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Abstract

The middle temporal area (MT) is one of the visual areas of the primate brain where
neurons have highly specialized representations of motion and binocular disparity. Other
stimulus features such as contrast, size, and pattern can also modulate MT activity. Since
MT has been studied intensively for decades, there is a rich literature on its response char-
acteristics. Here, I present an empirical model that incorporates some of this literature into
a statistical model of population response. Specifically, the parameters of the model are
drawn from distributions that I have estimated from data in the electrophysiology litera-
ture. The model accepts arbitrary stereo video as input and uses computer-vision methods
to calculate dense flow, disparity, and contrast fields. The activity is then predicted using
a combination of tuning functions, which have previously been used to describe data in a
variety of experiments. The empirical model approximates a number of MT phenomena
more closely than other models as well as reproducing three phenomena not addressed with
the past models. T present three applications of the model. First, I use it for examining
the relationships between MT tuning features and behaviour in an ethologically relevant
task. Second, I employ it to study the functional role of MT surrounds in motion-related
tasks. Third, I use it to guide the internal activity of a deep convolutional network towards

a more physiologically realistic representation.
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Chapter 1
Introduction

The primate middle temporal visual area (MT) is a part of the dorsal stream (or “vision-for-
action” pathway [77]). The unique functional and anatomical properties of MT cells have
made it an easily identifiable area within the cortex. Studying response characteristics
of MT has helped shaping the idea that different visual areas encode highly specialized
aspects of visual information. MT has also been an excellent place for evaluating models of
population decoding as its response properties are well understood and its principal inputs
are known [25]. MT encodes stimulus motion and stereoscopic depth. It has created
the opportunity for studying the neural circuits underlying the computations of motion

and depth, and also examining the relationships between neural activity and perception
200, 121, 26].

MT has been extensively studied and much is known about its response properties.
Also, microstimulation and lesion studies have confirmed its role in smooth-pursuit eye
movement [20, 81], and judgement of motion direction and speed [186, 144, 1413]. However,
microstimulation or lesion studies can only indicate non-specific causal links between MT
activity and function, and are unable to reveal the relationship between specific aspects of
MT representation and ethologically relevant functions. For example, it is possible that

altering specific tuning properties or population statistics would affect the accuracy of



functions such as smooth-pursuit eye movement, self-motion perception, and motion-based

segmentation.

I propose an empirical model that can be used for studying such relationships. The
proposed model approximates MT responses by covering a wide range of MT response
phenomena, more than previous models. Developing an empirical model (as opposed to
a mechanistic model) has given me the advantage of approximating MT response statis-
tics with a high level of detail, without requiring a complete understanding of how these

responses emerge in the brain.

The proposed model can also be useful for guiding internal representations of deep
neural networks to be more aligned with MT representation. More specifically, the model
can provide regression targets for intermediate layers of a deep network, driving it to learn
a physiologically realistic representation. The same goal can be achieved, with higher
physiological validity, if neural data is used as regression targets. However, collecting
neural data in quantities large enough for training deep networks is impractical. This
model, on the other hand, can inexpensively generate unlimited training data. Another
benefit of using this model to guide deep representations is the ability to manipulate
tuning properties. This ability may reveal what mechanisms and structures give rise to

which tuning properties.

1.1 Thesis overview

Chapter 2, Area MT and Dorsal Stream: Brain Circuitry for Motion Perception, discusses
the brain areas of the dorsal visual stream, which are involved in motion perception, as
well as their function. The function and properties of MT are explained in more depth as

achieving a better understanding of this area is the goal of the thesis.

Chapter 3, Computer-Vision Algorithms and Deep Neural Networks, has two sections.
The first section introduces the notions of optic flow, binocular disparity, and contrast. It

also briefly reviews a few methods of flow and disparity estimation. Among these methods,



the Lucas-Kanade algorithm and a modern variation of it are discussed in detail. Finally,
the proposed method for calculating local band-limited contrast fields is discussed. Both
the modern variation of the Lucas-Kanade algorithm and the local contrast method are
used in a novel empirical MT model. The second section reviews deep neural networks,
particularly convolutional networks and long short-term memory networks. Also, Dropout
and Batch Normalization techniques are introduced. These networks and techniques are
used in Chapters 5-7.

Chapter 4, A Video-Driven Model of Response Statistics in the Primate Middle Tem-
poral Area, presents a novel empirical model of MT and describes it in detail. Comparison
of the model against two recent MT models in fitting neural data is discussed next. Also,
the ability of the empirical model to predict unseen neural data and modelling pattern and

component selectivity of MT neurons is shown.

Chapter 5, Sensitivity Analysis of MT Parameters on Visual Odometry Task, describes
the application of the empirical model for investigating the influence of MT response prop-
erties on task performance. Specifically, the effects of modulating two MT tuning features
on solving a visual odometry task are investigated. The results suggest that details of MT
tuning have a persistent effect on task performance, despite adaptation of the rest of the
network around changes in these details. This chapter also introduces a novel visual odom-
etry dataset, which was generated in Unreal Engine 4 and used for the above-mentioned

analyses.

Chapter 6, Functional Role of Suppressive Surround of Area MT, explores the role of
MT surrounds in solving motion-related tasks using the empirical model. Specificity, the
spatial statistics and functional capability of two groups of surround kernels are compared.
The kernels in one group have been optimized for a task (i.e., visual odometry or motion-
based gesture recognition), while the kernels of the other group have been fit to neural
data. Furthermore, the surround strength of three convolutional layers are compared
between different deep networks. The results suggest that a fairly large family of MT

surround structures can be effective for solving motion-related tasks. Even networks with



no MT surrounds can learn to effectively solve the tasks by introducing stronger suppressive

surrounds in their higher-level layers, compensating for the lack of MT surrounds.

Chapter 7, Guiding Deep Representations with an Empirical Model of MT, illustrates
how the empirical model can be used for aligning the internal representations of deep
convolutional networks (CNNs) more closely with MT. More specifically, this chapter shows
how the empirical M'T model used to create more realistic direction and speed tuning in

an intermediate layer of the proposed deep CNNs.

Chapter 8, Conclusion, summarizes the main contributions and findings of the thesis

along with the directions for future work.



Chapter 2

Area MT and Dorsal Stream: Brain

Circuitry for Motion Perception

This chapter has two sections. In the first one, I briefly introduce those areas of the dorsal
visual stream that constitute the motion-perception circuity of the primate brain, except
the area MT. As modelling and studying tuning features of area MT has been the main
theme of the thesis, this area demands a more in-depth introduction that I provide in the

second part.

2.1 Dorsal Visual Stream

The two-streams hypothesis (proposed by Mishkin et al. [139] and popularized since Goodale
and Milner’s paper in 1992 [77]) is a widely-accepted influential model of vision processing
in the primate brain. Based on this hypothesis, after the visual information is processed
within the occipital lobe it follows two main pathways or streams: the ventral stream and

the dorsal stream.

The ventral stream (i.e., the “what pathway”) is involved in object and scene recogni-

tion. On the other hand, the dorsal stream (i.e., the “where/how pathway”) plays a vital

5



role not only in finding where objects are in space but in providing essential information
for interacting with those objects. Figure 2.1a depicts these two streams on a lateral view

of a human brain.

Motion perception is one of the main roles of the dorsal stream. Figure 2.1b illustrates
the anatomical locations of the motion-sensitive areas of this stream on a macaque brain. I
will briefly review what each of these brain areas does after defining the important notion
of a visual receptive field as well as describing the neuronal tuning curves, which illustrate
how the average response of a neuron changes with respect to change in one or multiple

stimulus features.

Visual Receptive Field

The receptive field (RF) of a visual neuron comprises a two-dimensional region in the
visual space where stimulus presence alters the activity of that neuron. RF of many visual
neurons have two subregions: (1) the region where stimulus presence elicits a response
whether or not any other stimuli are present a.k.a the classical receptive field (CRF); (2)
the region where stimuli cannot elicit a response on its own but can modulate the response

of a stimulus in the CRF a.k.a the extra-classical receptive field [30, 167].

RF sizes increase at successive processing stages (hierarchical levels) in the visual path-
way. As well, within the same processing stage (i.e., brain area) a positive correlation exists
between RF sizes and the distance of the RF’s centres from the point of fixation. Visual
RF sizes can range from a few minutes of arc (a dot in this page at reading distance) to

tens of degrees (the entire page) [3].

Neuronal Tuning Curves

Neurons selectively represent a particular type of sensory, association, motor, or cognitive
information. This selectivity (a.k.a tuning) can be characterized in a plot of the average

response (i.e., firing rate) of a neuron as a function of relevant stimulus features. Such a

6



(b)

Figure 2.1: (a) Illustration of dorsal (green) and ventral (purple) visual streams on a human
brain. (b) Locations of the dorsal-stream areas on an inflated macaque brain, from [32] with
modification. These areas are V1 (yellow), V2 (orange), V3 (pink), MT (blue), MST (purple),
7a (green), and VIP (red).

plot is called the tuning curve of that neuron. Neurons in different visual areas are tuned
to different properties of the stimulus, which appears in their receptive fields. Often, a
single visual neuron is simultaneously tuned to several different features of the stimulus.

For example, a V1 neuron is selective to the orientation of patterns (e.g., gratings) and



also their spatial frequency, whereas a typical MT neuron is sensitive to the speed and

direction of motion as well as binocular disparity.

2.1.1 Primary Visual Cortex (V1)

Visual information goes from the retina to the lateral geniculate nucleus (LGN), passing
through the optic nerve, and then comes directly to the primary visual cortex (V1)'. V1 is
the lowest-level brain area in the visual cortex hierarchy. The visual cortex itself is a part
of the cerebral cortex (outermost layered structure of the brain) responsible for processing

visual information.

Area V1 has retinotopic organization, meaning that it contains a complete map of the
visual field covered by the two eyes and nearby neurons have RF's that include adjacent
portions of the visual field. About fifty percent of the human V1 is devoted to the central
two percent of the visual field [219]. V1 neurons are classically divided into two categories

based on the structure of their RFs: simple and complex (Hubel and Wiesel [95, 96]).

V1 cells respond strongly to motion of an edge at a certain velocity either depending
on (simple cells) or invariant to (complex cells) position within the RF. The majority of

V1 cells cannot solve the aperture problem [154].

Aperture Problem

If the aperture (receptive field) of a motion detector (visual neuron) is much smaller than
the contour it observes, the detector can only be sensitive to the component of the contour’s
motion perpendicular to the contour’s edge, while it will be completely blind to any motion
parallel to the contour (apertures 1 and 3 in Figure 2.2). This blindness occurs because

movement in parallel direction will not change the appearance of anything within the

'Note that in addition to this visual pathway (a.k.a the primary pathway), there is a secondary pathway

consists of the superior colliculus of the midbrain.



"

apertures C

Figure 2.2: Tlustration of aperture problem, from [17]. A square is moving up and right. Through

apertures 1 and 3 only normal (i.e perpendicular) motions of the edges forming the square can be
estimated due to a lack of local structure. From aperture 2, which resides at the corner point, the
motion can be fully measured since there is sufficient local structure (i.e., both normal motions

are visible) [17].

aperture. As a result, the motion detector is unable to detect the true movement of the

contour [88]. Figure 2.2 illustrates the aperture problem.

2.1.2 V2, V3, and V3A

Visual area V2 or the secondary visual cortex, is the second major area in the visual cortex.
V2 neurons are retinotopically organized and their major input comes from V1. Some V2
neurons have orientation, colour, and disparity tuning (similar to V1 selectivity) but a
fraction of V2 cells are sensitive to relative disparity (as opposed to absolute disparity in
V1). These neurons can encode depth relative to another plane rather than absolute depth

[112]. The main extra feature of V2 (compared to V1) is the more sophisticated contour



representation, including texture-defined and illusory contours, as well as contours with

border ownership [112].

Functional MRI (fMRI) studies suggested that areas V3? and V3A? may play a role in
motion processing [209, 28, |, however not much is known about V3/V3A specific roles
[112]. Most V3 neurons are selective for binocular disparity [2] and project to V3A, which
is also strongly activated during binocular disparity processing [215]. Both V3 and V3A
project to caudal intraparietal area (CIP) where neurons are selective for depth gradients

and curvature [104].

2.1.3 Medial Superior Temporal (MST) Cortex

Medial Superior Temporal (MST) Cortex is the most studied area in the context of self-
motion [32]. MST is divided into two main parts: the dorsal (MSTd) and lateral (MSTI).
MSTd is more responsive to large-field visual stimuli encoding heading [182]. MST RFs
are larger than both V1 and MT RFs but they lack retinotopic organization. MST neu-
rons respond selectively to optical flow components such as expansion, contraction, and

clockwise or counterclockwise rotation [184, , , 64, , ].

While MST is not retinotopically organized, heading is encoded in retinal coordinates
(e.g., left or right with respect to the direction of gaze) [112]. MST also receives extrareti-
nal eye-movement information that helps in accurate heading estimation even during eye

movements [145, 32].

2.1.4 VIP and 7a

Visual neurons in ventral intraparietal (VIP) respond to complex motion stimuli, such as

the direction of heading in optic flow [16]. VIP RF's are independent of gaze direction (in

2Third visual area
3V3 Accessory, a visual area anterior to V3
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contrast to the majority of MST neurons) suggesting that they encode motion information
in a head-centric frame [30]. In addition to encoding self-motion, VIP is invloved in control
of head movements, and the encoding of near-extrapersonal (head centred) space [16]. VIP
sends projections to the polysensory neurons of motor cortex, which are clustered in area
F4 [79]. VIP neurons often respond to touch, with RFs around the head and shoulders,
aligned with the visual RFs [17]. Also, microstimulation of VIP neurons elicits movements

that seem defensive [17]. Areas MST and VIP are cortical substrates for heading perception
[32].

Area 7a receives extensive projections from area MST and it contains cells that are
narrowly tuned to radial flow and show gain modulation by eye position [191]. Therefore,
7a potentially solves the rotation problem converting an oculocentric (i.e., based on retinal

coordinates) heading estimate into a head-centric frame [222].

2.2 Middle Temporal Visual Area (MT)

The middle temporal visual area (MT or V5), discovered at about the same time by Dubner
and Zeki [03] in Old World macaque monkeys and by Allman and Kaas [7] in New World
owl monkeys, is a well-studied motion-sensitive area in the dorsal stream. Though part
of the extrastriate cortex*, MT is still quite close to the retina since its principal inputs
are as few as five synapses away from the photoreceptors. This attribute facilitates the
characterization of the mechanisms by which the properties of MT receptive fields (RFs)
arise [20]. Another important attribute of area MT is that its cells are close enough to some
outputs (in particular, those involved in eye movements) to provide an easily measurable
continuous readout of computations performed in the pathways which MT is a part of

[119]. Together, these attributes have made MT an attractive target of extensive research.

MT sends a strong projection to MST, where cells have larger RFs and encode ego-

4The region of the occipital cortex of the mammalian brain located next to the primary visual cortex

(i.e., striate cortex), which comprises areas V3, V4, and V5/MT.
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motion. Microstimulation studies confirmed the role of MT cells in motion perception
where microstimulation biased the animals’ judgements towards the direction of motion
encoded by the stimulated neurons [136, 187]. Furthermore, lesion studies in monkeys have

confirmed the role of MT in smooth pursuit eye movements [119].

MT constitutes a border area between the parietal and occipital lobes (considered to be
a part of the latter). The anatomical and histological properties (e.g., being buried in the
superior temporal sulcus, receiving direct inputs from V1, and heavy myelination) as well
as functional properties of MT cells (e.g., highly responsive to motion and topographically

organized RFs) help in determining its borders within the cortex [132].

2.2.1 Functional Structure

MT has a retinotopic organization where each hemisphere contains a somewhat complete
map of the contralateral visual hemifield, with a marked emphasis on the fovea. More
specifically, the central 15° of the visual field occupies over half of MT’s surface area [217]

with a bias toward the inferior (i.e., lower) quadrant of the visual field [132].

Within this relatively crude retinotopic map, several other organizations (i.e., visual
maps) exist at finer spatial scales, which correspond to neural tuning for different stimulus
parameters. Namely, a columnar organization composed of columns of smoothly varying
preferred directions running side by side (although some columns occasionally prefer the
locally opposite direction) [!], a columnar organization of tuning for binocular disparity
(coexisting with the direction columns; see Figure 2.3) [55], and also clusters of neurons

by speed preference that are not strictly organized in columns [120].

2.2.2 Receptive Fields

MT cells respond best when stimuli cover the centre of their RFs [167]. In the literature,

this central part is referred to as the classical receptive field (CRF) or the excitatory centre
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Figure 2.3: Schematic summary of the functional architecture of MT with regard to binocular
disparity and direction of motion, from [55]. The top surface of this slab corresponds to the
surface of MT, and the height of the slab corresponds to the thickness of the cortex. Arrows
denote the preferred direction of motion of MT neurons in each direction column. Direction has
been shown to vary smoothly across the surface of MT in both dimensions (no discontinuities in
the direction have been depicted). Preferred disparity is colour-coded, with green representing
near disparities, red representing far disparities, and yellow indicating zero disparity. Dark blue

regions denote portions of MT that have poor disparity tuning [55].
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where presence of stimuli excites the cell (i.e., increases its activity). The CRF is generally
elongated with the axis of elongation orthogonal to the preferred direction of motion [167],
and it is enclosed by an inhibitory surround structure (i.e., the extra-classical receptive
field), which can extend for 7-10 times the size of the centre [167]. While the classical view
suggested a symmetrical shape for the surround with the same preference for direction of
motion [206], as the CRF preference, more recent studies have found more heterogeneous

spatial profile for the surround as well as different direction preferences from those of the

centre [223]. The spatial heterogeneity of the surround is thought to boost MT’s capacity
for estimating 3D velocity [19]. This boost can facilitate computation of structure from
motion [25] as well as heading perception in MST [19]

2.2.3 Characteristics of Responses to Motion

Almost all MT cells are responsive to the direction and speed of moving stimuli. Some MT
cells respond selectively to pattern motion. These cells are capable of coding the motion
of whole visual patterns (independent of the motions of contours within their RF), and
therefore solve the aperture problem. Some other cells represent the motion of stimulus

components, and like V1 cells, are unable to solve the aperture problem [180].

Local Motion Integration

If motion integration were global in MT cells, overlapping and non-overlapping components
of a moving pattern would evoke similar cell activity as long as the components resided
inside the cell’s RF in the second case. However, experiments showed that two different
stimuli, one composed of two non-overlapping drifting gratings, and the other composed of
two overlapping drifting gratings (which create a plaid pattern) evoke different responses
in the pattern-selective cells. Hence, motion integration occurs locally within sub-regions

of the RF as oppose to globally across the entire RF [125].
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Temporal Properties and Pattern Selectivity

Area MT has rapid dynamics. Its minimum latency is about 30 to 35ms and the median
latency is approximately 90ms [37, , 31]. Also MT cells respond to quite high tempo-
ral frequencies. Typically, they peak in the 3-10Hz range, and most will have cut off by
30-50Hz [31]. Some MT cells also exhibit a dynamic solution to the aperture problem.
They initially respond primarily to the component of motion perpendicular to a contour’s
orientation, but over a period of approximately 60ms the responses gradually shift to en-
code the true stimulus direction, regardless of orientation [154]. Therefore, the population
motion response of MT is dominated by component motion signals but gradually shifts to

represent pattern motion [197].

Selectivity for Spatial Frequency

In many MT neurons, the preferred speed depends on spatial frequency of stimuli when
exposed to sine-wave gratings [164]. However, if the stimuli are changed to plaids (i.e.,
superimposition of two sine-wave gratings) the preferred speed dependency to spatial fre-
quency decreases [164]. In case of exposure to square-wave gratings (i.e., superimposition
of many sine-wave gratings), MT neurons’ preferred speeds become independent of spa-
tial frequency. Consequently, it seems RFs of MT neurons have been developed so that
in natural scenes, where there are corners and edges (composed of many different spatial

frequencies), they respond to speed independently of spatial frequencies [164].

2.2.4 Influencing and Represented Variables

While nearly all MT neurons are tuned for the direction [130, 55] and speed [130, 164, 119] of
visual stimuli, some of them are also selective for binocular disparity [131, 55]. Additionally,
stimulus features such as size [167, 156], contrast [156], colour [189], temporal and spatial

frequency [164] can evoke or suppress MT activity. Spatial and feature-based attention
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also modulate the response in MT cells [210, ] such that the gain of the tuning curve

increases MT but the tuning width does not change [211].
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Chapter 3

Computer-Vision Algorithms and

Deep Neural Networks

I explain the computer vision tools that I used throughout my thesis in this chapter. For
readability, I have divided this chapter into two sections. In the first section, all the non-
deep-learning computer-vision notions are explained while the second one explores deep

learning topics.

3.1 Computer-Vision Algorithms

The empirical MT model, which I explain in detail in the next chapter, receives optic flow,
binocular disparity, and contrast fields as input. This section gives the descriptions for these
fields and a comparison between several different algorithms for their estimation. Finally, I
finish this section with a detailed overview of the pyramidal Lucas-Kanade method, which

is used in the thesis.
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3.1.1 Optic Flow

In the biological context, optic flow (sometimes called retinal velocity) is the change of
structured patterns of light on the retina that leads to an impression of movement of the

scene projected onto the retina [169].

In computer vision applications, the camera becomes the surrogate eye and changes in
the environment are represented by a series of image frames. These frames are obtained
by a spatiotemporal sampling of the incoming light that hits the camera’s sensor. In this
context, optic flow is defined as the vector field that captures the displacement of the

corresponding pixels in successive frames [17].

Figure 3.1 illustrates the optic flow in both the retina and the image frames. Figure 3.1a
shows the movements of two visual features (i.e., star and hexagon) in the environment
and their respective optic flow generated on the retina. Figure 3.1b demonstrates three
frames illustrating the movement of a head silhouette. The resultant optic flow is depicted
as the correspondence between the pixels that represent the contour of the silhouette in

consecutive frames.

The first algorithms for the optic flow estimation were proposed in the early eighties
[93, |. Since then, optic flow has found a variety of applications. Object segmentation
and tracking [57], video stabilization [158], video compression [231], and depth estimation
[190] are some examples. This wide range of applications has motivated many new algo-
rithms for real-time, pixel-wise (i.e., dense) estimation of optic flow. RNLOD-Flow [230)]
and Correlation Flow [62] are just some examples of recently proposed optic flow algo-
rithms. Whereas FlowNet [72] and CNN-flow [207] are examples of deep-neural-network
approaches. The Middlebury database (http://vision.middlebury.edu/flow/eval/)

has a benchmark ranking more than 150 different optic flow methods.
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Figure 3.1: Tllustration of optic flow in both the retina and the image frames, from [169].

3.1.2 Binocular Disparity

Binocular disparity is the difference in coordinates of similar features within two stereo
frames and can be used to calculate depth of objects within the visual field. Figure 3.2
depicts how images of two different objects, with different depths from a camera system,
create different disparities. More specifically, for a pair of calibrated cameras with focal
length f that are B unit of distance apart, depth Z of an object can be found from its
corresponding disparity d as

(3.1)

where Z and B are often measured in meters while d and f are measured in pixels.
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Figure 3.2: Tllustration of binocular disparity. The blue figure, which is closer to the camera

system, creates a larger disparity compared to the tree, which is more distant.
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Disparity estimation can be considered as a special case of optic flow estimation where
only horizontal direction is present (zero vertical offset), and inputs are stereo frames as
opposed to consecutive frames captured by a single camera. Consequently, almost any

optic flow method can potentially be used for disparity estimation as well.

3.1.3 Algorithm Selection for Flow and Disparity Estimation

There is a vast number of algorithms for optic flow or disparity estimation. For accurate
estimation, these algorithms should tackle challenges such as occlusion, brightness inconsis-
tency, and the aperture problem (see Section 2.1.1). The earliest optic flow algorithms were
proposed in early 1980s. Horn-Schunck [93] and Lucas-Kanade [123] are the best-known
examples of these classical methods. They are often computationally cheap but cannot
correctly estimate large displacements. However, their modern variations address large
displacements by using multi-resolution representations of the original frames (see Sec-
tion 3.1.4). Another class of algorithms combine the classical formulations with modern
optimization and implementation techniques (e.g., Classic++ [201]) to achieve higher per-
formance. Deep-network solutions have been also suggested for calculating both disparity
[228] and optic flow [72]. While deep-network methods usually give accurate estimations,

they require considerable amount of memory and are slow to run.

Figure 3.3 illustrates a qualitative comparison between eight different methods in dis-
parity estimation. The input was a pair of random-dot images plotted at slightly differ-
ent horizontal positions. While both classical Lucas-Kanade and Horn-Schunck algorithms
failed to properly estimate the ground truth (suffering from aperture problem), some meth-
ods extrapolated far beyond well-textured regions, e.g., reporting motion over almost the
whole image in response to a small stimulus. This can be interpreted as being physiologi-
cally unrealistic because such extrapolations involve lateral communication over the whole

visual field.

From Figure 3.3, one can see that the pyramidal Lucas-Kanade neither suffers from

aperture problem nor extrapolates beyond the random-dot patches. Also, a parallel im-
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plementation of this method can reach 60 FPS, which is one or two orders of magnitude
faster compared to some of the above mentioned algorithms. These properties made the
pyramidal Lucas-Kanade a good candidate for disparity and optic flow estimation, which

were needed for the empirical MT model (see Chapter 4).

3.1.4 Lucas-Kanade for Flow Estimation

The pyramidal Lucas-Kanade [129] is a relatively simple yet accurate flow method. I
previously developed a GPU implementation that runs in real time [181]. T used this
implementation for calculating flow and disparity fields (see Chapter 4). Here, I explain

this algorithm in detail starting first with the classical version.

Classical Lucas-Kanade Algorithm

If the sampling time between the frames is small enough (i.e., high frame rate), we can
reasonably assume that the intensity of a visual feature remains approximately constant

as it moves from one frame to the next,

I(z,y,t) = I(x 4+ dz,y + dy,t + dt). (3.2)

By using first order Taylor approximation Equation 3.2 becomes:

ol ol ol
I(z,y,t) = I(z,y,t) + Edm + @dy + Edt. (3.3)

The first term on the right hand side of Equation 3.3 cancels the term on the left hand
side,
I.dx + I,dy + I,dt = 0, (3.4)
where I, = &, I, = §—j, and I, = 4.
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Figure 3.3: Qualitative differences in the results of different computer vision methods
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in disparity estimation. The input was a pair of random-dot images plotted at slightly
different horizontal positions. A, ground truth disparity (the horizontal distance wherever
there was a dot; zero elsewhere), B, pyramidal Lucas-Kanade [129], C, classical Lucas-
Kanade [123], D, classical Horn-Schunck [93], E, Semi-Global Block Matching [90], F,
Classic++ [201] G, loopy belief propagation [69] (running this method with a zero-disparity
prior obtained a result that was localized to the stimulus), and H-I, the convolutional neural
networks (CNNs) by Zbontar and LeCun [228] trained for disparity estimation on KITTI
dataset and Middlebury dataset, respectively. Some of these methods can also be applied
to flow, which poses essentially the same matching problem except that the search for each

pixel’s match is not constrained to the same row of pixels.
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Dividing both sides of Equation 3.4 by dt and assuming u = ‘fl—f and v = %, gives us

the optic flow constraint equation:

Lou+ Ly+ 1, =0, (3.5)

where v and v are, respectively, the horizontal and vertical components of the optic
flow vector associated with the considered pixel. Note that Equation 3.5 has two unknowns
and cannot be solved uniquely. This ambiguity in fact is a demonstration of the aperture

problem discussed in Section 2.1.1.

To solve this ambiguity, Lucas and Kanade [123] assumed that the flow is essentially

constant in a patch of n pixels centred on the pixel under consideration,

Iu+I,v=—I

1

I,u+I,v=—1I,

(3.6)
Iu+ I, v=—I,.
Writing Equation 3.6 in the matrix form gives:
A" =, (3.7)
v
where: _ - ~ -
le [yl _[tl
I, I
A= " b=]| " (3.8)
Ixn [yn _[tn'
To solve Equation 3.7 for v and v, Lucas and Kanade [123] used least squares method

that leads to:
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U = (AT A1 AT, (3.9)

v

Since AT A can be a singular matrix, using a regularized least-square method will im-

prove the robustness of the solution [129]. This yields:

= (ATA+al) ' ATD, (3.10)
v

where 0 < o < 1073 and [ is the identity matrix [129].

The computations related to the classical Lucas-Kanade method stop at this point.
One shortcoming of the classic version is its failure in capturing large displacements. To
tackle this issue, a pyramid of image frames with coarser resolutions can be built so that

large displacements are detected in the coarser copies.

Pyramidal Lucas-Kanade Algorithm

The pyramidal Lucas-Kanade algorithm [129] to estimate optic flow between two frames

can be described as follows (see Figure 3.4 for illustration):

1. Building a Gaussian pyramid with n levels:

(a) The level 0 of the pyramid is filled with the original image.
(b) For levelsi=1ton—1:

The level 7 is built with the image of level i — 1 subsampled by a factor of two.
2. Optic flow calculations:

(a) The optic flow is computed at level n — 1 (i.e., the lowest resolution) based on

Equation 3.10.
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Figure 3.4: Tllustration of the pyramidal Lucas-Kanade optic flow method with 3 levels, from
[129]. A, flow calculation at level 2: a three-level pyramid is created by subsampling the images
of the lower levels. After the pyramid is built, the optic flow is calculated at the highest level
(lowest resolution). B, flow calculation at level 1: first the calculated flow at level 2 is oversampled
by bilinear interpolation. The resultant flow is used to warp the second frame. Final optic flow
at level 1 is the summation of the oversampled flow, multiplied by two, and the flow calculated
after warping the second frame. C, flow calculation at level 0 (original resolution): similar to B,
first the calculated flow at level 1 is oversampled by bilinear interpolation. The calculated flow
is then used to warp the second frame. The final flow is the summation of the oversampled flow,
multiplied by two, and the flow calculated between the first frame (at the original resolution) and

the warped second frame.
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(b) For levels i =n — 2 to 0:

i. The initial value is two times the over-sampled optic flow computed at level

1 — 1 using bilinear interpolation.
ii. This initial value is used to warp the second frame.

iii. The optic flow between the first frame and this warped version of the second

frame is computed based on Equation 3.10.

iv. The final flow value is the summation of the initial value (Step i) and the

value calculated in Step iii.

The number of levels in the pyramid is selected with respect to the original frame
resolution and expected optic flow magnitude (typically 3 to 5 levels). Because pixel com-
putations in each level are independent, a parallel implementation on the GPU decreases

run time by a few orders of magnitude (compared to the CPU implementation).

3.1.5 Contrast

Contrast is the difference in luminance or colour that makes different visual features dis-
tinguishable. The light adaptation process in the retina effectively reduces sensitivity to
absolute illumination, which can change several orders of magnitude during the day but
is not useful for guiding behaviour [136]. More specifically, the ganglion cells of the retina
possess receptive fields with centre and surround regions that are mutually inhibitory [136].
Such receptive field structure makes these cells to be most sensitive to borders and con-
tours (to differences in luminance) as opposed to uniform surfaces [76]. Consequently, the
primate visual system is more sensitive to contrast than absolute luminance. Contrast has

several different definitions, which we see next.

Weber Contrast

Weber contrast is defined as,
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I —1
I, ’

(3.11)

C =

where I and [, are, respectively, the luminance of the features and the background. This
definition is only useful in cases where small features are present on a uniform background

so that the background luminance is a good approximation of the average luminance.

Michelson Contrast

Michelson contrast is defined as

1 — T
_ ‘tmaz min 3.12
Imax + Imin’ ( )

where I,,,;, and I,,,,, are the lowest and highest luminance. This definition is commonly
used for patterns where both bright and dark features are spatially equivalent and take up

similar fractions of the area like sinusoidal gratings.

RMS Contrast

Root mean square (RMS) contrast is defined as the standard deviation of the pixel inten-

sities,

| oM )
c= szum‘ - 1), (3.13)

i=1 j=1
where intensity I;; is the i-th row j-th column element of the image of size MxN and Iis

the average intensity of all pixel values in the image.
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Peli Contrast

Peli contrast is a local [160], band-limited measure, unlike the previous definitions that are
global and frequency-independent. For natural images this definition is the most explana-
tory as they consist of complex patterns with rich frequency content. Also the empirical
MT model needs a local definition to modulate neural responses according to contrast
within the receptive fields (as opposed to remote parts of the image). Furthermore, fre-
quency dependence provides a way to match the contrast definition to primate contrast

sensitivity [173, 53].

More formally, contrast of a pixel, specified by (x,y), at each spatial frequency band i

is defined as a ratio of two functions,

Q; (27, y)
C\T,Y) = 3.14
The numerator function is,
ai(z,y) = I(z,y) * gi(z,y), (3.15)

where [ is the image, g; is a spatial frequency dependent filter, and * denotes convolution.

The denominator function is,
i—1
Li(z,y) =T+ aj(z,y), (3.16)
j=1

where I is the image mean and a;s are the numerator functions corresponding to smaller
frequency. Peli [160] suggested cosine log filters as the choice for g;s since an image fil-
tered by a bank of these filters can be reconstructed by a simple addition process without

distortion.

For calculating contrast input of the MT model, I used a modified version of Peli’s
definition. Namely, to relate the contrast definition more directly to the primary visual

cortex, I used a bank of Gabor filters (instead of cosine log filters) with four different
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frequencies and four different orientations for a total of 16 contrast channels. I combined

these channels in a weighted sum:

d(x,y) = Az, y), (3.17)
k=1

where Ays were chosen to approximate macaque contrast sensitivity [53, 54].

I then smoothed the resulting contrast field with a 2D Gaussian kernel, which was
meant to approximate integration over V1 cells, and scaled it so that its mean over the

image was equal to RMS measure of contrast:
c(2,y) = Ascategauss filt(c (z,y)). (3.18)

The scaling made sure that the global average of the calculated contrast is the same
as the RMS contrast, which is widely used in neuroscience literature especially for random
dot stimuli [141, 128, 150].

3.2 Deep Neural Networks

Artificial neural networks, inspired by biological neural networks, are composed of inter-
connected processing elements (neurones) structured to form three kinds of layers: the
input layer, the hidden layer(s), and the output layer. A network with one or two hidden
layers is called a shallow network, whereas a network with more hidden layers is called a
deep network [20]. Although, universal approximation theorem® tells us that theoretically
even a shallow network can achieve the excellent problem-solving capabilities of the neural

networks, deep networks have been demonstrated to be more effective solutions in practice.

!Universal approximation theorem states that a feedforward network with a single or multiple hidden
layer(s) containing a finite number of neurons, can approximate continuous functions on compact subsets

of R™, under mild assumptions on the activation function [48].
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The power of deep networks stems from the fact that (like the brain) they are capable
of learning a hierarchy of features where features in higher levels are formed by the com-
position of features at lower levels. This means deep networks can learn multiple levels
of representations that correspond to different levels of abstraction. In other words, deep
networks can automatically and efficiently learn the relevant features, which are essential
for solving a task, directly from data as opposed to systems that require human-crafted

features as input [21].

In this section, I first introduce multilayer perceptrons (the most basic network architec-
ture). I then explain the convolutional neural networks (CNN; the most common variation
of the deep feedforward networks for analyzing visual imagery). I also discuss the long
short-term memory (LSTM) networks (a variation of deep recurrent networks, well-suited
for making predictions on time series data). Finally, I introduce Dropout and Batch Nor-
malization (effective techniques for improving the performance of deep networks). As later

chapters will demonstrate, these networks and techniques have been used in the thesis.

3.2.1 Multilayer Perceptrons (MLPs)

Multilayer perceptrons (MLPs) are feedforward artificial neural networks that, after train-
ing, approximate an implicit function that is generalized from input-output examples. An
MLP consists of multiple layers of nodes in a directed graph, with each layer fully con-
nected to the next one. Except for the input nodes, each node is a neuron (i.e., processing
element) with a nonlinear activation function. Common approaches for training MLPs
involve a technique called backpropagation. A trained MLP can distinguish data that are

not linearly separable.

3.2.2 Typical Architecture

Figure 3.5 illustrates an MLP with a single hidden layer (i.e., a shallow MLP). A shallow

MLP is a function f : R? — R!, where d is the size of the input vector x and [ is the size
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of the output vector f(x), such that, in matrix notation:

f(x) = G + WA H DY + Wwhx))), (3.19)

with bias vectors b(l), b(2); weight matrices W, W and nonlinear activation func-
tions H and G.

The vector h(x) = H(b" + WWx) constitutes the hidden layer. W1 e R#xd is
the weight matrix connecting the input vector to the hidden layer of size d;. Each row
Wi(,l) represents the weights from the input nodes to the ¥ hidden node. Typical choices
for H include tanh?, and the logistic sigmoid function® [75]. Both the tanh and sigmoid
are scalar-to-scalar functions but their natural extension to vectors and tensors consists
in applying them element-wise (e.g., separately on each element of the vector, yielding a
same-size vector). Finally, the output vector is obtained as: o(x) = G(b® 4+ W®h(x)).
The choice for G depends on the task in hand. For example, in binary classification stgmoid

is used whereas the typical choices for multiclass classification and regression are softmax

and identity functions, respectively.

3.2.3 Training MLPs with Backpropagation

To train an MLP, the set of parameters (i.e., {W®, b® W b®1) should be learned.

Given a set of training data, this can be achieved through the backpropagation algorithm.

The general idea is to boost the performance of a neural network by backward prop-
agation of error signals, which relate the network’s performance to its parameters. More
specifically, the backpropagation algorithm finds the gradients of an error function £ with
respect to the parameters (i.e., weights and biases) of the network. These gradients are
then used to update their corresponding network parameters. Therefore, each step of the

training consists of three phases: (1) forward propagation of input through the network to

*tanh(a) = (e* —e™)/(e* +e7)
3sigmoid(a) = 1/(1 + e~ %)
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output layer

hidden layer

input layer

Figure 3.5: Illustration of a single-hidden-layer MLP (i.e., a shallow MLP) which is a function
f:R3 = R% Weight matrices W) and W) are shown in blue and red respectively while bias

vectors b(l), b® are not shown.

calculate activity of all nodes, (2) backpropagation of the error signals for calculating gra-
dients, and (3) updating the network parameters using the gradients. These three phases
should be repeated until the performance of the network is satisfactory or stops improving®.

Next, I will give a brief description for each of these phases.

Forward propagation: The first phase of each training step is the forward propa-
gation of a training pattern’s input through the neural network in order to generate the
corresponding activity of nodes (neurons) in all layers. For example, for neuron j in layer

[ of Figure 3.6 z; = H(a;), where a; = > w;;%; is the activation received by neuron j.
i

Backward propagation: The second phase involves:

1. Backward propagation of the error signals through the neural network, using the

training pattern target, in order to generate the partial derivative of the error function

4Tt is important to note this procedure is not guaranteed to find the global minimum of the error

function [22].
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with respect to the activation of all output and hidden neurons. For the output
neuron k, gTi = yp — tr where y is the response of the output neuron k and tj
is the corresponding target, for a particular input®. For the hidden neuron j, §; =

H'(a;) ;wjkék where gTE]- = ¢; and gTEk = Jr (see Figure 3.6).

2. Multiplying each weight’s output delta with its input to get the gradient of the error
OE

function with respect to the weight®: 25 =§;z; .
Vi
Weight update: The final phase of the training is weight update. For the quintessen-

tial gradient descent algorithm, this involves subtracting a ratio of the gradient (by multi-

T+1) _ (1), OE
i = Wy, Now;:

plying it with the learning rate 1) from the weight: wj(.
The reason for subtracting (not adding) a ratio of the gradient is that the gradient
always indicates the increasing direction of the error function. So to reduce the error, the

weight must be updated in the opposite direction (note that n > 0).

The learning rate n influences the speed and quality of learning. A larger learning
rate leads to faster training whereas a smaller learning rate often results in more accurate
training. Often, the learning rate is held fixed during the entire training. However, using

a dynamic learning rate (instead of a fixed one) can increase the training efficiency’.

3.2.4 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs or ConvNets) are variations of multilayer percep-
trons that have been inspired more closely by biological processes [115]. CNNs have demon-
strated substantial empirical success. Especially in object recognition tasks where CNNs

have outperformed the hand-designed feature extraction approaches (e.g., SIFT and HOG)

5This rather concise partial derivative is the result of properly choosing the output activation G and error

function E pair for each task (e.g., softmax activation and cross-entropy error for multiclass classification).
6The same is true for the bias except that z = 1.
"That is because error surfaces usually consist of many flat regions as well as many extremely steep

regions (see [227] for further explanation).
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Figure 3.6: Tlustration of the forward and backward propagations for hidden neuron j, from
[22] with modification. For this neuron, d; is calculated by backpropagation of the ds from those
units k£ to which unit j sends connections. The blue arrow denotes the direction of information
flow during forward propagation, and the red arrows indicate the backward propagation of error

information.

[71] and set the new state of the art for classification (e.g., MNIST dataset: 0.23% error

[15]; ImageNet dataset: 2.99% error [146] vs. human error of 5.1% [179]). In addition to
object recognition tasks, CNNs have been used in optic flow estimation [72], solving visual
odometry [110], crowd segmentation [103], stereo matching [228], and action recognition

from video sequences [101].

Typical Architecture

A typical CNN comprises several stages where the input and output of each stage are a
set of (subsampled) feature maps (see Figure 3.7). Each stage is often composed of three

layers: convolutional layer, nonlinearity layer, and pooling (subsampling) layer [115].

Convolutional Layer

Convolution, in the image processing context, means applying a kernel (a.k.a. filter) over

an image at all possible offsets. For a two-dimensional image I and a two-dimensional
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kernel K, the convolution can be mathematically described by:

Cli,jl = (I« K)[i,5] =Y _ > I[m,n]K[i —m,j—n]. (3.20)

Convolution can be used as a highly efficient method to describe transformations that
apply the same linear transformations of a small, local region across the entire image [78].
Therefore, using convolution results in detecting features regardless of their position in the
image. In CNNs, the connection weights between a single neuron of a feature map in stage
s and a small patch (i.e., adjacent neurons) of a subsampled map in stage s — 1 (or input
image if s = 1) construct a kernel (see Figure 3.8). Also, since the same set of weights
(i.e., kernel) connect all the neurons of a feature map to small patches of a subsampled
map in s — 1 (i.e., all possible offsets), the resulting connectivity functions as a convolution

between the input feature map (or input image) and the kernel.

Nonlinearity Layer

All neurons in the convolutional layer have a point-wise nonlinear (e.g., sigmoid or rectified
linear) function which is applied on the activation that they receive. In some convolutional
networks, this point-wise nonlinearity is followed by a subtractive and divisive local nor-
malization, which enforces local competition between adjacent features in a feature map,

and between features at the same spatial location [115].

Pooling Layer

A pooling or subsampling layer adds robustness to the feature maps (in stage s) against
small variations in the location of the features in the previous stage (i.e., s — 1). More
specifically, the pooling layer reduces the dimensions of a feature map by substituting non-
overlapping patches in the map by their average (or maximum). Traditional CNNs apply

a point-wise tanh after the pooling layer, but more recent models do not [115].
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Figure 3.7: A typical CNN architecture with two feature stages followed by a fully-connected
layer, from [115]. Each feature stage is composed of three layers: convolutional layer, nonlinearity

layer (not shown in the figure), and subsampling layer.

Further Remarks

The sparse connectivity and weight sharing drastically reduce CNNs’ parameters (i.e.,
number of unique connection weights) compared to a fully connected neural network. This
reduction of free parameters increases learning efficiency (i.e., many fewer weights should
be learned) and enables CNNs to achieve better generalization on vision problems by

prevention of overfitting.

Although CNNs are conceptually simple, they come in quite versatile architectures
with different number of stages and feature maps inside each stage. For a given pattern
recognition task, a CNN learns to extract useful features at each stage. These features get

more complex as information propagates through the network’s stages [229].

Training CNNs with Backpropagation

The same procedure explained in 3.2.3 can be followed, with minor modifications, to train

a CNN. These minor modifications should be made in order to ensure that the weight
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Figure 3.8: Sparse connectivity and weight sharing in CNNs (compare with the fully-connected
network shown in Figure 3.5). Neurons of a subsampled map in stage s — 1 are connected to
neurons of a feature map in stage s. Weights of the same colour are shared (i.e., constrained
to be identical). The weight vector (with red, blue, and green elements) construct a kernel (see
Section 3.2.4).

sharing constraint in the convolutional and pooling layers are satisfied when evaluating the

derivatives of an error function with respect to the adjustable parameters in the network.

Convolutional Layers

Since neurons within a feature map in stage s (indexed c¢;) have different inputs but all
share a common weight vector w(¢), errors 6(°) from all neurons within the feature map will
contribute to the derivatives of the corresponding weight vector. Therefore, the gradient

of the error function with respect to each element of this vector is:

23 (cs) (Po—1)
aw(CS) = Z 6,] ij‘ ! 9 (321)
7 J

where wfs) denotes the i*" element of the weight vector, z](f a-1) represents the i** input

of the preceding pooling layer (indexed p,_;) for the j* neuron of feature map c, and finally
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Figure 3.9: Tllustration of a 2 x 2 pool in a pooling layer (see 3.2.4).

6;6“) denotes the ¢ for /" neuron of the same feature map which is computed recursively

from ds of the neurons of the following layer [202].

Pooling Layers

As discussed earlier, pooling (or subsampling) layers can be either max-pooling or average
pooling. In max-pooling layers, the error signal (J,, in Figure 3.9) is only propagated
through the neuron that had the maximum value of the pool in the forward propagation.
In average pooling layers, the error signal is multiplied by the inverse of pool width times
pool height (e.g., 2—i2), and it is assigned to the whole pooling block so that all units get

the same value.
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Inspiration by and Analogy with Primate Visual Cortex
Inspiration

CNNSs have their roots in the neocognitron, suggested by Fukushima in 1980 [I16], which
itself has been inspired by the model of the primary visual cortex (i.e., V1) proposed by
Hubel and Wiesel.

More specifically, the idea behind convolutional layers are the simple cells in area V1
[78]. Due to the local wiring between retinal ganglion cells and simple cells, each simple
cell only sees a portion of the visual scene (i.e., its receptive field) and can detect edges
(i.e., features) within that portion. Like simple cells, each artificial neuron in a feature map
only receives input from some of the neurons in its preceding map and detect features in
a limited area of the preceding map. But due to weight sharing, the same features across

the entire image are extracted, though by different neurons in the feature map.

Additionally, pooling layers, which help the networks to tolerate local shifts of features,
have been inspired by complex cells of V1 [78]. Complex cells receive inputs from many
simple cells and have local invariance to the location of a feature inside their receptive
fields.

Finally, local contrast normalization between adjacent features in a feature map [170],
and between features at the same spatial location, in the nonlinearity layer, has been
inspired by the lateral inhibition [23] and cross-orientation inhibition [110] models of the
primary visual cortex [18]. These models explain how each excited cell reduces the activity

of its neighbors, resulting in the sharply tuned orientation-selectivity of V1 neurons.

Analogy

As explained in Section 3.2.4 all neurons in a feature map are followed by point-wise

nonlinearities. This is analogous to how computational neuroscientists model the firing
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rate of a neuron as the output of a static nonlinearity applied on the current generated in

the neuron’s soma [(5].

Receptive fields of V1 simple cells can be mathematically modelled as Gabor filters that
act as local filters selectively responding to edges in the visual scene [97]. Interestingly, if a
CNN is trained with natural images, its earliest convolutional layers resemble the receptive
fields of V1 simple cells.

Furthermore, [225] have recently shown that a performance-optimized CNN can explain
the neural encoding in higher ventral areas; a fundamental open question in systems neuro-
science. Specifically, they trained a CNN for a challenging high-variation object recognition
task. Even though the network was never explicitly constrained to match neural data, its
output layer was highly predictive of neural responses in the inferior temporal (IT) cortex,
better than any other I'T model. Moreover, the middle layers of the model were highly
predictive of V4 neural responses, suggesting top-down performance constraints directly

shape intermediate visual representations [225].

3.2.5 LSTM Networks

A shortcoming of convolutional neural networks (or any feedforward neural network) is
that they lack memory. Memory is essential for correct inference in problems where input
is a sequence of observations rather than just one e.g., action recognition in a video (a

sequence of frames) vs. object recognition in an image.

Recurrent neural networks (RNNs) have been introduced for such sequence prediction
problems. The basic idea behind RNNs is simple: by adding feedback to a feedforward
network, we can build a network that at each time step receives both the current value
in the sequence and its own previous output (calculated on the preceding value in the
sequence). This feedback connection allows the network to maintain information about
previous input values in the sequence. In practice, such RNNs fall short of learning long-

term dependencies due to the well-known problem of vanishing/exploding gradients [19].
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To address this shortcoming, Hochreiter and Schmidhuber [91] proposed long short-term
memory (LSTM) networks, which can remember relevant information for long periods of
time while forgetting irrelevant information. More specifically, each LSTM unit is equipped
with a system of gating units that controls the flow of information. This gating system
allows the time scale of information integration to dynamically change based on context

because the integration time constants are output by the cell itself not fixed parameters
[75].

Since the introduction of LSTMs, many papers have been published improving them and
quite a few different variations have been suggested [74, 70, 75]. A widely-used variation
of LSTMs, proposed by Gers et al. [71], is composed of an input gate, an output gate and
a forget gate. Figure 3.10 depicts an LSTM unit (cell). A network that contains at least
one such unit is called an LSTM network. At time step ¢, in addition to the main input
x; (activity vector of the layer that precedes the LSTM in the network), the LSTM unit
receives two other input vectors ¢, (cell state at the previous time step) and h;_; (output
at the previous step). Given these inputs, the unit generates the cell state at the current

step ¢; and the output h;.

More formally, the forget gate’s activation vector f, € R" (where h is the number of
hidden nodes inside the LSTM unit) at time ¢ is computed as,

ft = O‘(Wth + Ufht_l + bf), (322)

where o denotes sigmoid function, W; € R"*¢ (where d is the number of features to
the LSTM unit), and Uy € R"™*" are the weight matrices and b; € R" is the bias. The

input gate’s activation vector i, € R" at time ¢ can be calculated as,

it = O'(VVZXt + Uiht—l + bz), (323)

where W; € R"*? and U; € R"" are the weight matrices and b; € R” is the bias. The

output gate’s activation vector o, € R" at time ¢ is computed as,
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h, =~

X;

Figure 3.10: Long short-term memory (LSTM) unit. A typical LSTM composed of an input
gate (purple box), an output gate (blue box) and a forget gate (red box). The input gate decides
which new values flow into the unit, the forget gate decides which values remain in the unit, and
finally the output gate decides which parts of the cell state c; are used to compute h; the output
vector. Xy, f;, iz, and o; are, respectively, input vector from the preceding layer to the LSTM
unit, forget gate’s activation vector, input gate’s activation vector, and output gate’s activation

vector.
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O = O'(WOXt -+ Uoht,1 + bo), (324)

where W, € R4 and U, € R"*" are the weight matrices and b, € R" is the bias. The

cell state’s vector ¢, € R" at time t is computed as,

c,=foc,1+1i0 tanh(cht + U1 + bc), (3.25)

where o denotes entry-wise product, W, € R"*?¢ and U, € R"*" are the weight matrices

and b, € R" is the bias. Finally, the output vector h, € R" at time ¢ is computed as,

h, = o; o tanh(c;), (3.26)

where tanh denotes the hyperbolic tangent function.

LSTM networks are trained using backpropagation through time (BPTT). BPTT be-
gins by unfolding the network in time. The unfolded network contains 7 copies that share
the same parameters, where 7 is the number of observations in the sequence. Next, the
backpropagation algorithm is used to find the gradient of the cost with respect to all the

network parameters (see Section 3.2.3).

3.2.6 Dropout

Dropout, proposed by Srivastava et al. [199], is a computationally-cheap regularization
technique that prevents overfitting in deep neural networks. At every step of training,
each hidden unit is randomly omitted (dropped) from the network with a determined
probability. This approach prevents the hidden units from learning correlated features
that are only useful together and more likely represent noise [78]. During inference (test
time) all hidden neurons are used (no dropouts), while their activities are scaled so that

the overall magnitude of the hidden neurons stays the same as training time.
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3.2.7 Batch Normalization

Batch Normalization (BN), proposed by Ioffe and Szegedy [99], is an effective technique not
only for improving the performance of neural networks but for speeding up their training.
The idea is to normalize (transform) the activities of each hidden layer such that they have
a fixed mean and variance, which are learned during training. More formally, we can write

this transformation of a hidden unit’s activities within a mini-batch z;s — y;s as,

x; — Blxy]

e 7\/Vow[xi] +e

where F[z;] and Var[z;] represent the mini-batch mean and variance, € is a small number

+ (3.27)

(e.g., le-5) to avoid division by zero, and « and [ are trainable parameters.

BN effectively reduces an undesirable phenomenon, called internal covariate shift. This
covariate shift exists because as the parameters of a layer change during training, the input

distribution of all its following layers will change too [99].

BN also decreases overfitting because it has regularization effects. Namely, activation
of each hidden unit is first subtracted and then multiplied by random values (mini-batch’s
mean and standard deviation) at each step of training. Therefore, each layer learns to be

robust to variation in its input.

Batch Normalization at Test Time

At test time, we might only have one sample (not a mini-batch) to work with. This means
that we no longer have a mini-batch to calculate the mean and variance from. Instead, we
estimate the mean and variance of the whole dataset (population) during training. The

most popular approach to estimate these values is to use an exponential moving average.
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Combining Dropout and Batch Normalization

While some papers (e.g., [35]) suggest that using Batch Normalization (BN) together with
Dropout achieves a better performance, Li et al. [1 18] showed both theoretically and numer-
ically that combining the two often leads to a worse performance. Indeed, my experiments
(on the networks that I explain later in the thesis) agree with their finding: the best

performance has been achieved using only BN.

Concluding Remark

So far, T discussed the related neuroscience background (Chapter 2) and computer-vision
tools (Chapter 3), which have been used in the thesis. Next, I will describe the empirical
model that I propose for area MT.
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Chapter 4

A Video-Driven Model of Response
Statistics in the Primate Middle

Temporal Area

4.1 Introduction

The middle temporal cortex (MT) receives strong feedforward input from early visual areas
V1, V2, and V3 [130, 120], as well as direct sub-cortical input [194, 25]. It projects to the
higher-level middle superior temporal and ventral intraparietal areas, and also receives
strong feedback connections from these. Electrical stimulation of MT affects perception of
visual motion [117]. Inactivation or damage of MT impairs motion perception [113, ]
and the ability to smoothly follow a moving object with the eyes [144]. Tllusions in speed

perception have also been linked with subtle properties of MT neuron responses [27].

Consistent with these effects, many neurons in MT respond strongly to visual motion.
The spike rates of individual MT neurons vary with a number of stimulus features, includ-

ing direction and speed of visual motion, and binocular disparity. Many MT neurons are
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sensitive to motion in depth, i.e., toward or away from the eyes [51]. MT is the earliest vi-
sual region in which a substantial number of neurons solve the motion “aperture problem”,
responding to the actual direction of motion of a stimulus, rather than the component of
motion that is orthogonal to local edges, which requires only local computations [154, ].
In summary, MT exhibits a particular representation of visual motion, which is similar in

scope to scene flow [131].

Although much is known about this representation, and its causal role in visual motion
perception, some aspects of the relationship between the representation and ethologically
relevant functions are less clear. For example, the accuracy of smooth-pursuit eye move-
ment, self-motion perception, and motion-based segmentation may be sensitive to partic-
ular tuning properties or population statistics, in addition to artificial disruptions of MT
activity. Computational models can be used to study such relationships, and sophisticated
computational models of MT responses have been developed [118, 13]. However, I won-
dered if a new model could be developed that spans a more comprehensive range of MT
response phenomena, and captures MT response statistics in more detail. Rather than
building on existing mechanistic models of MT, I instead pursued an empirical model,
in which I directly specify the neurons’ tuning curves. This approach allows me to ap-
proximate the response statistics in almost arbitrary detail, without requiring a complete

understanding of how these responses arise in the brain.

4.2 Methods

4.2.1 Structure of the Empirical Model

The proposed model produces approximations of MT spike rates directly from input video.
I focus on producing spike rates, rather than spike sequences. As an aside, given these
rates, it is straightforward to produce Poisson spike sequences [52], including those with

noise correlations that are realistic for MT [212].
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The model structure is sketched in Figure 4.1. The model requires five fields as input.
The field values are defined at each image pixel z,y. The five fields are u(z,y) (horizontal
flow velocity), v(z,y) (vertical flow velocity), d(x,y) (disparity), c(z,y) (contrast), and

a(x,y) (attention). Section 4.2.2 below discusses calculation of these fields.

The response of each neuron is approximated as a nonlinear-linear-nonlinear (NLN)
function of these fields. The first nonlinear step requires calculation of four additional
fields for each neuron, each of which is a point-wise nonlinear function of the five input
fields. I refer to these functions as tuning functions (see details in Section 4.2.3). Each
of these tuning functions is used to scale the neuron’s response to a different stimulus
feature. Specifically, I calculate gs(u, v, c) (a function of flow speed and contrast), gg(u,v)
(a function of flow direction), g4(d) (a function of disparity), and g,(a,c) (a function of
attention and contrast). Whereas the first five fields are correlates of MT responses (e.g.,
velocity), these additional fields represent nonlinear tuning functions of these correlates.
In the excitatory part of a unit’s receptive field, each of these fields has a monotonic

relationship with spike rates when other fields are held constant.

The full model therefore requires calculation of four times as many of these tuning-
function fields as there are neurons with distinct sets of parameters. The model has uniform
response statistics across the visual field (similar to convolutional networks), so there is
one such set of parameters per distinct response channel in the MT layer. This number
can be specified at run time, but [ would expect it to normally be on the order of 100-1000,
therefore 400-4000 of these fields must be calculated by the full model. One additional
field per neuron is then calculated as the point-wise product of these fields (consistent with

data from [174, 211]). I refer to this as the neuron’s tuning field,

t(z,y) = 9s90949y- (4.1)

This completes the first nonlinear stage of the NLN model. Similar to convolutional net-
works, only one tuning field is needed per channel (feature map), corresponding to a set
of model parameters, regardless of the pixel dimensions of the channel. Henceforward,

when I talk about a “neuron model”, it should be understood that this “neuron model” is
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ultimately tiled across the visual field to simulate many neurons with different receptive

field centres.

The remaining linear and nonlinear steps consist of a conventional convolutional layer,
with one channel per MT neuron (I specify the number of MT neurons at instantiation
time, and choose parameters for each one as discussed below in Section 4.2.4). Kernels
combine tuning-field values ¢(z,y) over a receptive field. However (in contrast with typi-
cal convolutional layers with learned kernels), kernels are parameterized to resemble MT
receptive fields. The kernels include excitatory, direction-selective suppressive, and non-
selective suppressive components. Such components have been found to account well for
MT responses to complex motion stimuli [19]. The excitatory component of the kernel
models the neuron’s classical receptive field. This component has positive weights and
a Gaussian structure, which is elongated so that the axis of elongation is orthogonal to
the neuron’s preferred direction [167]. It spans a single channel of the tuning-field layer,
and therefore has a speed and direction selectivity that match that channel. The direction-
selective suppressive component also spans a single tuning-function channel. It has negative
weights, and is also modelled as a Gaussian function. Relative to the excitatory kernel,
it can be symmetrically larger, or elongated, or offset. For each neuron, I draw at ran-
dom from these spatial relationships with the proportions reported by Xiao et al. [223].
The preferred direction of this suppressive component is generally different from that of
the excitatory component. I draw this difference from the distribution in Cui et al. [19]
(their Figure 5). Finally, the non-direction-selective suppressive component receives the
same tuning-function channel with gy removed. It has negative weights and an annular
structure that I model as a rectified difference of Gaussians. The full kernel is the sum of
these components. When I fit tuning curves for speed, disparity, and direction tuning in
response to stimuli that are spatially uniform in these properties, I simplify the kernels as

broad Gaussian functions.

The final nonlinearity is,
f(z) = [Az + BJ, (4.2)
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composed of a half-wave rectification ([]..) followed by a power function ([|]"). A and B are

a scaling factor and a background spike rate, respectively.

I have chosen this form for the proposed model (versus other possible forms with differ-
ent orders of the linear and nonlinear parts), because the linear kernel must follow at least
some of the tuning curves for consistency with data from Majaj et al. [125] (see Figure
4.5). Also to avoid negative spike rates due to inhibitory surrounds, the final rectifying

nonlinearity must come after the linear kernel.

Eccentricity and Receptive Field Size

The visual cortex differs from convolutional networks in that the receptive fields of neurons
in many visual areas scale almost linearly with eccentricity (visual angle from the fovea).
This difference could be reduced by remapping the input images. However, to simplify use
of the model with standard uniform-resolution videos, I instead model the whole visual field
uniformly, as is typical in convolutional networks. There is also variation in receptive field
sizes at any given eccentricity. I modelled the spread of receptive field sizes on parafoveal

receptive fields (2-10 degree eccentricity) from Figure 2 of Maunsell and Van Essen [132].

4.2.2 Input Fields

The model requires contrast, attention, optic flow, and binocular disparity fields.

Contrast

The contrast field is calculated using the definition of Peli [160]. This is a local, band-
limited measure, in contrast with other notions of contrast (e.g., root-mean-squared lumi-
nance) that are global and frequency-independent. A local definition is needed to modulate

neuron responses according to contrast within their receptive fields (as opposed to remote
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Figure 4.1: Structure of MT model. The model uses nonlinear-linear-nonlinear models to
approximate neuron responses as functions of optic flow, contrast, disparity, and attention
fields. Optic flow, contrast, and disparity are calculated from input images, as described
in the text. An example of these fields can be seen for a video input with two patches of
random dots moving in opposite directions (i.e., up and down; with far disparity) where the
left patch was attended. Units for flow and disparity maps are deg/sec and deg. Poisson
spikes can optionally be generated at the estimated spike rates to emulate neural activity

more closely, but they are not used in this thesis.
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parts of the image). Frequency dependence allows me to match the contrast definition to

primate contrast sensitivity [173, 53].

In Peli’s definition, contrast at each spatial frequency band (i) is defined as a ratio of

two functions,

Q; ($a y)
cilz,y) = . 4.3
The numerator function is,

where [ is the image, g; is a spatial frequency dependent filter, and * denotes convolution.
The denominator function is,

i—1

li(ajay) :T—i_zaj(x’y)a (4’5)

j=1

where [ is the image mean. Peli suggested cosine log filters as the choice for g;s since an
image filtered by a bank of these filters can be reconstructed by a simple addition process
without distortion. However, to relate the contrast definition more directly to V1, I instead
used a bank of Gabor filters with four different frequencies and four different orientations

for a total of 16 contrast channels. I combined these channels in a weighted sum:

d(z,y) = Az, y), (4.6)

where Ays were chosen to approximate macaque contrast sensitivity [53, 54].

I then smoothed the resulting contrast field with a 2D Gaussian kernel, which was
meant to approximate integration over V1 cells, and scaled it so that its mean over the

image was equal to the root-mean-squared contrast measure:

() = Asearegauss filt(c (z,)). (4.7)
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Attention

Attention is typically driven by task demands, so in general it can not be derived from
images alone (in contrast with saliency). Recent models approximate top-down influences
[241]. However, in the context of training neural networks that have attention mechanisms
(e.g., [221]), the attention field should ideally be defined by the network itself, to align
attention modulation of activity with the network’s focus of attention. Therefore I treated
the attention field as an input to the model. To test the model, and to compare its output
with electrophysiology data, I manually defined attended stimulus regions by drawing

polygons around them in a custom user interface.

Flow and disparity fields

Flow and disparity fields were calculated using computer-vision algorithms. Specifically,
I used the Lucas-Kanade method [123] to estimate both optic flow and disparity from
images. This generally produced good fits to MT data (see Results).

The classical Lucas-Kanade algorithm does not capture large displacements, but this
limitation is addressed by a multi-scale version of the algorithm [129]. In this version,
the Gaussian pyramids method is used to repeatedly halve the image resolution. Flow or
disparity is then estimated at the lowest resolution first. Then at each finer resolution,
the immediate lower-resolution estimate is used to warp the earlier image, and the Lucas-
Kanade algorithm is used to find residual differences between the warped earlier image
and the later image. The multi-scale version of the algorithm also helps to solve the
aperture problem, since it finds estimates that are consistent with global motion apparent
in downsampled images. I typically used the multiscale algorithm in the simulations, with
3-5 scales. To simulate combined local and pattern motion selectivity [154], I mixed the

outputs of single-scale and multi-scale versions of the algorithm.

I also explored a variety of other algorithms for flow and disparity estimation, including

semi-global matching [90], Classic++ [201], loopy belief propagation on a Markov random
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field [69], and a convolutional neural network Zbontar and LeCun [228]. Several of these
methods extrapolated far beyond well-textured regions, e.g., reporting motion over the
whole image in response to a small stimulus. I interpreted this as being physiologically
unrealistic, because it involves lateral communication over the whole visual field. However
it does not actually expand the units’ classical receptive fields unrealistically, because there
is no response at zero contrast (see Equation 4.14). For the experiments, I used the Lucas-
Kanade with pyramids, because it is simple and well established, and I did not find other
methods to provide substantial advantages within the scope of this thesis. However, future

work may reveal such advantages.

4.2.3 Tuning Functions

Given these fields, the next step in approximating a neuron’s activity was calculation of
a new four-channel image that consisted of pixel-wise nonlinear functions of the fields.
Specifically, I calculated g;(u, v, ¢) (a function of flow speed and contrast), gg(u,v) (a func-
tion of flow direction), g4(d) (a function of disparity), and g,(a, ¢) (a function of attention

and contrast). These functions were adopted from previous studies, as described below.

Speed Tuning

I used a contrast-dependent speed tuning function, [119],

42— oxp (_ [log (q(s, )] ) | (48)

2
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where,
S+ Sp
sp(c) + 50

s = vu? + v? is motion speed, s, is the preferred speed. The tuning curve has parameters

q(s,c) = (4.9)

s (offset) and o (width). Preferred speed is a function of contrast,
Ayc
c+ B,

sp(c) = (4.10)
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where c is contrast at each pixel (Equation 4.7) and A, and B, are additional parameters

that define a saturating dependence of preferred speed on contrast.

When stimulated with sinusoidal gratings, about a quarter of MT neurons show se-
lectivity for certain spatial and temporal frequencies, rather than speed (defined as the
ratio between spatial and temporal frequencies) [164]. Another quarter of MT neurons are
selective to grating speed, regardless of its spatiotemporal components, and the remaining
neurons form a continuum between these two behaviours. A similar distribution is also
observed in V1 [165]. However, more complex stimuli containing a broader spectrum of
frequencies, e.g., random dot fields, elicit in MT selective responses to speed. Since my
goal was to apply this model on naturalistic stimuli, which have broad frequency contents,
I included speed tuning and ignored selectivity for spatial and temporal frequencies in the

model.

Direction Tuning

Direction tuning was modelled as [220],

g = oxp (cos (6 — Qp) — 1) 4o, exp (cos (0 — 0, — 7r) — 1) 7 (411)

(og} o

where 6 = atan2(v,u) is motion direction, 6, 0y, and a,, are the preferred direction, direc-
tion width, and relative amplitude in null direction (i.e., 180 degrees away from preferred

direction), respectively.

Disparity Tuning

Similarly, disparity tuning was modelled using Gabor functions [50],

— (d_ dp)2

207 cos (27 fa(d — dp) + ¢a) , (4.12)

ga = €Xp

where d, and o4 set the centre and width of the Gaussian component and f; and ¢4 are

the frequency and phase of the oscillatory component.
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Attention and Contrast
Lastly, the gain function was [211, 128],

Agge(c), ifa=1
gy(a,c) = (4.13)
ge(c),  ifa=0

where A, is the attentional gain and g, is the contrast response function defined as:

A"
9ge(c) =

1B (4.14)

where A. and B, are the contrast gain, contrast offset, contrast exponent, and c is

contrast at each pixel (Equation 4.7).

Binocular Interactions

In many of the electrophysiology experiments that inform the model, monkeys were free to
converge their eyes on a single, flat computer display, with constant (near zero) binocular
disparity. However in a more complex environment, some MT neurons are tuned for
motion-in-depth [51]. To account for such 3D motion encoding of MT neurons, I extended

the proposed model by modifying Equation 4.2 as,
f(z) = [Arzp + Agzgr + B]'} (4.15)
where A;, and Ag are left and right eye gains, and z; and x i are weighted sums of tuning

functions in left and right eye respectively.

A limitation is that the model of motion-in-depth is not realistically integrated with
the model of binocular disparity. To retain realistic disparity tuning, I simply used the
disparity tuning field, and identical disparity tuning curves in each eye, so that disparity

and motion-in-depth tuning are orthogonal.
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4.2.4 Model Fitting
Tuning Curve Fits

To test the model, I fit various tuning curves from the electrophysiology literature using
Matlab’s nonlinear least-squares curve fitting function, lsqcurvefit (trust-region-reflective
algorithm). The fitting procedure for a given tuning curve selected the parameters of the
relevant tuning functions (e.g., gs(u,v,c)), along with parameters A and B of Equation
4.2. As the optimization was non-convex, I initiated it from at least 100 different starting

points for each neuron, and took the most optimal answer.

This approach was designed to have a high success rate, in order to reliably support
development of a rich statistical model of MT activity. Aside from failures of the opti-
mization procedure (which I minimized by restarting from many initial parameter values),
the approach has two potential failure modes. The first would arise from a poor choice of
nonlinear function, however I chose functions that are well supported by previous work.
The second would be a failure of the computer vision algorithms to estimate the relevant
parameters from the images. I generally had good results with the Lucas-Kanade algorithm

(see Results).

Parameter Distributions

I drew the neurons’ tuning parameters from statistical distributions that were based on
histograms and scatterplots in various MT electrophysiology papers. The model required
distributions of preferred disparity, preferred speed, speed-tuning width, attentional index
[211], and a number of other tuning properties. As a first step in approximating these
distributions, I extracted histograms and scatterplots of various tuning properties from
the literature using Web Plot Digitizer (https://automeris.io/WebPlotDigitizer/). I
then modelled each histogram using either a standard distribution (one of Gaussian, log-
Gaussian, Gaussian mixture, gamma, t location-scale, exponential, and uniform), or the

Parzen-window method [157]. For Parzen-window method, I selected the bandwidths using
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Silverman’s rule of thumb [192]. In each case, I chose the distribution model that minimized
the Akaike Information Criterion [3]. The parameter distributions are summarized in Table
4.1.

Correlation between Model Parameters

To make the proposed model more realistic, I looked for studies that examined the cor-
relation between the tuning parameters in area MT. Bradley and Andersen [29] found
that the centre-surround effects of disparity and direction are mainly independent of each
other, supporting the way I combine them over the MT receptive field. In another study,
DeAngelis and Uka [50] did not find a correlation between direction and disparity tun-
ing parameters. They reported a non-zero correlation between speed and disparity tuning
(neurons with higher speed preference tend to have weak and broad disparity tuning).
However, this correlation was weak (see their Figure 11.A) and therefore I ignored it in the
proposed model. They also found a correlation between the preferred disparity and the
disparity phase of the neurons whose preferred disparity is close to zero. I included this
correlation by modelling the conditional distribution of disparity phase given the preferred

disparity.

4.2.5 Dynamics of Component and Pattern Selectivity

The neurophysiology of the aperture problem in optic flow has been studied with over-
lapping pairs of drifting sine-wave (or square-wave) gratings at different angles, which
together form a percept of a plaid pattern moving in an intermediate direction. MT is
the earliest visual area to solve the aperture problem, in the sense that many MT neu-
rons respond to the direction of the plaid pattern rather than the sinusoidal components
[142, |. More specifically, studies in alert monkeys have shown that direction selectivity
in many MT neurons evolves over time such that they become selective to the direction

of the pattern as opposed to direction of the components [200, ]. On the other hand,
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Table 4.1: Distribution families used for various tuning parameters, and sources in the
literature from which distributions were estimated. The number in the bracket specifies

the dimension of a parameter, for those that have more than one.

Parameter Distribution Source
Preferred direction Uniform DeAngelis and Uka [50]
Direction bandwidth Gamma Wang and Movshon [220)]
Null-direction ]

' t location-scale Maunsell and Van Essen [130)]
amplitude
Preferred speed Log uniform Nover et al. [119]
Speed width Gamma Nover et al. [119]
Speed offset Gamma Nover et al. [119]
Attentional index t location-scale Treue and Martinez Trujillo [211]
Contrast influence . )

2D Gaussian mixture Pack et al. [150]

on preferred speed (2)
Contrast influence Conditional on .

. . . Martinez-Trujillo and Treue [128]
on gain (3) attentional index
Preferred disparity t location-scale DeAngelis and Uka [50]
Disparity frequency Log normal DeAngelis and Uka [50]

, . Gaussian mixture '
Disparity phase DeAngelis and Uka [50]
(two components)

Ocular dominance t location-scale DeAngelis and Uka [50]

CRF size t location-scale Maunsell and Van Essen [132]
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studies in anesthetized monkeys reached conflicting results where one study [155] reported
that pattern selectivity of M'T neurons was significantly impaired in anesthetized animals
(where only 7% of MT cells were pattern selective as opposed to 60% in alert animals)
while several other studies [142 , , | reported the same proportions of pattern
selective neurons in MT as observed in alert animals. Among these studies, Smith et al.
[197] conducted the most comprehensive experiment to investigate the MT neural response
dynamics by examining the responses of 143 MT neurons over cumulative time windows,
and reporting the Z-transformed pattern- and component-response correlations (Z-scores).
They classified each of the cells, based on their Z-scores in the last time window, as pattern

direction selective, component direction selective, or “unclassified”.

Based on this study, the proposed model approximates the distributions of pattern
and component selectivity in each time window, and also realistic trajectories of the mean
selectivities of each category of cells. To reproduce this behaviour, I first fit 2D Gaussian
distributions to scatterplots of pattern and component selectivity (Figures 3 and 5 of
Smith et al. [197]). To create a model of an n-neuron population, I drew n samples from
the distribution for each time window. Then, to model each cell, I grouped together one
pattern/component selectivity sample from each time window, as follows. Starting from the
final time window, I classified the pairs to one of the three classes (pattern, component,
or unclassified, as in [197]). Then I used the Hungarian algorithm [113] to match each
sample in the second-last time window with a sample in the last time window. The match
minimized the total of Euclidean distances between matched pairs of samples, except that I
perturbed these distances with Gaussian noise, 0 +/- 2.55SD, to reproduce overlap between
groups in the second-last time window. I continued this assignment process backwards in

time until the pairs of the first time window were assigned to those of the second.

I produced responses with specified pattern and component correlations by combining
pure pattern and component responses. To do this, I began by drawing a direction-tuning
width sample. I then calculated the correlation between the pattern and component re-
sponses, 7, (which depends on the direction-tuning width), and I calculated the par-

tial pattern and component correlations R, and R, from the corresponding Z-scores. I
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then constructed a new signal S; = F(S,, S, p) where F' is a function of the component-
direction-selective response (S.), pattern-direction-selective response (.S,), and a vector of
parameters p. I found the parameters p in an optimization process whose objective was

to fit the partial pattern and component correlations (R, and R,).

I tried the simple additive form for F
St = F(Sca Spvp) = plsc +p25p7 (416)

but this gave poor results. I therefore considered three other forms,

1. Multiplicative, S; = F(S,, Sp, ) = p1Sc + p2S, + p3SeSy,
2. Expansive S; = F(S., Sy, p) = p1Se + p2Sp + p3(Se + Sp)?,

3. Compressive S; = F(S., Sy, p) = p1Se + p2Sy + p3(Se + Sp)°.

(see Results for comparison).

4.2.6 Comparison With Previous Models

I compared tuning curves of the proposed model to the models of Nishimoto and Gallant
[118] and Baker and Bair [13], with some modifications. I chose these models because they
are recent and video-driven. Both build on a previous influential MT model [180]. Below
I describe my adaptations of these models. Note that I only use these models to provide

points of comparison with my empirical model, which is otherwise unrelated.

In the model of Nishimoto and Gallant [I18], a video sequence first passes through
a large bank of Vl-like spatiotemporal filters with rectifying nonlinearities. The filter
outputs are combined over local neighbourhoods through divisive normalization. Finally,

the normalized outputs are weighted optimally to approximate neural data.

As in Nishimoto and Gallant [118], I used a bank of N = 1296 filters, including those

with spatial frequencies up to two cycles per receptive field. In a departure from Nishimoto
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and Gallant [118], I used multivariate linear regression to optimize the weights, as in Rust
et al. [180]. More specifically, to optimize the weights, I generated training and testing
movies for each tuning curve. Each movie was 2000 x M frames in length, where M was
the number of data points in the tuning curve. I used the training movie as input to the

model and found the weights that minimized the error function,
E(W) = |Xirainw — R|” + Allw]*, (4.17)

where w € IR!'%N is the weight vector, Xy qim € IR20MXION ig 5 matrix containing nor-
malized V1 responses (from the spatiotemporal filters) when the training movie was used
as input, R € IR?"M i5 a vector containing the MT responses, and \ is a regularization
constant. The optimal weights that minimize this error function can be computed from,
wW = <XT

train

-1
Xtrain + )\[> XT

train

R, (4.18)

where T denotes matrix transpose, —1 denotes matrix inverse, and I denotes the identity

matrix.

The model of Baker and Bair [13] is composed of two cascaded circuits. The first circuit
calculates the motion response while the second calculates disparity. However, they used
only the first circuit to approximate the motion tuning of MT neurons. I implemented
their motion circuity, which is similar to that of Nishimoto & Gallant, but includes an

additional V1 opponency stage.

The motion circuity described by Baker and Bair [I13] included a population of units
tuned to different motion directions. However, their population did not span multiple
motion speeds or texture frequencies. To make the model respond realistically to a wider
range of stimuli, I replaced their groups of twelve direction-selective units with the same
filter bank that I used for the Nishimoto and Gallant [118] model (1296 filters). A separate
filter bank was used for each eye (2592 filters in total). I used the same procedure to find
the optimal weights as I did for Nishimoto and Gallant [118] model. More specifically,

given the normalized responses of spatiotemporal filters corresponding to the left and right
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eye X! . and X7 . shown the same training movie (zero disparity), I first calculated the

motion-opponent suppressed responses in each eye Ol . and O, . For example for the
left eye,
I I
Otrain = Xt’/‘ain - Cozangmm] e (419)

c 1R2000M xN r

train

where Y7

 in such that each column corre-

is the result of reordering X
sponding to a filter’s response with direction 6 was replaced by the column corresponding
to the opponent filter (i.e., a filter with 6 —180° direction) and c,,, is the motion-opponency
parameter (e.g., ¢,y = 0.5 means the normalized V1 responses from the opponent motion

filters are scaled by 0.5 before being subtracted). Finally, [+ denotes half-wave rectifica-

tion.
[ then calculated the binocular-integrated response in the left and right eye, M, . and
M}, ;- For example for the left eye,
le‘,rain - boimm + (1 = b) Ofrain: (4.20)
where b is the binocular-integration parameter. I set b = 0.5.
I defined the error function,
B(w) =[Pyanw — R|* + Allw|, (4.21)

IRZOOOMX 2N

where w € IR?N is the weight vector, Piqin € is a matrix containing the

concatenated binocular-integrated responses O! and O} when the training movie

train train
was used as input, R € IR2000M

is a vector containing the target MT responses after
transforming by the inverse of nonlinearity a exp(bz), and A is a regularization constant. I

finally found the weights using regularized linear regression, as

train—%’

-1
- (Pg;mptmm n A]) P! R (4.22)

where T denotes matrix transpose, —1 denotes matrix inverse, and I denotes the identity

matrix.
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After finding the weights, the predicted MT responses to the test movie was calculated
as,
mt = aexp(bPreaw), (4.23)

where exp() denotes the exponential function, and a and b are the parameters of this

nonlinear function.

4.2.7 Prediction of Unseen MT Data

I validated the empirical model by predicting a neural dataset that had not been used
to develop or parameterize the model. Specifically, I used 73 speed-tuning curves from
a previous study where MT cells were shown patches of random-dot stimuli moving in
eight different motion speeds [27]. T created model neural populations of different sizes,
and found how well the single most-similar model neuron accounted for the response of
each MT cell. The inputs to the model were random-dot stimuli that were based on the

description in [27].

I also used this dataset to validate and test sensitivity to a related response distribution
parameter (see Section 4.3.3), specifically the scale parameter of the gamma distribution
from which I drew the speed-tuning widths (see Table 4.1). I compared how well the
proposed model predicted the speed-tuning dataset with my original scale parameter versus

a range of alternative scales.

4.3 Results

4.3.1 Tuning Curve Approximation Examples

I tested how accurately the proposed model could reproduce tuning curves of real MT
neurons from the electrophysiology literature. For each tuning curve, I generated the same

kinds of visual stimuli (e.g., drifting gratings, plaids, and fields of moving random dots)
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that were shown to the monkeys. I used these stimuli as input to the model, and optimized

the model parameters to best fit the neural data.

Table 4.2 summarizes the results of the tuning curve fits for the proposed model, which
I call Lucas-Kanade Nonlinear-Linear-Nonlinear (LKNLN), and my adaptations of the
previous models by Nishimoto and Gallant [118] (NG) and Baker and Bair [13] (BB). Note
that Baker and Bair [13] provide a software implementation of their model, but it has a
small filter bank (see Methods) that is inadequate for processing many stimuli. I optimized
relevant model parameters individually for each tuning curve. In my LKNLN model, there
are relatively few such parameters, because the tuning curves are independent, and I did
not change the calculation of the input fields. So only the parameters of the relevant tuning
function and final nonlinearity were optimized. For the NG and BB models I optimized all
the models’ variable parameters, including weights of the spatiotemporal filters, for each
tuning curve. Examples of tuning curve fits are shown in the following figures. Sources of
error in my empirical model include non-ideal behaviour of the computer-vision methods

operating on input images, and the data falling outside the tuning curve function family.

Figure 4.2 shows the speed tuning curves of four neurons (with different preferred
speeds) where the monkeys were shown fields of random dots moving with different speeds.
The proposed model approximates the neural data more closely than my adaptations of
the models of Nishimoto and Gallant [118] and Baker and Bair [13].

Figure 4.3 illustrates the speed tuning of a neuron for moving random dots in two cases:
when dot luminance was high, resulting a high contrast stimulus (Figure 4.3A), and when
dot luminance was low, resulting a low contrast stimulus (Figure 4.3B). As shown in the
figure, increasing the contrast not only modulated the response gain (peak spike rate) but
it also shifted the preferred speed (position of the peak on the speed axis). The proposed
model reproduces both these phenomena, whereas the previous models reproduce only the
first. Note however that my empirical model does not provide a mechanistic explanation
of the MT data, but only a fit.

Figure 4.4 shows models’ fits to data on the effect of attending to stimuli in a neuron’s
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#Tuning Curves | LKNLN | NG BB
Speed 11 (8) 0.0531 | 0.1075 | 0.1654
Speed/Contrast 2 (8) 0.0543 | 0.2959 | 0.3650
Attention/Direction 2 (12) 0.0384 | 0.0848 | 0.1100
3D Motion 8 (12) 0.2144 | NA | 0.2450
Stimulus size 2 (7) 0.0667 | 0.0841 | 0.0599

Table 4.2: Summary of RMSE comparison between the proposed model (LKNLN), Nishi-
moto and Gallant [118] (NG), and Baker and Bair [13] (BB) to the neural data for different
tuning parameters. The second column provides the number of tuning curves (along with

the number of points in each tuning curve). Note that the NG model is monocular, so it

does not reproduce binocular phenomena.
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receptive field. Attending to stimuli modulates responses of different MT neurons to vary-
ing degrees. While the proposed model received attention masks, there was no mechanism
for attention modulation in the other models. In my adaptations of these models, I mod-
ulated their responses with a scalar gain for attended stimuli. This gain was found such

that the mean-squared error of data and model responses were minimized.

Majaj et al. [125] showed that motion integration by MT neurons occurs locally within
small sub-regions of their receptive fields, rather than globally across the full receptive
fields. They identified two regions within the receptive fields of a neuron where present-
ing the stimulus evoked similar neural responses. Then, they studied motion integration
by comparing the direction selectivity of MT neurons to overlapping and non-overlapping
gratings presented within the receptive field. Since motion integration was local, the abil-
ity of the neurons to integrate the motions of the two gratings was compromised when
gratings were separated. The proposed model approximates this neural behaviour well
(see Figure 4.5). According to Nishimoto and Gallant [118], their model does not account
for this phenomenon, and extending it to do so would require including nonlinear interac-
tions between the V1 filters of the model, which would drastically increase the number of
parameters, making estimation more difficult. Other previous models that treat overlap-
ping and non-overlapping features identically [193, , 13] would also not reproduce this

phenomenon.

MT neurons also encode binocular disparity, with a variety of responses across the MT
population, including preferences for near and far disparities, and various selectivities and
depths of modulation. The proposed model closely approximates a wide variety of MT

neuron disparity-tuning curves (Figure 4.6).

Recent studies [51] have revealed that some MT neurons respond to 3D motion, con-
firming area MT’s role in encoding information about motion in depth. Figure 4.7 shows
the neural responses of two different neurons to monocular and binocular stimuli. One
neuron (Figure 4.7A-D) is tuned for fronto-parallel motion while the other neuron is tuned

for motion toward the observer (Figure 4.7E-H). The proposed model approximates both
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Figure 4.2: Speed tuning curves of four MT neurons, plotted on a logarithmic speed axis.
Responses have been normalized so that the peak response of each neuron is equal to 1.
Mean 4+ SD error for (A): 0.00 4+ 0.06 spike/s (LKNLN), 0.00 £ 0.18 spike/s (NG), and
0.06+£0.21 spike/s (BB); for (B): —0.0120.06 spike/s (LKNLN), —0.00+0.18 spike/s (NG),
and 0.09+0.23 spike/s (BB); for (C): —0.01 £ 0.06 spike/s (LKNLN), —0.00 % 0.08 spike/s
(NG), and 0.11 £ 0.21 spike/s (BB); for (D): —0.00 & 0.02 spike/s (LKNLN), —0.00 4 0.02
spike/s (NG), and 0.02 £ 0.09 spike/s (BB). Data replotted from Nover et al. [119].

types of neuron.

Size tuning is a result of antagonistic surrounds. Increasing the size of the stimulus
to a certain point (optimal size) will increase an MT neuron’s response, while larger-
than-optimal stimuli evoke smaller responses. Figure 4.8 shows an approximation of two
size-tuning curves using a symmetric difference-of-Gaussians kernel, one of three types that

I adapt from [223].
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Figure 4.3: Effect of contrast on speed tuning curves. A, Speed tuning in high contrast.
Mean + SD error: —1.1943.35 spike/s (LKNLN), —0.18+4.40 spike/s (NG), and 1.554+8.90
spike/s (BB). B, Speed tuning in low contrast. Mean + SD error: 1.19 4+ 2.97 spike/s
(LKNLN), 13.09 £ 17.83 spike/s (NG), and 3.22 4 24.84 spike/s (BB). Contrast modulates
the response and also shifts the peak (i.e., the preferred speed). While contrast modulates

the response amplitude in all three models, only the proposed model (LKNLN) accurately
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shifts the peak. Data replotted from Pack et al. [L50].
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Figure 4.4: Attentional modulation of direction tuning. A, When the stimulus inside the
RF was not attended. Mean 4+ SD error: —0.90 + 2.73 spike/s (LKNLN), —0.02 + 8.51
spike/s (NG), and 3.34 £ 11.26 spike/s (BB). B, When the stimulus inside the RF was
attended. Mean + SD error: 0.90 £ 4.63 spike/s (LKNLN), —1.73 &+ 7.44 spike/s (NG),
and —3.52 + 7.43 spike/s (BB). Neural data for both cases replotted from Treue and
Martinez Trujillo [211]. The proposed model (i.e., LKNLN) receives attention masks as
input, so I defined the masks so that they did not cover the stimulus for the unattended
case and covered for the attended case. For the other two models, I first found the best fit
for the unattended case by multivariate regression. Given the unattended solution I then
found the gain that minimized the error difference between the attended tuning curve and

the modulated unattended solution.
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Figure 4.5: Response of an MT cell to gratings and plaids placed within different regions
of the cell’s receptive field (RF). The response magnitude is plotted on the radial axis,
and the angular axis is the direction of motion. A D, The neuron’s response to grating
stimuli at two different patches within RF. B, E, The neuron’s response to plaids placed
at two different regions over RF. The plaid stimuli are made by overlapping two gratings
oriented 120° apart. Since this cell is selective for the motion of plaids independent of the
orientation of their components (gratings), it is classified as a pattern direction selective
(PDS) neuron. D, F, The two grating components of the plaids in (B,E) separated to
different parts of the receptive field. If motion integration in MT cells were global (i.e., if
these cells simply pooled all of their inputs from V1 cells), these plots would be similar plots
as (B,E). Instead, the response in this case is close to the component direction selective
(CDS) prediction, indicating that motion integration in MT cells are local rather than
global. The proposed model produces realistic responses. Neural data (red) and CDS
prediction (gray) replotted from Majaj et al. [125]; blue is the proposed model.
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Figure 4.6: Disparity tuning curves of four neurons. Data replotted from [56]. A, Near
(0.00 £ 1.96 spikes/s; mean error + SD). B, Far (0.50 £ 1.58 spikes/s; mean error + SD).
C, Tuned-zero (—0.43 £ 2.93 spikes/s; mean error + SD). D, Tuned inhibitory (1.38 £3.77

spikes/s; mean error £+ SD).

73



@
o

=©-Data
60 =4= LKNLN
BB

40

% 20

g

a 0f i

<2

% (E) (F) G) (H)

o

o 40

=

=

90 0 90 180 90 0 90 180

Direction (deg)

Figure 4.7: Examples of direction tuning of two MT cells to monocular and binocular
stimuli. A-D, An MT neuron tuned for frontoparallel motion. A-B, Direction tuning for
gratings presented monocularly to the left (A) and right eye (B). C, Direction tuning for
binocular presentation of identical gratings. D, Direction tuning for gratings drifting in
opposite directions in the two eyes. E-H, Responses of an MT neuron tuned for motion
toward the observer. Direction tuning curves for monocular gratings (E, F), binocularly
matched (G), and binocularly opposite motion (H). Neural data replotted from Czuba
et al. [1] in red, prediction of the proposed model (LKNLN) in blue, and prediction of
Baker and Bair [13] model (BB) in gray. Mean + SD error, A: -1.11 £+ 1.77 spikes/s
(LKNLN) and 4.62 4+ 10.63 spikes/s (BB), B: -0.25 + 7.04 spikes/s (LKNLN) and 5.70 +
11.39 spikes/s (BB), C: -0.61 £ 5.25 spikes/s (LKNLN) and 5.27 4+ 9.85 spikes/s (BB), D:
-0.71 4+ 12.91 spikes/s (LKNLN) and 8.95 4+ 9.40 spikes/s (BB), E: 1.48 4+ 2.88 spikes/s
(LKNLN) and 2.84 + 3.02 spikes/s (BB), F: 0.52 + 1.30 spikes/s (LKNLN) and 2.58 +
4.84 spikes/s (BB), G: -2.47+ 3.98 spikes/s (LKNLN) and -0.45 + 1.42 spikes/s (BB), H:
1.42 £ 4.96 spikes/s, (LKNLN) and 8.15 £ 10.85 spikes/s (BB).
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Figure 4.8: Two examples of size tuning curves. The kernels, which gave rise to the size
tuning in the proposed model (LKNLN), were radially symmetric difference of Gaussians
centred at the centre of video frames (the same as neuron’s receptive field centre). A,
Neural data replotted from DeAngelis and Uka [56]. Mean £+ SD error: -0.00 £+ 5.32
spikes/s (LKNLN), 4.21 £ 7.86 spikes/s (NG), and 2.18 £ 6.16 spikes/s (BB). B, Neural
data replotted from Pack et al. [I56]. Mean £ SD error: 0.00 £ 4.54 spikes/s (LKNLN),
-0.35 £ 2.50 spikes/s (NG), and -0.01 + 0.59 spikes/s (BB).
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4.3.2 Dynamics of Pattern and Component Selectivity

Figure 4.9 shows the distribution and dynamics of pattern and motion selectivity in the

empirical model. The model closely approximates the data from Smith et al. [197].

As described in the Methods, I experimented with four different ways of combining
pattern and component responses. To compare performance between these different forms,
I used the population Pearson correlation coefficient between Z-scores that I randomly drew
from the distributions, which were approximated for each time window, and the Z-scores
that I calculated after building the response Sy based on \S,, Sp, and p, which I found in the
optimization process. Table 4.3 summarizes the results for a population of 500 neurons.
The best results were obtained by the compressive form where I linearly combined pattern
response, component response, and a third term, which was constructed by passing the

sum of these two responses through a compressive nonlinearity.

4.3.3 Parameter Distributions

The empirical model is meant to closely approximate population activity in MT, so statisti-
cal distributions of parameters are also an important part of the model. Such distributions
have frequently been estimated in the literature. However, past computational models of
MT have typically not attempted to produce realistic population responses, except along

a small number of tuning dimensions [e.g., 119].

Figure 4.10 shows nine examples of fits of parameter distributions. In each case I chose
the best of seven different distributions according to the Akaike Information Criterion [3],
as described in the Methods.

4.3.4 Neural Response Predictions

Beyond examining fits of published tuning curves and distributions of response properties,

I further validated the model using a more detailed dataset of speed tuning in 73 MT
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Figure 4.9: Pattern selectivity of empirical model. A-E, Scatterplots of Z-transformed
pattern and component correlations (Z, and Z.) for 500 modelled neurons over time. The
red and blue dots represent the pattern and component neurons, respectively. The black
dots represent neurons which are not classified. For the final time window (E), I classified
each neuron based on its location on the Z-transformed-correlations plane as in Smith et al.
[197]. For other time windows (A-D), I used Hungarian algorithm to match each sample
in a time window (e.g., D) to its latter time window (e.g., E) so that the total Euclidean
distance between matched samples, perturbed with Gaussian noise (0 +/- 2.55SD), was
minimized. F, the time evolution of each class. Each data point represents the average Z,
and Z. values, of a particular class, in a time window whose ending time has been written
next to it (see Figures 5-6 of Smith et al. [197] for comparison with actual neural data; I do

not replot the data here because some of the dots are too dense to be extracted accurately).

7



Form 30-50ms | 30-70ms | 30-90ms | 30-110ms | 30-320ms
Additive 0.31 0.52 0.06 0.57 0.53
Multiplicative 0.65 0.98 1.00 0.993 0.80
Expansive 0.99 0.99 0.99 1.00 0.91
Compressive 1.00 1.00 1.00 1.00 0.95

Table 4.3: Summary of comparison between four different forms of combining component

and pattern direction selective responses.

Numbers indicate the population Pearson correlation coefficients between the sampled
and calculated Z-scores based on a specific form for the corresponding time window. For
example, 0.53 in the last column of the second row indicates that psampied,calcuiated = 0.53
where sampled refers to the population of 1000 sampled Z-scores (500 Z.s and 500 Z,s)
drawn from the modelled distribution of 30-320ms time window, and calculated means
the Z-scores calculated for S., S,, and S; where S; was calculated by combining S, and

S, signals in the additive form (see Equation 4.16). The compressive form had the best

A population of 500 neurons was modelled.

performance (highest Pearson correlation) in all time windows.
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Figure 4.10: Examples of parameter distributions. In each case I replot the data (his-
tograms) along with the selected distribution. A-C, speed parameters including preferred
speed (log uniform) in logarithmic space, speed width (gamma), and speed offset (gamma)
[119]. D-F, disparity parameters including preferred disparity (t location-scale), disparity
frequency (log normal), and disparity phase (Gaussian mixture) [50]. G, Attentional index
(t location-scale) [211]. H, Direction bandwidth (gamma) [220]. I, Ocular dominance (t

location-scale) [50].

79



cells, from a previous study [27]. This experiment involved random dot stimuli moving
coherently at one of eight different speeds (0.5, 1, 2, 4, 8, 16, 32, 64deg/sec).

I approximated the responses of these MT cells by creating a population of N synthetic
neurons of my empirical model. I chose N to be 8, 16, 32, 64, 128, 265, or 1048. At
each speed of motion, I recreated ten sequences of moving random dot stimuli (with the
same dot size, density, contrast, and replotting scheme as the original study) and fed them
to the synthetic neural population. The final response of each synthetic neuron in the
population at each speed was calculated as the average of the ten sequences at that speed.
Next, for each MT cell, I selected the synthetic neuron from the population that had the
highest correlation with that MT cell. T calculated the coefficient of determination (r?) as
the proportion of the variance in the MT cell, which was predictable from that synthetic
neuron. In summary, I used a nearest-neighbour approximation of each cell rather than

linear-regression from the full model population.

Because of the stochastic population parameters of the empirical model, two N-neuron
populations sampled from these distributions will not have identical responses. Therefore,
instead of a single N-neuron population, I created five populations, repeating the above

process for each population.

Figure 4.11 illustrates how the average explained variance for 73 MT cells increases as
the empirical model grows in size. Each point of the curve is the average of 365 (73 x 5)
r? values, because there were 73 MT cells and five different populations for any given

population size.

I repeated this process with various scale parameters of the gamma distribution (see
Table 4.1) from which the speed-tuning widths (see Equation 4.8) were drawn, to validate
this parameter and test sensitivity to it. I chose 64 as the population size N and again
created five different populations. As can be seen in Figure 4.12, there is a modest de-
pendence on this parameter, and the averaged explained variance is indeed highest when
the speed-tuning widths were drawn from the original estimate indicating my accurate

estimation of this parameter.
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Figure 4.11: Explained variance vs. population size of empirical model. As the population
of the empirical model grows, the probability of having a synthetic neuron with more
similar response increases. Each point and error bar, respectively, represents the average
and standard deviation of 365 (73 x 5) r? values (73 MT cells times five different model

populations for any given population size).
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Figure 4.12: Explained variance vs. the scale parameter of the speed-tuning-width gamma
distribution of empirical model (see text for details). I changed the scale parameter by
multiplying it with one of [0.25, 0.5, 1, 2, 4] values. The model population size was 64.
Each point and error bar, respectively, represents the average and standard deviation of
365 (73 x 5) r? values. The original scale parameter produced the best predictions on

average.
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4.4 Discussion

I developed a video-driven, empirical model of activity in the primate middle temporal
area (MT) that emulates many tuning properties and statistics from the literature. The
model uses well-supported tuning curves, and well-established computer-vision methods of

generating represented signals such as speed and disparity.

As far as I know, this is the most thorough video-driven model of MT population activity
developed so far. I expect that it will be useful in the future for examining relationships
between features of MT population activity and performance of tasks that make use of

visual motion information.

Compared with other MT models [162, |, a limitation of my approach is that its
responses are not produced by biologically plausible mechanisms. That is, the model
is empirical rather than mechanistic. This may impair the model’s ability to generalize
beyond the source data. This limitation might be mitigated if the model is used to guide
representations in more mechanistic models, such as convolutional networks (see Chapter

7), or perhaps more physiologically detailed deep networks.
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Chapter 5

Sensitivity Analysis of MT

Parameters on Visual Odometry Task

5.1 Introduction

The empirical MT model provides the possibility of investigating the influence of indi-
vidual MT response properties on task performance. More specifically, it is possible to
manipulate tuning statistics by changing the parameters of the model to closely explore
the relationships between representations and behaviour. In this chapter, I investigate how
changing two MT tuning features affect the visual odometry task, which is the process of

estimating self-motion from video.

For this investigation, I designed a convolutional neural network (CNN) that received
MT activity (i.e., output of the empirical model to video) and predicted velocities corre-
sponding to the motion of a synthetic camera system within a virtual world. The data
(i.e., video and ground-truth velocities) came from a novel synthetic odometry dataset,

which I created and used to train and test the network.

The two selected features of MT response were (1) direction-tuning bandwidth and (2)
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speed-tuning width. A large percent of MT neurons are sensitive to both direction and
speed. The tuning for direction and speed are highly relevant properties of MT code for
solving odometry. Finding how performance would be affected by manipulating direction
and speed-tuning widths was particularly valuable since the issue of optimal neuronal
tuning widths has received much attention in the literature [33]. Theoretically, arguments
have been made for both sharp [16, | and broad [I4, 67, 89, 73] tuning curves as
a means to increase encoding accuracy. However, combining the MT model with deep
networks created an experimental setting where I could look for the optimal tuning widths

for solving a realistic task.

Next, I give a more detailed definition of the odometry task, which is a key topic in
robotics. I also talk briefly on how the brain solves odometry with a focus on the role of

visual information.

5.1.1 Visual Odometry

The word odometry is a contraction of two Greek words: odos (meaning “route”) and
metron (meaning “measure”). In robotics, odometry refers to the process of estimating
change in position over time (with respect to a known initial position) by measuring ego-
motion of an agent (i.e., vehicle or robot). Odometry is an essential part of a SLAM
system. A simultaneous localization and mapping (SLAM) system addresses the problem
of a robot navigating an unknown environment. While navigating the environment, the
robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using

its map [208].

The traditional approach for solving odometry is wheel odometry. Wheel odometry
refers to estimating egomotion by integrating the number of turns of a robot’s wheels over
time. Since the accuracy of wheel odometry is prone to suffer from wheel slip, especially in
uneven terrain, alternative approaches have been proposed based on acquiring information
from different types of sensory systems. One good example of these approaches is visual

odometry.

84



In visual odometry (VO), the information, which is used to estimate egomotion of a
robot, comes solely from the image feed of a single or multiple cameras attached to the
agent and no other sensory input is used. More specifically, VO operates by incrementally
estimating the pose of the vehicle through examination of the changes that motion induces
on the images of its onboard camera(s). For VO to work effectively, sufficient illumination
in the environment and a scene with enough texture, to allow apparent motion to be
extracted, are vital. Also, frame rate should be high enough so that the consecutive frames

have sufficient scene overlap.

An extensive literature exists on VO where various methods, based on different ap-
proaches, have been proposed and compared (see Aqel et al. [9] for a recent review). Two
categories of these approaches are feature-based and flow-based methods. The feature-
based approaches involve extracting image features (e.g., lines, curves, and corners) be-
tween sequential image frames, matching or tracking the distinctive ones among the ex-
tracted features [9]. The flow-based approaches, on the other hand, first calculate the optic
flow field for each frame and then do further analysis (consists of fitting to a sum of trans-
lation and rotation templates) to estimate camera egomotion corresponding to the flow
field. The resulting sets of equations are often both highly over-determined and subject to
ill conditioned inputs [37]. Therefore, statistical methods such as least-median-of-squares

or RANSAC have been proposed to help screen out outliers and segment flow fields [11]

5.1.2 VO in Primate Brain

Primates use different sensory inputs (e.g., visual, auditory, and vestibular) to localize
where they are during navigation. Among these sensory inputs, visual information plays
the major role; so it is reasonable to expect the primate brain to implicitly solve the VO
problem. Interestingly, the primate brain seems to apply two different strategies to solving
this problem, each being conducted via a different brain circuitry (i.e., the dorsal and
ventral streams). The computation in the ventral stream is based on recognizing land

marks and features of the scene (like feature-based methods). The dorsal stream, on the
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other hand, encodes motion information to help the animal localize itself (like flow-based
methods).

MT is a key visual area of the dorsal stream, which encodes motion information (see
Section 2.2). Therefore, my approach of combing the MT model and deep networks for

solving odometry can be categorized as a flow-based method.

5.2 Methods

I chose direction-tuning bandwidth and speed-tuning width for sensitivity analysis. In the
MT model, both of these parameters were drawn from gamma distributions (see Table 4.1).
A gamma distribution has two parameters, shape and scale. I altered each of these two
gamma distributions by changing their scale parameters. Hence, the distribution of speed-
tuning widths and direction-tuning bandwidths changed and I could examine how these
changes influenced odometry performance. I also simplified the MT model by removing
the dynamics of pattern and component selectivity and used difference of Gaussian kernels

as receptive fields.

5.2.1 A Novel Visual Odometry Dataset

I needed a stereo odometry dataset with high frame rate, which had enough number of
frames (i.e., at least a few hundred thousand) with ground-truth trajectories for training
deep networks. The existing datasets for visual odometry include KITTI with 22 stereo
sequences (http://www.cvlibs.net/datasets/kitti/eval_odometry.php), Monocular
Visual Odometry Dataset (https://vision.in.tum.de/data/datasets/mono-dataset),
monocular RGB-D SLAM Dataset (https://vision.in.tum.de/data/datasets/rghd-dataset),
and the Wean Hall dataset (http://www.cs.cmu.edu/~halismai/wean/). However, all
these datasets lack one or several desired specifications. For example, many of them are

monocular while KITTI do not have enough samples for training a deep network.
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Figure 5.1: Two example stereo frames from novel odometry dataset. Both left and right

frames were 76 x 76 pixels.

Not finding an existing dataset with desired requirements, I created a new synthetic
dataset in Unreal Engine 4. I used the Modular Neighbourhood Pack, which contains a
residential neighbourhood that looks fairly realistic. More specifically, the virtual neigh-
bourhood contained houses, cars, and streets and it was surrounded by a natural landscape

of grass and trees with different shapes, sizes, and textures.

I used UnrealCV plugin [166] to move a stereo camera system along curvilinear paths
inside this virtual world. The baseline of the camera system was 60mm, which is within
the range of human interpupillary-distance. The dataset consisted of “moves” of six frames
each, starting at different locations and moving along different trajectories. For each move,
[ drew random medio-lateral, antero-posterior, and angular velocities, and collected six
grayscale 76 x 76 stereo frames (at 60 FPS). Figure 5.1 depicts two example stereo frames

from the dataset.

The dataset had 75000 moves for training and 9000 moves for validation and testing.
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Layer | # Kernels | Kernel Size | Shape | Pool | Nonlinearity
Conv-1 128 9x9 6 x 6 | None ReLU
Conv-2 128 9x9 6x6 |2x2 ReLU
Dense 1024 ReLU
Output 3 None

Table 5.1: Structure of the CNN used for sensitivity analysis of MT features on the visual

odometry task.

I then calculated dense direction, speed, and disparity fields (pyramidal Lucas-Kanade
method) as well as contrast fields (Peli method) for every frame of the sequence. For each
of these four fields, I fed the sequence-average field to the M'T model, to produce the input
for the deep network. The input therefore reflects average stimulus features over several

frames, roughly consistent with the low-pass properties of MT neurons [12].

Therefore, for each move in the dataset, the deep network was provided with MT
responses as input and medio-lateral, antero-posterior, and angular velocities as regression

targets.

5.2.2 Architecture of the CNN

I designed a convolutional network with two convolutional layers, one pooling layer, and
two dense layers. This design was a simplified version of the deep network, which I discuss
in Section 7.2.2, where the design was based roughly on the dorsal stream. The output
layer of this network had three units to estimate medio-lateral, antero-posterior and angular

velocities from the MT model. Table 5.1 summarizes the structure of this CNN.
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5.2.3 Training

The network was trained using the mean-square error (MSE) loss. More formally,
E=> (y—t.)" (5.1)

where t,s are target velocities and y,s are network outputs.

Adam (with the default parameters) [107] was used as the optimizer algorithm. Batch
Normalization (see Section 3.2.7) was also used after all layers of the network (except the
output layer) to reduce overfitting and speed up training. The CNN was implemented in
Keras [11] with TensorFlow [1] backend, and trained on an NVIDIA GeForce GTX Titan
Xp GPU.

5.3 Results

Figure 5.2 illustrates the RMSE of the odometry task vs. different scale parameters for
the gamma distribution of direction-tuning bandwidths. To change the bandwidth, I mul-
tiplied the original scale parameter, which I had estimated from literature, by each of
[0.25,0.5,1,2,4]. For each neuron of the population, I then calculated its direction-tuning
width (i.e., oy in Equation 4.11) using the minimum of the drawn direction-tuning band-
width and 360° . The oo symbol refers to not having any direction selectivity in the model
(i.e., direction bandwidth is infinite). I found the best performance at four times the orig-
inal scale parameter. To verify this, I created another three populations, all using four
times the original scale parameter. The average RMSE of these four populations was lower

than other cases, although the 0.5x, 1x, and 2x means differed by less than five percent. I

Note that adding an upper bound on the direction-tuning bandwidth meant that multiplying the scale
parameter by eight or any larger number (e.g., 8x or 16x) would often result in populations with 360° for
almost all neurons (as nearly all of the drawn values were larger than 360°). However in the 4x case, about
40% of the bandwidths were still smaller than 360° including a few with narrower than 120° bandwidths.
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Figure 5.2: Task performance comparison with respect to changing direction-tuning-
bandwidth distribution of the empirical model. To change the distribution I multiplied
the original scale parameter of the modelled gamma distribution with [0.25,0.5,1,2,4].
The oo symbol refers to the case where I omitted direction selectivity of the response. For
four times the original scale parameter case, I created four different populations (hence the
error bar). The standard deviation of the target velocities of the validation set was 1.54

cm/frame.

tested statistical significance of differences in mean absolute errors with each of these scale
factors, compared to the 4x scale factor, using multiple t-tests. Only the 0.5x errors were

significantly higher (« < .05) with a Bonferroni correction for multiple comparisons.

Figure 5.3 shows the RMSE of the odometry task vs. different scale parameters for
the gamma distribution of speed-tuning widths (¢s in Equation 4.8), where I applied the
same idea for the speed-tuning widths as I did for the direction-tuning bandwidths. In
this case, two times the original scale parameter out-performed the other cases in all four
different populations that I tested. Mean absolute errors in the 2x case were significantly
lower than all other cases (o < .05), accounting for multiple comparisons. Comparing
the RMSE of oo-width speed tuning (Figure 5.3) to that of oco-width direction tuning
(Figure 5.2) reveals that elimination of direction tuning had a noticeably larger impact

than elimination of speed tuning.
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Figure 5.3: Task performance comparison with respect to changing speed-tuning-width
distribution of the empirical model. To change the distribution I multiplied the original
scale parameter of the modelled gamma distribution with [0.25,0.5, 1,2, 4]. The oo symbol
refers to the case where I omitted speed selectivity of the response. The standard deviation

of the target velocities of the validation set was 1.54 cm/frame.

5.4 Discussion

I this chapter, I presented a novel approach to study the relationships between MT re-
sponse properties and task performance. As opposed to the traditional approaches (i.e.,
microstimulation and lesion studies) for finding causal links between activity of a brain area
and a specific function, this approach essentially involves a model (e.g., the empirical MT
model). However, this approach can reveal specific relationships between individual tuning

features and task performance, something not possible with the traditional approaches.

Following this novel approach, I investigated the effects of modulating two MT tun-
ing features on solving a visual odometry task. These were direction- and speed-tuning
widths. The deep network, which was used for solving odometry, received MT activity and
was retrained after each MT feature modulation. While the network generally learned to
compensate for the moderate changes of the features, they still had a persistent effect on
task performance. More specifically, the odometry task performance was more sensitive

to moderate modulations of speed-tuning widths than to similar modulations of direction-
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tuning widths. On the other hand, elimination of direction tuning had a more significant

effect on odometry performance compared to elimination of speed tuning.

5.4.1 Future Work

While the optimal distribution parameters of the MT direction- and speed-tuning widths
were found, more brain-like network architectures, normalization and regularization tech-
niques should be used to validate these findings further. Overall, it will be more accurate
if the same network is optimized to solve a range of tasks. In addition to visual odom-
etry, visual tracking (which requires smooth-pursuit eye movement where MT is known
to play an essential role [119]) or motion-based classification of behaviour are appropriate

candidates for a more comprehensive study.

Another direction for sensitivity analysis is to remove deep networks and directly decode
the target velocities from populations of synthetic neurons with different model parameters
(e.g., different tuning widths) using the optimal linear decoding approach [185]. In that
case, the reconstruction performance of the decoders can reflect a lower bound on the

information that would be available for the downstream brain areas [55].
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Chapter 6

Functional Role of Suppressive
Surround of Area MT

6.1 Introduction

The receptive field (RF) of many visual neurons in different areas of the visual hierarchy
such as the retina [136], V1 [80], and MT [167] has a centre-surround organization. More
specifically, their RF consists of a central region (a.k.a. the classical receptive field) that is
surrounded by another region, which does not elicit a response when stimulated alone but
modulates neural activity when paired with a centre stimulus. This surround region (a.k.a.
the extra-classical receptive field) is most commonly suppressive, which allows neurons to
operate as differentiators, removing redundancy from the input and selectively encoding

discontinuity across the input space [15].

The surround of MT neurons has been extensively studied. These studies investigated
the MT surround direction and speed tuning [5], disparity tuning [29], contrast sensitivity

[156, 98], and spatial structure [167, 223].

From the functional point of view, MT surround has been hypothesized to be useful
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for figure-ground segregation [6] and the computation of three-dimensional shape from
relative motion [34]. Additionally, the suppressive surround may play a role in redundancy
reduction (by decorrelating neural responses [215]), input normalization [33], detection of
edge discontinuities [195], and estimating heading direction (by improving the estimation
of optic flow [19] as well as helping to identify the presence of moving objects during

navigation [170]).

The source behind MT surround suppression is not well-known [19]. The fact that MT
neurons in the cortical input layer IV lack suppressive surround indicates that surround
inhibition observed in MT is not inherited from its feedforward inputs [204]. On the other
hand, Liu et al. [122] found that local concentration manipulation of GABA or Gabazine,
which acts as an antagonist at GABA receptors, did not affect surround suppression sug-
gesting that local changes in the strength of inhibition by inhibitory interneurons has no

effect on the surround suppression in MT cells.

Without concerning about the source or mechanism of the surround suppression, Cui
et al. [19] developed a hierarchical MT model consisted of two suppression components
(i.e., a direction-selective component and a non-direction-selective component) that were
functionally relevant for studying MT activity in response to complex motion stimuli.
More specifically, they used continuously varying optic-flow stimuli composed of moving
dots whose velocity varied over space and time. This flow field was generated as a random
combination of six optic flow components: (1) horizontal and (2) vertical translations, (3)
expansion, (4) rotation, and (5) horizontal and (6) vertical shears. Their model had three
parallel components. In addition to the two suppression components (corresponding to the
surround), the model had an excitation component, which corresponded to the classical RF.
Each component had subunits with separate speed and direction tuning functions, which
were multiplied together to generate the response of the subunit (except the non-direction-
selective surround component, which only had speed tuning). They used the von-Mises
function as the direction tuning function and a linear combination of ten tent functions
as the speed tuning function for each subunit. The responses of these subunits, at each

component, were pooled using spatial weights (kennels), which were trainable parameters.
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Figure 6.1: Six examples of the spatial kernels that Cui et al. [19] found to best fit neural
data, reproduced from [19]. Each neuron has three kernels: excitation (red), direction-
selective surround (blue), and non-direction-selective surround (green). Note that for a
given neuron, the non-direction selective kernel is more dispersed than the direction selec-

tive kernel.

These weights were constrained to be non-negative for the excitation component and non-
positive for the suppression components. The final response of the neuron was calculated
by adding the responses of all three components, and passing the result through a static
nonlinearity. Their model was more accurate in predicting neural responses compared to
the motion-oppoency model, which had only the excitation component and no surround.
They also found that for a given neuron the non-direction selective surround is more
dispersed than the direction selective surround. Figure 6.1 illustrates six examples of the

spatial kernels that they found to best fit neural data.

[ adapted their modelling framework for MT into deep neural networks. Incorporating a
modified version of the empirical M'T model to these deep networks created a setting where
I could study the functional role of MT surrounds in solving realistic tasks. These tasks
were visual odometry and motion-based classification of different hand gestures, where

both demanded complex-motion estimation.
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6.2 Methods

6.2.1 Visual Odometry and Hand-Gesture Recognition Datasets

For each of the vision tasks, I employed a dataset on which I trained and tested the
corresponding deep networks. For visual odometry the same dataset, which I created in
Unreal Engine 4 (Section 5.2.1), was used. For hand-gesture recognition, I used the 20BN-
JESTER dataset (https://20bn.com/datasets/jester). This dataset was a collection
of about 150000 labeled video sequences with different resolutions and lengths, at 12 FPS.
Each sequence showed a human performing a hand gesture from a predefinded list in front
of a webcam. Examples of these hand gestures were thumbs up, shaking hand, swiping
left or right, pushing hand away, and drumming fingers. Overall, there were 27 possible

classes: 25 hand gestures, doing nothing, and doing other things.

For each video sequence in the dataset, I first resized the frames to 76 x 76 resolution,
and then calculated flow, disparity, and contrast fields. Since the frame rate was already
comparable to the temporal range of MT, unlike the higher frame rate of the odometry
task, I did not feed the sequence-average of these fields as input. Instead, I chose a twelve-
frame window from each sequence where the average flow was maximum compared to any
other window. This procedure led to capturing the most motion-informative part of the
sequence, while keeping the sequence small enough so a mini-batch could be fit on GPU

memory during training of the deep CNN!,

6.2.2 Structure of the MT Model

I modified the empirical MT model such that I could adapt the hierarchical framework that
Cui et al. [19] suggested to model MT for studying MT surround. Figure 6.2 illustrates
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