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On the optimal CFL number of SSP methods for hyperbolic problems

Andrew Giuliania, Lilia Krivodonovaa,∗

aDepartment of Applied Mathematics, University of Waterloo

Abstract

We show that the theory for strong stability preserving (SSP) time stepping methods employed with the

method of lines-type discretizations of hyperbolic conservation laws may result in overly stringent time

step restrictions. We analyze a fully discrete finite volume method with slope reconstruction and a second

order SSP Runge-Kutta time integrator to show that the maximum stable time step can be increased

over the SSP limit. Numerical examples indicate that this result extends to two-dimensional problems on

triangular meshes.

1. Introduction

In one dimension, hyperbolic conservation laws are of the form

∂u

∂t
+

∂

∂x
f(u) = 0, (1)

where u(x, t) is the solution and f(u) is the flux function. A popular approach to solving these partial

differential equations (PDEs) is the method of lines. This entails first discretizing the spatial derivative,

e.g., with the finite volume (FV) method. The result is said to be in a semidiscrete form and is a system

of ordinary differential equations (ODEs) for the degrees of freedom (DOFs) of the spatial discretization

d

dt
U = L(U), (2)

where U is the numerical solution which approximates u and the operator L approximates − ∂
∂x
f(u). This

system is then advanced in time using a time stepping scheme, e.g., an explicit Runge-Kutta (RK) method.

Typically, one chooses a time integrator of the same order as the spatial order of accuracy. If L(U) is linear,

then stability of the fully discrete scheme under a suitable time step restriction can be shown using the
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absolute stability region of the time stepper and the eigenvalues of the spatial operator L [1, 2]. This

approach cannot be directly applied if L(U) is nonlinear, e.g., if f(u) is nonlinear or if f(u) is linear but a

limiter is applied. In this case, we can first show stability of a forward Euler time step applied to (2), i.e.,

||U +ΔtL(U)|| ≤ ||U ||, ∀U, (3)

where Δt ≤ ΔtFE, ΔtFE is the maximum stable forward Euler time step specific to the chosen spatial

discretization, and || · || is a convex functional [3]. This result can be extended to a higher order RK

method if the method can be written as a convex combination of forward Euler time steps. If each forward

Euler step does not violate the stability property, then a convex combination of them will not either. This

is the idea behind strong stability preserving (SSP) methods [4]. The need for these time discretizations

was demonstrated in [5, 6, 7]. If the high order time stepper is not SSP, then an oscillation-free numerical

solution is not guaranteed even if the spatial reconstruction is total variation diminishing.

The time step Δt of high order SSP methods is related to ΔtFE by the SSP coefficient c [7], i.e.,

Δt ≤ cΔtFE. (4)

The optimal SSP coefficient for the second and third order RK methods, SSP-RK2 and SSP-RK3, is c = 1,

meaning that forward Euler, RK2, and RK3 time integrators all have the same severe time step restriction.

For example, second order finite volume methods with linear slope reconstruction (Section 3) coupled with

the forward Euler method have a CFL number of 1
2
. Such schemes applied to the scalar advection equation

yield a maximum allowed forward Euler time step ΔtFE = 1
2
h
a
, where h is the grid spacing and a is the

advection speed. Thus, by the standard SSP theory, this spatial discretization coupled with the SSP-RK2

and SSP-RK3 methods also has a CFL number of 1
2
. In two dimensions, this maximum allowable CFL

number becomes 1
6
for the discontinuous Galerkin (DG) method coupled with the vertex-based limiter in

[8], i.e., ΔtFE = 1
6

h
||a|| , where h is a measure of cell size and a is the speed vector. This is unlike what is

known about linear stability of RK methods, where increasing the number of stages in the RK time stepper

can increase the area of its absolute stability region and possibly increase the maximum stable time step.

The advantage of using the standard SSP analysis is that from the stability of the spatial discretization

coupled with the forward Euler method, stability with high order SSP time integrators is guaranteed under

the suitable time step restriction (4). This time step restriction may or may not be tight. We show that by



analyzing the fully discrete FV and RK2 schemes for the scalar advection equation with periodic boundary

conditions, the SSP coefficient in (4) can be increased while still guaranteeing stability of the numerical

solution in the maximum norm. We note that our analysis does not preclude the existence of spatial

discretizations for which (4) is tight.

It has been shown in other contexts that the SSP restriction (4) can be relaxed without sacrificing

positivity of the solution, in e.g. [9, 10] for well resolved and smooth problems. Additionally, if monotonicity

in an inner product norm rather than in a convex functional is desired then a more relaxed time step

restriction than (4) is possible [11]. The work presented here makes no assumptions on the solution and

shows that the maximum stable time step of a second order finite volume scheme can be increased by

analyzing the fully discrete spatial and temporal discretization.

2. The FV method

We consider a second order finite volume method with slope reconstruction. The periodic computational

domain is divided uniformly into elements Ωi with left, xi− 1
2
, and right, xi+ 1

2
, end points, where h =

xi+ 1
2
− xi− 1

2
is the grid spacing. A semi-discrete finite volume scheme for (1) is given by

d

dt
Ui =

1

h

[
f ∗(Qi−1(xi− 1

2
), Qi(xi− 1

2
))− f ∗(Qi(xi+ 1

2
), Qi+1(xi+ 1

2
))
]
, (5)

where Ui is an approximation to the cell average of the exact solution on Ωi, Qi(x) is a linearly reconstructed

solution on Ωi, and f ∗ is the numerical flux [12]. The linearly reconstructed numerical solution at time tn

on cell Ωi is

Qn
i (x) = Un

i + σn
i (x− xi) for x ∈ [xi− 1

2
, xi+ 1

2
). (6)

The slope σn
i is reconstructed using a second order TVD limiter [13, 14]. Using (6), we define the correction

term

Δn
i = Un

i,r − Un
i = Un

i − Un
i,l, (7)

where Un
i,r = Qn

i (xi+ 1
2
) and Un

i,l = Qn
i (xi− 1

2
). With a TVD limiter, we have

Δn
i−1 = γi− 1

2
,l(U

n
i − Un

i−1) and Δn
i = γi− 1

2
,r(U

n
i − Un

i−1), (8)

for 0 ≤ γi− 1
2
,l, γi− 1

2
,r ≤ 1 (Figure 1). Assuming a linear flux f(u) = au where a > 0, and the upwind
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Figure 1: Cell averages (dashed lines) and reconstructed slopes (solid lines).

numerical flux in (5), we obtain the scheme

d

dt
Ui =

1

h
(aUi−1,r − aUi,r). (9)

Adding and subtracting aUi inside the parentheses on the right-hand-side of (9), we have

d

dt
Ui =

a

h
(Ui−1,r − Ui)− a

h
(Ui,r − Ui). (10)

Substituting the second identity of (7) into (10), we obtain

d

dt
Ui =

a

h
(Ui−1,r − Ui)− a

h
(Ui − Ui,l). (11)

3. First order forward Euler time stepping

We discretize (11) in time using the forward Euler method to obtain a second order in space finite

volume scheme, which has been examined in [7, 12, 15]. This gives

Un+1
i =

(
1− 2Δt

a

h

)
Un
i +Δt

a

h
Un
i−1,r +Δt

a

h
Un
i,l. (12)

Letting α = 2Δt a
h
, the cell average at tn+1 becomes

Un+1
i = (1− α)Un

i +
α

2
Un
i−1,r +

α

2
Un
i,l. (13)



Using periodicity and a reconstruction (6) with a TVD slope limiter, Un
i−1,r, U

n
i,l will lie within the interval

defined by the cell averages of Ωi and Ωi−1 (Figure 1). If α ≤ 1, then Un+1
i can be expressed as a convex

combination of solution values at tn, and the scheme (12) will be stable in the maximum norm. Thus, the

forward Euler time step restriction is

ΔtFE ≤ 1

2

h

a
.

4. Second order Runge-Kutta time stepping

The first and second intermediate solution values of the RK2 time stepping algorithm can be written

as

U
(1)
i = (1− α)Un

i +
α

2
Un
i−1,r +

α

2
Un
i,l, (14)

U
(2)
i = (1− α)U

(1)
i +

α

2
U

(1)
i−1,r +

α

2
U

(1)
i,l . (15)

On each cell, the left U
(1)
i,l and right U

(1)
i,r intermediate values can be written in terms of the average U

(1)
i

and the correction term Δ
(1)
i

U
(1)
i,l = U

(1)
i −Δ

(1)
i and U

(1)
i,r = U

(1)
i +Δ

(1)
i . (16)

Substituting Un
i = (Un

i,l + Un
i,r)/2 into (14), and (16) into (15), the RK2 algorithm becomes

U
(1)
i =

1− α

2

(
Un
i,l + Un

i,r

)
+

α

2
Un
i−1,r +

α

2
Un
i,l, (17)

U
(2)
i = (1− α)U

(1)
i +

α

2

(
U

(1)
i−1 +Δ

(1)
i−1

)
+

α

2

(
U

(1)
i −Δ

(1)
i

)
, (18)

Un+1
i =

U
(2)
i + Un

i

2
. (19)

Substituting (17) and (18) into (19) yields

Un+1
i =

(
−1

8
α +

1

2

)
Un
i,l+

1

8
αUn

i−1,l+

(
−1

4
α2 +

3

8
α

)
Un
i−1,r+

1

8
α2Un

i−2,r+

(
1

8
α2 − 3

8
α +

1

2

)
Un
i,r+

1

4
α(Δ

(1)
i−1−Δ(1)

i ).

Un+1
i is now in terms of the solution values at tn and the correction terms Δ

(1)
i and Δ

(1)
i−1. From (8), the

values of Δ
(1)
i and Δ

(1)
i−1 take on the following four extreme cases:

1. Δ
(1)
i = 0 and Δ

(1)
i−1 = 0,



2. Δ
(1)
i = U

(1)
i − U

(1)
i−1 and Δ

(1)
i−1 = U

(1)
i − U

(1)
i−1,

3. Δ
(1)
i = 0 and Δ

(1)
i−1 = U

(1)
i − U

(1)
i−1,

4. Δ
(1)
i = U

(1)
i − U

(1)
i−1 and Δ

(1)
i−1 = 0.

For each of the above cases, we will show that Un+1
i can be written as a convex combination of solution

values at tn, i.e.,

Un+1
i =

∑
j

djUj, (20)

where Uj are understood to be solution averages at time tn or values at the left and right endpoints of the

elements. The multipliers dj, which are functions of α, must satisfy the following conditions

1. Sum condition ∑
j

dj = 1, (21)

2. Non-negativity condition

dj ≥ 0 ∀j, (22)

in order for the scheme to preserve the local and global bounds on the solution. In each of the Cases 1-4,

the sum condition (21) is satisfied. We will now comment on the values of α for which the multipliers dj

are non-negative.

Cases 1. and 2.

Un+1
i =

(
−1

8
α +

1

2

)
Un
i,l +

1

8
αUn

i−1,l +

(
−1

4
α2 +

3

8
α

)
Un
i−1,r +

1

8
α2Un

i−2,r +

(
1

8
α2 − 3

8
α +

1

2

)
Un
i,r.

The multipliers are non-negative for 0 ≤ α ≤ 3
2
.

Case 3.

Un+1
i =

1

2
Un
i,l +

1

4
αUn

i−1,r +

(
−1

4
α +

1

2

)
Un
i,r.

The multipliers are non-negative for 0 ≤ α ≤ 2.

Case 4.

Un+1
i =

1

2

(
1− 1

2
α

)
Un
i,l +

1

2

(
1− α +

1

2
α2

)
Un
i,r +

1

4
αUn

i−1,l +
1

2

(
α− α2

)
Un
i−1,r +

1

4
α2Un

i−2,r. (23)
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Figure 2: The limiter ensures that Ui−1,l − Ui−1,r = β(Ui−2 − Ui), where 0 ≤ β ≤ 1.

The multipliers in the above expression are non-negative for 0 ≤ α ≤ 1. We can obtain a larger interval

for α by rearranging terms. Introducing the difference
(
Un
i−1,l − Un

i−1,r

)
and using Un

i = (Un
i,l + Un

i,r)/2, we

obtain

Un+1
i =

(
1− 1

2
α

)
Un
i +

1

4

(
α2 − α

)
Un
i,r +

(
−1

2
α2 +

3

4
α

)
Un
i−1,l +

1

2

(
α2 − α

) (
Un
i−1,l − Un

i−1,r

)
+

1

4
α2Un

i−2,r.

With a limiter, the solution satisfies

Un
i−1,l − Un

i−1,r = β
(
Un
i−2 − Un

i

)

for some 0 ≤ β ≤ 1 (Figure 2). Then, the scheme can be written as

Un+1
i =

(
−1

2
βα2 +

1

2
(β − 1)α + 1

)
Un
i +

1

2
β
(
α2 − α

)
Un
i−2+

(
3

4
α− 1

2
α2

)
Un
i−1,l+

1

4
α2Un

i−2,r+
1

4
(α2−α)Un

i,r.

(24)

The multipliers are non-negative for

1 ≤ α ≤
√
2 = min

0<β≤1

(
3

2
,
β − 1 +

√
β2 + 6β + 1

2β

)
.

Combining this interval with 0 ≤ α ≤ 1, we obtain with this expression for Un+1
i that it can be written

as a convex combination of solution values at tn with 0 ≤ α ≤ √2, though we need to use two different

expressions.

A slightly larger bound on α can be obtained if we specify which TVD slope limiter is used in the

scheme. For example, consider the monotonized central-difference (MC) slope limiter [16]

σn
i =

1

h
minmod

(
2(Un

i − Un
i−1),

Un
i+1 − Un

i−1

2
, 2(Un

i+1 − Un
i )

)
. (25)



With this limiter, we now show that 0 ≤ β ≤ 1
2
. First, assume that the forward, central, and backward

differences are all of the same sign and nonzero. Then, multiplying both sides of (25) by h/(Un
i+1 − Un

i−1),

recognizing that Un
i,r − Un

i,l = hσn
i , and substituting β = (Un

i,r − Un
i,l)/(U

n
i+1 − Un

i−1), we have

β = min

(
2
Un
i − Un

i−1

Un
i+1 − Un

i−1

,
1

2
, 2

Un
i+1 − Un

i

Un
i+1 − Un

i−1

)
.

From the above, it is clear that β is bounded above by 1
2
. If the forward, central, and backward differences

do not have the same sign or at least one is zero, then β = 0. This gives that 0 ≤ β ≤ 1
2
. From this smaller

interval for the β coefficient, we have that the multipliers of (24) are non-negative for

1 ≤ α ≤ 3

2
= min

0<β≤ 1
2

(
3

2
,
β − 1 +

√
β2 + 6β + 1

2β

)
.

Depending on the value of α, we have different expressions of Un+1: if 0 ≤ α ≤ 1, then Un+1 from (23)

can be used, if 1 ≤ α ≤ 3
2
, then (24) can be used. Overall, Un+1 can be written as a convex combination

of solution values at tn for 0 ≤ α ≤ 3
2
.

Putting it all together.

Combining the above with the results from Section 3, we find that the scheme satisfies the local

maximum principle for 0 ≤ α ≤ √2. All above cases are convex combinations of solution values at time

tn, thus a larger time step than in (4) is possible. The time step restriction is therefore

Δt ≤
√
2

2

h

a
. (26)

Taking into account the chosen TVD limiter, which in our case is the MC limiter, this time step restriction

can be increased to

Δt ≤ 3

4

h

a
. (27)

Remark

These results are based on the assumption of a piecewise linear numerical solution and a limiter that

forces solution values to belong to a local interval defined by its immediate neighbors. As such, this larger

CFL number immediately extends to other spatial discretizations, e.g. the DG method, where we have

stability of the solution means in the maximum norm.



N Error Minimum Maximum
25 2.814176e-01 (-) -8.019780e-01 8.042554e-01
50 1.072674e-01 (1.39) -9.306829e-01 9.283151e-01
100 3.476506e-02 (1.62) -9.748830e-01 9.748830e-01
200 9.814755e-03 (1.82) -9.906997e-01 9.906997e-01
400 2.629868e-03 (1.89) -9.965111e-01 9.965111e-01
800 6.910883e-04 (1.92) -9.986542e-01 9.986542e-01

Table 1: L1 errors, rates of convergence (in parentheses), and global minimum and maximum of cell averages with the number
of cells N for Example 5.1.

N Minimum Maximum
25 1.912839e-04 9.994733e-01
50 8.725729e-09 1
100 0 1
200 0 1
400 0 1
800 0 1

Table 2: Global minimum and maximum of cell averages in terms of the number of elements in Example 5.2.

5. Numerical examples

In this section, we demonstrate that numerical solutions obtained with the time step restriction (27)

and the MC limiter are accurate and stable. Unless otherwise stated, in all one-dimensional examples we

use periodic boundary conditions on the domain [−1, 1] and integrate until the final time T = 1.

5.1. Advecting sine wave

We solve (1) with the flux f(u) = u and the initial condition u0(x) = cos(2πx). We provide the L1

errors, convergence rates, and lower and upper bounds attained by the solution means in Table 1. We

observe that the scheme is second order accurate and preserves the global minimum and maximum of the

solution.

5.2. Advecting discontinuities

We solve (1) with the flux f(u) = u and the initial condition u0(x) = 1 if x < 0, and 0 elsewhere. The

exact and numerical solutions at the final time are plotted in Figure 3. The global minimum and maximum

of the cell averages are maintained. We tabulate them at the final time in Table 2.

5.3. Euler equations

We solve the Sod tube problem on the domain [0, 1] with the initial states (ρl, ul, pl) = (1, 0, 1) and

(ρr, ur, pr) = (0.125, 0, 0.1) to the left and right of x = 0.5, respectively. The exact and numerical solutions



(a) N = 25 (b) N = 50 (c) N = 100

Figure 3: Exact (dashed line) and numerical (solid line) solutions (Example 5.2).

(a) Density (b) Velocity (c) Pressure

Figure 4: Exact (dashed) and numerical (solid) density, velocity, and pressure for the Sod tube problem with N = 100
(Example 5.3).

at the final time T = 0.2 are plotted in Figure 4; slight over- and undershoots are observed in the numerical

solution. These oscillations are due to the reconstruction in conserved variables [17] and are present when

the CFL number is both 3
4
and 1

2
. These overshoots and undershoots can occur even in numerical solutions

obtained with first order schemes [18].

5.4. Two-dimensional advection equation

In this example, we demonstrate that a larger time step is possible in two dimensions, as well as with

a spatial discretization different from the FV method. We solve ut + ux + uy = 0 on [−1, 1]2 using the

DG spatial discretization with a linear basis, coupled with the limiter based on the vertex neighborhood

in [8]. The mesh was obtained by discretizing the domain into a 40 × 40 grid of squares, then splitting

each square along its diagonal from the top left to bottom right, into two triangles. It was shown in [8]

that solution means do not grow in the maximum norm when

Δt ≤ CFL
h

||a|| , (28)



1/CFL Minimum Maximum
3 -9.50e-18 1.000336
4 -6.15e-18 1
5 -3.93e-18 1
6 -3.62e-18 1

Table 3: Minimum and maximum cell averages for Example 5.4 using time step restriction (28) for various CFL numbers.

with CFL ≤ 1
6
, a being the speed vector, and h being the cell width in the direction of a. Here, h = 1

40

√
2.

The problem is solved until a final time T = 0.1 with the initial condition u0(x, y) = 1 if max(|x|, |y|) ≤
1
4
, and 0 elsewhere.

In Table 3, we show the global maximum and minimum cell averages over the entire mesh for various

CFL numbers. Extrapolating from the one-dimensional analysis, we see that the numerical solution in two

dimensions preserves the global bounds on the solution for a time step Δt ≤ 3
2
ΔtFE = 1

4
h

||a|| .

6. Conclusion

We have demonstrated analytically and numerically for one-dimensional finite volume methods that

the time step restriction for the stability in the maximum norm with RK2 time stepping is larger than the

SSP theory’s prediction. We provide numerical evidence that this conclusion extends to two dimensions

and other spatial discretizations, e.g., the DG method. The main conclusion here is that the stability of

the fully discrete numerical method depends on both the temporal and spatial discretizations. We believe

that the result can be extended to other SSP methods and spatial discretization schemes. The analysis

in multi-dimensions and for time integrators using a larger number of stages will be significantly more

involved algebraically.
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[10] Z. Horvàth, “On the positivity of matrix-vector products,” Linear Algebra and its Applications,

vol. 393, pp. 253 – 258, 2004. Special Issue on Positivity in Linear Algebra.

[11] I. Higueras, “Monotonicity for Runge-Kutta methods: Inner product norms,” Journal of Scientific

Computing, vol. 24, pp. 97–117, Jul 2005.

[12] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

[13] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM

Journal on Numerical Analysis, vol. 21, no. 5, pp. 995–1011, 1984.

[14] M. Berger, M. Aftosmis, and S. Murman, “Analysis of slope limiters on irregular grids,” in 43rd AIAA

Aerospace Sciences Meeting and Exhibit, p. 490, 2005.

[15] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to

Godunov’s method,” Journal of Computational Physics, vol. 32, no. 1, pp. 101 – 136, 1979.



[16] B. van Leer, “Towards the ultimate conservative difference scheme. IV. A new approach to numerical

convection,” Journal of Computational Physics, vol. 23, no. 3, pp. 276–299, 1977.

[17] B. Cockburn, S.-Y. Lin, and C.-W. Shu, “TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws III: one-dimensional systems,” Journal of Computational

Physics, vol. 84, no. 1, pp. 90–113, 1989.
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