cont and Tankov (2004b), p. 41. Notice

that σ is not a parameter on the left in H (ν) as defined in equation (6.43).

This is because two Lévy processes are equivalent if and only if they share

the same volatility σ, and have equivalent Lévy measures, see Cont and

Tankov (2004b), p. 6. Hence, σ = σP is fixed in the model, see Cont and
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Tankov (2004b), p. 10. Thus, the problem becomes

min
ν

[
‖C (ν)− C‖2 + γH (ν)

]
, (6.44)

for some penalty coefficient γ > 0, see Cont and Tankov (2004b), p. 18.

Notice that in the solution to problem (6.44) above, H (ν) <∞ implies that

Q� P . It is further proven in Cont and Tankov (2006), see p. 10, that if

the log-price C.F. under P is L1, then Q ∼ P .

The penalty coefficient γ > 0 is estimated as follows, see Cont and

Tankov (2004b), pp. 25-26. First estimate the model error by

δ2 = min
ν
‖C (ν)− C‖2 . (6.45)

Then, define the function of γ > 0 given by

ν (γ) = arg min
ν

[
‖C (ν)− C‖2 + γH (ν)

]
. (6.46)

By the Morozov discrepancy principle, see Engl, Hanke, and Neubauer

(1996), p. 84, for some a > 1,

γ = sup
γ>0
{‖C (ν (γ))− C‖ ≤ aδ} . (6.47)

Cont and Tankov (2004b), see p. 16, seeks to stabilize the least squares

calibration problem. In Section 6.3 above, we stabilized the minimization

of the average symmetric relative entropy, as defined in equation (6.32)

from subsection 6.2.4, in effect with a squared L2 norm penalty. While we

estimate the model error similar to equation (6.45) above, we are able to

obtain γ > 0 by a simple Lagrange multiplier technique.

Placing the Method of Cont and Tankov in the Literature

Citing from Cont and Tankov (2004b), pp. 20-21, there is a method for

incomplete markets from Kallsen (2002) that produces the minimal entropy
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consistent martingale measure (MECMM). The MECMM minimizes the

relative entropy of Q given P , but is also consistent with a basket of market

call options prices on the evaluation day. While Kallsen (2002) provides

theory in support of the MECMM, and related measures, the paper offers

no method of numerical implementation. Strictly speaking, the Method

of Cont and Tankov is not equivalent to the Kallsen (2002) MECMM, see

Cont and Tankov (2004b), p. 21. This is because the Method of Cont

and Tankov restricts the log-price to the class of Lévy processes, or more

specifically jump-diffusions. However, given this restriction, the Method of

Cont and Tankov provides a computable approximation to the MECMM,

see Cont and Tankov (2004b), p. 21.

6.4.3 The Minimal Entropy Martingale Measure

Let P be the objective measure for the discounted stock price e−rtSt, let

QM =
{
Q� P | such that Q is a martingale measure for e−rtSt

}
, and also

let QME = {Q ∈ QM | Q ∼ P}. Recall from subsection 6.2.2 above that in

equation (6.5) we defined relative entropy to be the function of Q given by

I (Q|P ) =

 EQ
[
log
(
dQ
dP

)]
= EP

[
dQ
dP log

(
dQ
dP

)]
if Q� P ,

∞ otherwise

 . (6.48)

As given in Frittelli (2000), p. 41, the Minimal Entropy Martingale Measure

(MEMM) is defined by the solution Q0 to the problem

inf
Q∈QM

I (Q|P ) , (6.49)

see Frittelli (2000), p. 41. Note that the MEMM is not necessarily structure

preserving. The model under the MEMM may differ in structure from

the model under P . This happens in the Barndorff-Nielsen and Shephard

stochastic volatility model, see Rheinländer and Steiger (2006), p. 1320.
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The sufficient conditions for the existence of the MEMM given in Frittelli

(2000), see p. 42, are as follows. Each discounted stock price process is

bounded, and there exists Q ∈ QM such that I (Q|P ) <∞. It is also shown

that if there exists Q ∈ QME such that I (Q|P ) <∞, then the MEMM, Q0,

is equivalent to P , and this is true even if the processes are unbounded, see

Frittelli (2000), p. 43. Note that uniqueness of the solution Q0 for the

MEMM follows directly from the convexity of relative entropy in problem

(6.49) above. Moreover, an options price computed under the MEMM may

be viewed as the limit of the exponential utility indifference price, as the rate

of risk aversion approaches zero, see Cont and Tankov (2004a), p. 344. In

the case of an exponential Lévy process for the discounted stock price under

P , the conditions for the existence of the MEMM simplify considerably, and

the existence merely of a solution to a system containing an equality and

an upper bound determines the existence of the MEMM, see Fujiwara and

Miyahara (2003), p. 515. Moreover, the MEMM for an exponential Lévy

process is another exponential Lévy process, and when this MEMM exists

it is the Esscher transform of a modified log-price with a specified transform

parameter, see Fujiwara and Miyahara (2003), pp. 515-16.

Pricing Call Options under the Heston MEMM and PMEMM

To the best of our knowledge, the existing literature on the MEMM has

not treated either SVJ model or the SVSJ model. However, it was shown

in Hobson (2004), see pp. 554-55, that the MEMM for the Heston model

exists. In terms of the stock price St, the change of measure corresponding

to the Heston MEMM is given by

MS
t =

dQSt
dPSt

, t ∈ [0, T ] , (6.50)

see Hobson (2004), p. 554. The expression for the Heston MEMM change

of measure, MS
t in equation (6.50) above, even if t ∈ [0, T ] is fixed, is quite
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complicated, see Hobson (2004), p. 554. For example, to the best of

our knowledge, its Fourier transform is not known in closed form. Hence,

numerical evaluation of MS
t , in equation (6.50) above, is beyond the scope

of this thesis. However, we will show how to price a call option under

the Heston MEMM, assuming that MS
t in equation (6.50) above can be

evaluated. First, fix some t ∈ (0, T ]. Then the Heston MEMM European

call price is given by

CMEMM
t (K) = e−rtEQ

[
(St −K)+]

= e−rt
∫

ΩS

MS
t (st −K)+ dPSt . (6.51)

A more direct method of pricing call options under the Heston MEMM is

provided in He and Zhu (2016). With the Heston MEMM process described

by a suitable SDE, He and Zhu (2016), see p. 237, propose a boundary value

problem (BVP) with the Heston MEMM call price as its solution. Since,

the numerical solution of this BVP appears tractable, we propose it as our

method of computing Heston MEMM call prices for future research.

By contrast, the pricing of a European call option, CPMEMM
t (K), under

the Heston PMEMM is simple. Recall from subsection 6.2.1 above that the

Heston PMEMM is structure preserving, and that with µ0 = r, only the

other model parameters change. Thus, the exponentially affine risk-neutral

log-price characteristic function is known in closed form, see equation (6.11)

from subsection 6.2.3, with PMEMM parameters θ̃Q ∈ ΩQ. Hence, we can

price a call option with maturity t ∈ (0, T ] using the log-moneyness version

of the Carr and Madan formula from subsection 5.2.2.

Comparing the PMEMM to the MEMM

Similar to Cont and Tankov (2004b), pp. 20-21, in comparing their method

to the MECMM of Kallsen (2002), we say that the PMEMM is not equivalent
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to the MEMM. For one, the PMEMM minimizes symmetric relative entropy,

whereas the MEMM minimizes relative entropy. But more importantly, the

PMEMM is structure preserving with changing parameters, whereas the

MEMM allows model structure to change while preserving the parameters.

To the extent that the changing parameters of the PMEMM may actually

correspond to the changing structural form of the MEMM, in terms of the

graph of the risk-neutral density, or the values of the computed call prices,

there is room to consider the PMEMM as a computable approximation to an

alternative version of the MEMM that minimizes symmetric relative entropy

in place of minimizing relative entropy. However, in the absence of a means

for direct comparison, we may only conclude that the PMEMM is an easily

computable alternative solution to a particular minimum relative entropy

problem that may or may not differ from the MEMM.

6.5 PMEMM Results for Apple Stock

All results in this section were computed on an Intel Xeon 2xE5-2643v3

dual processor at 3.4 GHz on 12 cores. The two stage routine for the

minimization of the average symmetric relative entropy AS (θ), as described

in subsection 6.3.1 above was implemented for all five models, using the

function fmincon from Matlab R2016a. Based on the January 19th, 2011

Apple stock call options data, we chose T = 2 years, with M = 24 months

in equation (6.32) for AS (θ) from subsection 6.2.4.

6.5.1 Main Line Results and Forecasts

The SVSJ Merton model, the SVJ Merton model, and the SVJ Variance

Gamma model, each for Apple stock (1991-2011), form the main line cases

for this section. Results for these three cases are given below.
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PMEMM: Main Line Results

Θ µ0 σ2
0 κ η ω ρ λ α β

SVSJ Merton

θP 0.360 0.167 3.849 0.167 0.643 -0.278 91.38 0.062 0.009

θ∗Q r 0.051 1.805 0.103 0.441 -0.706 64.25 0.082 -0.003

θ̃Q r 0.138 1.827 0.155 0.264 -0.606 64.25 0.104 0.007

θ
(0)
Q r 0.569 812.0 0.090 4.658 -0.154 136.4 0.104 -0.046

Total CPU Time 67.1 sec Risk-Free Rate r 0.293%

Model Error δ 0.572 Lagrange Multiplier λ∗ 1.332

SVJ Merton

θP 0.361 0.175 3.995 0.175 0.726 -0.268 10.22 0.070 0.007

θ∗Q r 0.058 1.767 0.136 0.567 -0.662 1.637 0.095 -0.008

θ̃Q r 0.198 1.809 0.208 0.346 -0.309 1.647 0.149 -0.022

θ
(0)
Q r 11.02 8799 0.160 37.25 0.450 2.789 0.145 -0.091

Total CPU Time 74.7 sec Risk-Free Rate r 0.293%

Model Error δ 0.578 Lagrange Multiplier λ∗ 6.449

SVJ Variance Gamma

θP 0.367 0.161 3.421 0.161 0.691 -0.293 13.537 0.068 0.008

θ∗Q r 0.057 1.736 0.135 0.559 -0.668 1.337 0.111 -0.014

θ̃Q r 0.196 1.777 0.214 0.343 -0.349 1.349 0.165 -0.018

θ
(0)
Q r 1.436 1333 0.162 6.145 -0.056 2.520 0.156 -0.093

Total CPU Time 107 sec Risk-Free Rate r 0.293%

Model Error δ 0.599 Lagrange Multiplier λ∗ 5.927

θP The Historical P-Measure Estimated by AML

θ∗Q The Prior Q-Measure Estimated by Nonlinear Least Squares

θ̃Q The PMEMM Estimated by the Two Stage Method

θ
(0)
Q The Unstabilized PMEMM from Stage One to Obtain Model Error δ

Table 6.2: PMEMM Parameter Estimates: Apple Stock: Main Cases.

201



-4 -3 -2 -1 0 1 2 3 4

Maturity t = 300 days

0

0.2

0.4

0.6

0.8

1

1.2
SVSJ Merton Normalized Log-Price Densities

P-HISTORICAL
Q-OPTIONS
Q-PMEMM
Q-PMEMM(0)

Figure 6.1: PMEMM: Normalized Log-Price Densities: SVSJ Model.
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Figure 6.2: SVSJ PMEMM: ATM Discounted Call Payoff Forecast.
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Figure 6.3: PMEMM: Normalized Log-Price Densities: SVMJ Model.
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Figure 6.4: SVMJ PMEMM: ATM Discounted Call Payoff Forecast.
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Figure 6.5: PMEMM: Normalized Log-Price Densities: SVVG Model.
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Figure 6.6: SVVG PMEMM: ATM Discounted Call Payoff Forecast.
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Analysis of Main Line Results

We will focus here on the results for the SVSJ Merton model from Table 6.2,

Figure 6.1, and Figure 6.2. It is clear from Figure 6.3 and Figure 6.4 for

the SVJ Merton model, as well as Figure 6.5 and Figure 6.6 for the SVVG

model, that these cases are similar. Table 6.2 shows that the unstabilized

estimate, θ
(0)
Q , of the PMEMM for the SVSJ Merton model has a very high

value of κ, with an unrealistically high value of ω, suggesting a sharp struggle

to contain the volatility of the volatility. This is very different from the

stabilized estimate, θ̃Q, of the PMEMM for the SVSJ Merton model in

Table 6.2 which has been influenced by the prior θ∗Q. The stabilization

process has lead to an estimate of the PMEMM, θ̃Q, for the SVSJ model in

Table 6.2 with a modest value of κ, and a realistic value of ω. But, despite

the difference between these two estimates, θ̃Q and θ
(0)
Q , of the PMEMM for

the SVSJ Merton model, Figure 6.1 indicates that the graphs of the two

corresponding normalized log-price densities are essentially the same. The

maturity of 300 days was chosen in Figure 6.1 since it lies off the monthly

maturity grid, and is also relatively late within the two year time horizon.

Main Line Forecasts

In Figure 6.2, Figure 6.4, and Figure 6.6, respectively, we have plotted a daily

sequence of discounted call option payoffs on Apple stock at-the-money for

the SVSJ Merton, SVJ Merton, and SVVG models. The evaluation day

is January 19th, 2011, and the maturities run from 15 days to 504 days

past this date. The true values under the P-measure are based on realized

historical prices of Apple stock. For the three Q-measure based forecasts

considered in each respective figure, the Carr and Madan (1999) formula

was used, under the parameters in Table 6.2, to obtain the forecasts of the

at-the-money discounted call option payoffs. Focusing again on the SVSJ
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Merton model in Figure 6.2 above, observe that for the stabilized and un-

stabilized PMEMM estimates, θ̃Q and θ
(0)
Q , from Table 6.2, the discounted

call option payoff forecasts are essentially the same, suggesting that only

the graph of the log-price density matters, and not the parameters. Also,

this shows that in the main line case, the prior θ∗Q does not influence the

PMEMM options price forecasts. The prior only influences our choice of

the optimal parametric solution θ̃Q. But, we prefer the stabilized estimate

of the PMEMM, θ̃Q, since it is consistent with our prior beliefs about para-

metric structure. For the practical benefits of the PMEMM forecast, as

compared to the option implied Q-measure forecast, we refer to Figure 6.2

where the case is illustrated for the SVSJ Merton model. Observe that

in the last 250 days, the forecast of the at-the-money call options priced

under the PMEMM is much closer to the graph of the realized discounted

at-the-money call payoffs based on the historical prices of Apple stock, than

the forecast of the at-the-money call options priced under the option im-

plied Q-measure is. As pointed out in Chernov and Ghysels (2000), see p.

447, the option implied Q-measure is only sufficient for shorter maturities.

Longer maturities require the excess kurtosis of the return based P-measure

in order to be well priced. Observe in Figure 6.1 for the SVSJ Merton

model that the density for the risk-neutral PMEMM has the same shape as

the graph of the density for the historical P-measure, suggesting that Q ∼ P

holds at the stated level of the maturity. Moreover, observe in particular

that the PMEMM density has the same wide hips as the historical return

based density. This indicates excess kurtosis, and it is why the PMEMM

outperforms for later maturities. However, the option implied Q-measure

is clearly better for shorter maturities. Lastly, since each model produces a

similar PMEMM forecast, we believe it is the PMEMM itself, and not the

choice of model, that leads to long term forecasting success.
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6.5.2 Additional Results and Forecasts

The additional cases are the SVJ Meixner model, and the Heston model.

Their behaviour is essentially the same as the main line cases. However,

the SVJ Meixner model appears to suffer from a high estimate of the model

error δ, and the P-measure for the Heston model is quite different from

the prior Q-measure. The analysis will investigate these differences, and

provide a modified approach in the Heston case.

Θ µ0 σ2
0 κ η ω ρ λ α β

SVJ Meixner

θP 0.368 0.152 3.256 0.152 0.715 -0.299 5.227 0.166 0.277

θ∗Q r 0.056 1.720 0.134 0.554 -0.670 0.396 0.293 -0.380

θ̃Q r 0.190 1.741 0.231 0.389 -0.500 0.448 0.414 -0.362

θ
(0)
Q r 1.097 1588 0.222 21.62 -0.889 225.2 0.011 -0.601

Total CPU Time 56.4 sec Risk-Free Rate r 0.293%

Model Error δ 0.601 Lagrange Multiplier λ∗ 0.5392

Heston

θP 0.254 0.226 21.98 0.226 2.428 -0.125 -

θ∗Q r 0.071 1.973 0.148 0.604 -0.556 -

θ̃Q r 0.229 1.997 0.208 0.436 -0.259 -

θ
(0)
Q r 0.300 28.05 0.210 2.873 -0.161 -

Total CPU Time 50.4 sec Risk-Free Rate r 0.293%

Model Error δ 0.286 Lagrange Multiplier λ∗ 0.9562

θP The Historical P-Measure Estimated by AML

θ∗Q The Prior Q-Measure Estimated by Nonlinear Least Squares

θ̃Q The PMEMM Estimated by the Two Stage Method

θ
(0)
Q The Unstabilized PMEMM from Stage One to Obtain Model Error δ

Table 6.3: PMEMM Parameter Estimates: Apple Stock: Extra Cases.
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Figure 6.7: PMEMM: Normalized Log-Price Densities: SVMX Model.
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Figure 6.8: SVMX PMEMM: ATM Discounted Call Payoff Forecast.
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Figure 6.9: PMEMM: Normalized Log-Price Densities: Heston Model.
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Figure 6.10: Heston PMEMM: ATM Discounted Call Payoff Forecast.
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Analysis of Additional Results and Forecasts

As illustrated in Figure 6.7 and Figure 6.8 above for the SVJ Meixner model,

as well as Figure 6.9 and Figure 6.10 above for the Heston model, the gen-

eral analysis provided in subsection 6.5.1 above will suffice for the additional

results and forecasts. But, notice in Figure 6.7 for the SVJ Meixner model

that the graphs of the PMEMM density and the unstabilized PMEMM(0)

density do not perfectly coincide. Accordingly, in Figure 6.8 the correspond-

ing forecasts of the discounted call options payoffs fail to coincide exactly.

But, also notice that the model error δ for the SVJ Meixner PMEMM is

the highest, and the optimal Lagrange multiplier λ∗ is the lowest, for any

of the models considered in this chapter, see Table 6.2 and Table 6.3 above.

We believe that this δ is a local minimum of problem (6.34), stage one of

subsection 6.3.1. Thus, it is too high. This causes slack in the constraint of

problem (6.36), stage two of subsection 6.3.1. Thus, the optimal Lagrange

multiplier λ∗ is too low, implying that the weight γ = 1
λ∗ on the prior is

too high. This unbalances the PMEMM slightly. Looking at Figure 6.7

for the SVJ Meixner model, we see that as the PMEMM approaches the

prior, it also moves closer to P. Thus, in Figure 6.8 for the SVJ Meixner

forecast, the PMEMM discounted payoff forecast lies above the unstabilized

PMEMM(0) discounted payoff forecast.

For the Heston case, observe in Table 6.3 that the parameter vector, θP ,

for the P-measure is quite far away from the prior, θ∗Q. The values of κ and

ω under the P-measure are too large. This occurs because the Heston model

has no jumps, and it is a poor fit to the Apple stock log-return data which

has many jumps. In order to obtain a solution for the PMEMM under this

particular Heston model, we need to induce extra weight on the prior. We

modify the two stage optimization from subsection 6.3.1 as follows. Stage
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one is the same with

δ = min
θ∈ΩQ

AS (θ) , (6.52)

as in equation (6.34). But, in stage two we scale up δ in the constraint of

equation (6.36) to aδ, for some factor a > 1. This is similar to the Morozov

discrepancy principle in equation (6.47) of subsection 6.4.2 above, covering

the method of Cont and Tankov. For the Heston case in Table 6.3 above,

we used a = 1.01. Stage two of the two stage optimization becomes

θ̃Q = arg min
θ∈ΩQ

∥∥θ − θ∗Q∥∥2
(6.53)

subject to AS (θ) ≤ aδ, for some a > 1.

Equation (6.53) above leads to a consistent solution for the Heston PMEMM

in Figure 6.9 above. But, notice in Figure 6.10 above that the distance

between the Heston PMEMM discounted call payoff forecast and the forecast

based on the prior is slightly less than the same for the other models.

6.5.3 On the Choice of M in the PMEMM

In this subsection we table the PMEMM results for Apple stock, again with

time horizon T = 2, but with various uniform maturity date sets corre-

sponding to M = 3, 6, 12, 24, 48, and 96. We refer to this simply as the

PMEMM(M). We give results for all five models, finding that as M reaches

96, only two of the models remain self-consistent in both the parameters

and the tabled call prices, while one of the models remains self-consistent

beyond M = 24 only in the tabled call prices, and the other two models di-

verge only when M = 96. Because only some of the models appear to have

a robust PMEMM(M) for large M , for practical purposes we recommend

monthly maturities, with M = 24 when T = 2, to cover all five models.
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SVJ Merton PMEMM(M)

σ2
0 κ η ω ρ λ α β

M = 3 0.173 1.791 0.184 0.409 -0.581 1.650 0.164 0.083

M = 6 0.179 1.790 0.194 0.413 -0.574 1.649 0.165 0.065

M = 12 0.185 1.792 0.200 0.395 -0.555 1.648 0.160 0.053

M = 24 0.198 1.809 0.208 0.346 -0.309 1.647 0.149 -0.022

M = 48 0.200 1.809 0.212 0.350 -0.325 1.646 0.144 -0.013

M = 96 0.200 1.808 0.213 0.346 -0.348 1.646 0.144 -0.006

Table 6.4: PMEMM(M) Parameters: Various M: SVMJ Model.

M = 3 M = 6 M = 12 M = 24 M = 48 M = 96

Time 16.7 30.7 42.5 74.7 367 242

Table 6.5: Time in Seconds to Compute PMEMM(M): SVMJ Model.

3 mo. 6 mo. 12 mo. 18 mo. 24 mo. S0 338.84

M = 3 32.047 45.493 64.341 78.677 90.643 r 0.2934%

M = 6 32.174 45.668 64.617 79.042 91.083 -

M = 12 32.311 45.840 64.847 79.314 91.386 -

M = 24 32.508 46.045 65.061 79.517 91.567 -

M = 48 32.507 46.043 65.079 79.558 91.630 -

M = 96 32.506 46.051 65.104 79.598 91.682 -

Table 6.6: ATM Call Prices at PMEMM(M): SVMJ Model.

As M reaches 96, the SVJ Merton PMEMM(M) is the most self-consistent,

in both parameters and call prices, of any of the four models with jumps.

Reasons for choosing M = 24 in this case are that the PMEMM(M) and the

call prices have sufficiently converged, and M = 24 is faster.
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Heston PMEMM(M)

σ2
0 κ η ω ρ

M = 3 0.225 1.995 0.211 0.436 -0.288

M = 6 0.226 1.993 0.213 0.452 -0.309

M = 12 0.227 1.994 0.212 0.450 -0.296

M = 24 0.229 1.997 0.208 0.436 -0.259

M = 48 0.225 1.993 0.215 0.459 -0.315

M = 96 0.229 1.997 0.209 0.437 -0.260

Table 6.7: PMEMM(M) Parameters: Various M: Heston Model.

M = 3 M = 6 M = 12 M = 24 M = 48 M = 96

Time 8.1 11.4 25.6 50.4 44.3 67.2

Table 6.8: Time in Seconds to Compute PMEMM(M): Heston Model.

3 mo. 6 mo. 12 mo. 18 mo. 24 mo. S0 338.84

M = 3 31.557 44.130 61.563 74.792 85.863 r 0.2934%

M = 6 31.645 44.247 61.723 74.990 86.096 -

M = 12 31.709 44.310 61.761 75.000 86.082 -

M = 24 31.802 44.378 61.733 74.875 85.871 -

M = 48 31.636 44.269 61.822 75.161 86.328 -

M = 96 31.785 44.369 61.750 74.915 85.931 -

Table 6.9: ATM Call Prices at PMEMM(M): Heston Model.

The PMEMM(M) for the Heston model is fully self-consistent as M reaches

96, as are the at-the-money call prices. But, this is partly because of the

extra coercion that was necessary in this case, in order to conform to the

prior. See equation (6.53) in subsection 6.5.2 above.
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SVJ Meixner PMEMM(M)

σ2
0 κ η ω ρ λ α β

M = 3 0.155 1.755 0.148 0.214 -0.066 0.793 0.426 -1.099

M = 6 0.187 1.745 0.217 0.350 -0.472 0.459 0.439 -0.356

M = 12 0.189 1.743 0.223 0.365 -0.478 0.453 0.425 -0.359

M = 24 0.190 1.741 0.231 0.389 -0.500 0.448 0.414 -0.362

M = 48 0.192 4.436 0.208 0.749 -0.263 1.292 0.245 -0.400

M = 96 0.181 4.948 0.198 0.826 -0.282 2.187 0.212 -0.232

Table 6.10: PMEMM(M) Parameters: Various M: SVMX Model.

M = 3 M = 6 M = 12 M = 24 M = 48 M = 96

Time 105 19.5 36.3 56.4 511 1071

Table 6.11: Time in Seconds to Compute PMEMM(M): SVMX Model.

3 mo. 6 mo. 12 mo. 18 mo. 24 mo. S0 338.84

M = 3 32.503 46.221 65.331 79.753 91.735 r 0.2934%

M = 6 32.430 46.198 65.729 80.641 93.072 -

M = 12 32.431 46.221 65.825 80.810 93.306 -

M = 24 32.398 46.221 65.933 81.027 93.619 -

M = 48 32.439 46.090 65.423 80.108 92.315 -

M = 96 32.405 46.080 65.436 80.127 92.334 -

Table 6.12: ATM Call Prices at PMEMM(M): SVMX Model.

Beyond M = 24, the SVJ Meixner PMEMM(M) is self-consistent in the

call prices only. The PMEMM(M) parameters themselves diverge from the

pattern at both M = 48 and M = 96. However, the choice M = 24 for the

SVJ Meixner PMEMM(M) appears to be reasonable.
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SVVG PMEMM(M)

σ2
0 κ η ω ρ λ α β

M = 3 0.161 1.754 0.197 0.440 -0.593 1.353 0.206 0.037

M = 6 0.188 1.769 0.204 0.312 -0.505 1.352 0.183 0.011

M = 12 0.186 1.761 0.209 0.370 -0.543 1.350 0.181 0.026

M = 24 0.196 1.777 0.214 0.343 -0.349 1.349 0.165 -0.019

M = 48 0.196 1.775 0.215 0.335 -0.386 1.349 0.165 -0.008

M = 96 0.242 34.993 0.241 1.315 -0.104 0.033 1.967 -5.315

Table 6.13: PMEMM(M) Parameters: Various M: SVVG Model.

M = 3 M = 6 M = 12 M = 24 M = 48 M = 96

Time 14.3 21.9 58.2 107 157 231

Table 6.14: Time in Seconds to Compute PMEMM(M): SVVG Model.

3 mo. 6 mo. 12 mo. 18 mo. 24 mo. S0 338.84

M = 3 31.534 45.126 64.471 79.285 91.657 r 0.2934%

M = 6 32.424 46.053 65.238 79.829 91.987 -

M = 12 32.327 45.961 65.216 79.895 92.140 -

M = 24 32.441 46.054 65.274 79.917 92.125 -

M = 48 32.441 46.068 65.317 79.984 92.211 -

M = 96 35.287 50.694 72.722 89.602 103.70 -

Table 6.15: ATM Call Prices at PMEMM(M): SVVG Model.

For M = 96, the PMEMM(M) for the SVVG model diverges from its well

established pattern, and in this case the at-the-money call prices are also

affected at M = 96. However, the choices M = 24 and M = 48 both appear

to be reasonable for the SVVG model PMEMM(M).
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SVSJ Merton PMEMM(M)

σ2
0 κ η ω ρ λ α β

M = 3 0.117 1.817 0.136 0.345 -0.676 64.252 0.105 0.055

M = 6 0.109 1.811 0.138 0.395 -0.690 64.252 0.116 0.041

M = 12 0.130 1.830 0.143 0.233 -0.597 64.252 0.114 -0.003

M = 24 0.138 1.827 0.155 0.264 -0.606 64.252 0.104 0.007

M = 48 0.143 1.827 0.162 0.272 -0.600 64.252 0.098 0.009

M = 96 0.011 0.854 0.508 0.450 -0.382 69.371 1E-4 -0.107

Table 6.16: PMEMM(M) Parameters: Various M: SVSJ Model.

M = 3 M = 6 M = 12 M = 24 M = 48 M = 96

Time 13.2 17.4 57.8 67.1 76.3 408

Table 6.17: Time in Seconds to Compute PMEMM(M): SVSJ Model.

3 mo. 6 mo. 12 mo. 18 mo. 24 mo. S0 338.84

M = 3 32.098 45.783 65.209 80.095 92.538 r 0.2934%

M = 6 31.677 45.448 65.185 80.390 93.112 -

M = 12 32.599 46.448 65.966 80.821 93.194 -

M = 24 32.598 46.436 66.008 80.934 93.375 -

M = 48 32.635 46.467 66.050 80.992 93.447 -

M = 96 21.676 39.927 72.151 99.542 122.95 -

Table 6.18: ATM Call Prices at PMEMM(M): SVSJ Model.

Again, for M = 96, the PMEMM(M) for the SVSJ Merton model diverges

from its pattern. Also in this case, the at-the-money call prices are affected

at M = 96. But, the choices M = 24 and M = 48 both remain reasonable

for the SVSJ Merton model PMEMM(M).
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In summary, we have found that the Heston and SVJ Merton models

each have a robust PMEMM(M) as M reaches 96. For the SVVG, and

SVSJ Merton models, we have found that for T = 2, M should not exceed

48. However, for the SVJ Meixner model it appears that we must choose

M = 24. For reasons of both stability and computational speed, we have

chosen M = 24 months, when T = 2, for all five models.

6.6 Conclusion

1. For each of the five models, the PMEMM provides a good forecast

of longer term at-the-money discounted call option payoffs. This is

consistent with the main result from Chernov and Ghysels (2000), that

the kurtosis found in historical returns is a necessary ingredient for the

pricing of late maturity options. But, the option implied Q-measure

provides a better forecast of the same, for shorter maturities. Note

that no particular model stands out, suggesting that it is the PMEMM

itself that leads to superior long term forecasting success.

2. In future research, we propose to obtain bootstrap standard errors for

the parameters of the PMEMM as follows. First, using the asymptotic

normal distribution from Remark 5.1 in subsection 5.3.2, simulate 100

copies of θ∗Q (m) ∈ ΩQ, m = 1, 2, ..., 100. Next, by using the same

P-measure parameters, θP ∈ ΩP , for each run, execute the two stage

optimization routine from subsection 6.3.1 for the PMEMM, obtaining

θ̃Q (m) ∈ ΩQ, m = 1, 2, ..., 100., corresponding to each θ∗Q (m) ∈ ΩQ,

m = 1, 2, ..., 100. Then compute bias, RMSE, and standard errors.

3. The PMEMM is an easily computable approximation to a version of

the minimum relative entropy Q-measure, proposed as a solution for

incomplete market models. In future research, we propose to make a
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direct numerical comparison between Heston call options priced under

the MEMM and the PMEMM, respectively. The Heston call options

under the MEMM will be priced in a manner similar to the numerical

boundary value problem solved in He and Zhu (2016). The Heston

call options under the PMEMM will be priced by the Carr and Madan

(1999) formula. This comparison will reveal any possible similarity

between the MEMM and the PMEMM.

4. For a fixed time horizon T , as the number M of uniformly placed

maturity dates used to compute the PMEMM gets large, the Heston

and SVJ Merton models appear to be the most self-consistent of the

five models considered for the PMEMM, in the sense that the PMEMM

parameters and at-the-money call prices stay on the same course as

M gets large for these two models in particular.
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Part III

Monte Carlo Methods
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Preface to Part III

This part covers aspects of the thesis that could only be treated by Monte

Carlo. In Chapter 7 we introduce a new conditional Monte Carlo pricing

technique, based on a conditional version of the Carr and Madan (1999)

formula. We call our method conditional FFT. Instead of averaging the

conditional call prices, we average the Fourier transforms of the respective

conditional damped call prices, and prove that this latter average converges

almost surely to the Fourier transform of the damped call price. Thus,

conditional FFT requires only one fast Fourier transform. Also in Chapter 7,

by conditioning on the jump intensity, we are able to calibrate the non-

affine Leveraged Jump Intensity (LJI) model from Chapter 2 to the selection

of spot options prices on Apple stock, as introduced in Chapter 5 above.

These results show that the model for the leverage effect provided by the

LJI model leads to a much lower RMSE than the Barndorff-Nielsen and

Shephard (2001) stochastic volatility model. Then in Chapter 8 we provide

a new acceptance-rejection technique for simulating Meixner increments,

called the method of least squares rejection. We use a normal inverse-

Gaussian rejection density. This technique was used for simulating the

SVJ Meixner model in Chapter 4 above. We also show that our technique

simulates European options prices under the Meixner model more accurately

than the method illustrated in Madan and Yor (2008).
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Chapter 7

Conditional FFT and the LJI

Meixner Model

7.1 Introduction

The main goal of this chapter is to calibrate by least squares the new LJI

model from subsection 2.7.2, under the Meixner jumps of subsection 2.3.3,

to the closing book of call options prices on Apple stock, for January 19th,

2011. However, since the LJI model does not have a closed form log-price

characteristic function, we require an alternative pricing mechanism in order

to calibrate. In the early literature on stochastic volatility, conditional

Monte Carlo was proposed as a European call option pricing technique,

see Hull and White (1987), pp. 289-90, where the call price is conditioned

on the average variance of the stock price over the life of the option. It

was believed for some time that this application of conditional Monte Carlo

required the correlation ρ between the stock price and the variance of the

stock price to be zero. Willard (1997) shows that if instead the entire

path of the Brownian motion driving the stock price variance is conditioned

221



upon, then any ρ ∈ [−1, 1] is possible for call option pricing under stochastic

volatility by conditional Monte Carlo. It is also shown in Willard (1997), see

Exhibit 4, p. 56, that conditional quasi-Monte Carlo (QMC) outperforms

conditional Monte Carlo for the Heston model. However, as pointed out in

Imai and Tan (2006), see pp. 149-50, the Willard (1997) analysis relies on

the Black-Scholes formula for conditional pricing. Thus, the Willard (1997)

analysis is strictly limited to diffusions.

In this chapter we propose a new conditional Monte Carlo call option

pricing method that is based on conditional characteristic functions and the

inverse Fourier transform. Specifically, for conditional call option pricing,

our method employs a conditional version of the Carr and Madan (1999)

formula, to be derived in subsection 7.4.1 below. The method is broad

enough to cover models with jumps and stochastic jump intensity. Thus, it

is suitable for the LJI model. In the development below we assume that the

LJI model has Meixner jumps. But, LJI model results for VG and Merton

jumps are also given in subsection 7.5.3, at the end of this chapter.

In Section 7.2 we begin with methods of pathwise simulation for the CIR

process by both Monte Carlo and QMC, since we ultimately condition on

either the volatility or the jump intensity. Then in Section 7.3 we derive

a conditional log-price characteristic function for each of the time changed

stochastic exponential Meixner model (TCMX), the LJI Meixner model, and

the SVSJ Merton model. In Section 7.4 we formally derive the conditional

Carr and Madan formula, and the new call option pricing method that

we refer to as conditional FFT. Also, we provide benchmark pricing tests

against the unconditional Carr and Madan (1999) formula for the TCMX

and SVSJ models. Then in Section 7.5 we undertake benchmark calibration

of the TCMX and SVSJ models. For comparison to the LJI Meixner model,

we also calibrate the Barndorff-Nielsen and Shephard stochastic volatility
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model (BN-S) from subsection 2.7.1 by exact FFT. Lastly, we calibrate the

LJI Meixner model, and the LJI model under both VG and Merton jumps,

each by conditional FFT. We conclude in Section 7.6.

7.2 Pathwise Simulation of the CIR Process

In this section we illustrate the simulation of CIR process paths. Below in

subsection 7.2.1 and subsection 7.2.2 we treat the simulation of Brownian

motion paths by Monte Carlo, and quasi-Monte Carlo (QMC), respectively.

Then in subsection 7.2.3 we present a drift-implicit Milstein scheme for sim-

ulating the CIR process from Brownian motion paths. This drift-implicit

Milstein scheme remains positive for 4κη > ω2, see Kahl, Günther, and

Rossberg (2008), p. 289, and has strong convergence for 2κη > ω2, see

Kloeden and Neuenkirch (2013), p. 71.

7.2.1 Simulating Brownian Paths by Monte Carlo

For Monte Carlo, we simulate antithetic standard Brownian motion paths, as

recommended for European call option pricing by conditional Monte Carlo

in Hull and White (1987), p. 289, and in Willard (1997), p. 51.

Let Wt, t ∈ [0, T ] be a standard Brownian motion. For a suitable

number of time steps J , we discretize time by

∆t =
T

J
, and (7.1)

tj = j∆t, j = 0, 1, 2, ..., J − 1. (7.2)

Let M be the number of standard Brownian motion paths to be simulated,

and assume that M is even. Then simulate

Um,j+1 ∼ Unif [0, 1) , i.i.d. (7.3)

for m = 1, 2, ...,
M

2
, and j = 0, 1, 2, ..., J − 1.
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In traditional Monte Carlo, each Um,j+1 is treated as a random number.

In quasi-Monte Carlo, we relax this assumption. One consequence is that

traditional Monte Carlo estimates have a sample standard error.

Given the Um,j+1 from equation (7.3), we define antithetic standard

Brownian motion paths as follows. For j = 0, 1, 2, ..., J − 1, let

Zm,j+1 = Φ−1 (Um,j+1) , for m = 1, 2, ...,
M

2
, and (7.4)

Zm,j+1 = −Φ−1
(
Um−M

2
,j+1

)
, for m =

M

2
+ 1, ...,M . (7.5)

Then, for m = 1, 2, ...,M , starting from Wm,0 = 0, iterate

Wm,j+1 = Wm,j +
√

∆tZm,j+1, j = 0, 1, 2, ..., J − 1. (7.6)

Furthermore, for m = 1, 2, ...,M , letting

∆Wm,tj+1 = Wm,tj+1 −Wm,tj , j = 0, 1, 2, ..., J − 1, (7.7)

we obtain the increments ∆Wm,j+1 ∼ N (0,∆t) of the M standard Brow-

nian motion paths, each with J equal time steps of length ∆t = T
J . For

the Brownian motion paths sampled by Monte Carlo, we simulate a total

of Mmc = 8192 paths, twice the number that we generate for QMC, see

subsection 7.2.2 below. In the benchmark pricing of subsection 7.4.4, this

shows that QMC prices more efficiently than Monte Carlo, even with only

half the number of simulations. The numbers of time steps JT per maturity

are the same for Monte Carlo as for QMC, see subsection 7.2.2 below.

7.2.2 Simulating Brownian Paths by Quasi-Monte Carlo

A QMC sequence is a non-random sequence of the form
{

um|um ∈ [0, 1)J
}

for some positive integer dimension J , offering an alternative to a Monte

Carlo. The main idea behind a QMC sequence is to distribute points

within [0, 1)J as evenly as possible, see Glasserman (2004), p. 281. A set
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of QMC points is defined by PM =
{

um|um ∈ [0, 1)J
}M
m=1

for some positive

integer M which is typically less than the number of simulations required for

ordinary Monte Carlo. Sobol’ sequences are a particular implementation

of QMC, see Glasserman (2004), §5.2.3. In this thesis we use the high

dimensional Sobol’ sequences with maximum dimension 1,111 proposed in

Joe and Kuo (2003), see p. 52. Specifically, we use the Matlab R2016a

Sobol’ sequence generator based on the Joe and Kuo (2003) paper.

For Brownian motion paths generated by QMC with Sobol’ sequences,

we use Mqmc = 4096 paths. This is half the number of paths used for Monte

Carlo, see subsection 7.2.1 above. For QMC we do not use antithetic paths,

as they are of no consequence in this case, see Willard (1997), p. 59, note

14. In each of our applications, the dimension J of each Sobol’ sequence

is the number JT of time steps to maturity T along the generated path

of the Brownian motion driving the CIR process, where the CIR process

models the latent factor that we condition on. Recall from subsection 5.3.1

that for the Apple call options data set of this thesis, based on the January

19th, 2011 close, the exact maturity dates are given by 22, 41, 61, 123, 192,

253, and 503 days, respectively. Given a 21 day month, these maturities

are approximately 1, 2, 3, 6, 9, 12, and 24 months. Thus, we use the

exact number of days, divided by 252, for each maturity T in years, and

we determine the number of time steps JT to maturity by the approximate

number of months to maturity. Thus, with 46 time steps per month, we

require Sobol’ sequence dimensions of 46, 92, 138, 276, 414, 552, and 1104,

respectively.

The QMC approximation is typically described as an integral over the

unit hypercube of dimension J . The effective dimension J ′ is the integer

number of important variables in the problem, in the sense that these impor-

tant variables determine most of the solution, see Lemieux (2008), p. 216.
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High dimensional problems are more likely to succeed when J ′ is much less

than J . Typically J ′ is unknown and can only be estimated, see Lemieux

(2008), pp. 225-28. However, Glasserman (2004), pp. 86-88, shows how

to illustrate the effective dimension obtained from the principal components

construction of a standard Brownian motion path, see Table 7.1 following

the analysis below. As recommended in Acworth, Broadie, and Glasserman

(1998), see pp. 11-12, we use the principal components construction for the

quasi-Monte Carlo approach to simulating Brownian motion paths.

We now proceed in a manner similar to Monte Carlo in subsection 7.2.1

above. We let Wt, t ∈ [0, T ] be a standard Brownian motion, and for a

suitable number of time steps J , we discretize time by

∆t =
T

J
, and (7.8)

tj = j∆t, j = 0, 1, 2, ..., J . (7.9)

Let M be the number of standard Brownian motion paths to be generated,

and to improve the uniformity of the Sobol’ sequence, assume that M is a

power of 2, see Imai and Tan (2006), p. 143. Then, for m = 1, 2, ...,M ,

with Wm (0) = 0, each vector

Wm = [Wm (t1) ,Wm (t2) , ...,Wm (tJ)]′ , (7.10)

is a discrete standard Brownian motion path. The construction of the paths

proceeds as follows. Generate

um,j+1 ∈ [0, 1) , (7.11)

for m = 1, 2, ...,M , and j = 0, 1, 2, ..., J − 1,

from a J dimensional Sobol’ sequence
{

um|um ∈ [0, 1)J
}

. Then set

Zm,j+1 = Φ−1 (um,j+1) , (7.12)

for m = 1, 2, ...,M , and j = 0, 1, 2, ..., J − 1.
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We now define the collection of vectors

Zm = [Zm,1, Zm,2, ...Zm,J ]′ , (7.13)

m = 1, 2, ...,M .

Thus, each J × 1 vector Wm, see equation (7.10) above, is given by

Wm = AZm, (7.14)

where the J × J matrix A satisfies AA′ = Σ, such that Σ is the covari-

ance matrix of the discrete standard Brownian motion path Wm. This is

discussed in Glasserman (2004), see p. 87. Moreover, the autocovariance

function for standard Brownian motion is given by

c (s, t) = min {s, t} , for all s, t ≥ 0, (7.15)

see Grimmett and Stirzaker (2001), p. 516. Therefore, assuming equal time

steps ∆t, equation (7.15) implies that for each m = 1, 2, ...,M ,

Σ = AA′ =


1 1 · · · 1

1 2 · · · 2
...

...
. . .

...

1 2 · · · J

∆t, (7.16)

is the covariance matrix of Wm. Thus, since Σ is symmetric, it is orthogo-

nally diagonalizable such that

A = PD
1
2 , (7.17)

where D is a diagonal matrix whose nonzero entries are the eigenvalues

λ1, λ2, ..., λJ of the covariance matrix Σ, and the matrix P has columns

given by the corresponding normalized eigenvectors v1, v2, ..., vJ . The main

idea of the principal components construction is to rank the eigenvalues from

largest to smallest. Then since the jth column of A is given by

Aj =
√
λjvj , j = 1, 2, ..., J , (7.18)
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see Glasserman (2004), p. 87, it follows from equation (7.12) above that

the standard Brownian paths given by Wm = AZm, m = 1, 2, ...,M , see

equation (7.14) above, are determined primarily by the first few dimensions

of the Sobol’ sequence. This is desirable since the first few dimensions of a

QMC sequence are known to have better equidistributional properties, see

Acworth, Broadie, and Glasserman (1998), p. 7.

We now illustrate the effective dimension obtained from the principal

components construction, as in Glasserman (2004), p. 88. Let JT (α) be

the smallest index k such that

λ1 + λ2 + ...+ λk
λ1 + λ2 + ...+ λJ

> α ∈ (0, 1) . (7.19)

Table 7.1 below considers JT (α) for the dimensions used in this chapter.

T in Days Dimension JT JT (.95) JT (.99) P.C. CPU Time

22 46 4 18 0.011 sec

41 92 5 20 0.021 sec

61 138 5 20 0.032 sec

123 276 5 21 0.069 sec

192 414 5 21 0.115 sec

253 552 5 21 0.175 sec

503 1104 5 21 0.453 sec

Table 7.1: P.C. Analysis: An Illustration of the Effective Dimension.

It is suggested in Table 7.1 above that the effective dimension of the

Brownian motion paths is made small by the principal components con-

struction, particularly for the 253 day and 503 day maturities. However, the

computational complexity of the principal components strategy is O
(
MJ2

T

)
,

see Lemieux (2008), p. 223. Thus, the CPU time to process M = 4096

paths with dimension JT = 1, 104 is disproportionately large.
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Along each path m = 1, 2, ...,M , the Brownian motion increments

∆Wm,tj+1 , j = 0, 1, 2, ..., J − 1, (7.20)

are obtained by taking differences over each path vector

Wm = [Wm (t1) ,Wm (t2) , ...,Wm (tJ)]′ , with

Wm (0) = 0.

Lastly, there is a field of study called randomized quasi-Monte Carlo (RQMC),

see Lemieux (2008), §6.2, which allows a standard error to be computed.

However, in this thesis we only require the exact QMC estimates for option

price calibration in Section 7.5 below. Thus, we do not pursue RQMC.

7.2.3 Simulating CIR Paths from Brownian Motion Paths

In this subsection we present the drift-implicit Milstein approximation to

the CIR process from Kahl, Günther, and Rossberg (2008), see p. 289, as

the method that we use to simulate CIR paths in this chapter. The main

features of this method are that it remains positive whenever 4κη > ω2, and

also exhibits strong convergence whenever 2κη > ω2. The drift-implicit

Milstein scheme for the CIR process is given by

Xtj+1 = Xtj + κ
(
η −Xtj+1

)
∆t+ ω

√
Xtj∆Wtj+1 +

ω2

4

(
∆W 2

tj+1
−∆t

)
.

Lemma 7.1 The drift-implicit Milstein scheme for the CIR process remains

positive for all 4κη > ω2 and may be written in explicit form as

Xtj+1 =

(√
Xtj + ω

2 ∆Wtj+1

)2

+
(
κη − ω2

4

)
∆t

1 + κ∆t
, (7.21)

as in Kloeden and Neuenkirch (2013), p. 70.
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Proof. Working backwards from equation (7.21) above we obtain

(1 + κ∆t)Xtj+1 =

(√
Xtj +

ω

2
∆Wtj+1

)2

+

(
κη − ω2

4

)
∆t

= Xtj + ω
√
Xtj∆Wtj+1 +

ω2

4
∆W 2

tj+1
+ κη∆t− ω2

4
∆t

= Xtj + κη∆t+ ω
√
Xtj∆Wtj+1 +

ω2

4

(
∆W 2

tj+1
−∆t

)
,

and this implies that

Xtj+1 = Xtj + κ
(
η −Xtj+1

)
∆t+ ω

√
Xtj∆Wtj+1 +

ω2

4

(
∆W 2

tj+1
−∆t

)
,

as required. That Xtj in the drift-implicit scheme remains positive for all

4κη > ω2 follows from the explicit form in equation (7.21) above.

For the case ω2 > 4κη, Kloeden and Neuenkirch (2013), see p. 73, uses

the truncated scheme given by

Xtj+1 =

(√
X

+
tj + ω

2 ∆Wtj+1

)2

+
(
κη − ω2

4

)
∆t

1 + κ∆t
. (7.22)

But, in this thesis for the case ω2 > 4κη we use the scheme given by

Xtj+1 =


(√

Xtj + ω
2 ∆Wtj+1

)2

+
(
κη − ω2

4

)
∆t

1 + κ∆t


+

, (7.23)

in the drift-implicit Milstein scheme for the CIR process.

Proposition 7.2 Let 2κη > ω2, x0 > 0, and T > 0. Then the drift-implicit

Milstein scheme in equation (7.21) above has strong convergence such that

lim
n→∞

E

[
max

j=0,1,...,n

∣∣∣Xtj −X
n
tj

∣∣∣2] = 0. (7.24)

Proof. See Kloeden and Neuenkirch (2013), pp. 71-73.

In the recent literature there is another well known scheme for simulating

the CIR process that has a lot in common with the drift-implicit Milstein
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scheme of equation (7.21) above. However, in this thesis we ultimately

choose the drift-implicit Milstein scheme of equation (7.21) above for pricing

and calibration. The alternative scheme is referred to as the drift-implicit

square-root Euler method. Letting Yt =
√
Xt in the CIR process, after

applying Itô’s lemma we obtain the drift-implicit form

Y tj+1 = Y tj +

(
4κη − ω2

8Y tj+1

− κ

2
Y tj+1

)
∆t+

ω

2
∆Wtj+1 , (7.25)

which has solution given by

Y tj+1 =
Y tj + ω

2 ∆Wtj+1

2
(
1 + κ

2 ∆t
) +

√√√√(Y tj + ω
2 ∆Wtj+1

)2
4
(
1 + κ

2 ∆t
)2 +

(4κη − ω2) ∆t

8
(
1 + κ

2 ∆t
) , (7.26)

see Kloeden and Neuenkirch (2013), p. 69. The idea of the drift-implicit

square-root Euler method for the CIR process is to set Xtj = Y
2
tj , for each

j = 0, 1, 2, ..., and to thereby obtain a positive solution for all possible CIR

parameters. While this may seem attractive, it does not appear to lead to

superior strong form convergence rates relative to the drift-implicit Milstein

method for all scenarios tested, see Kloeden and Neuenkirch (2013), p. 74.

These results are also cited in Table 7.2 below. With Xtj = Y
2
tj , for each

j = 0, 1, 2, ..., based on equation (7.26), the drift-implicit square-root Euler

scheme for the CIR process may be written as

Xtj+1 =

(√
Xtj + ω

2 ∆Wtj+1

)2

+
(
κη − ω2

4

)
∆t

1 + κ∆t
(7.27)

− 1

1 + κ∆t

4κη − ω2

8
√
Xtj+1

− κ

2

√
Xtj+1

2

(∆t)2 ,

see Kloeden and Neuenkirch (2013), p. 70. Comparing equation (7.27) to

equation (7.21) above, we see that for the CIR process, the drift-implicit

Milstein scheme agrees with the drift-implicit square-root Euler scheme up

to a second order term.
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Kloeden and Neuenkirch (2013), see pp. 73-75, employs Monte Carlo

simulation to estimate the strong rate of convergence for the drift-implicit

Milstein scheme in equation (7.21) above, and the drift-implicit square-root

Euler scheme in equation (7.27) above. In Table 7.2 below we present these

results. For each scenario, the higher of two similar estimates from Kloeden

and Neuenkirch (2013), p. 74, is given. As Table 7.2 indicates, if 2κη > ω2,

then a strong convergence rate near the Milstein ideal of 1.0 is evident,

surprisingly for both schemes. But, if ω2 > 4κη, then the rate appears to

be less than the Euler ideal of 0.5, for both schemes.

Est. Strong Convergence Rate

Scenario Ratio ω2

κη Implicit Milstein Square Root Euler

2κη > ω2 0.9944 0.9447 0.9281

ω2 > 4κη 5.556 0.3096 0.2734

Table 7.2: Convergence Rates: Implicit Milstein vs. Square Root Euler.

In subsection 7.4.4 below we compare the drift-implicit Milstein and

drift-implicit square-root Euler schemes on the basis of call option pricing.

7.3 Main Conditional Characteristic Functions

In this section we derive a risk-neutral conditional characteristic function

(CCF) for each of the stochastic exponential time changed Meixner (TCMX)

model, the LJI Meixner model, and SVSJ Merton (SVSJ) model, for the

purposes European call option pricing, by the method of conditional FFT.

In each of these models, the latent factor is modeled by the CIR process.

The main idea from Willard (1997), for the Heston model, is to condition

on the entire path of the Brownian motion driving the latent CIR process

for t ∈ [0, T ]. By doing this, we can reduce the problem to conditioning
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on terminal functions taken at time T along this path. Thus, we consider

terminal time T = τ , with initial time t0 = 0. Letting S0 be the initial

stock price, we define

ZT = log

(
ST
S0

)
. (7.28)

Specific to each model, we condition ZT on HT , where HT is either one or

two dimensional. Thus, each CCF takes the form

φZT (u|HT ) = E
[
eiuZT |HT

]
. (7.29)

In subsection 7.3.1 we derive the TCMX model CCF. The LJI Meixner

model CCF is derived in subsection 7.3.2. For the LJI Meixner model,

we have no prior knowledge of the joint distribution of HT = (WT ,ΛT ),

where ΛT =

∫ T

0
λtdt and WT =

∫ T

0
dWt, with Wt being the Brownian

motion driving the jump intensity λt. Thus, we must use paths to simulate

HT = (WT ,ΛT ) in this case. Lastly, in subsection 7.3.3 we derive the CCF

for the SVSJ Merton model.

7.3.1 The Time Changed Meixner Model

Recall from equation (2.70) in subsection 2.5.3 and equations (2.39) and

(2.40) from subsection 2.3.3 that the time changed Meixner stochastic ex-

ponential model for the risk-neutral log-price is given by

dYt = (r − λtψX (−i)) dt+ dX (Λt) , (7.30)

dλt = κ (η − λt) dt+ ωσtdWt, (7.31)

dΛt = λtdt, λ0 = 1, with (7.32)

ψMX (u) = 2λ log

 cos
(
β
2

)
cosh

(
1
2 (αu− iβ)

)
 , and (7.33)

ψMX (−i) = 2λ log

 cos
(
β
2

)
cos
(
α+β

2

)
 . (7.34)
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For convenience, based on equations (7.33) and (7.34) above, we define

ψ̂MX (u) = ψMX (u)− iuψMX (−i) . (7.35)

The following result is a consequence of Theorem 2.5, the Lévy-Khinchin

formula, from subsection 2.2.1, see Carr and Wu (2004), pp. 117-19.

Lemma 7.3 Let Yt = X (Λt) be a time changed Lévy process such that the

time change process Λt is independent of the Lévy process X. Assume that

the Lévy process X has a characteristic exponent given by ψX (u). Then

φYt (u|Λt) = E
[
eiuYt |Λt

]
= eΛtψX(u). (7.36)

Proof. Let s ≥ 0. Then

φYt (u|Λt = s) = E
[
eiuYt |Λt = s

]
= E

[
eiuXs |Λt = s

]
= eΛtψX(u),

by Theorem 2.5, the Lévy-Khinchin formula.

Lemma 7.4 Let HT = ΛT =

∫ T

0
λtdt. Then, the CCF for the TCMX

model is given by

φZT (u|HT ) = eiurT+ΛT ψ̂MX(u). (7.37)

Proof. By integrating equation (7.30) w.r.t. t ∈ [0, T ] we obtain

YT = Y0 + rT − ψMX (−i)
∫ T

0
λtdt+X (ΛT ) . (7.38)

Therefore, given HT = ΛT =

∫ T

0
λtdt,

ZT = YT − Y0 = rT +X (ΛT )− ΛTψMX (−i) . (7.39)

Hence, by Lemma 7.3, and equation (7.35) above,

φZT (u|HT ) = E
[
eiuZT |ΛT

]
= eiurT+ΛT ψ̂MX(u),

as required.

234



7.3.2 The LJI Meixner Model

Recall from subsection 2.7.2 that for some pure jump Lévy process X, the

Q-dynamics of the LJI model are given by

dYt =

(
r − λtψX (−i)− 1

2
γ2

)
dt+ dX (Λt)− γdWt, (7.40)

dλt = κ (η − λt) dt+ ω
√
λtdWt, (7.41)

dΛt = λtdt , λ0 = 1, with γ > 0. (7.42)

As in subsection 7.3.1 above for the TCMX model, we let the Lévy process

X for the LJI model be Meixner so that ψMX (u) and ψMX (−i) are the

same as in equations (7.33) and (7.34) respectively,

and ψ̂MX (u) = ψMX (u)− iuψMX (−i) . (7.43)

Observe that the TCMX model of subsection 7.3.1 above is a special case of

the LJI Meixner model with the parameter γ in equation (7.40) set to zero.

Lemma 7.5 For the LJI model given above, let WT =

∫ T

0
dWt, and let

ΛT =

∫ T

0
λtdt. Then, where HT = (WT ,ΛT ), the CCF is given by

φZT (u|HT ) = eiu(rT−
1
2
γ2T−γWT )+ΛT ψ̂MX(u). (7.44)

Proof. By integrating equation (7.40) w.r.t. t ∈ [0, T ] we obtain

YT = Y0 + rT − ψMX (−i)
∫ T

0
λtdt−

1

2
γ2T +X (ΛT )− γ

∫ T

0
dWt. (7.45)

Therefore, given WT =

∫ T

0
dWt, and ΛT =

∫ T

0
λtdt

ZT = YT − Y0 = rT − 1

2
γ2T − γWT +X (ΛT )− ΛTψMX (−i) . (7.46)
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Hence, by Lemma 7.3 from subsection 7.3.1, and equation (7.43) above,

φZT (u|HT ) = E
[
eiuZT | (WT ,ΛT )

]
= eiu(rT−

1
2
γ2T−γWT )+ΛT ψ̂MX(u),

as required.

7.3.3 The SVSJ Merton Model

Recall from equation (2.74) in subsection 2.6.2 that the Q-dynamics of the

SVSJ Merton model are given by

dYt =

(
r − 1

2
σ2
t − σ2

tψX (−i)
)
dt+ σtdW

(S)
t + dX (Vt) , (7.47)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt, (7.48)

dVt = σ2
t dt. (7.49)

Note that in equations (7.47) and (7.48) above, for an independent pair of

Brownian motions W
(1)
t and W

(2)
t , we may write

W
(S)
t = ρW

(1)
t +

√
1− ρ2W

(2)
t , (7.50)

and W
(V )
t = W

(1)
t . (7.51)

Also, in the SVSJ model the jumps are Merton. Thus, by equations (2.23)

and (2.24) from subsection 2.3.1 we have

ψMJ (u) = λ

(
exp

(
iβu− 1

2
α2u2

)
− 1

)
, (7.52)

ψMJ (−i) = λ

(
exp

(
β +

1

2
α2

)
− 1

)
, (7.53)

and we define ψ̂MJ (u) = ψMJ (u)− iuψMJ (−i) . (7.54)
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Lemma 7.6 Let σt be a given deterministic function of time, and let Bt be

a standard Brownian motion. Define the process

At =

∫ t

0
σsdBs. (7.55)

Then At ∼ N
(

0,

∫ t

0
σ2
sds

)
.

Proof. See Björk (2009), p. 57.

Lemma 7.7 In the SVSJ model, condition on F (1)
T = σ

{
W

(1)
t , t ∈ [0, T ]

}
,

such that the random variables GT =

∫ T

0
σtdW

(1)
t , and VT =

∫ T

0
σ2
t dt are

given. Then, where HT = (GT , VT ), the CCF reduces to

φZT (u|HT ) = eiu(rT−
1
2
VT+ρGT )− 1

2
VT (1−ρ2)u2+VT ψ̂MJ (u). (7.56)

Proof. By integrating equation (7.47) w.r.t. t ∈ [0, T ], and taking note

that VT =

∫ T

0
σ2
t dt, after re-arranging we have

YT = Y0 + rT − 1

2
VT +

∫ T

0
σtdW

(S)
t +X (VT )− VTψMJ (−i) , (7.57)

where by equation (7.50)∫ T

0
σtdW

(S)
t = ρ

∫ T

0
σtdW

(1)
t +

√
1− ρ2

∫ T

0
σtdW

(2)
t . (7.58)

Thus, since GT =

∫ T

0
σtdW

(1)
t , and VT =

∫ T

0
σ2
t dt, we have

ZT = YT − Y0

= rT − 1

2
VT +GT +AT +X (VT )− VTψMJ (−i) , (7.59)

where AT =
√

1− ρ2

∫ T

0
σtdW

(2)
t . (7.60)
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However, since W
(V )
t = W

(1)
t , by the variance equation (7.48) of the SVSJ

model, for t ∈ [0, T ] the process σt is deterministic given F (1)
T = σ

{
W

(1)
t , t ∈ [0, T ]

}
.

Hence, by Lemma 7.6,

AT =
√

1− ρ2

∫ T

0
σtdW

(2)
t ∼ N

(
0,
(
1− ρ2

)
VT
)

. (7.61)

Moreover, since W
(1)
t and W

(2)
t are independent, given VT the quantity AT

is independent of the jumps, and the rest of the model. Thus, by equation

(7.61), and by Lemma 7.3 from subsection 7.3.1 with equation (7.54),

φZT (u|HT ) = E
[
eiuZT | (GT , VT )

]
= φZT (u|HT ) = eiu(rT−

1
2
VT+ρGT )− 1

2
VT (1−ρ2)u2+VT ψ̂MJ (u),

as required.

7.3.4 Main CCF Realization Summary

In this subsection we summarize with the definitions and evaluation methods

for the simulated values of the three main CCFs of this section.

TCMX Model CCF

Based on equation (7.37) from subsection 7.3.1 above we will denote the

time changed Meixner model CCF realization by

φZT

(
u|ΛT = ξ

(m)
T

)
= eiurT+ξ

(m)
T ψ̂MX(u). (7.62)

To evaluate the TCMX model CCF realization, simply simulate the CIR

intensity λ
(m)
tj by the drift-implicit Milstein scheme from subsection 7.2.3

above, and then set

ξ
(m)
T =

∑J−1

j=0
λ

(m)
tj ∆t. (7.63)
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LJI Meixner Model CCF

Based on equation (7.44) from subsection 7.3.2 above we will denote the LJI

Meixner model CCF realization by

φZT

(
u|WT = w

(m)
T ,ΛT = ξ

(m)
T

)
= e

iu
(
rT− 1

2
γ2T−γw(m)

T

)
+ξ

(m)
T ψ̂MX(u)

. (7.64)

To evaluate the LJI Meixner model CCF realization, simply simulate the

CIR intensity λ
(m)
tj by the drift-implicit Milstein scheme from subsection 7.2.3

above, and track the underlying standard Brownian motion increments ∆Wm,tj+1 .

Then given these values set

w
(m)
T =

∑J−1

j=0
∆Wm,tj+1 , (7.65)

and ξ
(m)
T =

∑J−1

j=0
λ

(m)
tj ∆t. (7.66)

SVSJ Merton Model CCF

Based on equation (7.56) from subsection 7.3.3 above we will denote the

SVSJ Merton model CCF realization by

φZT

(
u|GT = g

(m)
T , VT = v

(m)
T

)
= e

iu
(
rT− 1

2
v

(m)
T +ρg

(m)
T

)
− 1

2
v

(m)
T (1−ρ2)u2+v

(m)
T ψ̂MJ (u)

. (7.67)

To evaluate the SVSJ Merton model CCF realization, simply simulate the

CIR variance σ2
m,tj by the drift-implicit Milstein scheme from subsection 7.2.3

above, and track the underlying standard Brownian motion increments ∆Wm,tj+1 .

Then given these values set

g
(m)
T =

∑J−1

j=0
σm,tj∆Wm,tj+1 , (7.68)

and v
(m)
T =

∑J−1

j=0
σ2
m,tj∆t. (7.69)
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7.4 Call Option Pricing with Conditional FFT

In this section we present the conditional Monte Carlo call option pricing

method that we refer to as conditional FFT. This is the method we rely

on for calibration of the LJI Meixner model in subsection 7.5.3 below. The

method is based on the conditional version of the Carr and Madan (1999)

formula introduced in subsection 7.4.1, and can be used with the conditional

log-price CFs summarized in subsection 7.3.4 above. In subsection 7.4.2 we

formally define the conditional FFT estimator. In subsection 7.4.3 we derive

asymptotic results for conditional FFT. In subsection 7.4.4 we benchmark

conditional FFT prices for the TCMX and the SVSJ Merton models to

the corresponding results from the unconditional Carr and Madan (1999)

formula, and provide a pricing analysis.

7.4.1 The Conditional Carr and Madan Formula

Let T be the maturity date of a call option, and define ZT = log
(
ST
S0

)
.

Then for some HT let fQT (z|h) be the conditional risk-neutral density of

ZT | (HT = h). WhenHT is independent of ZT the analysis of this subsection

leads back to the log-moneyness version of the Carr and Madan formula from

subsection 5.2.2 above. Choose some damping parameter a > 0, and define

the conditional damped call price to be

CaT (χ|HT = h) = e−rTS0e
aχEQ

[(
eZT − eχ

)+ |HT = h
]

= e−rTS0

∫ +∞

−∞
eaχ (ez − eχ)+ fQT (z|h) dz. (7.70)

Lemma 7.8 Let the damping parameter be a > 0. Then

EQ
[
Sa+1
T |HT

]
<∞

implies CaT (χ|HT = h) ∈ L1, for all h ∈ HT . (7.71)
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Proof. ∫ +∞

−∞
|CaT (χ|HT = h)| dχ =

∫ +∞

−∞
CaT (χ|HT = h) dχ

= e−rTS0

∫ +∞

−∞

∫ +∞

−∞
eaχ (ez − eχ)+ fQT (z|h) dzdχ

= e−rTS0

∫ +∞

−∞
fQT (z|h)

∫ z

−∞

(
ez+aχ − e(a+1)χ

)
dχdz

= e−rTS0

∫ +∞

−∞
fQT (z|h)

e(a+1)z

a (a+ 1)
dz

=
e−rTEQ

[
Sa+1
T |HT = h

]
Sa0a (a+ 1)

<∞,

by the main hypothesis, as required.

We will denote the Fourier transform of the conditional damped call price

by ĈaT (u|HT = h). By the hypothesis that EQ
[
Sa+1
T |HT

]
< ∞, Lemma

7.8 above implies that ĈaT (u|HT = h) exists. Therefore, by Definition 3.1

from subsection 3.2.1

ĈaT (u|HT = h) =

∫ +∞

−∞
eiuχCaT (χ|HT = h) dχ. (7.72)

Parallel to the original analysis from Carr and Madan (1999), see p. 64,

ĈaT (u|HT = h) may be expressed as

ĈaT (u|HT = h) =

∫ +∞

−∞
eiuχCaT (χ|HT = h) dχ

= e−rTS0

∫ +∞

−∞
eiuχ

∫ +∞

−∞
eaχ (ez − eχ)+ fQT (z|h) dzdχ

= e−rTS0

∫ +∞

−∞
fQT (z|h)

∫ z

−∞
eiuχ

(
ez+aχ − e(a+1)χ

)
dχdz

= e−rTS0

∫ +∞

−∞
fQT (z|h)

[
e(a+1+iu)z

a+ iu
− e(a+1+iu)z

a+ 1 + iu

]
dz

=
e−rTS0φZT (u− (a+ 1) i|HT = h)

a2 + a− u2 + i (2a+ 1)u
. (7.73)
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For simplicity, in this chapter we will refer to the function

φZT (u− (a+ 1) i|HT = h) = E
[
ei(u−(a+1)i)ZT |HT = h

]
= E

[
eiuZT+(a+1)ZT |HT = h

]
, (7.74)

appearing in equation (7.73) above, as the conditional damped log-price CF.

We sample from this function in conditional Monte Carlo.

Lemma 7.9 Let the damping parameter be a > 0. If EQ
[
Sa+1
T |HT

]
<∞,

then there exists a finite constant A > 0 such that

|φZT (u− (a+ 1) i|HT = h)| < A, for all h ∈ HT . (7.75)

Proof. Let h ∈ HT . Then by equation (7.74)

|φZT (u− (a+ 1) i|HT = h)| ≤ E
[∣∣∣eiuZT+(a+1)ZT

∣∣∣ |HT = h
]

= E
[
e(a+1)ZT |HT = h

]
=

1

S0
EQ

[
Sa+1
T |HT = h

]
<∞,

by the hypothesis that EQ
[
Sa+1
T |HT

]
< ∞. Hence, since h ∈ HT was

arbitrary, the result (7.75) follows, as required.

The following result is also generalized from the original analysis of Carr

and Madan (1999), see pp. 64-65. This result when combined with the L1

result for the conditional damped call price CaT (χ|HT = h) in Lemma 7.8

above allows for Fourier inversion via Theorem 3.6 to take place.

Lemma 7.10 Let the damping parameter be a > 0. Then

EQ
[
Sa+1
T |HT

]
<∞

implies ĈaT (u|HT = h) ∈ L1, for all h ∈ HT . (7.76)

242



Proof. By equation (7.73)∣∣∣ĈaT (u|HT = h)
∣∣∣ =

∣∣∣∣e−rTS0φZT (u− (a+ 1) i|HT = h)

a2 + a− u2 + i (2a+ 1)u

∣∣∣∣
= e−rTS0

∣∣∣∣EQ [eiuZT (STS0

)a+1
|HT = h

]∣∣∣∣
|a2 + a− u2 + i (2a+ 1)u|

≤ e−rT

Sa0

EQ
[
Sa+1
T |HT = h

]√
(a2 + a− u2)2 + i (2a+ 1)2 u2

≤ A

u2
, (7.77)

for some finite A > 0, by Lemma 7.9 above, since EQ
[
Sa+1
T |HT

]
< ∞.

Moreover, by Lemma 7.8, CaT (χ|HT = h) ∈ L1, since EQ
[
Sa+1
T |HT

]
< ∞.

Hence, by Lemma 3.3 from subsection 3.2.1, ĈaT (u|HT = h) is a continuous

in u, and by Proposition 3.5 item 5.,
∣∣∣ĈaT (u|HT = h)

∣∣∣ is an even function of

u, since CaT (χ|HT = h) is purely real. Hence, the inequality (7.77) above

implies that ĈaT (u|HT = h) ∈ L1, by the Lebesgue dominated convergence

theorem, as required.

The main result of this subsection is that if EQ
[
Sa+1
T |HT

]
< ∞, then

by Lemma 7.8, CaT (χ|HT = h) is L1, and by Lemma 7.10, ĈaT (u|HT = h)

is L1, both for all h ∈ HT . Hence, by the Fourier inversion theorem, the

conditional damped call price is given by

CaT (χ|HT = h) =
1

2π

∫ +∞

−∞
e−iuχĈaT (u|HT = h) du, (7.78)

for all h ∈ HT .

Moreover, the undamped conditional call price is simply given by

CT (χ|HT = h) =
e−aχ

2π

∫ +∞

−∞
e−iuχĈaT (u|HT = h) du (7.79)

=
e−aχ

π
Re

∫ ∞
0

e−iuχĈaT (u|HT = h) du, (7.80)

for all h ∈ HT ,
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where equation (7.80) follows from Corollary 3.7 in subsection 3.2.1, since

the conditional damped call price is purely real. Hence, for some choice of

quadrature weights, the log-moneyness version of the conditional Carr and

Madan formula is given by

CT (χk|h) ≈ e−aχk

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibuj ĈaT (uj |h)wj∆u, (7.81)

for all h ∈ HT .

In this chapter the quadrature weights wj in equation (7.81) above are as-

sumed to follow the trapezoidal rule given by w1 = wN = 1
2 , with wj = 1,

j = 2, 3, ..., N − 1. Moreover, if HT is independent of ZT = log
(
ST
S0

)
, then

the analysis of the above subsection leads back to the log-moneyness version

of the Carr and Madan formula from subsection 5.2.2 above.

7.4.2 The Method of Conditional FFT

Recall from subsection 7.4.1 on the conditional Carr and Madan formula

that if EQ
[
Sa+1
T |HT

]
<∞, then by Lemma 7.8 the conditional damped call

price CaT (χ|HT = h) is L1, and by Lemma 7.10 the Fourier transform of the

conditional damped call price ĈaT (u|HT = h) is L1, both for any h ∈ HT .

Hence, by the Fourier inversion theorem, the conditional damped call price

is given by

CaT (χ|HT = h) =
1

2π

∫ +∞

−∞
e−iuχĈaT (u|HT = h) du, (7.82)

for all h ∈ HT .

Moreover, the undamped conditional call price is simply given by

CT (χ|HT = h) = e−aχCaT (χ|HT = h) , (7.83)

for all h ∈ HT .
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Let h(1), h(2), ..., h(M) be independent realizations of HT . Then define the

damped Monte Carlo averages

C
a
T (χ) =

1

M

∑M

m=1
CaT

(
χ|HT = h(m)

)
, (7.84)

and Ψa
T (u) =

1

M

∑M

m=1
ĈaT

(
u|HT = h(m)

)
. (7.85)

The standard conditional Monte Carlo estimator for the damped call price

is given by C
a
T (χ) in equation (7.84) above. However, notice that it takes

a total of M inverse Fourier transforms to compute each CaT
(
χ|HT = h(m)

)
,

m = 1, 2, ...,M , in the right hand side of equation (7.84).

Lemma 7.11 (Conditional FFT) Assume that EQ
[
Sa+1
T |HT

]
<∞. Then

the standard conditional Monte Carlo estimator for the damped call price

C
a
T (χ) in equation (7.84) may be written as

C
a
T (χ) =

1

2π

∫ +∞

−∞
e−iuχΨa

T (u) du, (7.86)

where Ψa
T (u) is defined in equation (7.85). Moreover, C

a
T (χ) in equation

(7.84) is the inverse Fourier transform of Ψa
T (u).

Proof. Since EQ
[
Sa+1
T |HT

]
<∞, we have by equation (7.82) above that

CaT

(
χ|HT = h(m)

)
=

1

2π

∫ +∞

−∞
e−iuχĈaT

(
u|HT = h(m)

)
du,

m = 1, 2, ...,M .

Thus, by linearity we have that

C
a
T (χ) =

1

M

∑M

m=1
CaT

(
χ|HT = h(m)

)
=

1

M

∑M

m=1

1

2π

∫ +∞

−∞
e−iuχĈaT

(
u|HT = h(m)

)
du

=
1

2π

∫ +∞

−∞
e−iuχ

1

M

∑M

m=1
ĈaT

(
u|HT = h(m)

)
du

=
1

2π

∫ +∞

−∞
e−iuχΨa

T (u) du.
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Moreover, by Lemma 7.8 from subsection 7.4.1, each CaT
(
χ|HT = h(m)

)
is

L1, m = 1, 2, ...,M , since EQ
[
Sa+1
T |HT

]
<∞. Hence, C

a
T (χ) is L1. Also,

by Lemma 7.10 from subsection 7.4.1, each ĈaT
(
u|HT = h(m)

)
is L1, for each

m = 1, 2, ...,M , since EQ
[
Sa+1
T |HT

]
< ∞. Hence, Ψa

T (u) is L1. Thus,

since we have shown above that

C
a
T (χ) =

1

2π

∫ +∞

−∞
e−iuχΨa

T (u) du,

C
a
T (χ) is the inverse Fourier transform of Ψa

T (u), as required.

We will denote the undamped versions of these two estimators by

C
(0)
T (χ) =

e−aχ

M

∑M

m=1
CaT

(
χ|HT = h(m)

)
, and (7.87)

CT (χ) =
e−aχ

2π

∫ +∞

−∞
e−iuχΨa

T (u) du, (7.88)

where C
(0)
T (χ) in equation (7.87) is the standard undamped estimator, and

CT (χ) in equation (7.88) is conditional FFT. By equation (7.85) above, the

Fourier transform Ψa
T (u) in conditional FFT is the Monte Carlo average of

the Fourier transforms of the conditional damped call price ĈaT
(
u|HT = h(m)

)
,

where by equation (7.73) from subsection 7.4.1, for m = 1, 2, ...,M ,

ĈaT

(
u|HT = h(m)

)
=
e−rTS0φZT

(
u− (a+ 1) i|HT = h(m)

)
a2 + a− u2 + i (2a+ 1)u

. (7.89)

The generalized conditional CF in the right hand side of equation (7.89)

φZT

(
u− (a+ 1) i|HT = h(m)

)
= E

[
eiuZT+(a+1)ZT |HT = h(m)

]
, (7.90)

will be called the conditional damped log-price CF. In this sense, conditional

FFT samples directly from the conditional damped log-price CF, and is

faster since it only requires one inverse Fourier transform. But, because the

standard estimator samples directly from the conditional damped call prices,

it leads directly to standard errors for the estimated call prices. Thus, we use
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conditional FFT for speed, and the standard estimator only when standard

errors are needed. Similar to equation (7.81) from subsection 7.4.1, the

FFT formula for conditional FFT is given by

CT (χk) ≈
e−aχk

π
Re
∑N

j=1
e−i

2π
N

(j−1)(k−1)eibujΨa
T (u)wj∆u. (7.91)

Strike Price Cond. FFT Cond. MC Difference MCSE

85 18.2545395 18.2545395 -4.62E-14 9.25E-02

100 8.5557387 8.5557387 -2.31E-14 5.47E-02

115 2.8546183 2.8546183 7.10E-15 2.09E-02

CPU Time 0.573 seconds 1.324 seconds -

Table 7.3: Conditional FFT vs. Standard Conditional Monte Carlo.

Table 7.3 above was computed on an Intel 2xE5-2643v3 CPU at 3.4 GHz.

The pricing model is the SVSJ Merton, with T = 0.5, and M = 8192.

Otherwise the setting is as in Table 7.9 below. Identical sets of pseudo-

random numbers are used for each method. Notice that there is almost

no numerical difference between conditional FFT and standard conditional

Monte Carlo, but that conditional FFT is more than twice as fast.

7.4.3 Convergence for Conditional FFT

Proposition 7.12 (Convergence) Assume that EQ
[
Sa+1
T |HT

]
< ∞ and

that EQ
[
Sa+1
T

]
< ∞. Let ĈaT (u) be the Fourier transform of the damped

call price, and CT (χ) be the unconditional call price. Then

1. Ψa
T (u) = 1

M

∑M

m=1
ĈaT
(
u|HT = h(m)

)
→
a.s.

ĈaT (u).

2. CT (χ) = e−aχ

2π

∫ +∞

−∞
e−iuχΨa

T (u) du→ CT (χ).
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Proof. To prove 1., by equation (7.89) in subsection 7.4.2 above, consider

E
[
ĈaT

(
u|HT = h(m)

)]
= E

[
e−rTS0φZT

(
u− (a+ 1) i|HT = h(m)

)
a2 + a− u2 + i (2a+ 1)u

]

=
e−rTS0E

[
E
[
ei(u−(a+1)i)ZT |HT = h

]]
a2 + a− u2 + i (2a+ 1)u

=
e−rTS0E

[
ei(u−(a+1)i)ZT

]
a2 + a− u2 + i (2a+ 1)u

=
e−rTS0φZT (u− (a+ 1) i)

a2 + a− u2 + i (2a+ 1)u

= ĈaT (u) ,

by equation (7.73) of subsection 7.4.1.with HT independent of ZT . But, if

HT is independent of ZT , then the hypothesis EQ
[
Sa+1
T

]
<∞ implies that

CaT (χ) ∈ L1 by Lemma 7.8 of subsection 7.4.1. Hence, since ĈaT (u) is the

Fourier transform of CaT (χ),∣∣∣ĈaT (u)
∣∣∣ =

∣∣∣∣∫ +∞

−∞
eiuχCaT (χ) dχ

∣∣∣∣
≤
∫ +∞

−∞
|CaT (χ)| dχ <∞.

Therefore, by the strong law of large numbers,

Ψa
T (u) =

1

M

∑M

m=1
ĈaT

(
u|HT = h(m)

)
→
a.s.

ĈaT (u) . (7.92)

To prove 2., again by equation (7.89) in subsection 7.4.2 above,∣∣∣ĈaT (u|HT = h(m)
)∣∣∣ =

∣∣∣∣∣e−rTS0φZT
(
u− (a+ 1) i|HT = h(m)

)
a2 + a− u2 + i (2a+ 1)u

∣∣∣∣∣
= e−rTS0

∣∣∣∣EQ [eiuZT (STS0

)a+1
|HT = h(m)

]∣∣∣∣
|a2 + a− u2 + i (2a+ 1)u|

≤ e−rT

Sa0

EQ
[
Sa+1
T |HT = h(m)

]√
(a2 + a− u2)2 + i (2a+ 1)2 u2

≤ A

u2
,
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m = 1, 2, ...,M , for the same finite A > 0, by Lemma 7.9 of subsection 7.4.1,

since EQ
[
Sa+1
T |HT

]
<∞. Hence,

|Ψa
T (u)| =

∣∣∣∣ 1

M

∑M

m=1
ĈaT

(
u|HT = h(m)

)∣∣∣∣
≤ 1

M

∑M

m=1

∣∣∣ĈaT (u|HT = h(m)
)∣∣∣ ≤ A

u2
.

Therefore, by the Lebesgue dominated convergence theorem,

lim
M→∞

CT (χ) =
e−aχ

2π
lim
M→∞

∫ +∞

−∞
e−iuχΨa

T (u) du

=
e−aχ

2π

∫ +∞

−∞
e−iuχ lim

M→∞
Ψa
T (u) du

=
e−aχ

2π

∫ +∞

−∞
e−iuχĈaT (u) du

= CT (χ) ,

by the Fourier inversion theorem, and undamping, as required.

7.4.4 Choosing the Milstein Scheme and QMC Accuracy

All computations in this subsection were done on an Intel 2xE5-2643v3

processor at 3.4GHz. First, in Tables 7.4 and 7.5 below, we show that

there is essentially no pricing difference, based on SVSJ model call pricing

by conditional FFT, between the drift-implicit Milstein scheme of equation

(7.21) and the drift-implicit square-root Euler scheme of equation (7.26),

each from subsection 7.2.3 above. Thus, for the remainder of the thesis,

we use the simpler drift-implicit Milstein scheme. Secondly, in Tables 7.6

to 7.11 below we test the accuracy of conditional FFT under the drift-

implicit Milstein scheme in the TCMX and SVSJ models, which both have

a closed form log-price CF, see Carr, Geman, Madan, and Yor (2003), p.

359, and Appendix A of this thesis, respectively. Thus, we compare call

options prices obtained from the Carr and Madan (1999) formula to those
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computed by conditional FFT. The three scenarios considered are 2κη > ω2,

4κη > ω2 > 2κη, and ω2 > 4κη, each taken at maturities T = 0.25, 1.00,

and 2.00. Pricing errors for Monte Carlo are compared to pricing errors for

QMC. But, first we compare the Milstein and square-root Euler schemes.

Table 7.4: SVSJ: Milstein vs. Sqrt Euler: QMC Mqmc = 4096: T = 1.00

Parameters σ2
0 κ η ω ρ λ α β

2κη > ω2 0.05 1.80 0.10 0.45 -0.70 65 0.08 -0.04

S0 = 100 r = 0.003 QMC Pricing Errors

Strike Exact Price Implicit Milstein Implicit Sqrt Euler

85 21.6754622 6.24E-03 7.90E-03

100 12.8859381 5.85E-03 8.62E-03

115 6.8111756 2.65E-03 6.10E-03

Parameters σ2
0 κ η ω ρ λ α β

4κη > ω2 > 2κη 0.05 1.60 0.08 0.65 -0.70 65 0.08 -0.04

S0 = 100 r = 0.003 QMC Pricing Errors

Strike Exact Price Implicit Milstein Implicit Sqrt Euler

85 20.7163333 1.90E-02 4.05E-02

100 11.1910863 1.19E-02 5.17E-02

115 4.8596344 -3.71E-04 4.58E-02

Parameters σ2
0 κ η ω ρ λ α β

ω2 > 4κη 0.05 1.50 0.06 0.85 -0.70 65 0.08 -0.04

S0 = 100 r = 0.003 QMC Pricing Errors

Strike Exact Price Implicit Milstein Implicit Sqrt Euler

85 19.7571064 -1.45E-01 -2.86E-01

100 9.4622219 -2.39E-01 -3.14E-01

115 3.1454599 -2.18E-01 -6.73E-02

Table 7.4: SVSJ: Implicit Milstein vs. Square Root Euler: QMC.
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Table 7.5: SVSJ: Milstein vs. Sqrt Euler: MC Mmc = 8192: T = 1.00

Parameters σ2
0 κ η ω ρ λ α β

2κη > ω2 0.05 1.80 0.10 0.45 -0.70 65 0.08 -0.04

S0 = 100, r = .003 Implicit Milstein Implicit Sqrt Euler

Strike Pricing Error Pricing Error

85 1.7E-02 (1.2E-01) 1.8E-02 (1.2E-01)

100 1.0E-03 (8.5E-02) 3.9E-03 (8.5E-02)

115 -7.3E-03 (4.9E-02) -3.7E-03 (4.9E-02)

Parameters σ2
0 κ η ω ρ λ α β

4κη > ω2 > 2κη 0.05 1.60 0.08 0.65 -0.70 65 0.08 -0.04

S0 = 100, r = .003 Implicit Milstein Implicit Sqrt Euler

Strike Pricing Error Pricing Error

85 9.3E-02 (9.5E-02) 1.2E-01 (9.4E-02)

100 4.7E-02 (5.5E-02) 8.9E-02 (5.4E-02)

115 1.9E-02 (2.3E-02) 6.7E-02 (2.3E-02)

Parameters σ2
0 κ η ω ρ λ α β

ω2 > 4κη 0.05 1.50 0.06 0.85 -0.70 65 0.08 -0.04

S0 = 100, r = .003 Implicit Milstein Implicit Sqrt Euler

Strike Pricing Error Pricing Error

85 -1.2E-01 (7.3E-02) -3.0E-01 (7.4E-02)

100 -2.1E-01 (3.5E-02) -3.2E-01 (3.6E-02)

115 -2.0E-01 (1.6E-02) -5.4E-02 (1.9E-02)

Table 7.5: SVSJ: Implicit Milstein vs. Square Root Euler: Monte Carlo.

Table 7.4 and Table 7.5 above show no significant difference between the

drift-implicit Milstein and drift-implicit square-root Euler schemes. Thus,

we choose the simpler drift-implicit Milstein scheme. Next, we compare

QMC to Monte Carlo for our choice of the drift-implicit Milstein scheme.
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TCMX: Implicit Milstein Pricing Accuracy I: 2κη > ω2

Parameters κ η ω λ α β λ0

2.00 3.70 3.20 1.50 0.20 -0.30 1.00

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.08736 4.68E-04 3.83E-04 5.31E-04

85 15.52358 2.35E-03 2.51E-03 4.11E-03

100 3.955470 5.02E-03 3.70E-03 1.34E-02

115 0.6210140 2.82E-03 3.13E-03 5.64E-03

130 0.1169158 9.44E-04 8.58E-04 1.63E-03

CPU Time 0.258 sec 0.447 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 31.42651 2.89E-03 8.29E-03 1.19E-02

85 19.37717 4.99E-03 9.42E-03 2.39E-02

100 10.62375 6.41E-03 8.11E-03 3.20E-02

115 5.481658 6.02E-03 1.05E-02 2.98E-02

130 2.839680 5.01E-03 1.26E-02 2.28E-02

CPU Time 0.422 sec 0.569 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 34.30663 5.48E-03 7.91E-03 2.45E-02

85 24.24516 7.41E-03 7.16E-03 3.59E-02

100 16.67959 8.67E-03 6.77E-03 4.25E-02

115 11.35497 8.80E-03 7.87E-03 4.33E-02

130 7.754281 8.48E-03 9.94E-03 4.01E-02

CPU Time 0.732 sec 0.722 sec

Table 7.6: TCMX Conditional FFT Pricing Case I : 2κη > ω2.

252



TCMX: Implicit Milstein Pricing Accuracy II: 4κη > ω2 > 2κη

Parameters κ η ω λ α β λ0

1.70 3.30 3.90 1.50 0.20 -0.30 1.00

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.08733 4.56E-04 6.16E-04 6.84E-04

85 15.48288 1.93E-03 2.39E-03 4.87E-03

100 3.630266 2.62E-03 1.90E-03 1.65E-02

115 0.5644410 2.21E-03 2.78E-03 6.65E-03

130 0.1140778 8.59E-04 1.30E-03 2.03E-03

CPU Time 0.258 sec 0.445 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 31.23742 2.33E-03 5.31E-03 1.42E-02

85 18.73204 4.88E-03 6.56E-03 2.90E-02

100 9.566588 7.36E-03 8.42E-03 4.03E-02

115 4.633184 6.08E-03 7.57E-03 3.64E-02

130 2.363877 4.18E-03 7.76E-03 2.72E-02

CPU Time 0.422 sec 0.573 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 33.66971 6.14E-03 -4.21E-03 3.07E-02

85 23.06475 8.80E-03 -5.23E-03 4.62E-02

100 15.17291 1.03E-02 -5.70E-03 5.56E-02

115 9.889547 1.05E-02 -6.23E-03 5.60E-02

130 6.551812 9.89E-03 -6.28E-03 5.08E-02

CPU Time 0.734 sec 0.723 sec

Table 7.7: TCMX Conditional FFT Pricing Case II : 4κη > ω2 > 2κη.
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TCMX: Implicit Milstein Pricing Accuracy III: ω2 > 4κη

Parameters κ η ω λ α β λ0

1.40 1.80 4.50 1.50 0.20 -0.30 1.00

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.08219 2.18E-04 3.45E-04 8.07E-04

85 15.39271 -1.34E-03 -1.01E-03 5.24E-03

100 2.989395 -3.07E-02 -3.48E-02 1.91E-02

115 0.4413152 -2.17E-03 -1.75E-03 7.11E-03

130 0.0949362 6.18E-05 4.86E-04 2.31E-03

CPU Time 0.253 sec 0.443 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.80159 -2.43E-02 -1.98E-02 1.36E-02

85 17.30355 -9.14E-02 -9.55E-02 2.94E-02

100 6.887874 -2.17E-01 -2.37E-01 4.54E-02

115 2.740314 -1.24E-01 -1.31E-01 3.73E-02

130 1.341687 -5.83E-02 -5.53E-02 2.62E-02

CPU Time 0.421 sec 0.570 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 32.07722 -1.04E-01 -1.05E-01 3.02E-02

85 19.83681 -2.56E-01 -2.37E-01 4.96E-02

100 10.70267 -4.08E-01 -3.68E-01 6.40E-02

115 5.795585 -3.36E-01 -3.08E-01 6.14E-02

130 3.460687 -2.20E-01 -2.10E-01 5.19E-02

CPU Time 0.736 sec 0.732 sec

Table 7.8: TCMX Conditional FFT Pricing Case III : ω2 > 4κη.
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SVSJ: Implicit Milstein Pricing Accuracy I: 2κη > ω2

Parameters σ2
0 κ η ω ρ λ α β

0.05 1.80 0.10 0.45 -0.70 65 0.08 -0.04

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.24372 2.24E-03 -2.06E-02 8.65E-02

85 16.40626 6.10E-03 -2.47E-03 7.09E-02

100 5.758612 3.19E-03 1.13E-02 3.74E-02

115 0.8713932 -2.87E-03 -9.47E-04 7.10E-03

130 0.0688712 -3.71E-04 -4.83E-04 6.54E-04

CPU Time 0.374 sec 0.712 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 32.93455 3.02E-03 -7.09E-02 1.54E-01

85 21.67546 1.57E-03 -1.25E-02 1.21E-01

100 12.88594 3.91E-04 1.98E-02 8.21E-02

115 6.811176 -1.37E-03 2.19E-02 4.73E-02

130 3.190422 -2.21E-03 1.03E-02 2.28E-02

CPU Time 0.543 sec 0.819 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 36.67352 6.24E-03 -7.78E-02 2.18E-01

85 27.00539 6.53E-03 -5.86E-02 1.80E-01

100 19.23431 6.00E-03 -4.21E-02 1.40E-01

115 13.26743 4.53E-03 -2.93E-02 1.03E-01

130 8.884514 2.84E-03 -1.93E-02 7.24E-02

CPU Time 0.885 sec 0.995 sec

Table 7.9: SVSJ Conditional FFT Pricing Case I : 2κη > ω2.
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SVSJ: Implicit Milstein Pricing Accuracy II: 4κη > ω2 > 2κη

Parameters σ2
0 κ η ω ρ λ α β

0.05 1.60 0.08 0.65 -0.70 65 0.08 -0.04

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.28552 2.50E-03 1.26E-02 8.11E-02

85 16.39234 5.96E-03 4.95E-03 6.33E-02

100 5.344542 7.78E-04 -3.98E-03 2.81E-02

115 0.5738374 -3.37E-03 -6.62E-04 4.28E-03

130 0.0471860 -2.22E-04 -2.03E-04 5.97E-04

CPU Time 0.374 sec 0.722 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 32.61858 5.03E-03 -2.78E-02 1.29E-01

85 20.71633 2.29E-03 -9.22E-03 9.35E-02

100 11.19109 -8.11E-04 -3.22E-03 5.42E-02

115 4.859634 -3.81E-03 -1.01E-02 2.33E-02

130 1.768320 -3.33E-03 -9.34E-03 1.03E-02

CPU Time 0.543 sec 0.826 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 35.57758 2.71E-02 -8.62E-02 1.74E-01

85 25.05308 2.42E-02 -8.25E-02 1.33E-01

100 16.50783 1.81E-02 -6.11E-02 9.14E-02

115 10.11918 9.83E-03 -3.28E-02 5.51E-02

130 5.799368 2.91E-03 -9.45E-03 2.95E-02

CPU Time 0.883 sec 0.994 sec

Table 7.10: SVSJ Conditional FFT Pricing Case II : 4κη > ω2 > 2κη.
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SVSJ: Implicit Milstein Pricing Accuracy III: ω2 > 4κη

Parameters σ2
0 κ η ω ρ λ α β

0.05 1.50 0.06 0.85 -0.70 65 0.08 -0.04

T = 0.25 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 30.3291595 1.03E-02 3.43E-03 7.49E-02

85 16.3722971 9.83E-03 -3.40E-03 5.56E-02

100 4.8984780 -1.89E-02 -3.16E-02 2.07E-02

115 0.4273847 -6.37E-03 -4.29E-03 4.27E-03

130 0.0435029 -3.78E-04 2.33E-04 7.53E-04

CPU Time 0.378 sec 0.721 sec

T = 1.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 32.2852980 -2.41E-02 -8.02E-02 1.06E-01

85 19.7571064 -1.08E-01 -1.50E-01 7.19E-02

100 9.4622219 -2.26E-01 -2.59E-01 3.48E-02

115 3.1454599 -2.16E-01 -2.44E-01 1.61E-02

130 1.0031177 -7.33E-02 -9.03E-02 1.02E-02

CPU Time 0.546 sec 0.831 sec

T = 2.00 S0 = 100 Mqmc = 4096 Mmc = 8192 r = 0.003

Strike Exact Price QMC Error MC Error MCSE

70 34.4842415 -8.72E-02 -1.09E-01 1.37E-01

85 23.0651351 -2.39E-01 -2.62E-01 9.78E-02

100 13.6767609 -3.99E-01 -4.22E-01 5.78E-02

115 6.9985285 -4.63E-01 -4.81E-01 2.77E-02

130 3.2461703 -3.46E-01 -3.57E-01 1.59E-02

CPU Time 0.882 sec 0.996 sec

Table 7.11: SVSJ Conditional FFT Pricing Case III : ω2 > 4κη.
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Pricing Error Analysis: Drift-Implicit Milstein Case

In Table 7.6 above we have 2κη > ω2 in the TCMX model, and the pricing

errors are on order of 10−3 for both QMC with 4096 simulations, and Monte

Carlo with 8192 simulations. In Table 7.7 above for the TCMX model,

where 4κη > ω2 > 2κη, the pricing errors again are on order of 10−3 for

both QMC with 4096 simulations, and Monte Carlo with 8192 simulations.

Note that in Table 7.7 above the TCMX model parameters are set close

to the least squares estimates for the LJI Meixner model from Table 7.15

in subsection 7.5.3 below, where the TCMX model is a special case of the

LJI model. We regard this level of pricing accuracy to be suitable for

calibration. However, notice in Table 7.8 above for TCMX model that

when ω2 > 4κη there is a serious degradation of the pricing errors for both

QMC and Monte Carlo, especially at the two year maturity. Moreover,

recall from subsection 7.2.3 above in equation (7.23) that ω2 > 4κη is the

case in which the drift-implicit Milstein scheme must be truncated. But,

the calibration results in Table 7.15 of subsection 7.5.3 below show that the

case ω2 > 4κη typically lies far away from the solution.

For the SVSJ Merton model, the QMC pricing results with 4096 simula-

tions, for 2κη > ω2 in Table 7.9 and for 4κη > ω2 > 2κη in Table 7.10, are

both also on order of 10−3, similar to the TCMX model. However, notice

in Table 7.9 and Table 7.10 above that the corresponding Monte Carlo pric-

ing results, for the SVSJ Merton model with 8192 simulations, are typically

only of order of 10−2. That is, QMC is clearly the better choice for the

SVSJ Merton model which has a more complicated conditional character-

istic function as shown in subsection 7.3.3. Lastly, for the SVSJ Merton

model in Table 7.11 where ω2 > 4κη, the pricing errors are of poor quality,

since truncation is required in the drift-implicit Milstein scheme for the CIR

process. Overall, QMC with half the number of simulations is best.
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7.5 Model Calibration and Model Comparison

In this section we present selected least squares calibration results for the

Apple call options data set of this thesis, based on the January 19th, 2011

close. All computations were done on an Intel 2xE5-2643v3 CPU at 3.4

GHz. In subsection 7.5.1 we cover calibration of the TCMX and the SVSJ

Merton models, each by both exact FFT and conditional FFT. For com-

parison to the LJI model leverage effect, in subsection 7.5.2 we calibrate,

by exact FFT, both the stationary gamma and stationary inverse-Gaussian

versions of the BN-S model, see Barndorff-Nielsen and Shephard (2001),

pp. 177-81. Lastly, in subsection 7.5.3 we calibrate the LJI model under

Meixner, VG, and Merton jumps by conditional FFT.

7.5.1 Calibration to Exact Benchmarks

Table 7.12 below presents the TCMX model calibration results for the Apple

call options data set, using both exact and conditional FFT.

Parameter κ η ω λ α β

Time Changed Meixner (Exact FFT)

Estimate 0.527 1.654 0.014 1.567 0.284 -1.321

Std. Err. 0.109 0.244 0.011 0.678 0.088 0.127

t-statistic 4.846 6.770 1.318 2.311 3.224 -10.369

Iterations 231 Time 18.5 seconds RMSE 0.6249

Time Changed Meixner (Conditional FFT)

Estimate 0.528 1.653 0.005 1.564 0.284 -1.321

Std. Err. 0.408 0.751 0.160 0.262 0.021 0.181

t-statistic 1.296 2.201 0.033 5.962 13.630 -7.299

Iterations 87 Time 22.1 minutes RMSE 0.6243

Table 7.12: TCMX Calibration Results: Exact vs. Conditional FFT.
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Recall from equation (7.32) in subsection 7.3.1 above that we assume

λ0 = 1 in the TCMX model. Moreover, the marginal log-price CF for

the stochastic exponential time changed Lévy model for any Lévy process

characteristic exponent is given in Carr, Geman, Madan, and Yor (2003),

see p. 352 and p. 359. For the TCMX model we apply the Meixner log-

price characteristic exponent from equation (7.33) in subsection 7.3.1 above.

Notice in Table 7.12 above that the parameter estimates and the root mean

squared errors are virtually identical for both conditional and exact FFT.

However, the t-statistic for the volatility ω of the jump intensity λt is small

in the exact FFT case. This causes the standard errors to differ between

the two methods, since the intensity process is insignificant. Moreover, this

occurs because the TCMX model has no leverage parameter.

Table 7.13 below gives the SVSJ Merton model calibration results for

the Apple call options data set, using both exact and conditional FFT. For

details of the SVSJ Merton marginal log-price CF see Appendix A.

Parameter κ η ω ρ λ α β

SVSJ Merton (Exact FFT)

Estimate 1.805 0.103 0.441 -0.706 64.251 0.082 -0.003

Std. Err. 0.100 0.009 0.039 0.043 22.644 0.009 0.006

t-statistic 17.976 11.528 11.355 -16.596 2.838 9.171 -0.538

Iterations 120 Time 12.5 seconds RMSE 0.1960 -

SVSJ Merton (Conditional FFT)

Estimate 1.805 0.104 0.447 -0.699 66.664 0.081 -0.004

Std. Err. 0.089 0.001 0.020 0.021 15.975 0.011 0.005

t-statistic 20.350 96.842 21.995 -32.657 4.173 7.567 -0.831

Iterations 94 Time 30.5 minutes RMSE 0.1947 -

Table 7.13: SVSJ Calibration Results: Exact vs. Conditional FFT.
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In Table 7.13 above we have made the assumption that σ2
0 = 0.051 is

known for estimation purposes, similar to the assumption that λ0 = 1 in

the TCMX model above. The estimate of σ2
0 = 0.051 is from Table 5.3 in

subsection 5.3.2 for exact FFT calibration of the SVSJ model to the Apple

options data. Notice in Table 7.13 for the SVSJ model that again the

parameter estimates and the root mean squared errors are virtually identical

for both conditional and exact FFT. However, in this case the standard

errors are also relatively close between the two methods. This is because all

of the t-statistics are significant for the SVSJ model, which has a well known

leverage parameter ρ. Considering both the TCMX and SVSJ models

above, it appears that provided the parameter estimates are significant,

calibration by conditional FFT using the drift-implicit Milstein scheme of

subsection 7.2.3 above will produce both reliable parameter estimates, and

also reasonable asymptotic standard errors.

7.5.2 The BN-S Model with Stationary Gamma Variance

In subsection 2.7.1 we gave technical details of the stationary Γ (ν, δ) version

of the Barndorff-Nielsen and Shephard (2001) stochastic volatility model, to

be known simply as the BNS-SG model, given by

dYt =

(
r − κψU (−iρ; ν, δ)− 1

2
σ2
t

)
dt+ σtdWt + ρdU (ν, δ;κt) , (7.93)

dσ2
t = −κσ2

t dt+ dU (ν, δ;κt) , with ρ < 0. (7.94)

The function ψU (u; ν, δ) is the characteristic exponent of a positive Lévy

process U (ν, δ;κt) such that the non-Gaussian Ornstein-Uhlenbeck equation

(7.94) for the variance has a stationary Γ (ν, δ) distribution. The other well

known version of the BN-S model is identical to the model above, but with

Lévy process Uκt = U (θ, ξ;κt), and characteristic exponent ψU (u; θ, ξ), such

that the non-Gaussian Ornstein-Uhlenbeck equation (7.94) for the variance
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has a stationary inverse-Gaussian distribution, IG (θ, ξ), with characteristic

function given by

φIG (u) = exp
(
−θ
(√
−2iu+ ξ2 − ξ

))
. (7.95)

We refer to this alternative model as the BNS-SIG model. To make a fair

comparison to the LJI model, we need to show that the BNS-SG model

outperforms the BNS-SIG model for the Apple stock call options data set of

this thesis. The log-price CFs for both the BNS-SG and BNS-SIG models

are given in Schoutens (2003), see pp. 87-88.

Parameter σ2
0 κ ν δ ρ

BN-S Stationary Gamma (BNS-SG)

Estimate 0.053 1.790 1.975 0.032 -1.987

Std. Err. 0.001 0.102 0.123 0.002 0.092

t-statistic 60.084 17.483 16.045 16.509 -21.511

Iterations 61 Time 4.3 sec RMSE 0.2485

Parameter σ2
0 κ θ ξ ρ

BN-S Stationary Inverse-Gaussian (BNS-SIG)

Estimate 0.066 0.271 1.003 0.532 -0.182

Std. Err. 0.001 0.067 0.269 0.105 0.035

t-statistic 89.782 4.012 3.729 5.077 -5.191

Iterations 53 Time 4.3 sec RMSE 0.5475

Table 7.14: BNS-SG and BNS-SIG Calibration Results: Exact FFT.

We mention here that in removing the final maturity of 503 days from

the Apple stock call options data set, the RMSE for the BNS-SIG model

falls to 0.3051, while the RMSE for the BNS-SG model stays roughly the

same at 0.2394. This suggests that the BNS-SG model is better than the

BNS-SIG model for late maturities. In any case, we have established that
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the BNS-SG is the better of the two BN-S models for the entire Apple stock

call options data set, and the BNS-SG results in Table 7.14 above are what

we will compare to the LJI model results. Notice in Table 7.14 above that

the t-statistics for the BNS-SG model are all highly significant, especially

for the leverage parameter ρ < 0. However, recall from subsection 2.7.1

that we predict that the BNS-SG model will underperform the LJI model

because of the following two structural weaknesses that together impede the

BNS-SG leverage effect.

1. In equation (7.93) above for the BNS-SG log-price, the Lévy process

Uκt = U (ν, δ;κt) takes on positive values only.

2. In the BNS-SG log-price of equation (7.93) above, Wt is uncorrelated

with Uκt driving the variance in equation (7.94), so that

∫ t

0
σsdWs is

a symmetric diffusion for all values of Uκt > 0.

As we argued back in subsection 2.7.1, these two effects together mean

that leverage in the BNS-SG model is less effective specifically when the

Lévy process Uκt = U (ν, δ;κt) is small.

It may be remarked at this point that for the Apple stock call options

data set, the RMSE for the BNS-SG model in Table 7.14 above is 0.2485,

and this is noticeably larger than the RMSE of 0.1960 for the SVSJ Merton

model in Table 7.13 above under exact FFT.

7.5.3 Calibrating the LJI Model

Because the LJI model does not have a closed form log-price characteristic

function, all calibration results in this subsection were necessarily obtained

by the method of conditional FFT. We begin by focusing on the LJI Meixner

model calibration results for the Apple call options data set. It turns

out that similar to subsection 5.3.2 above, where we calibrated all three
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SVJ models to the Apple call options data set, the behaviour of the LJI

Meixner model is not significantly different from the LJI Merton and LJI

Variance Gamma models, under the Apple call options data set of this thesis.

Results for all three LJI models together will be given towards the end of

this subsection. Table 7.15 below gives the LJI Meixner model calibration

results for the Apple call options data set under conditional FFT.

Parameter γ κ η ω λ α β

LJI Meixner: Conditional FFT

Estimate 0.208 1.718 3.361 3.913 1.564 0.199 -0.284

Std. Err. 0.008 0.092 0.316 0.441 0.371 0.024 0.089

t-statistic 25.163 18.623 10.648 8.880 4.213 8.291 -3.178

Iterations 152 Time 45.4 minutes RMSE 0.1981 -

Table 7.15: LJI Meixner Calibration Results: Conditional FFT.

Notice in Table 7.15 above for the LJI Meixner model calibration that

all of the t-statistics are highly significant, in particular the t-statistic for

the volatility ω of the jump intensity λt is highly significant. Recall that

in the LJI model the parameter γ > 0 doubles as the diffusion coefficient in

the log-price as well as the leverage parameter. The t-statistic of γ is also

highly significant. Also, the RMSE of 0.1981 for the LJI Meixner model

in Table 7.15 above is much lower than the RMSE of 0.6243 for the TCMX

model from Table 7.12. Thus, the time changed stochastic exponential

model of Carr, Geman, Madan, and Yor (2003) can perform well, when a

diffusion and a suitable leverage effect are both added to the model.

Recall from subsection 2.7.2 that we predict that the LJI model will

outperform the Barndorff-Nielsen and Shephard (2001) model, on the basis

of RMSE, because of the following two structural strengths of the LJI model

that together make for a superior leverage effect. Furthermore, recall that
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from subsection 2.7.2 the LJI model is defined by

dYt =

(
r − λtψX (−i)− 1

2
γ2

)
dt+ dX (Λt)− γdWt, (7.96)

dλt = κ (η − λt) dt+ ω
√
λtdWt, (7.97)

dΛt = λtdt , λ0 = 1, with γ > 0. (7.98)

1. The Brownian motion leverage term, Wt, in the log-price of the LJI

model, see equation (7.96) above, takes positive and negative values.

2. The time changed jumps, X (Λt), in the log-price of the LJI model,

see equation (7.96) above, have inherent skewness governed by the

parameter β, where β < 0 is anticipated.

As we argued back in subsection 2.7.2, since γ > 0, −γdWt in equation

(7.96) above is always perfectly negatively correlated with dWt driving the

LJI model jump intensity in equation (7.97) above. This is the main basis

of the LJI leverage effect. However, noting that ∆X (Λt) ≈ X (λt∆t), see

equation (2.88) of subsection 2.7.2, it can be shown that when the inten-

sity λt in the LJI model gets large, and the log-prices falls, the negative

skewness of the time changed jump increment dissipates, see Table 2.1 in

subsection 2.3.4, so that the contribution from the jumps is more neutral.

Accordingly, when λt in the LJI model gets small, and the log-price rises,

the negative skewness of the time changed jump increment grows, thus the

contribution from the jumps is more negatively skewed, and this damps the

rise in the log-price. We believe that this leads to a superior leverage effect.

It may be observed at this point that for the Apple stock call options

data set, the RMSE for the LJI Meixner model in Table 7.15 above is 0.1981,

and this is substantially lower than the RMSE of 0.2485 for the BNS-SG

model in Table 7.14 above. The LJI Meixner RMSE of 0.1981, obtained

by conditional FFT, is also competitive with the RMSE of 0.1960 for the
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SVSJ Merton model in Table 7.13 above, under exact FFT. In Table 7.16

below, we present the LJI Meixner, LJI Variance Gamma, and LJI Merton

calibration results, based on the Apple stock call options data set.

Parameter γ κ η ω λ α β

LJI Meixner: Conditional FFT

Estimate 0.208 1.718 3.361 3.913 1.564 0.199 -0.284

Std. Err. 0.008 0.092 0.316 0.441 0.371 0.024 0.089

t-statistic 25.163 18.623 10.648 8.880 4.213 8.291 -3.178

Iterations 152 Time 45.4 minutes RMSE 0.1981 -

LJI Variance Gamma: Conditional FFT

Estimate 0.209 1.720 3.410 3.991 5.178 0.077 -0.008

Std. Err. 0.008 0.083 0.315 0.372 1.152 0.007 0.003

t-statistic 24.721 20.793 10.834 10.722 4.495 10.492 -2.538

Iterations 66 Time 20.6 minutes RMSE 0.1983 -

LJI Merton: Conditional FFT

Estimate 0.210 1.729 3.502 4.157 6.705 0.067 -0.006

Std. Err. 0.010 0.100 0.383 0.467 1.628 0.007 0.003

t-statistic 21.430 17.353 9.135 8.893 4.119 9.883 -1.901

Iterations 102 Time 31.5 minutes RMSE 0.1987 -

Table 7.16: LJI Meixner, LJI VG, and LJI Merton: Calibration Results.

Table 7.16 above shows that each of the three LJI models outperforms

the BNS-SG model of Table 7.14 above on the basis of RMSE. While we

believe that is mainly due to a superior leverage effect in the LJI model, some

of this difference may be accounted for by the superiority of the continuous

CIR process as a model for the jump intensity, as compared to a pure jump

non-Gaussian OU process as a model for the variance in the BNS-SG model.

Notice in Table 7.16 above that while the Feller condition, 2κη > ω2, fails for
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all three LJI models, the positivity condition, 4κη > ω2, of the drift-implicit

Milstein scheme for the CIR process does not fail for any of the three LJI

models. Moreover, notice in Table 7.16 above that when leveraged, jump

intensity is a wide process. Lastly, in Table 7.16 above, notice that the

significance of the skewness parameter β < 0 is the highest for the LJI

Meixner model, but that the LJI VG model converges the most rapidly.

7.6 Conclusion

1. The Leveraged Jump Intensity (LJI) model appears to be a better

model for the leverage effect, as compared to the BN-S stochastic

volatility model of Barndorff-Nielsen and Shephard (2001). However,

some of this difference may be due to the superiority of the CIR process

as a latent factor in the LJI model, as compared to the choice of a pure

jump non-Gaussian Ornstein-Uhlenbeck process as the latent factor in

the BN-S model.

2. In future research we will consider an LJI model with a CIR process for

the jump intensity, but also with simultaneous Poisson jumps in the

log-price and the jump intensity, where the normal and exponential

jump sizes, respectively, are correlated, similar to the “double-jump”

model of Duffie, Pan, and Singleton (2000), see pp. 1360-62.

3. The method of conditional FFT, using the log-moneyness version of

the conditional Carr and Madan (1999) formula for conditional pricing,

and the drift-implicit Milstein scheme of Kahl, Günther, and Rossberg

(2008) to simulate the CIR process as a model for the latent factor,

is both reasonably fast and sufficiently accurate enough to calibrate

a single daily closing book of call options prices under the non-affine

LJI model.
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4. In future research we will consider an LJI model with a Vasiček (1977)

mean-reverting Ornstein-Uhlenbeck process for the jump intensity. In

this case, a closed form log-price characteristic function can be found

by using the analysis of Carr, Geman, Madan, and Yor (2003), see

§6.1. Conditional Monte Carlo will become the benchmark price.

The Vasiček LJI model has a time change with some amount of mass

on the negative real line, and this causes a small but identifiable bias in

pricing. We intend to approximate this bias with a random variable,

in order to debias pricing in the Vasiček LJI model.
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Chapter 8

The Simulation of Meixner

Process Increments

8.1 Introduction

The Meixner process of Schoutens and Teugels (1998), see subsection 2.3.3

above, has been used in this thesis to represent infinite-activity jumps with

infinite variation. As the Meixner process is relatively new, the literature

on simulating Meixner increments is limited. In this chapter we propose

a new method for simulating Meixner increments based on least squares

estimation. This new method was used in Chapter 4 above to simulate

Meixner daily increments for testing the Bates (2006) AML method.

In the literature there are two main methods of Meixner simulation, one

from Grigoletto and Provasi (2009), and one from Madan and Yor (2008).

Similar to our method, in Grigoletto and Provasi (2009), acceptance-rejection

is used. However, their choice of rejection density is based on an inverse hy-

perbolic sine transform of the normal distribution, see Johnson, Kotz, and

Balakrishnan (2004), p. 34. Moreover, the parameters of their rejection
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density are fitted by the method of moments. Note that for the distribu-

tion of the Meixner increment, the scale parameter α does not scale time,

see Schoutens (2003), p. 62. Thus, the time increment must be scaled into

the other parameters, specifically λ. We found that for daily increments,

the method of moments as proposed in Grigoletto and Provasi (2009), did

not have a stable solution. The method proposed in Madan and Yor (2008)

constructs the Meixner process as a time changed Brownian motion. The

time change process is simulated by a one-sided stable process with stability

index of one half, but with a subset of the small jumps removed by a suitable

truncation function. However, this method is difficult to execute success-

fully. In our trial implementation of the Madan and Yor (2008) method,

the sample mean and variance matched the true Meixner mean and variance

relatively well, but the skewness and kurtosis did not match at all, and it

was not clear how to correct this. Consequently, we constructed a Meixner

simulation method of our own, one that is both robust to daily increments,

and more transparent to the end user. Our method of simulating Meixner

process increments uses acceptance-rejection with the marginal density for

the Normal inverse-Gaussian (NIG) process of Barndorff-Nielsen (1997) as

the rejection density. We use least squares to estimate the parameters of

the rejection density from a grid of points mapped out by the target density

under the proposed parameters. All of the computations for this chapter

were done on an Intel Xeon 2xE5-2643v3 dual processor at 3.4 GHz with 12

cores. In Section 8.2 we give the technical details of least squares rejection

in the context of Meixner-NIG rejection. In Section 8.3 we test the sample

moments of Meixner-NIG rejection for large increments by simulation, and

compare with the Meixner European options pricing results from Madan and

Yor (2008). In Section 8.4 we test the sample moments of Meixner-NIG

rejection for daily increments by simulation. Section 8.5 concludes.
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8.2 The Method of Least Squares Rejection

For a suitably well chosen rejection density, the method of least squares

rejection provides a parametric fit of the rejection density that lies quite close

to the target density in the sense that the expected number of simulations

from the rejection density in order to simulate from the target density can

be surprisingly low. In this section we describe the technique in the context

of Meixner-NIG rejection. In subsection 8.2.1 we describe how to simulate

NIG process increments. In subsection 8.2.2 we describe the least squares

estimation of the rejection density. Then in subsection 8.2.3 we present the

Meixner-NIG rejection algorithm.

8.2.1 Simulating NIG Process Increments

The Normal inverse-Gaussian process may be expressed as a time changed

Brownian motion, where the time change is an inverse Gaussian (IG) pro-

cess with a specified combination of NIG process parameters, see Barndorff-

Nielsen (1997), §3.1, p. 3. Consequently, we first examine how to simulate

from the inverse-Gaussian distribution. The parameterization of the IG

distribution associated with the NIG process has a density given by

g1 (x; δ, γ) =
δ√
2π

exp (δγ)x−
3
2 exp

(
−1

2

(
δ2

x
+ γ2x

))
. (8.1)

Equation (8.1) is the density of the first passage time to the level δ of a

Brownian motion with drift γ, see Barndorff-Nielsen (1997), §3.1, p. 3.

However, the IG distribution is typically simulated assuming an alternative

parameterization given by

g2 (x;µ, λ) =

√
λ

2πx3
exp

(
−λ

2µ2x
(x− µ)2

)
, (8.2)

see Devroye (1986), §4.3, p. 148. Equation (8.2) is also the parameterization

for the inverse-Gaussian distribution used by Matlab R2016a.
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Lemma 8.1 The inverse-Gaussian densities g1 (x; δ, γ) and g2 (x;µ, λ), from

equations (8.1) and (8.2) respectively, are equivalent when

µ =
δ

γ
and λ = δ2. (8.3)

Proof.

g2 (x;µ, λ) =

√
λ

2πx3
exp

(
−λ

2µ2x
(x− µ)2

)
=

√
λ√
2π
x−

3
2 exp

(
−1

2

λ
(
x2 − 2µx+ µ2

)
µ2x

)

=

√
λ√
2π
x−

3
2 exp

(
−1

2

(
λ

µ2
x− 2

λ

µ
+ λ

1

x

))
=

√
λ√
2π
x−

3
2 exp

(
λ

µ

)
exp

(
−1

2

(
λ

x
+

λ

µ2
x

))
=

δ√
2π
x−

3
2 exp (δγ) exp

(
−1

2

(
δ2

x
+ γ2x

))
= g1 (x; δ, γ) ,

as required.

The following algorithm for simulating from the inverse-Gaussian dis-

tribution is taken from Devroye (1986), §4.3, p. 149. It is attributed to

Michael, Schucany, and Haas (1976), and assumes the (µ, λ) parameteriza-

tion as in equation (8.2) above.

Algorithm 8.2 To simulate X ∼ IG (µ, λ),

Generate Z ∼ N (0, 1).

Set Y = Z2 ∼ χ2 (1).

Set X1 = µ+ µ2Y
2λ −

µ
2λ

√
4µλY + µ2Y 2.

Generate U ∼ Unif (0, 1).

If U ≤ µ
µ+X1

then return X = X1.

Else return X = µ2

X1
.
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Let Xt be a Normal inverse-Gaussian (NIG) process. For parameter

identification purposes, Xt ∼ NIG (a, b,m; t) has a characteristic function

given by

φXt (u) = exp

(
mt

(√
a2 − b2 −

√
a2 − (b+ iu)2

))
, (8.4)

see Barndorff-Nielsen (1997), p. 4. The process Xt may be expressed as a

time changed Brownian motion with drift,

Xt = bIGt +WIGt , (8.5)

where the marginal density of the time change process IGt is inverse-Gaussian

with parameters

δ = mt and γ =
√
a2 − b2, (8.6)

under the parameterization g1 (x; δ, γ) from equation (8.1) above, see Barndorff-

Nielsen (1997), §3.1, p. 3. However, by Lemma 8.1, the time change process

IGt in equation (8.5) above is equivalently inverse-Gaussian with parameters

µ =
mt√
a2 − b2

and λ = m2t2, (8.7)

under the parameterization g2 (x;µ, λ) from equation (8.2) above. Hence,

we may use Algorithm 8.2 above, with the parameters specified in equation

(8.7), to simulate from the marginal distribution of the requisite inverse-

Gaussian process in equation (8.5), specified by equation (8.6). This result

leads directly to the following algorithm for simulating the increment of a

Normal inverse-Gaussian process.

Algorithm 8.3 Let X be the increment of an NIG (a, b,m; t) process, and

let τ = ∆t. To simulate X,

Set µ = mτ√
a2−b2 and λ = m2τ2.

By Algorithm 8.2, generate Y ∼ IG (µ, λ).

Generate Z ∼ N (0, 1).

Return X = bY +
√
Y Z.
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8.2.2 The Least Squares Envelope

We propose to simulate the drift-free Meixner process increment by the

acceptance-rejection technique with the marginal density of the drift-free

NIG process as our rejection density. Thus, let X be the increment of a

Meixner (α, β, λ; t) process, and let τ = ∆t. Recall from equation (2.46)

in subsection 2.3.3 above that the density of X is given by

f (x; θMeix, τ) =

(
2 cos

(
β
2

))2λτ
e
βx
α

2πΓ (2λτ)

∣∣∣∣Γ [λτ +
ix

α

]∣∣∣∣2 , (8.8)

α > 0, |β| < π, λ > 0.

where θMeix = (α, β, λ) is the parameter vector. Note that evaluation of the

complex-valued gamma function in equation (8.8), for the Meixner density,

has an above average computational expense. This adds to both the setup

cost and the execution time for our method. From Schoutens (2003), p. 63,

the density of the Meixner increment has semi-heavy tails with asymptotic

behaviour given by

f (x; θMeix, τ) ∼

 C− |x|ρ− exp (−η− |x|) as x→ −∞

C+ |x|ρ+ exp (−η+ |x|) as x→ +∞

 , (8.9)

for some positive constants C−,C+, where ρ± = 2λ − 1, and η± = (π±β)
α .

The density of an NIG (a, b,m; t) process increment, where τ = ∆t, is given

by the function

g (x; θNIG, τ) =
amτ

π
exp

(
mτ
√
a2 − b2 + bx

) K1

(
a
√
m2τ2 + x2

)
√
m2τ2 + x2

, (8.10)

a > 0, |b| < a, m > 0,

where θNIG = (a, b,m) is the parameter vector, see Schoutens (2003), pp.

59-60. The function K1 (·) in equation (8.10) is the modified Bessel function
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of the second kind of order 1. Numerical evaluation of this particular special

function is relatively fast. Also, as may be obtained from Schoutens (2003),

p. 60, the density of the NIG increment has semi-heavy tails with asymptotic

behaviour given by

g (x; θNIG, τ) ∼

 D− |x|−
3
2 exp (−γ− |x|) as x→ −∞

D+ |x|−
3
2 exp (−γ+ |x|) as x→ +∞

 , (8.11)

for some positive constants D−,D+, where γ± = a ∓ b. For simplicity let

H− = C−
D−

and H+ = C+

D+
. Then the asymptotic behaviour of the rejection

ratio is given by

f (x; θMeix, τ)

g (x; θNIG, τ)
∼

 H− |x|2λ+ 1
2 exp (−δ− |x|) as x→ −∞

H+ |x|2λ+ 1
2 exp (−δ+ |x|) as x→ +∞

 , (8.12)

where

δ− =
(π − β)

α
− (a+ b) , and (8.13)

δ+ =
(π + β)

α
− (a− b) .

Thus, evidently the rejection ratio vanishes as x→ ±∞ when

a+ b <
π − β
α

, and (8.14)

a− b < π + β

α
.

Under these conditions we can guarantee that

c = sup
x∈R

f (x; θMeix, τ)

g (x; θNIG, τ)
<∞. (8.15)

The main idea behind least squares rejection is the following. Let X be the

increment that we wish to simulate. In the case at hand X ∼ f (x; θMeix, τ),

where θMeix = (α, β, λ) is known. We propose g (x; θNIG, τ) as the rejection
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density, where θNIG = (a, b,m) is unknown. For some positive constant

b′ > 0, and some positive integer N , let

xk ∈
[
−b′, b′

]
, k = 1, 2, ..., N , (8.16)

be a uniform discretization over the real numbers. We recommend that b
′

be fifteen standard deviations of the target density, and that N be chosen

such that ∆x ∼ 10−4. Then, for fixed inputs θMeix = (α, β, λ) and τ = ∆t,

evaluate

fk = f (xk; θMeix, τ) , k = 1, 2, ..., N . (8.17)

The optimal parameters of the NIG rejection density that guarantee a

bounded rejection ratio for all x ∈ R, and satisfy the NIG parameter con-

straints, are given by the least squares problem

θ̂NIG = arg min
θNIG∈Ω

N∑
k=1

[fk − g (xk; θNIG, τ)]2 (8.18)

subject to

a+ b <
π − β
α

,

a− b < π + β

α
,

|b| < a.

For fixed θMeix = (α, β, λ) and τ = ∆t, the method of moments may be

used to obtain starting values for θNIG = (a, b,m) in equation (8.18).

8.2.3 Meixner-NIG Rejection

There are two items to be computed before the execution of Algorithm 8.4

below for Meixner-NIG rejection. The time to compute these two items

comprises the setup cost. First, given θMeix = (α, β, λ) and τ = ∆t, we

need to compute θ̂NIG =
(
â, b̂, m̂

)
by equations (8.17) and (8.18) from
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subsection 8.2.2 above. Then, the rate of rejection c is given by

c = sup
x∈R

f (x; θMeix, τ)

g
(
x; θ̂NIG, τ

) , (8.19)

see McLeish (2005), pp. 99-100. It is suggested in Grigoletto and Provasi

(2009) that equation (8.19) above may be evaluated either graphically or

numerically. We use a graph to determine the local maxima of the rejection

ratio, and then numerical optimization over a floating point representation

of the real numbers given suitable starting values for each local maxima.

Specifically, we use the Matlab R2016a function fmincon. Illustrations will

be given in the two examples that follow.

Algorithm 8.4 (Meixner-NIG Rejection) To simulate from the marginal

density f (x; θMeix, τ) of the Meixner process increment, where τ = ∆t,

1. By Algorithm 8.3 generate X ∼ g
(
x; θ̂NIG, τ

)
.

2. Generate V ∼ Unif (0, 1) independent of X.

3. Set Y = V × cg
(
X; θ̂NIG, τ

)
.

4. If Y ≤ f (X; θMeix, τ) then return X.

5. Otherwise go to step 1.

8.3 Meixner European Option Price Simulation

8.3.1 Simulated Meixner Moments for Large Increments

For the Meixner parameter values θMeix = (α, β, λ) = (.25,−.5, 1), as in

Madan and Yor (2008), p. 44, with τ = 0.50, the NIG parameters estimated

by equation (8.18) are given by θ̂NIG =
(
â, b̂, m̂

)
= (8.521,−2.01, 0.274).

The rejection rate c computed by maximizing the rejection ratio on the right

hand side of equation (8.19) in subsection 8.2.3 above is c = 1.02437. In

Figure 8.1 below we illustrate that there are two main local maxima at very
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nearly the same level. The local maximum value on the left is 1.02106,

and the maximum value on the right is c = 1.02437. Moreover, we have

observed that if β < 0, then the local maximum on the right is typically also

the global maximum.
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Figure 8.1: Meixner-NIG Rejection Ratio: τ = 0.50, c=1.02437.

The rejection rate c > 1 on the left hand side of equation (8.19) above

may be interpreted as the expected number of iterations executed in the

rejection loop. Thus, a low value of c implies that the rejection method is

efficient, see McLeish (2005), p. 100. In Grigoletto and Provasi (2009), §3,

a rejection algorithm for simulating the Meixner distribution is proposed,

using the method of moments to identify the rejection density. Values of the

rejection rate c between 1.0772 and 1.5527 are reported, and c is larger when

the skewness and kurtosis of the underlying Meixner distribution are more

extreme, see Grigoletto and Provasi (2009), Table 1, p. 64. Because it fits
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the shape of the target density directly, the method of least squares rejection

is robust to extremities in the underlying skewness and kurtosis. Relative to

Grigoletto and Provasi (2009), Table 1, p. 64, the true values of the skewness

and kurtosis for the Meixner increment with (α, β, λ) = (.25,−.5, 1), and

τ = 0.50, given in Table 8.1 below are moderately extreme. However, least

squares rejection still obtains an efficiency rate of c = 1.02437.

N Mean Variance Skewness Kurtosis

True Value -0.03192 0.01664 -0.49481 5.24480

Bias 5,000 -0.00012 0.00001 -0.00779 -0.00018

10,000 -0.00001 0.00003 -0.00187 -0.02317

20,000 -0.00006 0.00002 -0.00077 -0.01494

RMSE 5,000 0.00177 0.00043 0.09280 0.42993

10,000 0.00133 0.00033 0.06238 0.31527

20,000 0.00083 0.00024 0.04497 0.21278
√
MSE +Bias2 5,000 0.00177 0.00043 0.09247 0.42993

10,000 0.00133 0.00033 0.06236 0.31442

20,000 0.00083 0.00024 0.04496 0.21225

Total Simulation Time 6.13 minutes

Table 8.1: Simulations of 100 Sample Meixner Moments: τ = 0.50.

Using a batch size of 100, Table 8.1 above assesses the bias and variability

for the first four sample moments of a Meixner random sample simulated by

the Meixner-NIG rejection technique at three sample sizes. For samples of

size 5,000, both the biases and the RMSEs reported in Table 8.1 are modestly

reasonable for each sample moment. But,
√
MSE +Bias2 is twice as low

for samples of size 20,000 relative to samples of size 5,000, suggesting that

a Monte Carlo sample size of 20,000 will be effective.
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8.3.2 Comparison to the Madan and Yor Results

In Table 8.2 below we compare the simulated Meixner options prices from

Madan and Yor (2008), Table 1, p. 45, to our Meixner options prices as

obtained by the Meixner-NIG least squares rejection method.

Strike τ Madan & Yor Meixner FFT Our Prices MCSE

80 0.25 0.1174 0.1266 0.1244 0.0086

90 0.25 0.6022 0.6179 0.6320 0.0195

100 0.25 3.3690 3.4127 3.4195 0.0400

110 0.25 0.5934 0.6543 0.6609 0.0216

120 0.25 0.1293 0.1587 0.1548 0.0103

80 0.5 0.3150 0.3284 0.3148 0.0135

90 0.5 1.2362 1.2868 1.2919 0.0291

100 0.5 5.1135 5.2081 5.2888 0.0575

110 0.5 1.5889 1.6870 1.6665 0.0362

120 0.5 0.4656 0.5282 0.5177 0.0211

80 0.75 0.5593 0.5714 0.5778 0.0192

90 0.75 1.8617 1.9000 1.8990 0.0364

100 0.75 6.5256 6.6170 6.6352 0.0708

110 0.75 2.7066 2.7717 2.7794 0.0502

120 0.75 1.0410 1.0710 1.0591 0.0330

80 1 0.8117 0.8323 0.8174 0.0236

90 1 2.3644 2.4458 2.4545 0.0424

100 1 7.7168 7.8220 7.8262 0.0841

110 1 3.7458 3.8095 3.7933 0.0630

120 1 1.6819 1.7152 1.7103 0.0452

Average CPU Time: Our Prices 3.76 seconds

Table 8.2: Simulated Meixner European Options Prices.
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Table 8.2 above is based on Madan and Yor (2008), Table 1, p. 45. The

options are European style, the risk-free rate is 3%, the dividend yield is

1%, and the spot price is 100. For strikes below the spot price, the option

is a put, and for strikes at or above the spot price, the option is a call. The

model is a risk-neutral pure jump Meixner model. The FFT prices were

taken from Madan and Yor (2008), Table 1, p. 45. For our prices we used a

sample size of 20,000. This lead to adequate Monte Carlo standard errors,

and all of our prices lie within a 95% confidence interval based on the FFT

price. We used the Meixner-NIG least squares rejection technique described

in Section 8.2 above to construct sample prices. Notice that our prices are

more accurate than Madan and Yor (2008), Table 1, p. 45. The average

time in Table 8.2 is net of the setup cost, computed on an Intel 2xE5-2643v3

at 3.4GHz with 12 cores in parallel.

8.4 Simulating Daily Meixner Increments

We have shown in Section 8.3 above that the method of Meixner-NIG least

squares rejection works well for simulating large Meixner increments. In

this section we show that the method is also quite robust for simulating

small Meixner increments. This is the purpose that the method was in-

tended to serve. We simulate the sample moments of a random sample

of daily Meixner increments. For θMeix = (α, β, λ) = (.166, .277, 5.23),

from the Apple stock (1991-2011) SVJ model estimates in Table 4.2, with

τ = 1
252 , the NIG daily increment parameters estimated by equation (8.18)

are θ̂NIG =
(
â, b̂, m̂

)
= (9.203, 1.666, 0.870). The rejection rate c computed

from equation (8.19) in subsection 8.2.3 above is c = 1.023251. In Figure 8.2

below, again there are two local maxima at very nearly the same level. This

time, β > 0, the global maximum value is on the left at c = 1.02351, and

the local maximum on the right occurs at 1.02325.
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Figure 8.2: Meixner-NIG Rejection Ratio: τ = 1/252, c = 1.02351.

Daily jump increments in stock prices exhibit leptokurtosis. However,

least squares rejection is capable of closely fitting the NIG rejection density

to the Meixner daily increment density. The rejection rate of c = 1.02351 is

low and indicates very high efficiency for the proposed rejection scheme. The

extreme kurtosis is evident from the true values of the moments in Table 8.3

and Table 8.4 below, for Meixner and VG daily increments, respectively.

The Meixner parameters are (α, β, λ) = (.166, .277, 5.23) in Table 8.3, and

for VG the parameters are (α, β, λ) = (.068, .008, 13.5) in Table 8.4, both

from the SVJ model estimates for Apple stock (1991-2011) from Table 4.2.

Below, Table 8.3 assesses the bias and variability for sample moments of

Meixner daily increments simulated by the Meixner-NIG rejection technique.

Variance Gamma (VG) in Table 8.4 is included for comparison.

282



N Mean Variance Skewness Kurtosis

True Value 0.000480 0.000292 1.35530 53.0200

Bias 5,000 -0.000016 -0.000002 -0.05484 -3.51590

10,000 0.000005 0.000000 -0.00996 -2.03670

20,000 0.000003 0.000000 -0.00305 -0.40429

RMSE 5,000 0.000267 0.000026 1.18290 16.2890

10,000 0.000172 0.000018 0.92164 13.5420

20,000 0.000123 0.000014 0.63687 10.2630
√
MSE +Bias2 5,000 0.000267 0.000026 1.18160 15.9050

10,000 0.000172 0.000018 0.92158 13.3880

20,000 0.000123 0.000014 0.63686 10.2550

Total Simulation Time 5.87 minutes

Table 8.3: Simulations of 100 Sample Meixner Moments: τ = 1/252.

N Mean Variance Skewness Kurtosis

True Value 0.000429 0.000251 1.50750 60.5190

Bias 5,000 -0.000020 0.000002 0.04644 -2.23940

10,000 -0.000011 0.000000 -0.02535 -1.49680

20,000 0.000002 0.000000 0.00318 -0.43669

RMSE 5,000 0.000227 0.000026 1.15930 15.1520

10,000 0.000171 0.000018 1.05930 13.1980

20,000 0.000117 0.000013 0.80543 11.6690
√
MSE +Bias2 5,000 0.000226 0.000026 1.15840 14.9850

10,000 0.000170 0.000018 1.05900 13.1130

20,000 0.000117 0.000013 0.80543 11.6610

Total Simulation Time 1.04 seconds

Table 8.4: Simulations of 100 Sample V.G. Moments: τ = 1/252.
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The parameters underlying both Table 8.3 and Table 8.4, respectively

above, are estimated from the daily log-returns of Apple stock (1991-2011).

Thus, VG simulation in Table 8.4 makes a useful comparison to our Meixner

simulation. Recall from equation (2.27) in subsection 2.3.2, that the VG

process is simply a time changed Brownian motion, where the time change

is a gamma process. This means that the increment of the VG process

can be simulated from one gamma r.v. and one independent normal r.v.,

see Appendix E for further details. Thus, very little simulation error is

expected to occur in the simulation of VG increments. But, notice that

Table 8.3 above for simulated Meixner increments, and Table 8.4 above for

simulated VG increments, have highly similar corresponding entries. This

suggests that the method of Meixner-NIG least squares rejection performs

as well as a simple time changed Brownian motion simulator.

Nonetheless, there are potential problems suggested by the results in

Table 8.3 and Table 8.4. The biases for all moments in both tables are

adequate at each sample size. However, the variability for each of the

sample skewness and the sample kurtosis is a bit high in both tables for

samples of size 5,000. The fact that this occurs in both Table 8.3 and

Table 8.4 suggests that the problem may be inherent with infinite-activity

jumps for small increments such as daily.

In Chapter 4 we chose to estimate the SVJ and SVSJ models from

samples of twenty years of daily log-returns. This corresponds roughly

to samples of size 5,000. We made this choice for consistency with other

literature, for example Eraker, Johannes, and Polson (2003), and Li, Wells,

and Yu (2008). The levels of bias in both Table 8.3 and Table 8.4 above,

for samples of size 5,000, suggest that our choice was reasonable. But, a

larger sample size could lead to a slight improvement in the variability of

the higher moments, according to Table 8.3 and Table 8.4 above.
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8.5 Conclusion

1. The method of Meixner-NIG least squares rejection has been shown

to be a highly efficient method of simulating Meixner increments both

large and small. The rejection density is based on a well-known time

changed Brownian motion, the Normal inverse-Gaussian process of

Barndorff-Nielsen (1997). Thus, it is not surprising that we found

our method of simulation to perform as well as the direct simulation

of another well-known time changed Brownian motion, the Huang and

Wu (2004) version of the Variance Gamma process. The only real

drawback of our method is the lack of computational speed in the

complex-valued gamma function contained in the Meixner density.

2. Under the present setup with both the rejection and target densities

known in closed form, our other finding is that for both large and

small Meixner increments, the simulated higher moments have excess

variability with standard sample sizes of 5,000. We also found this

to be true for the Huang and Wu (2004) type Variance Gamma daily

increments. Thus, when simulating the daily increments of infinite-

activity jumps, it could be of benefit to consider a larger sample size

such as 10,000. Based on the example from Bates (2006) with 11,076

daily log-returns, see subsection 4.4.5 above, we believe that both the

SVJ and SVSJ models can handle 10,000 data points. However, in

the interests of maintaining speed in AML estimation, we also believe

that 5,000 data points, as used in this thesis, will suffice.
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Part IV

The Conclusion of the Thesis
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This thesis is about the estimation of models for the log stock price with

a continuous component, stochastic volatility, jumps, and stochastic jump

intensity. Particular emphasis has been placed on Fourier based estimation

techniques, and consequently the fast Fourier transform (FFT) has been

employed in all estimation methods. We have treated models from the

affine Markov class, and we have also introduced a new non-affine model.

Each of these two streams leads to a main contribution, each with supporting

contributions. After an outline of these contributions, we will close with a

list of five future research topics.

Contributions to Affine Markov Model Estimation

Our main contribution to the estimation of the affine Markov models is:

• the Parametric Minimum Entropy Martingale Measure (PMEMM) of

Chapter 6.

Many supporting contributions were made in the development of the

PMEMM, and these came largely in our extensions to the theory of AML

from Bates (2006) for the Heston, SVJ, and SVSJ models:

• proof in Section 4.3 that L1 integrability holds for each of the three

Fourier transforms of AML, and implementation of AML by FFT,

• proof in Appendix B and Appendix C that our joint affine coefficients

are continuous on the principal branch,

• proof in Appendix D that we may differentiate the primary Fourier

transform of AML twice under the integral with respect to v ∈ (u, v),

• AML estimation results showing that certain banking and technology

stocks, and evidently also the S&P 500 index, may be characterized

by infinite-activity jumps, from Section 4.6
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Other affine Markov model contributions include:

• the least squares rejection algorithm for simulating Meixner increments

with an NIG rejection density from Chapter 8,

• proof in Section 3.3 that the marginal log-price characteristic functions

are each L1 for the Heston, SVJ, and SVSJ models, as required for the

PMEMM in Chapter 6,

• the trapezoidal rule as an easy solution to the problem of negative call

prices deep out-of-the-money in the Carr and Madan (1999) formula,

from Chapter 5.

Contributions to Non-Affine Model Estimation

Our main contribution to non-affine log stock price models is:

• the Leveraged Jump Intensity (LJI) model of Chapter 7.

Supporting contributions for the LJI model are:

• a generalization of the Carr and Madan (1999) formula to a particular

conditional Monte Carlo and quasi-Monte Carlo pricing technique that

we refer to as conditional FFT, from Section 7.4,

• least squares calibration evidence in Section 7.5 that the LJI model

provides a superior model for the leverage effect as compared to the

Barndorff-Nielsen and Shephard (2001) stochastic volatility model.

Future Research Topics

1. The future of AML is with high-frequency data. We have already

further investigated the AML estimation of S&P 500 log-returns at
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the 78-minute data frequency with annually based parameters. To

increase the data frequency to five minutes, we plan to switch to daily

based parameters, as are commonly used in the MCMC literature, see

for example Eraker, Johannes, and Polson (2003). Recall that for

daily data on an annual basis, ∆t = 1
252 . But, with five-minute data

on a daily basis, ∆t = 1
78 >

1
252 . Hence, it can be shown in this case

that oscillation in the integrands of the three Fourier transforms of the

AML method will decay at a faster rate, thereby improving accuracy.

We will consider three month samples of approximately 5,000 data

points at five-minute frequency. Thus, it will be worth updating the

estimate of the P-measure each day, along with a daily re-estimate of

the option implied Q-measure. Each newly estimated P-measure and

Q-measure will form the basis a fresh daily PMEMM estimate.

2. So far we have shown that the PMEMM provides a good forecast of

late maturity at-the-money discounted call option payoffs, and this is

consistent with Chernov and Ghysels (2000). However, we may be able

to show more than this. In future research, by numerically solving the

boundary value problem for the Heston MEMM call price, as proposed

in He and Zhu (2016), given θP ∈ ΩP for the Heston model, we can

price Heston MEMM call options. These can be compared to the

corresponding Heston PMEMM call prices, given θP ∈ ΩP . If these

sets of call prices are similar, it will be suggested that the PMEMM is

a more easily computable approximation to the MEMM.

3. The method of conditional FFT is a highly flexible pricing technique

that only requires the conditional log-price characteristic function given

the latent factor to be known in closed form. Thus, in future research

we will extend the LJI model to include simultaneous Poisson jumps in

the jump intensity and the log-price, with correlated exponential and

289



normal jump sizes, respectively, similar to the “double-jump” model of

Duffie, Pan, and Singleton (2000). The stochastic jump intensity will

be simulated as a CIR process augmented with Poisson jumps, and

exponential jump sizes. Then, given the jump intensity, and given

its jumps, the conditional log-price CF will be easily known in closed

form. This should lower the implied volatilities of out-of-the-money

call options, similar to Duffie, Pan, and Singleton (2000).

4. We developed the LJI model expressly so that the CIR process could

be used to model the jump intensity. But, this leads to a non-affine

model. Consider instead, the same LJI model with a Brownian motion

and time changed jumps in the log-price, but with the jump intensity

modeled by a Vasiček (1977) process. By using the analysis of Carr,

Geman, Madan, and Yor (2003), see §6.1, a closed form log-price CF

for the Vasiček LJI model can be found. However, this model has

a time change with some mass on the negative real line, resulting in

biased prices. In future research, we intend to quantify this bias using

the method of conditional FFT for benchmark prices, and develop a

random variable to model the bias.

5. Bates (2012) considers AML for estimating infinite-activity Lévy pro-

cess models for the log-price, time changed by the CIR process. This

poses a challenge in that a time changed infinite-activity Lévy process

is a hidden Markov model, see Bates (2012), p. 230, and is not neces-

sarily Markov. In this thesis we developed the gamma approximation

of AML in subsection 4.2.3, based on Bates (2006), see p. 917, un-

der the assumption that the log-price model is a Markov process. It

remains an open problem to re-work this analysis, so as to allow for

hidden Markov models.
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Appendix A

Characteristic Functions:

SVJ and SVSJ Models

Recall from subsection 2.6.1 that under the P-measure, the SVJ model with

compensated drift is given by

dYt =

(
µ0 −

1

2
σ2
t − ψX (−i)

)
dt+ σtdW

(S)
t + dXt, (A.1)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt.

Hence, by Remark 2.33 from subsection 2.6.1, the SVJ model under the

Q-measure is simply (A.1) above with µ0 replaced by the risk-free rate r.

Moreover, it was shown in subsection 2.6.2 that the SVSJ model under the

P-measure with compensated drift is given by

dYt =

(
µ0 −

1

2
σ2
t − ψX (−i)σ2

t

)
dt+ σtdW

(S)
t + dX (Vt) , (A.2)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt.

Similarly, by Remark 2.37 from subsection 2.6.2, the SVSJ model under the

Q-measure is given by (A.2) with µ0 replaced by the risk-free rate r.
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By Bates (2006), pp. 953-955, the SVJ and SVSJ models are both affine,

with an exponential-affine C.F. for the terminal joint process ZT =
(
YT , σ

2
T

)
given an initial point Zt0 =

(
Yt0 , σ

2
t0

)
, written as

φZT |Zt0 (u, v) = exp
[
iuYt0 + C (u, v; τ) +D (u, v; τ)σ2

t0

]
, (A.3)

in conditional form where Yt is the log-price, σ2
t is the latent factor, and

τ = T − t0 > 0 is the gap time. The functional forms

C = C (u, v; τ) , and D = D (u, v; τ) ,

are referred to as the affine coefficients. In this thesis we further denote the

affine coefficients of the corresponding conditional log-price characteristic

function by

C = C (u; τ) = C (u, 0; τ) , and D = D (u; τ) = D (u, 0; τ) .

Bates (2006), pp. 953-954, nests the SVJ and SVSJ models into one model,

and derives the affine coefficients of the joint characteristic function as a so-

lution to the related Kolmogorov backward equation with a suitable bound-

ary condition, similar to Heston (1993), pp. 340-342. Recall that is was

shown in subsection 2.6.2 that a time changed compound Poisson Merton

process is equivalent to a Poisson stochastic integral where the integrator

is a non-homogeneous Poisson process with affine stochastic jump intensity

λt = λσ2
t , consistent with Bates (2006), p. 953.

This appendix presents joint affine coefficients C (u, v; τ) and D (u, v; τ),

for the SVJ and SVSJ models assuming τ > 0, that are shown under the

condition ρ < 0 from Appendix B, and a key result from Appendix C.2,

to be principal branch continuous for all (u, v) ∈ R × (−δ, δ), for some

δ > 0. This is based on Lord and Kahl (2010), §2-3, where the problem

is studied for the log-price C.F. of the Heston model, with the initial point

known. Theorem A.1 of Appendix A.3 proves that our affine coefficients

are equivalent to those given in Bates (2006), p. 954.
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A.1 Specifications in Common with Bates (2006)

The main auxiliary variables and joint coefficient format presented in this

introductory part of Appendix A, are the same across both our specification

of the affine coefficients in Appendix A.2, and the Bates (2006) specification

presented in Appendix A.3. However, note that Bates (2006) only pursued

Merton (1976) jumps. We will provide for the other two jump types from

Section 2.3 as well.

We define the compensated characteristic exponent of the jumps by

ψ̂X (u) = ψX (u)− iuψX (−i) , (A.4)

and for convenience we also define the same for Brownian motion,

ψ̂W (u) = −1

2

(
u2 + iu

)
. (A.5)

Recall from subsection 2.3.1 that for Merton jumps, as in Bates (2006)

ψ̂MJ (u) = λ

(
exp

(
iβu− 1

2
α2u2

)
− 1

)
(A.6)

− iuλ
(

exp

(
β +

1

2
α2

)
− 1

)
,

while from subsection 2.3.2 for Huang and Wu type Variance Gamma jumps

ψ̂V G (u) = −λ log

(
1− iβu+

1

2
α2u2

)
(A.7)

+ iuλ log

(
1− β − 1

2
α2

)
,

and from subsection 2.3.3 for Meixner jumps

ψ̂MX (u) = 2λ log

 cos
(
β
2

)
cosh

(
1
2 (αu− iβ)

)
 (A.8)

− iu2λ log

 cos
(
β
2

)
cos
(
α+β

2

)
 .
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The primary auxiliary variable that distinguishes between the SVJ case

and the SVSJ case is

ψ (u) =

 ψJ0 (u)

ψJ1 (u)

 =

 ψ̂W (u) for SVJ

ψ̂W (u) + ψ̂MJ (u) for SVSJ

 . (A.9)

The style of specification for ψ (u) in (A.9) is taken from Huang and Wu

(2004). We now define the two primary auxiliary variables,

κG (u) = κ− iuρω, and (A.10)

γ (u) =

 γJ0 (u)

γJ1 (u)

 =

√
κG (u)2 − 2ω2ψ (u). (A.11)

As above, for functions and variables that depend on γ (u), or more precisely

ψ (u), a superscript J0 will indicate the SVJ case, similarly J1 will indicate

the SVSJ case, and either a superscript ψ or no superscript will indicate

both. A common format for both our specification and that of Bates (2006),

p. 954, is given by

C = C (u, v; τ) (A.12)

= C (u; τ)− 2κη

ω2
log
(

1−Kψ (u; τ) iv
)

,

D = D (u, v; τ) (A.13)

= D (u; τ) +
Rψ (u; τ) iv

1−Kψ (u; τ) iv
,

C (u; τ) =

 CJ0 (u; τ)

CJ1 (u; τ)

 =

 CSV (u; τ)

CJ1 (u; τ)

+ 1SV J ψ̂X (u) τ , (A.14)

and D (u; τ) = Dψ (u; τ) . (A.15)

Note that in equation (A.14), the term CSV (u) is simply the C coefficient

for the Heston model.
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The differences between our specification and that of Bates (2006) are

found in the definitions of the marginal coefficients, C (u), and D (u), and

auxiliary variables K (u), and R (u).

A.2 Affine Coefficients used in this Thesis

If the sole aim of this thesis were to estimate the SVJ and SVSJ models

from daily log-returns by AML with τ = 1
252 , then we would not need the

alternative set of affine coefficients presented here. However, the relative

entropy method from Chapter 6, and the calibration in Chapter 5, both

invert the log-price characteristic function at potentially large maturity dates

τ . To accommodate this, continuity on the principal branch is desired, see

Lord and Kahl (2010), p. 676, concerning the Heston model. Thus, we offer

a unified set of affine coefficients to cover every aspect of this thesis.

By generalizing the arguments from Lord and Kahl (2010), §2-3, we prove

in Appendix B and Appendix C that our affine coefficients are principal

branch continuous. Other known cases of this phenomenon include Bakshi,

Cao, and Chen (1997), p. 2046, and in particular Duffie, Pan, and Singleton

(2000), p. 1360. Note that the affine coefficients derived in Heston (1993),

pp. 340-342, are not principal branch continuous despite being algebraically

equivalent to a version that is, see Lord and Kahl (2010), p. 674-675.

Recall that the general specifications from Appendix A.1 are

C (u, v; τ) = C (u; τ)− 2κη

ω2
log
(

1−Kψ (u; τ) iv
)

, (A.16)

D (u, v; τ) = D (u; τ) +
Rψ (u; τ) iv

1−Kψ (u; τ) iv
, (A.17)

C (u; τ) =

 CSV (u; τ)

CJ1 (u; τ)

+ 1SV J ψ̂X (u) τ , (A.18)

and D (u; τ) = Dψ (u; τ) . (A.19)
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We now give C (u), D (u), K (u), and R (u) defining the proposed prin-

cipal branch version of the affine coefficients for the SVJ and SVSJ models.

We begin by defining two additional auxiliary variables

A (u) = Aψ (u) =
κG (u)− γ (u)

κG (u) + γ (u)
, and (A.20)

H (u; τ) = Hψ (u; τ) = (κG (u) + γ (u))
(

1−A (u) e−γ(u)τ
)

. (A.21)

The SVJ and SVSJ joint affine coefficients are now fulfilled simultaneously

with marginal coefficients and auxiliary variables defined by

C (u; τ) = iuµ0τ +
κη

ω2
(κG (u)− γ (u)) τ (A.22)

− 2κη

ω2
log

(
A (u) e−γ(u)τ − 1

A (u)− 1

)
+ 1SV J ψ̂X (u) τ ,

D (u; τ) =
κG (u)− γ (u)

ω2

(
1− e−γ(u)τ

1−A (u) e−γ(u)τ

)
, (A.23)

K (u; τ) =
ω2
(
1− e−γ(u)τ

)
H (u; τ)

, and (A.24)

R (u; τ) = 4e−γ(u)τ

(
γ (u)

H (u; τ)

)2

. (A.25)

A.3 Affine Coefficients from Bates (2006)

We assume the same general specifications for the joint coefficients as applied

above in equations (A.16) to (A.19) from Appendix A.2. However, in this

case we define the additional auxiliary variable given by

B (u; τ) = Bψ (u; τ) =
eγ(u)τ + 1

eγ(u)τ − 1
. (A.26)

It may be deduced from Bates (2006), p. 954, that the marginal coeffi-

cients and auxiliary variables C (u), D (u), K (u), and R (u) fulfilling the
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definition of the joint affine coefficients for both the SVJ and SVSJ models

simultaneously are given by

C (u; τ) = iuµ0τ +
κη

ω2
(κG (u) + γ (u)) τ (A.27)

− 2κη

ω2
log

(
1 +

(κG (u) + γ (u))
(
eγ(u)τ − 1

)
2γ (u)

)
+ 1SV J ψ̂X (u) τ ,

D (u; τ) =
2ψ (u)

γ (u)B (u; τ) + κG (u)
, (A.28)

K (u; τ) =
ω2

γ (u)B (u; τ) + κG (u)
, and (A.29)

R (u; τ) =
B (u; τ)2 − 1(

B (u; τ) + κG(u)
γ(u)

)2 . (A.30)

As we prove in Appendix B, it is the change that we make in this thesis

to C (u) that guarantees principal branch continuity. Appendix B also

shows that the changes that we make to D (u), K (u), and R (u) improve

stability, since on the principal branch Re γ (u) > 0 for all u ∈ R, whereby

e−γ(u)τ decays as u→ ±∞. The property from Bates (2006), p. 954, that

C (u, v; τ) and D (u, v; τ) are both easily twice differentiable with respect v,

has also been preserved.

Theorem A.1 (Equivalence of Affine Coefficients) Equations (A.22)

through (A.25) of Appendix A.2 are equivalent to equations (A.27) through

(A.30) of Appendix A.3.

Proof. From equation (A.27),(
CBates − iuµ0τ − 1SV J ψ̂Xτ

) ω2

κη

= (κG + γ) τ − 2 log

(
1 +

(κG + γ) (eγτ − 1)

2γ

)
= (κG − γ) τ − 2 log e−γτ − 2 log

(
1 +

(κG + γ) (eγτ − 1)

2γ

)
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= (κG − γ) τ − 2 log

(
2γe−γτ + (κG + γ) (1− e−γτ )

2γ

)
= (κG − γ) τ − 2 log

(
κG + γ

2γ
− κG − γ

2γ
e−γτ

)
= (κG − γ) τ − 2 log

((
κG + γ

κG + γ
− κG − γ
κG + γ

e−γτ
)
κG + γ

2γ

)
= (κG − γ) τ − 2 log

(
Ae−γτ − 1

A− 1

)
,

since A− 1 =
−2γ

κG + γ
, with A from (A.20) ,

=
(
C − iuµ0τ − 1SV J ψ̂Xτ

) ω2

κη
, from equation (A.22) .

To see that the D coefficients are equivalent, first note that by squaring both

sides of equation (A.11) we obtain

2ψ =
κ2
G − γ2

ω2
=

(κG + γ) (κG − γ)

ω2
. (A.31)

Thus, from equation (A.28),

DBates =
2ψ

γB + κG

=
(κG + γ) (κG − γ)

ω2

(
1− e−γτ

γ (1 + e−γτ ) + κG (1− e−γτ )

)
,

where B =
eγτ + 1

eγτ − 1
from equation (A.26) ,

=
(κG + γ) (κG − γ)

ω2

(
1− e−γτ

(κG + γ)− (κG − γ) e−γτ

)
,

=
κG − γ
ω2

(
1− e−γτ

1−Ae−γτ

)
,

since A =
κG − γ
κG + γ

from (A.20) ,

= D, from equation (A.23) .
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The auxiliary variable K is similar to D. From equation (A.30),

KBates =
ω2

γB + κG

=
ω2 (1− e−γτ )

γ (1 + e−γτ ) + κG (1− e−γτ )
,

where B =
eγτ + 1

eγτ − 1
from equation (A.26) ,

=
ω2 (1− e−γτ )

(κG + γ)− (κG − γ) e−γτ
,

=
ω2 (1− e−γτ )

(κG + γ) (1−Ae−γτ )
,

since A =
κG − γ
κG + γ

from (A.20) ,

=
ω2 (1− e−γτ )

H
= K, from equation (A.24) ,

since H = (κG + γ)
(
1−Ae−γτ

)
from (A.21) .

For R, first note that in the numerator of equation (A.30)

B2 − 1 =

(
eγτ + 1

eγτ − 1

)2

− 1

=

(
1 + e−γτ

1− e−γτ

)2

−
(

1− e−γτ

1− e−γτ

)2

=
(1 + e−γτ )

2 − (1− e−γτ )
2

(1− e−γτ )2

=
(1 + e−γτ + 1− e−γτ ) (1 + e−γτ − (1− e−γτ ))

(1− e−γτ )2 ,

with the above by difference of squares in the numerator,

=
2 (2e−γτ )

(1− e−γτ )2 =
4e−γτ

(1− e−γτ )2 . (A.32)

Using (A.32), we obtain from (A.30)

RBates =
B2 − 1(
B + κG

γ

)2
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=
4e−γτ(

B + κG
γ

)2
(1− e−γτ )2

=
4e−γτγ2

(γ (1 + e−γτ ) + κG (1− e−γτ ))2 ,

since B =
eγτ + 1

eγτ − 1
=

1 + e−γτ

1− e−γτ
,

=
4e−γτγ2

(γ (1 + e−γτ ) + κG (1− e−γτ ))2 ,

=
4e−γτγ2

((κG + γ) + (κG − γ) e−γτ )2 ,

=
4e−γτγ2

((κG + γ) (1−Ae−γτ ))2 ,

since A =
κG − γ
κG + γ

from (A.20) ,

=
4e−γτγ2

H2
, since H = (κG + γ)

(
1−Ae−γτ

)
from (A.21) ,

= 4e−γτ
( γ
H

)2
= R, from equation (A.25) .

Thus, the affine coefficients and auxiliary variables used in this thesis are

equivalent to Bates (2006).

Remark A.2 For the log-price coefficients C (u) and D (u), the parameter

dependency under the SVJ and SVSJ models is summarized as follows.

• SVJ: C (u) = C (u;µ0, κ, η, ω, ρ, λ, α, β) and D (u) = D (u;κ, ω, ρ)

• SVSJ: C (u) = C (u;µ0, κ, η, ω, ρ, λ, α, β) and D (u) = D (u;κ, ω, ρ, λ, α, β)

These results follow from the definitions in Appendix A.1, and either

Appendix A.2 or this Appendix A.3. Note in particular that D (u) does not

depend on either the drift parameter µ0 or the long run variance parameter

η in either model, and that in the SVSJ model D (u) depends on the jump

parameters λ,α, and β, whereas in the SVJ model D (u) has no dependence

on the jump parameters.
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Appendix B

Continuity: SVJ and SVSJ

Models

Recall from Appendix A that for the SVJ and SVSJ models the joint affine

coefficients, C (u, v; τ) and D (u, v; τ) in equations (A.16) and (A.17), are

determined by the marginal log-price coefficients, C (u) and D (u), as well as

the auxiliary variables, K (u) and R (u), of the joint C.F. In this appendix

we show that the versions of the main variables C (u), D (u), K (u) and

R (u) in equations (A.22) to (A.25) respectively from Appendix A.2 are,

assuming τ > 0, continuous for all u ∈ R. In particular, Appendix B.2

shows that C (u) is continuous on the principal branch of the logarithm

in equation (A.22), given the sole condition that ρ < 0, as introduced in

Appendix B.1. The task that we have in this appendix is similar to the

treatment of the Heston model in Lord and Kahl (2010), §2-3. However,

there is at least one important difference. We consider the parameter u

to be purely real, whereas Lord and Kahl (2010) considers u = a + ib to

be complex. Consequently, though our argument follows Lord and Kahl

(2010), it is simpler. Moreover, since the jumps are independent of the
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Heston process in the SVJ model, the SVJ extension of Lord and Kahl

(2010), §2-3, is trivial. However, the extension of this analysis to the SVSJ

model with Merton jumps, to the best of our knowledge, has not been seen

before in the previous literature.

The result from Appendix B.2 that for τ > 0, and given ρ < 0, the

log-price coefficient C (u) is continuous on the principal branch for both the

SVJ and SVSJ models, is used in Chapter 3 to prove that the marginal log-

price C.F. is L1. This particular L1 result is used primarily in Chapter 6

on relative entropy. The continuity of C (u), given ρ < 0, is used again

in Chapter 4 on the Bates (2006) AML method to prove that the joint

conditional C.F. is L1 in the u-variable.

We will continue to use the convention from Appendix A that a super-

script J0 will indicate the SVJ case, a superscript J1 will indicate the SVSJ

case, and either a superscript ψ or no superscript will indicate both. A

superscript SV will continue to denote the Heston model.

B.1 Continuity of Auxiliary Variables

In this appendix we treat the continuity of all auxiliary variables. From

Appendix A, this list includes ψ̂X (u), ψ (u), κG (u), γ (u), and A (u) from

equations (A.4), (A.9), (A.10), (A.11), and (A.20) respectively, as well as

H (u), K (u), and R (u) respectively from equations (A.21), (A.24), and

(A.25). The first group is used primarily to prove continuity of the log-price

coefficients in Appendix B.2. The second group is used to prove continuity

for the joint coefficients in Appendix C.3, further requiring a result from

Appendix C.2 proved by asymptotics. The auxiliary variables γ (u) and

A (u) have additional properties to be treated in this appendix. The main

result is Lemma B.11 proving that for both the SVJ and SVSJ models, ρ < 0

implies |A (u)| < 1, for all u ∈ R. First, a few obvious points.
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Lemma B.1 If ψX (−i) <∞ then for any pure jump Lévy process Xt

ψ̂X (u) = ψX (u)− iuψX (−i) ,

is continuous for all u ∈ R.

Proof. By hypothesis ψX (−i) is a finite constant. Then by Theorem 2.5

etψ̂X(u) = φXt (u) e−iutψX(−i).

But, φXt (u) is a characteristic function, so it is continuous for all u ∈ R by

Proposition 3.11 3. Moreover, the complex exponential is continuous.

Corollary B.2 The auxiliary variable

ψ (u) =

 ψJ0 (u)

ψJ1 (u)

 =

 ψ̂W (u) for SVJ

ψ̂W (u) + ψ̂MJ (u) for SVSJ

 , (B.1)

where ψ̂W (u) = −1

2

(
u2 + iu

)
,

is clearly continuous for all u ∈ R in both the SVJ and SVSJ cases.

Furthermore, it is clear from equation (A.11) that for all u ∈ R,

κG (u) = κ− iuρω

is continuous, with strictly positive real part when u is purely real.

The complications begin here. From equation (A.11), the auxiliary

variable γ (u) is defined by

γ (u) =

 γJ0 (u)

γJ1 (u)

 =


√
κG (u)2 − 2ω2ψJ0 (u) for SVJ√
κG (u)2 − 2ω2ψJ1 (u) for SVSJ

 .

Note further that γJ0 (u) = γSV (u). Define

z (u) = γ (u)2 = κG (u)2 − 2ω2ψ (u) . (B.2)
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Furthermore, define the real and imaginary parts of z by

x (u) = Re z (u) , (B.3)

and y (u) = Im z (u) . (B.4)

In polar co-ordinates γ (u) is defined by

γ (u) = ±
√
|z (u)| exp

(
i
θ

2

)
, (B.5)

where tan (θ) =
y (u)

x (u)
. (B.6)

To uniquely satisfy equation (B.6), we will always choose the unique value

θ0 ∈ (−π, π] denoting the principal value of θ. That is, we will use the

principal branch. However, to obtain a unique representation of γ (u) in

equation (B.5), we must choose between the positive and negative roots

arbitrarily. In this thesis we assume the positive root in equation (B.5).

This is the same assumption made by Lord and Kahl (2010), p. 675.

For future reference, and for the part of the next lemma corresponding

to the SVSJ model, we will need the real and imaginary parts of ψ̂MJ (u).

From equation (A.6) in Appendix A we obtain

Re ψ̂MJ (u) = λ
(
e−

1
2
α2u2

cos (βu)− 1
)

, and (B.7)

Im ψ̂MJ (u) = λ
(
e−

1
2
α2u2

sin (βu)− u
(
eβ+ 1

2
α2 − 1

))
. (B.8)

Lemma B.3 Let u be purely real, and for the SVJ and SVSJ models let

z (u) = γ (u)2 = κG (u)2 − 2ω2ψ (u) .

Then for all u ∈ R

x (u) = Re z (u) > 0. (B.9)
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Proof. Since u is purely real, for the SVJ model we have

zJ0 (u) = γJ0 (u)2 = κG (u)2 − 2ω2ψJ0 (u)

= (κ− iuρω)2 + ω2
(
u2 + iu

)
= κ2 +

(
1− ρ2

)
u2ω2 + i

(
ω2 − 2κωρ

)
u

= xJ0 (u) + iyJ0 (u) . (B.10)

Thus, for all u ∈ R, xJ0 (u) > 0, given κ > 0, ω > 0, and ρ ∈ [−1, 1].

Again, since u is purely real, for the SVSJ model we have

zJ1 (u) = γJ1 (u)2 = κG (u)2 − 2ω2ψJ1 (u)

= (κ− iuρω)2 + ω2
(
u2 + iu

)
− 2ω2ψ̂MJ (u)

= κ2 +
(
1− ρ2

)
u2ω2 − 2ω2 Re ψ̂MJ (u)

+ i
[(
ω2 − 2κωρ

)
u− 2ω2 Im ψ̂MJ (u)

]
= xJ1 (u) + iyJ1 (u) . (B.11)

Hence, by equation (B.7)

xJ1 (u) = κ2 +
(
1− ρ2

)
u2ω2 − 2ω2 Re ψ̂MJ (u)

= xJ0(u) + 2ω2λ
(

1− e−
1
2
α2u2

cos (βu)
)

But, 0 ≤ 1 − e−
1
2
α2u2

cos (βu) ≤ 1, for all u ∈ R. Hence, since λ > 0, the

previous part implies xJ1 (u) > 0.

Proposition B.4 Let u ∈ R, and let γ (u) be evaluated on the principal

branch. Then, for both the SVJ and SVSJ models, for all u ∈ R

1. γ (u) is continuous

2. Re γ (u) > 0, and

3. Im γ (u) has the same sign as y (u) = Im z (u) = Im γ (u)2.
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Proof. Assuming the positive root, equations (B.5) and (B.6) state that

γ (u) =
√
|z (u)| exp

(
i
θ (u)

2

)
, where tan (θ (u)) =

y (u)

x (u)
. (B.12)

Since κG (u) is continuous, and by Corollary B.2, ψ (u) is continuous for

both the SVJ and SVSJ models, we have that

z (u) = γ (u)2 = κG (u)2 − 2ω2ψ (u) ,

is also continuous. Thus, x (u) = Re z (u), and y (u) = Im z (u) are both

continuous. But, by Lemma B.3, x (u) > 0, when u ∈ R. Therefore,

assuming the principal branch, θ (u) has the unique solution

θ0 (u) = arctan

(
y (u)

x (u)

)
∈
(
−π

2
,
π

2

)
(B.13)

with the sign of θ0 (u) matching the sign of y (u) for each u ∈ R. Then,

since equation (B.13) indicates that θ0 (u) is continuous, we have that

γ (u) =
√
|z (u)| exp

(
i
θ0 (u)

2

)
(B.14)

is continuous on the principal branch. This proves 1. Moreover,

Re γ (u) =
√
|z (u)| cos

(
θ0 (u)

2

)
> 0, since θ0 (u) ∈

(
−π

2
,
π

2

)
,

when u ∈ R, and this proves 2. Furthermore, on the principal branch,

Im γ (u) =
√
|z (u)| sin

(
θ0 (u)

2

)
, with θ0 (u) ∈

(
−π

2
,
π

2

)
. (B.15)

However, when u ∈ R, x (u) > 0 by Lemma B.3. Hence, θ0 (u) has the same

sign as y (u) by equation (B.13) where

y (u) = Im z (u) = Im γ (u)2 .

But, then Im γ (u) has the same sign as θ0 (u) by equation (B.15). Thus,

the result 3. follows.
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The next few results concerning the auxiliary variable,

A (u) =
κG (u)− γ (u)

κG (u) + γ (u)
, (B.16)

form the backbone of the Lord and Kahl (2010) case for principal branch

continuity of the affine coefficient C (u). As mentioned, these results follow

more easily when u is purely real. Moreover, we extend these results to the

SVSJ case. For evaluation of γ (u), the principal branch will henceforth be

assumed for convenience and simplicity.

Lemma B.5 Let u be purely real. Then A (u) in equation (B.16) is con-

tinuous, and for all u ∈ R, A (u) 6= 1.

Proof. When u ∈ R, ReκG (u) = κ > 0, and, by Proposition B.4 2.,

Re γ (u) > 0. Hence, the denominator of A (u) 6= 0. Then, since κG (u) is

continuous, and by Proposition B.4 1., γ (u) is continuous, clearly A (u) is

continuous. Moreover, since κG (u) is never zero if u ∈ R, A (u) = 1 if and

only if γ (u) = 0. But, when u ∈ R, Re γ (u) > 0. Therefore, A (u) 6= 1.

Lemma B.6 For the auxiliary variable A (u) in equation (B.16),

|A (u)| < 1 if and only if

ReκG (u) Re γ (u) + ImκG (u) Im γ (u) > 0. (B.17)

Proof. By definition of A (u) in equation (B.16), we have |A (u)|2 < 1

iff |κG (u) + γ (u)|2 > |κG (u)− γ (u)|2 (B.18)

iff 4 [ReκG (u) Re γ (u) + ImκG (u) Im γ (u)] > 0,

since the squared terms in the expansion of (B.18) cancel. Thus, the result

in (B.17) follows.

We now introduce the reasonable assumption that ρ < 0. When u is

purely real, this leads to the following key results.
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Lemma B.7 Let ρ < 0, and assume that u is purely real. If Im γ (u) has

the same sign as u, for all u ∈ R, then

|A (u)| < 1, for all u ∈ R.

Proof. When u ∈ R, ReκG (u) = κ > 0, and by Proposition B.4 2.,

Re γ (u) > 0. Furthermore, when u ∈ R and ρ < 0, ImκG (u) = −uρω has

the same sign as u. Therefore, given ρ < 0, the hypothesis that Im γ (u)

has the same sign as u, for all u ∈ R, implies that

ReκG (u) Re γ (u) + ImκG (u) Im γ (u) > 0.

Hence, by Lemma B.6, |A (u)| < 1, for all u ∈ R.

Lemmas B.8 and B.10 below parallel Lemma 3.4, p. 678 from Lord and

Kahl (2010) which considers the Heston model. The main differences are

that we have assumed u is purely real throughout our analysis, and we treat

both the SVJ and SVSJ models in addition to the Heston model.

Lemma B.8 Let ρ < 0, and assume that u is purely real. Then for both

the Heston and SVJ models,

|A (u)| < 1, for all u ∈ R.

Proof. We can view the Heston model as a special case of the SVJ model

with no jumps. By equation (B.1) from Corollary B.2 we have

ψJ0 (u) = −1

2

(
u2 + iu

)
.

Thus, similar to the proof of Lemma B.3 in the SVJ case, if u ∈ R, then

zJ0 (u) = γJ0 (u)2 = κG (u)2 − 2ω2ψJ0 (u)

= (κ− iuρω)2 + ω2
(
u2 + iu

)
= κ2 +

(
1− ρ2

)
u2ω2 + i

(
ω2 − 2κωρ

)
u

= xJ0 (u) + iyJ0 (u) . (B.19)
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That is, from equation (B.19), if u ∈ R, then

yJ0 (u) = Im zJ0 (u) =
(
ω2 − 2κωρ

)
u.

Thus, by the hypothesis that ρ < 0, it is clear that yJ0 (u) = Im zJ0 (u)

has the same sign as u. Moreover, Proposition B.4 3. further implies that

Im γJ0 (u) also has the same sign as u. Therefore, again by the assumption

that ρ < 0, Lemma B.7 implies

|A (u)| < 1,

for all u ∈ R, as required.

For the SVSJ case, recall from equations (B.7) and (B.8) that

Re ψ̂MJ (u) = λ
(
e−

1
2
α2u2

cos (βu)− 1
)

, and (B.20)

Im ψ̂MJ (u) = λ
(
e−

1
2
α2u2

sin (βu)− u
(
eβ+ 1

2
α2 − 1

))
. (B.21)

Lemma B.9 The function g (α, β) defined by

g (α, β) = eβ+ 1
2
α2 − 1− β (B.22)

is strictly positive for all α > 0 and β ∈ R.

Proof. Consider h : R → R, given by h (ξ) = eξ − 1 − ξ. It can be

shown by basic calculus that ξ = 0 is the unique global minimizer of h (ξ).

Furthermore, h (0) = 0. So, if we let ξ = β + 1
2α

2, then

h

(
β +

1

2
α2

)
= eβ+ 1

2
α2 − 1− β − 1

2
α2 ≥ 0.

But since α > 0, this implies that

g (α, β) = eβ+ 1
2
α2 − 1− β ≥ 1

2
α2 > 0,

for all α > 0 and β ∈ R, as required.

To the best of our knowledge, the following result for the SVSJ model has

never been presented before. We continue with the reasonable assumption

that ρ < 0, as in the SVJ case.
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Lemma B.10 Let ρ < 0, and assume that u is purely real. Then for the

SVSJ model,

|A (u)| < 1, for all u ∈ R.

Proof. By equation (B.1) from Corollary B.2 we have

ψJ1 (u) = −1

2

(
u2 + iu

)
+ ψ̂MJ (u) ,

where the real and imaginary parts of ψ̂MJ (u) are given in equations (B.20)

and (B.21) above. Recall the SVSJ part of the proof of Lemma B.3. Similar

to that proof, if u ∈ R, then

zJ1 (u) = γJ1 (u)2 = κG (u)2 − 2ω2ψJ1 (u)

= (κ− iuρω)2 + ω2
(
u2 + iu

)
− 2ω2ψ̂MJ (u)

= κ2 +
(
1− ρ2

)
u2ω2 − 2ω2 Re ψ̂MJ (u)

+ i
[(
ω2 − 2κωρ

)
u− 2ω2 Im ψ̂MJ (u)

]
= xJ1 (u) + iyJ1 (u) . (B.23)

Hence, from equations (B.23) and (B.21), if u ∈ R, then

yJ1 (u) = Im zJ1 (u) =
(
ω2 − 2κωρ

)
u− 2ω2 Im ψ̂MJ (u)

=
(
ω2 − 2κωρ

)
u− 2ω2λ

(
e−

1
2
α2u2

sin (βu)− u
(
eβ+ 1

2
α2 − 1

))
=

[
ω2 − 2κωρ+ 2λω2

(
eβ+ 1

2
α2 − 1− βe−

1
2
α2u2 sin (βu)

βu

)]
u. (B.24)

It follows directly from equation (B.24) that if

ω2 − 2κωρ+ 2λω2

(
eβ+ 1

2
α2 − 1− βe−

1
2
α2u2 sin (βu)

βu

)
> 0 (B.25)

then yJ1 (u) = Im zJ1 (u) will have the same sign as u. But, we assume that

ρ < 0. Moreover κ, ω, and λ are all strictly positive in the SVSJ model

parameter space. Hence, the condition

eβ+ 1
2
α2 − 1− βe−

1
2
α2u2 sin (βu)

βu
> 0, (B.26)
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will suffice for (B.25). However, the secondary condition (B.26) simplifies

even further. By a property of the function sin(a)
a , known as the “sinc”

function, see for example Briggs and Henson (1995), pp. 96-97, sin(βu)
βu ≤ 1

for all u ∈ R, and β ∈ R. Moreover, it is clear that e−
1
2
α2u2 ≤ 1 for all

u ∈ R, and α > 0. Hence,

eβ+ 1
2
α2 − 1− β > 0 (B.27)

suffices for (B.26), and therefore also (B.25). However, the inequality

(B.27) follows directly by Lemma B.9. Thus, we have shown that when

ρ < 0, the inequality (B.25) holds, and as stated above this implies that

yJ1 (u) = Im zJ1 (u) will have the same sign as u. Hence, similar to the

proof of Lemma B.8, Proposition B.4 3. now implies that Im γJ1 (u) will

also have the same sign as u. Therefore, by Lemma B.7, we obtain the

result that |A (u)| < 1, for all u ∈ R, as required.

For convenience, the above analysis is summarized as follows.

Lemma B.11 Let ρ < 0, and assume that u is purely real. Then for both

the SVJ and SVSJ models,

|A (u)| < 1, for all u ∈ R.

Proof. For the SVJ model see Lemma B.8 above, and for the SVSJ model

see Lemma B.10 immediately above.

Remark B.12 Under the assumption that u = a+ ib is a complex number,

Lord and Kahl (2006), Lemma 3, proves that for the Heston model

if ρ ≤ κ

ω
, then |A (u)| ≤ 1, for all u ∈ C.

Note that if u ∈ C, then γ (u) = 0 is possible, implying that A (u) = 1.

Hence, the inequality |A (u)| ≤ 1 is not necessarily strict when u is a complex

number. However, if κ ≥ ω, which is often true in practice, then the above

result from Lord and Kahl (2006) holds for all ρ ∈ [−1, 1].
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There remains one more small but critically important result concerning

the auxiliary variable A (u).

Lemma B.13 Let u be purely real, and assume that ρ < 0. Then for τ > 0,

in both the SVJ and SVSJ models, A (u) e−γ(u)τ 6= 1, for all u ∈ R.

Proof. Suppose that for some u ∈ R, A (u) e−γ(u)τ = 1. This implies∣∣∣A (u) e−γ(u)τ
∣∣∣ = 1. (B.28)

But, by Lemma B.11 ρ < 0 implies |A (u)| < 1 for all u ∈ R. Moreover,∣∣e−γ(u)τ
∣∣ = e−Re γ(u)τ < 1, by Proposition B.4 2., where Re γ (u) > 0, and

we assume τ > 0. This contradicts equation (B.28). Therefore,

A (u) e−γ(u)τ 6= 1, for all u ∈ R,

as required.

We close this appendix with the continuity of the auxiliary variables

related to the joint characteristic function. Recall from equations (A.21),

(A.24), and (A.25), respectively in Appendix A, that for τ > 0,

H (u) = (κG (u) + γ (u))
(

1−A (u) e−γ(u)τ
)

, (B.29)

K (u) =
ω2
(
1− e−γ(u)τ

)
H (u)

, and (B.30)

R (u) = 4e−γ(u)τ

(
γ (u)

H (u)

)2

. (B.31)

Proposition B.14 Let u be purely real, and assume that ρ < 0. Then, for

all u ∈ R, and for τ > 0,

1. H (u) is continuous and never zero,

2. K (u) is continuous, and

3. R (u) is continuous.
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Proof. By Lemma B.13, if ρ < 0 and τ > 0, then 1−A (u) e−γ(u)τ is never

zero, for any u ∈ R. Moreover, when u ∈ R, Proposition B.4 2. implies

that Re γ (u) > 0. Also, if u ∈ R then ReκG (u) = κ > 0. This shows that

H (u) 6= 0, for all u ∈ R. Furthermore, A (u) is continuous by Lemma B.5,

κG (u) is clearly continuous, and γ (u) is continuous by Proposition B.4 1.

Thus, H (u) is continuous. Hence, we have proven 1. Then, since H (u) is

continuous and never zero, and γ (u) is continuous, clearly both K (u) and

R (u) are continuous. This proves both 2. and 3.

B.2 Continuity of Log-Price Affine Coefficients

Using the results from Appendix B.1 above, we are now in a position to prove

the main result of this appendix, Proposition B.16. Recall from equations

(A.22) and (A.23) in Appendix A that the log-price affine coefficients C (u)

and D (u) used in this thesis are given by

C (u) = iuµ0τ +
κη

ω2
(κG (u)− γ (u)) τ (B.32)

− 2κη

ω2
log

(
A (u) e−γ(u)τ − 1

A (u)− 1

)
+ 1SV J ψ̂X (u) τ , and

D (u) =
κG (u)− γ (u)

ω2

(
1− e−γ(u)τ

1−A (u) e−γ(u)τ

)
, (B.33)

where the auxiliary variables γ (u) and A (u) each differ between the SVJ

and SVSJ model specifications. The main result, Proposition B.16, proves

that for τ > 0 in both the SVJ and SVSJ models, the primary condition

ρ < 0 from Appendix B.1 above, implies that C (u) in equation (B.32) is

continuous on the principal branch, for all u ∈ R, and that D (u) in equation

(B.33) is continuous, for all u ∈ R. We continue to assume that the auxiliary

variable γ (u) corresponds to the positive root, and that for simplicity γ (u)

is evaluated on the principal branch.

313



The following result is based on the proof from Lord and Kahl (2010),

Theorem 3.5, p. 678. Since we assume that u is purely real, our version is

simpler, thus having fewer exceptional cases.

Theorem B.15 Let u be purely real, and assume that ρ < 0. Further as-

sume that τ > 0. Then, in equation (B.32) for the log-price affine coefficient

C (u) of both the SVJ and SVSJ models, the argument of the logarithm,

A (u) e−γ(u)τ − 1

A (u)− 1
, (B.34)

never crosses the negative real axis, for any u ∈ R.

Proof. Suppose that (B.34) does cross the negative real axis. This implies

that for some u ∈ R, and some ξ ≥ 0,

A (u) e−γ(u)τ − 1

A (u)− 1
= −ξ. (B.35)

Note that by Lemma B.11, the hypothesis ρ < 0 implies that |A (u)| < 1,

holds for all u ∈ R. Further note that since u ∈ R, Lemma B.5 implies

A (u) 6= 1. Moreover, since ρ < 0, and we assume τ > 0, Lemma B.13

implies that A (u) e−γ(u)τ 6= 1. Thus, ξ is strictly positive. Consider

equation (B.35). Observe that it may be re-written as

A (u)
(
e−γ(u)τ + ξ

)
= 1 + ξ. (B.36)

Taking the norm of the left-hand side in equation (B.36) yields∣∣∣A (u)
(
e−γ(u)τ + ξ

)∣∣∣ ≤ |A (u)|
(∣∣∣e−γ(u)τ

∣∣∣+ ξ
)

<
(∣∣∣e−γ(u)τ

∣∣∣+ ξ
)

, since |A (u)| < 1

= e−Re γ(u)τ + ξ < 1 + ξ, since τ > 0, and (B.37)

since Re γ (u) > 0 by Proposition B.4 2.

But the inequality in (B.37) is strict. This contradicts the equality stated

in (B.36). Therefore, (B.34) never crosses the negative real axis.
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Proposition B.16 Let u be purely real, and assume that ρ < 0. Then, for

all u ∈ R, when τ > 0, in both the SVJ and SVSJ models,

1. C (u) in equation (B.32) is continuous on the principal branch of the

logarithm, and

2. D (u) in equation (B.33) is continuous.

Proof. Since κG (u) is clearly continuous, and and γ (u) is continuous by

Proposition B.4 1., the term

iuµ0τ +
κη

ω2
(κG (u)− γ (u)) τ

in equation (B.32) for C (u) is clearly continuous. Moreover, ψ̂X (u) is

continuous by Lemma B.1. Then since A (u) is continuous by Lemma B.5,

and we assume τ > 0, the term

−2κη

ω2
log

(
A (u) e−γ(u)τ − 1

A (u)− 1

)

in equation (B.32) for C (u) is continuous on the principal branch by the

critical result, Theorem B.15. This proves 1. Furthermore, since ρ < 0,

and we assume τ > 0, Lemma B.13, implies that

1−A (u) e−γ(u)τ

is never zero in the denominator of equation (B.33) D (u). Given the other

results cited above, this is sufficient for 2.

B.3 Summary

For affine characteristic functions, principal branch continuity is preferable,

since with it the tracking of the branch of the complex logarithm in the

C (u) coefficient is unnecessary. We may simply use the principal branch.
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We have proposed a systematic way to ensure this type of continuity, based

on Lord and Kahl (2010). Once the arrangement of the affine coefficients

from Appendix A.2 has been reached, one only needs to establish the key

property that

|A (u)| < 1, for all u ∈ R, where (B.38)

A (u) =
κG (u)− γ (u)

κG (u) + γ (u)
.

For both the SVJ and SVSJ models, ρ < 0 is sufficient for (B.38) by Lemma

B.11, summarizing Appendix B.1. Consequently, when τ > 0, the primary

hypothesis that ρ < 0 is sufficient for principal branch continuity of the

log-price coefficients by Theorem B.15 and Proposition B.16, in Appendix

B.2. Also, regarding the case ρ ≥ 0 for the Heston model, see the Lord and

Kahl (2006) result in Remark B.12 of Appendix B.1. For continuity of the

joint affine coefficients, see Appendix C.3. Joint continuity requires a result

from Appendix C.2 that uses an asymptotic argument.

The Riccati equations from Heston (1993), p. 341, have two solutions.

One is principal branch continuous, while the other is not. Heston chose the

latter solution. This went unnoticed for many years, as those who solved

the problem, for example Duffie, Pan, and Singleton (2000), chose not to

explain the situation, and in many scenarios the complex discontinuities

make very little difference numerically.

Albrecher, Mayer, Schoutens, and Tistaert (2007), Proposition 2, shows

that there is a threshold value of τ , depending on the model parameters,

below which the Heston characteristic function with complex discontinuities

will produce accurate results, but above which inaccuracies will only grow.

They also provide an example with realistic parameters where the threshold

value of τ is less than one. Hence, the problem is relevant when τ is a late

maturity date, in particular in Chapter 6 of this thesis.
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Appendix C

The Asymptotics of the

Affine Coefficients

For the SVJ and SVSJ models, as established in Appendix A, the joint affine

coefficients C (u, v; τ) and D (u, v; τ), from equations (A.16) and (A.17), are

determined by the log-price affine coefficients C (u) and D (u), along with

the joint auxiliary variables K (u) and R (u). However, the jumps in the

SVJ model are an independent Lévy process which can be handled sepa-

rately without resort to asymptotics. Moreover, in Appendix C.1, we show

that the auxiliary variable γJ1 (u) for the SVSJ model is asymptotically

equivalent to γJ0 (u) for the SVJ model, which is identical to γSV (u). This

means that if we agree to handle the jumps in the SVJ model separately,

then essentially all of the asymptotics for both the SVJ and SVSJ models

are equivalent to the asymptotics of the Heston model. The asymptotics of

the log-price coefficients C (u) and D (u) for the Heston model are given a

rudimentary treatment in the appendix of Kahl and Jäckel (2005), similar

to Appendix C.1 below. However, in Appendix C.2, we further provide

asymptotics for the joint auxiliary variables K (u) and R (u). Also, in both
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Appendix C.1 and Appendix C.2, we provide asymptotic forms in the limit

as u → −∞ in addition to the limit as u → +∞. Both limits are needed

in nearly all of our proven results. In combination with the continuity re-

sults from Appendix B.2, the asymptotic results of Appendix C.1 are used

in Chapter 3 to prove that the marginal log-price characteristic functions

for the SVJ and SVSJ models are L1. Also, Appendix C.2 provides a spe-

cific result, Lemma C.11, concerning the joint auxiliary variable K (u). In

addition to the asymptotics, this result is used in Chapter 4 on the Bates

(2006) AML method to prove that the joint conditional characteristic func-

tion and its v-derivatives are L1 in the u-variable, for the SVJ and SVSJ

models. Furthermore, in Appendix C.3, Lemma C.11 is used to prove that

for the joint affine coefficients C (u, v; τ) and D (u, v; τ) of the SVJ and SVSJ

models, assuming τ > 0, the primary hypothesis that ρ < 0 is sufficient for

principal branch continuity, for all u ∈ R, and for all |v| < δ, for some δ > 0.

Lastly, the results of this appendix are particularly useful in Appendix D

where we prove that we can differentiate twice under the Fourier integral in

the Bates (2006) AML volatility filter.

C.1 Asymptotics of Log-Price Affine Coefficients

Recall from equation (A.10) in Appendix A that

κG (u) = κ− iuρω. (C.1)

From equation (C.1), it is clear that

lim
u→±∞

κG (u)

u
= −iρω, and (C.2)

κG (u) ∼ −iρωu, as u→ ±∞. (C.3)

Note that (C.3) is consistent with the proof of Lemma B.7 in that when

ρ < 0, ImκG (u) has the same sign as u, for all u ∈ R.
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Further recall from equations (A.5), (A.9), and (A.11) in Appendix A

that for the SVJ model

ψJ0 (u) = ψ̂W (u) = −1

2

(
u2 + iu

)
, and (C.4)

γJ0 (u) =

√
κG (u)2 − 2ω2ψ̂W (u). (C.5)

Moreover,

γSV (u) = γJ0 (u) , (C.6)

since the Heston model can be viewed as a special case of the SVJ model

with no jumps.

Lemma C.1 For the SVJ model

lim
u→±∞

γJ0 (u)

u
= ±ω

√
1− ρ2, and (C.7)

γJ0 (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞. (C.8)

Proof. By equations (C.1), (C.4), and (C.5)

γJ0 (u) =

√
κG (u)2 − 2ω2ψ̂W (u)

=

√
(κ− iuρω)2 + ω2 (u2 + iu)

=
√
κ2 + (1− ρ2)u2ω2 + i (ω2 − 2κωρ)u.

Therefore,

lim
u→+∞

γJ0 (u)

u

= lim
u→+∞

√
κ2 + (1− ρ2)u2ω2 + i (ω2 − 2κωρ)u

u2

= ω
√

1− ρ2, and

lim
u→−∞

γJ0 (u)

u
= lim

u→+∞

γJ0 (−u)

−u
= − lim

u→+∞

γJ0 (−u)

u

= − lim
u→+∞

√
κ2 + (1− ρ2) (−u)2 ω2 + i (ω2 − 2κωρ) (−u)

u2

= −ω
√

1− ρ2.
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Hence,

γJ0 (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞, (C.9)

as required.

Note that the asymptotic form of γJ0 (u) in (C.9) is consistent with

Proposition B.4 2. whereby Re γ (u) > 0, for all u ∈ R.

For the next result, recall from equation (A.6) in Appendix A that

ψ̂MJ (u) = λ

(
exp

(
iβu− 1

2
α2u2

)
− 1

)
(C.10)

− iuλ
(

exp

(
β +

1

2
α2

)
− 1

)
.

Lemma C.2

lim
u→+∞

ψ̂MJ (±u)

u2
= 0.

Proof.

lim
u→+∞

ψ̂MJ (u)

u2

= lim
u→+∞

λ
(
e−

1
2
α2u2

eiβu − 1
)

u2
− lim
u→+∞

iuλ
(
eβ+ 1

2
α2 − 1

)
u2

= lim
u→+∞

λe−
1
2
α2u2

eiβu

u2

= lim
u→+∞

λe−
1
2
α2u2

(cos (βu) + i sin (βu))

u2
= 0, and similarly,

lim
u→+∞

ψ̂MJ (−u)

u2

= lim
u→+∞

λe−
1
2
α2u2

e−iβu

u2

= lim
u→+∞

λe−
1
2
α2u2

(cos (βu)− i sin (βu))

u2
= 0,

as required.
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Further recall from equations (A.9) and (A.11) in Appendix A that for

the SVSJ model

ψJ1 (u) = ψ̂W (u) + ψ̂MJ (u) , so that (C.11)

γJ1 (u) =

√
κG (u)2 − 2ω2ψ̂W (u)− 2ω2ψ̂MJ (u), (C.12)

where ψ̂W (u) = −1

2

(
u2 + iu

)
, as in (C.4) .

Lemma C.3 For the SVJ and SVSJ models γJ1 (u) and γJ0 (u) are asymp-

totically equivalent as u→ ±∞, and we write

lim
u→±∞

γ (u)

u
= ±ω

√
1− ρ2, with (C.13)

γ (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞, (C.14)

for both the SVJ and SVSJ models.

Proof. Combining both limits, and using equation (C.12), we obtain

lim
u→±∞

γJ1 (u)

u
= lim

u→+∞

γJ1 (±u)

±u

= ± lim
u→+∞

√
κG (±u)2 − 2ω2ψ̂W (±u)− 2ω2ψ̂MJ (±u)

u2

= ± lim
u→+∞

√
κG (±u)2 − 2ω2ψ̂W (±u)

u2
, by Lemma C.2,

= lim
u→±∞

γJ0 (u)

u
= ±ω

√
1− ρ2, from the proof of Lemma C.1.

Therefore, γJ1 (u) and γJ0 (u) are asymptotically equivalent as u → ±∞,

and we may write

γ (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞,

in both cases, as required.

Recall from equation (A.20) in Appendix A that for both the SVJ and

SVSJ models, we have the auxiliary variable

A (u) =
κG (u)− γ (u)

κG (u) + γ (u)
. (C.15)
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Proposition C.4 Using A (u) from equation (C.15), define

A+∞ = lim
u→+∞

A (u) , and (C.16)

A−∞ = lim
u→−∞

A (u) = lim
u→+∞

A (−u) . (C.17)

Then we have

1. A+∞ = −1 + 2ρ2 − 2iρ
√

1− ρ2 is constant,

2. A−∞ = A+∞ = −1 + 2ρ2 + 2iρ
√

1− ρ2 is also constant, and

3. |A+∞| = |A−∞| = 1.

Proof. 1. Using equation (C.2) and the positive limit in equation (C.13),

equation (C.15) yields

A+∞ = lim
u→+∞

A (u) =
−iρω − ω

√
1− ρ2

−iρω + ω
√

1− ρ2

=

(
−iρω − ω

√
1− ρ2

)(
iρω + ω

√
1− ρ2

)
∣∣∣−iρω + ω

√
1− ρ2

∣∣∣2
=
ρ2ω2 − 2iω2ρ

√
1− ρ2 − ω2

(
1− ρ2

)
ρ2ω2 + ω2 (1− ρ2)

=
2ρ2ω2 − 2iω2ρ

√
1− ρ2 − ω2

ω2

= −1 + 2ρ2 − 2iρ
√

1− ρ2 is constant.

2. Similarly, using the negative limit in equation (C.13)

A−∞ = lim
u→−∞

A (u) =
−iρω + ω

√
1− ρ2

−iρω − ω
√

1− ρ2

=
iρω − ω

√
1− ρ2

iρω + ω
√

1− ρ2
=

(
−iρω − ω

√
1− ρ2

−iρω + ω
√

1− ρ2

)
= A+∞ = −1 + 2ρ2 + 2iρ

√
1− ρ2, from 1., is also constant.
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3. From 2. we obtain

|A+∞| =
∣∣A+∞

∣∣ = |A−∞|

=

√
(1− 2ρ2)2 + 4ρ2 (1− ρ2)

=
√

1− 4ρ2 + 4ρ4 + 4ρ2 − 4ρ4 = 1,

as required.

Note that the result in Proposition C.4 1. is consistent with the appendix

of Kahl and Jäckel (2005) where

lim
u→+∞

κG (u) + γ (u)

κG (u)− γ (u)
= lim

u→+∞

1

A (u)

is computed instead. Also, note that the result A−∞ = A+∞ from Propo-

sition C.4 2. is consistent with Lord and Kahl (2010), p. 689, where

A (−u) = A (u), for all u ∈ C

is given.

We are now in a position to present the two main results on the asymp-

totic forms of the log-price affine coefficients C (u) and D (u) for the SVJ

and SVSJ models. These are Lemmas C.6 and C.7 below. First, pursuant

to our plan to treat the jumps in the SVJ model separately, we modify

equations (A.18) and (A.22) from Appendix A.2 to obtain

C̃ (u) = C (u)− 1SV J ψ̂X (u) τ =

 CSV (u; τ)

CJ1 (u; τ)

 , that is (C.18)

C̃ (u) = iuµ0τ +
κη

ω2
(κG (u)− γ (u)) τ (C.19)

− 2κη

ω2
log

(
A (u) e−γ(u)τ − 1

A (u)− 1

)
.

Lemma C.5 Let τ > 0. Then for the SVJ and SVSJ models with ρ < 0,

lim
u→±∞

log
(
A(u)e−γ(u)τ−1

A(u)−1

)
u

= 0. (C.20)
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Proof. By Lemma C.3, γ (u) ∼ ±ω
√

1− ρ2u, as u → ±∞, for both the

SVJ and SVSJ models, and by Proposition C.4 1. and 2.

lim
u→±∞

A (u) = A±∞ = −1 + 2ρ2 ∓ 2iρ
√

1− ρ2.

Therefore, since τ > 0,

lim
u→±∞

A (u) e−γ(u)τ − 1

A (u)− 1
=

1

1−A±∞
, is constant.

Moreover,

1

1−A±∞
=

1

2 (1− ρ2)± 2iρ
√

1− ρ2

=
2
(
1− ρ2

)
∓ 2iρ

√
1− ρ2∣∣∣2 (1− ρ2)± 2iρ

√
1− ρ2

∣∣∣2 =
2
(
1− ρ2

)
∓ 2iρ

√
1− ρ2

4 (1− ρ2)
,

so that, Re

(
1

1−A±∞

)
=

1

2
> 0.

Since τ > 0, and ρ < 0, it now follows from Theorem B.15 that

lim
u→±∞

log
(
A(u)e−γ(u)τ−1

A(u)−1

)
u

=
log
(

1
1−A±∞

)
lim

u→±∞
u

= 0,

as required.

Lemma C.6 Let τ > 0. Then when ρ < 0 in both the SVJ model without

jumps, and the SVSJ model, we have

lim
u→±∞

C̃ (u)

u
= ∓κητ

ω

√
1− ρ2 + iτ

(
µ0 −

κηρ

ω

)
, with (C.21)

C̃ (u) ∼ ∓κητ
ω

√
1− ρ2u+ iτ

(
µ0 −

κηρ

ω

)
u, as u→ ±∞. (C.22)

Proof. Equation (C.19) defines

C̃ (u) = iuµ0τ +
κη

ω2
(κG (u)− γ (u)) τ (C.23)

− 2κη

ω2
log

(
A (u) e−γ(u)τ − 1

A (u)− 1

)
.
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However, by Lemma C.5, with τ > 0 and ρ < 0,

lim
u→±∞

log
(
A(u)e−γ(u)τ−1

A(u)−1

)
u

= 0.

Moreover, by equation (C.2) and Lemma C.3 combined,

lim
u→±∞

κG (u)− γ (u)

u
= −iρω ∓ ω

√
1− ρ2.

Lastly, lim
u→±∞

iuµ0τ

u
= iµ0τ .

Substituting into equation (C.23) yields the required results.

Note that the limit as u → +∞ in equation (C.21) is consistent with

Kahl and Jäckel (2005), p. 101, equation (65). Observe that from their

equation (34) on p. 98, d∞ = ω
√

1− ρ2, and from their equation (15) on p.

95, α = κη
ω2 . Also, note that they treat the C (u) coefficient without a drift.

The asymptotic form in equation (C.22) is consistent with Lemma 3.15 from

subsection 3.3.2 of this thesis, whereby ReC (u) ≤ 0, for all u ∈ R.

The other main result is the asymptotic form of the log-price affine coef-

ficient D (u). Note that D (u) is unaffected by the jumps in the SVJ model,

and that by Lemma C.3 the SVSJ case it is asymptotically equivalent to the

Heston and SVJ cases which are the same. Recall from equation (A.23) in

Appendix A that

D (u) =
κG (u)− γ (u)

ω2

(
1− e−γ(u)τ

1−A (u) e−γ(u)τ

)
. (C.24)

Lemma C.7 For both the SVJ and SVSJ models, with τ > 0, we have

lim
u→±∞

D (u)

u
=
∓
√

1− ρ2 − iρ
ω

, with (C.25)

D (u) ∼ ∓
√

1− ρ2u

ω
− iρu

ω
, as u→ ±∞. (C.26)
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Proof. Since Lemma C.3 states that γ (u) ∼ ±ω
√

1− ρ2u, as u → ±∞,

and by Proposition C.4 1. and 2., A±∞ = lim
u→±∞

A (u) is constant,

and since τ > 0, lim
u→±∞

1− e−γ(u)τ

1−A (u) e−γ(u)τ
= 1.

Therefore, by the definition of D (u) in equation (C.24),

lim
u→±∞

D (u)

u
=

lim
u→±∞

κG(u)
u − lim

u→±∞
γ(u)
u

ω2
,

so that by equation (C.2) and Lemma C.3 combined, after re-arranging

terms,

lim
u→±∞

D (u)

u
=
∓
√

1− ρ2 − iρ
ω

,

as required.

Note that the limit as u → +∞ in equation (C.25) is consistent with

Kahl and Jäckel (2005), p. 101, equation (61). Moreover, the asymptotic

form in equation (C.26) is consistent with Lemma 3.15 from subsection 3.3.2

of this thesis, whereby ReD (u) ≤ 0, for all u ∈ R.

C.2 Asymptotics of Joint Auxiliary Variables

Recall from equations (A.24) and (A.25) in Appendix A.2, where the joint

affine coefficients C (u, v; τ) and D (u, v; τ) used in this thesis are specified,

that the joint auxiliary variables K (u) and R (u) are given by

K (u) =
ω2
(
1− e−γ(u)τ

)
H (u)

, and (C.27)

R (u) = 4e−γ(u)τ

(
γ (u)

H (u)

)2

. (C.28)

Since both K (u) and R (u) depend on the auxiliary variable H (u), we begin

with the asymptotics of H (u). Recall from equation (A.21) in Appendix

A.2 that

H (u) = [κG (u) + γ (u)]
[
1−A (u) e−γ(u)τ

]
. (C.29)
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Lemma C.8 For both the SVJ and SVSJ models, with τ > 0, we have

lim
u→±∞

H (u)

u
= ±ω

√
1− ρ2 − iρω, with (C.30)

H (u) ∼ ±ω
√

1− ρ2u− iρωu, as u→ ±∞. (C.31)

Proof. By Lemma C.3, γ (u) ∼ ±ω
√

1− ρ2u, as u → ±∞, and also by

Proposition C.4 1. and 2., A±∞ = lim
u→±∞

A (u) is constant, thus

lim
u→±∞

1−A (u) e−γ(u)τ = 1.

Hence, by equation (C.14) in Lemma C.3, and by equation (C.2), after re-

arranging terms,

lim
u→±∞

H (u)

u
= ±ω

√
1− ρ2 − iρω,

as required.

The next two results, for K (u) and R (u) respectively, both show that

the limits as u → ±∞ are zero. In particular, R (u) → 0 exponentially as

u→ ±∞.

Lemma C.9 For both the SVJ and SVSJ models, with τ > 0,

K (u) ∼ ±ω
√

1− ρ2 + iρω

u
, as u→ ±∞. (C.32)

Hence, lim
u→±∞

K (u) = 0. (C.33)

Proof. From equation (C.27)

K (u) =
ω2
(
1− e−γ(u)τ

)
H (u)

.

But by Lemma C.3,

γ (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞,
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and by Lemma C.8,

H (u) ∼ ±ω
√

1− ρ2u− iρωu, as u→ ±∞.

Therefore,

K (u) ∼ ω2

±ω
√

1− ρ2u− iρωu

=
ω2
(
±ω
√

1− ρ2 + iρω
)
u∣∣∣±ω√1− ρ2u− iρωu
∣∣∣2

=
±ω
√

1− ρ2 + iρω

u
, as u→ ±∞,

as required.

Lemma C.10 For both the SVJ and SVSJ models, with τ > 0,

R (u) ∼ 4e∓ω
√

1−ρ2uτ
[(

1− ρ2
)
± iρ

√
1− ρ2

]2
, as u→ ±∞. (C.34)

Hence, R (u)→ 0 exponentially as u→ ±∞. (C.35)

Proof. From equation (C.28)

R (u) = 4e−γ(u)τ

(
γ (u)

H (u)

)2

.

But by Lemma C.3, γ (u) ∼ ±ω
√

1− ρ2u, as u→ ±∞, and by Lemma C.8,

H (u) ∼ ±ω
√

1− ρ2u− iρωu, as u→ ±∞. Therefore,

γ (u)

H (u)
∼ ±ω

√
1− ρ2u(

±ω
√

1− ρ2 − iρω
)
u

=

(
±ω
√

1− ρ2
)(
±ω
√

1− ρ2 + iρω
)

∣∣∣±ω√1− ρ2 − iρω
∣∣∣2

=
ω2
(
1− ρ2

)
± iω2ρ

√
1− ρ2

ω2

=
(
1− ρ2

)
± iρ

√
1− ρ2, as u→ ±∞. (C.36)
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Moreover, again since γ (u) ∼ ±ω
√

1− ρ2u, as u → ±∞, the result (C.36)

gives

R (u) ∼ 4e∓ω
√

1−ρ2uτ
[(

1− ρ2
)
± iρ

√
1− ρ2

]2
, as u→ ±∞,

when τ > 0, as required.

This next result, Lemma C.11, arises frequently in this thesis. It is used

in Chapter 4 to show that the joint transforms related to the Bates (2006)

AML volatility filter are L1 in the u-variable. Furthermore, it is used in the

Appendix D proof that we can differentiate under the Fourier integral under

the Bates (2006) AML volatility filtration method. Lastly, Lemma C.11,

will be used in Appendix C.3 below to show that, when τ > 0, the joint

affine coefficients C (u, v; τ) and D (u, v; τ) for the SVJ and SVSJ models

are, provided |A (u)| < 1, for all u ∈ R, as in Appendix B, principal branch

continuous for all u ∈ R, and for all |v| < δ, for some δ > 0.

Lemma C.11 Assume that ρ < 0. Then, for both the SVJ and SVSJ

models, with τ > 0, we have that

Re (1−K (u) iv) > 0, for all u ∈ R, (C.37)

and for all |v| < δ, for some δ > 0 sufficiently small.

Proof. First note that

Re (1−K (u) iv) = 1 + ImK (u) v. (C.38)

We may assume that τ > 0. Then, since by Proposition B.14 2., given

ρ < 0, K (u) is continuous, and by Lemma C.9 lim
u→±∞

K (u) = 0, we have that

ImK (u) is bounded above and below, for all u ∈ R. Therefore, by equation

(C.38), there exists δ > 0 sufficiently small, such that Re (1−K (u) iv) > 0,

for all u ∈ R, and for all |v| < δ, as required.
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C.3 Continuity of Joint Affine Coefficients

We now fulfill the promise from Appendix A to show that the joint affine

coefficients, C (u, v; τ) and D (u, v; τ), used in this thesis, for the SVJ and

SVSJ models combined, are principal branch continuous for all u ∈ R, and

for all |v| < δ, for some δ > 0, when τ > 0 and ρ < 0, as considered

in Appendix B, and given the results in Appendix C.2. In doing so, we

will highlight some of the main results from Appendix A, Appendix B, and

Appendix C.

Recall from equations (A.16) and (A.17) in Appendix A.2 that the joint

affine coefficients used in this thesis are given by

C (u, v) = C (u)− 2κη

ω2
log (1−K (u) iv) , and (C.39)

D (u, v) = D (u) +
R (u) iv

1−K (u) iv
. (C.40)

Proposition C.12 Let u be purely real, and assume both that τ > 0 and

ρ < 0, in the SVJ and SVSJ models. Then, for all u ∈ R, and for all

|v| < δ, for some δ > 0 sufficiently small,

1. C (u, v) in equation (C.39) is continuous on the principal branch, and

2. D (u, v) in equation (C.40) is continuous.

Proof. Since, u is purely real, τ > 0, and ρ < 0, Proposition B.16 1. gives

that the log-price coefficient C (u) is continuous on the principal branch

for all u ∈ R. Moreover, by Lemma C.11, given τ > 0 and ρ < 0,

Re (1−K (u) iv) > 0, for all u ∈ R, and for all |v| < δ, for some δ > 0

sufficiently small. Hence,

log (1−K (u) iv)

is continuous on the principal branch. This proves 1.
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To prove 2., consider that by Proposition B.16 2., given τ > 0 and ρ < 0,

the log-price coefficient D (u) is continuous for all u ∈ R. Furthermore, by

Proposition B.14 3., ρ < 0 with τ > 0 implies that R (u) is continuous for

all u ∈ R. Moreover, by Lemma C.11, τ > 0 with ρ < 0 implies that

Re (1−K (u) iv) > 0, for all u ∈ R, and for all |v| < δ, for some δ > 0

sufficiently small. Hence, the numerator of

R (u) iv

1−K (u) iv

is continuous, and its denominator is never zero. Therefore, D (u, v) is

continuous for all u ∈ R, and for all |v| < δ, for some δ > 0 sufficiently

small, as required.
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Appendix D

Differentiating Under the

Fourier Integral: AML

This Appendix is an extension of Section 4.3 on L1 transforms for the AML

method. As in equations (4.61) and (4.62) from subsection 4.3.1, define

F
(
u, v|yHn

)
= eC(u,v;∆t)Gn|n [D (u, v; ∆t)]

= eC(u,v;∆t) [1− bnD (u, v; ∆t)]−an . (D.1)

In this Appendix we prove that for the SVJ and SVSJ models,

∂

∂v

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du, (D.2)

and

∂2

∂v2

∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du, (D.3)

as we require for items 2. and 3. in Proposition 4.14 located near the end of

subsection 4.3.1. To prove (D.2) and (D.3) above, we apply the theory of

uniform convergence for improper integrals with a parameter, in particular

Abel’s test, and one other result from Zorich (2004), cited below. In this

Appendix we take the hypothesis τ = ∆t > 0 to be given.
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D.1 Results from Classical Analysis

Definition D.1 (Uniform Convergence, Zorich (2004), pp. 415-16)

Consider the improper integral with a parameter given by

G (y) =

∫ ∞
a
g (x, y) dx, (D.4)

over the interval [a,∞) ⊂ R, with y ∈ [c, d]. We say that the improper

integral (D.4) converges uniformly for all y ∈ [c, d] if for all ε > 0 there

exists a neighbourhood U[a,∞) (∞) of infinity with U[a,∞) (∞) ⊂ [a,∞) such

that ∣∣∣∣∫ ∞
b
g (x, y) dx

∣∣∣∣ < ε (D.5)

for all b ∈ U[a,∞) (∞), and for all y ∈ [c, d].

Proposition D.2 (Zorich (2004), p. 426) Let the functions g (x, y) and

gy (x, y) = ∂
∂yg (x, y) be continuous for every for every x ∈ [a,∞), and for

each y ∈ [c, d]. If

1. the integral

∫ ∞
a
gy (x, y) dx converges uniformly, for each y ∈ [c, d],

and

2. the integral

∫ ∞
a
g (x, y) dx converges for some y0 ∈ [c, d],

then

the integral

∫ ∞
a
g (x, y) dx converges uniformly for all y ∈ [c, d], and

∂

∂y

∫ ∞
a
g (x, y) dx =

∫ ∞
a
gy (x, y) dx. (D.6)

Proof. See Zorich (2004), pp. 426-27.

The final classical result that we will put to use in this appendix is called

Abel’s test. It is cited together with the more well known result, Dirichlet’s

test, in Zorich (2004), Proposition 3, p. 421.
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Proposition D.3 (Abel’s Test, Zorich (2004), pp. 421-22) Assume that

the functions f (x, y) and g (x, y) are integrable with respect to x on every

closed interval [a, b] ⊂ [a,∞) at each y ∈ [c, d]. Then a sufficient condition

for the uniform convergence of the improper integral∫ ∞
a
f (x, y) g (x, y) dx, (D.7)

for each y ∈ [c, d], is that the following pair of conditions holds.

1. The integral

∫ ∞
a
g (x, y) dx converges uniformly, for each y ∈ [c, d].

2. For each y ∈ [c, d], the function f (x, y) is monotone in x on the

interval [a,∞), and there exists M ∈ R such that |f (x, y)| < M for

every x ∈ [a,∞), and for each y ∈ [c, d].

Proof. See Zorich (2004), p. 422.

Remark D.4 (Zorich (2004), p. 423) The uniform convergence of im-

proper integrals as presented here applies to integrands that are real-valued,

vector-valued, complex-valued, and in general over any vector space for the

integrand that is complete. However, any treatment involving Abel’s test

must provide that the function assumed to be monotone is real-valued.

Pursuant to Remark D.4 above, when the function f (x, y) in equation

(D.7) of Proposition D.3 (Abel’s test) is complex-valued we will take its real

and imaginary parts, test each part for monotonicity and boundedness, then

apply Abel’s test to the resulting pair of improper integrals.

D.2 The First Derivative

From equation (D.1) we can write F = F
(
u, v|yHn

)
as

F
(
u, v|yHn

)
= eC(u,v;∆t)−an log(1−bnD(u,v;∆t)). (D.8)
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Thus, due to the exponential form, we obtain

F v = f
v
F , where f = logF . (D.9)

The first goal is to show that we can obtain the result that∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du (D.10)

=

∫ +∞

−∞
e−iuyn+1f

v

(
u, v|yHn

)
F
(
u, v|yHn

)
du, (D.11)

converges uniformly, for every v ∈ (−δ, δ), for some δ > 0, by Abel’s test,

which is Proposition D.3 above. But, because f
v

is complex-valued, by

Remark D.4 above, we must take its real and imaginary parts. This can be

done using the asymptotic form of f
v
, as illustrated in Lemma D.5 below.

The asymptotic forms of Re f
v

and Im f
v
, as u → ±∞, turn out to be

sufficient to obtain the result (D.11) above, and this is demonstrated in

Lemma D.6 and its proof below.

Lemma D.5 Let δ > 0, and for the SVJ and SVSJ models, assume that

ρ < 0. For a sufficiently large real number a > 0, define the respective

neighbourhoods U[a,+∞) (+∞) ⊂ [a,+∞), and U(−∞,−a] (−∞) ⊂ (−∞,−a]

of ±∞. Then, for each v ∈ (−δ, δ),

1. Re f
v
∼ α̃

(±)
v as u → ±∞, such that α̃

(+)
v is monotone and bounded

for all u ∈ U[a,+∞) (+∞), and α̃
(−)
v is monotone and bounded for all

u ∈ U(−∞,−a] (−∞).

2. Im f
v
∼ β̃

(±)
v as u → ±∞, such that β̃

(+)
v is monotone and bounded

for all u ∈ U[a,+∞) (+∞), and β̃
(−)
v is monotone and bounded for all

u ∈ U(−∞,−a] (−∞).

Proof. Recall from equations (4.56) and (4.58) in subsection 4.3.1 that

Cv =
∂

∂v
C (u, v) =

2κη
ω2 K (u) i

1−K (u) iv
, and (D.12)
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Dv =
∂

∂v
D (u, v) =

R (u) i

(1−K (u) iv)2 . (D.13)

Further recall from subsection 4.3.1 that by equation (4.66)

f
v

= Cv +
anbnDv

1− bnD
. (D.14)

However, by Lemma 3.15 from subsection 3.3.2, ReD (u, v; τ) ≤ 0, for all

(u, v) ∈ R× (−δ, δ), for some δ > 0. Thus, since bn > 0, Re [1− bnD] > 0,

for all (u, v) ∈ R × (−δ, δ). Also, by Lemma C.11 from Appendix C.2,

Re (1−K (u) iv) > 0, for all (u, v) ∈ R× (−δ, δ), for δ > 0 sufficiently small.

Furthermore, by Lemma C.10 from Appendix C.2, R (u)→ 0 exponentially

as u→ ±∞. Thus, altogether we have

f
v
∼ Cv =

2κη
ω2 K (u) i

1−K (u) iv
, as u→ ±∞. (D.15)

But, recall from Lemma C.9 in Appendix C.2 that

K (u) ∼ ±ω
√

1− ρ2 + iρω

u
, as u→ ±∞. (D.16)

Upon substituting (D.16) into (D.15) and simplifying, we obtain

f
v
∼

2κη
ω2

[
−
(
ρωu+ ω2v

)
± ω

√
1− ρ2ui

]
u2 + 2ρωuv + ω2v2

, as u→ ±∞. (D.17)

By the result (D.17) we have

α̃(±)
v =

−2κη
ω2

(
ρωu+ ω2v

)
u2 + 2ρωuv + ω2v2

∼ −2κηρ

uω
, as u→ ±∞, and (D.18)

β̃(±)
v =

±2κη
ω2

(
ω
√

1− ρ2u
)

u2 + 2ρωuv + ω2v2
∼ ±2κη

√
1− ρ2

uω
, as u→ ±∞. (D.19)

Let v ∈ (−δ, δ). Then, by the result (D.18), α̃
(+)
v is monotone and bounded

for all u ∈ U[a,+∞) (+∞). Moreover, α̃
(−)
v is also monotone and bounded

for all u ∈ U(−∞,−a] (−∞). Likewise by the result (D.19), β̃
(+)
v is monotone

and bounded for all u ∈ U[a,+∞) (+∞), and β̃
(−)
v is monotone and bounded

for all u ∈ U(−∞,−a] (−∞). This completes the proof.
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Lemma D.6 Let δ > 0, and assume that the hypotheses and definitions of

Lemma D.5 above hold. If in addition, for every v ∈ (−δ, δ),

1. F
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R,

2. F
(
u, v|yHn

)
is L1 in the u-variable, and

3.
∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du converges uniformly,

then

∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly, (D.20)

for every v ∈ (−δ, δ).

Proof. We will treat one asymptotic form in detail. The other cases are

similar. Let a > 0 be sufficiently large. Recall from Lemma D.5 above that

Re f
v
∼ α̃

(+)
v , as u → +∞, where α̃

(+)
v is monotone and bounded for all u

in some neighbourhood U[a,+∞) (+∞) of +∞. Thus, by item 3. above, and

Proposition D.3 (Abel’s test),∫ ∞
a
e−iuyn+1α̃(+)

v Fdu converges uniformly, (D.21)

for all v ∈ (−δ, δ). Hence, by Definition D.1, for every ε > 0,∣∣∣∣∫ ∞
b
e−iuyn+1α̃(+)

v Fdu

∣∣∣∣ < ε

2
, (D.22)

for all b ∈ U[a,+∞) (+∞), for each v ∈ (−δ, δ). Also, f
v

is bounded for

all u ∈ R, and for all v ∈ (−δ, δ), by Proposition 4.9 in subsection 4.3.1;

hence, so is Re f
v
. Moreover, by Lemma D.5, α̃

(+)
v is bounded for all

u ∈ U[a,+∞) (+∞), and for all v ∈ (−δ, δ). Thus, since for all v ∈ (−δ, δ),

F
(
u, v|yHn

)
is both uniformly continuous in u, for all u ∈ R, and L1 in u,

we have that for every ε > 0,∫ ∞
b
|F |
∣∣∣Re f

v
− α̃(+)

v

∣∣∣ du < ε

2
, (D.23)
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for all b ∈ U[a,+∞) (+∞), for each v ∈ (−δ, δ). The critical result follows

from the pair of results (D.22) and (D.23) above. For every ε > 0,∣∣∣∣∫ ∞
b
e−iuyn+1 Re f

v
Fdu

∣∣∣∣
=

∣∣∣∣∫ ∞
b
e−iuyn+1α̃(+)

v Fdu+

∫ ∞
b
e−iuyn+1

(
Re f

v
− α̃(+)

v

)
Fdu

∣∣∣∣
≤
∣∣∣∣∫ ∞
b
e−iuyn+1α̃(+)

v Fdu

∣∣∣∣+

∣∣∣∣∫ ∞
b
e−iuyn+1F

(
Re f

v
− α̃(+)

v

)
du

∣∣∣∣
≤
∣∣∣∣∫ ∞
b
e−iuyn+1α̃(+)

v Fdu

∣∣∣∣+

∫ ∞
b
e−iuyn+1 |F |

∣∣∣Re f
v
− α̃(+)

v

∣∣∣ du
<
ε

2
+
ε

2
= ε,

for all b ∈ U[a,+∞) (+∞), for each v ∈ (−δ, δ). Hence, by Definition D.1 for

the uniform convergence of an improper integral with a parameter,∫ ∞
a
e−iuyn+1 Re f

v
Fdu converges uniformly,

for each v ∈ (−δ, δ). Similarly, based on the other results from Lemma D.5

above, each of the following tail integrals∫ ∞
a
e−iuyn+1 Im f

v
Fdu,∫ −a

−∞
e−iuyn+1 Re f

v
Fdu, and∫ −a

−∞
e−iuyn+1 Im f

v
Fdu,

converges uniformly, for every v ∈ (−δ, δ). Thus, since by Proposition 4.10

from subsection 4.3.1, F v = f
v
F is continuous on the principal branch, for

all (u, v) ∈ R× (−δ, δ), we have∫ +∞

−∞
e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly, (D.24)

for every v ∈ (−δ, δ), as required.
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Theorem D.7 (Differentiation I) Assume that ρ < 0 in the SVJ and

SVSJ models, and note that this is sufficient for the asymptotic forms in

Lemma D.5 above. From equation (D.1) define

F
(
u, v|yHn

)
= eC(u,v)Gn|n [D (u, v)]

= eC(u,v;∆t) [1− bnD (u, v; ∆t)]−an , (D.25)

with F v
(
u, v|yHn

)
=

∂

∂v
F
(
u, v|yHn

)
.

Let δ > 0. The main hypotheses are that for every v ∈ (−δ, δ), F
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R, F

(
u, v|yHn

)
is L1 in u, and the

improper integral∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du converges uniformly. (D.26)

If Lemma D.5 and the main hypotheses hold, then for every v ∈ (−δ, δ),

1.
∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly,

2. ∂
∂v

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du, and

3. F v
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R.

Proof. Given that Lemma D.5 holds, the main hypotheses of the current

theorem satisfy Lemma D.6, and this proves item 1. Furthermore, item

1. and the hypothesis (D.26) imply item 2., by Proposition D.2 from Ap-

pendix D.1. Moreover, with item 2. having been established, equation

(4.80) from subsection 4.3.1 indicates that F v
(
u, v|yHn

)
is the Fourier trans-

form in the u-variable of φ
(1)
n+1|n+1 (v) p

(
yn+1|yHn

)
, for every v ∈ (−δ, δ).

But, by Proposition 4.14 1. from subsection 4.3.1, for every v ∈ (−δ, δ),

φ
(1)
n+1|n+1 (v) p

(
yn+1|yHn

)
is L1 in yn+1. Therefore, we have by Lemma 3.3

from subsection 3.2.1 that F v
(
u, v|yHn

)
is uniformly continuous in u, for all

u ∈ R, for every v ∈ (−δ, δ). This completes the proof.
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D.3 The Second Derivative

Recall from equation (D.9) in Appendix D.2 above that

F v = f
v
F , where f = logF . (D.27)

By the product rule, the second v-derivative of F
(
u, v|yHn

)
is given by

F vv = f
vv
F + f

v
F v. (D.28)

The main goal is to show that we can obtain the result that∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du

=

∫ +∞

−∞
e−iuyn+1

(
f
vv
F + f

v
F v

)
du, (D.29)

converges uniformly, for every v ∈ (−δ, δ), for some δ > 0. Using the form

of the integral in (D.29), this can be done in two steps. The step described

in Lemma D.8 below is trivial given the results from Appendix D.2. The

other step requires the asymptotic form of f
vv

.

Lemma D.8 Let δ > 0, and assume that the hypotheses and definitions of

Lemma D.5 from Appendix D.2 hold. If in addition, for every v ∈ (−δ, δ),

1. F v
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R,

2. F v
(
u, v|yHn

)
is L1 in the u-variable, and

3.
∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly,

then

∫ +∞

−∞
e−iuyn+1f

v
F vdu converges uniformly, (D.30)

for every v ∈ (−δ, δ).

Proof. With F v in place of F , the above Lemma is identical to Lemma D.6

from Appendix D.2 above. The proof is otherwise the same.
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The next goal is to arrive at an asymptotic result for f
vv

, similar to

Lemma D.5 in Appendix D.2 above for f
v
. Lemma D.11 below is the result

for f
vv

. In order to simplify the proof of Lemma D.11, we introduce two

items. These are Remark D.9, and Lemma D.10 below. Lemma D.10

isolates the main technical needs for the proof of Lemma D.11, making the

proof of the latter similar to the proof of Lemma D.5 in Appendix D.2 above.

Remark D.9 Let z = reiθ be a complex number with θ ∈ (−π, π]. If we

maintain the principal branch, then
√
z =

√
rei

θ
2 , where in this thesis we

assume the positive root. In particular, on the principal branch

(√
z
)2

= reiθ = z. (D.31)

Furthermore, letting
√
z = a+ ib, we have that

z =
(√
z
)2

= (a+ ib)2

= a2 − b2 + i2ab. (D.32)

That is, when
√
z = a+ ib,

Re (z) = a2 − b2, and Im (z) = 2ab. (D.33)

Lemma D.10 Let δ > 0, and for all (u, v) ∈ R× (−δ, δ) define

g(±) (u, v) =

(
ω
√

1− ρ2 ± iρω
)2

(
u+ ρωv ∓ ivω

√
1− ρ2

)2 . (D.34)

Then

Re g(±) (u, v) =
ω2
((

1− 2ρ2
)
u2 − 2ρωuv − ω2v2

)
(u2 + 2ρωuv + ω2v2)2 , (D.35)

and Im g(±) (u, v) =
±2ω2

√
1− ρ2

(
ρu2 + ωuv

)
(u2 + 2ρωuv + ω2v2)2 . (D.36)
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Proof. First note from equation (D.34) that g(+) (u, v) and g(−) (u, v) are

complex conjugates. This implies that

Re g(+) = Re g(−), and Im g(+) = − Im g(−). (D.37)

Thus, it suffices to consider only Re g(+) (u, v), Im g(+) (u, v), and in general

g(+) (u, v). By equation (D.34) we have

g(+) (u, v) =

(
ω
√

1− ρ2 + iρω
)2

(
u+ ρωv − ivω

√
1− ρ2

)2 . (D.38)

Recall that for z ∈ C, 1
z = z

|z|2 . By treating the denominator of equation

(D.38) in this way, we obtain the result

g(+) (u, v) =

(
ω
√

1− ρ2 + iρω
)2 (

u+ ρωv + ivω
√

1− ρ2
)2

(u2 + 2ρωuv + ω2v2)2 . (D.39)

Pursuant to Remark D.9 above, we will take the square root of g(+) (u, v)

in equation (D.39), and simplify the numerator. This leads to√
g(+) (u, v) =

ω
√

1− ρ2u+ iω (ρu+ ωv)

(u2 + 2ρωuv + ω2v2)
. (D.40)

Hence, by the two results in equation (D.33) of Remark D.9,

Re g(+) (u, v) =

(
ω
√

1− ρ2u
)2
− (ω (ρu+ ωv))2

(u2 + 2ρωuv + ω2v2)2 , (D.41)

and Im g(+) (u, v) =
2
(
ω
√

1− ρ2u
)

(ω (ρu+ ωv))

(u2 + 2ρωuv + ω2v2)2 . (D.42)

Equations (D.41) and (D.42) simplify to

Re g(+) (u, v) =
ω2
((

1− 2ρ2
)
u2 − 2ρωuv − ω2v2

)
(u2 + 2ρωuv + ω2v2)2 , (D.43)

and Im g(+) (u, v) =
2ω2

√
1− ρ2

(
ρu2 + ωuv

)
(u2 + 2ρωuv + ω2v2)2 . (D.44)

The two results in equation (D.37) complete the proof.
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Lemma D.11 Let δ > 0, and for the SVJ and SVSJ models, assume that

ρ < 0. For a sufficiently large real number a > 0, define the respective

neighbourhoods U[a,+∞) (+∞) ⊂ [a,+∞), and U(−∞,−a] (−∞) ⊂ (−∞,−a]

of ±∞. Then, for each v ∈ (−δ, δ),

1. Re f
vv
∼ α̃

(±)
vv as u → ±∞, such that α̃

(+)
vv is monotone and bounded

for all u ∈ U[a,+∞) (+∞), and α̃
(−)
vv is monotone and bounded for all

u ∈ U(−∞,−a] (−∞).

2. Im f
vv
∼ β̃

(±)
vv as u → ±∞, such that β̃

(+)
vv is monotone and bounded

for all u ∈ U[a,+∞) (+∞), and β̃
(−)
vv is monotone and bounded for all

u ∈ U(−∞,−a] (−∞).

Proof. From equations (4.57), (4.58), and (4.59) in subsection 4.3.1,

Cvv =
∂2

∂v2
C (u, v) =

−2κη
ω2 K (u)2

(1−K (u) iv)2 , (D.45)

Dv =
∂

∂v
D (u, v) =

R (u) i

(1−K (u) iv)2 , and (D.46)

Dvv =
∂2

∂v2
D (u, v) =

−2K (u)R (u)

(1−K (u) iv)3 . (D.47)

Moreover, by equation (4.67) in subsection 4.3.1,

f
vv

= Cvv +
anbnDv + anb

2
n

(
D2
v −DDvv

)
(1− bnD)2 . (D.48)

However, by Lemma 3.15 from subsection 3.3.2, ReD (u, v; τ) ≤ 0, for all

(u, v) ∈ R× (−δ, δ), for some δ > 0. Thus, since bn > 0, Re [1− bnD] > 0,

for all (u, v) ∈ R × (−δ, δ). Also, by Lemma C.11 from Appendix C.2,

Re (1−K (u) iv) > 0, for all (u, v) ∈ R × (−δ, δ), for δ > 0 sufficiently

small. Furthermore, by Lemma C.9 from Appendix C.2, K (u) → 0 as

u→ ±∞, and by Lemma C.10 from Appendix C.2, R (u)→ 0 exponentially,

as u→ ±∞. Thus, altogether we have

f
vv
∼ Cvv =

−2κη
ω2 K (u)2

(1−K (u) iv)2 , as u→ ±∞. (D.49)
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But, recall also from Lemma C.9 in Appendix C.2 that

K (u) ∼ ±ω
√

1− ρ2 + iρω

u
, as u→ ±∞. (D.50)

By substituting (D.50) into (D.49) and simplifying, as u→ ±∞ we obtain

f
vv
∼

−2κη
ω2

(
ω
√

1− ρ2 ± iρω
)2

(
u+ ρωv ∓ ivω

√
1− ρ2

)2 (D.51)

=
−2κη

ω2
g(±) (u, v) , (D.52)

where g(±) (u, v) is defined by equation (D.34) from Lemma D.10 above.

Thus, it follows from equation (D.52) and Lemma D.10 above that

α̃(±)
vv =

−2κη
((

1− 2ρ2
)
u2 − 2ρωuv − ω2v2

)
(u2 + 2ρωuv + ω2v2)2

∼
−2κη

(
1− 2ρ2

)
u2

, as u→ ±∞, (D.53)

and β̃(±)
vv =

∓4κη
√

1− ρ2
(
ρu2 + ωuv

)
(u2 + 2ρωuv + ω2v2)2

∼ ∓4κηρ
√

1− ρ2

u2
, as u→ ±∞. (D.54)

Let v ∈ (−δ, δ). Then, by the result (D.53), α̃
(+)
vv is monotone and bounded

for all u ∈ U[a,+∞) (+∞). Moreover, α̃
(−)
vv is also monotone and bounded

for all u ∈ U(−∞,−a] (−∞). Likewise by the result (D.54), β̃
(+)
vv is monotone

and bounded for all u ∈ U[a,+∞) (+∞), and β̃
(−)
vv is monotone and bounded

for all u ∈ U(−∞,−a] (−∞). This completes the proof.

Lemma D.12 below follows easily from Lemma D.11 above, given that

the proof is similar to the proof of Lemma D.6 from Appendix D.2. By

combining the results from Lemma D.8 above, and Lemma D.12 below, we

will be able to obtain the result that for all v ∈ (−δ, δ), for some δ > 0,∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du converges uniformly. (D.55)
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Lemma D.12 Let δ > 0, and assume that the hypotheses and definitions

of Lemma D.11 above hold. If in addition, for every v ∈ (−δ, δ),

1. F
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R,

2. F
(
u, v|yHn

)
is L1 in the u-variable, and

3.
∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du converges uniformly,

then

∫ +∞

−∞
e−iuyn+1f

vv
Fdu converges uniformly, (D.56)

for every v ∈ (−δ, δ).

Proof. With the asymptotic results from Lemma D.11 for f
vv

in place of

similar results from Lemma D.5 for f
v
, the above Lemma is identical to

Lemma D.6 from Appendix D.2. The proof is otherwise the same.

Theorem D.13 (Differentiation II) Assume that ρ < 0 in the SVJ and

SVSJ models, noting that this is sufficient for the asymptotic forms in both

Lemma D.5 from Appendix D.2, and Lemma D.11 above. From equation

(D.1) at the start of this Appendix define

F
(
u, v|yHn

)
= eC(u,v)Gn|n [D (u, v)]

= eC(u,v;∆t) [1− bnD (u, v; ∆t)]−an , (D.57)

with F v
(
u, v|yHn

)
=

∂

∂v
F
(
u, v|yHn

)
,

and F vv
(
u, v|yHn

)
=

∂2

∂v2
F
(
u, v|yHn

)
.

Let δ > 0. The main hypotheses are that for every v ∈ (−δ, δ), F
(
u, v|yHn

)
is

uniformly continuous in u, for all u ∈ R, both F
(
u, v|yHn

)
and F v

(
u, v|yHn

)
are L1 in the u-variable, and the improper integral∫ +∞

−∞
e−iuyn+1F

(
u, v|yHn

)
du converges uniformly. (D.58)
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If Lemma D.5, Lemma D.11, and the main hypotheses as stated above each

hold, then for every v ∈ (−δ, δ),

1.
∫ +∞
−∞ e−iuyn+1F vv

(
u, v|yHn

)
du converges uniformly,

2. ∂2

∂v2

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞
−∞ e−iuyn+1F vv

(
u, v|yHn

)
du.

Proof. Given ρ < 0, the main hypotheses as stated above are sufficient for

Theorem D.7 from Appendix D.2. This implies that for all v ∈ (−δ, δ),

a)
∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du converges uniformly,

b) F v
(
u, v|yHn

)
is uniformly continuous in u, for all u ∈ R, and

c) ∂
∂v

∫ +∞
−∞ e−iuyn+1F

(
u, v|yHn

)
du =

∫ +∞
−∞ e−iuyn+1F v

(
u, v|yHn

)
du.

But, given that Lemma D.5 holds, we have that a), b), and the main

hypothesis that F v is L1 in u, satisfy Lemma D.8, and this implies that for

all v ∈ (−δ, δ), ∫ +∞

−∞
e−iuyn+1f

v
F vdu converges uniformly. (D.59)

Moreover, given that Lemma D.11 holds, the main hypotheses of the current

theorem satisfy Lemma D.12, and this implies that for all v ∈ (−δ, δ),∫ +∞

−∞
e−iuyn+1f

vv
Fdu converges uniformly. (D.60)

Hence, by equation (D.29), the pair of results (D.59) and (D.60) imply that

for all v ∈ (−δ, δ),∫ +∞

−∞
e−iuyn+1F vv

(
u, v|yHn

)
du converges uniformly, (D.61)

and this proves item 1. To complete the proof, we need to show that for all

v ∈ (−δ, δ),

∂2

∂v2

∫ +∞

−∞
e−iuyn+1Fdu =

∫ +∞

−∞
e−iuyn+1F vvdu. (D.62)
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By differentiating both sides of c) above w.r.t. v, outside of the integrals,

we obtain that for all v ∈ (−δ, δ),

∂2

∂v2

∫ +∞

−∞
e−iuyn+1Fdu =

∂

∂v

∫ +∞

−∞
e−iuyn+1F vdu. (D.63)

Hence, by equation (D.63), it is sufficient to show that for all v ∈ (−δ, δ),

∂

∂v

∫ +∞

−∞
e−iuyn+1F vdu =

∫ +∞

−∞
e−iuyn+1F vvdu. (D.64)

Moreover, by Proposition D.2 from Appendix D.1, a) above and the result

(D.61) are sufficient for (D.64). Since this implies item 2., this completes

the proof.
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Appendix E

Path Simulation

In this Appendix we present the path simulation methods that were used

to simulate the Heston, SVJ, and SVSJ daily log-returns in Chapter 4 on

the Bates (2006) AML method. Appendix E.1 covers the simulation of

Heston model daily log-returns by first simulating the variance process at a

faster than daily rate, as suggested in Bates (2006), pp. 957-58. Appendix

E.2 treats the SVJ model by adding independent jump increments to the

Heston model log-returns, where the jumps are either Merton, Variance

Gamma, or Meixner. Then Appendix E.3 covers the SVSJ Merton model

by adding conditionally independent time changed Merton jump increments

to the Heston model log-returns, given the variance.

E.1 Simulating Heston Model Log-Returns

Let W
(1)
t and W

(2)
t be independent standard Brownian motions. Then the

P-dynamics of the Heston model log-price may be written as

dYt =

(
µ0 −

1

2
σ2
t

)
dt+ σt

[
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

]
(E.1)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(1)
t . (E.2)
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Equations (E.1) and (E.2) above may be derived from equation (2.59) in

subsection 2.5.2. Next we consider the following definitions. Given the

path of σ2
t over [t, t+ ∆t], and given Yt, let

∆Yt+∆t = Yt+∆t − Yt, (E.3)

∆σ2
t+∆t = σ2

t+∆t − σ2
t , (E.4)

Σt∆t =

∫ t+∆t

t
σ2
sds, and (E.5)

Bt =
1

ω

[
∆σ2

t+∆t − κη∆t+ κΣt∆t
]

. (E.6)

By the main result of Broadie and Kaya (2006), see §3.3, pp. 221-22, we

have

∆Yt+∆t =

(
µ0 −

1

2
Σt

)
∆t+ ρBt +

√
(1− ρ2) Σt∆tZt+∆t, (E.7)

Zt+∆t ∼ N (0, 1) .

To obtain equation (E.7) we only need to simulate ∆σ2
t+∆t = σ2

t+∆t − σ2
t ,

and

Σt =
1

∆t

∫ t+∆t

t
σ2
sds. (E.8)

But, Σt in equation (E.8) can be approximated by the average intraday

variance process, see Bates (2006), p. 958. Also, simulating the intraday

variance will yield values for σ2
t+∆t and σ2

t . In this thesis we used Ns = 78

intraday subsamples per day. This gives N = 252Ns subsamples, assuming

a 252 day year, with subsampling frequency ∆u = 1
N . Also assume that

there are T daily log-returns to simulate. Note from subsection 4.2.2 that

for AML we assume σ2
0 is generated from a Γ

(
2κη
ω2 ,

ω2

2κ

)
distribution, so

that when the Feller condition 2κη > ω2 also holds, the variance process

is strictly stationary and strongly ergodic. In the following algorithm for

simulating the CIR process by its scaled noncentral chi-squared transition

law we assume for simplicity that 4κη > ω2. The case 4κη ≤ ω2 is provided

for in Glasserman (2004), see p. 124, if needed.
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Algorithm E.1 (Glasserman (2004), p. 124) Assume d = 4κη
ω2 > 1,

and that σ2
0 is input. To simulate the CIR process σ2

s on a discrete time

grid uk = k∆u, for k = 1, 2, ...NT ,

Begin For k = 0, 1, ..., NT − 1

Set c = ω2

4κ

(
1− e−κ∆u

)
, and set b = σ2

uk
e−κ∆u

c .

Generate Z ∼ N (0, 1).

Generate X ∼ χ2
d−1.

Set σ2
uk+1

= c

[(
Z +
√
b
)2

+X

]
.

End For

Then, Σt ≈
1

Ns

∑Ns−1

j=0
σ2
t+j∆u. (E.9)

E.2 Simulating SVJ Model Log-Returns

From equation (A.1) in Appendix A the SVJ model may be written as

dYt =

(
µ0 −

1

2
σ2
t

)
dt+ σtdW

(S)
t + dXt − ψX (−i) dt, (E.10)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t ,

ρdt = E
[
dW

(S)
t dW

(V )
t

]
.

Equation (E.10) is evidently the Heston process from Appendix E.1 above,

plus an independent compensated Lévy process,

X̂t = Xt − ψX (−i) t. (E.11)

Thus, the SVJ log-return is simply a Heston log-return plus ∆X̂t+∆t where

∆X̂t+∆t = X̂t+∆t − X̂t = X̂ (t+ ∆t− t)

= X̂ (∆t) = X (∆t)− ψX (−i) ∆t.
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Merton Jumps

Recall from equation (2.24) in subsection 2.3.1 that for Merton jumps

ψX (−i) = λ

(
exp

(
β +

1

2
α2

)
− 1

)
. (E.12)

Algorithm E.2 (Merton Jumps) For the Merton jump process X the

following algorithm simulates one increment ∆Xt+∆t = X (∆t).

Generate Nt+∆t ∼ Poiss (λ∆t).

Generate Zt+∆t ∼ N (0, 1).

Set ∆Xt+∆t = βNt+∆t + α
√
Nt+∆tZt+∆t.

See Glasserman (2004), §3.5, pp. 138-139.

Variance Gamma Jumps

Variance Gamma jumps may be expressed as a time changed Brownian

motion. Recall from equation (2.32) in subsection 2.3.2 that for Variance

Gamma jumps of the Huang and Wu (2004) type

ψX (−i) = −λ log

(
1− β − 1

2
α2

)
, (E.13)

and from equation (2.29) in subsection 2.3.2 the Huang and Wu (2004)

version of the process has a time change given by

Gt ∼ Γ (λt, 1) . (E.14)

Algorithm E.3 (Variance Gamma Jumps) For the Variance Gamma

jump process X of Huang and Wu (2004) type the following algorithm sim-

ulates one increment ∆Xt+∆t = X (∆t).

Generate Gt+∆t ∼ Γ (λ∆t, 1).

Generate Zt+∆t ∼ N (0, 1).

Set ∆Xt+∆t = βGt+∆t + α
√
Gt+∆tZt+∆t.

Adapted from Glasserman (2004), §3.5, pp. 143-144.
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Meixner Jumps

Recall from equation (2.40) in subsection 2.3.3 that for Meixner jumps

ψX (−i) = 2λ log

 cos
(
β
2

)
cos
(
α+β

2

)
 . (E.15)

For the simulation of a single Meixner increment, see Algorithm 8.4 from

subsection 8.2.3, with τ = ∆t.

E.3 Simulating SVSJ Model Log-Returns

From equation (A.2) in Appendix A the SVSJ model may be written as

dYt =

(
µ0 −

1

2
σ2
t

)
dt+ σtdW

(S)
t + dX (Vt)− σ2

tψX (−i) dt, (E.16)

dσ2
t = κ

(
η − σ2

t

)
dt+ ωσtdW

(V )
t , E

[
dW

(S)
t dW

(V )
t

]
= ρdt,

dVt = σ2
t dt.

Similar to equation (E.10) for the SVJ model in Appendix E.2 above, equa-

tion (E.16) for the SVSJ model is simply a Heston process plus jumps, and

with a few modifications we may simulate on this basis. The difference is

that the compensated jump process,

X̂ (Vt) = [X (Vt)− ψX (−i)Vt] , (E.17)

is time changed by the integrated variance process from the Heston model.

However, the SVSJ jumps are conditionally independent given the variance

process. Moreover, the variance process is dictated by the Heston process.

Thus, we can simply simulate a Heston process, and pass the simulated

variance to the time changed jumps.

Recall from equation (E.8) in Appendix E.1 that

Σt =
1

∆t

∫ t+∆t

t
σ2
sds. (E.18)
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Hence, in continuous time the integrated variance Vt+∆t has a decomposition

given by

Vt+∆t =

∫ t

0
σ2
sds+

∫ t+∆t

t
σ2
sds

= Vt + Σt∆t. (E.19)

Therefore, the continuous time increment to the compensated time changed

jumps in the SVSJ model is given by

∆X̂ (Vt+∆t) = X̂ (Vt+∆t)− X̂ (Vt)
law
= X̂ (Vt+∆t − Vt)

law
= X̂ (Σt∆t) , by equation (E.19)

= X (Σt∆t)− ψX (−i) Σt∆t. (E.20)

In particular, in continuous time, given Σt, the increment to the time changed

jump process,

∆X (Vt+∆t)
law
= X (Σt∆t) , (E.21)

has the distribution of a Merton jump with time increment Σt∆t. Thus,

we can simulate from ∆X (Vt+∆t) by generating Nt+∆t ∼ Poiss (λΣt∆t) in

place of Nt+∆t ∼ Poiss (λ∆t) in Algorithm E.2 for Merton jumps. However,

note that this is subject to the accuracy of the approximation

Σt ≈
1

Ns

∑Ns−1

j=0
σ2
t+j∆u,

made in equation (E.9) from Appendix E.1 above on the simulation of log-

returns for the Heston model.
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[45] Duffie, D., D. Filipović, and W. Schachermayer: 2003, ‘Affine processes

and applications in finance’. The Annals of Applied Probability 13(3),

984–1053.

358



[46] Duffie, D., J. Pan, and K. Singleton: 2000, ‘Transform analysis and

asset pricing for affine jump-diffusions’. Econometrica 68(6), 1343–

1376.

[47] Engl, H., M. Hanke, and A. Neubauer: 1996, Regularization of Inverse

Problems, Vol. 375. Kluwer, London.

[48] Eraker, B., M. Johannes, and N. Polson: 2003, ‘The impact of jumps

in equity index volatility and returns’. Journal of Finance 58(3), 1269–

1300.

[49] Fang, F. and C. Oosterlee: 2008, ‘A novel pricing method for European

options based on Fourier-cosine series expansions’. SIAM Journal on

Scientific Computing 31(2), 826–848.

[50] Feller, W.: 1951, ‘Two singular diffusion problems’. Annals of Mathe-

matics 54(1), 173–182.

[51] Frittelli, M.: 2000, ‘The minimal entropy martingale measure and the

valuation problem in incomplete markets’. Mathematical Finance 10(1),

39–52.

[52] Fujiwara, T. and Y. Miyahara: 2003, ‘The minimal entropy martingale
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