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Highlights

• We analyze how to consolidate two-classes of shipments and ration dispatch ca-

pacity

• We minimize shipment & holding costs using a continuous-time Markov decision

process

• The optimal policies are of control limit type under particular conditions

• Using these structural properties, we propose an alternative solution approach

• The proposed approach leads to improvements in two real-life cases
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Abstract

We analyze the problem faced by a logistics provider that dispatches shipment orders

(parcels or larger packages) of two order classes, viz. expedited and regular. Shipment

orders arrive according to a compound Poisson process for each class. Upon an arrival,

the logistics provider may continue consolidating arriving orders by paying a holding

cost. Alternatively, the provider may dispatch, at a fixed cost, a vehicle containing (a

portion of) the load consolidated so far. In addition, the provider must specify the com-

position of each dispatch by allocating (rationing) the volume of the vehicle between

expedited and regular shipment orders. We model this problem as a continuous-time

Markov Decision Process and minimize the expected discounted total cost. We prove the

existence of quantity-based optimal threshold policies under particular conditions. We

also structurally analyze the thresholds of these optimal policies. Based on these struc-

tural properties, we develop an efficient solution approach for large problem instances

which are difficult to solve using the conventional policy-iteration method. For two real-

life applications, we show that the quantity-based threshold policies derived using the

proposed approach outperform the time policies used in practice.

Keywords: Logistics, Shipment consolidation, Capacity rationing, Markov decision

process, Threshold policies.

1. Introduction

This paper focuses on the problem of allocating (rationing) vehicle capacity between

different shipment order types which are dynamically consolidated (to be shipped to-
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gether) to save on transportation costs. Transportation is a key part of every supply

chain. Cutting costs in the entire chain brings competitive advantage which is vital for

both profitability and sustainability. Wilson (2015) reports that transportation costs

account for about 5.2% of the nominal gross domestic product of the US in 2014. There-

fore, developing methods to decrease transportation costs is desirable and may have

significant impact on a national economy. For a courier company or a third-party logis-

tics provider (3PL), reducing transportation costs directly results in enhanced margins,

i.e., more profit per shipment.

Courier companies and 3PLs offer several service options with distinct prices. For

example, let us consider a one-ounce letter to be sent from New York City to Miami.

Among some of the choices that UPS offers are UPS Next Day Air with guaranteed

delivery in one day, one of the fastest shipping services, for $75.48, and UPS Ground,

an ideal service with delivery guaranteed in five days for a price of $9.901. The price

ratio of expedited to normal services in this example is 7.62; however, these ratios may

vary, based on proximity of the shipment zones and the transportation medium. For

example, UPS Turkey’s price ratio of emergency express to standard delivery on

the İstanbul-Ankara route is around 5. On the other hand, this price ratio is 12.7 for

MNG Kargo, which frequently ships parcels between Ankara and İstanbul via plane2.

There are also differences in the business operations of the logistics companies. For

instance, UPS Turkey uses both their own vehicles and for-hire trucks between the

Mahmutbey Hub (in İstanbul) and the hub in Ankara, depending on the demand. Parcels

collected at various UPS outlets in İstanbul and Ankara are transferred through these

hubs. UPS Turkey applies mainly a time-based vehicle-dispatch policy according to the

tentative vehicle schedules. On the other hand, each day MNG Kargo sends between two

and ten fixed-weight shipments of particular types of parcels from Ankara to İstanbul

by paying a fixed cost for each shipment3. Therefore, MNG Kargo needs to dynamically

determine the number of dispatches on the Ankara-İstanbul route based on demand

realization, as well as the timing and composition. Similar applications exist for inbound

logistics. EKOL Logistics, a 3PL serving Turkish manufacturers on defined milk-run

routes, develops a shipment plan specifying when and how much to collect from suppliers,

according to the production needs of the manufacturers and the degree of urgency.

1The quoted delivery prices are retrieved from https://wwwapps.ups.com/ctc on June 17, 2016.
2Information on MNG Kargo’s delivery prices were retrieved from

http://service.mngkargo.com.tr/musteri/WebFaturaListesi/UcretHesapla2.aspx on Nov.15, 2015.
3Information on MNG Kargo’s system was gathered by phone interview with the Customer Relations

and Tele-Marketing Manager of MNG Kargo on July 23, 2012.
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Although the preceding logistics companies employ different business models, each

faces a similar challenge. They could dispatch vehicles frequently to lower the holding

costs and improve customer satisfaction. Alternatively, they may further consolidate

the arriving shipment orders, to increase the vehicle utilization and obtain economies

of scale on the fixed dispatching-cost. In addition, when dispatching a vehicle, they

also need to decide the composition of the load in terms of order types. Because most

logistics companies can continuously monitor their orders, those decisions can be made

dynamically to improve the system performance.

Shipment consolidation aims to increase vehicle utilization by combining two or

more shipment orders, dispatched as an aggregate unit. Recent surveys imply that

the majority of American manufacturers use shipment consolidation as an outsourced

logistics function to cut costs, and most large 3PLs provide freight consolidation services

(e.g. Lieb and Lieb (2015)). These results show that shipment consolidation is a powerful

tool for logistics providers. Ülkü (2012) points out that shipment consolidation also helps

in achieving “green” supply chain targets by reducing energy waste and carbon emission.

When the decision is made to dispatch a vehicle to carry (a portion of) the consolidated

load, the next thing to decide is “How much of each shipment order type should be put on

the vehicle?”. Allocating the available volume of the transportation medium to different

order types is a form of “capacity rationing”.

In this context, we propose a continuous-time Markov Decision Process (MDP) model

to optimize the decisions on consolidation and vehicle capacity rationing upon the arrival

of each shipment order. We consider the perspective of the logistics provider (L-P),

whose objective is to minimize total expected discounted cost: sum of transportation

plus holding cost. We assume that shipment orders arrive according to a compound

Poisson process, and orders are either for expedited (Type 1) or regular (Type 2)

shipments. Although consideration of only two classes of orders is limiting, it is a valid

assumption for particular business models. For instance, courier providers in Turkey

usually offer options of delivery in one day or in two days, on the main routes within

the country.

To the best of our knowledge, this is the first work to jointly analyze the decisions

on dispatch timing and load composition from the perspective of shipment consolidation

and vehicle capacity rationing. Benefiting from and building upon existing publications,

we structurally analyze the optimal solutions of this problem. We show the existence of

optimal quantity-based threshold policies for particular cases and further characterize

those optimal solutions. Moreover, we utilize the proven structural properties to develop

efficient solution approaches for large problem instances. Next, the model is applied to
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two real-life cases: those of UPS Turkey and EKOL Logistics. Our numerical experiments

show that the quantity-based threshold policies outperform the currently used time

policies.

2. Literature Review

Our work is related to the literature on shipment consolidation, customer rationing,

and multiproduct batch-service problems. The studies on shipment consolidation mainly

analyze for how long (i.e., time policy), or up to what quantity or weight (i.e., quantity-

based policy), the shipment orders should be accumulated before a consolidated load

is dispatched. Most of this literature aims to minimize the total transportation and

holding cost, assuming Poisson-distributed shipment order arrivals.

In what follows, it will be important to distinguish between the cases of “common

carriage” and “private carriage”. A common carrier is a public, for-hire transportation

provider (e.g., trucking company). Private carriage refers to transportation in one’s own

vehicle, i.e. a truck owned or controlled by the shipper of the goods. Higginson and

Bookbinder (1994) employ discrete-event simulation to evaluate performances of partic-

ular time, quantity, and time-and-quantity policies for shipment consolidation problems

with common carriage under different parameter settings. Focusing on quantity-based

policies, Higginson and Bookbinder (1995) propose an MDP model for the consolidation

of random-size shipment orders. They illustrate that, for the private-carriage setting,

the optimal policy is of control-limit type, which may not be the case for the common-

carriage setting. Bookbinder and Higginson (2002) also employ a stochastic renewal-

process model for this problem, to derive effective time-and-quantity (hybrid) policies

for transportation by private carriage.

A series of papers study the shipment consolidation problem with more general order-

arrival processes or alternative performance metrics. Using renewal theory, Çetinkaya

and Bookbinder (2003) derive explicit expressions for the optimal quantity-based and

time policies for a shipment consolidation problem under private carriage for a general

arrival process. They also propose approximate methods to derive effective time-and-

quantity policies for the case of common carriage. Bookbinder et al. (2011) propose a

Markov-process model with a Markovian phase-type batch-arrival process for a private

carrier with infinite dispatch capacity. They develop efficient algorithms for computing

the performance measures of quantity, time, and hybrid policies. Merrick and Book-

binder (2010) evaluate performances of quantity, time, and time-and-quantity policies,

considering both environmental impacts and profitability. Çetinkaya et al. (2014) derive
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analytical results comparing the performances of shipment consolidation policies using

service-based criteria such as maximum waiting time and average order delay.

There are also a few studies that analyze shipment consolidation as a process mech-

anism in larger problems on shipment planning for airfreight forwarders (Wong et al.

2009) and 3PLs (DallOrto et al. 2006, Ülkü and Bookbinder 2012), as well as material

routing in inventory networks (Howard and Marklund 2011).

The present paper is also related to the literature on rationing. Those publications

analyze how the available inventory or service capacity should be rationed between dif-

ferent classes of customers to maximize total profit or benefit. For instance, Ha (1997)

considers the problem of rationing finished-goods inventory for a manufacturer of a sin-

gle item in a make-to-stock system, with several demand classes (different selling prices)

and lost sales, under the assumption of exponential manufacturing and demand interar-

rival times. He derives the optimality equations for solving this problem and proves the

existence of optimal threshold-type policies. de Véricourt et al. (2000) study the prob-

lem of rationing the production capacity of a manufacturer between two products and

characterize the optimal solution under particular conditions. Yang and Fung (2014)

model a manufacturer in a make-to-stock environment facing uncertainty on both the

demand and supply sides, using a finite-horizon MDP. They show characteristics of the

optimal admission policy for multiple customer classes. In the vehicle-rental industry,

Pazour and Roy (2015) consider a system serving both priority and non-priority cus-

tomers using a pool of homogeneous vehicles. Focusing on only threshold-type policies,

they employ a queueing model to obtain exact solutions for the best threshold selection.

Further references on inventory rationing are contained in Fadıloğlu and Bulut (2010).

Finally, our work is related to batch-service problems in which a decision maker de-

termines when to serve accumulating orders or customers together as a group. Papadaki

and Powell (2002) propose a finite-horizon MDP model for such problems, where ho-

mogeneous customers arrive in batches of random size according to a Poisson process.

If the decision is to serve, customers are processed up to a particular service capacity

within the current time epoch. Their MDP model minimizes the total holding and fixed

service costs. Papadaki and Powell (2002) show that the minimum value function is

monotone non-decreasing, and that the optimal policy is of the control-limit type. Pa-

padaki and Powell (2003, 2007) extend these results to a non-homogeneous customer

setting (e.g., n types of customers), and prove that the optimal policy is either wait

or serve, by sequencing the customers based on their holding costs. Min (2014) also

proposes an infinite-horizon MDP model for a multi-class batch service problem with

class-dependent waiting costs. This model considers a time- and batch-size-dependent
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variable service cost incurred when the total service time of the current batch exceeds

the server’s shift time (e.g., overtime cost). Min (2014) analyses the structure of the

optimal solution and proposes heuristic approaches to solve the problem.

Our research differs from publications in the shipment consolidation literature be-

cause they do not consider multiple classes of shipment orders (e.g., expedited vs. regular

shipments). Although studies in the rationing literature consider multiple order/demand

classes, those analyses process the orders as they arrive rather then processing them as

a batch. Papadaki and Powell (2003) and Papadaki and Powell (2007) are the works

most relevant to ours. We show that our proposed continuous-time discounted-cost

MDP model can be simplified to an infinite-horizon discounted-cost MDP. This simpli-

fied model is actually equivalent to the infinite-horizon version of the models in Papadaki

and Powell (2003) and Papadaki and Powell (2007). However, our work still contributes

to the literature as we extend the modeling framework to an infinite-horizon setting,

and further characterize the optimal solutions by proving the existence of threshold-type

optimal policies and the monotonicity (non-increasing) of those optimal thresholds in

particular cases. These analytical results are important because infinite-horizon MDPs

suffer from the curse of dimensionality even if they consider only two actions in each

state (e.g., as in the optimal stopping time problems in Alagöz et al. (2004, 2007)).

Using the existence of monotone optimal thresholds, we develop alternative solution al-

gorithms, enabling us to solve large problem instances which are hard to solve using the

conventional policy-iteration algorithm. Finally, although Papadaki and Powell (2003,

2007) reported that their framework is applicable to logistics problems, ours is the first

work to employ such an MDP framework in the setting of shipment consolidation and

capacity rationing, using real-life data and examples.

3. Methodology

3.1. The Model

We model this problem as a continuous-time discounted-reward Markov Decision

Process (CTMDP) defined over an infinite-horizon. The proposed model reflects the

perspective of an L-P offering two types of shipment services. That is, arriving shipment

orders require either expedited (expedited orders) or standard shipment (regular orders).

We refer to these orders as Type 1 and Type 2, and assume that they arrive according

to a compound Poisson process with rates λ1 and λ2, respectively. We denote the total

arrival rate as λ = λ1 +λ2. We assume that the size of each shipment order is a discrete

random variable where d1(n)(d2(m)), n ∈ {1, 2, ..., N} (m ∈ {1, 2, ...,M}) denotes the
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probability that an arriving expedited (regular) order requires shipment of a load of size

n (m) units.

In the model, decisions are triggered by arrivals of shipment orders, i.e., the time

between consecutive decision epochs is exponentially distributed with rate λ. At each

order arrival, the L-P either i) continues to consolidate arriving orders (WAIT ) or ii)

dispatches all or a portion of the consolidated load with a proper transportation vehicle

(truck), by deciding how much of each order type to include in the shipment (SHIP). We

assume that orders of the same type are processed according to the first-come-first-serve

rule, after deciding to SHIP.

The objective function includes the expected transportation and holding costs. The

fixed cost to dispatch or release a single vehicle is denoted by K. The latter category

merits further discussion. One drawback of dynamic consolidation is a stochastic time of

delivery, because the time until the next shipment depends on the randomly-accumulated

shipment load. Therefore, consolidation decisions should consider appropriate lateness

measures. For this purpose, we define c1 and c2 for Type 1 and Type 2 customers,

respectively, as holding costs per unit order per unit time. We assume c1 > c2 and

denote C = (c1, c2) as the holding cost vector. These holding costs should not be

interpreted in the sense of “ownership” of the transported goods. Rather, the holding

costs are proxies for the disutility experienced by the customers whose orders are still

waiting to be delivered, as well as for the efforts required to store and maintain these

goods. Holding costs implicitly reflect due dates of customer orders in other studies in

the literature, e.g., Yılmaz and Savaşaneril (2012).

In our model, the system state at time t, St ∈ S ≡ {(s1, s2); s1, s2 ∈ Z≥0}, tracks

the amounts (in units) of consolidated expedited (s1) and regular (s2) orders awaiting

shipment. In state St = S, At(S) ∈ A(S) ≡ {(a1, a2); a1, a2 ∈ Z≥0, a1 ≤ s1, a2 ≤
s2, a1 + a2 ≤ ω} represents any feasible action. In this notation, a1 and a2 refer to

the numbers of expedited and regular orders to be dispatched via a vehicle with enough

capacity to carry ω units. Naturally, a1 = a2 = 0 refers to WAIT ; whereas, ai > 0 (for

any i) refers to the SHIP decision. Because interarival times between two consecutive

shipment orders are exponentially distributed, the distribution of future events beyond

time t after observing St = S is equivalent to those beyond time t + k after observing

St+k = S. Therefore, the optimal actions for the same system state at any two time

points are the same in our infinite-horizon continous-time model. Thus, it is sufficient

to consider only stationary decisions, i.e., At(S) = A(S) ∀S ∈ S, t ≥ 0.

When calculating the total cost, we need to keep track of the system state only at

time points of state change. Therefore, the decision epochs denote time points at which
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shipment orders arrive, i.e., epoch p ∈ {0, 1, 2, ...} refers to the pth order which arrived

at a random time Tp where T0 = 0. Figure 1 shows the sequence of events occurring at

the beginning of decision epoch p, given that there was no shipment in epoch p−1 and a

shipment is dispatched in the current decision epoch (i.e., A(STp−1) =
−→
0 , A(STp) >

−→
0 )4.

In the figure, STp = (s1, s2) denotes the state at the beginning of epoch p immediately

after the new shipment order arrival. Without loss of generality, we assume that L-P

observes the size of the new shipment order and the system state STp , and makes a ship-

ment dispatch decision A(STp) = (a1, a2) which takes effect instantaneously. Therefore,

the holding cost between epochs p and p + 1 is incurred for having s1 − a1 expedited

orders and s2 − a2 regular orders during the interval (Tp, Tp+1).

state
S

S

S

S  - A(S   )

T p-1 T p T p+1

time
period p-1 incurs period p incurs period p+1 incurs

C(S      ,0) C(S   ,A(S    )) C(S      ,0)
→ →

Tp-1

Tp-1

Tp

Tp Tp

Tp Tp

Tp+1

Tp+1

Figure 1: State Evolution over Time

Equation (1) presents the transition probabilities of moving from state STp = S =

(s1, s2) to state STp+1 = S
′

= (s
′
1, s

′
2) under action A(STp) = A = (a1, a2) ∈ A(S) just

after an order arrival. Note that λ1/λ is the probability that the order which arrives

in state S is an expedited order. In this case, the state after shipment increases by ne1

with probability d1(n). Similar remarks hold for the remaining transition probabilities.

p(STp+1
|STp , A(STp)) = p(S

′ |S,A)

=





d1(n)λ1/λ, if (s
′
1, s

′
2) = (s1 − a1 + n, s2 − a2) ∀n ∈ {1, ..., N}

d2(m)λ2/λ, if (s
′
1, s

′
2) = (s1 − a1, s2 − a2 +m) ∀m ∈ {1, ...,M}

0, otherwise

(1)

4−→0 =(0, 0), e1=(1, 0), e2=(0, 1)
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Since the objective function is the minimization of discounted total cost, C(STp , A(STp))

represents the immediate cost between two consecutive order arrivals ∀STp = S ∈ S and

∀A(STp) = A ∈ A(S) as follows:

C(STp , A(STp)) = C(S,A) = I[A]K + E

[ ∫ T

0
[c1(s1 − a1) + c2(s2 − a2)]e−αtdt

]
(2)

= I[A]K + [c1(s1 − a1) + c2(s2 − a2)]/[α+ λ]

= I[A]K + C(S −A)tr/[α+ λ]

where α ∈ (0, 1) is the continuous discount rate, I[A] is an indicator function which is

equal to 1 if a1 + a2 > 0, and (S − A)tr is the transpose of the vector representing the

state just after the current shipment. Note that the expectation in Equation (2) is w.r.t.

the exponentially distributed interarrival time, T=Tp+1 − Tp.
Let π denote any stationary policy, and Aπ(S) refer to the action for state S under

policy π. We define the optimal value function V (S), which represents the minimum

expected total discounted cost starting from state S just after an order arrival (i.e.,

T0 = 0 and S0 = S), in Equations (3) and (4). In these optimality equations, V (S,A) is

the expected discounted cost given that action A is chosen at the initial state and the

optimal policy is followed from there on, and β = λ/(α+ λ).

V (S) = minπ

{
E
[ ∞∑

p=0

e−αTpC(STp , A
π(STp))|S

]}
(3)

V (S) = minA∈A(S)

{
V (S,A)

}

= minA∈A(S)

{
I[A]K +

1

α+ λ
C(S −A)tr + β

∑

S′∈S
p(S′|S,A)V (S′)

}
(4)

Equation (3) presents the optimality equation for the CTMDP which minimizes the

total expected discounted cost accrued through the decision horizon. In Appendix A, we

show that Equation (3) can be simplified to Equation (4) following the uniformization

procedure described in Equation (11.5.6) of Lippman (1975). Actually, Equation (4)

is nothing but the Bellman optimality equation of an embedded discrete-time Markov

Decision Process (DTMDP) equivalent to the original CTMDP model. The simplified

DTMDP model in Equation (4) is also equivalant to the infinite-horizon version of a

special case of the MDP model in Papadaki and Powell (2003, 2007), where the number

of product types is equal to two. Equation (4) is defined for any vehicle capacity. In this

paper, we will consider two specific capacity cases: Capacitated Model with ω < ∞
and Uncapacitated Model with ω =∞.
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3.2. Structural Analysis

Papadaki and Powell (2003, 2007) show that, for the finite-horizon version of the

proposed model, the minimum value function in Equation (4) is monotone and the

optimal policy is either to WAIT or to SHIP the consolidated load by prioritizing the

expedited orders. We use these properties to prove that quantity-based optimal threshold

policies exist for the uncapacitated model (ω = ∞), and that these thresholds are of

“linear staircase” form. All proofs are available in Appendix B. The following definitions

introduce the partial-ordering operator and monotonicity type used in this section.

Definition 1. We define the partial ordering operator � on the two-dimensional set

Ψ = Z≥0 × Z≥0 such that X ′ � X for X = (x1, x2), X ′ = (x′1, x
′
2) ∈ Ψ, if x′1 ≥ x1 and

x′1 + x′2 ≥ x1 + x2.

Definition 2. A real-valued function F defined on the two-dimensional set Ψ is partially

non-decreasing w.r.t. the ordering defined in Definition 1 if we have F (X ′) ≥ F (X) for

all X,X ′ ∈ Ψ when X ′ � X.

Theorem 1 states that the optimal value function in Equation (4) is monotone w.r.t

the partial ordering defined above. Theorem 1 follows the structural properties presented

in Papadaki and Powell (2003, 2007) proving that the optimal value function is monotone

non-decreasing in state and shipment order type for the finite-horizon version of our

model. These properties from Papadaki and Powell (2003, 2007) apply to the infinite

horizon, based on a result in Bertsekas (2001) (page 8). Collectively, these properties

imply that V (S) ≤ V (S + k1e1 + k2e2) where S = (s1, s2), k1 ≥ 0, and k2 ≥ −k1, which

guarantees the monotonicity property in Theorem 1.

Theorem 1. V (S) is partially non-decreasing w.r.t. the ordering defined in Definition

1.

The following lemma illustrates a dominance rule between particular actions. This

rule indicates that, when there is room in the vehicle, shipping more and/or replacing

regular orders with expedited orders in the shipment load saves cost.

Lemma 1. Let A,A′ 6= −→0 be any pair of feasible actions for state S where A � A′,

i.e., A′ = A − k1e1 + k2e2 where k1 and k2 are integers such that a1 ≥ k1 ≥ 0 and

min(k1, s2 − a2) ≥ k2 ≥ −a2. Then, V (S,A) ≤ V (S,A′).

Based on Lemma 1, we define the best load composition for a SHIP decision, namely

action A(S), for any S ∈ S. Action A(S) prioritizes expedited orders in utilizing vehicle
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capacity, i.e., A(S) = (a1, a2) such that a1 = min{ω, s1} and a2 = min{ω − a1, s2}.
According to this definition,

a1 + a2 =

{
s1 + s2, if s1 + s2 ≤ ω
ω, if s1 + s2 > ω.

Proposition 1 states that the optimal decision for any state S is either to WAIT

or to SHIP according to action A(S). This proposition is equivalent to a special case

of Proposition 4.1 of Papadaki and Powell (2007). Proposition 1 can also be proven

by contradiction. Let A ∈ A(S) be any feasible action not equal to
−→
0 or A(S). The

action A(S) ships as many Type 1 orders as vehicle capacity allows and utilizes the

vehicle capacity as much as possible. Thus, action A ships either fewer Type 1 orders

or dispatches a smaller total load than A(S) does. Therefore, the optimality of such an

action, i.e., V (S,A) = V (S) ≤ min{V (S,
−→
0 ), V (S,A)}, contradicts Lemma 1.

Proposition 1. For any state S ∈ S, the optimal action can be defined as A∗(S) =

argmin
A∈{−→0 ,A(S)}{V (S,A)}, where

−→
0 refers to WAIT and A(S) refers to the SHIP de-

cision, by prioritizing expedited orders while shipping the consolidated load, i.e., A(S) =

(min{s1, ω},min{ω − a1, s2}).

The minimum value function V (S) in Equation (4) can be simplified as follows, by

considering only the two actions specified in Proposition 1 for each state.

V (S) = min
{ 1

α+ λ
CStr +

N∑

n=1

d1(n)λ1

α+ λ
V (S + ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (S +me2),

K +
N∑

n=1

d1(n)λ1

α+ λ
V (S′ + ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (S′ +me2)

}
(5)

where S′ = (s′1, s
′
2) =

(
s1 − min(ω, s1), s2 − min

(
ω − min(ω, s1), s2

))
. Proposition 1

is important as it reduces the computational burden for solving the shipment consoli-

dation & capacity rationing problem. However, solving the infinite-horizon DTMDP in

Equation (5) is still computationally challenging in real-life instances, due to the curse

of dimensionality. To solve this problem efficiently, it is desirable to further characterize

the optimal policies. We do so for the uncapacitated model, i.e., ω =∞, by proving the

existence of the optimal threshold-type policies with linear-staircase thresholds. Since

A(S) = S when ω =∞, V (S) can be expressed as follows in this case:

12
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V (S) = min
{ 1

α+ λ
CStr +

λ1

α+ λ

N∑

n=1

d1(n)V (S + ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (S +me2),

K +
λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)
}

(6)

Theorem 2 states the existence of the optimal infinite-horizon threshold policies when

ω = ∞. Our numerical experiments indicate that Theorem 2 may also hold for the

capacitated problem instances (i.e., ω ≤ ∞). We realize that the proof of Theorem

2 can be extended to the case of ω ≤ ∞ for S and S′ state couples that are either

sufficiently small or sufficiently large. However, we leave a complete generalization of

Theorem 2 for future studies.

Theorem 2. If ω = ∞, then the optimal policy is of control-limit type. That is, if

A∗(S) = S for state S, then A∗(S′) = S′ for any state S′ ≥ S.

We observe that the structure of the optimal policies can be even nicer in some cases,

as shown in Lemma 2 and Theorem 3.

Lemma 2. Suppose that ω =∞, and r and q are minimum positive integers satisfying

rc1 = qc2. Then V (S) = V (S + re1 − qe2) for any S = (s1, s2) s.t. s2 ≥ q.

Based on Lemma 2, Theorem 3 proves the existence of the optimal linear-staircase

threshold policy for ω = ∞ when q
r is integer (i.e., r = 1). Note that Theorem 3 can

be extended to prove the existence of the optimal non-increasing staircase thresholds

(though not perfectly linear) when q
r is not an integer, because Lemma 2 is valid for all

integer r and q values. This proof is omitted for brevity.

Theorem 3. Let ω = ∞ and c1 = qc2 where q is a positive integer. There exists an

optimal linear-staircase threshold of the state variables, beyond which the optimal action

is to SHIP and below which it is to WAIT. That is, there exists an s2(s1) ∀s1 ∈ {0, 1, ...}
such that i) s2(s1 + 1) = s2(s1) − q if s2(s1) > q and s2(s1 + 1) = 0 if s2(s1) ≤ q; ii)

A∗(s1, s2) = A(s1, s2) ∀s2 ≥ s2(s1) and A∗(s1, s2) =
−→
0 ∀s2 < s2(s1).

When ω =∞ and q
r is integer, the optimal threshold for the shipment action starts at

state (0, s2(0)), and the s2 component of the threshold decreases in a step-wise fashion

with a step-size of q
r as s1 increases. This creates a linearly decreasing stair-shaped

threshold; therefore, we refer to these policies as linear-stepwise threshold policies. For

instance, Figure 2 illustrates the linear-staircase threshold-type optimal policy for a

particular problem instance with ω =∞. In this figure and those in Section 3.3, W and

13
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S indicate the (s1, s2) combinations for which the optimal action is to WAIT and SHIP,

respectively. The double-black line represents the optimal staircase threshold policies.

In the optimal policy in Figure 2, s2(0) = 17 which is sufficient to define the optimal

policy under the aforementioned conditions.

The volume of a typical truck is about 100 m3 (cubic meters). If we use 0.1 m3 as

the size of each unit load, the range of si values may be in thousands, which requires

manipulation of transition probability matrices for millions of states. The characteri-

zation in Theorem 3 makes such real-life size problem instances tractable: Any feasible

linear-staircase threshold-type policy can be specified by a threshold s2 value beyond

which the policy requires a shipment action for s1 = 0. Therefore, when q
r is an integer,

the uncapacitated model can be solved efficiently by identifying the border of the opti-

mal linear-staircase threshold for s1 = 0, i.e., s2(0) as defined in Theorem 3. However,

when ω <∞ or q is not an integer, the optimal policy may no longer be linear-stepwise;

thus, the whole shipment threshold should be specified.

s 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s 1 0 W W W W W W W W W W W W W W W W W S

1 W W W W W W W W W W W W W W W S S S

2 W W W W W W W W W W W W W S S S S S

3 W W W W W W W W W W W S S S S S S S

4 W W W W W W W W W S S S S S S S S S

5 W W W W W W W S S S S S S S S S S S

6 W W W W W S S S S S S S S S S S S S

7 W W W S S S S S S S S S S S S S S S

8 W S S S S S S S S S S S S S S S S S

9 S S S S S S S S S S S S S S S S S S

Figure 2: The Optimal Policy for the Problem Instance with K = 15, c1 = 1,
c2 = 0.5, λ1 = 1, λ2 = 3, α = 0.01, d1(1) = d2(1) = 1, ω =∞

The optimal threshold policies exhibit other interesting patterns observed in our

numerical experiments. For example, the optimal thresholds are lower for the capacitated

version of a problem (i.e., ω <∞) compared to the uncapacitated version. In addition,

for ω = ∞, when one order-size distribution is stochastically larger than another, then

s2(0) for the former distribution is greater. Specifically, consider two particular sets of

distributions (d1, d2) and (d′1, d
′
2), where the first set is stochastically larger than the

second one (i.e., d1 >st d
′
1 and d2 >st d

′
2). Then, s2(0) for (d1, d2) is greater than that

for (d′1, d
′
2) . For example, let us consider d1(2) = d2(2) = 1 and d′1(1) = d′2(1) = 1. The

order accumulation is twice as fast in the case of the former distribution. Therefore,

under the same threshold policy, a system with distribution di incurs higher shipment
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cost and lower holding cost compared to a system with distribution d
′
i. Thus, s2(0)

should be greater in the case of the former distribution to have a balance between

holding and shipment costs, similar to that established by the optimal policy for the

latter distribution. In order to appreciate the customized solution approach proposed

in Section 3.4, it is paramount to visualize the aforementioned properties of the optimal

policies.

3.3. Hypothetical Examples

Let us now solve a set of hypothetical problems to verify and illustrate the preceding

structural properties. In these problem instances, we set c1 = 1, λ1 = 1, and d1(j) =

d2(j) for j ∈ {1, 2}. In these experiments, we consider low and high set-up costs (i.e.,

K ∈ {5, 15}); and low, medium, and high vehicle capacity (i.e., ω ∈ {7, 20,∞}) and

arrival rate scenarios (i.e., λ2 ∈ {3, 6, 10}). We also consider five holding cost levels (i.e.,

c2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}), and three order-size distributions: (di(1), di(2)) = (1, 0),

(di(1), di(2)) = (0.7, 0.3), and (di(1), di(2)) = (0.3, 0.7) for i ∈ {1, 2}. We refer to

these distributions as the No Skewness, Low Skewness, and High Skewness scenarios,

respectively, based on their left-skewness levels. According to the usual stochastic order,

(0.3, 0.7) � (0.7, 0.3) � (1, 0). Thus, we have solved 270 hypothetical problem instances.

Figures 2-4 show the optimal policies for the uncapacitated and capacitated versions

of three problem instances. In these figures (and in the rest of the paper), the red line

shows the vehicle capacity. For the example in Figure 2, c1
c2

= 2. Therefore, the optimal

threshold for shipment decisions is linear staircase with s2(0) = 17 for the uncapacitated

version of the problem. Starting from state (0, 17), the optimal threshold increases by

one unit in s1 for each two-unit decrease in s2. In this example, the optimal threshold

for the capacitated version with ω = 20 is the same as that of the uncapacitated version,

because vehicle capacity is large compared to the maximum load to be carried under the

optimal policy of the uncapacitated version (i.e., 17 units). We observe that this trend

generally holds when c1
c2

is integer and ω is large enough.

Figure 3 illustrates the optimal policies of another example for which c1
c2

= 10. For

the uncapacitated version of the problem with no skewness in the order-size distribution,

the optimal threshold policy is linear staircase with s2(0) = 33 (see Figure 3a). The

optimal policy is still linear staircase for the same problem instance when the order-size

distribution becomes highly skewed; however, s2 is greater in this case (i.e., the threshold

starts at state (0, 41) in Figure 3b).

For the capacitated version of the problem with ω = 20, the optimal policy is not

perfectly linear staircase, but still is a staircase policy. A staircase threshold policy has
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a shipment threshold whose s2 level decreases in a step-wise manner while s1 increases,

and has a stair-like structure. However, the step-lenghts of a staircase threshold policy

may vary in s1, i.e., s2(0) − s2(1) = 4, s2(1) − s2(2) = 6, s2(2) − s2(3) = 10 in Figure

3c. These differences would be constant in a linear staircase threshold-type policy. The

difference between the optimal policies in Figures 3a and 3c is because the maximum

load in the uncapacitated version (33 units) is significantly larger than the vehicle ca-

pacity (20 units). However, the two optimal thresholds shown in Figures 3a and 3c are

identical when s2 < 19. This result implies that for particular cases, the solution of the

uncapacitated version may be used to derive a good initial solution to solve the capac-

itated version with policy-iteration or value-iteration methods. Also note that, when

s1 = 0, the optimal policy in Figure 3c suggests to continue consolidation, even though

the consolidated load exceeds the vehicle capacity. On the other hand, for s1 > 0, the

optimal policy ships the consolidated load before reaching the capacity limit. Actually,

in most cases, the optimal threshold policies derived from the MDP model are signifi-

cantly different than the policy of initiating a shipment whenever the total consolidated

load is equal to or larger than the vehicle capacity. Nor do the optimal policies specify

a fixed threshold for the total size of the consolidated load to be dispatched.

s 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

s 1 0 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W S

1 W W W W W W W W W W W W W W W W W W W W W W W S S S S S S S S S S S

2 W W W W W W W W W W W W W S S S S S S S S S S S S S S S S S S S S S

3 W W W S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

4 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

(a) Uncapacitated Solution

s 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

s 1 0 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W S

1 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W S S S S S S S S S S S

2 W W W W W W W W W W W W W W W W W W W W W S S S S S S S S S S S S S S S S S S S S S

3 W W W W W W W W W W W S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

4 W S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

5 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

(b) Uncapacitated Solution under High Skewness

s 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s 1 0 W W W W W W W W W W W W W W W W W W W W W W W S

1 W W W W W W W W W W W W W W W W W W W S S S S S

2 W W W W W W W W W W W W W S S S S S S S S S S S

3 W W W S S S S S S S S S S S S S S S S S S S S S

4 S S S S S S S S S S S S S S S S S S S S S S S S

(c) Capacitated Solution

Figure 3: The Optimal Policies for the Uncapacitated and Capacitated Prob-
lem Instances with ω = 20, K = 5, c1 = 1, c2 = 0.1, λ1 = 1, λ2 = 3, α = 0.01,
d1(1) = d2(1) = 1.
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s 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s 1 0 W W W W W W W W W W W W W W W W S S S S S

1 W W W W W W W W W W W W S S S S S S S S S

2 W W W W W W W W W S S S S S S S S S S S S

3 W W W W W W S S S S S S S S S S S S S S S

4 W W S S S S S S S S S S S S S S S S S S S

5 S S S S S S S S S S S S S S S S S S S S S

6 S S S S S S S S S S S S S S S S S S S S S

7 S S S S S S S S S S S S S S S S S S S S S

8 S S S S S S S S S S S S S S S S S S S S S

9 S S S S S S S S S S S S S S S S S S S S S

10 S S S S S S S S S S S S S S S S S S S S S

(a) Uncapacitated Solution

s 2

0 1 2 3 4 5 6 7 8

s 1 0 W W W W W W W S S

1 W W W W W W S S S

2 W W W W W S S S S

3 W W W W S S S S S

4 W W S S S S S S S

5 W S S S S S S S S

6 S S S S S S S S S

7 S S S S S S S S S

8 S S S S S S S S S

(b) Capacitated Solution

Figure 4: The Optimal Policies for the Uncapacitated and Capacitated Prob-
lem Instances with ω = 7, K = 5, c1 = 1, c2 = 0.3, λ1 = 1, λ2 = 3, α = 0.01,
d1(1) = d2(1) = 0.7, d1(2) = d2(2) = 0.3

Figure 4 illustrates the optimal policies for a problem instance with a non-integer
c1
c2

ratio (i.e., r = 3 and q = 10). The optimal threshold for the uncapacitated version

of the problem is staircase non-increasing but not linear, e.g., the decrease in s2 until

the next increase in s1 starts with four units and continues with 3 units. The vehicle

capacity in this example (ω = 7) is much lower than the maximum consolidated load to

be shipped under the optimal policy of the uncapacitated version (16 units). Thus, the

optimal policies in Figures 4a and 4b visibly differ.

Figure 5 shows the average percentage increase (API) in the minimum value functions

of the capacitated problem instances (VC) compared to those of the uncapacitated ones

(VU ). We define the percentage increase in each problem instance as (VC−VU )
VU

× 100%.

Figure 5 shows that API is very low for the instances with ω = 20 because the vehi-

cle capacity is large compared to the total number of shipment orders on the optimal

load-dispatching threshold in most of the uncapacitated problem instances. This result

supports our earlier observation: When the capacity of the vehicle is large enough, the

optimal policies for the uncapacitated problems generally provide good approximations

to those of the capacitated problems. As expected, API increases as the holding cost

of regular orders (c2) decreases, and as the interarrival rate of regular orders (λ2) and

shipment cost (K) increase. This is reasonable because i) when c2 decreases and K

increases, holding inventory becomes cheaper compared to shipping; thus, the decision

maker would keep more orders in inventory between shipments. As a result, the likeli-

hood of exceeding the vehicle capacity increases. Increasing λ2 has a similar effect as it

leads to an increase in shipment order accumulation. In addition, stochastically larger

order-size distribution (i.e., greater skewness in our examples) is also associated with
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larger API.

3.4. Customized Solution Approach

Deriving the optimal solution by solving Equations (5) or (6) can be challenging for

real-life problems which may have thousands or millions of states. The conventional

policy iteration and value iteration algorithms may not work efficiently on such large

problem instances, due to requiring computationally expensive matrix inversion opera-

tions or having slow convergence. Therefore, we develop a customized solution approach

to derive the optimal policies for the uncapacitated problem instances when c1
c2

= q
r is

integer. The proposed algorithm efficiently evaluates possible linear-staircase thresholds

and determines the optimal one when ω =∞, based on two findings.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

c2
= 

0.
9

c2
= 

0.
7

c2
= 

0.
5

c2
= 

0.
3

c2
= 

0.
1

0
%

2
0

%

4
0

%

6
0%

8
0

%

1
0

0
%

K
=5

K
=1

5
K

=5
K

=1
5

ω
=2

0
ω
=7

A
ve

ra
ge

 %
 In

cr
ea

se
 in

 V
al

u
e 

Fu
n

ct
io

n

c 2
=

c 2
=

c 2
=

c 2
=

c 2
=

(a
)

A
P

I
w

.r
.t

.
c 2

λ2
=

 3

λ2
=

 6

λ2
= 

1
0

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

1
2

0
%

K
=

5
K

=1
5

K
=

5
K

=
1

5

ω
=2

0
ω

=7

A
ve

ra
ge

 %
 In

cr
ea

se
 in

 V
al

u
e 

Fu
n

ct
io

n

λ 2
=

λ 2
=

λ 2
=

(b
)

A
P

I
w

.r
.t

.
λ

2

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

K
=5

K
=1
5

K
=5

K
=1
5

ω
=2
0

ω
=7

A
ve

ra
ge

 %
 In

cr
ea

se
 in

 V
al

u
e 

Fu
n

ct
io

n

(c
)

A
P

I
w

.r
.t

O
rd

e
r-

S
iz

e
D

is
tr

ib
u

ti
o
n

s

K
= 

5

K
= 

1
5

0
%

1
0

%
2

0
%

3
0

%
4

0
%

5
0

%
6

0
%

7
0

%
8

0
%

9
0

%
1

0
0

%

7
2

0

ω
=

K
= 

5
9

9
%

6
5

%

K
= 

1
5

1
0

0
%

9
1

%

A
ve

ra
ge

 %
 U

ti
liz

at
io

n

(d
)

A
v
e
ra

g
e

P
e
rc

e
n
ta

g
e

C
a
p

a
c
it

y
U

ti
li

z
a
ti

o
n

F
ig

u
re

5
:

R
e
su

lt
s

o
f

H
y
p

o
th

e
ti

c
a
l

E
x
a
m

p
le

s

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

First, since each linear-staircase threshold can be specified by its border at s1 = 0,

the optimal threshold can be found by evaluating a finite number of such linear-staircase

thresholds. We prove this by deriving a lower (sLB2 ) and upper bound (sUB2 ) for s2(0) of

the optimal policy as described in Lemmas 3 and 4.

Lemma 3. When ω =∞, s2(0) ≤ sUB2 = dK(α+λ)
c2
e.

Lemma 4. When ω = ∞, d1(1) = d2(1) = 1, and A∗(e1) = A∗(e2) =
−→
0 , then s2(0) ≥

sLB2 = 1
c2

(
αK + c1λ1

α+λ + c2λ2
α+λ

)
.

Note that the condition A∗(e1) = A∗(e2) =
−→
0 in Lemma 4 generally holds unless

K is very small compared to either c1 or c2. This condition can be easily verified

by checking whether the linear-staircase threshold policies with a threshold border at

state (0, q + 1) outperform those with lower thresholds. In addition, our numerical

experiments illustrated that this lower bound applies to the problems with batch arrivals

(i.e., d1(1) < 1 and d2(1) < 1).

Actually, the lower bound condition in Lemma 4 can be extended to the batch-

arrival case by generalizing the assumptions accordingly. Let the expected size of a

Type i shipment order be Di. In case of batch arrivals and ω = ∞, the lower bound

sLB2 is equal to 1
c2

(
αK + c1λ1

α+λD1 + c2λ2
α+λD2

)
if A∗(Ne1) = A∗(Me2) =

−→
0 . Although it is

a stronger condition than A∗(e1) = A∗(e2) =
−→
0 , A∗(Ne1) = A∗(Me2) =

−→
0 may be a

reasonable assumption when N and M are small enough or/and K is large enough. This

assumption can be verified in a manner similar to that of the preceding paragraph, i.e.,

by checking whether the linear-staircase threshold policy with textcolorreda threshold

border at state (0,max(M + 1, qN + 1)) outperforms those with lower thresholds. The

proof of the generalized lower bound is given in Appendix C.

Secondly, the performance of each threshold policy can be efficiently evaluated us-

ing a different approach. Conventionally, each linear-staircase threshold policy can be

represented as a Markov chain. However, evaluating those Markov chains may again

require inverting a large matrix. As an alternative, we analytically express V π(s2(0, 0),

the expected total discounted cost of a particular linear-staircase threshold policy with

a threshold border at state (0, s2) for any integer s2 ∈ [sLB2 , sUB2 ] given the initial state

(0, 0), as a recursive equation with a single unknown variable. Then, the optimal pol-

icy can be identified by deriving s2(0) = argminsLB2 ≤s2≤sUB2
{V π(s2)(0, 0)}. Details of

the aforementioned recursive cost function are available in Appendix D. Section 4.2

explains how this customized solution approach is utilized within the overall solution

methodology.
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4. Computational Analysis

In order to assess its potential to improve industrial systems, we applied the pro-

posed model to the cases of two logistics firms operating in Turkey, using real data.

EKOL Logistics is a 3PL serving manufacturers on defined milk-run routes. We focus

on EKOL’s services for automotive manufacturers in the central and western Anatolia

region, and determine when a truck should be dispatched on a route to collect the goods

ordered until then, and carry them to consignees. UPS Turkey is a courier that delivers

parcels using their own trucks, as well as hired vehicles. Parcels dropped at various UPS

stores or collected from customers are transferred between hubs and then distributed

to different end points. For UPS Turkey, we focus on the parcel traffic between the

two main hubs, İstanbul and Ankara, and determine when the parcels accumulated in

İstanbul should be sent to Ankara.

4.1. Data and Parameter Estimation

The data from EKOL include detailed records of automotive part shipments on milk-

run routes during the month of April 2015. The data consist of 2,490 shipment records

excluding those for the returned empty containers. These records specify information

such as shipment order size, truck details, time of the shipment, and origin/destination.

Because 60% of these records concern shipments from a set of suppliers to two large

manufacturers, we concentrate on planning the routes involving those manufacturers.

Note that the remaining 40% of the records do not share any common shipment with

those for the two manufacturers.

For each manufacturer, we specify the suppliers on the same shipment route using a

community detection algorithm. We calculate the times that items from supplier i are

shipped in the same vehicle with those of supplier j (lij). Considering these suppliers

as vertices and lij as the edge weight, we establish a weighted graph structure for each

manufacturer as shown in Figures 6a and 6c. These graphs represent suppliers as nodes

in different colors, and connect two nodes if they are ever shipped together. Nodes that

are well-connected with each other are assigned the same color. The matrices next to

each graph indicate how strongly each node is connected with the others, i.e., the size of

the sign in each matrix cell is proportional to the number of times that items of supplier i

and j are shipped together. Figures 6a and 6c illustrate that for each manufacturer, there

are at least three supplier groups whose items are regularly shipped together. However,

some supplier groups are well-connected with other groups. Therefore, we employ a

community detection algorithm, i.e., the Fast Greedy approach of Clauset et al. (2004)

using R version 3.2.4, to divide suppliers of each manufacturer into groups/communities
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that maximize the modularity of the weighted graph structure. This way, we obtain

supplier groups that are well-connected within themselves, and sparsely connected with

the other supplier groups.

Figures 6b and 6d show the respective supplier groups for Manufacturer 1 and 2,

as derived by the algorithm. For Manufacturer 1, the algorithm finds two sparsely

connected supplier groups. Therefore, we assign two milk-run routes for Manufacturer

1, namely 1A and 1B. For Manufacturer 2, the algorithm identifies three major groups:

Group 3 (green nodes in Figure 6c) has shipments in common with the other two, while

items from Groups 1 and 2 are not shipped together. We duplicate the suppliers in

Group 3 and distribute the shipment records between them, depending on the group

with which they are shipped (1 or 2). This way, we identify two distinct milk-run routes

for Manufacturer 2 as well, namely 2A and 2B. The reordered matrices in Figures 6b

and 6d illustrate that the suppliers in each new supplier group (1A, 1B, 2A, and 2B)

rarely have items that are shipped together with those of other supplier groups.
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Our data on when the parts from the suppliers were ready for pickup are not suf-

ficiently detailed for statistical testing to derive the interarrival times. However, the

superposition of numerous independent arrivals from many independent suppliers can

be approximated as a Poisson process by the central limit theorem. We thus assume

exponential interarrival times. For the size distribution of shipment orders, we use a

discretization approach similar to that of Higginson and Bookbinder (1995). That is, we

derive empirical distributions for d1(n) and d2(m) by categorizing the data on shipment

order sizes into discrete groups using a unit load size of 4.5 m3, where a great proportion

of the actual loads are larger than this value.

The majority of shipments are carried out in trucks of volume 90 m3; therefore, we

take ω=20 (90m3/4.5m3) for the EKOL case. We are aware that this approach neglects

other dimensions of shipment orders; however, applying the truck capacity constraint

based on a total load volume is reasonable given that EKOL’s average truck utilization is

less than 65%. Then, depending on when manufacturers need them, orders are defined as

EARLY, OK, or LATE. We treat LATE as expedited and the other two as regular items.

We estimate the holding cost pairs (c1, c2) based on average truck capacity utilization

(ATCU). For this purpose, we first define ρ = c1
c2

; and set ρ = 3 and ρ = 6 as high and

low holding cost ratios, respectively. Then, we performed a search over (c1, c2) on the

capacitated model, and found the values for which the expected vehicle utilization of

the optimal policy derived from the capacitated model (ω=20) is equal to the ATCU

calculated from EKOL’s data. We call the resulting (c1, c2) values as the base case

holding costs. We derive the K values based on truck rental costs used in actual practice.

Normalized on K, the average c2 values for all routes are 0.0675K and 0.0558K for ρ = 3

and ρ = 6, respectively. We also consider 150%, 75%, 50% and 25% of the base case

(c1, c2) values to measure sensitivity of the results to the holding costs.

The data from UPS Turkey include the records of 28,577 parcels carried between

the main hubs of İstanbul and Ankara in December of 2015. The records belong to 128

UPS stores and comprise detailed parcel information including each parcel type, weight,

dimensions, price, receipt/arrival and delivery times, delivery location, and delivery

status (late, on-time) as well as truck information (volume capacity, cost of dispatch,

vehicle license number). The data were cleansed by excluding the repeated records and

records on returns. In addition, the records from the same customer at a specific store

within a small time interval (less than 5 minutes) were combined into a batch order

arrival. The remaining data consist of 14,284 parcel records. The interarrival times are

calculated and fit to an exponential distribution. The goodness of fit tests for exponential

interarrival times are conducted using Minitab V.15.1 on the data from seven stores that

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

receive more than 50% of the parcels. The associated p-values range between 9.4% and

98.1%, implying that it is reasonable to assume exponential interarrival times. The

proportion of expedited and regular shipment orders are calculated from parcel-type

information. We included the parcels with tight delivery time promise (e.g. under the

risk of being late) in the expedited order category.

UPS generally uses two types of trucks whose volumes are 48 and 100 m3. All

shipments performed by larger trucks had a total load volume of less than 48 m3. In

fact, the ATCU is calculated as 45.21%, even assuming that all shipments are done with

the smaller truck. Assuming a unit-load size of 0.1m3, we applied the proposed model to

the case of UPS Turkey with a truck capacity ω=480 (48m3/0.1m3). This unit-load size

limits the possible shipment-order sizes to three for each shipment type, and enables us

to solve this problem. We set c1
c2

= 5 because UPS Turkey charges five times as much for

carrying expedited orders compared to regular orders. Then, we derive the (c1, c2) pairs

for which the ATCU calculated from the data of UPS Turkey approximately matches

the expected vehicle utilization achieved when the optimal quantity-based policy for the

uncapacitated case is applied.

4.2. Solution Methodology

We solve the shipment consolidation and capacity rationing problems for the cases of

EKOL Logistics and UPS Turkey employing the solution procedure depicted in Figure

7. This procedure first uses the customized solution approach described in Section 3.4

to derive good initial solutions, and then apply a value iteration algorithm to derive the

optimal or good solutions for the capacitated problem instances. The value iteration al-

gorithm is described in the following pseudo-code. We denote the value function derived

at the kth iteration of the algorithm based on Equation (7) as Vk(S), where Vk is the

vector form of the value function.

Algorithm 1. Pseudo-code for Value-Iteration Algorithm

1: Set V0, ε, β

2: while ‖Vk − Vk−1‖ > ε (1−β)
(2β) do

3: function ValueIteration(Vk)

4: Solve Vk . using Equation (7)

5: end function

6: end while

7: return {V, π∗}
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Vk(S) = min
{ 1

α+ λ
CStr +

N∑

n=1

d1(n)λ1

α+ λ
Vk−1(S + ne1) +

M∑

m=1

d2(m)λ2

α+ λ
Vk−1(S +me2),

K +

N∑

n=1

d1(n)λ1

α+ λ
Vk−1(ne1) +

M∑

m=1

d2(m)λ2

α+ λ
Vk−1(me2)

}
(7)

Phase 1 of the solution procedure in Figure 7 employs the customized solution ap-

proach described in Section 3.4 to find the optimal solution for the uncapacitated version

of the problems. That is, this procedure evaluates all linear-staircase threshold policies

specified by possible s2(0) values in the range of [sLB2 , sUB2 ] and selects the best one.

The customized solution approach is developed for integer c1
c2

ratio. Therefore, if c1
c2

is

not integer, it is rounded and the customized approach is applied. Then starting from

the solution of the uncapacitated problem with rounded c1
c2

, a value iteration algorithm

is run to find the actual optimal solution of the uncapacitated problem.

Phase 2 of the solution procedure feeds the policy derived in Phase 1 to a value

iteration algorithm that considers the vehicle capacity. It is possible that the optimal

policy will no longer be linear-staircase, but a staircase one after applying the capacity

restriction, as explained in Figure 3. Having a good initial solution, the value iteration

algorithm converges to an optimal solution much faster. This approach is feasible up to

a certain problem size. If the problem size is very large (e.g., the case of UPS Turkey),

we apply the value iteration algorithm by enforcing linear-staircase threshold policies.

Because linear-staircase policies may not be optimal when ω <∞ (see Figure 3c for

an example), we check whether solution of the value iteration algorithm can be improved

via a greedy neighbourhood search. Starting from the policy found by the value iteration

step and i = 0, the neighborhood search myopically checks whether reducing/increasing

s2(i) improves the performance of the current policy or not. When the improvement stops

for i, the algorithm continues by increasing i by one unit. The algorithm terminates when

s2(i) = 0 and increasing s2(i) by one unit does not improve the system performance.

The optimality of the final solution is verified via a policy-improvement step (as done in

a conventional policy iteration algorithm). Finally, the quantity-based (optimal) policies

derived by this procedure are compared via simulation with the time policies practiced

by EKOL Logistics and UPS Turkey. These time policies are mainly periodic policies,

whose schedules are derived using the shipment records in the data from EKOL Logistics

and UPS Turkey.
The aforementioned solution approach is coded in MATLAB and run using a PC

with Intel Pentium 4 Processor and 4GB RAM. The time policies practiced by EKOL
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Figure 7: Solution Methodology

Logistics and UPS Turkey are tested in ARENA V.13.5 with 50 replications. Each

replication is run for one year, with a warm-up period of 2 months.

4.3. Numerical Results

In EKOL’s case, we solved 40 problem instances in total (4 routes x 2 ρ levels x 5

holding-cost scales). Figure 8 illustrates the optimal shipment policies for one of the

EKOL problem instances (milk-run route 2B with α = 0.01, c2/K=0.0167, and base-

case holding cost) under both the vehicle capacity scenarios. Note that, while the total

number of shipment orders in the optimal load-dispatching threshold is less than or equal

to the vehicle capacity (20 units), the optimal policy for the capacitated case has a lower

threshold, i.e., s2(0) = 13 in Figure 8b. This is because the sizes of shipment orders

vary significantly in EKOL’s case. If the optimal policy in Figure 8a were employed

when ω = 20, the consolidated load may exceed the vehicle capacity at the next order

arrival, and incur additional holding cost until the following shipment. The lower optimal

threshold in Figure 8b aims to eliminate such possibilities to an extent. For instance, for

the un-capacitated problem, the optimal decision is to wait at state (1,15) as indicated

in Figure 8a. If the next order is type 2 with a size of 7, the system state moves to (1,22),

whose consolidated load exceeds the capacity of a truck (20 units). However, the lower

optimal shipment threshold for the capacitated problem shown in Figure 8b dispatches

the consolidated load when the system state reaches state (1,15), and prevents such a

possibility.

Figure 9 shows the mean of the expected shipment, holding and total costs associ-

ated with the optimal quantity-based policies and the time policies practiced by EKOL

Logistics for all routes and ρ values. The mean is taken over the holding-cost scenarios.

On average, the optimal policies reduce the expected total cost by 48%. The percent-

age reduction varies between 32% and 62%. Although the optimal policies reduce both

shipment and holding costs in most cases, the reduction in holding cost is more visible
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Figure 8: Optimal Solutions for EKOL’s Problem

in Figure 9. We also observe that the expected times between consecutive dispatches for

the time policies and for the optimal quantity-based policies are similar. However, the

variance of the time between consecutive dispatches is greater in the latter group, e.g.,

the average coefficient of variation (CV) for time between consecutive dispatches is 0.74

for the optimal quantity-based policies.
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Figure 9: Performances of the Optimal Quantity-Based Policies and Time
Policies for EKOL’s Problem Instances

For the case of UPS Turkey, we set the unit load as 0.1 m3; therefore, we have the

truck size ω = 480 units. After deriving the optimal policies for this unit-load size, we

evaluated their performance using the ARENA simulation model for a much smaller unit

load (0.005 m3). The smaller unit-load size allows analysis of the optimal policy in a

more granular and realistic setting with 100 possible order sizes and a maximum volume

of 9,600 units for the load dispatched. Naturally, the optimal policy for a unit load of

0.1 m3 can be applied to a more granular setting in the simulation, starting from differ-

ent shipment threshold border (i.e., (0,s2(0)). Therefore, we perform a neighbourhood
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search via simulation to derive the best s2(0) option for the more granular setting. We

compare this implementation of the optimal quantity-based policies with two time-based

policies: a time policy and a modified time policy. For the time policy, the interarrival

time between two consecutive dispatches is equal to the mean time between dispatches

reported in the UPS data (i.e., 4.38 hours). For the modified time policy, that interval is

equal to the mean time between consecutive dispatches under the optimal quantity-based

policy (3.966 hours).

Table 1 provides the comparison of these three policies. The quantity-based policy

outperforms the two time-based policies by reducing the total cost by up to 3.2%. In

this case, the quantity-based policy indicates slightly more frequent shipments than the

time policy. However, the increase in transportation cost is compensated by a reduction

in holding cost. In addition, the optimal quantity policies perform slightly better than

the time policies in terms of proportion of timely-shipped orders and average lateness

among the late orders. This implies that the proposed optimal quantity policies may

reduce costs without additional violation of promised due-dates compared to the current

practice. These results provide two important insights. First, compared to EKOL’s

case, the improvements achieved by the quantity-based policy from the proposed model

is limited in the case of UPS Turkey. This is mainly because the shipment order sizes

for UPS Turkey are very small compared to the vehicle capacity; therefore, the variation

of the time until the next shipment under the quantity-based policy is limited compared

to that of EKOL. Note that CV of the time between consecutive dispatches for UPS

Turkey is 0.108, much smaller than EKOL’s value of 0.74. Second, the performance of

the modified time policy is better than the time policy. This implies that a significant

portion of the benefits achieved by employing the optimal quantity-based policies may

also be obtained by adjusting the shipment frequency of the practiced time policies in

cases similar to those of UPS Turkey.

Holding cost is an indirect cost representing the negative effects of lateness in trans-

porting shipment orders, such as increased material handling/storage costs and reduced

customer satisfaction. Therefore, it may be desirable to derive alternative quantity poli-

cies reducing both holding and shipment costs in cases like that of UPS-Turkey. The

proposed MDP model can be used to identify such policies by systematically adjusting

the holding costs to find an alternative policy with a less aggressive shipment schedule.

A search protocol for this purpose is presented in Appendix E. Following this search

protocol, we found an alternative quantity policy with a s2(0) value that is 8.6% greater

than that of the original optimal solution. Compared to the time policy, this alternative

quantity policy is associated with i) a similar rate of timely-shipped orders, and ii) 2.75%
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Table 1: Cost Reductions in Lateness Measures and Costs Achieved by the
Quantity-Based Policies Compared to the Time and Modified-Time Policies
for UPS Turkey.

Quantity-Based Proportion of Average Shipment Holding Total
Policy over: Timely-Shipped Lateness of Cost Cost Cost

Orders Late Orders

Time Policy

Expedited Orders 2.2% -0.7% 6.26% -10.95% -3.20%
Regular Orders 0.9% -6.4%

Modified-Time Policy

Expedited Orders 0.1% 0.8% -3.82% -1.22% -2.53%
Regular Orders -0.3% 35.3%

Improvements are indicated with positive values in Column 1 and with negative values in the other

columns. The proportion of timely shipped orders is above 95% for both order types under the optimal

quantity policies.

and 2.18% less total and shipment costs, respectively.

5. Summary and Conclusions

The goal of shipment consolidation is to attain economies of scale, spreading the

fixed transportation cost over a greater number of orders. However, the total number of

orders in the consolidated load may not be as great as hoped. That is either because of

the limited vehicle capacity, or the degrading of customer service by the possibly-long

lead time before delivery for those customers whose orders were first to arrive.

In this paper, we have dealt with the latter difficulty by prioritizing the orders.

Our continuous-time MDP model considers two classes of orders, the first of which

receives greater consideration than the second in making up a load for dispatch. We thus

“ration” the capacity of the transportation vehicle, in allocating the volume of the truck

between the expedited (Type 1) and regular (Type 2) orders to minimize the expected

total discounted cost incurred over an infinite horizon. The cost structure includes

the fixed cost per vehicle dispatched, plus the holding costs, c1 > c2, whose values

reflect the priority of the Type 1 orders. To enable efficient solution of this problem,

we characterize the optimal policies, which are of control-limit type with linear-staircase

thresholds for the case of an uncapacitated vehicle, i.e., ω = ∞ (see Sec. 3.2, Theorem

3). These thresholds refer to how many unit-size orders of each type to consolidate

before dispatching a load. Note that this policy is thus considerably more complicated

than deciding to ship when the consolidated load reaches a particular size.
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We propose a solution approach (Figure 7) relying on the following two points: 1)

the expected discounted total cost of a given linear-staircase threshold policy can be

calculated efficiently when c1
c2

is integer, 2) there are a finite number of such thresholds

to search among to find the optimal one. The proposed solution method is employed

on the industrial applications for EKOL Logistics and UPS Turkey (Sec. 4.3), which

motivated this research.

Our numerical experiments illustrate that the shipment consolidation policies derived

for both EKOL and UPS Turkey reduce the total cost compared to the time policies

(shipments at fixed intervals) currently used by those firms. The results are more strik-

ing for EKOL because their median order size is a significant fraction of the vehicle

capacity. In such cases, dynamic control of the shipment decisions becomes very critical

in preventing unnecessary transportation and holding costs. For UPS Turkey, there was

still an improvement, although smaller than that of EKOL’s. This was because the order

sizes and their variance are much smaller for UPS Turkey. We also observe that UPS

Turkey can improve its cost performance by increasing its shipment frequency to match

that of the policy we derived, illustrating another benefit of our modeling approach.

We remark that, although the optimal linear-staircase thresholds can be derived for

the case of ω = ∞, they are useful for the capacitated vehicle case as well. The former

solution can be used to derive a good initial solution to the value function, when solving

the capacitated version via the methods of policy iteration or value iteration. Moreover,

there are situations where the optimal thresholds are the same because vehicle capacity is

large compared to the total number of shipment orders on the optimal load-dispatching

threshold of the uncapacitated version (see Figure 2).

Although we focus on the shipment consolidation and vehicle capacity rationing prob-

lem in this paper, the proposed model is applicable to other settings. For instance, our

model can be a piece of a larger logistics network model. The shipment loads dispatched

to manufacturers by EKOL may not involve end-items, but rather components or sub-

assemblies. The supply chain nodes that are further downstream may thus benefit from

the shipment consolidation decisions that are derived by our CTMDP model.

In addition, our model is applicable to other batch service problems which involve

a set-up and orders (jobs) with different urgency levels. Such problems may exist in

medical testing laboratories. For example, pathologists are known to batch-process

pathology specimens (e.g., biopsied lesions to be examined for malignancy), and the

samples from different patients may have different priorities (Volmar et al. 2013, Hartman

2015). Our model can be employed or extended to determine the optimal time to batch-

process such medical tests.
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Admittedly, our analysis considers only two classes of orders. This is reasonable in

the setting of Turkey and other cases where the relevant distances are short. We leave

to future research the case of three or more order types. Furthermore, we employ just a

single size of truck in this paper; this was justified for our analysis since the load factor

(vehicle utilization) was low in the data from EKOL and UPS Turkey. In addition,

companies such as UPS are known to use a single type of truck. However, the possibility

of multiple types is worthy of additional study. A wider set of actions may then be

possible, e.g. WAIT ; SHIP in Type 1 vehicle; SHIP in Type 2 vehicle. The potential

dispatch quantities could then be more varied.

Moreover, we make particular simplifications in our model: 1) our state space only

keeps track of the accumulated expedited and regular orders in unit-order sizes; 2) we use

the holding costs to penalize lateness without hard due-date constraints. These simpli-

fications, commonly utilized in the existing literature, are necessary to keep the system

state compact for solving large problem instances and benefit from the structural results

of existing studies. It is reasonable to have these simplifications in our model, as they do

not prevent an accurate representation of our problems dynamics. The former simplifica-

tion may allow orders from the same customer to be divided and dispatched in separate

shipments. Nevertheless, L-Ps will avoid such order-splits when applying the optimal

policies, and may incur additional costs. However, our preliminary numerical analysis

with the simulation model described in Section 4 shows that the effect of this simplifi-

cation is limited. For instance, the optimal policy for EKOLs case of Manufacturer-1

Route-A with ρ = 3 and the base case costs is associated with a 44% total cost reduction

compared to current practice when order-split is allowed. By avoiding the order-split

during the implementation of the optimal policy, the L-P sacrifices only 4% of this cost

reduction.

Similarly, the latter simplification ignores the promised shipment due dates; however,

the holding costs may effectively limit the number of late deliveries, e.g., more than 95%

of orders are delivered on-time under the optimal policy in the case of UPS Turkey. We

have also measured the combined effect of relaxing both the former and latter simplifica-

tions on the performance of the optimal quantity policies in a large numerical experiment

(See Appendix F). We have observed that optimal quantity policies derived by the MDP

model can improve shipment consolidation practices in terms of cost for various problem

settings, even if the assumptions of not explicitly considering due dates and of allowing

splitable shipment orders are relaxed simultaneously. However, occasionally, the optimal

quantity policies derived by the MDP model may not achieve the desired proportion of

timely-shipped orders. In those instances, an alternative quantity policy with a better
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proportion of timely-shipped orders can be derived by systematically increasing holding

costs in the MDP model, and forcing the proposed approach to find a more preferable

policy (by sacrificing a portion of the achievable total-cost reduction). Alternatively,

these simplifications can be avoided by assuming periodic shipment dispatches whose

compositions are determined based on 0-1 Knapsack problems given the exact sizes of

accumulated orders. Our additional numerical experiments illustrated that such an ap-

proach may work well for particular applications when vehicle-size-to-order-size ratio

is small, e.g., the case of UPS Turkey. However, in several other cases like EKOL’s,

the optimal quantity-based policies reduce the total cost significantly compared to such

alternative periodic policies.
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NOTATION

λ1, λ2: Poisson arrival rate for expedited (Type 1) and regular (Type 2) orders.

λ = λ1 + λ2: Cumulative arrival rate.

d1(n)(d2(m)): Probability that the size of an arriving expedited (regular) order is n (m)

units, where n ∈ {1, 2, ..., N} (m ∈ {1, 2, ...,M}).
Di: Expected size of a Type i shipment order.

K: Fixed cost to dispatch a vehicle.

ω: Vehicle capacity.

ci: Holding cost, per unit order per unit time, for Type i order.

C = (c1, c2): Vector of holding costs.

p: Decision epoch specified by the number of shipment order arrivals so far.

Tp: The rendom variable representing the time of pth order arrival.

ε: A negligibly small value. It refers to allowable optimality gap in Algorithm 1.

α: Continuous discount rate. β = λ
α+λ : Discount rate per decision epoch.

S = (s1, s2): System state, where si denotes the number of Type i orders in the system.

S: Set of states.
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St, At: System state and action at time t.

A(S) = {a1, a2}: Action taken in state S, i.e., shipping ai units of Type i orders.

A(S): Set of feasible actions in state S.

I[A]: Indicator function which is equal to 1 if a1 + a2 > 0, 0 otherwise.
−→
0 = (0, 0): Vector of zeros. e1 = (1, 0), e2 = (0, 1): Elementary unit vectors.

p(S
′ |S,A): Transition probability of moving from state S = (s1, s2) to state S

′
= (s

′
1, s

′
2)

under action A = (a1, a2) (just after an order arrival).

A(S) = (a1, a2) = (min{s1, ω},min{ω − a1, s2}): The action that prioritizes the expe-

dited orders in utilizing vehicle capacity.

A∗(S): Optimal action taken in state S.

C(S,A): One-epoch cost function (immediate cost between two consecutive order ar-

rivals), when state is S = (s1, s2) and action is A = (a1, a2).

π: A stationary policy. π∗: The optimal stationary policy.

V (S,A): Expected total discounted cost, given that action A is chosen when the initial

state is S.

V (S): Minimum total expected discounted cost, given that initial state is S.

VC (VU ): Optimal value function of the capacitated (uncapacitated) problem.

s2(0): s2 component of the optimal shipment threshold when s1 = 0.

sLB2 (sUB2 ): A lower (upper) bound for s2(0).

ρ = c1
c2

: Cost ratio.

Vk(S): Value function derived in the kth iteration of the value-iteration algorithm.

Vk: Matrix of all value functions derived in the kth iteration of the value-iteration algo-

rithm.
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Ülkü, M. A., 2012. Dare to care: Shipment consolidation reduces not only costs, but

also environmental damage. International Journal of Production Economics 139 (2),

438–446.
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Appendix A. Optimality Equation

Let π ∈ Π denote a stationary policy for the shipment consolidation and vehicle
capacity rationing problem, where Π denotes the set of all feasible stationary policies.
Under π, an identical action is taken for the same state in any decision epoch p, i.e.,
AπTp(S) = Aπ(S) = π(S) ∀ p ∈ {0, 1, 2, ...} and S ∈ S. We define V π(S) as the value
function under policy π, i.e., the expected discounted total cost when the initial state is
S. This value function can be expressed as in Equation (A.1) for a given realization of
the initial state at time T0 = 0, i.e., S0. In the equations below, a) realizations of state
variables are denoted by STp , and b) the expectations are taken in terms of random
variables STp and Tp for p ≥ 1.

V π(S0) = E
[ ∞∑

p=0

e−αTpC(STp , A
π(STp))

∣∣∣S0

]
(A.1)

= E
[
C(S0, A

π(S0)) +
∞∑

p=1

e−αTpC(STp , A
π(STp))

∣∣∣S0

]

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr + E

[ ∞∑

p=1

e−αTpC(STp , A
π(STp))

∣∣∣S0

]

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr

+E

[
e−αT1E

[ ∞∑

p=1

e−α(Tp−T1)C(STp , A
π(STp)

∣∣∣S0

]]
(A.2)

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr

+E

[
e−αT1

∑

ST1
∈S
p(ST1 |S0, A

π(S0))E
[ ∞∑

p=1

e−α(Tp−T1)C(STp , A
π(STp))

∣∣∣ST1

]
]

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr + E

[
e−αT1

∑

ST1
∈S
p(ST1 |S0, A

π(S0))V π(ST1)
]

(A.3)

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr + E[e−αT1 ]

∑

ST1
∈S
p(ST1 |S0, A

π(S0))V π(ST1)

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr +

[ ∫ ∞

0

e−αtλe−λtdt
] ∑

ST1
∈S
p(ST1 |S0, A

π(S0))V π(ST1)

= I[Aπ(S0)]K +
1

α+ λ
C(S0 −Aπ(S0))tr +

λ

α+ λ

∑

ST1
∈S
p(ST1 |S0, A

π(S0))V π(ST1). (A.4)

Equation (A.1) represents the value function under policy π as the expected dis-

counted sum of all one-step costs. Equation (A.2) is obtained by separating the expected

cost of the first epoch from the summation in Equation (A.1). Next, the expectation

in Equation (A.2) is conditioned first in terms of T1 (arrival time of the first shipment

order) and then in terms of ST1 . Afterwards, Equation (A.3) is obtained by replac-

ing E
(∑∞

p=1 e
−α(Tp−T1)C(STp , A

π(STp)|ST1

)
with V π(ST1). This replacement is valid

i



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

because (i) the series Tp − T1, p ≥ 1 and Tp, p ≥ 0 have the same Erlang distribution

for the corresponding terms, (ii) the actions and rewards are stationary. Finally, the

expectation of the discount component (e−αT1) in Equation (A.3) is taken to calculate

the effective discount factor. We simplify Equation (A.4) by replacing S0, Aπ(S0) and

ST1 with S, Aπ(S) and S′, respectively, and defining β = λ/(α+ λ):

V π(S) = I[Aπ(S)]K +
1

α+ λ
C(S −Aπ(S))tr + β

∑

S′∈S
p(S′|S,Aπ(S))V π(S′). (A.5)

Equation (A.5) is equivalent to the value function of an infinite-horizon discrete-time

total discounted-reward MDP under a stationary policy as described in Equation 6.1.4

of Puterman (1994). Then, the proposed continuous-time model in Equation (3) of the

main text can be represented as V (S) = minπ∈ΠV
π(S) = V π∗(S), where π∗ is the

optimal policy. Therefore, the optimal value function V (S) and the optimal policy π∗

can be derived by solving the following recursive Bellman optimality equation for the

equivalent infinite-horizon discrete-time discounted Markov decision process (DTMDP).

V (S) = minA∈A(S)

{
I[A]K +

1

α+ λ
C(S −A)tr + β

∑

S′∈S
p(S′|S,A)V (S′)

}

Appendix B. Proofs

Proof of Lemma 1

1) When k2 ≤ 0, A = (a1, a2) has more Type 1 and Type 2 orders than A′. Let

A − A′ = ∆ = (δ1, δ2) = δ1e1 + δ2e2 s.t., δi ≥ 0. We define S′ = S + ∆. Since S′ ≥ S,

both A and A′ are feasible actions for S′. Then,

V (S,A) = K +
1

α+ λ
[c1(s1 − a1) + c2(s2 − a2)] + β[

N∑

n=1

d1(n)
λ1

λ
V (s1 − a1 + n, s2 − a2)

+

M∑

m=1

d2(m)
λ2

λ
V (s1 − a1, s2 − a2 +m)]
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≤ K +
1

α+ λ
[c1([s1 + δ1]− a1) + c2([s2 + δ2]− a2)]

+β[
N∑

n=1

d1(n)
λ1

λ
V ([s1 + δ1]− a1 + n, [s2 + δ2]− a2)

+
M∑

m=1

d2(m)
λ2

λ
V ([s1 + δ1]− a1, [s2 + δ2]− a2 +m)]

= V (S′, A)

= K +
1

α+ λ
[c1(s1 − [a1 − δ1]) + c2(s2 − [a2 − δ2])]

+β[
N∑

n=1

d1(n)
λ1

λ
V (s1 − [a1 − δ1] + n, s2 − [a2 − δ2])

+
M∑

m=1

d2(m)
λ2

λ
V (s1 − [a1 − δ1], s2 − [a2 − δ2] +m)

= V (S,A′)

where the first inequality follows by Theorem 1.

2) When k2 > 0,

V (S,A) = K +
1

α+ λ
[c1(s1 − a1) + c2(s2 − a2)] + β[

N∑

n=1

d1(n)
λ1

λ
V (s1 − a1 + n, s2 − a2)

+

M∑

m=1

d2(m)
λ2

λ
V (s1 − a1, s2 − a2 +m)]

≤ K +
1

α+ λ
[c1(s1 − a1 + 1) + c2(s2 − a2 − 1)]

+β[
N∑

n=1

d1(n)
λ1

λ
V (s1 − a1 + n, s2 − a2) +

M∑

m=1

d2(m)
λ2

λ
V (s1 − a1, s2 − a2 +m)]
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≤ K +
1

α+ λ
[c1(s1 − [a1 − 1]) + c2(s2 − [a2 + 1])]

+β[
N∑

n=1

d1(n)
λ1

λ
V ([s1 + 1]− a1 + n, [s2 − 1]− a2)

+
M∑

m=1

d2(m)
λ2

λ
V ([s1 + 1]− a1, [s2 − 1]− a2 +m)]

= K +
1

α+ λ
[c1(s1 − [a1 − 1]) + c2(s2 − [a2 + 1])]

+β[

N∑

n=1

d1(n)
λ1

λ
V (s1 − [a1 − 1] + n, s2 − [a2 + 1])

+
M∑

m=1

d2(m)
λ2

λ
V (s1 − [a1 − 1], s2 − [a2 + 1] +m)]

= V (S,A− e1 + e2)

where the first inequality follows from c1 > c2, and the second inequality is implied by

Theorem 1. By induction, V (S,A) ≤ V (S,A − k2e1 + k2e2) since 0 < k2 ≤ k1. By

definition and Theorem 1, V (S,A−k2e1 +k2e2) ≤ V (S+ (k1−k2)e1, A−k2e1 +k2e2) =

V (S,A − k2e1 + k2e2 − (k1 − k2)e1) = V (S,A − k1e1 + k2e2) since k1 ≥ k2. Therefore

V (S,A) ≤ V (S,A− k1e1 + k2e2). �

Proof of Theorem 2

Theorem 1 shows the monotonicity of V (S) in S for any value of ω; therefore, the

result is valid for ω = ∞ as well. Similarly, Proposition 1 also applies to the case of

ω =∞. Thus, when ω =∞, A∗(S) ∈ [
−→
0 , A(S)], where A(S) = S = (s1, s2) ∀S ∈ S.

If A∗(S) = A(S) for any state S = (s1, s2) ∈ S, the optimal decision is to SHIP (i.e.,

A∗(S) = S = (s1, s2)). Thus,

V (S,
−→
0 ) ≥ V (S,A(S)) = V (S).

In general, the optimal decision in state S′ = S + ie1 + je2 for non-negative i and

j is either
−→
0 or A(S′) = S′ due to Proposition 1. However, the following holds if
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A∗(S) = A(S).

V (S′,
−→
0 ) ≥ V (S′)

≥ V (S) = V (S,A(S))

= K +
1

α+ λ
[c1(s1 − s1) + c2(s2 − s2)] +

N∑

n=1

d1(n)λ1

α+ λ
V (s1 − s1 + n, s2 − s2)

+
M∑

m=1

d2(m)λ2

α+ λ
V (s1 − s1, s2 − s2 +m)

= K +

N∑

n=1

d1(n)λ1

α+ λ
V (ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (me2)

= K +
1

α+ λ
[c1(s1 + i− (s1 + i)) + c2(s2 + j − (s2 + j))]

+
N∑

n=1

d1(n)λ1

α+ λ
V (s1 + i− (s1 + i) + n, s2 + j − (s2 + j))

+
M∑

m=1

d2(m)λ2

α+ λ
V (s1 + i− (s1 + i), s2 + j − (s2 + j) +m)

= V (S′, A(S′))

The first inequality follows by definition, i.e., V (S′, A) ≥ V (S′) for any A ∈ A(S).

The second inequality holds due to Theorem 1: V (S) is partially nondecreasing in S;

thus, V (S) ≤ V (S′). Since V (S′,
−→
0 ) ≥ V (S′, A(S′), the optimal decision in state S′ is

A(S′)( i.e., SHIP) if A∗(S) = A(S). �

Proof of Lemma 2

It is sufficient to prove Lemma 2 for the finite-horizon version of our model since,

according to Bertsekas (2001), the result for the finite-horizon model applies to the the

infinite-horizon case. Proof is by induction. Consider the finite-horizon version of our

model, letting N be the final decision epoch and VN(S) = 0, ∀S ∈ S.

We have VN(S) = VN(S + re1 − qe2), since each VN(S) is zero for all states.
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Step N− 1

VN−1(S) = min{K, 1

α+ λ
(c1s1 + c2s2)}, and

VN−1(S + re1 − qe2) = min{K, 1

α+ λ
(c1[s1 + r] + c2[s2 − q])}

= min{K, 1

α+ λ
(c1s1 + c2s2 + rc1 −

c1

q
q)}

= min{K, 1

α+ λ
(c1s1 + c2s2)} = VN−1(S), ∀S ∈ S

These equations show that for step N− 1, VN−1(S) = VN−1(S + re1 − qe2).

Step n

Given Vp(S) = Vp(S + re1 − qe2) for all p ∈ {n + 1, n + 2, ...,N − 1,N} and

S ∈ S, we want to show that Vn(S) = Vn(S + re1 − qe2) ∀S ∈ S. Let K = K +∑
n′

d1(n′)λ1

α+λ Vn+1(n′e1) +
∑

m′
d2(m′)λ2

α+λ Vn+1(m′e2). Then:

Vn(S) = min{K, 1

α+ λ
(c1s1 + c2s2) +

N∑

n′=1

d1(n′)λ1

α+ λ
Vn+1(S + n′e1)

+

M∑

m′=1

d2(m′)λ2

α+ λ
Vn+1(S +m′e2)}

= min{K, 1

α+ λ
(c1s1 + c2s2 + [rc1 − qc2]) +

N∑

n′=1

d1(n′)λ1

α+ λ
Vn+1(S + n′e1)

+
M∑

m′=1

d2(m′)λ2

α+ λ
Vn+1(S +m′e2)}

= min{K, 1

α+ λ
(c1[s1 + r] + c2[s2 − q]) (B.1)

+
N∑

n′=1

d1(n′)λ1

α+ λ
Vn+1(S + n′e1 + (re1 − qe2))

+
M∑

m′=1

d2(m′)λ2

α+ λ
Vn+1(S +m′e2 + (re1 − qe2))}

= min{K, 1

α+ λ
(c1[s1 + r] + c2[s2 − q]) +

N∑

n′=1

d1(n′)λ1

α+ λ
Vn+1((S + re1 − qe2) + n′e1)

+

M∑

m′=1

d2(m′)λ2

α+ λ
Vn+1((S + re1 − qe2) +m′e2)} = Vn(S + re1 − qe2). �
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Equation (B.1) results from the induction condition, i.e., Vn+1(S +ne1) = Vn+1(S +

ne1 + (re1− qe2)) and Vn+1(S +me2) = Vn+1(S +me2 + (re1− qe2)). This proof shows

that Vp(S) = Vp(S + re1 − qe2) ∀p ∈ {1, 2, ..., N − 1, N}; therefore, Lemma 2 holds as

well in the proposed infinite-horizon model based on a result in Bertsekas (2001) (page 8).

Proof of Theorem 3 We need to show that, let S = (s1, s2(s1)), where s1 ∈
{0, 1, ...} and s2(s1) = min{s2 : A∗(s1, s2) = A(s1, s2)}. If s2(s1) > 0, then a) A∗(s1 +

1, s2) = A(s1 + 1, s2), ∀s2 s.t. s2 ≥ s2(s1) − q and b) A∗(s1 + 1, s2) =
−→
0 , ∀s2 s.t. 0 ≤

s2 < s2(s1)− q.
Part a) Since A∗(S) = A(S) for S = (s1, s2(s1)), V (S,

−→
0 ) ≥ V (S,A(S)). Thus,

V (S + e1 − qe2,
−→
0 ) =

c1(s1 + 1) + c2(s2(s1)− q)
α+ λ

+
N∑

n=1

d1(n)λ1

α+ λ
V ((S + e1 − qe2) + ne1)

+
M∑

m=1

d2(m)λ2

α+ λ
V ((S + e1 − qe2) +me2)

=
c1s1 + c2s2(s1)

α+ λ
+

N∑

n=1

d1(n)λ1

α+ λ
V ((S + e1 − qe2) + ne1)

+
M∑

m=1

d2(m)λ2

α+ λ
V ((S + e1 − qe2) +me2)

=
c1s1 + c2s2(s1)

α+ λ
+

N∑

n=1

d1(n)λ1

α+ λ
V (S + ne1) (B.2)

+

M∑

m=1

d2(m)λ2

α+ λ
V (S +me2)

= V (S,
−→
0 )

≥ V (S,A(S))

= V (S + e1 − qe2, A(S + e1 − qe2))

where Equation (B.2) holds due to Lemma 2. This way, we show that A∗(S+e1−qe2) =

A(S+e1−qe2) since A∗(S) = A(S). This result also implies that A∗(S+e1+(k−q)e2) =

A(S + e1 + (k − q)e2) ∀k ∈ Z≥0 due to the existence of threshold-type optimal policies

(Theorem 2).

Part b) Since s2(s1) = min{s2 : A∗(S) = A(S)}, V (S−e2,
−→
0 ) ≤ V (S−e2, A(S−e2)).
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Then,

V (S + e1 − (q + 1)e2,
−→
0 ) =

c1(s1 + 1) + c2(s2(s1)− (q + 1))

α+ λ

+
N∑

n=1

d1(n)λ1

α+ λ
V ((S + e1 − (q + 1)e2) + ne1)

+
M∑

m=1

d2(m)λ2

α+ λ
V ((S + e1 − (q + 1)e2) +me2)

=
c1s1 + c2(s2(s1)− 1)

α+ λ
+

N∑

n=1

d1(n)λ1

α+ λ
V ((S − e2 + ne1) + e1 − qe2)

+

M∑

m=1

d2(m)λ2

α+ λ
V ((S − e2 + ne1) + e1 − qe2)

=
c1s1 + c2(s2(s1)− 1)

α+ λ
+

N∑

n=1

d1(n)λ1

α+ λ
V (S − e2 + ne1)

+
∑

m=1

d2(m)λ2

α+ λ
V (S − e2 +me2) (B.3)

= V (S − e2,
−→
0 )

≤ V (S − e2, A(S − e2))

= V ((S − e2) + e1 − qe2, A((S − e2) + e1 − qe2)).

Equation (B.3) holds due to Lemma 2: V ((S−e2 +ne1)+e1−qe2) = V (S−e2 +ne1)

and V ((S − e2 +me2) + e1 − qe2) = V (S − e2 +me2). This shows that A∗(S − e1) =
−→
0

implies V (S+e1−(q+1)e2,
−→
0 ) ≤ V ((S−e2)+e1−qe2, A((S−e2)+e1−qe2)). Therefore,

A∗((S − e1) + e1 − qe2) =
−→
0 , which guarantees that A∗(S + e1 − (q + k)e2) =

−→
0 ,

∀k, 0 ≤ k ≤ s2(s1)− q by Theorem 2. �
Proof of Lemma 3
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Let S be a feasible state with s1c1 + s2c2 ≥ K(α+ λ). Then:

V (S,
−→
0 ) =

c1s1 + c2s2

α+ λ
+

N∑

n=1

d1(n)λ1

α+ λ
V (S + ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (S +me2)

≥ K +
N∑

n=1

d1(n)λ1

α+ λ
V (S + ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (S +me2)

≥ K +
N∑

n=1

d1(n)λ1

α+ λ
V (ne1) +

M∑

m=1

d2(m)λ2

α+ λ
V (me2) (B.4)

= V (S,A(S))

where Equation (B.4) follows by Theorem 1. This implies that A∗(S) = A(S) for

any S = (0, s2), where s2 ≥ sUB2 , because c2s2 ≥ c2s
UB
2 = K(α + λ). Therefore,

s2(0) = min{s2 : A∗(0, s2) = A(0, s2)} has to be less than or equal to sUB2 . �

Proof of Lemma 4

When S is small enough (e.g. (0, 1), (1, 0)), K could be significantly larger than
c1s1+c2s2
α+λ , so that the optimal decision could be to WAIT. In such a case, c1s1+c2s2

α+λ +
λ1
α+λV (S+e1) + λ2

α+λV (S+e2) ≤ K+ λ1
α+λV (e1) + λ2

α+λV (e2) holds under the assumption

of d1(1) = d2(1) = 1. Then:

V (S) =
c1s1 + c2s2

α+ λ
+

λ1

α+ λ
V (S + e1) +

λ2

α+ λ
V (S + e2)

≥ c1s1 + c2s2

α+ λ
+

λ1

α+ λ
V (S + e2) +

λ2

α+ λ
V (S + e2) (B.5)

=
c1s1 + c2s2

α+ λ
+

λ

α+ λ
V (S + e2)

≥ c1s1 + c2s2

α+ λ
+

λ

α+ λ
V (S)⇒ (B.6)

V (S) ≥ c1s1 + c2s2

α+ λ
+

λ

α+ λ
V (S) (B.7)

Inequality (B.5) holds because V(S) is monotone non-decreasing w.r.t. shipment

order type (i.e., V (S + e1) ≥ V (S + e2) since S + e1 � S + e2 as indicated in Theorem

1). Inequality (B.6) follows from Theorem 1 (V (S + e2) ≥ V (S) as S + e2 > S).

By rearranging Inequality (B.7), we obtain that V (S) ≥ c1s1+c2s2
α when A∗(S) =

−→
0 .

Therefore, when A∗(e1) = A∗(e2) =
−→
0 , V (ei) ≥ ci

α for i ∈ {1, 2}.
Let (0, s2(0)) be at the border of the optimal linear-staircase threshold for shipment
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decisions, i.e., A∗(S) = A(S) and A∗(S − 1) =
−→
0 , for S = (0, s2(0)). Then:

V (0, s2(0)) = K +
λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2)

≤ c2s2(0)

α+ λ
+

λ1

α+ λ
V (S + e1) +

λ2

α+ λ
V (S + e2) (B.8)

=
c2s2(0)

α+ λ
+

λ

α+ λ

[
K +

λ1

α+ λ
)V (e1) +

λ2

α+ λ
V (e2)

]
⇒ (B.9)

K +
λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2) ≤ c2s2(0)

α+ λ
+

λ

α+ λ

[
K +

λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2)

]
⇒

0 ≤ c2s2(0)

α+ λ
− (1− λ

α+ λ
)
[
K +

λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2)

]
. (B.10)

Inequality (B.8) holds because the optimal action is to SHIP in state S (i.e., A∗(S) =

A(S)). Equation (B.9) follows from Theorem 2, which implies that A∗(S + ei) = A(S)

for i ∈ {1, 2} because S + ei > S and A∗(S) = A(S). Thus, V (S + e1) = V (S + e1) =

K+
(

λ1
α+λ

)
V (e1)+

(
λ2
α+λ

)
. We derive the upper bound from Inequality (B.10) as follows:

s2(0) ≥ α+ λ

c2

(
1− λ

α+ λ

)[
K +

λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2)

]

=
α

c2

[
K +

λ1

α+ λ
V (e1) +

λ2

α+ λ
V (e2)

]

≥ α

c2

[
K +

λ1

α+ λ

c1

α
+

λ2

α+ λ

c2

α

]

=
1

c2

[
αK +

c1λ1

α+ λ
+

c2λ2

α+ λ

]

Therefore 1
c2

[
αK + c1λ1

α+λ + c2λ2
α+λ

]
gives a lower bound on s2(0). �

Appendix C. Extending Lemma 5 for Batch Arrivals

Let (0, s2(0)) be at the border of the optimal linear-staircase threshold for ship-

ment decisions. When ω = ∞ and A∗(Ne1) = A∗(Me2) =
−→
0 , s2(0) ≥ sLB2 =

1
c2

[
αK + c1λ1

α+λ

∑N
n=1 nd1(n) + c2λ2

α+λ

∑M
m=1md2(m)

]
.

Proof: This proof follows the same logic as that of Lemma 4. Suppose that V (S) =

x
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V (S,
−→
0 ) for some state S. Then for those states, the following holds:

V (S) =
c1s1 + c2s2

α+ λ
+

λ1

α+ λ

N∑

n=1

d1(n)V (S + ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (S +me2)

≥ c1s1 + c2s2

α+ λ
+

λ1

α+ λ

N∑

n=1

d1(n)V (S) +
λ2

α+ λ

M∑

m=1

d2(m)V (S)

=
c1s1 + c2s2

α+ λ
+

λ

α+ λ
V (S)⇒

V (S) ≥ c1s1 + c2s2

α+ λ
+

λ

α+ λ
V (S)⇒

V (S) ≥ c1s1 + c2s2

α
(C.1)

SinceA∗(Ne1) = A∗(Me2) =
−→
0 , A∗(ne1) =

−→
0 andA∗(me2) =

−→
0 ∀n ∈ {1, . . . N},m ∈

{1, . . .M} due to Theorem 3. Therefore, V (ne1) ≥ nc1
α and V (me2) ≥ mc2

α ∀n ∈
{1, . . . N},m ∈ {1, . . .M}. In addition, A∗(s2(0)e2) = A(s2(0)e2) and A∗((s2(0) −
1)e2) =

−→
0 because (0, s2(0)) is at the border of the optimal shipment threshold . Then:

V (s2(0)e2) = V (s2(0)e2, A(s2(0)e2)) = K +
λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

≤ c2s2(0)

α+ λ
+

λ1

α+ λ

N∑

n=1

d1(n)V (s2(0)e2 + ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (s2(0)e2 +me2)

=
c2s2(0)

α+ λ
+

λ1

α+ λ

N∑

n=1

d1(n)

[
K +

λ1

α+ λ

N∑

n′=1

d1(n′)V (n′e1) +
λ2

α+ λ

M∑

m′=1

d2(m′)V (m′e2)

]

+
λ2

α+ λ

M∑

m=1

d2(n)

[
K +

λ1

α+ λ

N∑

n′=1

d1(n′)V (n′e1) +
λ2

α+ λ

M∑

m′=1

d2(m′)V (m′e2)

]
(C.2)

=
c2s2(0)

α+ λ
+

λ

α+ λ

[
K +

λ1

α+ λ

N∑

n′=1

d1(n′)V (n′e1) +
λ2

α+ λ

M∑

m′=1

d2(m′)V (m′e2)

]
⇒

K +
λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

≤ c2s2(0)

α+ λ
+
( λ

α+ λ

)[
K +

λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

]
⇒

0 ≤ c2s2(0)

α+ λ
−
(

1− λ

α+ λ

)[
K +

λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

]
⇒
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c2s2(0)

α+ λ
≥ α

α+ λ

[
K +

λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

]
⇒

s2(0) ≥ α

c2

[
K +

λ1

α+ λ

N∑

n=1

d1(n)V (ne1) +
λ2

α+ λ

M∑

m=1

d2(m)V (me2)

]

≥ α

c2

[
K +

λ1

α+ λ

N∑

n=1

d1(n)
nc1

α
+

λ2

α+ λ

M∑

m=1

d2(m)
mc2

α

]

=
1

c2

[
αK +

c1λ1

α+ λ

N∑

n=1

nd1(n) +
c2λ2

α+ λ

M∑

m=1

md2(m)
]

=
1

c2

[
αK +

c1λ1

α+ λ
D1 +

c2λ2

α+ λ
D2

]
�

Appendix D. Customized Solution Approach

The customized solution approach is proposed for the case of ω =∞, c1 = qc2, and

batch arrivals, considering the equivalent discrete-time infinite-horizon MDP formulation

in Equation (6). In this case, the optimal decisions are of control limit type, with

an optimal linear-staircase threshold separating the states (combinations of s1 and s2

quantities) for WAIT and SHIP decisions based on Theorem 3. This linear-staircase

threshold has a step length of q. Under the optimal linear-staircase threshold policy, the

states for WAIT decisions establish a triangle-like WAIT region as shown in Figure 2,

while the remaining states form a SHIP region. Therefore, when the system state enters

the SHIP region from the WAIT region after a series of state transitions, the optimal

policy makes a shipment (dispatches the consolidated load on a vehicle), which changes

the system state to (0, 0) until the next shipment order arrival.

Under any linear-staircase threshold policy, the system executes a cycle by starting

from state (0,0) and returning back to this state after a random duration, due to a

shipment caused by leaving the WAIT region. This cycle is repeated indefinitely; thus,

our model behaves like a renewal process under a linear-staircase threshold policy. Due

to this renewal-process-like behaviour, we can derive a formulation for V π(s2)(0, 0), the

expected total discounted cost under the linear-staircase threshold policy that starts at

state (0, s2) with step length q given that no orders await shipment initially. V π(s2)(0, 0)

depends on a) the expected cost of the cycle described above, and 2) the distribution of

the number of decision epochs within the cycle. The optimal linear-staircase threshold

policy can be determined by finding the s2 value in the range of [sLB2 , sUB2 ] that minimizes

V π(s2)(0, 0). The s2 value derived from this optimization is equal to s2(0).

Now let us derive a formulation for V π(s2)(0, 0) under the linear-staircase threshold

policy starting at state (0, s2). Note that all variables defined below are specific to this
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threshold policy. Although most of the components in the formulation below depends

on s2 choice, we omit it from the notation for simplicity. Therefore, one needs to define

all the components below anew, when he/she uses the V π(s2)(0, 0) formulation for each

s2 in the range of [sLB2 , sUB2 ].

We define F as the set of states in which a cycle may end under the considered

linear-staircase threshold policy. Any state (i, j) in the SHIP region may be an element

of F if (i − N, j) or (i, j −M) is in the WAIT region formed by the linear-staircase

threshold policy, where N = max(n : d1(n) > 0) and M = max(m : d2(m) > 0).

For instance, F = {(0, 17), (1, 16), (1, 15), (2, 14), (2, 13) . . . (8, 2), (8, 1), (9, 0)} for the

example illustrated in Figure 2. We aim to calculate the expected discounted cost of the

cycle for each state in set F.

Let us consider a cycle starting in state (0, 0) and ending in state (i, j) ∈ F. This

cycle must visit a state (i′, j′) in the WAIT region at the decision epoch before the

last one (in the cycle). The system may follow different state transition pathways to

reach state (i′, j′) from state (0, 0). Each of those pathways may result in a different

holding cost, depending on the arrival sequence and sizes of shipment orders, which

are tracked by Xn and Ym (the total number of Type 1 arrivals of order-size n and

Type 2 arrivals of order-size m until reaching state (i′, j′), respectively). We define

(X,Y ) as the vector of Xn and Ym variables for n ∈ {1, ...N} and m ∈ {1, ...M}, i.e.,

(X,Y ) =
(
(X1, X2, ...XN ), (Y1, Y2, ...YM )

)
for the destination state (i′, j′) ∈ F where

i′ =
∑N

n=1 nXn and j′ =
∑M

m=1mYm. Then, Ψ(i′, j′) =
∑N

n=1Xn+
∑M

m=1 Ym is the total

number of decision epochs until reaching state (i′, j′) for the group of state transition

pathways represented by vector (X,Y ). We also define  L(i′, j′) as the set of all feasible

(X,Y ) vectors for state (i′, j′).

The most critical step in calculating the total discounted cost of a particular linear-

staircase threshold policy is specifying the holding cost and the associated discount factor

for each decision epoch. For example, the last order arrival that triggers a shipment does

not incur any holding cost. If the shipment order that arrives before the last one is Type

1 with size n, then those n orders are held in the system for one epoch and incur a cost

of nc1
α+λβ

ΨX,Y . If the (ΨX,Y − 1)th order arrival is Type 2 with size m, then those m

orders are held in the system for two epochs incurring a cost of mc2
α+λ(βΨX,Y −1 + βΨX,Y )

until the end of the cycle. In short, the effective discount rate for the holding cost of the

(ΨX,Y − k)th order arrival will be βΨX,Y −k + . . .+ βΨX,Y .

The vector (X,Y ) ∈  L(i′, j′) represents
( ΨX,Y
X1,X2,...,XN ,Y1,Y2,...,YM

)
different state tran-

sition pathways starting from state (0, 0) and ending up in state (i′, j′). Among them,( ΨX,Y −1
X1−1,X2,...,XN ,Y1,Y2,...,YM

)
pathways have a shipment order arrival of size one at a partic-
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ular decision epoch. By dividing the latter number into the former one, the probability

of having an order of size one at the kth decision epoch in the cycle is calculated as

X1/ΨX,Y for k ∈ {1, 2, ...ΨX,Y }. Following the same logic, Xn/ΨX,Y and Ym/ΨX,Y are

the probabilities of observing an order arrival of size n and m at any given decision

epoch for vector (X,Y ) ∈  L(i′, j′). We denote the expected total discounted holding

cost incurred until reaching state (i′, j′) from state (0, 0) for a given (X,Y ) ∈  L(i′, j′) as

gβ(X,Y ). This can be derived as follows:

gβ(X,Y ) =
[ N∑

n=1

ΨX,Y∑

l=1

ΨX,Y∑

u=l

nXn
c1

α+ λ
βu +

M∑

m=1

ΨX,Y∑

l=1

ΨX,Y∑

u=l

mYm
c2

α+ λ
βu
]
/ΨX,Y

The probability that the system state follows the transition pathways represented by

vector (X,Y ) ∈  L(i′, j′) to reach state (i′, j′) is given by:

P (X,Y ) = ΠN
n=1

[(d1(n)λ1

λ

)Xn
]
×ΠM

m=1

[(d2(m)λ2

λ

)Ym
]
×
(

ΨX,Y

X1, X2, ..., XN , Y1, Y2, ..., YM

)

Now, we are ready to calculate V π(s2)(0, 0) by simultaneously specifying at which
state (i, j) the cycle ends, what is the previous state in the wait region, and which group
of state transitions (represented by (X,Y)) are followed. In the formulation of V π(s2)(0, 0)
given below, IW (i′, j′) is an indicator function which is equal to one if state (i′, j′) is in
the WAIT region formed by the considered linear-staircase threshold policy.

V π(s2)(0, 0) =

∑

(i,j)∈F

N∑

n=1

∑

(X,Y )∈ L(i−n,j)

IW (i− n, j)d1(n)λ1

λ
P (X,Y )

[
gβ(X,Y ) + β1+ΨX,Y (K + V π(s2)(0, 0))

]

+
∑

(i,j)∈F

M∑

m=1

∑

(X,Y )∈ L(i,j−m)

IW (i, j −m)
d2(m)λ2

λ
P (X,Y )

[
gβ(X,Y ) + β1+ΨX,Y (K + V π(s2)(0, 0))

]
⇒

V π(s2)(0, 0) =

( ∑

(i,j)∈F

N∑

n=1

∑

(X,Y )∈ L(i−n,j)

IW (i− n, j)d1(n)λ1

λ
P (X,Y )

[
gβ(X,Y ) + β1+ΨX,Y K

]

+
∑

(i,j)∈F

M∑

m=1

∑

(X,Y )∈ L(i,j−m)

IW (i, j −m)
d2(m)λ2

λ
P (X,Y )

[
gβ(X,Y ) + β1+ΨX,Y K

])
/hβ ,

where hβ = 1−
( ∑

(i,j)∈F

N∑

n=1

∑

(X,Y )∈ L(i−n,j)

[
d1(n)λ1

λ
IW (i− n, j)P (X,Y )β1+ΨX,Y ]

+
∑

(i,j)∈F

M∑

m=1

∑

(X,Y )∈ L(i,j−m)

[
d2(m)λ2

λ
IW (i, j −m)P (X,Y )β1+ΨX,Y ]

)
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Note that the complexity of the above V π(s2)(0, 0) formulation lies in defining all

feasible (X,Y ) vectors for the destination state (i, j). The number of feasible (X,Y )

vectors could be large for large values of ω, N , and M . However, V π(s2)(0, 0) is very

easy to calculate when shipment orders are composed of standard-size packages, e.g.,

d1(1) = d2(1) = 1. That is because, in this case,  L(i′, j′) contains a single (X,Y ) vector

which is (X1 = i′, Y1 = j′).

Appendix E. Search Protocol for Alternative Quantity Policies

The proposed MDP can be used to identify such policies in cases similar to that of

UPS-Turkey. For this purpose, one should adjust the holding costs in a systematic way

and force the MDP model to choose an alternative policy with a less aggressive shipment

schedule. The true performance of the alternative policies should be measured using the

simulation model described in Section 4.2 under the original c1 & c2 values. We derived

such an alternative policy for the case of UPS-Turkey using the following search logic:

Step 0: Specify a reasonable step size, z.

Step 1: Keep ρ constant, and reduce c1 by z. Then, run the MDP model to find a

potential alternative policy.

Step 2: Evaluate the performance of the policy from Step 1 using the simulation

model described in Section 4.2 under the original holding costs. If both total and ship-

ment costs are reduced compared to the benchmark time-policy stop; go to Step 3.

Otherwise go back to Step 1.

Step 3. If the policy derived in Step 2 needs to have a better rate of timely-shipped

orders, increase only c1 by z (let ρ vary, keep c2 constant), and run the MDP model.

Step 4. Evaluate the performance of the policies from Step 3. If the rate of timely

shipped policies is satisfactory and both costs are lower, stop. Otherwise go to Step 3.

The search mechanism in Step 1 (keeping ρ constant and reducing c1 & c2) increases

the importance of shipment cost in the objective function, and thus, leads to a quantity

policy with better shipment cost reduction. The search mechanism in Step 3 (keep

c2 constant and increase c1) increases the importance of timely-shipment of expedited

orders, thus improves the due date compliance. Note that value of step size z depends

on the problem type; thus, an appropriate z value should be specified via initial testing.

Following the search protocol described above, we found an alternative quantitative

policy (with around 20% reduced c1 & c2) that achieves the desired performance criteria

for the case of UPS-Turkey. The performance of the alternative quantity policy under

the original holding cost setting is presented in Table E.2.
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