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Abstract

Terahertz (THz) technology offers exciting possibilities for various applications, includ-
ing high resolution biomedical imaging, long-wavelength spectroscopy, security monitoring,
communications, quality control, and process monitoring. However, the lack of efficient
high power easy-to-integrate sources and highly sensitive detectors has created a bottle-
neck in developing THz technology. In an attempt to address this issue, this dissertation
proposes a new type of graphene-based solid state travelling wave amplifier (TWA).

Inspired by the unique properties of electrons in graphene two-dimensional (2D) fluid,
the author proposes a new type of TWA in which graphene acts as the sheet electron beam.
These properties include higher mobility and drift velocity at room temperature, zero effec-
tive mass, relativistic behavior, and a truly 2D configuration. Since the plasma properties
of 2D electron fluid become more pronounced as the effective mass of electrons decreases
and electron mobility increases, THz devices based on graphene with massless quasiparti-
cles significantly outperform those made of relatively standard semiconductor heterostruc-
tures. Another significant advantage of graphene over semiconductors is that while the
high drift velocity and electron mobility of semiconductors 2D electron gas (2DEG) are
achieved only at very low temperatures, graphene has high mobility and drift velocity at
room temperature.

This thesis describes the theoretical and practical methods developed for the analysis,
design, and fabrication of a graphene-based THz TWA. It investigates the interaction be-
tween the electromagnetic wave and the drifting plasma wave in graphene by two methods.
In the first approach, electrons in graphene are modelled as a 2D Fermi liquid, and the
hydrodynamic model derived from a relativistic fluid approach is used to find the conduc-
tivity. In the second approach, the travelling wave interaction is analyzed using a quantum
mechanical model. The drifting Fermi distribution function is applied to the linear con-
ductivity response function of graphene obtained from random phase approximation. The
conductivity of graphene is obtained as a function of frequency, wave number, chemical
potential, and drift velocity. The result is consistent with the hydrodynamic approach.
Both methods show that negative conductivity, and thus gain, is obtained when the drift
velocity is slightly greater than the phase velocity. It is shown that the two methods
produce comparable results.

In the next step, a slow-wave grating structure is designed and an estimate of the
actual gain is obtained for the proposed graphene TWA structures. The Floquet mode
analysis of top grated slab and rectangular silicon waveguides is presented. Here, a new
theoretical method is developed to accurately estimate the field distribution of the first
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order space harmonic of a hybrid mode inside a periodic top-grated rectangular dielectric
waveguide. This method gives explicit expressions for the interaction impedance of the
slow wave grating structures that are then used to design the waveguide and the grating.
To verify the proposed approximation method, the results obtained with this approach are
compared with the simulation results.

Finally, a prototype structure is fabricated. The recipes developed for different parts
of the structure are presented. These parts include: a nanometer size grating, a sub-
millimeter dielectric waveguide, and biasing contacts on top of the graphene layer. The
developed recipes ensure reliable fabrication processes for large-area graphene devices. In
addition, two different methods used to fabricate long uniform gratings are compared. This
work ends by showing the measurement results obtained for the fabricated devices.

v



Acknowledgements

I would like to thank my supervisors, Prof. Safieddin Safavi-Naeini and Prof. Hamed
Majedi, for their patience, guidance and support. I would especially like to express my
gratitude to Prof. Safavi-Naeini whose diverse and deep knowledge and intuition made my
PhD studies a highly enriching experience. He gave me motivation and enough freedom to
try and explore my ideas and pushed me forward in times of disappointment and when I
doubted my work would have a successful outcome.

It is also my pleasure to thank my PhD committee members, Prof. Zoran Miskovic,
Prof. Dayan Ban, Prof. Simarjeet Saini, and Prof. Sujeet Chauhuri. I sincerely appreciate
Prof. Mona Jarrahi (University of California Los Angeles) for agreeing to be my external
examiner.

I spent much of my PhD working at the Quantum Nano Center (QNC) fabrication
facility. Starting with no experience, I learned a great deal from Dr. Nathan Fitzpatrik,
Brian Goddard and Rod Salandanan. I am especially indebted to Dr. Mohsen Raeiszadeh
who gave me far more help than I expected, and is the source for almost all I now know
about fabrication. I am also indebted to Dr. Anita Fadavi, Dr. Hadi Amarloo and Dr.
Nazy Ranjkesh for helping me through the fabrication challenges by sharing their valuable
experiences.

I also would like to thank all of my friends and colleagues at the Center for Intelligent
Antenna and Radio Systems (CIARS) with special thanks to: Dr. Aidin Taeb and Dr.
Ahmad Ehsandar who kindly supported me not only technically with the VNA and milling
machine systems and the design of the measurement holder, respectively but also by acting
as my living reference book with their advices; Dr. Suren Gigoyan who kindly help me in the
measurements; Dr. Behrooz Semnani for the fruitful discussions we have; Ardeshir Palizban
and Mohammad Fereidani for their help and advice in the packaging; and Dr. Arash Rohani
for the experience I gained in practical optics through projects we did together.

I also want to thank Mary McPherson not only for revising my thesis but also, and more
importantly, for giving me the courage and confidence I needed for writing. Last but not
least I want to thank all the friends who created joyful moments for me during the course
of this PhD and made my life in Waterloo pleasant. Special thanks to my dearest friends
Farinaz Forouzannia, Maryyeh Chehresaz, Elnaz Barshan, and Neda Mohammadizadeh.

Words cannot express the deep gratitude I have to my parents for the sacrifice they
have made for me. I owe all my success and happiness to them. Then, there is the joy of
my life and warm center of our family, my brother. Thank you for being there, Mehdi.

vi



Dedicated to my parents;

Tayebeh Abdellahi and Mahmood Ghafarian.

vii



Table of Contents

List of Figures xi

1 Introduction 1

1.1 THz gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 THz sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Semiconductor travelling wave amplifiers . . . . . . . . . . . . . . . . . . . 5

1.3.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Newly proposed graphene-based device . . . . . . . . . . . . . . . . . . . . 8

1.5 Analysis of the grating structure . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Objectives and research overview . . . . . . . . . . . . . . . . . . . . . . . 10

2 Introduction to graphene 12

2.1 Graphene lattice structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Graphene Hamiltonian and energy band structure . . . . . . . . . . . . . . 13

2.3 Relativistic Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Comparison between Graphene 2DEG and semiconductor 2DEG . . . . . . 15

2.5 Graphene surface plasmon polariton waveguide . . . . . . . . . . . . . . . 16

2.5.1 Two-layer structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Quantum mechanical analysis of travelling wave amplification in graphene 25

3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



4 Hydrodynamic model of graphene 34

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Analysis of travelling-wave amplifier using graphene 43

5.1 Analysis of general coupling in a periodic structure . . . . . . . . . . . . . 44

5.2 Analysis of Floquet modes in a slab dielectric waveguide with a grating on
top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 First-order space harmonic . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Gain and dispersion equations . . . . . . . . . . . . . . . . . . . . . 51

5.3 Analysis of graphene traveling wave amplifier on a rectangular dielectric
waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Analysis of Floquet modes in a rectangular dielectric waveguide with
a grating on top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Derivation of the field distribution of the first-order space harmonic 67

5.3.3 Gain and dispersion equations . . . . . . . . . . . . . . . . . . . . . 70

5.3.4 Verifying the proposed method using numerical simulation . . . . . 74

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Fabrication and measurement 82

6.1 Fabrication of the grating . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Transfer of the graphene layer and fabrication of the DC bias contacts . . . 94

6.3 Fabrication of the silicon waveguide . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusion 117

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

APPENDICES 122

ix



A Tight-binding approach 123

A.1 Electronic structure of graphene . . . . . . . . . . . . . . . . . . . . . . . . 124

B Coupled-mode analysis of Floquet eigenmodes 127

C Marcatili’s method 130

D Improved Marcatili’s method 136

References 138

x



List of Figures

1.1 Applications of THz technology [1]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Compact THz sources. The Pf 2=constant line is the power-frequency slope
expected for radio frequency devices; and the Pλ=constant line is the ex-
pected slope for some commercial lasers [2]. . . . . . . . . . . . . . . . . . 3

2.1 (a) Honeycomb lattice. a1 and a2 are the lattice unit vectors. (b) Brillouin
zone. b1 and b2 are reciprocal-lattice vectors [3]. . . . . . . . . . . . . . . . 13

2.2 Energy band diagram of graphene. The insert is an expanded band diagram
close to a Dirac point [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Proposed structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Fermi level versus surface carrier density . . . . . . . . . . . . . . . . . . . 18

2.5 The graphene SPP waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 The real and imaginary parts of conductivity versus frequency for different
values of chemical potential and relaxation time. . . . . . . . . . . . . . . . 20

2.7 Normalized (a) propagation constant and (b) attenuation constant of TM
wave carried by graphene layer on top of Si and SiO2 substrate. The solid
and dotted lines are plotted for graphene chemical potention 0.1 eV and 0.3
respectively. The τ = 10× 10−12s for all curves. . . . . . . . . . . . . . . . 21

2.8 Normalized (a) propagation constant and (b) attenuation constant of TM
wave versus chemical potentioal of the graphene layer for τ = 10µs at f=1
THz. The blue and red curves are for TM wave carried by graphene layer
on top of Si and SiO2 substrate respectively. . . . . . . . . . . . . . . . . . 22

2.9 The profile of normalized real part of (a)Re(Hy) (b)Re(Ez) (c)Re(Ex) (d)Re(Pex)
(e)Re(Pez) in the xz plane at f=1THz for µc=0ev and τ=3× 10−12. . . . . 23

xi



3.1 (a) Direct interband radiative transition, (b) indirect intraband transition . 26

3.2 Schematic demonstration of population inversion in graphene by increasing
the average momentum of electrons. The blue and orange circles are the
Fermi circles of filled states in k-space of an unbiased and biased graphene,
respectivly at T=0. The green and red curves denote, respectively, the lower
and upper energy states in k-space that satisfy both energy and momentum
conservation equations (eq. 3.1 and 3.2). . . . . . . . . . . . . . . . . . . . 27

3.3 Graphene sheet; lying in the y-z plane, illuminated with a TMz electromag-
netic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Real and imaginary parts of the conductivity versus β at f = 1 THz for
µc = 0.3 eV and two values Vd = 0 m/s(dotted line) and Vd = 3 × 105 m/s
(solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Real part of conductivity versus Vd/Vph for different values of the frequency
given Vd = 3× 105 m/s, τ = 10−11 and uc = 0.3 eV (top left); the chemical
potential given Vd = 3× 105 m/s and τ = 10−11 s at the frequency of 1THz
(top right); the drift velocity given uc = 0.3 eV and τ = 10−11 s at the
frequency of 1THz (bottom left); and the collision relaxation time given
Vd = 3× 105 m/s and uc = 0.3 eV (bottom right). . . . . . . . . . . . . . 31

3.6 The real part of four different interband and intraband conductivity terms
versus chemical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Real and imaginary parts of the conductivity versus β at f = 1 THz for
µc = 0.3 eV and two values Vd = 0 m/s(dotted line) and Vd = 3 × 105 m/s
(solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Real and imaginary parts of conductivity versus Vd/Vph at frequencies of
0.1, 0.3, 0.5 and 1 THz for a drift velocity of Vd = 105m/s. . . . . . . . . . 39

4.3 Real and imaginary parts of conductivity versus frequency for drift velocities
of Vd = 0.5, 1, 2× 105m/s where Ef = 0.3 eV. The propagation constant is
assumed to be frequency independent and equals β = 2π/d, d = 100nm for
all curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Real and imaginary parts of conductivity versus frequency for different val-
ues of Fermi energy where Vd = 105m/s and β = 2π/d, d = 100nm. . . . . 41

4.5 Real and imaginary parts of conductivity versus frequency for different val-
ues of viscosity where Vd = 105 m/s, Ef = 0.3 eV and β = 2π/d, d = 100nm. 42

xii



5.1 Proposed structure is a high-resistivity silicon waveguide with a grating
etched on its top surface covered by a graphene sheet onto which metal
contacts are attached . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Periodic waveguide with rectangular corrugation . . . . . . . . . . . . . . . 47

5.3 K1β
2
1 as a function of t/λ for different values of a, d and fd at f = 1THz.

(Blue dots in (a) are obtained from COMSOL simulation results, for a =
200nm, d = 200nm and fd = 0.3). . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 The longitudinal component of the electric field, Ez, versus z at the interface
of the grating and at the distance of a above and a/2 below the interface
at the frequency of f = 1 THz given d = 200 nm, a = 200 nm, fd = 0.3,
t = 46µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Intensity gain as a function of d (a) for different values of chemical potential
given t = 0.15λ, a = d, fd = 0.3 and Vd = 3 × 105 m/s and (b)for different
values of drift velocity given t = 0.15λ, a = d, fd = 0.3 and Ef = 0.3 eV
f = 1 THz (right) and f = 300 GHz (left) . . . . . . . . . . . . . . . . . . 55

5.6 Intensity gain as a function of d for different values of drift velocity given
t = 0.15λ, a = d, fd = 0.3 and Ef = 0.3 eV at two different frequencies
f = 1 THz (right) and f = 300 GHz (left) . . . . . . . . . . . . . . . . . . 55

5.7 Intensity gain as a function of frequency . . . . . . . . . . . . . . . . . . . 56

5.8 Depiction of fulfilled and unfulfilled boundary conditions for Marcatili, and
improved Marcatili methods. At each interface, fields that satisfy boundary
conditions are shown in green, all others are in red. Regions 1-5 are defined
in top left picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.9 Normalized mismatch energy density of Ex11 mode at core interfaces, Uer
(eq. 5.38), for b = 600µm at f = 150GHz. Comparison of four methods
calculating field distribution of Ex11 mode. . . . . . . . . . . . . . . . . . . 58

5.10 High-resistivity silicon waveguide with surface corrugation. . . . . . . . . . 60

5.11 Cross section of waveguide with grating layer on top (denoted by “P”). . . 61

5.12 Coupling factor as a function of b for different values of a with lp = 300nm,
tg = 300nm and md = 0.3 at f = 150GHz. . . . . . . . . . . . . . . . . . . 62

5.13 Coupling factor as a function of a for different values of b with lp = 300nm,
tg = 300nm and md = 0.3 at f = 150GHz. . . . . . . . . . . . . . . . . . . 63

xiii



5.14 (a) Normalized dispersion diagram of uniform rectangular silicon waveguide
versus a with b = 600µm. (b) Normalized dispersion diagram versus b with
a = 120µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15 (a) Coupling factor versus md for different values of tg; and (b) interaction
impedance versus tg for different values of md with a = 115µm, b = 600µm
at f = 150GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.16 Normalized amplitude of second Fourier series coefficient
∣∣∣a1a0 ∣∣∣ for rectangular

wavefrom, depicted in the inset, with A1 = 1 and A2 = 1/εSi. . . . . . . . . 72

5.17 Gain versus period of grating for different values of drift velocity given b =
600µm, a = 120µm, md = 0.3, tg = d, and Ef = 0.3 eV. . . . . . . . . . . . 73

5.18 Gain verus frequency for b = 600µm, a = 120µm, md = 0.3, d = tg =
680nm, Vd = 3× 105 m/s and Ef = 0.3 eV. . . . . . . . . . . . . . . . . . . 74

5.19 Simulated silicon image waveguide. Inset shows generated mesh. . . . . . . 75

5.20 Magnitude of electric field vector simulated by ANSYS electronics software. 76

5.21 Ez component of electric field on surface of grating along line lz (see Fig.
5.19), for a = 125µm, b = 600µm, md = 0.3, tg = 10µm, and lp = 20µm at
f = 150GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.22 Fourier series transform of Ez component depicted in Fig. 5.21. . . . . . . 78

5.23 Field distribution of the field along y direction. Solid line is simulated
field; dotted line is fitted curve; and colored area indicates inside of silicon
waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.24 Coupling factor versus b with a = 125µm, md = 0.3, tg = 10µm, and
lp = 20µm at f = 150GHz. Results obtained using proposed approximate
theoretical method (solid line); results obtained from simulation (dots). . . 80

5.25 Normalized amplitude of first-order space harmonic as function of md. Re-
sults obtained using proposed approximate theoretical method (solid line);
results obtained from simulation (dots). . . . . . . . . . . . . . . . . . . . . 81

5.26 Ey component of electric field on surface of grating along line lz (see Fig.
5.19), for a = 125µm, b = 600µm, md = 0.3, tg = 10µm, and lp = 20µm at
f = 150GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Three main stages of the fabrication process. . . . . . . . . . . . . . . . . . 83

xiv



6.2 Schematic of (a) isotropic wet etching with undercut and (b) anisotropic dry
etching with straight vertical walls. . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Process flow for two methods of grating fabrication. . . . . . . . . . . . . . 86

6.4 Microscope image of grating fabricated using Method 1 (Fig. 6.3(a)). . . . 87

6.5 Microscope image of a test pattern after etching of silicon. Numbers at the
bottom of each column represent the line width of the written test pattern
in micrometers, and the numbers beside each bar are the dose factors. All
gratings have the same period of 312 nm. However, as the filling factors
differ the colors of the test gratings also differ. . . . . . . . . . . . . . . . . 88

6.6 Microscope images of fabricated gratings with period of 312 nm with (a)
non-uniform filing factor of 0.3 at the middle and 0.15 at the end points,
(b) uniform filling factor of 0.5, and (c) uniform filling factor of 0.3. The
total length of each grating is 1 cm, but only 5 mm of each is shown in each
image. The inset in (a) shows the focused image at the middle and two end
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7 SEM image of the first fabricated grating at (a) the middle and at (b) the
end point. The silicon teeth, dSi, are 91.5 nm wide at the middle of the
grating and 45 − 60 nm at its end. A microscope image of this grating is
shown in Fig. 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8 SEM image of a grating sample for which the fabrication went wrong because
the PMMA residue was not fully removed after MIBK development. . . . . 91

6.9 SEM images of aluminum mask (a) before silicon etching, (b) after silicon
etching but before mask removal, and (c) a zoomed-out view of (b). The
rough light lines are the edges of the etched silicon teeth underneath the
thin aluminum layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.10 SEM images of two gratings with dSi ' 132nm (pictures on the right) and
dSi ' 92nm (pictures on the left), at three stages of the fabrication process:
(a) the PMMA mask (after step 5 of the fabrication process described in the
text); (b) the aluminium mask (after step 7), (c) the final fabricated grating. 93

6.11 Schematic illustration of the graphene transfer procedure. . . . . . . . . . 94

6.12 Photos of transferred graphene layers locate on top of gratings. In (a) and
(b), graphene layers transferred successfully with no wrinkles or bubbles.
Figure (c) shows an example of unsuccessful transfer of graphene with some
air bubbles trapped underneath. . . . . . . . . . . . . . . . . . . . . . . . . 95

xv



6.13 Defects in graphene after transfer on to the silicon substrate. . . . . . . . . 96

6.14 Graphene delamination after strong liquid pressure force applied with pipette. 97

6.15 Optical microscope image of sample after ma-N 1410 resist developed in ma-
D 533/S for (a) 50 seconds (no undercut) and (b) 2 minutes (with undercut).
The light brown region is where exposed resist remains, while the yellow
region is the silicon surface after removal of unexposed resist. The band
surrounding the yellow region in Figure (b) indicates an undercut of about
3 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.16 Fabrication flows for (a) patterning of graphene layer, (b) fabricating drain
and source contacts on the graphene, (c) adding insulator layer and (d)
fabricating top gate contact. For some steps, an optical microscope image
of a fabricated sample has been added. . . . . . . . . . . . . . . . . . . . . 99

6.17 Fabrication flow for shadow mask. For some steps, an optical microscope
image of a fabricated sample has been added. . . . . . . . . . . . . . . . . 100

6.18 Fabricated shadowmask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.19 Silicon waveguide with a supporting block attached to it. . . . . . . . . . . 101

6.20 Process flow for fabricating silicon waveguide using Al2O3 and Al mask to
etch waveguide. For some steps, optical microscope images and photos of
fabricated samples have been added. . . . . . . . . . . . . . . . . . . . . . 102

6.21 Process flow for fabricating silicon waveguide using AZ P4620 mask to etch
waveguide. For some steps, optical microscope images and photos of fabri-
cated samples have been added. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.22 SEM image of the tip of the waveguide. Photoresist layer did not adhere
properly to the substrate, causing lateral etching through the gap under the
resist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.23 (a) Remaining solvent in the resist out-gassed after exposure and filled ex-
posed area with micro-cavities. (b) Effect of a bubble on a sample after
photo resist development. (c) Bubble created during dry etching. (d) Effect
of a bubble created during dry etching on a sample after etching. . . . . . 105

6.24 Microscope image of two AZ-P4620 patterns with different exposure times:
(a) 75 seconds, and (b) 58.4 seconds. The black bond around the pattern
indicates the angled sidewalls. . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.25 Profile pattern of 11 µm AZ P4620 photoresist (a) before and (b) after post
bake at 110◦C for 5 minutes. Insets are corresponding microscope images. . 107

xvi



6.26 SEM image of silicon waveguide etched by (a) standard Busch process with
a patterned AZ-P4620 mask, and (b) Busch process with longer passivation
time step, with the same AZ-P4620 mask, postbaked at 110◦ for 5 minutes. 108

6.27 (a) Sample before etching mounted on aluminum-oxide-coated wafer. (b)
Fabricated sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.28 Measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.29 Simulated S-parameters of silicon image waveguide with length of lsi = 20
mm, width of wsi = 125µm, thickness of hsi = 300µm and taper length of
ltaper = 5.5mm, with and without attached supporting block. . . . . . . . . 111

6.30 Measured S-parameters of fabricated silicon waveguide with no grating and
graphene layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.31 DC bias circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.32 Measured S-parameters of fabricated graphene TWA over the frequency
range of 140-170 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.33 Calculated intensity gain versus frequency obtained from theoretical analysis
for a TWA structure with the same dimensions as the fabricated sample with
Ef = 0.3 eV and Vd = 3× 105m/s. . . . . . . . . . . . . . . . . . . . . . . 115

7.1 New metallic holder with 3D printed plastic cover. . . . . . . . . . . . . . . 120

7.2 Proposed alternative graphene TWA. . . . . . . . . . . . . . . . . . . . . . 121

C.1 Cross section of the waveguide. Regions 1 − 5 along with the corner re-
gions are indicated. The color plot represents the dominant electric field
component Ex, of the fundamental TM-like mode. . . . . . . . . . . . . . . 131

xvii



Chapter 1

Introduction

1.1 THz gap

The terahertz (THz) range of frequencies (0.1 to 10 THz; wavelengths of 3 mm down to
30µm) is a part of the electromagnetic spectrum that lies between microwave and infrared
light. THz waves have unique properties. For example, THz radiation is non-ionizing,
meaning that THz-radiation does not cause any changes in chemical structures. In ad-
dition, its absorption coefficient depends on the type of tissue and water concentration
through which it is passed. Therefore, THz waves can be used instead of harmful X-rays
for non-invasive medical and biological diagnostics. The unique THz spectral fingerprints
of different explosives, and the semi-transparency of most non-metallic materials in the
THz frequency region, make THz waves suitable for non-intrusive detection of explosives
and metallic weapons. Moreover, THz waves can be used for secure high-speed telecommu-
nications due to their high atmospheric absorption and wide bandwidth. THz waves are
also attractive in astronomy. Atoms and molecules that are central to the understanding of
star and planet formation as well as the evolution of matter in galaxies and the chemistry
of interstellar clouds, have strong spectral signatures at THz frequencies [4]. Also, more
than half of the cosmic background from the Big Bang is in the THz band. THz waves
have been applied to identify explosives, reveal hidden weapons, check for defects in tiles
on the space shuttle, and screen for skin cancer and tooth decay (Fig. 1.1).

Despite all of these fascinating features and potentially transformative applications, the
THz band still remains largely out of reach for commercial applications. The main reasons
are the lack of low cost and low complexity sources, amplifiers, and low noise receiver tech-
nology. At lower frequencies, oscillating circuits using high-speed transistors can efficiently
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Figure 1.1: Applications of THz technology [1].

generate microwave radiation; however, transistors and other quantum devices based on
electron transport have poor signal generation and low noise amplification performance.
In addition, they become highly complex and costly at the sub-THz range of frequen-
cies. In the infrared range of frequencies and higher, semiconductor lasers are satisfactory
sources. The frequency of semiconductor lasers can be extended down to only around 30
THz [5]. Between these two well established technologies lies the so-called THz gap, where
no semiconductor technology can efficiently convert electrical power into electromagnetic
radiation.

1.2 THz sources

Currently available THz sources fall into four broad categories (Fig. 1.2):

1) Vacuum electronic devices (VEDs), including backward-wave oscillators, klystrons,
grating-vacuum devices, travelling-wave tubes (TWTs), and gyrotrons. VEDs provide the
highest power at lower THz frequencies (< 0.7THz). Realization of THz VED sources
requires high bias voltages, precise and complex electromagnetic circuit fabrication, and
high-quality electron beam generation and control. Thus, the highly complex fabrication
process and large-vacuum packaging are the main challenges.
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Figure 1.2: Compact THz sources. The Pf 2=constant line is the power-frequency slope
expected for radio frequency devices; and the Pλ=constant line is the expected slope for
some commercial lasers [2].

2) Lasers, including free electron lasers, optically pumped molecular lasers (OPMLs),
and quantum cascade lasers (QCLs). Lasers exhibit the highest average power at the
upper THz frequencies. Free electron lasers are ideal THz sources because of their large
bandwidth coherent high-power output. However, they are not portable, and large facilities
are required. OPMLs are used for applications that require coherent radiation at the
frequency range of 0.25 to 7.5 THz. Using advanced CO2 lasers, radio frequency (RF)
excitation, and cavity folding techniques, shoe-box sized reliable OPMLs can be constructed
[6]. Since the majority of the pump radiation in OPMLs is converted to heat, the inherent
efficiency of OPMLs is very low, typically ∼ 0.2%. The best efficiency reported is 1% [7].
OPMLs can work at room temperature. An output THz power of 100 mW is achievable
with high power pump lasers.

QCLs provide narrow band high output power at frequencies above 2 THz. They require
cryogenic cooling to achieve continuous wave operation. As a semiconductor laser, QCLs
can be categorized as solid-state sources, with their size measured in millimeters. However,
the overall packaging size is predominantly determined by cryogenic cooling requirements
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[8, 9].

3) Semiconductor sources include harmonic frequency multipliers such as gallium ar-
senide (GaAs) Schot- tky diodes, Heterostructure Barrier Varactors (HBVs) and transistor-
based frequency multipliers. Planar GaAs Schottky diode frequency multipliers can pro-
duce tens and even hundreds of microwatts of power at frequencies up to 2.7 THz [10] [11].
HBV-diode-based sources are the ones generally used at the lower end of the THz band.
They can be used at the initial stages of a THz frequency multiplier chain. An output
power and efficiency of 9.5 mW and 8%, respectively, at 300 GHz was reported for a
tripler in [12]. With recent advances in device technologies, semiconductor integrated cir-
cuit amplifiers have reached operating frequencies of 1 THz [13]. These amplifiers include
high electron mobility transistors (HEMTs), metamorphic HEMTs (mHEMTs), and het-
erojunction bipolar transistors (HBTs). The availability of THz transistors also means
that one can design frequency multipliers with integrated power amplifiers working at THz
frequencies.

4) Photonic sources use photodiodes and photoconductors, such as Uni-Travelling- Car-
rier (UTC) photodiodes and low-temperature-grown GaAs (LTG-GaAs) based photocon-
ductors, as mixers to downconvert the optical signal to the THz band. Of the four main
categories of THz sources, photonic sources have the lowest output level. However, very
wide frequency bandwidth can be achieved with photonic approaches [14–17](Fig. 1.2).

The aforementioned sources each have their own advantages and disadvantages. Some
are limited by their size, cost, or complexity; many are limited in output power or require
cryogenic cooling and dedicated facilities. For example, THz tube sources have been the
most important laboratory source at THz frequencies for high output powers and wide
tuning ranges. However, they cannot be exploited in commercial applications mainly due
to their size, cost and complexity. In terms of compactness and ease of integration, solid
state and photonic sources are the best options. However, unlike lasers and VED sources,
their output power levels are low, especially at frequencies close to or above 1 THz (Fig.
1.2).

Frequencies handled by traditional semiconductor amplifiers have been remarkably en-
hanced by the scaling of feature sizes, and are now approaching THz frequencies. The max-
imum frequency obtained to date in a conventional device is 1 THz, reached by a super-
scaled 25nm gate-length Indium phosphide (InP)HEMT. However, fundamental physical
limitations mean the end of further scaling. Devices with small gate lengths show severe
short-channel effects and large leakage currents. Therefore, smaller device feature sizes,
required for higher frequency operation, reduce available power output. Thus, it is un-
likely that transit time devices will achieve operation in the THz region with acceptable
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performance. This limitation can be avoided by utilizing travelling wave interactions.

1.3 Semiconductor travelling wave amplifiers

The essential principle of TWA operation lies in the interaction between electron beams
and EM waves. The EM waves must be slowed down to the same velocity as the electron
beam. The electromagnetic field modulates the speed of the electrons in the electron beam;
the electrons are no longer uniform and form electron bunches. The electron bunches react
with the EM field, resulting in a net transfer of energy from the beam to the signal and
thus amplification.

In TWTs, the electron beam is generated by an electron gun and then accelerated
in a vacuum by a high electrical potential. Either solenoid electromagnets or permanent
magnets are used around the tube to focus the electron beam. TWTs are characterized by
high gain, high power capability, low noise, wide bandwidth, and large size.

Inspired by the success of TWTs , researchers investigated the amplification of elec-
tromagnetic waves by utilizing the coupling between an electromagnetic wave propagating
in slow-wave circuits and the drifting plasma wave of carriers in semiconductors realized a
semiconductor TWA [18–23]. A simple analysis of this device was introduced by Solymar
et al. in 1966 [18]. This was a one-dimensional (1D) coupled mode analysis based on
earlier analyses of vacuum TWTs presented by Pierce (1950) [24]. A three-dimensional
(3D) analysis was presented by Sumi [20]. The first experimental evidence of this kind of
interaction using n-type Indium Antimonide (InSb ) semiconductors at 77K was reported
in [25]. Another experiment using InSb and germanium (Ge) at 4.2K, was reported by
Freeman et al. in 1973 [26].

In the first proposed semiconductor TWAs, the current-conducting semiconductor was
placed in close proximity to an external slow-wave structure (usually a helix or metallic
meander line) electrically insulated from the semiconductor. In these structures, the ex-
tremely small mechanical period of the external slow-wave circuit required for very high
frequency operation is hard to achieve. In addition, the coupling between the current
and the electromagnetic wave in such a structure is very weak. In 1974, Gover and Yariv
proposed a different structure in which the current medium and the external slow-wave
structure were integrated together in one monolithic semiconductor structure [27,28]. The
role of the external slow-wave structure is played by the semiconductor periodic corruga-
tion. To obtain acceptable coupling, the current-conducting layer should be formed close
to the corrugated surface. In [29], this structure was realized, and a 4 dB/cm electronic
gain in a 1200 V/cm electric field at V-band was reported.
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These studies conducted in the 1960s and 1970s did not lead to remarkable success,
mainly due to the poor semiconductor technology available at that time. More recently,
motivated by great successes in semiconductor technologies, similar solid-state TWAs were
reconsidered [22] [23].

In [22] an interdigital-gated AlGaAs/GaAs HEMT structure was used to investigate
the interaction between drifting carrier plasma waves and electromagnetic waves. In this
structure, a two-dimensional (2D) electron gas (2DEG) is formed at the interface of an
n-doped AlGaAs layer and an undoped GaAs layer. The interdigital slow-wave circuit is
placed on top of the thin AlGaAs layer close to the current-conducting layer. The measured
two-terminal admittance of the interdigital gate indicates the effect of interactions between
the surface plasma waves of 2DEG carriers and EM waves at 5 and 10 GHz. Although the
real part of the admittance tends to zero (no loss) if a biased voltage is applied, no actual
gain (negative conductance) is observed in measurements, unlike in theoretical results. This
inconsistency comes from ignoring the metallic loss and non-uniformity of drift velocity in
the theoretical analysis.

In [23], an AlGaAs/GaAs heterostructure was made in a small chip that was then
inserted into a GaAS rod waveguide. The slow-wave periodic structure was built mono-
lithically on the top of the heterostructure device. The structure is very similar to what
was proposed by Gover et al. [27]. A maximum gain of 8 dB/cm was measured in a 150
V/cm electric field at 70.2 GHz with a 2.6 mm-long chip with a 0.3 µm grating period.

In this thesis, a new TWA is proposed, in which a graphene layer is used instead of a
heterostructure semiconductor to generate 2DEG. To explain the advantages of graphene
as a promising material for THz TWAs, an introduction to graphene and its properties is
provided below. Chapter 2 presents a thorough comparison between semiconductor 2DEGs
and graphene 2DEGs.

1.3.1 Graphene

Graphene is a monolayer allotrope of carbon atoms with a 2D honeycomb lattice. Although
graphene (or 2D graphite) has been studied theoretically for more than sixty years, it was
only in 2004 that Novoselov et al. produced single layer graphene from the micromechanical
cleavage of graphite. Graphene is the building block of other carbon allotropes such as
nondimensional (0D) fullerenes, 1D nanotubes and 3D graphite. Its characteristics form
the basis for understanding the electronic properties in these allotropes.

The dispersion relation of electrons in graphene was first calculated within tight-binding
approximation in 1947 [30]. As a consequence of the high symmetry of honeycomb lattice,
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the band structure for graphene at low energies has a linear conical shape. Moreover,
in graphene, the conduction and valence bands touch each other at the Dirac points.
Therefore, graphene can be considered as a zero-band-gap semiconductor. Its linear band
structure is considerably different from the parabolic-band structures in conventional semi-
conductors. The most important graphene properties originate from this linear electronic
band structure. While in standard conductors, charge carriers obey Schrodingers equation,
the electron transport in graphene is governed by the Dirac equation. The charge carriers in
graphene mimic chiral relativistic particles with zero rest mass and an energy-independent
Fermi velocity that is approximately 300 times smaller than the speed of light.

Graphene is a zero overlap semimetal in which the charge carriers with concentrations of
up to 1013cm−2 and a room temperature carrier mobility of ∼ 20, 000cm2/V s are routinely
observed. The carrier mobility in graphene is weakly temperature-dependent. Therefore, if
impurity scattering was reduced, a high mobility of ∼ 200, 000cm2/V s could be achieved.
This mobility is higher than that of any other known material [31,32]. A carrier mobility of
up to 120,000 cm2/Vs has been observed in suspended graphene samples at 240 K [33]. The
absence of backscattering, weak electron-acoustic-phonon coupling, and the near-absence of
point disorder in the graphene lattice contribute to graphene’s high mobility [34]. Graphene
can sustain current densities of 5×108A/cm2, and has extremely high thermal conductivity,
up to 5000 W/m K at room temperature, 20 times higher than that of copper [35]. Despite
being only one atomic layer thick, graphene is the strongest material ever tested due
to its robust symmetric network of σ bonds [36]. Furthermore, this single atomic layer
can absorb nearly 2.3% of light in the visible range. Graphene shows remarkable optical
nonlinearities [37,38], with ultrafast response times and a broadband spectral range.

Having all these remarkable properties makes graphene a unique material. Since 2004,
its study has become an active field of research with many promising applications, includ-
ing as an energy storage material in supercapacitors, for flexible transparent conducting
electrodes in touchscreens and photovoltaic cells, and in low-loss tunable plasmonic de-
vices in THz frequency. It can also be used in the realization of very high frequency
transistors, ultra-wide band photodetectors, high speed modulators, and highly efficient
electronic mixers. Many of these applications and even more are discussed in [39–41]. A
brief introduction to graphene is presented in Chapter 2.

There are different methods for fabricating graphene: micromechanical cleavage, liquid-
phase exfoliation, Chemical Vapour Deposition (CVD), carbon segregation, and chemical
synthesis [42]. Micromechanical cleavage was the first method used to produce graphene.
This method involves peeling off graphite by means of adhesive tape [43], and gives the best
samples in terms of purity, defects, mobility and optoelectronic properties. Therefore, mi-
cromechanical cleavage provides a promising method to perform research on graphene prop-
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erties. However, large-scale samples are not feasible with this method, and the graphene
sheets obtained are less than a millimeter in size. Among the various methods, CVD is
more often used to obtain large scale graphene sheets [44,45].

1.4 Newly proposed graphene-based device

Inspired by the heightened properties of electrons in graphene 2DEG versus electrons in
semiconductor 2DEG (e.g., higher mobility and drift velocity at room temperature, zero
effective mass, truly 2D configuration), the author is proposing a new type of TWA in which
graphene acts as the 2DEG medium. Since the plasma properties of 2DEG become more
pronounced with a decreased effective mass of electrons and increased electron mobility,
THz devices based on graphene with massless 2DEG significantly outperform those made
of relatively standard semiconductor heterostructures. Another advantage of graphene over
conventional semiconductor 2DEGs is that while the latter achieve high drift velocity and
electron mobility only at very low temperatures, graphene 2DEGs have high mobility and
drift velocity at room temperature.

The charged carriers in solid-state TWAs have a very low drift velocity and the phase
velocity of the slow wave in the TWA should be matched with this low drift velocity. The
low phase velocity results in a large propagation constant and consequently a large lateral
decay constant. Therefore, decreasing the distance between the conducting layer (where
the interaction and the energy exchange between the electromagnetic field and charged
carriers occurs), and the grating surface (where the maximum field occurs), significantly
increases the coupling and overall gain of the TWA. The monolithic semiconductor TWA
proposed by Gover et al. is so far the best design in terms of the coupling between the
electromagnetic wave and the conducting layer. In the new TWA proposed in this thesis,
stronger coupling can be achieved by placing the conducting graphene layer right on top
of the grating. Furthermore, the proposed structure has better performance and can work
at room temperature.

In the proposed device, a silicon waveguide-based technology is adopted, newly de-
veloped for millimeter (mm)-wave and THz applications [46, 48]. It is integrated with a
nano-scale grating etched on its top surface and covered with a DC-biased graphene sheet.

The fabrication of this structure consists of fabricating three integrated main structures:
the grating [49–51], the graphene layer attached to DC bias contacts [52–55], and the
silicon waveguide [56]. For each of these devices, different fabrication procedures have
been introduced. In this thesis, for each of these three parts reliable fabrication recipes
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are developed and combined to fabricate the first graphene TWA integrated in a mm-wave
silicon waveguide.

1.5 Analysis of the grating structure

In the proposed TWA, the slow-wave field is generated by a dielectric grating waveguide.
Therefore, part of this thesis is focused on developing a method for analysing and designing
the grating structure. Gratings are present in many applications, ranging from microwave
to optical frequencies. Based on the specific application, the gratings are designed to
support either bounded surface waves (as in slow-wave structures, microwave or optical
filters and distributed feedback reflectors in lasers), or to support unbounded leaky waves
(as in travelling-wave antennas and optical periodic couplers). Therefore, various methods
have been developed to study grating structures.

These methods can be divided mainly into two categories: numerical methods such
as Finite Difference Time Domain (FDTD) [57], Finite Element Method (FEM) [58, 59],
and Method of Moment (MoM) [60]; and semi-analytical methods such as transverse res-
onance technique [61–64], modal analysis [65–67], and coupled-mode theory [68, 69]. Ac-
curate evaluation of practical grating configurations requires a full-wave numerical ap-
proach. However, rigorous numerical methods are computationally complex (CPU time
and memory requirement). Both FDTD and FEM require the entire solution space to
be discretized, whereas, the MoM method requires discretization of only surface unknown
quantities (equivalent surface sources). To efficiently evaluate the spectral integrals in the
MoM approach, and to reduce the computational effort required, a number of methods
such as steepest descent and extrapolation methods have been introduced [70–72].

Despite their lack of accuracy and generality, analytical and semi-analytical methods
can provide significant insight into the behavior of grating structures. For example, the
Floquet-Bloch approach is specifically useful for energy band analysis. The Floquet mode
plays the same role in a periodical structure as the guided modes in a waveguide and can
be used to describe many interesting physical phenomena in grating structures.

Using the Floquet-Bloch approach, a modal analysis is applied to determine the space
harmonics in corrugated gratings on top of dielectric waveguides. This method was pre-
viously applied for analyzing Transverse Electric (TE) and Transverse Magnetic (TM)
modes in gratings on slab waveguides [73]. In this thesis, the analysis is extended to hy-
brid space-harmonics in gratings on rectangular dielectric waveguides. The Floquet mode
analysis is then used to design the silicon waveguide grating, and to optimize the interaction
impedance for the proposed TWA.
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1.6 Objectives and research overview

In Chapter 2, a brief introduction of graphene with a thorough comparison between semi-
conductor 2DEGs and graphene 2DEGs is presented.

This thesis research develops two analytical methods for the study of travelling wave
amplification in graphene. It is shown that under certain circumstances, wherein the carrier
drift velocity slightly exceeds the phase velocity of the electromagnetic wave, the interaction
between the electromagnetic wave and the drifting plasma wave leads to amplification of
the electromagnetic wave. Although the frequency range where amplification occurs is
from microwave to THz, the THz range of frequencies is the main focus in this research.

Travelling wave amplification in graphene is investigated by two methods: quantum
mechanical method (Chapter 3) and classical hydrodynamic method (Chapter 4). In Chap-
ter 3, a quantum mechanical approach is applied to obtain the conductivity of graphene
for drifting charge and for slow electromagnetic waves. Kubo’s formula expressions for
graphene conductivity [74] are only valid for small spatial dispersion, kvf << ~ω, in
steady state graphene, under local equilibrium condition. Neither of these assumptions is
applicable for travelling wave amplification conditions in graphene. The conductivity re-
sponse function of graphene for drifting charge carriers is derived using the drifting Fermi
distribution function and random phase approximation. In the expressions derived in this
thesis, the frequency and wave number dependent conductivity of graphene is obtained as
a function of chemical potential and drift velocity.

In Chapter 4, electrons in graphene are modelled as a 2D Fermi liquid, and the classical
hydrodynamic model is applied to them. Electrons in graphene behave like massless rela-
tivistic particles with an effective light speed of vf = c/300. The maximum drift velocity
of graphene is around 0.3vf . Therefore, to analyze graphene with drifting carriers we use
the hydrodynamic description derived from a relativistic fluid approach [75]. Based on
this hydrodynamic model, the induced current is calculated for a harmonic perturbation of
both stationary and uniformly moving charged carriers, and the conductivity is obtained
in the linear regime.

Methods presented in Chapters 3 and 4, show how the negative conductivity, and thus
gain, is obtained for drift velocities slightly greater than the phase velocity. The results
obtained from both methods are consistent in behavior; even having the same order of
magnitude. Even though some parameters such as graphene viscosity and the damping
factor are approximated with typical values given in the literature, the values obtained for
conductivity have the same order of magnitude, confirming the validity of the results.

Chapters 3 and 4 demonstrate the possibility of travelling wave amplification in graphene.

10



In Chapter 5, a slow-wave grating structure is designed, and an estimation of the actual
gain is obtained for the proposed graphene TWA structure. The travelling wave interaction
with the space charge wave in graphene can be described as a coupled wave problem [73].
With this approach, the interaction impedance of the proposed slow-wave structure is cal-
culated. In this chapter, a new method is developed for analyzing hybrid space harmonics
in gratings on rectangular dielectric waveguides.

The final step is to experimentally verify the developed theories and computational
results by fabricating and measuring a proof of concept prototype structure. Chapter
6 presents the proposed fabrication process and the measurement setup. For each step
of fabrication, different tested methods are discussed and reliable fabrication recipes are
developed. The measurement results confirm that graphene can be used for travelling wave
amplification.

Chapter 7 summarizes the achievements of this research and provides directions for
possible future work.
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Chapter 2

Introduction to graphene

This chapter first briefly introduces graphene and its band structure. Then, the properties
of graphene 2DEGs are compared with those of semiconductor 2DEG to explain why
graphene TWAs can outperform other solid state semiconductor TWAs. The SPP waves
of graphene are explored in the last section. These SPP waves can be applied to excite the
slow waves in the grating structure of the proposed Graphene TWA.

Graphene is a 2D allotrope of carbon atoms with a honeycomb lattice. It is known as
a building block for other carbon materials: graphite (3D), nanotubes (1D) and fullerenes
(0D). It was believed that 2D crystals were unstable and could not exist, until 2004,
when Novoselov and his co-workers produced a single layer graphene by means of a simple
mechanical exfoliation technique [76].

2.1 Graphene lattice structure

The carbon atoms in graphene are arranged in a hexagonal structure (Fig. 2.1(a)). Assum-
ing a basis of two atoms as a primitive unit cell, the graphene lattice can be represented
as a triangular Bravaice lattice with the primitive lattice vectors of

a1 = 3a′

2

(
1, 1/
√

3
)

a2 = 3a′

2

(
1,−1/

√
3
) (2.1)
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where a′ = 1.42A◦ is the distance between two adjacent carbon atoms. Correspondingly,
the reciprocal-lattice vectors are given by

b1 = 2π
3a′

(
1,
√

3
)

b2 = 2π
3a′

(
1,−
√

3
) (2.2)

Fig. 2.1(b) shows the Brillouin zone with the three high symmetry points of Γ, M and K.
The two points K and K ′ at the corner of the Brillouin zone are known as the Dirac points
and have particular importance in the physics of graphene.

Figure 2.1: (a) Honeycomb lattice. a1 and a2 are the lattice unit vectors. (b) Brillouin
zone. b1 and b2 are reciprocal-lattice vectors [3].

2.2 Graphene Hamiltonian and energy band struc-

ture

The basis of electron states contains two states belonging to the atoms from sublattices A
and B (Fig. 2.1 (a)). Therefore, the Hamiltonian is described by the 2 × 2 matrix. The
Hamiltonian of the graphene layer, derived from the tight-binding method, is [77]:

H = t

(
0 tf (k)

tf ∗ (k) 0

)
f (k) = ejk.δ1 + ejk.δ2 + ejk.δ3

(2.3)
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where t is the hopping integral, and δi i = 1, 2, 3 are the nearest-neighbour vectors (Fig.
2.1 (a)). The energy obtained from this Hamiltonian is

E± (k) = ±t
√

3 + g (k)

g (k) = 2 cos
(√

3kya
)

+ 4 cos
(√

3
2
kya
)

cos
(

3
2
kxa
) (2.4)

A detailed discussion of tight binding method and the derivation of the Hamiltonian
and the band-structure of graphene are presented in Appendix A. In Fig. 2.2, the full band
structure of the graphene obtained from eq. 2.4 is plotted [3]. As shown in this diagram,
if we limit ourselves to low energies, the band structure forms cone pairs touching at the
Dirac points; therefore, the linear dispersion relation of low energy electrons is seen.

Figure 2.2: Energy band diagram of graphene. The insert is an expanded band diagram
close to a Dirac point [3].

2.3 Relativistic Dirac equation

In the previous section, we saw that, near Dirac points, the electrons in graphene have a
linear dispersion. This dispersion can be obtained by expanding the Hamiltonian matrix
near one of the Dirac points K (or K′) as k = K+q (|q| � |K|), where q is the momentum
defined relative to the Dirac points [78]:
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H = ~vf
(

0 qx − iqy
qx + iqy 0

)
= ~vfσ.q (2.5)

where σ is the vector of the 2 × 2 Pauli matrices. This Hamiltonian is a relativistic
Dirac Hamiltonian, in which vf is the Fermi velocity:

vf = 3at/(2~) (2.6)

Since there are two sublattices, A and B, in the graphene structure, and as the elec-
tronic states near neutrality points are composed of two different sublattice states, the
wavefunction is described by two-component spinors. The two-component description for
graphene is similar to the one for spinor wavefunctions in QED, but the spin index for
graphene indicates sublattices rather than the real spin of electrons. Therefore, here, σ
refers to psedospin. The comparison of the energy of electrons in graphene, E = vfp, with

the energy of relativistic particles, E =
√
m2c4 + p2c2, implies that electrons in graphene

behave like massless Dirac fermions.

2.4 Comparison between Graphene 2DEG and semi-

conductor 2DEG

In order to use graphene as a natural 2DEG, it is conceptually useful to compare and
contrast graphene with the 2DEG in conventional 2D semiconductor structures such as the
Si inversion layers in MOSFETs, 2D GaAs heterostructures, and quantum wells. Transport
in 2D semiconductor systems has a number of similarities and key dissimilarities with
graphene.

The following features are the conceptual differences between 2D graphene and 2D
semiconductors:

(i) First, 2D semiconductor systems typically have a very large (> 1 eV) band gaps.
Therefore to provide 2D electrons and 2D holes, completely different electron-doped or
hole-doped structures are required. By contrast, in graphene, changing the polarity of
the gate voltage results in reversing the polarity of the carriers in the graphene. This
property is due to the gapless band structure of graphene. Another direct consequence
of graphene’s gapless nature is the always-conductive nature of 2D graphene, since the
chemical potential (Fermi level) is always in the conduction or the valence band. By
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contrast, the 2D semiconductor becomes insulating below a threshold voltage, as the Fermi
level enters the band gap.

(ii) Monolayer graphene dispersion is linear, whereas 2D semiconductors have quadratic
energy dispersion, leading to substantial quantitative differences in the transport properties
of the two systems.

(iii) The carrier confinement in 2D graphene is ideally two dimensional. In 2D semicon-
ductor structures, the quantum dynamics is two dimensional by virtue of the confinement
provided by an external electric field. Therefore, 2D semiconductors are quasi-2D systems
and always have an average thickness of hz ≈ 5 to 50 nm with hz < λF , where λF is the
2D Fermi wavelength.

(iv) Graphene systems are chiral, whereas 2D semiconductors are non-chiral. The unit
cell of the graphene contains two atoms from two different sublattices. Because of these two
sublattices, graphene quasiparticles are described by two-component wavefunctions, similar
to the description of spinor wavefunctions. However, in graphene, the spin index indicates
sublattices rather than the real spin of electrons. Therefore, it called pseudospin. This
pseudospin is linked to the propagation direction, a property that leads to introduction of
chirality in graphene [79]. The chirality of graphene leads to some dissimilarities between
the transport behaviors of electrons in graphene and those in 2D semiconductor structures.

(v) Since the plasma properties of 2DEG become more pronounced with a decreasing
effective mass of electrons and increasing electron mobility, THz devices based on graphene
heterostructures with massless 2DEG can significantly surpass those made of relatively
standard semiconductor heterostructures in longer mean free and lower collision frequency.

(vi) The bonding of electrons to a graphene plane is stronger than the bonding of
semiconductor electrons to a quantum well. Therefore, electrons in graphene remain two-
dimensional up to room temperature, and beyond to the melting point of graphene. Chem-
ical doping or electrostatic gating can induce and tune net carrier densities over a very
large range (more than ±1013cm2, equivalent to Fermi energy shifts of ±350 meV). Thus,
graphene behaves like a two-dimensional metal even at room temperature. The maximum
achievable semiconductor based 2DEG is in the order of ±1011cm−2. [80]

2.5 Graphene surface plasmon polariton waveguide

The slow wave of the proposed graphene travelling wave amplifier is a confined surface
wave at the grating surface beneath the graphene; therefore, surface plasmon polariton
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Figure 2.3: Proposed structure

wave of graphene can be used to excite this surface slow wave (Fig. 2.5). This section
studies surface plasma waves guided by simple graphene structures and discusses its basic
properties.

Graphene can support surface plasmons (SP) similar to those on metal/dielectric in-
terfaces. The structures made from noble metals like Au and Ag are the most typical
structures carrying SPPs at optical frequencies. However, these SPP waveguides suffer
from large Ohmic losses and nontunability. Moreover, they cannot confine THz SPP waves
as efficiently as they confine optical SPP waves.

Doped semiconductors are conventionally regarded as THz SPP waveguides. In order
to qualify as low-loss plasmonic materials, such semiconductors must have bandgaps and
plasma frequencies larger than the frequency range of interest. A large plasma frequency
ensures a negative real permittivity, and a large bandgap ensures almost no interband
transition losses. Graphene is a promising plasmonic material for THz applications. In
zero band-gap graphene the interband transitions occur above Fermi energy level, which can
be tuned by the amount of doping or back gate voltage and shifted to frequencies beyond
the region of interest. Below the interband threshold, losses are primarily due to impurity
scattering, excitation of optical phonons, and intraband transitions of electrons. Analysis
of these loss mechanisms shows that graphene can have lower losses than conventional
metal/dielectric interfaces up to frequencies corresponding to 0.2 eV (∼ 50 THz) [81].
The density of electrons or holes and consequently the Fermi level can be tuned easily
by the application of a back gate voltage. Graphene essentially behaves like a metallic
structure due to its gap-less electronic band-structure. Therefore, conductivity is the most
appropriate parameter for characterizing its electromagnetic properties. Moreover, due to
its mono-atomic thickness, graphene is essentially a 2D material. It must consequently
be modelled by surface conductivity, which relates the surface current to the tangential
electric field in the graphene plane.
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Figure 2.4: Fermi level versus surface carrier density

Different methods, mainly random phase approximation and Kubo method, for calcu-
lating the dielectric constant and conductivity of graphene have been discussed in several
recent works. [82–86]. Here we use the results obtained from the Kubo formula [84]. For
high frequencies, ω � kvf , τ

−1, the dynamical conductivity, σ = σ′ + jσ′′, can be written
as:

σ(ω) =
ie2kBT

π~2

1

ω − iΓ

(
µc
kBT

+ 2 ln
(
e−µc/kBT + 1

))
+

e2

4~

(
G(ω)− i2ω

π

∫ ∞
0

G(ω′)−G(ω)

ω2 − ω′2
dω′
)

G(ω) =
sinh(~ω/2kBT )

cosh(µc/kBT ) + cosh(~ω/2kBT )

(2.7)

where µc is the chemical potential, Γ = 1/τ is a phenomenological scattering rate, T is
temperature, kB is the Boltzmann constant, and e is the charge of an electron. There is
no external magnetic field, and so the local conductivity is isotropic.

For an isolated graphene sheet, the chemical potential, µc, is determined by the carrier
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Figure 2.5: The graphene SPP waveguide

density ns:

ns =
2

π~2v2
f

∫ ∞
0

ε (f(ε− µc)− f(ε+ µc)) dε, (2.8)

in which f(ε) =
(
eε/kBT + 1

)−1
is the Fermi-Dirac distribution and vf ∼= 106 m/s is

the Fermi velocity. The carrier density can be controlled via chemical doping or electrical
gating. The plot of chemical potential versus carrier density obtained from eq. 2.8 is shown
in Fig. 2.4.

The first term in Eq.2.7 corresponds to the intraband electron-photon scattering pro-
cesses, and is similar to the Boltzmann-Drude expression. The second term in Eq.2.7
corresponds to the direct interband electron transitions. The interband transition occurs
above the frequency threshold ~ω ≈ 2µc.

The structure under consideration is shown in Fig. 2.5. The propagation direction is
along z, and the structures are assumed to be infinite and invariant along the y axis.

Since the structure is two dimensional, we have TE and TM modes. The field distri-
bution for the TM mode is:{

(Ex1, Ez1, Hy1)e−α0xe−jβzz x > 0

(Ex2, Ez2, Hy2)eαSixe−jβzz x < 0
(2.9)

where α0 =
√
β2
z − k2

0 and αSi =
√
β2
z − εSik2

0. The TE mode has a similar field distribu-
tion for its Hz, Hx and Ey field components. The dispersion equation for the propagation
constant of each mode is obtained from the solution of Maxwell’s equations in each medium
and the following boundary conditions at the graphene interface.

n̂× (H1 −H2) = σEt (2.10)
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Figure 2.6: The real and imaginary parts of conductivity versus frequency for different
values of chemical potential and relaxation time.

The dispersion equation obtained for TE surface waves is:

α0

ωµ0

+
αSi
ωµ0

= −jσ (2.11)

and for TM waves is:

ωε0
α0

+
ωεSi
αSi

= jσ (2.12)

From the above two dispersion equations it is clear that the imaginary part of dynamic
conductivity σ = σ′+jσ′′, determines which type of surface wave, TE or TM, can propagate.
When σ′′ is positive, graphene guides the TE SPP wave, and when the σ′′ is negative,
graphene behaves like a thin metal film capable of supporting TM SPP surface waves.

The sign of σ′′ depends on which of the internand and intraband terms in the conductiv-
ity relation is dominant. The imaginary part of conductivity, corresponding to intraband
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Figure 2.7: Normalized (a) propagation constant and (b) attenuation constant of TM wave
carried by graphene layer on top of Si and SiO2 substrate. The solid and dotted lines are
plotted for graphene chemical potention 0.1 eV and 0.3 respectively. The τ = 10× 10−12s
for all curves.

transitions, is negative, but is positive for the conductivity, corresponding to interband
transitions. In graphene with non-zero Fermi energy, the Boltzmann-Drude intraband
term is dominant in the THz frequency range when ~ω/2 < |µ|. On the other hand, the
interband term is dominant at higher frequencies when |µ| < ~ω/2. Therefore, for Fermi
energies greater than 0.2 meV, graphene can support TM SPP waves at the THz frequency
range. Figure 2.6 shows the real and imaginary parts of the conductivity for different values
of Fermi level versus frequency.

2.5.1 Two-layer structure

The simplest graphene based SPP waveguide is a graphene layer on top of a Si or SiO2

substrates. The relative dielectric constants of Si and SiO2 at THz range of frequency are
εsi = 11.7 − j0.0014 and εsio2 = 3.84 − j0.0314, obtained from experimental values [87].
The propagation and attenuation constants of TM plasmonic waves obtained by solving
equation 2.12 are depicted in Figure 2.7 for two values of chemical potential. The large
propagation constant of 50k0 is obtained for an SPP wave of graphene on a silicon substrate
for µc = 0 eV and τ = 10× 10−12 s at 1 THz. The propagation constants of slow waves of
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the grating structures are big. Therefore, SPP waves can be used to excite these waves.

The attenuation constant of the SPP wave is determined by two factors: the graphene
loss and the substrate loss. When the SPP wave is more confined to the graphene layer, the
graphene loss plays the dominant role, and when it is less confined to the graphene layer
and more spread out, the loss of the substrate plays the dominant rule. The normalized
propagation constant and thus the confinement of the electromagnetic field to the graphene
layer is higher at larger frequencies. The refractive index of Si is higher than that of
SiO2. Therefore, on the Si substrate, the field is more confined to the graphene layer
and the attenuation constant is higher. However, for µc = 0.3ev, at frequencies lower
than f ≈ 0.07THz the attenuation constant for the SiO2 substrate is higher. At these
frequencies, the field is less confined to the graphene layer and penetrates more into the
substrate. Therefore, the loss of the substrate playes the dominant role, and since SiO2

has higher intrinsic loss than Si, the attenuation constant for the SiO2 substrate is higher.

Figure 2.8 shows that the normalized propagation constant and attenuation constant
decrease by increasing the chemical potential. Increasing the chemical potential of the
graphene increases σ′ and |σ′′| (see Fig. 2.6). Moreover, it can be seen in eq. 2.12, that
increasing |σ′′| decreases the real part of α0,si, resulting in an increase of the real part of

the propagation constant (αSi,0 =
√
β2
z − εSi,0k2

0). Thus, for larger chemical potential, the
field propagates with the lower phase velocity and is more confined to the graphene layer.
Since graphene is a lossy medium, more confinement to the graphene layer, results in a
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larger attenuation constant. The carrier density and thus the chemical potential can be
controlled easily by a gate voltage.

The normalized real part of non-zero components of the TM surface field in an xz plane,
where z aligns with the propagation direction, is depicted in Fig. 2.9. It is assumed that
the graphene strip is wide enough to neglect the variation of the field along the y axis far
from the edges. These figures show the surface nature of SPP-waves and the capability
of graphene to effectively suppress the magnetic field and prevent it penetrating to the
top layer with a lower refractive index. These results show that, despite being just one
atom layer thick, graphene acts like a good conductor, shielding the magnetic field. The
transverse component of the electric field has a symmetric profile, and the perpendicular
component has an antisymmetric profile. As a general rule, there is a trade off between
a larger propagation distance and stronger confinement. We show the tunability of prop-
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agation and attenuation constants via electrical gating. This feature can be exploited in
realization of phase delays or modulators based on a monolayer of graphene.
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Chapter 3

Quantum mechanical analysis of
travelling wave amplification in
graphene

In this chapter, a quantum mechanical method is developed to analyze the travelling wave
amplification in graphene. First a qualitative description of the gain mechanism and gain
conditions is presented. Then quantitative analysis is presented by calculating the conduc-
tivity of graphene.

In the previous chapter, the graphene conductivity obtained from Kubo formula [74]
was presented (eq. 2.7) This expresion is given for a small spatial dispersion, kvf << ~ω,
under local equilibrium condition. Neither of these assumptions is applicable for travelling
wave amplification conditions in graphene. In TWAs, the charged carriers are biased to
have a drift velocity, and the electromagnetic waves are slowed down to have a phase
velocity smaller than the drift velocity of carriers. For graphene with drifting carriers,
the equilibrium condition is not applicable. Also for very slow electromagnetic waves, the
wavenumber, k = 2π/Vph, cannot be assumed to be negligible any more. Therefore, in this
chapter, the conductivity of graphene for drifting charge carriers is obtained by applying
the drifting Fermi distribution function to the conductivity response function of graphene.
The frequency and wavenumber dependent conductivity of graphene is obtained for drifting
charge carriers as a function of chemical potential and drift velocity.

The travelling wave interaction can be described as a stimulated intraband radiative
transition of electrons. In contrast to the mechanism of radiation in lasers, wherein the elec-
trons transit from the conduction to the valence band to emit photons. In travelling wave
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Figure 3.1: (a) Direct interband radiative transition, (b) indirect intraband transition

amplifiers, the radiative intraband transitions play the dominant role in electromagnetic
amplification. Amplification can be achieved when there is a large electron population at
the higher energy states. In travelling wave amplifiers, this population inversion is achieved
by applying a drift DC current and increasing the average momentum of the electrons.

During transitions, three waves interact: the electron wave function in the both initial
and final states, and the electromagnetic wave. The energy and momentum should be
conserved during the transition. Considering an electromagnetic wave with a frequency of
ω and wavevector of q, in a radiative transition, we should have

Ei − Ef = ~ω (3.1)

ki − kf = q (3.2)

where Ei and Ef are the energy of the electron states at the initial and final states respec-
tively; ω and q are the frequency and wave number of the electromagnetic wave, and ki
and kf are the electron wave numbers of the initial and final states, respectively.

Figure 3.1 shows that if the transition occurs in a vacuum or in a homogeneous medium,
the two conditions of 3.1 and 3.2 can be satisfied simultaneously only for interband tran-
sitions. However, for intraband transition, the wavenumber of the electromagnetic wave
should be increased to a value greater than ω/Vf . This increase can be achieved in a peri-
odic structure where one of the space harmonics has a large enough propagation constant
to balance the momentum equation 3.2.

Figure 3.2 illustrates schematically how the population inversion is induced in travelling
wave amplifiers. In this figure, the picture on the right is the top view of the left one. In a
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Figure 3.2: Schematic demonstration of population inversion in graphene by increasing the
average momentum of electrons. The blue and orange circles are the Fermi circles of filled
states in k-space of an unbiased and biased graphene, respectivly at T=0. The green and
red curves denote, respectively, the lower and upper energy states in k-space that satisfy
both energy and momentum conservation equations (eq. 3.1 and 3.2).

travelling wave amplifier, instead of injecting carriers electrically or optically, the electrons
are accelerated to a high drift velocity, equivalent to increasing the average momentum of
electrons in the solid. Therefore, the whole electron density distribution will be shifted in
the k-space by the value of kd, which is a function of the drift velocity of electrons, Vd.

Figure 3.2(b) shows schematically how increasing the value of kd will eventually lead
to population inversion. In this figure, it is assumed that the temperature, T , is zero. The
states inside the circle with the radius of kf = Ef/~Vf are full, and the states outside of
this circle are empty. The density of electrons is not changed in a moving frame. Therefore,
the radius of the Fermi circle remains constant. The red and green curves denote the states
in k-space that satisfy both equations 3.1 and 3.2. As shown in Fig. 3.2, by increasing
the value of kd, more higher-energy states (red curve) are filled and, simultaneously, lower
energy states (green curve) are emptied until, for a sufficiently large value of Vd, the length
of the red curve covered by the Fermi circle becomes greater than that for the green one.
In this case, the population inversion has occurred, and a net gain is achieved.
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The above discussion has only described qualitatively the gain mechanism in travel-
ling wave amplifiers. We next apply linear response theory to drive the conductivity of
graphene.

The Hamiltonian equation of a system with a small perturbation can be written as
in [88]

Ĥ(t) = Ĥ0 + F (t)B̂ (3.3)

where H0 is a time-independent diagonal matrix, and F (t) is the external time-dependent
field that couples linearly to an observable B̂. F (t) is assumed to be a small time dependent
perturbation expressed as ei(ω−iδ)t. Then, the perturbation of an observable Â (A(t) =
A0 + A1e

i(ω−iδ)t) is

〈Â1〉(ω) = χAB(ω)F (ω) (3.4)

where χAB(ω) is the linear response function of the system and defined as [88]

χAB(ω) =
∑
mn

fm − fn
~ω + En − Em − i~δ

BmnAnm (3.5)

A complete discussion and derivation of the linear response function is given in [88].
The Hamiltonian of Dirac electrons in the presence of an electromagnetic field is

Ĥ = Ĥ0 + Ĵ ·A(r, t) (3.6)

where A(r, t) = A0e
i(ωt−βz) is the vector potential, and Ĵ is the current operator. By

comparing this Hamiltonian (eq. 3.6) with the general form of the Hamiltonian of a
system under perturbation (eq. 3.3), the current induced by the external vector potential
is obtained as

J(ω,q) = χ̄JJ(ω,q)A(ω,q), (3.7)

where χJJ, a 2 × 2 matrix, is the current-current response function of the graphene. The
current operator of graphene is [89]

J = evf σ̄ (3.8)

in which σ̄ is the Pauli matrices vector. Therefore, the current-current response function
element can be written as
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Figure 3.3: Graphene sheet; lying in the y-z plane, illuminated with a TMz electromagnetic
field

χ
JαJβ

(q, ω) = gsgve
2v2
f

∑
ss′

∑
k

λαβss′(k,q)
f(Ek,s)− f(Ek+q,s′)

Ek+q,s′ − Ek,s + ~(ω − iδ)
(3.9)

where
λαβss′(k,q) = 〈k, s|σ̂α|k + q, s′〉〈k + q, s′|σ̂β|k, s〉 (3.10)

is the overlap of states which includes particular chirality properties of graphene. In eq. 3.9,
gs = gv = 2 denotes the spin and valley degeneracy, and f(Ek,s) is the Fermi distribution
function. The energy dispersion relation of graphene is Ek,s = s~vf |k|. χ

JαJβ
is the

response function of the current in the α direction induced by a vector potential in the β
direction. For a graphene layer in the yz plane α, β = z, y and the σ̂z and σ̂y equal σ̂1 and
σ̂2 respectively, where σ̂1 = ( 0 1

1 0 ) and σ̂2 =
(

0 −j
j 0

)
are the Pauli matrices.

In equations 3.9 and 3.10, the terms for s = s′ = ±1 represent the electron-electron
(s = 1) and hole-hole (s = −1) intraband transitions, and the s 6= s′ represent the interband
transitions. In equation 3.10, |ks〉 are the electron and hole wave vectors that diagonalize
the independent electron Hamiltonian, H0, of graphene.

|k, s〉 =
1√
2

(
e−iθk

±e−iθk

)
eik·r. (3.11)

We assume that a TMz electromagnetic field illuminates the graphene sheet lying in
the y-z plane (see Fig. 3.3). Therefore, the vector potential and the electric field in the
plane of graphene are in the z-direction. We are interested exclusively in the longitudinal
z-component of the induced current, which is the only component that can be coupled to
the incident electromagnetic field. By substituting eq. 3.11 in eq. 3.10 for λzzss′ , we obtain
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Figure 3.4: Real and imaginary parts of the conductivity versus β at f = 1 THz for
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λzzss′(k,q) =
1 + ss′ cos(θk + θk+q)

2

=
1

2
+
ss′

2

(
k cos(2θk) + q cos(2θk) cos(θk)√

k2 + q2 + 2kq cos(θk)
+

q sin(θk)sin(2θk)√
k2 + q2 + 2kq cos(θk)

) (3.12)

where k = |k|, and θk is the angle of k from z axis. To obtain the second expression, the
wavevector q is assumed to be in the z direction, θq = 0.

To analyze the response of drifting carriers, the Fermi distribution function of electrons
with the average drift velocity of Vd is substituted in eq. 3.9, which is [90]

f(Ek,s) =
1

1 + e((Ek,s−P·Vd−µc)/kBT)
(3.13)

To calculate eq. 3.9 numerically, the summation over k,
∑

k, is replaced by 2D inte-

gration
∫ ∫ |k|

(2π)2
dθkdk using 2D density of states in the k-space. The second expression

in eq.3.12, which gives λzzss′ explicitly as a function of θk and |k|, is used to numerically
calculate the 2D integral in the cylindrical coordinate system.

The conductivity of graphene is σzz = iχ
JzJz

/ω (Jz = σzzEz and E = −iωA). The real
part of the conductivity shows whether we have gain or loss. The real part of conductivity
is positive for lossy materials and negative for materials with gain.
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Figure 3.5: Real part of conductivity versus Vd/Vph for different values of the frequency
given Vd = 3× 105 m/s, τ = 10−11 and uc = 0.3 eV (top left); the chemical potential given
Vd = 3× 105 m/s and τ = 10−11 s at the frequency of 1THz (top right); the drift velocity
given uc = 0.3 eV and τ = 10−11 s at the frequency of 1THz (bottom left); and the collision
relaxation time given Vd = 3× 105 m/s and uc = 0.3 eV (bottom right).

In Fig. 3.4, the real and imaginary parts of the conductivity versus β = q are plotted
at f = 1 THz for µc = 0.3 eV, τ = 10 × 10−12 s, and two values: Vd = 0 (dotted
line) and Vd = 3 × 105 m/s (solid line). The real part of the conductivity is negative for
Vd = 3 × 105 m/s and for β > 1112k0 which corresponds to Vph < 0.9Vd (β = ω/Vph).
Here, the calculated conductivity also confirms that in order to have gain, a drift velocity
should be applied and the electromagnetic wave should be slowed down to phase velocities
smaller than the drift velocity of electrons.

In the previous chapter it was shown that the imaginary part of the graphene conduc-
tivity for β ≈ 0 and Vd = 0, is negative (Fig. 2.6). Consistent with this result, in Fig.
3.4(b), the imaginary part of the conductivity is also negative for small values of β < 320k0

and both Vd = 0 and Vd = 3× 105 m/s.

In the proposed TWA, graphene acts as a current source. Therefore, the real part of
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Figure 3.6: The real part of four different interband and intraband conductivity terms
versus chemical potential

the conductivity is more important for the analysis (see Chapter 5). The effect of the
imaginary part of the conductivity is to change the real part of the dielectric constant.
Since graphene is a zero thickness conductor, this effect is insignificant.

in Fig. 3.5 a-d, the real part of the conductivity is plotted versus Vd/Vph for differ-
ent values of frequency, chemical potential, drift velocity, and collision relaxation time
(τ = 1/δ). The maximum negative conductivity is increased by increasing the chemical
potential or equivalently electron density, and the drift velocity. Figure 3.5(a) shows that
the electromagnetic wave should be slowed down more for higher frequencies to achieve
the maximum gain.

In Figure 3.6 the four different interband and intraband conductivity terms versus
chemical potential are plotted separately to show the contribution of each individually
(eq. 3.9). This figure shows that, for a positive chemical potential, the radiative electron-
electron intaraband transitions in the conduction band cause amplification (s=s’=+1),
and for a negative chemical potential, the hole-hole transitions in the valence band are
the source of amplification. Except for chemical potential values close to zero, the effect
of interband transitions are negligible with respect to the intraband terms. As expected,
the transitions from valence band to conduction band, during which a photon is absorbed,
gives positive conductivity, and the transition from conduction to valence band involving
photon emission gives negative conductivity.
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3.1 Conclusion

In this chapter, the travelling wave amplification in graphene is explored both qualitatively
and quantitatively. The quantum mechanical approach is applied to obtain the frequency
and wave number dependent conductivity of graphene with drifting charge carriers under a
non-equilibrium condition. The conductivity relations show that for a slow electromagnetic
field with the phase velocity smaller than the drift velocity of carriers, graphene changes
from a lossy propagating medium to a gain medium that converts power from the DC
source to the electromagnetic field. This result shows that graphene can be used in solid
state travelling wave amplifiers.

The quantum mechanical approach gives significant insight into the physical mechanism
of traveling wave interactions inside graphene. It is a very precise model for an ideal
system with no defects and disorder and for small source perturbation. However, it is
extremely hard to model all macroscopic phenomena, quantum mechanically. Therefore, in
the next chapter, a more classical approach based on the hydrodynamic model of graphene
is presented.
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Chapter 4

Hydrodynamic model of graphene

It is reasonable to use a hydrodynamic approach to describe the dense electron-hole plasma
in semiconductor systems in which the electron-electron, electron-hole, and hole-hole col-
lisions predominate over collisions between electrons and holes with disorder. These colli-
sions can occur in intrinsic graphene at room temperature, in gated graphene at sufficiently
high gate voltages, and in graphene under strong optical pumping. Hydrodynamic models
of electron-hole systems in semiconductors with parabolic energy spectra of electrons and
holes are widely used. However, for graphene, such models need to be revised due to the lin-
ear energy spectra of electrons and holes. The hydrodynamic model of graphene was used
to describe the stationary transport processes in graphene [91]. It was also used to analyze
electron (or hole) plasma waves in gated graphene in a state in which the Fermi level was
far from the Dirac point and quasi-neutral electron-hole sound waves in bipolar electron-
hole plasma [92]. Based on this model, the DC conductivity and frequency dependent ac
conductivity of graphene were calculated [93,94]. In this chapter, the hydrodynamic model
is used for the first time to obtain the frequency and wave number dependent conductivity
of the harmonic perturbation of moving charged carriers in graphene [95].

Electrons in graphene behave like a Dirac fluid of massless quasi-particles, propagating
at a Fermi speed of about vf ' 106m/s. Therefore, the electrons in graphene mimic zero
mass relativistic particles with an effective light speed of vf = c/3000. The maximum
drift velocity of graphene is Vsat ∼ 105m/s [91]. Thus, to analyze graphene with drifting
carriers, the hydrodynamic description derived from a relativistic fluid approach can be
used [75]. Since electron-phonon and electron-impurity scattering have a negligible impact
on the linear response of graphene over substrate at room temperature, the analyzed model
is based only on electron-electron elastic scattering. Therefore, only the electron-electron
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collisions are considered in the collision integral term of the Boltzman equation.

∂f

∂t
+ v · ∇f + F · ∇∂f

∂p
=

(
∂f

∂t

)
coll

(4.1)

where f is the density function, F is the external force, p is the momentum and v is the par-
ticle velocity. The electrons in doped or gated graphene are modelled as a two-dimensional
Fermi liquid. Graphene can be analyzed in a collision-dominated regime, ~ω << kBT ,
where collisions establish local equilibrium and the fluid is strongly correlated. The as-
sumption of local equilibrium allows for a reduction of the Boltzmann kinetic equation
for the distribution function to the hydrodynamic equations for the macroscopic variables:
local density and velocity. The conservation laws for the charge density

∂ρ

∂t
+∇ · (j) = 0, (4.2)

and the momentum density [94]

H
v2
f

[
∂V

∂t
+ (V · ∇)V

]
+∇p+

V

v2
f

∂p

∂t
− η∇2V = ρE (4.3)

are derived from the zeroth and first moments of the distribution function, respectively. ρ
is the surface charge density, V is the flow velocity of the electron fluid, j is the surface
current density, p is the pressure, H = E+p is the enthalpy density, E is the energy density,
and η is the shear viscosity. The Coulomb interactions between electrons are included in
the viscosity of the fluid. Electrons in doped graphene with kBT << EF behaves like a
degenerate Fermi liquid with η ∼ ~ρ( EF

kBT
)2 [75].

The set of continuity (4.4) and relativistic Navir-Stocks (4.3) equations is not closed, as
it contains the pressure term. The energy conservation equation which relates the energy
density and the pressure to each other is obtained from the third moment of the Boltzmann
equation.

∂E
∂t

+∇ · [(E + p)V] = 0 (4.4)

However, this set of three hydrodynamic equations is not sufficient; an expression must
be found for the energy density. In order to obtain a closed analytical expression for the
conductivity only the first two hydrodynamic equations are considered. An equation of
state is used to obtain approximate relations between the pressure and charge density,
velocity field and other parameters.

The relativistic Navir-Stocks (4.3) equation is similar to that for the incompressible elec-
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tron liquid in semiconductors [96], ρm∗e

[
∂V

∂t
+ (V · ∇)V

]
+∇p− η∇2V = ρE, except for

an extra relativistic term
V

v2
f

∂p

∂t
. m∗e is the effective electron mass of the semiconductor. For

massless electrons in graphene, this term is replaced by H/ρv2
f which can be considered as

effective electron mass of graphene. The electrons in doped graphene act like a degenerate
Fermi gas. The pressure of degenerate Fermi gas can be written as

p = p0 +O(

(
kBT

EF

)2

) (4.5)

where p0 is the electron degeneracy pressure at zero temperature. Since in our applica-
tion we are mainly interested in the high density of electrons and thus high Fermi energies
(kBT << EF ), the pressure is approximated with its value at zero temperature. With
the aid of thermodynamic relation U = TS + pV and employing the condition T = 0, the
pressure can be obtained from this equation of state [97]

p = −
(
∂U0

∂A

)
N

(4.6)

where the subscript N is the total number of charged particles, which is assumed to re-
main constant during the process, A is the area of the graphene and U0 is the internal energy
at T = 0. This assumption is valid when the power of electromagnetic wave is not high in a
way that the system remains in equilibrium (or so-called quasi-equilibrium). The internal
energy is the mean value of the total energy of the system given by U = A

∫
Eg(E)f(E)dE,

where f(E) is the Fermi-Dirac distribution function and g(E) = gsgv|E|/(2π(~vf )2) is the
energy density of states in graphene. Here, the spin and valley degeneracy are accounted
by gs = gv = 2. For graphene 2DEG with linear band dispersion equation (4.6) for the
pressure yields [93]

p =
1

3

√
π~vfρ2/3(r, t) =

1

3
EFρ(r, t). (4.7)

where the Fermi energy of the graphene is EF = ~vf
√
πρ.

To find the conductivity of graphene as a function of frequency, ω, and propagation
constant, β, an infinite graphene sheet lying in the y-z plane illuminated with a TMz

electromagnetic field is assumed, with a propagation constant of β in the z direction (Fig.
3.3), E = (Ex, Ez)e

iωte−iβz. To obtain the conductivity, it is necessary to first find the
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induced current density in the linear response regime, which in this case has only the z
component. The longitudinal conductivity can then be defined using Ohm’s law jz = σEz
(σ = σzz).

The charge and velocity of the graphene electron fluid can be written as

ρ = ρ0 + δρei(ωt−βz) (4.8)

and
V = Vd + δVei(ωt−βz). (4.9)

Here, ρ0 is the electron charge density at equilibrium, δρei(ωt−βz) is the induced charge
density, Vd is the drift velocity applied by a DC voltage (assumed to be in the z direction),
and δVei(ωt−βz) is the induced velocity. From this point on, the phasor form of time-space-
varying variables is used to suppress the ei(ωt−βz) term.

The linear response of the system to a small electromagnetic field perturbation is de-
termined by considering only the first-order terms in equations 4.4 and 4.3. The induced
current is

j = ρ0δV + δρVd. (4.10)

For the pressure gradient in Eq. 4.3,

∇p =
∂p

∂ρ
∇δρ ≈ 1

2
EF (ρ0)(−iβδρẑ) (4.11)

where the approximation in the second equation consists of only the first-order term and
assumes the Fermi energy to be effectively time and position independent. The relativistic
correction term is found through

V

v2
f

∂p

∂t
=

Vd

v2
f

1

2
EF (ρ0)(iωδρ). (4.12)

For small drift velocities at low frequency, this term can be neglected, and the non-
relativistic Navier-Stokes hydrodynamics equation is recovered. The enthalpy density H =
E + p equals

H =
3

2

∫ ∞
0

g(E)

(
E

e(E−EF )/kBT + 1
+

E

e(E+EF )/kBT + 1

)
dE (4.13)
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Figure 4.1: Real and imaginary parts of the conductivity versus β at f = 1 THz for
µc = 0.3 eV and two values Vd = 0 m/s(dotted line) and Vd = 3× 105 m/s (solid line).

in which g(E) = gsgv/(2π(~vf )2) is the energy density of states. Here, the spin and
valley degeneracy are accounted for by gs = gv = 2. The Fermi energy in this equation
is assumed to be constant in time and space. The prefactor 3/2 comes from the p = E/2
relation. At high values of chemical potential, the H value (Eq. 4.13) is close to its value
at T = 0, ρEF , which satisfies the Gibbs-Duhem relation. For example for EF = 0.3 eV at
T = 300 k, H/ρEF = 0.95. By substituting equations 4.10, 4.11 and 4.12 into equations
4.4 and 4.3, it is found that

σ(ω, β) =

β2ηe2

m2
effω

2A− j ρ0e2

meffω

(
A2 + βVd

4ω
− β2Ef

2meffω2

)
(
A2 + βVd

3ω
− β2Ef

2meffω2

)2

+
(

ηβ2

meffωρ0
A
)2 (4.14)

in which A = 1− βVd/ω and meff = EF (ρ0)/v2
f . The conductivity of graphene for Vd = 0

is

σ(ω, β, Vd = 0) =

β2ηe2

m2
effω

2 − j ρ0e2

meffω

(
1− β2Ef

2meffω2

)
(

1− β2Ef
2meffω2

)2

+
(

ηβ2

meffωρ0

)2 (4.15)

As expected the non-biased graphene (Vd = 0) is always lossy for all frequencies and
phase velocities.

In Fig. 4.1, the real and imaginary parts of the conductivity versus β are plotted at
f = 1 THz for µc = 0.3 eV and two values: Vd = 0 (dotted line) and Vd = 3 × 105 m/s
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Figure 4.2: Real and imaginary parts of conductivity versus Vd/Vph at frequencies of 0.1,
0.3, 0.5 and 1 THz for a drift velocity of Vd = 105m/s.

(solid line). The result of this figure can be compared with the similar result of Fig. 3.4
obtained from quantum mechanical model. remarkable similarity excits between these two
results. Here again, it can be seen that the real part of the conductivity is negative for
Vd = 3 × 105 m/s and for β > 1000k0 which corresponds to Vph < Vd. As expected, the
non-biased graphene is always lossy for every value of frequency and wavenumber. Also,
the imaginary part of the conductivity is negative only for small values of β (β < 380k0

for Vd = 0 and β < 440k0 for Vd = 3× 105 m/s).

The real and imaginary parts of the conductivity versus the normalized reciprocal value
of the phase velocity at different values of frequency are plotted in Fig. 4.2(a) and (b).
The phase velocity is normalized to a drift velocity of Vd = 105m/s. The results show
that in biased graphene (Vd 6= 0) for β/βe > 1, or equivalently, for a drift velocity larger
than the phase velocity, Vd/Vph > 1, graphene changes from a lossy propagating medium
with a positive real part of conductivity to a gain medium with a negative real part of
conductivity. In this case, the power transfers from the DC power to the electromagnetic
field.

The real and imaginary parts of the conductivity versus frequency for different values of
drift velocity are plotted in Fig. 4.3 where Ef = 0.3 eV. The wavenumber for all curves is
β = 2π/d, d = 100nm. This is consistent with the wavenumber of the first-order harmonic
of a periodic structure with the period of d = 100nm. In the proposed graphene travelling
wave amplifier, a periodic grating structure is used to generate a slow electromagnetic
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wave. The propagation constant of the first-order harmonic of this structure is β1(ω) =
β0(ω) + 2π/d, in which β0(ω) is the frequency-dependent propagation constant of the
fundamental wave. The d values of the periodic slow wave structure should be in the range
of few hundreds of nanometres or less to meet the amplification requirement of a graphene
travelling wave amplifier. In this range of d values, it is a sufficient approximation to
consider β1 ' 2π/d to be frequency independent.

The results displayed in Fig. 4.3 shows that the amount of gain and the frequency
range at which amplification is possible are increased significantly by increasing the value
of the drift velocity.

In Fig. 4.3, the real and imaginary parts of the conductivity are plotted versus the
frequency for different values of Fermi energy, with β = 2π/(d = 100nm) and Vd = 105m/s.
Raising the Fermi energy level leads an increase in the absolute value of the negative
conductivity and gain. However, as the Fermi energy increases, the frequency range at
which the real part of the conductivity is negative (making amplification possible) does
not change. An increase in the Fermi energy leads to an increase in the density of electrons,
enhancing the transfer of energy from the electrons to the electromagnetic field. Since the
exact value of viscosity, η, is not accurately known in the proposed analytical model, typical
values have been used in the conductivity equations. The effect on conductivity of changing
the viscosity from half to twice its typical value is depicted in Fig. 4.5. Changes in η alter
the bandwidth and gain simultaneously.

4.1 Conclusion

In this chapter, a hydrodynamic model, derived from a relativistic fluid approach, was
used to find the current induced by a harmonic perturbation of drifting charge carriers
in graphene. The induced charge density and velocity were assumed to be significantly
smaller than the total charge density and the drift velocity applied by the DC bias to
obtain the conductivity in the linear region.

The obtained results are consistent with the results of the previous chapter. Both
methods show that the negative conductivity and thus gain is obtained for drift velocities
slightly greater than the phase velocity of the incident field. Although the two methods
are quite different, one being more classical and the other more quantum mechanical, the
behaviour of the two conductivity functions with respect to the frequency and wavenumber
are remarkably similar.
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Chapter 5

Analysis of travelling-wave amplifier
using graphene

The quantum mechanical and hydrodynamic analysis of graphene that were presented in
the previous chapters show that travelling-wave amplification is possible in graphene. The
next step is to design a structure to demonstrate and apply this fascinating property of
graphene. Under certain conditions, when the charged particles in graphene move at a
higher velocity than an electromagnetic wave, energy transfers from the charged particles
to the electromagnetic field. The maximum drift velocity in the graphene is in the order
of 105m/s. The higher order space harmonics of a periodic waveguide can reach this level
of phase velocity. The ability to fabricate dielectric waveguides with very short period
grating make it possible to use low-velocity charged-particle currents like drifting carriers
in graphene.

In this chapter, a slow-waveguide structure is proposed in which the graphene layer
is placed right next to the periodic layer; hence, capitalizing on the maximum coupling
between the electromagnetic field and the drifting space charge wave in graphene (Fig.
5.1). The waveguide is fabricated from high-resistivity silicon; such silicon having very low
loss at the THz range of frequencies [98,99].

An approximate analytic solution is presented for electromagnetic wave propagation in a
periodic structure in the presence of graphene. The analytic approximate expressions show
the effect of each parameter individually on the overall gain of the structure. Therefore, this
approach provides insights for designing and optimizing the structure. Such transparency
is not achievable when using numerical calculations.

Below, the electromagnetic wave propagation in both a slab and a rectangular waveg-
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Figure 5.1: Proposed structure is a high-resistivity silicon waveguide with a grating etched
on its top surface covered by a graphene sheet onto which metal contacts are attached

uide with a grating on the top surface is analyzed in terms of a Floquet mode solution.
This method has been described by Gover and Yariv in [73,100]. First-order approximate
recursive analytical expressions for the space harmonics are obtained. The calculation
in [73] was presented only for slab waveguides and the grating structure was modelled by a
semi-infinite inhomogeneous layer. Therefore, the finite corrugation depth was not consid-
ered in the calculations. Here, the aforementioned method is generalized to a three-layer
structures to model the effect of the grating depth accurately. A more generalized method
is then used to analyze rectangular waveguides; more practically applicable with respect to
slab waveguides. Slab waveguide analysis provides good approximations when the width
of a structure is significantly larger than its thickness.

5.1 Analysis of general coupling in a periodic struc-

ture

In this section, a general analysis of wave interaction in a periodic structure using Floquet
Bloch formalism is presented. Then, in the following two sections, this analysis is applied
to two specific cases of coupling interaction in periodic slab and rectangular structures.
Coupled mode theory for TWAs was first presented by Pierce and Louisell [101,102]. Later,
Yariv and others developed coupled-mode formalism for wave interactions in dielectric
waveguides [103–106].

There are two different approaches to studying coupling in periodic dielectric waveg-
uides. In the first approach, the eigenmodes of the structure are the eigenmodes of the
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uniform waveguide in the absence of periodic perturbation, and the periodic perturbation
is the coupling perturbation that couples the eigenmodes of the uniform waveguide. For
example, two modes with propagation constants βA and βB can be coupled to each other
if the period of the periodic perturbation, d, satisfies: 2π/d = βA − βB [103,104].

In the second approach-the approach used in this thesis-the eigenmodes of the structure
are the Floquet-Bloch eigenmodes between which coupling takes place. These eigenmodes
are coupled to each other by introducing another perturbation. This approach is described
in detail in [73]. The travelling wave interaction in a periodic dielectric waveguide is
analyzed using this approach, in which the external current acts as a perturbation. In a
TWA, this current can be written as:

J = Je(x, y)e−jβz. (5.1)

Assume a Floquet mode EA with the Floquet expansion of

EA = ΣmEAm(x, y)e−jβ
A
mz βAm = βA0 +m

2π

d
(5.2)

if for its first-order space harmonic βA1 ' β, then after applying the external current
(eq. 5.1) this mode will be predominantly excited and its amplitude will grow slowly.
Therefore, the excited electric field can be written as:

E = G(z)EA (5.3)

where G(z) is a slowly varying function obtained from:

G(z) = −j e
−j∆β1z

4PA0∆β1

∫ ∞
−∞

∫ ∞
−∞

dxdyE∗A1
(x, y) · Je(x, y) (5.4)

where ∆β1 = β − βA1 ≈ 0 and PA0 is the total average z-directed power carried by the
fundamental harmonic. The detailed derivation of G(z) is given in Appendix B.

By substituting G(z) in eq. B.5 for the particular synchronous space harmonic field,
E1(x, z), we find

E1 =
−j

4PA0∆β1

EA1(x, y)e−jβz
∫ ∞
−∞

∫ ∞
−∞

dxdyEA1

∗(x, y) · Je(x, y) (5.5)

For graphene, a zero thickness sheet, the current is a Dirac delta function of x. There-
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fore, the integral with respect to x equals:∫ ∞
−∞

dxEA1

∗(x, y) · Je(x, y) = EA1

∗(xg, y) · Js(y) (5.6)

where xg is the location of the graphene sheet and Js(y) is the current at the surface of
the graphene. For a slab waveguide (assumed to be invariant in the y direction), eq. 5.5 is
simplified to

E1(xg) = j
|EA1(xg)|2

4PA0w(βA1 − β)
Js (5.7)

where EA1(xg) is the field of the first-order space harmonic (in the absence of interac-
tion) at the point where the interaction with the charged carrier sheet (placed at x = xg)
takes place. PA0w is the average z directed power per unit width carried by the fundamental
harmonic.

If one assumes βA1 ' β, it is possible to show that this equation is consistent with the
Pierce equation

E1 = j
β2β1K1

β2
1 − β2

I (5.8)

where K1 is the interaction impedance given by

K1 =
|EA1|2

2β2
1PA

(5.9)

The interaction impedance determines the strength of coupling between the electric
field in the periodic and the space charge wave. This parameter is proportional to PA1(xg)

PA
where PA1(xg) is the power of the space harmonic synchronous with the drifting charge
density wave at the interaction point, and PA is the total z-directed power of the Floquet
mode EA.

As discussed above, to obtain the interaction impedance, the field at the point where
the graphene is located should first be determined in the absence of interaction. Therefore,
in the next sections, modal analysis is used to find the electromagnetic field in the periodic
slow-wave structures alone, with no graphene sheet.
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Figure 5.2: Periodic waveguide with rectangular corrugation

5.2 Analysis of Floquet modes in a slab dielectric

waveguide with a grating on top

The structure under investigation is a silicon slab waveguide with thin surface corrugation
(see Fig. 5.2).

The structure is assumed to be infinite in the y direction. Although the proposed
structure supports both TE and TM modes, only the TM modes, em = ex,mx̂ + ez,mẑ
with a longitudinal electric field component are considered due to the particular modal
excitation mechanism and the fact that the z-directed plasma wave can be modulated only
by the z-component of the field.

For a periodic layer with the dielectric constant ε(z) function of z, the wave equation
for the magnetic field of the TM mode, H = Hyŷ, is [73]

∂2Hy

∂x2
+
∂2Hy

∂z2
− d ln ε

dz
· ∂Hy

∂z
+ ω2µε(z)Hy = 0 (5.10)

The relative dielectric constant of a thin periodically perturbed layer, εg = ε0εrg, can
be approximated by the first two terms of its Fourier series,

εrg(z) = εrg0 + εrg1 cos(
2π

d
z) (5.11)
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Therefore, we have

− d ln εrg
dz

' g1 sin(
2π

d
z) (5.12)

For the corrugated surface of Fig. 5.2 with the filling factor fd = dSi/d, (dSi + da = d),
we have

εrg0 = fdεSi + (1− fd)εair, (5.13a)

εrg1 =
2

π
(εSi − εair) sin(fdπ), (5.13b)

g1 =
4

d
sin(fdπ) ln

(
εSi
εair

)
. (5.13c)

Substituting the Floquet expansion of Hy,

Hy =
∑
m

am(x)e−jβmz (5.14)

along with the first-order Fourier expansion of the periodic terms (eq. 5.11 and 5.12) into
eq. 5.10 yields [73]

e−jβ0z
∑
m

e−jm
2π
d
z

[
a′′m(x) +

(
k2εrg0 − β2

m

)
am(x) +

1

2

(
k2εrg1 + βm−1g1

)
am−1(x)+

1

2

(
k2εrg1 − βm+1g1

)
am+1(x)

]
= 0 (5.15)

From the uniqueness theorem of the Fourier expansion we get [73]

a′′m(x) +
(
k2εrg0 − β2

m

)
am(x) +

1

2

(
k2εrg1 + βm−1g1

)
am−1(x)+

1

2

(
k2εrg1 − βm+1g1

)
am+1(x) = 0 (5.16)

where a′′m(x) = ∂2am/∂x
2. In this equation each space harmonic is coupled to the next

higher and lower harmonics. The field solutions should satisfy the wave equations in each
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layer of the waveguide

a′′m(x)− α2
mam(x) = 0 x < −t , x > a

(5.17)

a′′m(x)− δ2
mam(x) = −1

2

(
k2εrg1 + βm−1g1

)
am−1(x)− 1

2

(
k2εrg1 − βm+1g1

)
am+1(x)

0 < x < a
(5.18)

a′′m(x) + h2
mam(x) = 0 0 > x > −t

(5.19)

in which

α2
m = β2

m − k2εair (5.20)

δ2
m = β2

m − k2εrg0 (5.21)

h2
m = k2εSi − β2

m (5.22)

In addition to meeting equations 5.17-5.19, the field solutions should meet the boundary
conditions [i.e., the continuity of Hy and Ez at the interfaces x=-t, 0, and a (see Fig. 5.2)].
The continuity condition of Hy leads to continuity of the space harmonics am(x)

am(a−) = am(a+) (5.23)

am(0−) = am(0+) (5.24)

am(−t−) = am(−t+) (5.25)

The continuity of Ez = (−j/ωε)∂Hy/∂x gives us

a′m(a−) =
εrg0
εair

a′m(a+) +
εrg1
2εair

[a′m−1(a+) + a′m+1(a+)] (5.26)

a′m(0+) =
εrg0
εSi

a′m(0−) +
εrg1
2εSi

[a′m−1(0−) + a′m+1(0−)] (5.27)

a′m(−t+) =
εSi
εair

a′m(−t−) (5.28)

The + (−) index of a, 0 and -t is used for the field immediately above (below) the in-
terfaces. The exact solution of the set of equations presented here is rather complicated.
Therefore, the first-order approximation is applied, in which higher-order spatial harmon-
ics are neglected relative to lower-order harmonics. For example, to obtain the solution for
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the first-order harmonic (m=1), the second term (a2) on the right-hand side of equations
5.18, 5.26 and 5.27 is neglected with respect to a0. Furthermore, it is assumed that the
zero-order harmonic is much larger than the other harmonics and is approximately equal
to the unperturbed waveguide solution.

The magnetic field distribution of the first TM mode of the unperturbed waveguide
(Fig. 5.2 a = 0) Hy = a(x)ejβz can be written as

a(x) = A0e
−α0x x > 0 (5.29a)

a(x) = B0 cosh0(x+ t/2) − t < x < 0 (5.29b)

a(x) = A0e
α0(x+t) x < −t (5.29c)

For thin gratings, it can be assumed that most of the power is carried by the funda-
mental harmonic and PA ' PA0. The total z directed power per unit width carried by the
first TM mode of the slab waveguide is obtained from the following equation

PA0w =
PA0

w
=
A2

0β

4ωε0

(
t

2n2
g cos2(h0t/2)

+
tan(h0t/2)

n2
gh0

+
1

λ0εair

)
(5.30)

5.2.1 First-order space harmonic

For large values of 2π/d, the case in our application, the parameter h1 in eq. 5.22 becomes
imaginary

κ1 =
(
β2

1 − k2εSi
)1/2

(5.31)

Therefore, for κ1t >> 1, we can assume that the field distribution that satisfies the wave
equations of 5.17-5.19 can be written as

a(x) =


A1e

−α1(x−a) x > a

D1 cosh(δ1x) + E1 sinh(δ1x)− k2εrg1 + g1β0

2(α2
0 − δ2

1)
A0e

−α0x 0 < x < a

B1e
κ1x x < 0

(5.32)

in which the a0 term in eq. 5.18 is approximated by eq. 5.29a. By applying boundary
conditions (equations 5.23, 5.24, 5.26 and 5.27) at x = 0 and x = a interfaces (see Fig.
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5.2) we find the following expressions for coefficient A1

A1 =
M1M4 −M2M3

M1 −M3

A0

M1 = cosh(δ1a) +
εrg0
εSi

κ1

δ1

sinh(δ1a)

M2 =
k2εrg1 + g1β0

2(α2
0 − δ2

1)

(
cosh(δ1a)− γ0

δ1

sinh(δ1a)− e−γ0a
)
−

n2
lp

2εair

γ0

δ1

sinh(δ1a)

M3 = − εairδ1

εrg0γ1

sinh(δ1a)− εairκ1

εSiγ1

cosh(δ1a)

M4 = − εairδ1

εrg0γ1

k2εrg1 + g1β0

2(α2
0 − δ2

1)
sinh(δ1a) +

εrg1γ0

2εrg0γ1

cosh(δ1a)+

εairγ0

εrg0γ1

k2εrg1 + g1β0

2(α2
0 − δ2

1)
(cosh(δ1a)− eγ0a)

(5.33)

5.2.2 Gain and dispersion equations

The travelling wave interaction can be described as a coupled wave problem. The z com-
ponent of the slow-wave field modulates the drifting carriers in graphene and generates a
carrier plasma wave. The plasma wave in turn induces the electromagnetic wave. Calcu-
lating each of these processes separately and combining them self consistently results in the
dispersion equation. In the previous chapters, we obtained the conductivity of graphene.
It defines defines the relation between the induced current, J(z) = Jz1(β, ω)ej(ωt−βz), and
the external field Ez1(z) = Ez1e

j(ωt−βz)

Jz1(β, ω) = σ(β, ω)Ez1 (5.34)

and in section 5.1 the field of the excited space harmonic synchronized with the excited
current variation was obtained (eq. 5.7). By substituting eq. 5.34 into eq.5.7, we obtain

j
|EA1(xg)|2

4PA0w(β1 − β)
σ(β, ω) = 1, (5.35)

in which β1 = β0 + 2π/d is the propagation constant of the first-order space harmonic in
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the absence of charge carriers. If we assume β = β1 + ∆β, we get

∆β = −j |EA1(xg)|2

4PA0w

σ(β, ω) (5.36)

The imaginary part of the propagation constant β gives the intensity gain g = 2Imβ.
In the absence of the coupling and any loss, β1 is a real number. Therefore, it can be
written that

Imβ = Im∆β = −|EA1(xg)|2

4PA0w

Real(σ) = −1

2
K1β

2
1Real(σ) (5.37)

In this equation, EA1(xg = a) equals A2
1 given in eq. 5.33 and PA0w is given in eq.

5.30.The term K1 =
|EA1

(xg)|2

2β2
1PA0w

in eq. 5.37 is the interaction impedance of a top-grated slab

waveguide. As discussed in section 5.1, this term indicates the coupling strength between
the space charge wave and the electromagnetic wave. For maximum gain, the optimized
values of waveguide parameters t, a and fd should be found. This gives the maximum
value of this coupling term. Figure 5.3 shows the value of K1β

2
1 as a function of t for

different values of a, d and fd at f = 1THz.The Fourier series expansion coefficients of
the periodic electromagnetic field depend on the value of fd. The amplitude of the second
order harmonic is maximized by choosing the right value of fd.

From the results of Fig. 5.3, it can be deduced that maximum coupling occurs at
t ' 0.15λ for fd = 0.3 and a > d. Figure5.3(a) shows that the coupling factor is higher for
deeper gratings. However, the coupling factor does not change for a > d, since the super
slow wave decays rapidly away from the interface of the grating (see Fig. 5.4). Thus, for
large values of a, the grating can be modelled as a two-layer structure. The fabrication of
deep gratings, especially gratings with a > 3d, is challenging. However, this result [Fig.
5.3(a)] shows that such a deep grating is not required to get the maximum coupling factor.

The 2D grating structure is simulated using COMSOL Multiphysics modeling software.
The K1β

2
1 values obtained from the simulation are plotted versus t/λ for a = 200 nm,

d = 200 nm, fd = 0.3 and f = 1 THz in Fig. 5.3 (circle markers). These results are
consistent with the approximated theoretical results (solid blue line). In Figure 5.4, the
longitudinal component of the electric field, Ez is plotted versus z at the interface of the
grating and at a distance of a above and a/2 below the interface given d = 200 nm, a = 200
nm, fd = 0.3, t = 46µm and f = 1 THz. The field at the interface of the grating mainly
consists of the first- and second-order space harmonics. However, the second-order space
harmonic is a surface wave that decays rapidly away from the interface. As shown in Figure
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Figure 5.3: K1β
2
1 as a function of t/λ for different values of a, d and fd at f = 1THz. (Blue
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and fd = 0.3).

5.4, the second order harmonic almost vanishes at x = a and x = −a/2.

By substituting eq. 4.14 into eq. 5.37, and assuming β ' β1, we find the intensity
gain for different values of the chemical potential of graphene and drift velocities. The
results at two different frequencies, f = 300 GHz and 1 THz, are presented in Figures 5.5
and 5.6. In these plots, the dimensions of the grating structure are t/λ = 0.15, fd = 0.3
and a=d. With these dimensions, the maximum interaction impedance is obtained at each
point and changes slightly with d (less than %0.4 of its maximum). Therefore, the change
in intensity gain comes mainly from the change in the gain of the active medium, graphene,
represented by its conductivity in eq. 5.37.

Figure 5.5 shows that increasing the density of electrons (and consequently the chemi-
cal potential), increases the intensity gain and thus the power delivered through the space
charge wave to the electromagnetic field. The maximum of each curve is obtained at the
point where the corresponding

Vph
Vd

results in the minimum value of the negative conduc-

tivity of graphene (see Fig. 4.2). For example, for Ef = 0.3 eV and Vd = 3 × 105 m/s at
f = 1 THz, the maximum gain is achieved at d = 254 nm. For very small values of the
period, d, the phase velocity can be approximated by Vph ' fd. Therefore, at d = 254
nm, Vd/Vph ' 1.2 gives the maximum amplitude of the negative real part of the graphene
conductivity (Fig. 4.2)

Figure 5.6 shows that for larger values of Vd, the maximum gain is increased and
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Figure 5.4: The longitudinal component of the electric field, Ez, versus z at the interface
of the grating and at the distance of a above and a/2 below the interface at the frequency
of f = 1 THz given d = 200 nm, a = 200 nm, fd = 0.3, t = 46µm.

obtained at larger values of d and phase velocity. These results can be justified by the
variation of the graphene conductivity with respect to Vd, shown in Fig. 4.3.

The maximum graphene drift velocity reported in the literature varies from 2×105m/s
to 5.4× 105m/s [107] [108] [109]. For example, for Vd = 3× 105m/s, the maximum gain is
obtained at d = 254nm. The fabrication of a grating with a period of 100nm or greater is
feasible with currently available electron-beam lithography techniques.

Figure 5.7 shows the intensity gain versus frequency given optimized waveguide dimen-
sions. In this figure, the Fermi energy and drift velocity of graphene are Vd = 3× 105m/s
and Ef = 0.3 eV. The maximum intensity gain is g = 10.53dB/cm. The 3dB bandwidth
for 1cm is around 190GHz, showing that the proposed TWA is wideband.

5.3 Analysis of graphene traveling wave amplifier on

a rectangular dielectric waveguide

In the previous section, we assumed that the grating and the silicon slab are infinite in the
xy plane. Such 2D assumptions are not applicable for practical device design. A more-
realistic structure to consider is a rectangular waveguide with a grating etched on its top
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surface covered by a graphene sheet onto which metal contacts are later attached (see Fig.
5.1).

There is no analytical solution for the dispersion equation and field profiles of rectan-
gular dielectric waveguides. Therefore, numerical methods such as the film mode match-
ing method [110], circular harmonics computer analysis [111], variational mode expansion
method [112], finite element method (FEM) [113], or finite-difference method [114], can be
applied to obtain an accurate value for these quantities. However, these numerical meth-
ods do not give closed form analytical expressions to describe the effect of each parameter
on the whole performance of the system. An analytical model is more useful for gaining
insights into the physics of a device, and for conducting fast explorative simulations.

Another way to analyze rectangular dielectric waveguides is to employ approximate
methods such as the effective index and Marcatili methods [115, 116]. Marcatili’s ap-
proximate analytical approach has been used in many studies on optical waveguide the-
ory [117–120]. However, his method is derived for waveguides with a low-refractive-index
contrast; in a silicon waveguide, the index contrast is high.

In [121] it is shown that Marcatili’s dispersion equations are more general and still
give a good approximation of the propagation constant for both high and low refractive
index contrast cases. However, at large index contrast causes a severe mismatch of the
electromagnetic fields inside and outside the core of the waveguide.

The behavior of the TWA depends critically on having exact knowledge of the propa-
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gating modes on the top surface of the waveguide where the interaction with electrons in
graphene happens. To get a good approximation of the interaction impedance, an improved
form of the modal field based on Marcatili’s approach is used. This modal electromagnetic
field has a lower mismatch for the same dispersion equations.

Figure 5.8: Depiction of fulfilled and unfulfilled boundary conditions for Marcatili, and
improved Marcatili methods. At each interface, fields that satisfy boundary conditions are
shown in green, all others are in red. Regions 1-5 are defined in top left picture.

Detailed descriptions of the Marcatili method and the improved method are given in
appendices C and D, respectively. The field distributions obtained from both methods
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are not exact solutions of Maxwell’s equations. The solutions obey Maxwell’s equations
in all regions individually. However, all boundary conditions at the interfaces between
the waveguide core and its cladding cannot be satisfied at the same time. The difference
between these methods is in choosing which boundary conditions to satisfy.

Marcatilis methods (original and improved) are summarized in Fig. 5.8. At each
interface, the fields that satisfy the boundary conditions are shown in green, all others are
shown in red.

The modes in a rectangular waveguide are divided into two families: Exnm modes,
where most of the electric field is polarized in the x-direction; and Eynm modes, where most
of the electric field is in the y-direction. The subscripts n and m represent, respectively,
the number of field extrema along the x and y directions. Our analysis considers only
the Ex11 mode, a TM-like mode at the top surface of the waveguide where the graphene
is located. The coupling between the space charge density wave in the graphene and the
TE-like mode (Eynm) is not significant, since the z-directed plasma wave is modulated only
by the z component of the electric field.

Both the improved Hx=0 method and improved Ey=0 method give better estimation
of the fields than their corresponding Marcatili method. To demonstrate this, the discon-
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tinuities of tangential field components at the interfaces of the waveguide are quantified
by defining the parameter Uer as [121]:

Uer =
1

2l

∮
εavg|n̂× (E+ − E−)|2dl +

1

2l

∮
µ0|n̂× (H+ −H−)|2dl (5.38)

This parameter can be interpreted as a mismatched energy density at the interfaces.
The line integral is taken along the circumference of the waveguide’s cross section and
l = 2(a+b). E+ (H+) and E− (H−) are the electric (magnetic) fields just outside and inside
the waveguide’s core region. n̂ is the unit vector orthogonal to the waveguide’s surface.
Therefore, n̂ × (E+ − E−)(n̂ × (H+ −H−)) represents the discontinuity of the tangential
electric (magnetic) field’s vector at the core-cladding interfaces. εavg = (ε+ − ε−)/2, where
ε+ and ε− are the dielectric constants outside and inside of the waveguide.

The calculated Uer curves for the Ex11 mode obtained from the methods defined in Fig.
5.8, are plotted together in Fig. 5.9. In this figure, the field amplitudes at each point are
normalized such that the total z-directed power propagating in waveguide regions 1-5 (see
Fig. 5.8) equals unity.

In Fig. 5.9, the waveguides height is assumed to be constant (b = 600µm), and the
width of the waveguide varies between a = b/3 = 200µm and a = 7b = 4200µm. For the
waveguide with a width smaller than 2275µm (a ≈ 3.8b) the improved Ey = 0 method
gives the lowest mismatch error. However, for a TM-like mode in a waveguide wider than
2275µm, the improved Hx = 0 gives a lower mismatch than the Ey = 0 method. This
behavior is expected. A waveguide with a very large value of b � a is similar to a slab
waveguide with 1 − 2 and 1 − 3 interfaces. Therefore, the improved Hx = 0 method
gives better results; in this method all tangential field components are continuous at these
interfaces. Similarly, a waveguide with a very large value of a � b is similar to a slab
waveguide with 1 − 4 and 1 − 5 interfaces. Therefore, the improved Ey = 0 method will
give better results.

In the next section, a rectangular waveguide with a grating on top will be analyzed. For
the waveguide geometries considered in this thesis, the improved Ey = 0 method results
in the lowest mismatch and thus provides a better estimation of the electromagnetic field
distribution. Therefore, the results of this method will be used in the next section where
the field distribution of the fundamental harmonic of the periodic structure is approximated
with the field of an unperturbed waveguide to obtain an explicit equation for the interaction
impedance.
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Figure 5.10: High-resistivity silicon waveguide with surface corrugation.

5.3.1 Analysis of Floquet modes in a rectangular dielectric waveg-
uide with a grating on top

This thesis presents an approximate analytical solution for electromagnetic wave propaga-
tion in a dielectric rectangular waveguide grating. In the previous section, a similar anal-
ysis was done for TE and TM mode propagation in a thin film dielectric waveguide with
a grating on the top surface. The current section covers a more-rigorous analysis of hy-
brid modes in a rectangular dielectric waveguide that is more applicable for monolithic
integrated circuits.

The analytic expressions for the space harmonics of the electromagnetic field, and the
interaction impedance, are obtained by means of an approximate Floquet mode analysis.
In a TWA, the interaction impedance is a measure of the coupling between the electric
field and the electron beam in the interaction region for a given electromagnetic power.
It is an important parameter in determining the gain and efficiency of the amplifier. The
approximate theoretical procedure is well-suited to generating design data for dielectric
grating structures. For instance, using this technique in this thesis, the influences of
phys- ical dimensions on the interaction impedance are explored. The dimensions of the
rectangular waveguide and the grating are determined to obtain the optimum interaction
impedance.

The structure under investigation is depicted in Fig. 5.11 The structure is composed of
a rectangular high-resistivity silicon waveguide with surface corrugation. Recently, it was
demonstrated in [98,99] that such a waveguide is very low loss at sub-millimeter-wave and
THz frequencies. A high precision fabrication process for this structure is also presented.

The electromagnetic waves propagating along a straight waveguide are classified into
TE, TM or hybrid modes according to the presence or absence of the longitudinal field com-
ponents Ez and Hz. The dielectric rectangular waveguide can only support hybrid modes
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Figure 5.11: Cross section of waveguide with grating layer on top (denoted by “P”).

with both Ez and Hz present. Consider a monochromatic wave with angular frequency ω,
propagating in the z direction with a propagation constant βz. In a homogeneous region
j, with a relative dielectric constant of εr = εrj = cons, all components satisfy the reduced
wave equation (here given only for Ez)

∇2
tEz +K2

jEz = 0 (5.39)

where K2
j = k2

0εrj − β2
z , and ∇t is the transverse Laplacian.

The grating structure is modelled by a thin inhomogeneous layer of thickness tg, char-
acterized by the dielectric constant εg(z), which varies periodically along the propagation
direction z. The wave equations for Ez and Hz in this layer are

∇2Ez +
∂

∂z

[
∂ln(εg(z))

∂z
Ez

]
+ ω2µ0εg(z)Ez = 0 (5.40a)

∇2Hz + ω2µ0εg(z)Hz = 0 (5.40b)

Using Maxwell’s equations, all electromagnetic field components can be obtained from the
longitudinal field components. In the grating region with the εg(z) = ε0εrg(z) function of
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Figure 5.12: Coupling factor as a function of b for different values of a with lp = 300nm,
tg = 300nm and md = 0.3 at f = 150GHz.

z, we have

k2
0εrg(z)Ex +

∂2Ex
∂z2

=
∂2Ez
∂z∂x

− jωµ∂Hz

∂y
(5.41a)

k2
0εrg(z)Ey +

∂2Ey
∂z2

=
∂2Ez
∂z∂y

+ jωµ
∂Hz

∂y
(5.41b)

k2
0εrg(z)Hx −

∂ ln εg(z)

∂z

∂Hx

∂z
+
∂2Hx

∂z2
= jωεg

∂Ez
∂y

+
∂2Hz

∂z∂x
− ∂ ln εg(z)

∂z

∂Hz

∂x
(5.41c)

k2
0εrg(z)Hy −

∂ ln εg(z)

∂z

∂Hy

∂z
+
∂2Hy

∂z2
= jωεg

∂Ez
∂y

+
∂2Hz

∂z∂x
− ∂ ln εg(z)

∂z

∂Hz

∂x
(5.41d)

In a homogeneous region, the above equations (5.40,5.41) are simplified by substituting
∂ ln εg(z)/∂z equal to zero.

In a rectangular dielectric waveguide with a periodic dielectric layer, the field compo-
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Figure 5.13: Coupling factor as a function of a for different values of b with lp = 300nm,
tg = 300nm and md = 0.3 at f = 150GHz.

nents are in the Floquet form:

Hz =
∞∑
−∞

hzm(x, y)e−jβzmz (5.42a)

Ez =
∞∑
−∞

ezm(x, y)e−jβzmz (5.42b)

where βzm = βz0 + 2mπ
d

. Similar equations are applied for the x and y field components.

The relative dielectric constant of the grating layer with periodic dielectric constant,
εg = ε0εrg, can be expressed by its Fourier series expansion

εrg = εrg0 +
∞∑
1

εrgm cos(
2πm

d
z) (5.43)

Substituting the Floquet expansion of the field components (5.42), along with the first-

order Fourier expansion of εrg = εrg0 + εrg1 cos(2π
d
z) and ∂ ln(εrg)

∂z
= g1 sin(2π

d
z) into equation
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(5.40) and (5.41) yields∑
m

(
∇2
t − β2

zm + k2
0εrg0

)
hzm(x, y)e−jβzmz+

k2
0εrg1/2

[∑
m

hzme
−jβz(m−1)z +

∑
m

hzme
−jβz(m+1)z

]
= 0

(5.44)

∑
m

(
∇2
t − β2

zm + k2
0εrg0

)
ezme

−jβzmz+∑
m

(
k2

0εrg1/2 + g1π/d− βzmg1/2
)
ezme

−jβz(m−1)z+∑
m

(
k2

0εrg1/2 + g1π/d+ βzmg1/2
)
ezme

−jβz(m+1)z = 0

(5.45)

∑
m

(
k2

0εrg0 − β2
zm

)
eyme

−jβzmz +
∑
m

k2
0εrg1
2

eyme
−jβz(m−1)z +

∑
m

k2
0εrg1
2

ey(m)e
−jβz(m+1)z

= −
∑
m

jβzm
∂ezm
∂y

e−jβzmz +
∑
m

jωµ0
∂hzm
∂x

e−jβzmz

(5.46)
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∑
m

(
k2

0εrg0 − β2
zm

)
hyme

−jβzmz+

∑
m

(
k2

0εrg1
2

+
g1βzm

2

)
hyme

−jβz(m−1)z +
∑
m

(
k2

0εrg1
2
− g1βzm

2

)
hyme

−jβz(m+1)z

= −
∑
m

jβzm
∂hzm
∂y

e−jβzmz − g1

2j

[∑
m

∂hzm
∂y

e−jβz(m−1)z −
∑
m

∂hzm
∂y

e−jβz(m+1)z

]

−
∑
m

jωε0εrg0
∂ezm
∂x

e−jβzmz − jωε0
εrg1
2

[∑
m

∂ezm
∂x

e−jβz(m−1)z +
∑
m

∂ezm
∂x

e−jβz(m+1)z

]
(5.47)

Due to the uniqueness of the Fourier series expansion, we have:

∇2
thzm −G2

pmhzm = −k2
0

εrg1
2

(
hz(m−1) + hz(m+1)

)
(5.48)

∇2
t ezm −G2

pmezm =−
[
k2

0εrg1
2

+
g1βz(m−1)

2
+
g1π

d

]
ez(m−1)

−
[
k2

0εrg1
2
−
g1βz(m−1)

2
+
g1π

d

]
ez(m+1)

(5.49)

eym =
k2

0εrg1
2G2

pm

(
ey(m−1) + ey(m+1)

)
+
jβzm
G2
pm

∂ezm
∂y
− jωµ0

G2
pm

∂hzm
∂x

(5.50)

hym =
k2

0εrg1
2G2

pm

(
hy(m−1) + hy(m+1)

)
g1

2G2
pm

(
βz(m+1)hy(m+1) − βz(m−1)hy(m−1)

)
− jβzm
G2
pm

∂hzm
∂y
− jg1

2G2
pm

(
∂hz(m−1)

∂y
−
∂hz(m+1)

∂y

)
− jωε0εrg0

G2
pm

∂ezm
∂x
− jωε0εrg1

2G2
pm

(
∂ez(m−1)

∂x
+
∂ez(m+1)

∂x

)
(5.51)
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where G2
pm = β2

zm − ω2µ0ε0εrg0. This set of equations couples each space harmonic to the
next lower and higher harmonics. If higher order Fourier terms of εrg (5.43) are considered,
more harmonic terms will appear. The higher-order space harmonics have amplitudes
much smaller than those of the lower-order space harmonics. Therefore, the first-order
approximation is applied to simplify the above equations. In this approximation, to obtain
the solution for the first-order space harmonic (m=1), the second-order space harmonic
(m=2) is neglected with respect to the zeroth-order space harmonic.

∇2
thz1 −G2

p1hz1 = −k2
0

εrg1
2
hz0 (5.52)

∇2
t ez1 −G2

p1ez1 = −
[
k2

0εrg1
2

+
g1βz0

2
+
g1π

d

]
ez0 (5.53)

ey1 =
jβz1
G2
p1

∂ez1
∂y
− jωµ0

G2
p1

∂hz1
∂x

+
k2

0εrg1
2G2

p1

ey0 (5.54)

hy1 = −jβz1
G2
p1

∂hz1
∂y
− jωε0εrg0

G2
p1

∂ez1
∂x

− jg1

2G2
p1

∂hz0
∂y
− jωε0εrg1

2G2
p1

∂ez0
∂x

+
k2

0εrg1 − g1βz0
2G2

p1

hy0

(5.55)

For a waveguide with a thin grating, the zeroth-order space harmonic can be approxi-
mated by the modal solution of the rectangular waveguide with no grating. As was men-
tioned in the introduction, there is no analytic solution for the field distribution of a rect-
angular dielectric waveguide. Therefore, the field distributions obtained from the improved
Marcatili Ey = 0 method (described in appendix D), are used as a good approximation for
the field distribution of the zeroth-order space harmonic.

ez0 = A2e
−γx(x−b/2) cos(kyy) (5.56a)

hz0 = B2e
−γx(x−b/2) sin(kyy) (5.56b)

ey0 =

(
A2
jβz0ky
k2
t2

−B2
jωµγx
k2
t2

)
e−γx(x−b/2) sin(kyy) (5.56c)

hy0 =

(
A2
jωε0εr2γx

k2
t2

−B2
jβky
k2
t2

)
e−γx(x−b/2) cos(kyy) (5.56d)
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Figure 5.15: (a) Coupling factor versus md for different values of tg; and (b) interaction
impedance versus tg for different values of md with a = 115µm, b = 600µm at f = 150GHz

where A2 and B2 coefficients are defined by eq.D.1.

5.3.2 Derivation of the field distribution of the first-order space
harmonic

Because the first order space harmonic field is confined mainly to the grating layer, its field
distribution can be defined only for the grating layer and surrounding areas, assuming the
field distribution to be negligible in other areas. Figure 5.11 shows a cross section of the
rectangular waveguide with a thin grating layer on top denoted by the letter ”P”. The field
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of the first-order harmonic inside regions 1, 2, and P, is a standing wave in y direction, and
it decays in proportion to its distance from the interfaces of the P layer in the x direction.
For a thick rectangular waveguide, it can be assumed that the field decays completely in
silicon layer 1; thus, no field of the first order harmonic reaches layer 3 under the silicon
layer.

Since most of the first order space harmonic’s power is concentrated in layer P (as
in Marcatili’s approach), the field at the corner areas 1L,R and 2L,R can be neglected.
Furthermore, in regions PR and pL, the field decays in y direction from the interfaces of
the grating layer. Thus, for a thin layer of grating when its thickness, tg, is much smaller
than its width, a, the field in regions pL and pR can also be neglected. The analysis of a
2D slab structure presented in the previous section, showed that although the interaction
impedance is higher for thicker grating layers, it does not change for gratings thicker than
tg = d, where d is the pitch of the grating (Fig. 5.3). Therefore, the assumption tg << a
can be applied for the structure in question in which t is in the order of a few hundred
nanometers and a is in the order of tens of micrometers.

By considering all of the above-mentioned assumptions, the Hz1 = hz1e
−jβz1z and Ez1 =

ez1e
−jβz1z field components of the first-order space harmonic can be represented as:

ez1 =



a2e
−γx2(x−b/2−tg) cos(kyy) x > b/2 + tg[

ap sinh(γxp(x− b/2)) + a′p cosh(γxp(x− b/2))
f ′

G2
p1

]
[
−A2

f ′e−γx(x−b/2)

γ2
x − k2

y −G2
p1

]
cos(kyy) b/2 < x < b/2 + tg

a1e
γx1(x−b/2) cos(kyy) x < b/2

(5.57)

hz1 =



b2e
−γx2(x−b/2−tg) sin(kyy) x > b/2 + tg[

bp cosh(γxp(x− b/2)) + b′p sinh(γxp(x− b/2))−B2
fe−γx(x−b/2)

γ2
x − k2

y −G2
p1

]
sin(kyy) b/2 < x < b/2 + tg

b1e
γx1(x−b/2) sin(kyy) x < b/2

(5.58)
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where f =
k20εr2

2
and f ′ =

k20εr2
2

+ g1βz0
2

+ g1π
d

. From the wave equations in 3 regions we have:

γ2
x1 = β2

z1 + k2
y − k2

0εair (5.59a)

γ2
x2 = β2

z1 + k2
y − k2

0εSi (5.59b)

γ2
xp = β2

z1 + k2
y − k2

0εrg0. (5.59c)

Since both the zeroth- and first-order harmonics are hybrids, both Ez and Hz com-
ponents should be defined to obtain all other field components (Eq. 5.41). The ez1 and
hz1 fields defined by equations 5.57 and 5.58, satisfy wave equations C.2 in homogeneous
layers 1 and 2, and satisfy the equations 5.53 and 5.52 for the periodic layer ”p”. These
are inhomogeneous electromagnetic wave equations with ez0 and hz0 given in eq. 5.56.

Similarly, the ey1 and hy1 components are obtained from equations 5.54 and 5.3.1

ey1 =



[
−a2

jβz1ky
G2
t2

+ b2
jωµ0γx2

G2
t2

]
e−γx2(x−b/2−tg) sin(kyy) x > b/2 + tg

egy1 b/2 < x < b/2 + tg[
−a1

jβz1ky
G2
t1

− b1
jωµ0γx1

G2
t1

]
eγx1(x−b/2) sin(kyy) x < b/2

(5.60)

egy1 = −jβz1ky
G2
p1

[
ap sinh(γxp(x− b/2)) + a′p cosh(γxp(x− b/2))− f ′A2

γ2
x − k2

y −G2
p1

e−γx(x−b/2)

]
sin(kyy)

−jωµo
G2
p1

[
γxp
(
bp cosh(γxp(x− b/2)) + b′p sinh(γxp(x− b/2))

)
+

fB2

γ2
x − k2

y −G2
p1

γxe
−γx(x−b/2)

]
sin(kyy)

+
k2

0εrg1
2G2

p1

(
A2
jβz0ky
k2
t2

−B2
jωµ0γx
k2
t2

)
e−γx(x−b/2) sin(kyy)

(5.61)
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hy1 =



(
−a2

jωε0εr2γx2

G2
t2

+ b2
jβz1ky
G2
t2

)
e−γx2(x−b/2−tg) cos(kyy) x > b/2 + tg

hgy1 b/2 < x < b/2 + tg(
a1
jωε0εr1γx1

G2
t1

+ b1
jβz1ky
G2
t1

)
eγx1(x−b/2) cos(kyy) x < b/2

(5.62)

hgy1 =
jωε0εrg0
G2
p1

[
γxp[ap cosh(γxp(x− b/2)) + a′p sinh(γxp(x− b/2))] + γx

f ′A2

γ2
x − k2

y −G2
p1

e−γx(x−b/2)

]
cos(kyy)

+
jβz1ky
G2
p1

[
bp cosh(γxp(x− b/2)) + b′p sinh(γxp(x− b/2))− fB2

γ2
x − k2

y −G2
p1

e−γx(x−b/2)

]
cos(kyy)

+
k2

0εrg1 − g1βz0
2G2

p1

(
A2
jωε0εr2γx

k2
t2

−B2
jβz0ky
k2
t2

)
e−γx(x−b/2) cos(kyy)

+

(
−A2

jωε0εrg1γx
2G2

p1

+B2
jg1ky
2G2

p1

)
e−γx(x−b/2) cos(kyy)

(5.63)

where G2
t1 = B2

z1− k2
0εSi and G2

t2 = B2
z1− k2

0εair. The eight unknown coefficients (a1,2,p,
b1,2,p, a

′
p, and b′p coefficients in equations5.57 and 5.58) are obtained from the boundary

conditions. Since the field is considered non-negligible only in regions 1, 2, and p, the
boundary conditions are the continuity of Ez, Hz, Ey and Hy components at the top and
bottom grating layer interfaces, resulting in 8 equations. By solving these 8 equations with
8 unknowns, the field distribution coefficients are obtained.

The next step is to use the field distribution of the first-order space harmonic mode
defined in this section to obtain the interaction impedance of the proposed TWA described
in the beginning of this chapter (Fig. 5.1)

5.3.3 Gain and dispersion equations

Similar to the discussion focused on slab waveguides (section 5.2.2), the field of the space
harmonic excited by the surface current of J = Jee

−jβz can be obtained for the top-grated
rectangular waveguide from eq. 5.5, substituting EA1 = As cos(kyy)ẑ and Je = Js cos(kyy)ẑ
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E1(xg, y) =
−j|As|2 (a+ sin(kya)/ky)

8PA0(β1 − β)
Js cos(kyy) (5.64)

where As = ap sinh(γxptg) + a′p cosh(γxptg) − A2
f ′e−γxtg

γ2x−k2y−G2
p1

(eq. 5.53). PA0 is calculated by

integrating the z component of the Poynting vector P = 1
2
E×H∗ over the areas of all 1−5

regions using the field expressions given by equations C.3 and C.4.

The current induced by this electric field at the surface of the graphene is obtained from
Ohm’s law (eq. 5.34). The dispersion equation is obtained by imposing a self-consistency
condition between equations 5.64 and 5.34:

−j|As|2 (a+ sin(kya)/ky)

8PA0(βz1 − βz)
σ(βz, ω) = 1 (5.65)

This equation is similar to equation 5.35 given for the slab waveguide, except that in the
former, the term |EA1(x = xg, y = 0)|2 (1/2 + cos(kya)) replaces the term |EA1(x = xg)|
in order to consider the variation of the electric field along the y axis. Also, the PA0 in
this equation is the total power carried by the first harmonic of the electric field. Similar
to eq. 5.37 the gain equals g = 2Imβ = K1β

2
1Real(σ). For the rectangular structure, the

interaction impedance K1 is defined as:

K1 =
|As|2 (a+ sin(kya)/ky)

4PA0β2
z1

(5.66)

The amount of K1β
2
1 determines the strength of the coupling between the electromag-

netic wave propagating in the rectangular waveguide and the space charge wave confined
to the graphene layer. The value of K1β

2
1 depends on both the waveguide dimensions, a

and b, and the grating dimensions, lp, tg and fd. These parameters should be optimized
to maximize the coupling factor.

Figure 5.12 and 5.13 show the value of K1β
2
1 as a function of b and a for different

a and b values respectively, at the frequency of 150GHz with lp = 300nm, tg = 300nm
and md = 0.3. These figures show that the maximum coupling is obtained when the
propagation constant of the waveguide is close to the cutoff point. Figure 5.14(a) and (b)
show the dispersion plot of the uniform (without grating) rectangular waveguide versus
a (with b = 600µm) and b (with a = 120µm), respectively. These plots are obtained by
solving equations C.7d and C.8d, given β2

0 = k2
0 − k2

x − k2
y. Near the cutoff point, the field

of the rectangular waveguide is less confined to the core and therefore has more overlap
with the plasma wave at the graphene’s surface. The result is a larger coupling factor.
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Figure 5.16: Normalized amplitude of second Fourier series coefficient
∣∣∣a1a0 ∣∣∣ for rectangular

wavefrom, depicted in the inset, with A1 = 1 and A2 = 1/εSi.

Figure 5.15(a) and (b) shows the variation of K1β
2
1 with respect to the filling factor

and depth of the grating, respectively, with lp = 300nm, a = 115µm and b = 600µm
at f = 150GHz. The first-order space harmonic field at the surface of the grating is
roughly similar to a periodic rectangular waveform. The Fourier series representation of
a rectangular waveform with the maximum of A1, minimum of A2, period of T , and duty
cycle of D = τ

T
(see inset of Fig. 5.16) is:

SΠ(t) =
+∞∑

n=− inf

ane
−j 2πn

T
t (5.67)

a0 = A2 +D(A1 − A2), an =
(A1 − A2)

j2πn

(
ej2πDn − 1

)
(5.68)

The ratio of
∣∣∣a1a0 ∣∣∣ versus D for A1 = 1 and A2 = 1/εSi is plotted in Fig. 5.16. This plot

is very similar to the plot depicted in Fig. 5.15(a).

The plots of Fig. 5.12, 5.12 and 5.15 are used to design the rectangular waveguide
and the grating for the slow-wave structure of the TWA. The goal is to gain maximum
interaction impedance. The rectangular image waveguide is used instead of a rectangular
rod waveguide. The image waveguide has the same thickness as the wafer being used.
From among standard wafer thicknesses, 300µm was chosen; a thickness suitable for the
frequency band of ∼ 100GHz to 300GHz. The image waveguide structure is supported by
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Figure 5.17: Gain versus period of grating for different values of drift velocity given b =
600µm, a = 120µm, md = 0.3, tg = d, and Ef = 0.3 eV.

a metallic ground. Therefore, for TM modes, it is roughly equivalent to a rod waveguide
twice as thick as the image waveguide. Thus, the b dimension in Fig. 5.12 and 5.13, is fixed
to 600µm, and the waveguide width, a, is the only design parameter used when optimizing
the interaction impedance. The values of b = 600µm, a = 120µm, md = 0.3, and tg > d
are chosen to obtain the maximum impedance.

By substituting (4.14) and (5.66) into g = K1β
2
1Real(σ)), the power gain is found

for different values of drift velocity. The intensity gain in Fig. 5.17 is plotted for drift
velocities from Vd = 0.5 × 105 m/s to Vd = 3 × 105 m/s. The maximum graphene drift
velocity reported in the literature varies from 2×105 m/s to 5.4×105 m/s [107] [108] [109].
For very small values of period, d, the phase velocity can be approximated by Vph ' fd.
The values of d at which the maximum gain is obtained increase with the drift velocity
(Fig. 5.17). For example, for Vd = 3× 105 m/s, the maximum gain is obtained at d = 680
nm.

Figure 5.18 shows the power gain versus the frequency for the optimized waveguide
dimensions. In this figure, the Fermi energy and drift velocity of the graphene are re-
spectively Vd = 3 × 105m/s and Ef = 0.3 eV. The maximum power gain is g = 14.45
dB/cm.
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Figure 5.18: Gain verus frequency for b = 600µm, a = 120µm, md = 0.3, d = tg = 680nm,
Vd = 3× 105 m/s and Ef = 0.3 eV.

5.3.4 Verifying the proposed method using numerical simulation

To verify the proposed approximation method, rectangular waveguides with grating on top
were simulated by a finite-element-based software from ANSYS electronics. The grating
periods for the proposed TWA at f = 150 GHz should be in the range of a few 100 nms.
Simulating these gratings requires a very fine mesh; for example, the grating period of
200 nm is 10000 times smaller than the free space wavelength. Therefore, due to the lack
of system memory, gratings with a much larger period of 20µm were simulated. Some of
the assumptions (e.g., confinement of the first order space harmonic field to the surface
of the grating), are less accurate for a larger period of gratings. However, there are still
enough similarities between the results of the two methods to show that the proposed
approximation method has enough accuracy to be used to design a structure and achieve
nearly optimum gain. However, it may not be accurate enough to give the exact value of
specific parameters such as the interaction impedance and gain.

The simulated structure is depicted in Fig. 5.19 To obtain highly accurate results, a
very fine mesh is defined inside the grating layer, and to save memory space, coarser mesh
is defined inside the rectangular waveguide. The generated mesh is shown in the inset of
Fig. 5.19. To extract the interaction impedance from the simulation results, the simulated
fields were transferred to a MATLAB file. Then, the discrete Fourier transform of the field
was computed using the fast Fourier transform algorithm in MATLAB.

The magnitude of the electric field inside the waveguide and around it is plotted in Fig.
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Figure 5.19: Simulated silicon image waveguide. Inset shows generated mesh.

5.20. Figure 5.21 shows the Ez component of the electric field in the middle of the surface
of the grating along the z-direction (line lz in Fig. 5.19). It consists of rapid fluctuations
with a slowly varying sinusoidal envelope. The slow varying sinusoidal envelope is the
fundamental harmonic, while the rapid fluctuations are caused by first and higher order
harmonics. To obtain the exact amplitude of each harmonic, the Fourier transform of the
field distribution along the z direction is calculated (see Fig. 5.22). The ky parameter in
(5.66) is obtained by fitting a cosine, cos(kyy) function to the field distribution of the field
along the y direction inside the rectangular waveguide (see Fig. 5.23). The propagated
power P is the same as the source power defined by the input port.

In Fig. 5.24, the coupling factor versus b obtained from the approximate analysis is
plotted together with that obtained from the simulations. The guided modes in an infinite
dielectric slab waveguide have propagation constants greater than k0. The propagation
constant depends on the slab thickness. The thickness at which the propagation constant
becomes βz = k0 is called the cutoff thickness. Waveguides with thicknesses larger than this
cutoff thickness have at least one guided mode. For smaller profiles, all modes are radiating
modes andwhich are not confined by the dielectric core. For a rectangular waveguide with
a finite width, the cutoff thickness is smaller than the cutoff thickness of anthe infinite slab
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Figure 5.20: Magnitude of electric field vector simulated by ANSYS electronics software.

waveguide. However, there is no exact analytical solution to find the cutoff thickness in
a rectangular waveguide. In Fig. 5.24, theoretical results are plotted only for b values at
which βz > k0; simulation results are plotted also for smaller values of b at which guided
modes were observed in simulation.

In Fig. 5.24, both the approximate analytical and numerical results show that the inter-
action impedances decrease, away from the cutoff point, when the width of the waveguide
is increased. However, near the cutoff point, the interaction impedance calculated using
the proposed approximate analytical method increases exponentially; the numerical result
shows only a relatively small peak near this point.

The difference near the cutoff point comes from the large discrepancy between the exact
field distribution of the electromagnetic field and the estimated field distribution obtained
from the improved Marcatili method. This method is based on the assumption that the
field is confined inside the waveguides core which is not valid near the cutoff point. As it
is shown in Fig. 5.24, away from the cutoff point, there is good agreement between the
approximate analytical and simulation results. Also, where an analytical solution exists
for the slab waveguide, there is good agreement between the approximate analytical and
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Figure 5.21: Ez component of electric field on surface of grating along line lz (see Fig.
5.19), for a = 125µm, b = 600µm, md = 0.3, tg = 10µm, and lp = 20µm at f = 150GHz.

simulation results (see Fig. 5.3).

Equation (5.66) can also be written as:

K1 =
|As|2

|A2|2
|A2|2 (1 + sin(kya)/ky)

4PA0β2
1

(5.69)

The expression on the left is a multiplication of two terms. The first term, |As|
2

|A2|2 (A2 is

defined in eq. D.2), represents the amplitude of the first-order space harmonic generated
by the grating layer with respect to the fundamental harmonic. This term is determined
mainly by the grating dimensions. The second term shows how much of the power is
distributed along the surface of the grating. For thin gratings, it is mainly determined by
the waveguide dimensions.

Figure 5.25 shows the term |As|
|A2| versus md for a grating with tg = 10µm on top of a

rectangular waveguide with a = 125µm and b = 600µm. The normalized amplitude of the
first-order space harmonic obtained from the approximate theoretical analysis is maximized
atmd = 0.3. However, for the values obtained from simulation, it is maximized atmd = 0.4.
As mentioned above, the normalized amplitude of the first-order space harmonic of the
rectangular periodic field is maximized for a duty cycle of 0.3. For very small grating
periods (small with respect to the wavelength of propagation), the field at the surface of
the grating is very similar to the periodic rectangular wave. This approximation becomes
less accurate for larger grating periods, justifying the difference between the approximate
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Figure 5.22: Fourier series transform of Ez component depicted in Fig. 5.21.

analytical and simulation results for a grating period of 20µm.

In chapters 3 and 4, (when calculating the conductivity of the graphene layer), and in
this chapter (when calculating the dispersion equation from eq. 5.65), it is assumed that the
electromagnetic field exciting the space charge density wave in the graphene has only the
z-component on the surface of the graphene, parallel to the direction of the drifting current.
The TM modes of an infinite slab waveguide have only the Ez component. However, hybrid
modes in a dielectric rectangular waveguide have both Ey and Ez components at the surface
of the graphene. In this case, for an exact analysis of the graphene, a conductivity tensor
σ =

( σyy σyz
σzy σzz

)
should be defined. The z- and y-components of the electric field are coupled

through hydrodynamic equations, increasing the complexity of the analysis drastically.

Therefore, we have assumed that the Ey component of the first-order space harmonic
is negligible with respect to its Ez component. To verify the accuracy of this assumption,
the Ey field on the surface of the grating along the z direction for a = 125µm, b = 600µm,
md = 0.7, tg = 10µm, and lp = 20µm at f = 150GHz is plotted in Fig. 5.26. Comparing
the two plots of Fig. 5.21 and 5.26, it can be seen that Ey of the first-order space harmonic
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Figure 5.23: Field distribution of the field along y direction. Solid line is simulated field;
dotted line is fitted curve; and colored area indicates inside of silicon waveguide.

is one order of magnitude smaller than its Ez component.

5.4 Conclusion

In this chapter, an analytic solution is presented to analyze electromagnetic wave propa-
gation in a periodic structure in the presence of graphene. Analytic expressions are also
given for the interaction impedance and gain of a proposed TWA. Within these expres-
sions, each parameters individual effect on the overall performance of the structure is
studied. Throughout the chapter, the approximations made for this method along with
the conditions under which these approximations are valid are discussed.

The main contribution of this chapter has been to introduce an approximate theoretical
method for analyzing Floquet modes in gratings on top of rectangular dielectric waveguides.
This method gives explicit expressions for the interaction impedance of slow-wave grating
structures, which are then used to design the waveguide and grating.

To verify the proposed approximation method, the results obtained with this method
are compared with simulation results. To adjust the mesh size in accordance with the
system memory, the period of the simulated gratings was set to be much larger than what
is required for the proposed graphene TWA. Therefore, the simulation results are used only
for verification of the theoretical results.
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Figure 5.24: Coupling factor versus b with a = 125µm, md = 0.3, tg = 10µm, and
lp = 20µm at f = 150GHz. Results obtained using proposed approximate theoretical
method (solid line); results obtained from simulation (dots).

Some of the assumptions made in the approximate theoretical method, such as the
confinement of the first order space harmonic field to the surface of the grating, are less
accurate for larger periods of gratings. However, there are still enough similarities between
the results of the two methods to show that the approximate method is accurate enough for
designing structures with nearly optimum gain. However, it may not be accurate enough
to give the exact value of parameters such as the interaction impedance and gain.

The dimensions of the rectangular waveguide and the grating have now been deter-
mined. The next step, described in Chapter 6, is to fabricate the designed sample and
verify the theoretical results with measurement results.
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Figure 5.26: Ey component of electric field on surface of grating along line lz (see Fig.
5.19), for a = 125µm, b = 600µm, md = 0.3, tg = 10µm, and lp = 20µm at f = 150GHz.

81



Chapter 6

Fabrication and measurement

The proposed structure, depicted in Fig. 5.1, was created in three main stages (see Fig.
6.1):

• Fabrication of the grating. (6.1)

• Transfer of the graphene layer and fabrication of the DC bias contacts. (6.2)

• Fabrication of the silicon waveguide.(6.3)

This chapter details the steps taken in each stage of the fabrication process. The
proposed travelling amplifier could have been designed and fabricated for use at 1 THz
frequency (the frequency of interest in this thesis so far); however, to simplify and speed
up the fabrication process, the prototype structure was fabricated for a frequency range
of 110-170 GHz. The fabrication of such a device at 1 THz is more complicated, for two
main reasons. The first reason is the long grating with smaller pitch. Because this grating
is fabricated using the Electron Beam Lithography (EBL) method, a good electron beam
focus is crucial and even a small change in height will knock the electron beam out of focus.
This focus issue becomes more problematic for certain large area samples that require a
homogeneous structure, and it is very difficult to overcome in small structures because
higher resolution is required. The solution is to divide the large area into smaller parts,
then align and pattern each separately, after refocusing the beam on the individual parts
in series. Unfortunately, this is a time-consuming process.

For frequencies around 100 GHz to 400 GHz, a simple image silicon waveguide ( [122]),
a stand-alone waveguide that can be moved without having to be mounted on a handler,
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Figure 6.1: Three main stages of the fabrication process.

was used. However, at 1THz, this type of waveguide become very lossy; moreover, its
very delicate structure means it should be mounted on a handling structure ( [98,99,123]).
This is the second reason why fabricating the structure at higher frequencies is more
complicated. For these reasons a frequency of around 150 GHz was selected for fabricating
the first prototype structure for proof of concept.

Various methods of etching and thin film deposition are known. In each step of the
fabrication process, a suitable method whose outcome meets the required specifications was
selected based on the advantages and disadvantages of each method. These are described
in detail below.

There are two major types of etching: wet and dry. Wet etching uses liquid chemicals
, usually mixtures of acids, bases, and/or solvents. The surface material is removed by
chemical reactions. This form of etching is generally isotropic, and the material is etched
uniformly in all directions. This can lead to undercutting, as the underlying film is etched
from underneath the mask (Fig 6.2). Therefore, straight vertical walls cannot be fabricated
and undercuts always exist. However, the chemical nature of the etch can lead to good
etch selectivity, which is the main advantage of this method. Selectivity is the ratio of
the underlying film etch rate to the mask etch rate. However, it is essentially isotropic.
If anisotropic etching is desired, directionality must be induced into the etch process, and
this can be achieved by dry etching.
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Figure 6.2: Schematic of (a) isotropic wet etching with undercut and (b) anisotropic dry
etching with straight vertical walls.

Dry etching uses plasmas formed from gases as the etchant. Plasmas are usually com-
posed of positively charged ions, electrons, and uncharged radicals. Applying an electric
field causes the ions to be accelerated downward toward the wafer. Therefore, dry etching
involves chemical reactions or physical removals or a combination of both [124].

There are three main types of dry etching [124]: sputter, chemical, and reactive ion
etching (RIE). Sputter etching, in which a wafer is directionally bombarded by non-reactive
ions, is a purely physical process. Such physical sputtering is highly anisotropic, due to the
essentially vertical nature of the etching. However, the selectivity and etch rate are low.
Usually, the mask etches at about the same rate as the substrate. Chemical etching is a
purely chemical process that uses neutral free radicals reaction with substrate material. It
is highly selective, but isotropic. RIE combines chemical etching and physical sputtering, to
gain both sufficient selectivity and directionality. Since the process combines both physical
and chemical interactions, it is faster than the other two methods.

In a simple RIE system, an RF voltage is applied to a pair of electrodes in the etch
chamber. Electrons are accelerated by the generated RF electric field. The electrons collide
with other atoms and molecules, thereby ionizing them, and releasing additional electrons
which accelerate and collide with further atoms. The resulting chain reaction generates
electrically conductive plasma.

The lower electrode is connected to a blocking capacitor, that is gradually biased to a
negative potential, referred to as a self-bias and represented by Vdc. Electrons with small
mass follow the oscillation of the RF electric field. On the other hand, ions with masses
of approximately 100,000 times larger move relatively little in response to the RF electric
field. However, due to the large negative Vdc at the wafer platter, the ions accelerate down
toward the wafer surface. Since the Vdc value depends on the RF power, the RF plasma
source determines both ion density and ion energy. The ions react chemically with the
materials on the wafer, but can also knock atoms off the surface by transferring their
kinetic energy [125].
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As mentioned above, in simple RIE systems, both ion density and ion energy are de-
termined by a single RF source value. With high plasma densities, better etch rates can
be achieved, and with high ion energies, more anisotropic etch profiles can be achieved.
High process flexibility is achieved by having separate control over the ion energy and ion
density. For this purpose, other types of RIE systems exist, called inductively coupled
plasma (ICP) RIE.

ICP-RIE systems use two independent RF sources. One RF generator applies power to
the ICP coil. This coil, located in the plasma generation region, creates an RF magnetic and
electric field that energizes electrons so as to ionize gas molecules and atoms. Therefore, the
ICP RF source controls ion densities, while the RF bias power, applied to the wafer platter,
extracts and accelerates ions and radicals from the plasma towards the wafer surface. This
configuration results in the independent control of ion density and ion energy, leading
to higher etch rates, greater process flexibility, and more control over the anisotropy of
etching.

A modified version of RIE is deep reactive ion etching (DRIE), used to create very deep,
high aspect ratio structures. By using DRIE, very thick features, up to 500 µm or more
can be etched. There are two main technologies used for high-rate DRIE: cryogenic etching
and the Bosch process. The Bosch process is the most-common production technique, and
is used mainly for etching silicon substrates.

The Bosch process comprises a sequence of alternating steps (no more than a few
seconds long): a passivation step and an etch step [126]. The typical DRIE system uses
an ICP source to provide a high-density plasma, and an independent substrate power bias
to provide directional ion bombardment during the etch step. In the passivation step, a
protective layer of polymer is deposited by Plasma Enhanced Chemical Vapor Deposition
(PECVD). Octafluorocyclobutane (C4F8) gas is typically used for this passivation step.
The deposited Teflon-like polymer protects the already-carved features from further lateral
etching.

The passivation step is followed by the etch step, during which, the vertical sidewalls
of the silicon are relatively protected by the C4F8 induced polymer layer. However the
horizontal surfaces, although also coated with polymer, are sputtered off by the directional
ion bombardment, and thus exposed to the chemical etchant. The silicon is then etched
nearly isotropically by a chemical reaction. The typical etchant gas for silicon is sulfur
hexafluoride (SF6). The iteration of these passivation/etch cycles creates a large number
of very small isotropic etch bites called ripples. To etch through a 300µm silicon wafer, for
example, 600700 etch/deposit steps are performed. The cycle time affects the etch rate.
Long cycles yield a higher etch rate but larger ripples. Short cycles yield smoother walls
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Figure 6.3: Process flow for two methods of grating fabrication.

and a lower etch rate. In this thesis, the Bosch process was used to fabricate rectangular
silicon waveguides with a thickness of 300 µm and a shadow mask with a thickness of 200
µm.

In this thesis, the ICP-RIE technique was used to fabricate the grating structures with
a very small pitch size (around 300 nm). As the silicon width was around 90 nm, a small
amount of undercut will change the filling factor drastically. For example, a 20 nm undercut
will change the filling factor from 0.3 (which gives the maximum interaction impedance),
to 0.17 giving an interaction impedance 2.4 times smaller than its maximum value (see Fig.
5.15). Therefore, a very directional etching profile with no undercut is required. This can
be achieved by optimizing the ICP RF source power, platen RF bias power, gas flow rates,
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Figure 6.4: Microscope image of grating fabricated using Method 1 (Fig. 6.3(a)).

flow cycle time and temperature. In addition, to increase the anisotropy of the etching,
as in the Bosch technique a mixture of etch gas (SF6) and passivation gas (C4F8) is used,
but are released at the same time, resulting in smoother sidewalls than is possible with the
Bosch approach, but shallower etching.

Two thin film physical deposition methods were used in this project. For the lift-off
process, where direct pattern coating is required, an electron beam evaporation system is
used. However, for depositing a very thin layer of aluminum (20 nm), to be etched in to the
silicon mask later, a sputtering system was used. Compared with the E-beam evaporation
system, the sputtering system provides better thickness control and more pure aluminum
(it is less oxidized, which makes the etching process easier).

6.1 Fabrication of the grating

In the first stage of fabrication, the grating structure is constructed and the graphene sheet
transferred onto it. The fabricated grating structures have a width of 100-150 um, length
of 1 cm, thickness of 300 - 600 nm, pitch size of 312 nm and a filing factor of 0.15-0.3.

Two different fabrication methods were tried in this research. The first involved fewer
steps; however, it was difficult to obtain uniform structures with few defects. The sec-
ond was more reliable and repeatable. It yielded better quality gratings with few defects
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Figure 6.5: Microscope image of a test pattern after etching of silicon. Numbers at the
bottom of each column represent the line width of the written test pattern in micrometers,
and the numbers beside each bar are the dose factors. All gratings have the same period
of 312 nm. However, as the filling factors differ the colors of the test gratings also differ.

and little inhomogeneity. However, this fabrication process had more steps than the first
approach.

The fabrication steps of the first method (Method 1) are as follows:

Step 1: Cleaning the silicon piece. This is done using the Piranha process or using an ultra-
sonic bath of acetone and Iso Propanol Alcohol (IPA).

Step 2: Polymethyl methacrylate (PMMA) coating. The PMMA950- A3 was spin coated
with a speed of 2000 rpm and an acceleration of 500rpm/s for 45 seconds. After this,
it was baked on a hot plate at 180C for 17.5 minutes. The final thickness of the
PMMA resist was around 160 nm.

Step 3: Patterning the grating and alignment marks via electron beam lithography. Because
of the feature size and overall size of the patterned structure, a 20 KV acceleration
voltage and a 30 µm beam current aperture were selected. Higher voltages and
smaller aperture sizes result in higher resolution and grainy images for very small
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Figure 6.6: Microscope images of fabricated gratings with period of 312 nm with (a) non-
uniform filing factor of 0.3 at the middle and 0.15 at the end points, (b) uniform filling
factor of 0.5, and (c) uniform filling factor of 0.3. The total length of each grating is 1
cm, but only 5 mm of each is shown in each image. The inset in (a) shows the focused
image at the middle and two end points.

apertures. On the other hand, lower voltages and larger aperture sizes result in less
heating damage and charge up, and smoother images.

Step 4: PMMA developing. The PMMA was developed for 30 sec in a mixture of methyl-
isobutylketone (MIBK) and IPA with a ratio of 1:3 followed by dipping in IPA for
30 sec.

Step 5: Deposition. Depositing 20-30 nm of Aluminum or Aluminum oxide Al2O3 using an
E-beam evaporating system.

Step 6: Liftoff. For the liftoff, the sample was put in remover PG for 24 hours.

Step 7: Etching. The silicon was dry etched into the grating using aluminum or Al2O3 as a
mask, using a mixed gas of SF6 and C4F8 in an ICP-RIE system (Oxford Plasmalab
100 ICP380 Etcher).

Step 8: Mask removing. The aluminium mask was removed by putting it in aluminium
etchant for 6-7 minutes. The Al2O3 mask was kept on the sample since it does not
affect the electrical response of the grating significantly.

The process flow is shown in Fig. 6.3(a). The grating with a period of 1µm, depth of
1µm and filling factor of around 0.3, fabricated with this method is shown in Fig. 6.4. The
grating has many defects and is not uniform.
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Figure 6.7: SEM image of the first fabricated grating at (a) the middle and at (b) the end
point. The silicon teeth, dSi, are 91.5 nm wide at the middle of the grating and 45 − 60
nm at its end. A microscope image of this grating is shown in Fig. 6.6

The steps involved in the second approach (Method 2) used for grating fabrication
are given below. There is a brief discussion of each step and some of the practical issues
involved in each step are pointed out.

Step 1: Cleaning the silicon piece. Done using the Piranha process.

Step 2: Depositing 20-30 nm of Aluminum. Accomplished using a sputtering system.

Step 3: PMMA coating. The PMMA was spun to a thickness of approximately 160 nm and
baked at 180C for 17.5 minutes on the hot plate.

Step 4: Grating pattern written with 20 KV acceleration voltage and 30 um beam current
aperture. Choosing a higher voltage and smaller aperture size results in better reso-
lution, at the cost of slower scanning speed. Since the area of the structure is large,
a 20 KV and 30 um aperture were chosen and resulted in both acceptable resolution
and patterning time.

The developed pattern is wider than the scanned pattern due to proximity-effect
phenomena. Therefore, before patterning the main grating, a test pattern consisting
of small gratings with different line widths and dose factors was written on the sample.
Figure 6.5 shows a microscope image of a test pattern after the etching of silicon. All
the gratings have the same period of 312 nm; however, the colors differ due to the
different filling factors of the gratings. Writing a pattern with a higher dose results
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Figure 6.8: SEM image of a grating sample for which the fabrication went wrong because
the PMMA residue was not fully removed after MIBK development.

in a grating with a smaller filling factor. For gratings with filling factors between
0.25 and 0.35, the color varies from blue to green. The color changes to orange when
the filling factor decreases to around 0.15.

After Scanning electron microscope (SEM) imaging on a developed sample, the right
width and dose was selected for the main structure. Since a small change in temper-
ature and PMMA thickness will change the final result, it is better to do the dose
test on part of the main sample, then pattern the whole grating on it later, rather
than conducting of doing the dose test on a separate test piece.

Electron beam focusing, with aperture stigmation and write field alignments, was
performed at a point near to the center of the grating. The grating is 1 cm long.
Therefore, close to the two ends of the grating, the electron beam loses its focus.
Figure 6.6(a) shows a microscope image of the center and two end points of the
first fabricated grating. The silicon teeth at the center of the grating are 92 nm
wide.However, the width gradually changes further away from the center, becoming
∼60 nm at each end (see Fig. 6.7). To solve this issue a larger silicon piece was
selected. This, allowed for the use of a clip on either side to hold the sample, rather
than having it held by only one clip at the center. The resulting gratings are depicted
in Fig. 6.6(b) and (c). The color of the grating indicates its uniformity along the
whole structure.
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Figure 6.9: SEM images of aluminum mask (a) before silicon etching, (b) after silicon
etching but before mask removal, and (c) a zoomed-out view of (b). The rough light lines
are the edges of the etched silicon teeth underneath the thin aluminum layer.

Step 5: Developing the sample. Done in MIBK:IPA 1:3 for 30s followed by 30s rinsing in
IPA.

Step 6: Etching 10 nm of PMMA. This was completed, using 5 second oxygen plasma etching,
to remove possible unwanted PMMA residue remaining after developing. Figure 6.8
shows the effect of remaining PMMA residues after silicon dry etching on a final
grating. After development, the PMMA layer acts as an etching mask for the next
step.

Step 7: Through-etching of the aluminum layer. Using ICP-RIE with the gas mixture of
Cl2 and BCl3. The etching process takes only 5 seconds. Therefore, a pre-process
with the same temperature and gas flows, should be run first for a few minutes to
stabilize the chamber temperature and the gas inside the chamber. This pre-process,
reduces the typical variance of ICP-RIE processing. After the aluminum etching, the
remaining PMMA mask was removed with acetone or PG remover, followed by 40
second of oxygen plasma ashing. The aluminum layer acts as a hard mask during
the silicon dry etching process.

Step 8: Etching of silicon using ICP-RIE with a gas mixture of C4F8 (passivation gas) and
SF6 (etchant gas). To obtain high anisotropy and near zero undercutting, the platen
RF bias power was set to 30W, whereas the ICP RF power was set at the lowest
possible value that can generate stable plasma but keep the plasma density low. The
temperature was also set at T=0. This low temperature slows down the chemical
reactions that produce isotropic etching. The flow rates of the C4F8 and SF6 gas were
first set equally (15 sccm). However, the side walls were not completely straight, and
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Figure 6.10: SEM images of two gratings with dSi ' 132nm (pictures on the right) and
dSi ' 92nm (pictures on the left), at three stages of the fabrication process: (a) the PMMA
mask (after step 5 of the fabrication process described in the text); (b) the aluminium mask
(after step 7), (c) the final fabricated grating.
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Figure 6.11: Schematic illustration of the graphene transfer procedure.

there was lateral etching and significant undercutting. Figures 6.9(a) and (b) show
a grating before and after silicon etching, respectively. In Fig. 6.9(b) the aluminium
mask has not been removed. The light lines represent the edges of the etched silicon
teeth underneath the aluminium layer. Figure 6.9(c) shows part of the sample where
a couple of aluminium strips are peeled away and the etched silicon layer becomes
visible.

In the next run, to improve the anisotropy of the etching profile, the flow rate of the
C4F8 gas was increased to 25 sccm while keeping the flow rate of the SF6 at 15 sccm.
This change achieved better anisotropy and almost zero undercut. The etching rate
was around 0.4 nm/s. Figure 6.10 shows the PMMA mask, the aluminium mask, and
the silicon grating after removing the aluminium layer for two gratings with different
silicon teeth widths. Comparing the width of the aluminium strips in Fig. 6.10(a)
with the width of the silicon tooth in Fig. 6.10(b) shows that an undercut of less
than 3 nm was achieved.

Step 9: Removing the aluminium mask. The sample was immersed in the aluminum etchant
solution for 6 to 7 minutes.

6.2 Transfer of the graphene layer and fabrication of

the DC bias contacts

Mass fabrication of large-area uniform monolayer graphene is achieved by CVD. In this
project, as a graphene layer with a length of 1 cm is needed, PMMA coated CVD graphene
is used. Figure 6.11 schematically illustrates the graphene transfer procedure. The graphene
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Figure 6.12: Photos of transferred graphene layers locate on top of gratings. In (a) and (b),
graphene layers transferred successfully with no wrinkles or bubbles. Figure (c) shows an
example of unsuccessful transfer of graphene with some air bubbles trapped underneath.

should be fully wetted, before being dipped very slowly into distilled water; if it is nott
will roll up or even fold. Therefore, a few droplets of IPA are placed on a spongy fabric
layer underneath the graphene piece to be absorbed.

The PMMA-coated graphene film was floated on the water surface. It should remain
there for around 2 hours to ensure that water is in contact with the complete undersurface
of the film and not separated from it by air bubbles trapped underneath the graphene
(Fig. 6.11(b)). The PMMA layer makes the graphene layer visible. With the graphene
floating on the waters surface, the sample was placed beneath it at an inclined angle, and
then gently lifted to come into contact with the graphene sheet. Further gentle pulling
brought the substrate from the water, with the graphene layer resisting smoothly on it. The
graphene layer thus lies on the substrate, with some excess water that is washed away with
a few droplets of IPA added on top of the substrate. The water is replaced with IPA since
the latter evaporates and dries faster. At this point, any air bubbles remaining underneath
the graphene sheet can be removed by adding more IPA and tilting the substrate to one
side. While the graphene film was still wet, the substrate was inclined from side to side
in all directions to help the graphene sheet move across the substrate and locate on top
of the grating. This procedure should be done as gently as possible to reduce tearing and
winkles on the graphene film. Then, the graphene was put aside and left to dry naturally
for around 30 minutes. Figure 6.12(a) and (b) shows photos of two successfully transferred
graphene layers with no wrinkles and bubbles. In contrast, Figure 6.12(c) shows an example
of unsuccessful transferring of graphene with a few air bubbles trapped underneath.

After 30 minutes, the sample was baked on a hot plate for 20 minutes at 60◦, then 20
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Figure 6.13: Defects in graphene after transfer on to the silicon substrate.

minutes at 100◦-120◦, followed by 30 minutes at 200◦, allowing the PMMA to reflow as it
was baked. This last part is essential to increase the adhesion between the graphene and
the substrate. Graphene follows the surface roughness of the underlying copper during the
growth process. Therefore, the PMMA coated graphene film is wavy and rough and so
does not lie flat on the substrate surface. Baking the PMMA at 200 allows it to reflow and
slightly stretches and flattens the graphene, as shown in the inset of Fig. 6.11(c) [127,128].
Once the sample has cooled, the PMMA is removed by acetone.

Before removing the PMMA layer the graphene was investigated to check for any cracks
or tears specially on the grating (See Fig. 6.13). If any cracks or tears were located on
the grating then the sample was cleaned and a new graphene sheet transferred onto it.
Samples without cracks or tears were ready for the next step: fabricating the DC biasing
structure.

The DC biasing structure consists of three layers: 1) drain and source contacts which
are connected to the graphene layer through ohmic contacts, 2) an insulator layer covering
the graphene layer, and 3) the top gate layer. The source, drain and gate are extended and
connected to the large rectangular metallic pads where the connections to the DC biasing
board are made.

Before fabricating the drain and source contacts the graphene was patterned using
optical lithography with positive photo resist AZ p4620. The AZ p4620 was used as a
mask for removing uncovered graphene area, using oxygen plasma ashing for 20 seconds at
low temperature (descum process ). This was followed by removing the photo resist mask
using either heated acetone or acetone at room temperature for 24 hours, or sometimes,
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Figure 6.14: Graphene delamination after strong liquid pressure force applied with pipette.

both. The adhesion of photoresist to graphene is stronger than the adhesion of graphene to
the substrate, especially after the plasma treatment. Thus, the graphene delaminates when
the photo resist is removed using ultrasound or pipette to apply strong liquid pressure (see
Fig. 6.14).

The residual photoresist will dope graphene, causing major problems for fabricating
graphene devices [129]. The photoresist residue after photolithography is more than the
residue after EBL, leading to weak device performance [130, 131]. An experiment in [132]
showed that photoresist residue can be effectively removed by a ethyl-2-pyrrolidone based
remover.

The fabrication of each layer of the DC-biasing structure consisted of the following
steps:

Step 1: Spin coating of the negative photo resist ma-N 1410 with a speed of 3000 rpm and
acceleration of 500 rpm/s for 60 seconds. The sample was then baked on a hot plate
at 110◦ for 90 seconds. The resulting thickness of the photo resist was around 950
nm.

Step 2: Optical lithography using chrome photomask. The resist was exposed to UV light
with an intensity of 350 mW/cm2 at a wavelength of 365 nm for 35 seconds. The
exposure time value was determined using dummy samples to achieve the correct
dimensions and desired resist sidewall profile. The longer the samples were exposed
to radiation, the thinner the lines were. For example, for a line width of 80 µm on
the mask, an exposure time between 35 to 40 seconds resulted in a line width of 76
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Figure 6.15: Optical microscope image of sample after ma-N 1410 resist developed in ma-
D 533/S for (a) 50 seconds (no undercut) and (b) 2 minutes (with undercut). The light
brown region is where exposed resist remains, while the yellow region is the silicon surface
after removal of unexposed resist. The band surrounding the yellow region in Figure (b)
indicates an undercut of about 3 µm.

to 80 µm after development. On the other hand, with a negative resist, less exposure
means more developer attack, leading to more undercut. Therefore, considering all
of these factors, an exposure time of 35 second was selected.

Step 3: Developing the sample in ma-D 533/S developer. In the first experiment, the sample
was developed until the unexposed photo resist part dissolved completely, which took
around 50 seconds. However, this time was not sufficient to achieve a good undercut
profile (see Fig. 6.15(a)), a key element for a good lift-off result. Therefore, the
developing time was increased to two minutes. The resulting undercut is shown in
Fig. 6.15(b)

Step 4 :Deposition of thin film materials using an electron beam evaporation system. The
deposited layers are as follows:

layer 1: 10 nm of chrome or titanium and 60 nm of gold;

layer 2: 75 nm of Al2O3;

layer 3: 10 nm of chrome and 80 nm of aluminum.

The titanium and chrome layers are used to increase the film’s adhesion to the sub-
strate.

Step 5: Lift-off. The goal of this crucial process is to wash away the photoresist in a solvent,
together with the material deposited on its top. After the lift-off, only material in
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Figure 6.16: Fabrication flows for (a) patterning of graphene layer, (b) fabricating drain
and source contacts on the graphene, (c) adding insulator layer and (d) fabricating top
gate contact. For some steps, an optical microscope image of a fabricated sample has been
added.
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Figure 6.17: Fabrication flow for shadow mask. For some steps, an optical microscope
image of a fabricated sample has been added.

direct contact with the substrate should remain. In some cases, unwanted small
flakes of the metal layer adhere so well to the remaining parts that clean lift-off does
not occur. In these cases, the application of small force with ultrasound or a pipette
removes the unwanted flakes.

The main difficulty arises from the fact that the bonding of the graphene to the
substrate is based on weak Van Der Waals forces. The low adhesion of graphene to
the substrate prevents the facilitation of the lift-off process using ultrasound. The
ultrasonic force will remove not only the photo resist and the material on top but also
the material deposited on the graphene, potentially damaging the graphene as well.
The best that can be done is to put the sample in the solvent after the deposition
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Figure 6.18: Fabricated shadowmask.

Figure 6.19: Silicon waveguide with a supporting block attached to it.

until the material layer on top of the photo resist is cracked and peels off from the
substrate. Then, with the use of liquid pressure from a pipette, the lift-off process
can be completed.

Acetone and remover PG can be used as solvents for the photo resist. However, the
graphene layer interacts with remover PG and starts to detach and curl back on itself.
Therefore, for the first layer, when the graphene layer had not yet been covered, the
sample was put in the acetone for 24 hours, and for the second and third layers, the
heated PG remover was used.

During the lift-off process, particles of metal may be redeposited on the surface,
contaminating the sample at random locations. To prevent this, and to help the
lift-off process, parts unnecessary to the deposition were covered and exposure of the
contacts area and surround was minimized.

a = 125µm, b = 620µm, tg = 540nm, md = 0.28 The process flow for the fabrication
of the DC biasing structure is shown in Fig. 6.16. For some steps, an optical microscope
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Figure 6.20: Process flow for fabricating silicon waveguide using Al2O3 and Al mask to etch
waveguide. For some steps, optical microscope images and photos of fabricated samples
have been added.

image of the related fabricated sample is also added. The inconsistency in processing
graphene is a major obstacle. The photolithography method described above for pattern-
ing and subsequent contacting of the graphene poses problems; the etching and unreliable
lift-off processes may affect the quality of the graphene by creating defects and introduc-
ing contaminants. Contaminants or solvent residues may be reduced by cleaning and/or
annealing procedures. Polymer residues, however, are more difficult to remove and harsh
cleaning methods may result in defects to the graphene layer or its delamination [133].

To find methods that did not have these disadvantages, other methods were investi-
gated, including Atomic Layer Deposition (ALD) techniques and shadow masks.

ALD is a thin-film deposition approach based on a vapor phase technique capable of
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Figure 6.21: Process flow for fabricating silicon waveguide using AZ P4620 mask to etch
waveguide. For some steps, optical microscope images and photos of fabricated samples
have been added.

depositing thin films one atomic layer at a time. ALD is based on sequential, self-limiting
reactions and so offers exceptional conformality. With these advantages, along with its
capability to produce tunable film composition, ALD has emerged as a powerful tool for
many applications in microelectronics.

There are two main approches for patterning ALD-grown films have been used in the
literature: (i) patterning based on lithography and lift-off or etching; and (ii) area-selective
ALD by area-deactivation or area- activation. There has been much interest in patterning
by area-selective approaches since they can eliminate compatibility issues associated with
the use of solvents, etchants, or resist films when working with sensitive materials. The
ALD patterned films are superior to sputtered or evaporated films in continuity, smooth-
ness, conformality, and minimum- feature size. The low deposition temperature prevents
damage to the photoresist, such as from significant outgassing or hardbaking of resist layers
underneath.

ALD of thin films on graphene is, however, a much more complex task due to the
lack of out-of-plane bonds and surface hydrophobicity of the graphene [134]. There are
no reactive adsorption sites on the perfect graphene surface. However, boundary regions,
wrinkles and defects, typical in CVD graphene, are nucleation centers for ALD films.
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Figure 6.22: SEM image of the tip of the waveguide. Photoresist layer did not adhere
properly to the substrate, causing lateral etching through the gap under the resist.

Thus, the uniform deposition of ALD film on graphene without any surface preparation
techniques is impossible. Different techniques to initialize ALD growth on graphene have
been investigated in the literature. These techniques include the use of different types of
seed layers [135–137], ozone and plasma treatments to create functional groups [138, 139],
and enhance nucleation by tuning the underlying substrate [140]. Research is ongoing
to develop a method that does not damage the graphene, and/or degrade the electrical
properties of graphene such as its carrier mobilities.

Paradoxically, the difficulties of growing ALD on graphene can be exploited in the
fabrication of graphene and graphite-based structures through self-aligned ALD. In this
technique, the material is selectively deposited on the materials where it is desired, elimi-
nating the nano-scale alignment difficulties and multistep lithography processes.

Another method for fabricating contacts on graphene is to replace the patterned pho-
toresist layer with a shadow mask. A shadow mask is a thin sheet with pattern features
etched completely through it. After being positioned in intimate contact with the sub-
strate, it is placed into the electron beam evaporation system. The thin film material is
deposited through the mask directly on the substrate. This simplified process eliminates
several steps associated with the photolithography and lift-off processes without contam-
inants or residues affecting the quality of the graphene. However, shadow masks are not
good for high-resolution applications. Furthermore, shadow mask alignment is more dif-
ficult than the alignment in photolithography, and it is not as accurate. In this thesis,
200 µm silicon was employed to fabricate a shadow mask, using the fabrication procedure
illustrated in Fig 6.17. and described below:
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Figure 6.23: (a) Remaining solvent in the resist out-gassed after exposure and filled exposed
area with micro-cavities. (b) Effect of a bubble on a sample after photo resist development.
(c) Bubble created during dry etching. (d) Effect of a bubble created during dry etching
on a sample after etching.

Step 1: Positive photo resist AZ P4620 was spun to a thickness of approximately 10 um and
baked at 115◦C for 90 seconds.

Step 2: Optical lithography was carried out using the same chrome photomask as the one
used in the previous method to pattern contacts on the negative photoresist.

Step 3: The photoresist was developed in AZ developer 1:4 for around 2 minutes 20 seconds,
followed by 1 minute rinsing in water.

Step 4: 100 nm Al2O3 was deposited using the electron beam evaporator system.

Step 5: The sample was soaked in the PG remover to accomplish the lift-off process.
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Figure 6.24: Microscope image of two AZ-P4620 patterns with different exposure times:
(a) 75 seconds, and (b) 58.4 seconds. The black bond around the pattern indicates the
angled sidewalls.

Step 6: Through etching of 200 um silicon was performed using the Al2O3 layer as a mask,
in the Oxford Plasmalab 100 ICP380 system, using the Bosch process. Al2O3 is a
chemically inert material and gives appropriate selectivity.

The fabricated shadow mask is shown in Fig. 6.18. Rough alignment under the optical
microscope led to a misalignment of around 100 µm. The alignment precision can be
improved to 5-10 µm by using a shadow-mask aligner equipped with a three-axis micropo-
sitioner and 1 rotation axis and 2 tilt axes. At the time of measurement, this system was
not available.

6.3 Fabrication of the silicon waveguide

The last stage is to etch the silicon substrate into the silicon waveguide and its attached
supporting block (see Fig. 6.19). The etch thickness is around 300 um. Therefore, the
challenges of this stage are in controlling the lateral etching so as to fabricate straight wall
waveguides, and in using an etch mask that can resist the long etching process. For the
latter, either a mask with very high selectivity or a very thin mask with typical selectivity
can be used. Therefore, two different types of mask materials were tested for the etching
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Figure 6.25: Profile pattern of 11 µm AZ P4620 photoresist (a) before and (b) after post
bake at 110◦C for 5 minutes. Insets are corresponding microscope images.

process: soft masks made of thick layers of the positive photo resist AZ P4620, and hard
masks made of Al2O3 and Al.

The selectivity of the hard masks is very high [141]. Any reactions Al2O3 and Al have
with the etchant gas SF6 are too small to perceive; attempts to measure any changes in
the thickness of hard masks before and after etching with filmetrics and profilometer were
unsuccessful. However, based on the experiments done, it is possible to say the selectivity
is greater than 1000 and 5000 for aluminum and aluminum oxide, respectively.

Using a hard mask required additional deposition and lift-off steps, as depicted in Fig.
6.20. The hard mask was fabricated by coating the sample with 950 nm of negative photo
resist ma-N 1410 followed by patterning the photo resist via optical lithography. Then,
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Figure 6.26: SEM image of silicon waveguide etched by (a) standard Busch process with a
patterned AZ-P4620 mask, and (b) Busch process with longer passivation time step, with
the same AZ-P4620 mask, postbaked at 110◦ for 5 minutes.

100 nm Al2O3 or Al were deposited by electron beam evaporation. The lift-off process
was accomplished in PG remover heated to 80◦C (see Fig. 6.20). A very clean lift-off is
required, as any small flakes of material remaining after the lift-off lead to rippling along
the edge of the etched waveguide.

The patterned photo resist layer can also be used as an etch mask. For this purpose,
the thick photo resist AZ P4620 was used. Figure 6.21 illustrates the fabrication steps.
The details of each step are explained below. The surface preparation before coating is an
essential step for proper adhesion. Weak resist adhesion could result in the resist pattern
peeling off after development, or unwanted lateral etching through the gap under the resist
(Fig. 6.22). Surface moisture is a major factor that degrades resist adhesion. Therefore,
surface preparation consists of dehydration through baking to remove surface moisture
then the addition of an adhesion-promoter, hexamethyl disilizane (HMDS). The substrate
dehydration and vapor deposition of HMDS were performed in a YES HMDS prime oven.

The selectivity of the photo resist is around 20 to 30. Therefore, the etching of 300
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Figure 6.27: (a) Sample before etching mounted on aluminum-oxide-coated wafer. (b)
Fabricated sample.

um silicon requires a photo resist thicker than 15 um. For this resist, the maximum
thickness of the single coat is around 17 µm, and the required thickness can be achieved
by a single-coating. However, the solvent content of the resist is vaporized more rapidly
and more efficiently by successive spinning and baking processes. Therefore, a thick resist
of around 24 µm was achieved by spinning the photo resist, then baking it on a hot plate,
then repeating the spin-bake cycle. For both spinning processes, the photoresist was first
spread at a speed of 500 RPM for 10 seconds, followed by a spin at a speed of 2000 RPM for
25 seconds. Different durations and temperatures were tested for the two baking processes.

AZ P4620 is a DNQ-novolac photo resist, consisting of novolac resin, an organic sol-
vent, and diazonaphtoquinone (DNQ) photoactive compounds. The excess solvent should
be removed by softbaking after the photo resist coating. If the softbake is short and/or the
temperatures are too low, the dork erosion will increase, and the high remaining solvent
concentration may cause bubbles during exposure or dry etching (see Fig. 6.23). The
solvent will out gas and the resist layer will be filled with micro cavities (see Fig. 6.23(a)).
On the other hand, high temperatures or long baking times will thermally decompose a
significant amount of the photo active compound, lowering the development rate signifi-
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Figure 6.28: Measurement setup.

cantly [].

The best result was achieved with a soft bake temperature and time of 110◦ and 80
seconds for the first layer and 115◦ and 10 minutes for the second layer. Lower temperatures
resulted in bubbling, and higher temperatures resulted in very difficult or even impossible
development.

A certain water content in the DNQ-based resist is required during exposure to attain
a high development rate []. Softbaking, however, makes the resist film almost water-free.
Thus, the required water is gradually drawn from the air into the resist film. Therefore,
a delay between baking and exposure is necessary for rehydration of the photoresist film.
This time depends on the photoresist’s thickness, air temperature and humidity.

After more than 3 hours rehydration time, the photoresist was exposed to a UV light
wavelength of 405 nm with an intensity of 25 mW/cm2 for 58.4 seconds. Exposure time was
adjusted to achieve steep resist sidewalls. Exposure doses that are too high cause undesired
exposure by scattering, diffraction and reflection. As a result, too much of the resist is
dissolved during development. On the other hand, the resist is not developed successfully
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Figure 6.29: Simulated S-parameters of silicon image waveguide with length of lsi = 20
mm, width of wsi = 125µm, thickness of hsi = 300µm and taper length of ltaper = 5.5mm,
with and without attached supporting block.

with a low-exposure dose. Figure 6.24 shows microscope images of the developed two-layer
patterned photoresists with different exposure times of 75 seconds and 58.4 seconds. As
can be seen, the shorter exposure time results in straighter sidewalls.

As discussed above, achieving straight vertical walls with thick photo resist is difficult.
Another method is to create a thinner photoresist layer, but to also improve the selectivity
of the mask by hardening the photoresist with post baking after development. A post-
development bake (or ”hard bake”) of the photoresist pattern is a common method for
stabilizing a printed pattern so that it will withstand the harsh environments of etching.
This final bake step removes residual solvent, water, and gasses and improves adhesion of
the photoresist to the substrate and its resistance to RIE etches. Post baking increased
the selectivity of the photo resist to around 100.

The photoresist was spun to a thickness of approximately 11 um, then cooked at 110
for 90 seconds. After more than 3 hours delay for rehydration, the coated photo resist was
exposed to UV light for 29.2 seconds and developed in 4:1 diluted AZ 400 for 2:40 minutes.
Then, it was baked for 5 minutes on a hot plate at 110◦C. Figure 6.25 shows both profiles
(measured by the Bruker profilometer) and microscope images of the developed patterned
photoresists before and after the post bake (inset). As depicted in this figure, the profile
pattern is a little distorted due to thermal reflow.

The ultimate purpose of the hard bake is full removal of the solvent. However, since the
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Figure 6.30: Measured S-parameters of fabricated silicon waveguide with no grating and
graphene layer.

diffusion rate of the solvent is extremely low in solid photoresist, in order to achieve full
removal for a thick photo resist the photoresist is baked at temperatures higher than the
glass transition temperature of the resin. The resist is thus transformed from a glassy state
into a soft rubbery state and starts flowing. In this semi-liquid state, the diffusion rate is
significantly improved. Therefore, hard baking is usually done at or slightly above the glass
transition temperature, so the flow of the resist degrades the resist profile significantly.

Thermal deformation of positive photoresist patterns during high temperature treat-
ments is significantly reduced by deep UV curing of the resist surface to form a hard outer
shell. In this method, the outer layer of the photoresist image is exposed to UV radiation
in the range of 200-320 nm. The novolak resin in the photoresist is highly absorptive at
this wavelength band. Therefore, the short wavelength UV lights penetrate only about
100 nm into the resist film. The thin cured layer allows hard baking of the photo resist
at temperatures up to 200◦C without any deformation. After deep UV curing, strippers
cannot remove the resist and O2 plasma etching is required to completely remove it.
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Figure 6.31: DC bias circuit.

The novolak-based AZ P4620 resist has a glass transition temperature of around 125◦C.
Since there was no access for this thesis to a deep-UV cure system, temperatures smaller
than the glass- transition temperature were tested for hard baking. A 110◦C and 5 min bake
resulted in only a small distortion of the pattern profile and sidewalls, and the photoresist
was hardened enough to withstand etching of 300 µm silicon.

It is better to shorten the delay between hard baking and etching so as to prevent
rehydration of the resist. As mentioned in the beginning of the chapter, the Bosch process
on an ICP-RIE system was used to fabricate rectangular dielectric waveguides. The etch
rate depends on the amount of exposed silicon area on the wafer. A larger exposed area
leads to a lower etch rate. Therefore, the samples were mounted on aluminium-oxide-
coated wafers before being put inside the ICP-RIE system (for etching)(Fig. 6.27(a)).

The Bosch recipe parameters were modified to 90◦ sidewalls. Figure 6.26(a) shows
an SEM image of the etched waveguide cross section etched by the standard Bosch silicon
etching process in Oxford Plasmalab System 100 ICP380 DRIE at a temperature of T=0◦C.
As can be seen, the sidewall angle is less than 90◦ and the etch rate in the horizontal
direction is not zero. Therefore, the passivation step time was increased from 5 seconds
to 7 seconds while keeping all other parameters unchanged. Figure 6.26(b) shows a SEM
image of the etched waveguide cross section fabricated by the above mentioned modification
which resulted in perfectly vertical sidewalls. For both figures 6.26 (a) and (b), the one-
layer AZ-P4620 masks were fabricated with the same recipe except that for Fig. 6.26(b)
the mask was hard-baked after the development.

A resist strip is the final operation after the etching process is completed. The etched
silicon waveguides were dipped in heated PG remover for one hour. If that did not remove
the resist layer, it was etched using two minutes of oxygen plasma ashing at 180 degrees.
Figure 6.27(b) shows the image of the fabricated sample. The next step is to connect the
biasing voltage and conduct measurements.
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Figure 6.32: Measured S-parameters of fabricated graphene TWA over the frequency range
of 140-170 GHz.

6.4 Measurement results

The fabricated structures were measured using a 1-50 GHz Agilent network analyzer con-
nected to two OML millimeter-wave frequency extension modules, covering the frequency
range of 110-170 GHz (see Fig. 6.28). The frequency extension modules were placed on
micro positioning stages, with 4-axis degrees of freedom: x, y, z, and φ.

A metallic fixture, manufactured by Computer Numerical Control (CNC) machinery,
was used to hold the silicon waveguide. The holder acts as the ground plane of this
image waveguide. Therefore, it should be aligned precisely with respect to the metallic
waveguide ground of the OML modules. To bring these structures into alignment, the
micro positioning stages were used with the help of alignment holes and pins on the holder
and waveguide flanges, respectively.

The ports of the OML modules are WR-06, standard metallic waveguides. The dielectric-
to-metallic waveguide transition was realized by a tapered section of the silicon waveguide
inserted into the metallic waveguide (see inset of Fig. 6.29). The tapered length was
optimized to achieve good insertion loss. The silicon waveguide was supported from one
side by means of a silicon supporting block that connected to the waveguide by narrow
beams (Fig.6.19). Figure 6.29 shows the simulation results for a silicon waveguide with
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Figure 6.33: Calculated intensity gain versus frequency obtained from theoretical analysis
for a TWA structure with the same dimensions as the fabricated sample with Ef = 0.3 eV
and Vd = 3× 105m/s.

and without a supporting block attached to it. Since the widths of the supporting beams
are very small, wbeam = 50µm, negligible power transfers to the supporting structure. The
measurement results for the fabricated silicon waveguide with no grating and graphene
layer are shown in Fig. 6.30.

The next step is to perform measurement on the fabricated graphene TWA prototype
of with a = 125µm, b = 620µm, tg = 540nm, and md = 0.28 . The DC bias circuit is
shown in Fig. 6.31. The measurements results before attaching the DC biasing printed
circuit board (PCB), after attaching the PCB but before applying the DC voltages, and
after applying the DC voltages VGS = 3V and VDS = 30V , are shown in Fig. 6.32. After
applying the DC voltages, the S21 increased by a value between 0 to 2.7 dB at the frequency
range of 140-170 GHz. The fabricated graphene TWA has a maximum gain of 2.7 dB/cm
at 151.5 GHz. As predicted by the theoretical analysis (see Fig. 6.33), the maximum gain
is obtained close to the cutoff frequency. Figure 1.33 shows the calculated intensity gain
versus frequency obtained from theoretical analysis for a graphene TWA structure with
the same dimensions as the fabricated sample, assuming Ef = 0.3 eV and Vd = 3 × 105

m/s.
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6.5 Conclusion

In this section, the procedure used to fabricate a novel integrated graphene-based travelling
wave amplifier is described. This research uses newly developed silicon waveguide-based
technology in the THz range of frequencies and integrates it with both nanofabrication and
graphene technology. The fabrication procedure has more than ten major steps, including
EBL, graphene transfer, dry etching, optical lithography and lift off. The challenges of
each step are described and detailed solutions provided.

Two methods for fabricating the grating structure are proposed and tested based on
already-established nanofabrication techniques. The details of the more reliable approach,
which results in a uniform 1 cm long grating with nano scale dimensions, are given. Fur-
thermore, two established methods for fabricating the graphene contacts are described one
based on optical lithography and the other on a shadow mask. The first method consisting
of optical lithography, deposition and lift-off, is used to fabricate the prototype structures.
Because of the very weak bond of graphene to the substrate and metallic contacts, the
application of ultrasound for cleaning and lift-off often damages the graphene and the con-
tacts above it. On the other hand, removing the electron and photo resist residues on
graphene is also difficult and affects the performance of the device. However, with the
method utilized a precise alignment is achieved. Thus, an alternative method which avoids
the problems with resist residues and difficult lift-off processes, is adopted. In this method,
a shadow mask is used instead of patterned photo resist masks to fabricate the contacts
on graphene. However, shadow mask alignment is more difficult than the alignment in
photolithography and not as accurate. The alignment technique must be improved if this
method is to be applied for future samples.

For fabrication of the 300 m thick silicon image waveguide, two methods are discussed:
hard mask and thick photoresist mask. The advantages and disadvantages of each method
are discussed and tested. Ultimately, a reliable fabrication process that yielded straight
vertical walls with no lateral etching was developed.

The first fabricated prototype structure is measured using an Keysight network ana-
lyzer. Measuring the s-parameters of the waveguide before and after applying the DC bias
voltages shows a maximum of 2.7 dB/cm gain for a 30 V/cm electric field at 151.5 GHz.
Here, for the first time, measurements have confirmed that graphene can be used for trav-
elling wave amplification. Although the amount of gain measured for this first prototype
structure is small, this work establishes a clear beginning. Room for improvement remains,
and will be discussed under future work (Section 7.1).
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Chapter 7

Conclusion

In summary, a novel solid-state TWA using graphene as a conducting layer is proposed,
thoroughly studied, successfully fabricated, and characterized in this thesis. Both theo-
retical and measurement results show that graphene is a good candidate for solid-state
mm-wave and THz TWAs. The proposed graphene TWA is suitable for integration in
future monolithic integrated THz circuits.

In this thesis, for the first time, travelling wave amplification in graphene was explored
by developing two different models to define the conductivity for drifting charge carriers
in graphene. In the first approach, a quantum mechanical model is developed to obtain
the frequency and wave number dependent conductivity of graphene with drifting charge
carriers under a non-equilibrium condition (Chapter 3). The second model used is a clas-
sical hydrodynamic model (Chapter 4) derived with a relativistic fluid approach in which
the electrons in graphene are modelled as a 2D Fermi liquid. Based on this hydrodynamic
model, the induced current is calculated for harmonic perturbation of both stationary and
uniformly moving charged carriers, and the linear conductivity is obtained.

The conductivity relations obtained from both methods show that, for a slow electro-
magnetic wave with a phase velocity smaller than the drift velocity of the carriers, graphene
changes from a lossy medium to a gain medium that converts power from the DC source
to the electromagnetic field. Although the two methods are quite different, one being
more classical and the other more quantum mechanical, the behaviour of the conductivity
functions with respect to the frequency and wavenumber are remarkably similar.

In Chapter 5, grating structures on silicon slab and silicon rod waveguides are designed
as slow wave structures for the proposed TWA. The Floquet mode solution of the first-
order space harmonic(satisfying the travelling wave amplification requirement, Vph < Vd),
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is presented. Coupled wave analysis is used to obtain the interaction impedance and the
overall gain of the graphene TWA. The estimation of an attainable gain for an optimized
slow waveguide under reasonable bias is 10.5 dB/cm at 1 THz.

To simplify and speed up the fabrication process, the prototype structure is fabricated
for a frequency range of 110-170 GHz. Therefore, a rod silicon waveguide with a thin
grating layer on top is designed at a frequency of 150 GHz. A new approximate theoretical
method is developed for analyzing the hybrid space-harmonics in gratings on top of rect-
angular dielectric waveguides. This method gives an explicit expression for the interaction
impedance of slow wave grating structures, which is then used to design the waveguide
and the grating. To verify the proposed approximation approach, the results obtained
with this method are compared with simulation results obtained from FEM-based ANSYS
electronics software.

The fabrication of the prototype structure consisted of fabricating three integrated
main structures: the grating, the graphene layer attached to DC bias contacts, and the
silicon waveguide. For each of these devices, reliable fabrication recipes are developed and
combined to create the first graphene TWA integrated in a mm-wave silicon waveguide.

The first fabricated sample is measured using a Keysight network analyzer. The mea-
surements show a maximum gain of ∼2.7 dB/cm for a 30 V/cm electric field at 151.5 GHz
and thus, both theoretical and experimental results confirm that the graphene layer can
be used for travelling wave amplification.

Future stages of this research are presented in the next section.

7.1 Future work

1) Non-linear analysis of large signal interactions with drifting plasma wave in
graphene

In the current work, only the linear response of graphene was studied. The non-linear
responses of graphene can be obtained by considering higher order terms in hydrodynamic
equations. In such a method, the effect of the DC current on the non-linear conductivity
of graphene could be explored.

2) Combining numerical methods with the proposed Fourier mode anal-
ysis to achieve more accurate estimation of parameters such as interaction
impedance and gain.
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In Chapter 5, an approximate analytical method was proposed to calculate the coupling
factor between the drifting space charge wave in graphene and first-order space harmonic
of the slow-wave grating structure. Based on the Fourier solution approach, a recursive
formula was obtained in which the first-order space harmonic of the grating is determined
in terms of the zeroth order harmonic. For thin gratings, the corresponding mode of the
structure with no grating is a good approximation for the zeroth order harmonic. Therefore,
in the proposed method, a good estimation of the waveguide mode will significantly improve
the accuracy of the solution for the first-order space harmonic. The approximate results
are shown to be in very good agreement with the simulation results for the slab waveguide
for which an accurate analytical modal solution is available (Fig. 5.3). However, for
rectangular waveguides, where there is no analytical solution, there is a discrepancy. This
is especially true near cutoff points where the estimation of the modes obtained from the
improved Marcatili approach have the lowest accuracy (Fig. 5.24).

Therefore, to obtain more accurate results, rigorous numerical methods should be used
to obtain the field of a rectangular waveguide with no grating and then this result could
be used in the proposed method to accurately estimate the field of the first-order space
harmonic of the grating.

In this way the lengthy computation time required to analyze long gratings (∼ 1− 3λ)
with very fine feature size (1/10000λ) could still be avoided, and much more accurate
results could be achieved.

3) Increase the graphene maximum achievable charge density and drift ve-
locity

The maximum achievable value of the Fermi energy level is limited by the breakdown
field strength of the gate dielectric. For example, for SiO2 the dielectric strength is around
107 V/cm [?] and thus the maximum Fermi energy level value that can be achieved is
around 300 meV (Fig. 2.4). However, with very specific dielectric materials such as ion-
gel [142] and solid polymer electrolyte [143], it is possible to achieve Fermi energy levels
as high as 1-2 eV. Figure 5.5 shows that increasing the Fermi level will increase the gain
significantly.

Another important parameter that determines the maximum achievable gain is the
drift velocity (see Fig. 5.6). The mobility, and thus the drift velocity, of graphene is very
sensitive to the density of defects. Therefore, applying a better fabrication method for
graphene will result in higher gain.

4) Improving the measurement setup to perform more accurate measure-
ments
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Figure 7.1: New metallic holder with 3D printed plastic cover.

After attaching the PCB, the sample should be fixed on the holder; otherwise, it will
not sit flat on the ground surface. In the setup used to obtain the measurement results in
this thesis, the sample was held in place by needle-sharp tweezers. This was not efficient
as the sample moved after each measurement and had to be realigned until the maximum
S21 value was obtained.

Therefore, a new metallic holder with a 3D printed plastic cover was manufactured (see
Fig. 7.1). With this setup, the waveguide can be aligned once and stay fixed in place with
the help of the plastic cover, while the DC biasing voltages are swept during measurements.

5) Fabricating a graphene-based structure for a higher range of frequencies

The proposed graphene-based TWA was demonstrated up to 170 GHz. The design of
the structure should be refined to perform at higher frequencies.

6) Fabricating a THz beam amplifier with planar 2D structure

Future work could explore other types of graphene TWAs (see Fig. 7.2). In this
configuration, the graphene sheet is placed on top of a periodic grating structure. The
slow wave in the periodic grating is excited by the graphene SPP wave. The slow wave is
amplified and fed to the grating antenna through a tapered grating. Fabricating such a
structure will be easier than the architecture proposed in this thesis.

In Chapter 2, it was shown that the propagation constant of the SPP waves can be
as large as 50 times the free space wavenumber (see Fig. 2.7). However, the propagation
constant of the slow wave in the grating structure of the TWA is significantly larger than
the propagation constant of the SPP wave in graphene. Therefore, a coupling structure
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Figure 7.2: Proposed alternative graphene TWA.

should be designed to gradually match the SPP wave to the slow wave of the grating. The
amplification should be large enough to compensate for the coupling loss. The development
of such a structure will allow for the amplification of THz beams for a wide range of
applications, such as THz spectroscopy and imaging applications.
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Appendix A

Tight-binding approach

In a periodic lattice structure the wave function of electrons should satisfy Blochs theorem

Tai
Ψ = eik.aiΨ (A.1)

where Tai
is a is the translation operator along the lattice vector ai (see Fig. 2.1). The

wave function is commonly defined as a linear combination of plane waves. In this case, we
cannot easily relate the wavefunction to the atomic orbitals. Also the scale of computation
is large since we have to use the large number of plane waves to reach desired accuracy.
Another wave function form which is used in the tight binding method is based on the
atomic orbitals in the unit cell [77]. Therefore, the tight binding Bloch function is defined
as [77]

Φj (k, r) =
1√
N

N∑
R

eik.Rφj (r−R) (j = 1, ..., n), (A.2)

where R is the position of the atoms in the lattice, φj is the jth atomic orbital in the unit
cell and N is the total number of unit cells. Therefore, we just have n Bloch functions
(n denotes the number of atomic orbitals in the unit cell). The eigenfunctions are then
determined as the linear combination of Bloch functions [77]:

Ψj (k, r) =
n∑

j′=1

Cjj′ (k) Φj′ (k, r), (A.3)
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and the energy eigenvalues are given as [77]

Ei (k) =

∫
Ψ∗iHΨidr∫
Ψ∗iΨidr

=

n∑
j,j′=1

Hjj′ (k)C∗ijCij′

n∑
j,j′=1

Sjj′ (k)C∗ijCij′
, (A.4)

where H is the Hamiltonian of the system. By setting a partial derivative of Ei related to
C∗ij equal to zero, in order to minimize Ei, we obtain the following equation [77]:

HCi = Ei (k)SCi, Ci =

 Ci1
...
Cin

 , (A.5)

where the elements of matrices H and S, known respectively as the transfer integral matrices
and overlap integral matrices, are determined as follow [77]:

Hjj′ (k) = 〈Φj|H |Φj′〉 (A.6)

Sjj′ (k) = 〈Φj | Φj′〉 (A.7)

The transfer and the overlap matrix elements are often considered as parameters, and their
values are determined so that the calculated band structure of the solid matches the one
obtained either experimentally or from first principles calculations. It is deduced from A.5
that in order to have a nontrivial solution the following condition should be satisfied:

det [H − Ei (k)S] = 0 (A.8)

This equation is called the secular equation. By solving the secular equation for the given
k, the n eigenvalues of Ei are obtained.

A.1 Electronic structure of graphene

Carbon atoms have four valence electrons, which occupy 2s, 2px, 2py, and 2pz orbitals.
In graphene the 2s orbital and two 2p orbitals are mixed with each other, forming three
σ bonds. These bonds are completely filled, thus forming a deep valance band. The
unaffected p orbital, which is perpendicular to the planer structure, leads to the formation
of a half filled π band. The π energy bands are covalent bands that play the most significant

124



role in the solid state properties of graphene. Therefore, we have two Bloch functions,
constructed from the atomic orbitals of two carbon atoms A and B in the unit cell:

Φj (r) =
∑
Rα

eik.Rαφj (r−Rα) , (α = A,B) (A.9)

where the summation is taken over the position of the A or B atoms in the structure.
The Hamiltonian matrix is obtained by substituting A.9 in A.6. For diagonal elements we
have [77]:

HAA (r) = HBB (r) = 1
N

∑
R

∑
R′
eik(R−R′) 〈φ (r−R′)|H |φ (r−R)〉

= 1
N

∑
R=R′

ε2p + 1
N

∑
R=R′±ai

e±ik.ai 〈φ (r−R′)|H |φ (r−R)〉

+ (terms equal to ormore dis tan t thanR = R′ ± 2ai)
= ε2p + (terms equal to ormore dis tan t thanR = R′ ± ai)

(A.10)

where ε2p is the orbital energy of the 2p level. Also for off diagonal elements HAB = H∗BA
we consider only the contribution of the nearest neighbour A and B atoms.

HAB = H∗BA = t(ejk.δ1 + ejk.δ2 + ejk.δ3) = tf(k) (A.11)

where t = 〈φA(r −R)|H |φB(r −R± a)〉 is the transfer integral, also known as the nearest
neighbor-hopping energy. Similarly the overlap matrix Sij can be calculated (eq. A.7).
Assuming a normalized atomic wavefunction, we have SAA = SBB = 1 and SAB = S∗BA =
sf(k) , where s = 〈φA(r−R) | φB(r−R± δi)〉 is the overlap integral between the nearest
A and B atoms. Therefore, the Hamiltonian, H, and overlap, S, matrices are

H =

(
ε2p tf (k)

tf ∗ (k) ε2p

)
(A.12)

and

S =

(
1 sf (k)

sf ∗ (k) 1

)
(A.13)

Substituting the above defined matrices in the secular equation (eq. A.8) and solving it
for each k the two eigenvalues E (k) are obtained as a function of k [77]:

E (k) =
ε2p ± t |f (k)|
1± s |f (k)|

(A.14)
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where f (k) is defined in eq. A.11 The + sign gives the upper anti-bonding π∗ band, and
the sign gives the lower bonding π band. These two bands touch at six Dirac points.
By ignoring the overlap integral between adjacent atoms orbitals and considering the next
nearest neighbour-hopping energy, t′, the energy bands are obtained as follows [3]:

E± (k) = ±t
√

3 + g (k)− t′g (k)

g (k) = 2 cos
(√

3kya
)

+ 4 cos
(√

3
2
kya
)

cos
(

3
2
kxa
) (A.15)

in which a = |ai| .
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Appendix B

Coupled-mode analysis of Floquet
eigenmodes

The wave equation in the presence of an external current is

∇×∇× E− ω2µεE = −jωµJ (B.1)

Assume an external current distribution:

J = Je(x, y)e−jβz (B.2)

which will excite eigenmodes of the periodic waveguide. For a particular Floquet mode
EA:

EA) = ΣmEAm(x, y)e−jβmz (B.3)

βm = β0 +m
2π

d
m = 0,±1,±2, · · · (B.4)

if for its first-order space harmonic β1 ' β, then this mode will be predominantly excited
and its amplitude will grow slowly. Therefore, the solution of equation B.1 can be written
as:

E = K(z)EA (B.5)

where K(z) is a slowly varying function.By replacing E in eq. B.1 with E from eq. B.5,
after some mathematical manipulation we get:

127



K ′′(z) (EA − EAz ẑ) +K ′(z)

(
∂

∂z
EA − ẑ × (∇× EA)− ẑ∇ · EA

)
= jωµJ (B.6)

The z component of the first term is zero. Multiplying eq. B.5 by E∗A and integrating
over all space yields:

K ′(z)

∫ d

0

dz

∫ ∫ ∞
−∞

dxdyE∗A · LA =

jωµ

∫ d

0

dz

∫ ∫ ∞
−∞

dxdyE∗A · J (B.7)

where

LA =
∂

∂z
EA − ẑ × (∇× EA)− ẑ∇ · EA (B.8)

In deriving eq. B.7, K ′(z) variation over one period of d is assumed to be negligible.
Therefore, it is pulled out of the integral. We assume that the Floquet mode EA and the
current J are nearly phase matched through the first-order space harmonic.

∆β1 = β − β0 −
2π

d
≈ 0 (B.9)

Therefore, we can assume that the function e∓j∆β1z is nearly constant over the period
of d. By this assumption, we can rewrite eq. B.7 as follows [73]:

K ′(z)

∫ d

0

dz

∫ ∫ ∞
−∞

dxdyE∗A · LA =

jωµe−j∆β1z
∫ d

0

dzej∆β1z
∫ ∫ ∞

−∞
dxdyE∗A · J (B.10)

For the left hand integral of eq. B.10, after some mathematical interpolation and
substituting the magnetic field from the Maxwell’s equation, we get:
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∫ d

0

∫ ∫ ∞
−∞

dzdxdyE∗A · LA = −jωµ
∫ d

0

∫ ∫ ∞
−∞

dzdxdyẑ · (E∗A ×HA + EA ×H∗A)

= −4jωµdPA (B.11)

Here PA is the total average z-directed power carried by mode EA. For very thin
gratings, we can assume that most of the power is carried by the fundamental harmonic
and PA ' PA0.

The Floquet expansion of the EA mode (eq. B.3) is substituted in the right hand
integral of eq. B.10 to perform the z integration. Only the term with the first-order space
harmonic does not vanish in the z integration. Therefore, eq. B.10 yields [73]:

K ′(z) = −e
−j∆β1z

4PA0

∫ ∞
−∞

∫ ∞
−∞

dxdyEA1

∗(x, y) · Je(x, y) (B.12)

K(z) = −j e
−j∆β1z

4PA0∆β1

∫ ∞
−∞

∫ ∞
−∞

dxdyE∗A1
(x, y) · Je(x, y) (B.13)

Substituting K(z) in eq. B.5 for the particular synchronous space harmonic field,
E1(x, z), we find

E1(x, z) =
−j

4PA0∆β1

EA1(x, y)e−jβz
∫ ∞
−∞

∫ ∞
−∞

dxdyEA1

∗(x, y) · Je(x, y) (B.14)
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Appendix C

Marcatili’s method

The electromagnetic waves propagating along a straight waveguide are classified into TE,
TM or hybrid modes according to the presence or absence of the longitudinal field com-
ponents Ez and Hz components. The dielectric rectangular waveguide can only supports
hybrid modes with both Ez and Hz present. We consider a monochromatic wave with
angular frequency ω, propagating in the z direction with a propagation constant β. In an
homogeneous region j, with the relative dielectric constant of εr = εrj = cons, it is possible
to describe the full electromagnetic fields in terms of the longitudinal field components in
each region j:

Ex =
−jβz
K2
j

∂Ez
∂x
− jωµ

K2
j

∂Hz

∂y
(C.1a)

Ey =
−jβz
K2
j

∂Ez
∂y

+
jωµ

K2
j

∂Hz

∂x
(C.1b)

Hx =
jωε

K2
j

∂Ez
∂y
− jβz
K2
j

∂Hz

∂x
(C.1c)

Hy =
−jωε
K2
j

∂Ez
∂x
− jβz
K2
j

∂Hz

∂y
(C.1d)

Here, all components satisfy the reduced wave equation (here given only for Ez)

∇2
tEz +K2

jEz = 0 (C.2)
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where K2
j = k2

0εrj − β2
z and ∇t is the transverse Laplacian.

In Marcatili’s method, the modes are divided in two families. In one family, where most
of the electric field is polarized in the x-direction, they are designated as Exnm modes, and
the other, where most of its electric field is in the y-direction, they are designated as Eynm
modes. The subscripts n andm represent, respectively, the number of extrema that the field
components for this mode have along the x and y directions. The dominant components
of the Exnm modes are Ex, Ez, Hy, and Hz, with negligible Hx and Ey components. The
dominant components of the Eynm modes are Ey, Ez, Hx, and Hz, with negligible Ex and
Hy components.

Our analysis considers only the Ex11 mode, with the electric field predominantly po-
larized in the x-direction. This mode is a TM-like mode at the surface of the graphene
layer. From symmetry, the same equations can be used for the TE-like mode with domi-
nant electric field in the y-direction by exchanging the width and the height values of the
waveguide. However, the coupling between the space charge density wave in graphene and
the TE-like mode (Eynm) is not significant, since the z-directed plasma wave is modulated
only by the z component of the field.

Figure C.1: Cross section of the waveguide. Regions 1 − 5 along with the corner regions
are indicated. The color plot represents the dominant electric field component Ex, of the
fundamental TM-like mode.

In the Marcatili approach the behavior of the electromagnetic wave in the rectangular
waveguide is described based on the separation of spatial variables in the core region.
Furthermore, the effect of the corners is neglected since the field is small in these areas.
The modal field then described as standing waves in the core of the waveguide and an
exponentially decaying field outside the core (see Fig. C.1). We assume ε1 = εSi and ε2 =
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ε3 = ε4 = ε5 = εair. Hereafter, we use the symmetry conditions to reduce the calculation
domain to regions 1,2 and 3. Therefore,the longitudinal components are expressed as:

ez0 =


A2e

−γx(x−b/2) cos(kyy) x > b/2,−a/2 < y < a/2

A1 sin(kxx) cos(kyy) −b/2 < x < b/2,−a/2 < y < a/2

A3 sin(kxx)eγy(y−a/2) −b/2 < x < b/2, a/2 < y

(C.3)

hz0 =


B2e

−γx(x−b/2) sin(kyy) x > b/2,−a/2 < y < a/2

B1 cos(kxx) sin(kyy) −b/2 < x < b/2,−a/2 < y < a/2

B3 cos(kxx)eγy(y−a/2) −b/2 < x < b/2, a/2 < y

(C.4)

The transversal electromagnetic field components are obtained from equations C.1 in
which

K2
j = k2

x + k2
y. (C.5)

From the wave equation we have:

γ2
x = (εSi − εair)k2

0 − k2
x (C.6a)

γ2
y = (εSi − εair)k2

0 − k2
y. (C.6b)

The Ez and Hz field components are defined such that the dominant electric field
component Ex is described by a cosine function in both x and y directions.

The field proposed here is not an exact solution of Maxwell’s equations. The proposed
solution obeys Maxwell’s equations in all regions individually. However, the approximation
errors occur at the interfaces between the waveguide core and its cladding. At these
interfaces, all boundary conditions cannot be satisfied at the same time, results in the
discontinuity of some of the tangential components.

In a symmetric structure with homogeneous cladding around the core of the waveguide,
there are eight equations from the electromagnetic boundary conditions (two interfaces,
with four tangential field components). There are only eight free parameteres (Amplitudes
of Ez and Hz components in regions 1− 3, kx and ky). Therefore, the system is overdeter-
mined. As a result, no solution exactly obeys the electromagnetic boundary conditions at
all interfaces simultaneously. In the following, we explain different possibilities for choosing
the free parameters so as to obtain a low mismatch of the fields at the boundaries.
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Applying the electromagnetic boundary conditions at the 1− 2 interface results in:

B1 =
ωε0εr1ky
βzkx

A1 (C.7a)

A2 = A1sin(kxb/2) (C.7b)

B2 = B1cos(kxb/2) (C.7c)

tan(kxb/2) =
εr1γx
εr2kx

(C.7d)

The dominant electric field component is orthogonal to these interfaces, so in an in-
finitely wide rectangle (b→∞) this mode will behave like a TM mode in a slab waveguide.
The magnetic field component, Hx, is zero in regions 1, 2 and 4 as follows from equation
C.1c. The last equation, C.7d, is the dispersion equation for a TM mode in a slab waveg-
uide.

Applying the electromagnetic boundary conditions at the 1− 3 interface to which the
dominant electric field is parallel results in:

B1 =
βzky
ωµ0kx

A1 (C.8a)

A3 = A1cos(kya/2) (C.8b)

B3 = B1sin(kya/2) (C.8c)

tan(kya/2) =
γy
ky

(C.8d)

As follows from equation C.1b the electric field component Ey is zero in regions 1, 3 and
5. Equation C.8d is the same as the eigenvalue equation of a TE mode in a slab waveguide.

Obeying all electromagnetic boundary conditions at the 1-2 interface demands differ-
ent amplitude coefficients than those obtained from the 1-3 interface boundary conditions.
Therefore, there is no exact solution. In Appendix D, we explain the difference between
Marcatili’s approach and improved methods in choosing the free parameters and the bound-
ary conditions to be satisfied and how the choice of improved methods results in a lower
mismatch than Marcatili’s approach [121].

In the Marcatili approach, one of the non-dominant transverse field components is set
to zero. For a Exnm mode either Hx or Ey can be set to zero. The first case is called as
Marcatili’s Hx = 0 and the second one is called Marcatili’s Ey = 0 method. The amplitudes
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coefficients of Ez and Hz components for the Marcatili Hx = 0 method are obtained as
follow:

B1 =
ωε0εr1ky
βzkx

A1 (C.9a)

A2 = A1sin(kxb/2) (C.9b)

B2 = A1
ωε0εr2ky
βz0γx

sin(kxb/2) (C.9c)

A3 = A1
εr1ky
εr2γy

sin(kya/2) (C.9d)

B3 = A1
ωε0εr1ky
βzkx

sin(kya/2) (C.9e)

tan(kxb/2) =
εr1γx
εr2kx

Hy continuous @ 1-2 (C.9f)

tan(kya/2) =
γy
kx

Ex continuous @ 1-3 (
k2
x

k2
0εri

<< 1) (C.9g)

With this set of Ai and Bi coefficients, all electromagnetic boundary conditions at the
12 and 14 interface are satisfied. However, at the 13 and 15 interfaces, while the Hx = 0
and Hz are matched, the dominant transverse field component Ex and Ez are not matched.

Similarly, another approximate solution, Marcatili’s Ey = 0, is obtained by setting
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Ey = 0.

B1 = A1
βzky
ωµkx

(C.10a)

A2 = A1sin(kxb/2) (C.10b)

B2 = A1
βzky
ωµγx

sin(kxb/2) (C.10c)

A3 = A1
ky
γy
sin(kya/2) (C.10d)

B3 = A1
βzky
ωµkx

sin(kya/2) (C.10e)

tan(kxb/2) =
εr1γx
εr2kx

(
k2
y

k2
0

<< 1) (C.10f)

tan(kya/2) =
γy
ky

(C.10g)

With these coefficients, Ey = 0 and Ez are matched, but Hz and Hy, the dominant
magnetic field component, are not. Although the field amplitudes are different to the case
where Hx = 0 in all regions, the eigenvalue equations are identical for both Marcatii’s
Hx = 0 and Marcatili’s Ey = 0 methods.

The k2x
k20εri

value is negligible for low-index-contrast waveguides. However, this is not

a good assumption for high-index-contrast waveguides, leads to a larger mismatch in the
continuity of the dominant electric field components.
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Appendix D

Improved Marcatili’s method

In this appendix, we present an improvement of Marcatili method that gives a better
description of fields in the rectangular waveguide. We have two options for improving
the matching of the boundary conditions. In one option, the continuity of all boundary
conditions at the interface normal to the dominant electric field component is satisfied;
at the other interface only the dominant field components are forced to be continuous. In
the other option, the continuity of all boundary conditions at the interface parallel to the
dominant electric field component is satisfied; at the other interface only the dominant
field components are forced to be continuous.

In the Marcatility Hx = 0 the continuity of tangential magnetic component Hx which
is not a dominant magnetic field, is satisfied trivially at all interfaces. However as we
discussed in Appendix C, the continuity of dominant electric field component is sacrificed.
The more reasonable choice in choosing boundary condition is to demand the continuity
of the dominant electric and magnetic fields at the 1− 2 and 1− 3 interface at the cost of
the weak magnetic field component being not continuous across the 1 − 3 interface. This
method is called improved Hx = 0. With this modification, the Ai and Bi coefficients for
this method are [121]:
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B1 = A1
ωε0εr1ky
βzkx

(D.1a)

A2 = A1sin(kxb/2) (D.1b)

B2 = A1
ωε0εr1ky
βzkx

cos(kxb/2) (D.1c)

A3 = A1

(
1 +

k2
0(εr1 − εr2)

β2
z

)
cos(kya/2) (D.1d)

B3 = A1
ωε0εr1ky
βzkx

sin(kya/2) (D.1e)

(D.1f)

Similarly for the Marcatili Ey = 0 method, the discontinuity of the dominant magnetic
field is removed at the cost of the weak electric field component Ey being not continuous
across the 1− 2 and 1− 4 interfaces. After applying all boundary conditions at the 1− 3
interface, and continuity of Hy and Ez at the 1− 2 interface, the amplitude coefficients of
the electrical and magnetic field components are obtained as [121]:

B1 = A1
βzky
ωµkx

(D.2a)

A2 = A1sin(kxb/2) (D.2b)

B2 = A1
βzky
ωµkx

(
1 +

k2
0(εr1 − εr2)

β2
z

)
cos(kxb/2) (D.2c)

A3 = A1cos(kya/2) (D.2d)

B3 = A1
βzky
ωµkx

sin(kya/2) (D.2e)

(D.2f)
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