
Towards A Workload-Driven Flow
Scheduler For Modern Datacenters

by

Mohamed Malek Naouach

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Mohamed Malek Naoauch 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Modern datacenters run different applications with various communication require-
ments in terms of bandwidth and deadlines. Of particular interest are deadlines that are
driving web-search workloads e.g. when submitting requests to Bing search engine or load-
ing Facebook home page. Serving the submitted requests in a timely fashion relies on
meeting the deadlines of the generated scatter/gather flows for each request. The current
flow-schedulers are deadline unaware, and they just start flows as soon as they arrive when
the bandwidth resource is available.

In this thesis, we present Artemis: a workload-driven flow-scheduler at the end-hosts
that learns via reinforcement how to schedule flows to meet their deadlines. The flow-
scheduling policy in Artemis is not hard-coded and is instead computed in real-time based
on a reinforcement-learning control loop. In Artemis, we model flow-scheduling as a deep
reinforcement learning problem, and we use the actor-critic architecture to solve it. Flows
in Artemis do not start as soon as they arrive, and a source starts sending a particular
flow upon requesting and acquiring a token from the destination node. The token-request
is issued by the source node and it exposes the flow’s requirements to the destination. At
the destination side, Artemis flow-scheduler is a decision-making agent that learns how to
serve the awaiting token-requests based on their embedded requirements, using the deep
reinforcement learning actor-critic model.

We use two gather workloads to demonstrate (1) Artemis’s ability to learn how to
schedule deadline flows on its own and (2) its effectiveness to meet deadlines. We compare
the performance of Artemis against Earliest Deadline First (EDF), and two other rule-based
flow-scheduling policies that, unlike EDF, are aware of both the sizes and the deadlines of
the flows: Largest Size Deadline ratio First (LSDF) and Smallest Size Deadline ratio First
(SSDF). LSDF schedules arrived flows with largest size deadline ratio first, while LSDF
does the inverse logic. Our experimental results show that Artemis flow-scheduler is able to
capture the structure of the gather workloads, maps the requirements of the arrived flows
to the order at which they need be served and computes a flow-scheduling strategy based
on that. Using the first gather workload that has an equal distribution of flows with (size,
deadline) pairs that are equal to (350KB, 40ms) and (250KB, 50ms), Artemis met +35.58%
more deadlines than EDF, +24.93% more than SSDF, and performed marginally better
than LSDF with +4.42%. For the second workload, 60% of flows have a (size, deadline)
pair equals to (350KB, 40ms) and 40% flows with (250KB, 50ms), Artemis outperformed
all three flows-schedulers, meeting +16.34% more deadlines than the second best SSDF.

iii

Acknowledgements

An opinion without a π is just an onion. I cultivated my onion and I am baking my
pie now. A huge thanks goes for all the people who helped me to cultivate my onion and
to bake my pie. A special thanks goes to my cool professor Bernard Wong who has been
helping me to decorate my pie. A huge hug goes to all my friends in Shoshin: Shoshin was
more than a lab for me, it was a culture, a lifestyle and a state of mind.

iv

Dedication

This is dedicated to the ones I love: mom, dad and sister.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Artemis . 2

1.2 Contributions . 3

2 Background and Related Works 4

2.1 Traffic Delivery In the Era of Datacenters 4

2.2 Datacenter Workload and Traffic Characteristics 5

2.3 Scheduling Deadline Flows . 9

3 Artemis Flow Scheduling System 11

3.1 Artemis Overview . 11

3.2 Artemis Design Objectives . 12

3.3 Flow-Scheduling as a Deep Reinforcement Learning Problem in Artemis . . 13

3.4 Artemis Architecture . 17

3.4.1 System Design . 18

3.4.2 Learning Process . 19

vi

4 Evaluation 21

4.1 Experimental Setup . 21

4.1.1 Datacenter Topology . 22

4.1.2 Methodology and System Configuration 22

4.2 Artemis In Action: Workload A (variant 1) 27

4.2.1 Artemis vs Earliest Deadline First 27

4.2.2 Artemis vs Smallest and Largest Size-Deadline ratio First 34

4.3 Artemis In Action: Workload A (variant 2) 39

5 Conclusion and Future Work 44

References 46

Glossary 51

vii

List of Tables

2.1 The characteristics of median flows inside the Facebook datacenters for dif-
ferent workloads [36] . 6

4.1 Volume of flows finishing within the earliest (40ms) and the latest (50ms)
deadline for Artemis vs EDF, SSDF, LSDF; workload A (variant 1) 29

4.2 Volume of the deadline-missed 40ms-flows to accommodate more 50ms-flows
for Artemis vs EDF, SSDF, LSDF; workload A (variant 1) 30

4.3 Volume of deadline-met 50ms-flows finishing after 40ms for Artemis vs EDF,
SSDF, LSDF; workload A (variant 1) . 30

4.4 Average flow service rate and destination link utilization for Artemis vs
EDF, SSDF, LSDF; workload A (variant 1) 32

4.5 Mean/median flow completion time and flow deadline hit ratio for Artemis
vs EDF, SSDF, LSDF; workload A (variant 1) 33

4.6 Head and tail latencies for Artemis vs EDF, SSDF, LSDF; workload A
(variant 1) . 36

4.7 Matching performance metric (x is a match) for Artemis vs EDF, SSDF,
LSDF; workload A (variant 1) . 37

viii

List of Figures

2.1 Traffic flow space . 7

2.2 Scatter/gather traffic patterns to serve one user request in Bing [23] 8

2.3 An example of the scatter/gather model with associated component dead-
lines [49] . 8

3.1 In this example, a source node S issues a token-request to the destination
node D to acquire a token to start sending its flow. The issued token-request
exposes to the destination information such as flow-size, flow-deadline, source
load. At the destination side, Artemis flow-scheduler is scheduling which
flow to start first based on the embedded pieces of information of the ar-
rived token-requests. 12

3.2 Actor-critic reinforcement learning problem[44] 16

3.3 Scheduling flows in Artemis using reinforcement learning 17

3.4 Artemis flow-scheduler agent in one figure 18

4.1 Abstraction of the datacenter network as a big non-blocking switch 22

4.2 Distribution of the gather task workload A (variant 1) 23

4.3 Flow completion time in function of the maximum number of concurrent
flows to start, FIFO scheduler; workload A (variant 1) 24

4.4 Flow deadline hit ratio in function of the maximum number of concurrent
flows to start, EDF scheduler, moderate deadlines; workload A (variant 1) 25

4.5 Flow completion time in function of the maximum number of concurrent
flows to start, EDF scheduler, moderate deadlines; workload A (variant 1) 26

4.6 Flow deadline hit ratio for Artemis vs EDF; workload A (variant 1) 28

ix

4.7 Flow completion time cumulative distribution function for Artemis vs EDF;
workload A (variant 1) . 29

4.8 Inter-flow finish time cumulative distribution function for Artemis vs EDF,
SSDF, LSDF; workload A (variant 1) . 32

4.9 Flow deadline hit ratio for Artemis vs EDF, SSDF, LSDF; workload A
(variant 1) . 34

4.10 Flow completion time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 1) . 37

4.11 Very-end tail latency for Artemis vs EDF, SSDF, LSDF; workload A (variant
1) . 38

4.12 Distribution of the gather task workload A (variant 2) 39

4.13 Flow deadline hit ratio for Artemis vs EDF, SSDF, LSDF; workload A
(variant 2) . 40

4.14 Flow completion time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 2) . 41

4.15 Very-end tail latency for Artemis vs EDF, SSDF, LSDF; workload A (variant
2) . 42

4.16 Inter-flow finish time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 2) . 43

x

Chapter 1

Introduction

Datacenters are emerging as the new computation paradigm and are becoming the de-facto
business choice to develop, test, deploy and run large-scale applications with various com-
munication requirements in terms of throughput and latency. The traffic workload they
generate is composed of a collection of flows that differ in size, duration and deadlines.
Meeting the communication requirements of these collections of flows rely on accommo-
dating the generated traffic at the flow-level.

In this work, we will be studying how to accommodate deadline-oriented traffic that
is prevalent today in web-search workloads [49, 45, 24, 23] for example, when submitting
a request to Bing search-engine or loading a Facebook home-page or shopping online at
Amazon. Each submitted request [28, 45] hits at first a front-end server and gets dispatched
recursively to the edge nodes to be processed. The computed results are then collected back
at the front-end server and sent to the user. During this process, each submitted request
generates a group of scatter/gather flows that needs to finish within a defined budget of
latency to serve each request in a timely fashion.

Retaining online customers depends strongly on serving their submitted requests in-
teractively and processing each one of them in the datacenter facility in a timely fashion.
This relies on meeting the deadlines of the generated scatter/gather bursts of flows, and
the currently inherited flow-schedulers from the Internet legacy are unaware of deadlines
[49] and they start flows as soon as the they arrive when the resource is available. To
accommodate deadline traffic in datacenters, one line of work [45, 49, 21] proposed to
adopt rate-based allocation approaches with respect to the flows’ deadlines. For instance,
D3 [49] proposed to modify the commodity switches to perform rate allocation for flows
based on their sizes and deadlines. D2TCP [45] modulated the congestion window of the

1

transport protocol using Explicit Congestion Notifications (ECN) and the flow-deadlines
to estimate the sending rate. At the packet level, the deadline of a flow is mapped to a
priority that got assigned to its packets, and the tighter the deadline is, the higher the
packet priority is. One line of work [8, 19] has been leveraging this to prioritize traffic with
high-priority packets and to optimize the tail latency, but this provides no guarantees on
meeting flow-deadlines. Some might suggest to adopt the Earliest Deadline Fist (EDF)
scheduling scheme at the sender side to schedule flow-packets, but this requires to comple-
ment the EDF policy with a new rate control mechanism to identify which packet to send
next. pFabric [8] suggested to decouple rate control and packet scheduling at the host side,
allowing sources to send traffic at line rate and entrusting the network switches to schedule
the packets. The switches’ hardware in pFabric are modified to sort the arrived packets by
their priorities and to drop low-priorities packets if the ingress queue is full. pHost [19] is an
end-to-end transport protocol that was built around the key ideas of request-to-send and
clear-to-send to deliver traffic at the packet level and it does perform as good as pFabric
without modifying the switches’ hardware. pHost needs a heavy parameters’ tuning, and
it can emulate EDF flow-scheduling when the request-to-send’s are prioritized at the host
side based on flow-deadlines.

1.1 Artemis

Current flow-schedulers are deadline-unaware and they just start flows as soon as they
arrive when the resource is available. Given the recent advancements in machine learning
[37, 20, 38, 41, 39], we propose in this work to build a flow-scheduler that is driven by
the workload’s communication-requirements and learns how to schedule the arrived flows
using a reinforcement-learning loop.

In this thesis, we present Artemis: a workload-driven flow-scheduling system for modern
datacenters that learns how to schedule deadline-flows via reinforcement. Traffic flows in
Artemis do not start as soon as they arrive and each source is required to acquire a token
from the flow-destination side to start a particular flow, sending the flow only when the
token is acquired. The flow-token request is generated by the source node and it exposes
the application-flow requirements to the destination node. At the destination side, Artemis
flow-scheduler picks which flow-request to schedule first using the deep reinforcement actor-
critic learning model. The applications’ communication-requirements are a priori unknown
to Artemis and are only exposed to the flow-scheduler at execution-time. Artemis does
not initially commit to any fixed hard-coded flow-scheduling policy, and instead, computes
the policy on its own in real-time.

2

1.2 Contributions

In Artemis, we model flow-scheduling as a deep reinforcement learning problem, and we
solve it at the end-hosts using the actor-critic architecture. We evaluate Artemis’s flow-
scheduling system using two specific deadline-driven workloads and we compare its behavior
and performance to the fundamental deadline-oriented flow-scheduler: Earliest Deadline
First (EDF), and two additional rule-based schedulers that are aware of the sizes and the
deadlines of the flows: Small Size Deadline ratio First (SSDF) and Large Size Deadline ratio
First (LSDF). SSDF schedules flows with smallest size-deadline ratio first, while LSDF is
performing the inverse logic, and schedules flows with largest size-deadline ratio first. We
show that:

• Artemis is able to learn how to schedule deadlines flows on its own via reinforcement,
starting initially with no prior knowledge about the workload characteristics and
using the deep reinforcement actor-critic learning model.

• Artemis is able to capture the workload structure and it maps the requirements of the
awaiting flows to the order at which they need to be served to meet their deadlines.

• To demonstrate the ability of Artemis to learn how to schedule flows, we use a gather
workload that is evenly composed of flows with (size, deadline) pairs that are equal
to (350KB, 40ms) and (250KB, 50ms). Artemis met +35.58% more deadlines than
EDF, +24.93% more than SSDF, and performed marginally better than LSDF with
+4.42%. Earliest Deadline First fell short because it is intrinsically designed to only
consider the flow-deadlines while scheduling and disregard other parameters such as
the flow-size.

• To demonstrate the ability of Artemis to adapt its flow-scheduling strategy, we vary
the previous gather workload to have 60% of flows with (size, deadline) pairs equals to
(350KB, 40ms) and 40% of them with (size, deadline) pairs equal to (250KB, 50ms).
Artemis outmatched all three flows-schedulers meeting +16.4% more deadlines than
the second best SSDF.

3

Chapter 2

Background and Related Works

Modern datacenters run different applications with various communication requirements
in terms of bandwidth and deadlines. For instance, web-search workloads [45] are deadline
driven and their flows need to finish within a defined latency budget, whereas MapReduce
workloads [17] are bandwidth aggressive and their flows need to quickly finish. In this
work, we research how to accommodate deadline-oriented traffic and in this chapter, we
study the state of the art for scheduling deadline flows in a datacenter environment.

2.1 Traffic Delivery In the Era of Datacenters

Today’s datacenter networks have inherited from the Internet network-stack legacy es-
sentially two transport protocols that are oblivious to the applications’ communication
requirements. The first protocol is User Datagram Protocol (UDP) and the second is
Transmission Control Protocol (TCP), and neither of them was originally designed to ac-
commodate the applications’ traffic at the flow level. In fact, TCP is actually the only
protocol that is performing traffic scheduling, and it is limited to the packet level granularity
and not higher than that. Unlike the Internet, datacenter networks are expected to operate
at a high-speed e.g. 10/40/100 Gbps, and different variants of TCP have been proposed
to speed-up the congestion-control feedback-loop and to optimize the finite-state machine
of the protocol in order to deliver a high-throughput and an ultra-low-latency. Among all,
the most popular proposed variant based on the number of citations is DCTCP [6], which
has been recently standardized by IETF [26]. A recent line of work e.g. TIMELY [31] and
DX [27], have shown how to outperform DCTCP by leveraging the recent advancements in

4

Network Interface Controller (NIC) hardware and accurately measure the round trip times
(RTTs) by time-stamping packets when sending to sketch a better rate-control system.

Different efforts have been made to replace the conventional UDP and TCP protocols
with better-suited transport protocols for datacenter networks that are designed to max-
imize the throughput and minimize the tail latency. The state-of-the-art research work
is twofold: the first line of works [6, 34, 8, 19] target to optimize the datacenter network
metrics and the second line of works [45, 21, 33] address to accommodate the applications’
traffic at the flow level. In this work, we focus on serving deadline flows and we target to
optimize the flow deadline hit ratio metric. In the next sections, we study the traffic char-
acteristics and the state-of-the-art for scheduling deadline-driven workloads in a datacenter
network environment.

2.2 Datacenter Workload and Traffic Characteristics

The datacenter network workload is tied to the communication logic of the applications
running on the servers and the adopted architectural patterns when deploying services in
the facility. For instance, inside the Facebook social media datacenter [36], each server
machine has a single unique role out of the following five roles: a web server, a database
server, a cache server, a Hadoop server and a multifeed server. Each server is generating
and serving a specific type of traffic with respect to its role, and the overall traffic flows
in the facility are bursty 1. The Hadoop traffic-flows are short-lived and small-sized where
70% of flows send less than 10KB and last less than 10 seconds; the median flows send
less than 1KB and last less than a second, and in addition, less than 5% of the flows are
larger than 1MB and last longer than 100 seconds without exceeding 10 minutes. Due to
the use of connection pooling, cache traffic-flows are long-lived and are significantly larger
in size compared to Hadoop flows, where 30% of the flows last less than 100 seconds and
send less than 1KB, and more than 50% of them exceed 300 seconds, sending less than
30KB. Compared to both Hadoop and cache traffics, web traffic-flows lie somewhere in
the middle where the median flows send less than 2KB and last less than 700ms. Face-
book provides access upon request to packet traces [18] of three production clusters in
the Altoona datacenter [9]. Compared to the observations of Microsoft Bing [24] that are
running similar services in concept, Facebook reports similar low link utilization and scat-
ter/gather style traffic patterns, but different load distribution across the facility, where

1A burst is a group of consecutive packets with shorter inter-packet gaps than packets arriving before
or after the burst of packets. Burstiness is a characterization of bursts in a flow over a period of time.
[25, 47]

5

Table 2.1: The characteristics of median flows inside the Facebook datacenters for different
workloads [36]

Median Flows
Flow Parameter Hadoop Web Cache
Size < 1KB < 2KB < 30KB
Duration < 1sec < 700ms > 300secs

Facebook’s distribution appears to be evener. Google [42] also confirms the observation
of low link utilization in their fabrics and despite their large capacities, reports that their
networks start to experience high congestion drops as link utilization approaches 25%. At
the global scale, Statista.com [43] reports that the worldwide datacenter workload is dis-
tributed over (computation, video streaming, social networking, search) as (17.14%, 2.86%,
5.71%, 5.71%) and is projected to be (20.43%, 9.68%, 6.45%, 4.30%) by 2020.

Traffic flow characteristics derive from the communication patterns and the type of the
traffic generated by the running applications on top of the servers. As shown in figure 2.1,
applications’ flows vary to be small or large in size, short or long in duration, and with or
without deadlines. Previous traffic analysis [12, 13] of ten datacenters that belong to three
different business categories (university, enterprise and private cloud) show that overall,
80% of the packets are generated by 20% of the flows, and this observation follows the
Pareto principle [48]. Traffic flows could be with or without deadlines. For example, Online
Data Intensive (OLDI) applications [28] are expected to serve the users’ requests in a timely
fashion and requires to be responsive and accommodate a given user request with a defined
latency budget: online users can not be kept waiting behind their screens forever to get their
requests served, and this correlates positively with the generated revenues [40]. Processing
wise, and in the context of web search applications, OLDI applications use a tree-based
search algorithms that implements the scatter/gather pattern (a.k.a. partition/aggregate)
to process each arrived request. As depicted in figure 2.2, each submitted user-request
hits at first a front-end server that dispatches it to a large collection of edge nodes via
intermediate servers. Each edge node processes the request and then forwards the results
recursively to a final aggregator server that sends it back to the user. During this process,
and at each stage, traffic flows are generated in bursts, where a flow has a deadline to meet
at each stage (figure 2.3) so that the user request is finally served within a defined latency
budget.

6

Figure 2.1: Traffic flow space

7

Figure 2.2: Scatter/gather traffic patterns to serve one user request in Bing [23]

Figure 2.3: An example of the scatter/gather model with associated component deadlines
[49]

8

2.3 Scheduling Deadline Flows

Deadline flows are short in duration and usually small in size. In this paragraph, we
study the state of the art for scheduling small-sized flows in datacenters, with and without
explicit-defined deadlines.

Scheduling Small-Sized and Deadline Flows At the Host Side

Being completely orthogonal to flow-scheduling, DCTCP [6] relies on controlling the send-
ing rate at the end-host using ECN flags [35] to maintain low queue occupation across the
datacenter’s switches and hence, reduces the average flow completion time. DCTCP is by
default oblivious to the traffic requirements at the flow level and requires to be comple-
mented to be effective for flow-scheduling. For example, to minimize flow completion time,
PIAS [10] was built and tested over DCTCP to emulate Shortest Size First (SSF) when
scheduling flows without necessary knowing their sizes apriori. PIAS is using a multi-level
queue at the sender side to demote the packet-priorities of active flows from high to low
in function of the sent bytes, and this results in giving an advantage for small flows to
finish before large flows. To accommodate deadline-oriented traffic, D2TCP [45] extend
the DCTCP proposal to be aware to the flows’ deadlines when adjusting the sending rate
in order to reduce the number of missed deadlines. The key idea of D2TCP is to modu-
late the congestion window size in function of ECN flags and flow deadlines via using the
gamma-correction function to back-off aggressively for far-deadline flows and only a little
for near-deadline flows. pHost is an end-to-end datacenter transport protocol that is built
around the idea of request-to-send and clear-to-send to deliver traffic at the packet level.
pHost aims to decouple packet scheduling policies from the core network and performs
them instead at the end-hosts. Moreover, the protocol can emulate EDF or SSF schedul-
ing schemes when the issued tokens are assigned to the packets that are part of the flow
with the earliest deadline or the shortest size respectively .

Scheduling Small-Sized and Deadline Flows At the Core Network

Small flows live inside the core network for a short period of time, and scheduling them
within the network fabric requires the introduction or the modification of the existing
hardware. FastPass [34] investigated the idea of introducing a specialized hardware inside
the datacenter facility to play the role of the centralized arbiter that is delegated to schedule
each packet in the system end-to-end. While FastPass is able to maintain low queue
occupancy, it introduces an extra delay for each packet while queuing at the arbiter to get

9

served, and this risks to negatively affect the average flow completion time and particularly
for small flows. In addition, the solution has clear system design limitations like scalability
and single point of failure. pFabric [8] proposed to decouple packet scheduling from rate
control at the host side, and completely delegate the scheduling task to the network fabric
while allowing hosts to start sending at line rate and operate with a minimal rate control.
pFabric requires to modify the switches’ hardware to sort the arrived packets with respect
to their priorities, and to drop low priority packets in favor of high priority packets when
the ingress queue is full. The pFabric scheme is targeting to reduce the flow completion
time and it is very aggressive against large flows compared to small flows.

10

Chapter 3

Artemis Flow Scheduling System

In this chapter, we present Artemis: an end-to-end token-based workload-driven flow-
scheduling system. Flows in Artemis start sending their traffic upon requesting and ac-
quiring tokens from their destination nodes. At the destination side, Artemis flow-scheduler
learns to schedule deadline flows to start based on the requirements embedded in their is-
sued requests. Artemis starts initially with zero-knowledge about the workload character-
istics and learns via reinforcement how to schedule deadline flows following the actor-critic
learning model.

3.1 Artemis Overview

In Artemis, we adopt an end-to-end approach to schedule the datacenter traffic flows at
the destination side. Each source node needs to acquire a token from the destination
node it is soliciting to start sending its packets. The token request is issued by the source
and it does expose to the destination side the requirements of the flow to start e.g. flow-
size, flow-deadline. This design does offer more control over which flows to start at the
destination side and gives more flexibility for a source application to communicate their
flows’ requirements to the destination to be better-served and accommodated.

At the destination side, Artemis flow-scheduler is a scheduler-agent that learns via
reinforcement how to schedule deadline flows. We model the flow-scheduling problem
as a deep reinforcement learning task and we solve it using the actor-critic architecture.
Artemis flow-scheduler adopts initially no particular flow-scheduling strategy. Instead, it
just counts on interacting with the environment flows by observing the requirements of the

11

arrived token-requests, and learns via its feedback-control mechanism how to schedule flows
on-the-go. Artemis computes its flow-scheduling policy following the deep reinforcement
actor-critic learning model. When a scheduled flow meet its deadline, Artemis will get a
reward equals to one otherwise it gets by default a reward equals to zero. During the course
of serving latency sensitive traffic, the objective of Artemis is to learn a flow-scheduling
distribution over the set of awaiting flows to identify which flow is most likely going to meet
its deadline if scheduled first, maximizing the number of the flows meeting their deadlines
in the long run.

Figure 3.1: In this example, a source node S issues a token-request to the destination node
D to acquire a token to start sending its flow. The issued token-request exposes to the
destination information such as flow-size, flow-deadline, source load. At the destination
side, Artemis flow-scheduler is scheduling which flow to start first based on the embedded
pieces of information of the arrived token-requests.

3.2 Artemis Design Objectives

The Artemis flow-scheduling system is designed to be:

• End-to-End: Artemis flows’ scheduling decisions are computed at the destination
side. A source node is allowed to start circulating a particular application-flow only
after requesting and acquiring a token from the destination node. At the destination
side, Artemis learns to schedule which token-request to serve first, so that its attached
flow starts sending its packets.

• Expressive: Artemis allows applications running at the source side to express the
requirements of the flows they are going to start and expose them in their issued
token-requests. Flow requirements vary in terms of bandwidth and deadlines and

12

could be expressed for example in function of the deadlines and min/max-rates. In
this work, we study how to schedule deadline-oriented traffic, and each issued token-
request is exposing the size and the deadline of the flow to the destination side.

• Workload-Driven: Artemis is not a rule-based flow-scheduling system. Instead, it
is an agent that learns its flow-scheduling policy via reinforcement by interacting with
the system workload. The flow-scheduling policy computed by Artemis is driven by
the requirements of the arrived flows that are waiting to be started. Artemis starts
initially with zero prior knowledge about the workload, and computes a probabilistic
flow-scheduling strategy following the deep reinforcement actor-critic learning model.

3.3 Flow-Scheduling as a Deep Reinforcement Learn-

ing Problem in Artemis

In Artemis, we adopt a learning-based approach where we teach the flow-scheduler how
to interact with the environment-traffic and accommodate the arrived flows. The teaching
process is using a feedback-control mechanism to evaluate how good the flow-scheduler is
performing in terms of accommodating the applications’ traffic requirements. The adopted
learning paradigm is known in the literature as reinforcement learning [44], and Artemis
flow-scheduler is designated as a reinforcement learning agent.

As illustrated in figure 3.2, a reinforcement learning agent A interacts with an environ-
ment E, and at each time step t, it observes the environment’s state st, takes an action
at and receives a reward rt. The agent’s actions are determined by a stochastic policy π
that is updated iteratively at each time step: the policy π is a probability distribution
function over the set of actions a’s to pick from at a given state s, based on its contri-
bution to the long-term cumulative-reward value calculated using a state-value function
V (s) a.k.a. value function. The performed action at at each time step t is not necessary
always maximizing the expected cumulative reward, and a reinforcement learning agent is
allowed to explore the complete set of possible actions: this is known in the literature as the
principle of exploration-exploitation [44]. The action decision process is Markovian, and
the next action at to take only depends on the environment’s current state st, and ignores
all previous states. As presented in figure 3.3, we define these components in Artemis as
follows:

• Environment E: The environment is what defines the world that Artemis flow-
scheduler is interacting with. It produces a state and a reward for the flow-scheduler

13

agent to observe and to process consecutively, and it accepts an action from the agent
and cycles back to produce another state again. The environment is composed of
the different source-nodes issuing token-requests to start their flows. These issued
requests queue up in the natural arrival queue of the solicited destination-node, and
the embedded requirements of the first f awaiting requests (f is a system parameter
to configure) define the state s Artemis flow-scheduler is continuously observing to
make a decision on which request to serve next. When the token-request is served,
its attached flow is scheduled to start, and if the flow finishes within its deadline,
Artemis flow-scheduler gets a positive reward equal to 1, else a zero.

• Agent A: The agent learns how to achieve a defined goal by interacting with the
environment. At each time step, Artemis flow-scheduler observes the requirements
of the first f awaiting token-requests at the front of the system queue if any, and
decides which token-request fi to serve and which token-request fi to defer, where
1 ≤ i ≤ f . If the token-request fi is served, the attached flow to fi is scheduled
to start. To limit the competition among the awaiting token-requests over the des-
tination bandwidth-resource, we limit Artemis flow-scheduler agent to only serve k
token-requests at a time so that only k flows are concurrently active. Both f and
k parameters are manually tuned in Artemis and could be also integrated into the
learning process. For instance, k should be larger in 40Gbps networks compared to
its value in 10Gbps networks, and as for the parameter f , when the traffic is highly
variable in requirements, f should to be set to a large value so that the reinforcement
learning agent can catch more insights about the traffic’s structure to learn a better
suited flow-scheduling policy.

• State s: The requirements of the f awaiting token-requests at the front of the
system queue define the state s for Artemis flow-scheduler agent. Each token-request
fi exposes the size and the deadline of the flow.

• Action a: At each time step t, Artemis decides which token-request fi to serve out
of the f awaiting requests at the front of the system queue, where 1 ≤ i ≤ f .

• Reward Function r: The reward is the feedback by which the flow-scheduler agent
measures the success or the failure of its taken action. We will be evaluating Artemis
using deadline-driven workloads, and we define the reward function to generate either
1 or 0. If the scheduled flow finishes within its deadline, Artemis flow-scheduler agent
receives a reward equals to 1, otherwise it is a zero. Started flows do not finish
immediately, and this makes rewards lagged in Artemis. To solve this problem,
Artemis implements a reward-buffer queue to collect the rewards of the the finished

14

flows asynchronously, and to assign them subsequently to the next performed actions.
In the absence of an immediate reward to assign for a performed action, Artemis
adopts a pessimistic approach and gets by default a reward equals to zero.

• Policy π(a|s): The policy is the strategy that the agent follows to perform a
scheduling-action a at state s. At each time step t, a token-request fi is either
served or deferred. With f token-requests defining the flow-scheduler state s, the
number of possible policies to try and evaluate is 2f : a policy π is better than a
policy π′ if it is successfully accommodating a higher number of deadline flows in the
long run. The requirements of each flow in Artemis are defined by the flow-size and
the flow-deadline, and each one of them could possibly have a wide range of values:
this makes the size of potentially observed states by the flow-scheduler agent very
large, and it would result in an exponential number of policies that are impossible
to store in a look-up table. We use therefore a function approximator [15, 29] to
estimate which action a to take at a given state s and iteratively compute the policy
π to adopt. The estimation is calculated using a deep neural network represented by
the vector of weights θ, and the policy π is therefore denoted by π(a|s; θ).

• State-Value Function Vπ(s): As opposed to the 0 and 1 rewards collected imme-
diately after finishing sending a particular flow, the value function Vπ(s) estimates
the number of flows to meet their deadlines during the exercise of scheduling n flows,
starting from state s and following policy π. The state-value function is used to
evaluate the quality of the current policy π and to improve it iteratively following
the actor-critic learning model. Artemis flow-scheduler is learning a flow-scheduling
policy π to identify which flow is more likely to meet its deadline if scheduled at state
s. In other words, and at a state s, the objective of Artemis flow-scheduler is to act
with action a and schedule the flow with the best return value. The flow scheduling
is a continuous control process, the goal of Artemis is to compute a flow-scheduling
policy that is rewarding in the long-run. That’s why, we will be using a discount
factor γ to attenuate the effect of the short-term returned rewards.

15

Figure 3.2: Actor-critic reinforcement learning problem[44]

16

Figure 3.3: Scheduling flows in Artemis using reinforcement learning

3.4 Artemis Architecture

Artemis solves the flow-scheduling deep reinforcement learning task using the actor-critic
architecture. As shown in figure 3.4, at each time step t, the actor acts out an action
at based on the current calculated flow-scheduling policy, and keeps on improving it it-
eratively based on the evaluations provided by the critic. Artemis flow-scheduler is an
asynchronous actor-critic agent [32] at the destination side that uses a neural network as
a function approximator to estimate which flow-scheduling action at to perform at state
st. To regularize the flow-scheduling learning process, we use the same neural network to
evaluate the quality of the performed actions by Artemis.

17

Figure 3.4: Artemis flow-scheduler agent in one figure

3.4.1 System Design

Artemis flow-scheduler is designed to operate as summarized in algorithm 1. The issued
token-requests by the different sources across the facility queue up at the natural queue
of the designated destination. At each time step t, the flow-scheduler observes the first f
requests at the front of the queue and using the current computed flow-scheduling strategy
π, serve one request fi at a time while maintaining a counter k to keep track of the number
of the concurrent active flows at the destination side to not to exceed a maximum value.
when a flow-request fi is served, its attached flow is scheduled to start, and by the time
the flow finishes transmitting its packets, Artemis gets a positive reward equals to 1 if
the flow-deadline is met, otherwise, it is a zero. The f and k parameters depend on the
composition and the characteristics of the traffic flows, including and not only restricted
to the degree of traffic convolution and the variability of flows’ requirements. We therefore
treat both of them as tuning parameters in the present design, and we manually configure

18

them.

while arrived flow-bursts do
if just starting then

Get the initial set of requirements of the f awaiting flows at the front queue;
end
if finished flow then

Decrement k;
Buffer the collected reward r in the flow-scheduler reward queue;

end
if # of scheduled flows < k then

Schedule the next flow to start;
Increment k;
Get the reward r and update the set of f -requirements;
Train the flow-scheduler agent;

end

end
Algorithm 1: Pseudocode for the interaction between Artemis flow-scheduler and the
environment

3.4.2 Learning Process

At its core, Artemis flow-scheduler is a neural network to decide on which flow to schedule
at each state s and to evaluate the quality of the performed actions. The input size of the
neural network depends on the the number of flow-requests to observe at state s. As for
its architecture, it depends on the complexity of the traffic, and the degree of convolution
of the embedded pieces of information that are exposed in the arrived token-requests.

Artemis flow-scheduler is learning how to schedule flows based on the actor-critic dual-
ity. As summarized in algorithm 2, the actor is responsible for computing and optimizing
the stochastic policy πθ(a|s) that outputs a probability distribution over the set of actions
at each state s. At each time step t, and when making the decision about the next token-
request to serve, the actor is exploiting the gained knowledge it has been accumulating
with a probability equals to 1− ε, and exploring with a probability ε a new set of actions

19

following a uniform distribution.

Draw a probability p using a pseudo random generator;
if p < ε then

Select a flow fi to schedule using the uniform distribution;
else

Select a flow fi to schedule based on the current policy learned by the actor;
end
Reduce ε linearly to exploit the gained knowledge;
Algorithm 2: Pseudocode of the decision making process of the actor component

The actor is optimizing its stochastic policy πθ(a|s) using the evaluations of the critic
(algorithm 3). The quality of each action a is evaluated in relation with the next n following
rewards and discounted with a γ factor to attenuate the effect of short-term rewards.

while agent is learning do
Schedule the flows using the current policy πθ;
Collect a sequence of states st, actions at, rewards rt;
Aggregate each sequence of length n into one training point considering the
discount factor γ;

Evaluate the quality of action at at state st and calculate the advantage;
Perform gradient ascent to optimize the policy πθ of the actor;

end
Algorithm 3: Pseudocode of Artemis flow-scheduler learning algorithm

20

Chapter 4

Evaluation

We implemented Artemis using ns-3 [2] and tensorflow [1]. In this section, we evaluate
Artemis using gather workloads composed of flows with (size, deadline) pairs equal to
(350KB, 40ms) and (250KB, 50ms) with a 50-50 split in section 4.2 and with a 60-40 split
in section 4.3. We demonstrate the capabilities of Artemis flow-scheduler agent and we
compare its performance against the universal deadline-aware flow scheduler EDF and two
size/deadline ratio-aware flow schedulers: Smallest Size Deadline ratio First (SSDF) and
Largest Size Deadline ratio First (LSDF). Using variant 1 and 2 of Workload A, we show
that Artemis is able to capture the workload structure and learns a flow-scheduling policy
that meets +35.58% and +48.34% more deadlines than EDF consecutively, and +4.42%
and +16.34% better than the second best LSDF and SSDF respectively.

4.1 Experimental Setup

Artemis flow-scheduler is a learning agent that operates at the end-hosts. We target to
evaluate (1) its learning capability and (2) its performance to execute deadline-driven
workloads. In this section, we first define our experimental setup and we configure the
workloads we are going to use to achieve both mentioned objectives. We set the baseline for
Artemis to be the universal deadline-aware flow-scheduler Earliest Deadline First (EDF).

21

4.1.1 Datacenter Topology

In our conducted experiments, we do not use any particular datacenter network-architecture.
Modern datacenter networks have high bisection bandwidth [42], and therefore, we abstract
the datacenter core fabric as a big non-blocking switch, where each node has a full-duplex
connection to the core network with a link capacity equals to 1Gbps and a link delay equals
to 250us.

Figure 4.1: Abstraction of the datacenter network as a big non-blocking switch

4.1.2 Methodology and System Configuration

The first objective of this experimental study is to demonstrate the ability of Artemis to
schedule deadline flows on its own, without being initially hard-coded to operate with a
given flow-scheduling policy. To this end, we will start initially comparing against Earliest
Deadline First, and we design a specific gather task workload A (figure 4.2) configured in
a way that the scheduling decisions of EDF are not optimal, and this will lead it to fall
short in meeting the deadlines of the flows. The reason behind that is to study Artemis’s
learning-capability and investigate whether or not it is able to learn a better strategy than
EDF, given that we know about its existence.

We will be using the gather task workload A (or simply workload A) represented in
figure 4.2. Workload A is composed of 10-to-1 gather task flows arriving in bursts that
follow a Poisson distribution with an arrival-rate equals to 10 bursts/sec. Each burst is
composed of a group of 10 flows that are distributed as follows:

• 5 flows, each one of them has a size of 350KB and a deadline of 40ms.

• 5 flows, each one of them has a size of 250KB and a deadline of 50ms.

22

Figure 4.2: Distribution of the gather task workload A (variant 1)

To limit competition between flows at the destination side, we cap the number of
concurrent active flow to k. To make it easy to reason about the behaviors of the flow-
schedulers, we set the value of k to be equal to the number of arrived flows per burst
(which is 10 for workload A). Note that the maximum number of concurrent flows to start
does affect the performance of the flow scheduler. Let k denote the maximum number of
concurrent flows to start by the flow-scheduler. We vary k exponentially and we execute
workload A (variant 1) using the FIFO flow-scheduler. Figure 4.3 shows how the flow
completion time (FCT) performance of the flow-scheduler changes in function of k: FIFO
performs poorly for small (≤ 3) and large (≥ 63) values of k, where 50% of the flows are
taking more than 60ms to finish.

23

Figure 4.3: Flow completion time in function of the maximum number of concurrent flows
to start, FIFO scheduler; workload A (variant 1)

In addition to that, the configuration of the flow-deadlines’ values does also affect the
flow deadline hit (FDH) ratio performance of the flow-scheduler. Based on the previous
flow completion time graph, 50% of the flows were able to finish within 40ms for k’s
between 7 and 31. If all the workload’s flows have a tighter deadline-value (e.g. 30ms),
the flow-scheduler will fail to accommodate more or less half of the deadlines with respect
to k. All above, we set the values of the flow-deadlines to be moderate (e.g. 40ms) and
lax (e.g. 50ms). Similarly, we vary k exponentially and we re-execute workload A (variant
1) using the EDF flow-scheduler this time, and we show how the k parameter does affect
the flow deadline hit ratio performance of the flow-scheduler (figure 4.4). We also plot the
flow-completion-time cumulative distribution of EDF at figure 4.5. The number f of the
awaiting-flows to observe by Artemis and decide on which flow to schedule first does affect
the learnability and the performance of the scheduling task, and it will be set during this
evaluation to k/2, which equals to the number of flows in a half-burst.

24

Figure 4.4: Flow deadline hit ratio in function of the maximum number of concurrent flows
to start, EDF scheduler, moderate deadlines; workload A (variant 1)

25

Figure 4.5: Flow completion time in function of the maximum number of concurrent flows
to start, EDF scheduler, moderate deadlines; workload A (variant 1)

The actor and the critic entities in Artemis flow-scheduler are using the same neural
network to evaluate and optimize the flow-scheduling policy. With respect to the defined
workload, we start off with a fairly simple neural network with one layer and 16 neurons,
and it was effective to capture the structure of workload A. To evaluate the quality of
the flow-scheduling decisions that are performed by the actor, the critic estimates the
number of the satisfied deadlines with respect to the n previous performed decisions. In
our system, an incorrect performed scheduling decision could make the few next flows miss
their deadlines, and the effect of a particular flow-scheduling decision is discounted over
time with a γ factor that varies to be between 0 and 1. We set n and γ to be equal to 8
and 0.99.

26

4.2 Artemis In Action: Workload A (variant 1)

As illustrated in figure 4.2, traffic in workload A (variant 1) arrives in bursts of 10 flows:
each burst contains 5 flows with (size, deadline) pairs equal to (350KB, 40ms), and 5 more
flows with (size, deadline) pairs equal to (250KB, 50ms). Each of the flows is requesting
to acquire a token from a single destination to start sending its packets. At the destina-
tion side, we start by evaluating the behavior and the performance of Artemis versus the
deadline-aware flow-scheduler Earliest Deadline First. Next, we compare Artemis versus
two flow-schedulers that are aware of the sizes and the deadlines of the flows: Smallest Size
Deadline ratio First (SSDF) and Largest Size Deadline ratio First (LSDF). SSDF schedules
flows with smallest size-deadline ratio first, whereas LSDF performs the inverse logic and
schedules flows with largest size-deadline ratio first.

4.2.1 Artemis vs Earliest Deadline First

By definition, Earliest Deadline First’s logic cares only about the deadlines of the flows
when scheduling. The intrinsic nature of workload A (variant 1) makes the decision of
Earliest Deadline First flow scheduler biased towards the 40ms flows and aggressive towards
the 50ms flows, regardless that 50ms-flows are lighter in size and have hence higher-chances
to meet their deadlines if scheduled first.

27

Figure 4.6: Flow deadline hit ratio for Artemis vs EDF; workload A (variant 1)

Flow Deadline Hit Ratio and Flow Completion Time

As shown in figure 4.6, EDF succeeds to meet 51.6% of the deadlines of workload A (variant
1) that is composed of an even split of both 40ms and 50ms-flows. Unlike EDF, Artemis is
not myopic to the flows’ sizes and that’s why it does perform better than EDF, satisfying
69.96% of the deadlines. At the experiment’s steady state, Artemis is consistently scoring
a better flow deadline hit ratio, with a performance-improvement margin equals to +35%:
this demonstrates first how Artemis is able to figure out how to schedule deadlines flows
on its own in real-time, and second, how Artemis is reinforcing what it is learning on the
long-run. Artemis learned to prioritize the 50ms flows and not to starve the 40ms flows
unlike EDF, and that’s why it succeeded to accommodate more than 2/3 of the volume of
the deadline flows.

During the experiment’s steady state, we plot the flow-completion-time cumulative
distribution (figure 4.7) for Artemis and EDF. The graph shows that both flow-schedulers
have an exponential-shaped fct-cdf, with EDF having the curve with the longer tail. Using
EDF, 50% of the flows finished within 43.35ms and 75% of them finished within 75.44ms.

28

Table 4.1: Volume of flows finishing within the earliest (40ms) and the latest (50ms)
deadline for Artemis vs EDF, SSDF, LSDF; workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling Policy FCT ≤ 40ms 40ms < FCT ≤ 50ms
EDF 40% 54-40 = 14%
Artemis 62% 76-62 = 14%
SSDF 54% 71-54 = 17%
LSDF 56% 75-56 = 19%

As for Artemis, its learned flow-scheduling policy resulted in 50% of the flows taking
31.13ms to finish, and 75% of them taking 49.68ms to finish.

Figure 4.7: Flow completion time cumulative distribution function for Artemis vs EDF;
workload A (variant 1)

29

Table 4.2: Volume of the deadline-missed 40ms-flows to accommodate more 50ms-flows for
Artemis vs EDF, SSDF, LSDF; workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling Policy Flow Deadline Hit Ratio volume of non-useful 40ms-

flows with FCT < 50ms
EDF 51.6% 53.8-51.6/53.8 = 4.09%
Artemis 69.96% 75.7-69.96/75.7 = 7.58%
SSDF 56% 70.3-56/70.3 = 20.34%
LSDF 67% 74.4-67/74.4 = 9.95%

Table 4.3: Volume of deadline-met 50ms-flows finishing after 40ms for Artemis vs EDF,
SSDF, LSDF; workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling Policy Flow Deadline Hit Ratio volume of useful 50ms-flows

with FCT > 40ms
EDF 51.6% 51.6-39.11/51.6 = 24.21%
Artemis 69.96% 69.96-61.8/69.9 = 11.67%
SSDF 56% 56-53.97/56 = 3.63%
LSDF 67% 67-55.6/67 = 17.01%

Useful and Non-Useful Deadline Flows

A deadline flow is useful if it meets its deadline. Flow-deadlines in workload A (variant
1) are bimodal-distributed between 40ms and 50ms in an equal proportion. As shown
in tables 4.1, 4.2 and 4.3, Artemis flow deadline hit ratio’s performance can be basically
explained with the following two observations. First, based on table 4.1, Artemis learned
how to schedule 62% of the workload flows, allowing them to finish within 40ms. If Artemis
was prioritizing the 40ms-flows, it would performs like EDF but, it is not the case here and
this is not surprising: when it comes to finishing flows quickly, shorter flows finish before
larger flows, and the 40ms-flows (with a 350KB payload) are larger in size compared to the
50ms-flows (with a 250KB payload). Artemis seems to favor the 50ms-flows over the 40ms-
flows and schedule them first. Second, Artemis learned to defer the 40ms-flows which are
heavier in size than the 50ms-flows and to not always prioritize them like EDF but instead,
trade them with the 50ms-flows. In table 4.2, we measured the volume of the 40ms-flows

30

that missed their deadlines and finished in less than 50ms to accommodate more 50ms-
flows, and we found that their volume is equal to 7.58%: Artemis deferred these 40ms-flows
to be start later, trading them instead with the 50ms-flows which are lighter in size and
hence, are more likely to meet their deadlines. This demonstrates that Artemis was able to
identify that the 50ms-flows are more useful than to the 40ms-flows when scheduled first.
Compared to Artemis, EDF flow-scheduling logic resulted in a smaller volume of these
40ms-flows that finish is less than 50ms, and their volume is only equal to 4.09%. Table
4.3 shows that 24.21% of the 50ms-flows (out of 50%) finished later than 40ms when EDF is
used, and this reflects EDF’s logic to always prioritize the 40ms-flows over the 50ms-flows.
As for Artemis, the same table shows that only 11.67% of the 50ms-flows (out of 50%)
finished later than 40ms, whereas the rest of them should finish within 40ms to achieve a
flow deadline hit ratio equals to 69.96%. This demonstrates that Artemis figured out that
the 50ms-flows are more likely to meet their deadlines compared to the 40ms-flows, and it
will be more useful to prioritize them first to meet as many deadlines as possible.

Flow Service Rate and Destination Idle Time

The inter-flow finish time reflects the system service time and its capacity to accommodate
the workload traffic per unit of time. As shown in figure 4.8, both of Artemis and EDF
served 50% of the flows almost at a similar rate and what made the difference in perfor-
mance is how the second half of the flows had been accommodated. Traffic bursts come
in groups of 10 flows per burst, such that the average burst-arrival time is equal to 100ms
(we verified this experimentally and we recorded 100.15ms), i.e. 10 bursts/sec and hence,
100 flows/sec. As listed in table 4.4, EDF served flows in average at rate 83.178 flows/sec
(out of the 100.15 flows/sec arrival rate that was experimentally measured), utilizing the
destination link at the ratio 83.046%. Artemis was able to reach a link-utilization ratio
equals to 98.843% by learning how to serve flows at rate 98.994 flows/sec.

31

Table 4.4: Average flow service rate and destination link utilization for Artemis vs EDF,
SSDF, LSDF; workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling
Policy

Average Inter-Flow
Finish Time (ms)

Average Flow Service
Rate (flows/sec)

Average Destination
Utilization

EDF 12.023 83.178 83.046%
Artemis 10.101 98.994 98.843%
SSDF 12.025 83.158 83.031%
LSDF 10.502 95.218 95.072%

Figure 4.8: Inter-flow finish time cumulative distribution function for Artemis vs EDF,
SSDF, LSDF; workload A (variant 1)

32

Table 4.5: Mean/median flow completion time and flow deadline hit ratio for Artemis vs
EDF, SSDF, LSDF; workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling
Policy

Average Flow Com-
pletion Time (ms)

Median Flow Comple-
tion Time (ms)

Flow Deadline Hit Ra-
tio

EDF 66.036 45.350 51.60%
Artemis 55.204 31.132 69.96%
SSDF 45.561 38.461 56.00%
LSDF 150.203 34.061 67.00%

Mean/Median Flow Completion Time and Straggler Flows

Nevertheless, even with a high flow-service rate and a high destination-link utilization,
we notice that the system is not completely free of flows that straggle to finish either for
EDF or for Artemis. To observe this, we compare the average flow-completion-time to its
median. As shown in table 4.5, EDF’s average flow-completion-time is equal to 66.036ms
and this is relatively higher with +45.614% compared its median 45.350ms. As for Artemis,
the average flow-completion-time and its median are consecutively equal to 55.204ms and
31.132ms, making the average fct higher with +77.322% to its median. In both cases, the
median fct was less than the mean, and this indicates that the fct probability distribution
function (PDF) for both flow-schedulers is positively skewed. Hence, each of the flow-
scheduler’s fct-pdf has a long tail on the right side, and actually, Artemis’s tail-latency is
shorter and thinner than EDF (figure 4.11).

A straggler flow is a flow that takes more than expected to finish. We note that the
near absence of straggler flows in the system does not necessary imply any properties on
the flow-scheduler’s capabilities to meet deadlines. In the next section, we will see that
SSDF has the shortest tail latency among all four flow schedulers, but has only succeeded
to meet 56.0% of the deadlines which is slightly better (+8.53%) than EDF and +24.98%
behind Artemis. Similarly, the LSDF flow-scheduler generated the heaviest tail latency
while meeting 67.0 % of the deadlines.

33

4.2.2 Artemis vs Smallest and Largest Size-Deadline ratio First

In the previous section, EDF was performing poorly compared to Artemis because it was
only considering the deadlines of the flows and not their sizes when scheduling. The nature
of the workload fooled EDF to prioritize the 40ms over the 50ms-flows, despite that the
50ms-flows were lighter in size and this makes them more likely to meet their deadlines if
scheduled first. In this section, we compare Artemis against two flow-schedulers that are
simultaneously aware of the deadlines and the sizes of the flows: Smallest Size Deadline
ratio First (SSDF) and Largest Size Deadline ratio First (LSDF). SSDF prioritizes flows
with the smallest size/deadline ratio first, while LSDF performs the inverse logic. We show
that LSDF is able to accommodate almost as many deadlines as Artemis, meeting 67% of
the deadlines versus 69.96% for Artemis.

Figure 4.9: Flow deadline hit ratio for Artemis vs EDF, SSDF, LSDF; workload A (variant
1)

34

Flow Deadline Hit Ratio and Flow Service Rate

As illustrated in tables 4.4 and 4.5, SSDF’s performance is very close to EDF, and it scored
respectively 56% vs 51.5% for flow deadline hit ratio and 83.158 flows/sec vs 83.1738
flows/sec for flow service rate. Based on figure 4.8, we note that SSDF is serving the
volume of flows between the 50th and 70th percentiles at a higher-rate and this explains
its marginal gain ahead of EDF. More importantly, LSDF is quite competitive to Artemis,
staying slightly behind it and scoring respectively 67% vs 69.96% for flow deadline hit
ratio, and 95.218 flows/sec vs 98.994 flows/sec for flow service rate.

Flow Completion Time and Head/Tail Latency

As shown in figure 4.10, all of the four flow-schedulers have an exponential fct-distribution
shape, with LSDF having the longest tail and SSDF having the shortest tail. The fct-cdf’s
of both of SSDF and LSDF are interleaving with Artemis, following approximately similar
growth-rates.

Artemis fct-cdf head is behind SSDF head, and lies with LSDF head but, starting from
the 46th percentile, the fct-cdf of Artemis starts to grow faster than SSDF. This means that
46% of the flows were able to finish faster in SSDF and this is not surprising: SSDF is biased
towards flows with a small size/deadline ratio. The 50ms-flows have a ratio that is equal to
5MBps while the 40ms-flows have a ratio that is equal to 8.78MBps. SSDF gains an initial
edge in performance by prioritizing the 50ms over the 40ms-flows but, fails short on-the-go
when scheduling the 40ms-flows: the 40ms-flows are heavier in size, and starting them will
slow-down the 50ms-flows in particular, which leads to a performance degradation. On
the other hand, LSDF seems to approximate the flow-scheduling policy that Artemis had
learned, but it is still slightly behind Artemis because LSDF is very aggressive towards
the 50ms-flows, and if it was not, it would give the flow-scheduler a performance edge on
meeting more deadlines. This performance edge will be better highlighted on the next
section, where we vary the workload A to be denser with 40ms-flows and this will result in
a deadline hit ratio performance drop for LSDF: its aggressiveness towards the 50ms-flows
makes the flow-scheduler misses the easy deadlines to meet, and blindly schedule by default
the hard deadlines to meet first.

Table 4.6 shows that Artemis was the quickest to finish flows at the 95th percentile,
and slightly slower than SSDF but better than EDF on the 96th and the 97th percentiles.
Among all four flow-schedulers, Artemis has the shortest and the thinnest tail-latency
with the fct-98th, 99th and 100th percentiles being equal to 204.739ms, 1027.525ms and
1029.183ms respectively. Similarly, LSDF has the longest and the heaviest tail-latency

35

Table 4.6: Head and tail latencies for Artemis vs EDF, SSDF, LSDF; workload A (variant
1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling Policy FCT 25-th % FCT 50-th % FCT 75-th %
EDF 26.395 43.349 75.439
Artemis 27.585 31.132 49.684
SSDF 23.069 38.460 55.955
LSDF 27.573 34.061 50.546
Flow Scheduling Policy FCT 95-th % FCT 96-th % FCT 97-th %
EDF 126.149 133.485 137.649
Artemis 80.411 88.588 94.634
SSDF 86.969 88.037 92.015
LSDF 86.993 1027.525 1029.0123
Flow Scheduling Policy FCT 98-th % FCT 99-th % FCT 100-th %
EDF 175.321 439.984 1039.447
Artemis 204.739 1027.525 1029.183
SSDF 99.328 106.022 1030.071
LSDF 1030.091 4807.770 4847.249

with the fct-98th, 99th and 100th percentiles being equal to 1030.091ms, 4807.770ms and
4847.249ms respectively. The tail latency of EDF and SSDF are almost as short as Artemis
but, thicker with SSDF having the thickest one compared to EDF and Artemis. Based
on the fct 99th-percentile, and from better to worst, the order is as follows: SSDF, EDF,
Artemis, LSDF. Similarly, based on the fct-100th percentile, and from better to worst, the
order is as follows: Artemis, SSDF, EDF and LSDF.

36

Table 4.7: Matching performance metric (x is a match) for Artemis vs EDF, SSDF, LSDF;
workload A (variant 1)

Workload A (variant 1), inter-burst arrival time = 100.15ms, 10 flows served concurrently
Flow Scheduling
Policy

FDH ratio FSR CDF
Head

FSR CDF
Tail

FCT CDF
Head

FCT CDF
Tail

FCT CDF
Very-End
Tail

EDF X X
SSDF X X
LSDF X X X

Figure 4.10: Flow completion time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 1)

37

Figure 4.11: Very-end tail latency for Artemis vs EDF, SSDF, LSDF; workload A (variant
1)

Artemis Is Learning a Mixture of SSDF and LSDF

Overall, Artemis was able to meet the maximum number of deadlines for Workload A (vari-
ant 1), outperforming EDF with +35.58%, SSDF with +24.93% and performing marginally
better than LSDF with +4.42%. Artemis served flows with a rate equals to 98.994 flows/sec
that is very close to the experimental flow arrival-time 100.15 flows/sec, minimizing the
destination idle time to the least and reducing the waiting time of flows to be served.
Artemis has also the shortest and the thinnest tail-latency, and both tail-latencies of EDF
and SSDF are almost as short as Artemis but thicker. Nevertheless, Artemis was not the
quickest to finish flows in average, and it was SSDF instead. We summarize accordingly
all these observations in table 4.7. We therefore expect Artemis to learn a probabilistic
flow-scheduling strategy that is composed of a mixture of both strategies: SSDF and LSDF.

38

4.3 Artemis In Action: Workload A (variant 2)

In the previous section, LSDF and Artemis did almost meet the same number of deadlines.
However, we have highlighted the aggressiveness of LSDF against the 50ms-flows having a
lower size-deadline ratio compared to the 40ms-flows. In this section, we modify workload
A (variant 1) to have more 40ms than 50ms-flows and make the flow-scheduling decisions
of LSDF more biased for the 40ms-flows and therefore, aggressive against the 50ms-flows.

The variant 2 of workload A is composed of 60% of (350KB, 40ms) flows and 40% of
(250KB, 50ms) flows. Traffic continues to arrive in bursts of 10 flows, where each burst
is now composed of 6 flows of (350KB, 40ms) and 4 flows of (250KB, 50ms) as presented
in figure 4.12. Compared to variant 1, workload A (variant 2) is denser in 40ms-flows and
this makes Earliest Deadline First more aggressive towards the 50ms-flows and in favor of
the 40ms-flows. The competition among the 40ms-flows is much higher now and this will
cause EDF to meet fewer deadlines than earlier.

Figure 4.12: Distribution of the gather task workload A (variant 2)

As presented in figure 4.13, LSDF failed short to compete with Artemis this time.
Artemis was able to meet 67.94% of the deadlines, accommodating more deadlines than
LSDF and SSDF with +16.74% and +16.34% consecutively. both SSDF and LSDF per-
formed comparatively, meeting almost the same volume of deadlines and maxing out around
58%. The deadline hit ratio of EDF was limited to 45.8% which puts Artemis ahead with
+48.34% more deadline-met flows. All three flow-schedulers EDF, LSDF, and SSDF, failed
to be competitive with Artemis which was able to learn via reinforcement and in real-time

39

the appropriate flow-scheduling policy to adopt in order to meet the traffic deadlines. In
other words, given a collection of arrived flows, Artemis learned a distribution function
over this collection of flows to identify which flow to schedule and which flow to defer.

One more time, we do note that performing well on meeting deadlines does not neces-
sarily imply any particular conclusion about the flow completion time metric. Both figures
4.14 and 4.15 show that SSDF has the shortest and the thinnest tail-latency, with the 99th
and the 100th percentiles being equals to 95.347ms and 107.509ms regardless that SSDF
was meeting less deadlines than Artemis.

In the previous subsection, we claimed that Artemis could be possibly learning a mix-
ture strategy of SSDF and LSDF. This time, none of the three hard-coded flow-schedulers
were competitive to Artemis and did not perform comparatively on meeting deadlines.
Therefore, we can not make a similar claim in this context, and we can only embrace the
power of artificial intelligence for now.

Figure 4.13: Flow deadline hit ratio for Artemis vs EDF, SSDF, LSDF; workload A (variant
2)

40

Figure 4.14: Flow completion time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 2)

41

Figure 4.15: Very-end tail latency for Artemis vs EDF, SSDF, LSDF; workload A (variant
2)

42

Figure 4.16: Inter-flow finish time cdf for Artemis vs EDF, SSDF, LSDF; workload A
(variant 2)

43

Chapter 5

Conclusion and Future Work

Serving online users’ requests in a datacenter environment relies on meeting the deadlines
of the generated scatter/gather flows per each request, to return a response in a timely
fashion. Rather than modeling the characteristics of workload’s traffic flows, and counting
on the human intuition to come up with a flow-scheduling strategy, we proposed in this
thesis to build a flow-scheduler that is driven by the requirements of the workload and
learns how to schedule the generated traffic using a reinforcement-learning loop.

We presented Artemis: A token-based workload-driven flow-scheduler at the end-hosts.
In Artemis, we allow a source to start sending a particular flow upon requesting and
acquiring a token from the destination side. The token-request is issued by a source to the
particular destination of the flow, and it does expose the requirements of the flow. At the
destination side, we modelled the flow-scheduling problem as a deep reinforcement learning
problem, and we solved it using the actor-critic architecture.

We used two specific gather workloads (1) to demonstrate the ability of Artemis to
learn how to schedule deadline flows on its own and (2) to evaluate its effectiveness to
meet deadlines. We compared Artemis against the universal deadline-aware flow-scheduler
Earliest Deadline First (EDF) and two additional rule-based flow-schedulers that are aware
of both the deadlines and the sizes of the flows: Largest Size Deadline ratio First (LSDF)
and Smallest Size Deadline ratio First (SSDF). We showed that Artemis is able to learn
how to schedule deadline flows and adjust the flow-scheduling strategy it is learning with
the traffic-requirements.

In this work, we had evaluated Artemis using two specific gather workloads that are
being collected at one static destination. The next step would be to evaluate Artemis
using gather workloads that are being collected at different locations. In addition to gather

44

traffic, scatter traffic is quite common in modern datacenters, and this would be the next
fundamental workload to test Artemis with.

45

References

[1] Google deep learning framework tensorflow. https://www.tensorflow.org/.

[2] The ns-3 discrete-event network simulator. https://www.nsnam.org/.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity
data center network architecture. In ACM SIGCOMM Computer Communication
Review, volume 38, pages 63–74. ACM, 2008.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In
Nsdi, volume 10, pages 19–19, 2010.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra Yadav, George
Varghese, et al. Conga: Distributed congestion-aware load balancing for datacenters.
In ACM SIGCOMM Computer Communication Review, volume 44, pages 503–514.
ACM, 2014.

[6] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In ACM SIGCOMM computer communication review, volume 40, pages 63–
74. ACM, 2010.

[7] Mohammad Alizadeh, Shuang Yang, Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. Deconstructing datacenter packet transport. In Proceedings of the
11th ACM Workshop on hot topics in networks, pages 133–138. ACM, 2012.

[8] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Bal-
aji Prabhakar, and Scott Shenker. pfabric: Minimal near-optimal datacenter trans-
port. In ACM SIGCOMM Computer Communication Review, volume 43, pages 435–
446. ACM, 2013.

46

https://www.tensorflow.org/
https://www.nsnam.org/

[9] Alexey Andreyev. Introducing data center fabric, the next-generation Facebook data
center network, 2018 (accessed May 28, 2018). https://code.facebook.com/posts/
360346274145943/.

[10] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Weicheng Sun. Pias:
Practical information-agnostic flow scheduling for data center networks. In Proceedings
of the 13th ACM Workshop on Hot Topics in Networks, page 25. ACM, 2014.

[11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards pre-
dictable datacenter networks. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 242–253. ACM, 2011.

[12] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 267–280. ACM, 2010.

[13] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding
data center traffic characteristics. In Proceedings of the 1st ACM workshop on Research
on enterprise networking, pages 65–72. ACM, 2009.

[14] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine
grained traffic engineering for data centers. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies, page 8. ACM, 2011.

[15] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview.
In Proceedings of the 34th IEEE Conference on Decision and Control, volume 1, pages
560–564. IEEE Publ. Piscataway, NJ, 1995.

[16] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. Scheduling mix-flows in
commodity datacenters with karuna. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 174–187. ACM, 2016.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] Facebook.com. Request access to the packet trace of Facebook Altoona datacenter, 2018
(accessed May 28, 2018). https://www.facebook.com/network-analytics.

[19] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. phost: Distributed near-optimal datacenter transport over com-
modity network fabric. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, page 1. ACM, 2015.

47

https://code.facebook.com/posts/360346274145943/
https://code.facebook.com/posts/360346274145943/
https://www.facebook.com/network-analytics

[20] Alex Hern. Google’s Go-playing AI still undefeated with victory over world number
one, 2017 (accessed May 28, 2018). https://www.theguardian.com/global/2017/

mar/14/googles-deepmind-makes-ai-program-that-can-learn-like-a-human.

[21] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Finishing flows quickly with pre-
emptive scheduling. In Proceedings of the ACM SIGCOMM 2012 conference on Appli-
cations, technologies, architectures, and protocols for computer communication, pages
127–138. ACM, 2012.

[22] Christian E Hopps. Analysis of an equal-cost multi-path algorithm. 2000.

[23] Virajith Jalaparti. Speeding up Distributed Request-Response Workflows, 2013 (ac-
cessed April 23, 2018). https://conferences.sigcomm.org/sigcomm/2013/slides/
sigcomm/20.pptx.

[24] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin,
and Chenyu Yan. Speeding up distributed request-response workflows. In ACM SIG-
COMM Computer Communication Review, volume 43, pages 219–230. ACM, 2013.

[25] R. Krzanowski. Burst (of packets) and Burstiness, 2006 (accessed April 23, 2018).
https://www.ietf.org/proceedings/66/slides/ippm-10.pdf.

[26] R. Krzanowski. Data Center TCP (DCTCP): TCP Congestion Control for Data
Centers, 2017 (accessed May 27, 2018). https://tools.ietf.org/html/rfc8257.

[27] Changhyun Lee, Chunjong Park, Keon Jang, Sue B Moon, and Dongsu Han. Accu-
rate latency-based congestion feedback for datacenters. In USENIX Annual Technical
Conference, pages 403–415, 2015.

[28] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and
Thomas F Wenisch. Power management of online data-intensive services. In ACM
SIGARCH Computer Architecture News, volume 39, pages 319–330. ACM, 2011.

[29] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in tem-
poral difference reinforcement learning. Annals of Operations Research, 134(1):215–
238, 2005.

[30] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Universal
packet scheduling. In Proceedings of the 14th ACM workshop on hot topics in networks,
page 24. ACM, 2015.

48

https://www.theguardian.com/global/2017/mar/14/googles-deepmind-makes-ai-program-that-can-learn-like-a-human
https://www.theguardian.com/global/2017/mar/14/googles-deepmind-makes-ai-program-that-can-learn-like-a-human
https://conferences.sigcomm.org/sigcomm/2013/slides/sigcomm/20.pptx
https://conferences.sigcomm.org/sigcomm/2013/slides/sigcomm/20.pptx
https://www.ietf.org/proceedings/66/slides/ippm-10.pdf
https://tools.ietf.org/html/rfc8257

[31] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. Timely: Rtt-based
congestion control for the datacenter. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 537–550. ACM, 2015.

[32] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

[33] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu, and Fahad R
Dogar. Friends, not foes: synthesizing existing transport strategies for data center
networks. ACM SIGCOMM Computer Communication Review, 44(4):491–502, 2015.

[34] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans Fugal.
Fastpass: A centralized zero-queue datacenter network. ACM SIGCOMM Computer
Communication Review, 44(4):307–318, 2015.

[35] Kadangode Ramakrishnan, Sally Floyd, and David Black. The addition of explicit
congestion notification (ecn) to ip. Technical report, 2001.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. Inside
the social network’s (datacenter) network. In ACM SIGCOMM Computer Communi-
cation Review, volume 45, pages 123–137. ACM, 2015.

[37] Ian Sample. Googles DeepMind makes AI program that can learn like a human, 2017
(accessed May 28, 2018). https://www.theguardian.com/global/2017/mar/14/

googles-deepmind-makes-ai-program-that-can-learn-like-a-human.

[38] Ian Sample. ’It’s able to create knowledge itself ’: Google un-
veils AI that learns on its own, 2017 (accessed May 28,
2018). https://www.theguardian.com/technology/2017/may/25/

alphago-google-ai-victory-world-go-number-one-china-ke-jie.

[39] Ian Sample. Google DeepMind’s AI program learns human navigation skills, 2018
(accessed May 28, 2018). https://www.theguardian.com/technology/2018/may/

09/googles-ai-program-deepmind-learns-human-navigation-skills.

[40] Eric Schurman and Jake Brutlag. The user and business impact of server delays,
additional bytes, and http chunking in web search. In Velocity Web Performance and
Operations Conference, 2009.

49

https://www.theguardian.com/global/2017/mar/14/googles-deepmind-makes-ai-program-that-can-learn-like-a-human
https://www.theguardian.com/global/2017/mar/14/googles-deepmind-makes-ai-program-that-can-learn-like-a-human
https://www.theguardian.com/technology/2017/may/25/alphago-google-ai-victory-world-go-number-one-china-ke-jie
https://www.theguardian.com/technology/2017/may/25/alphago-google-ai-victory-world-go-number-one-china-ke-jie
https://www.theguardian.com/technology/2018/may/09/googles-ai-program-deepmind-learns-human-navigation-skills
https://www.theguardian.com/technology/2018/may/09/googles-ai-program-deepmind-learns-human-navigation-skills

[41] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[42] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Ban-
non, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. Jupiter rising:
A decade of clos topologies and centralized control in google’s datacenter network. In
ACM SIGCOMM computer communication review, volume 45, pages 183–197. ACM,
2015.

[43] Statista.com. Data center workloads, by installed application, worldwide from 2015
to 2020 (in millions), 2018 (accessed May 28, 2018). https://www.statista.com/

statistics/638056/worldwide-data-center-workloads-by-application/.

[44] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on arti-
ficial intelligence and machine learning, 4(1):1–103, 2010.

[45] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware datacen-
ter tcp (d2tcp). ACM SIGCOMM Computer Communication Review, 42(4):115–126,
2012.

[46] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall. Let
it flow: Resilient asymmetric load balancing with flowlet switching. In NSDI, pages
407–420, 2017.

[47] Wikipedia. Burstiness, 2013 (accessed April 23, 2018). https://en.wikipedia.org/
wiki/Burstiness.

[48] Wikipedia.org. Pareto principle, 2018 (accessed May 28, 2018). https://en.

wikipedia.org/wiki/Pareto_principle.

[49] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better never
than late: Meeting deadlines in datacenter networks. ACM SIGCOMM Computer
Communication Review, 41(4):50–61, 2011.

50

https://www.statista.com/statistics/638056/worldwide-data-center-workloads-by-application/
https://www.statista.com/statistics/638056/worldwide-data-center-workloads-by-application/
https://en.wikipedia.org/wiki/Burstiness
https://en.wikipedia.org/wiki/Burstiness
https://en.wikipedia.org/wiki/Pareto_principle
https://en.wikipedia.org/wiki/Pareto_principle

Glossary

k The max number of concurrent flows to start by the flow-scheduler. 23

D2TCP Data-Aware Datacenter TCP. 1, 9

D3 Deadline-Driven Delivery Control Protocol. 1

DCTCP Data Center Transmission Control Protocol. 4, 9

ECN Explicit Congestion Notification. 2

EDF Earliest Deadline First. 2, 3, 21, 24, 33

FCT Flow Completion Time. 23

FDH Flow Deadline Hit ratio. 24, 37

FIFO First In First Out. 23

FSR Flow Service Rate. 37

IETF Internet Engineering Task Force. 4

LSDF Largest Size Deadline ratio First. 3, 21, 33–35, 38, 39

NIC Network Interface Controller. 5

OLDI Online Data-Intensive applications. 6

PDF Probability Distribution Function. 33

51

RTT Round Trip Time. 5

SSDF Smallest Size Deadline ratio First. 3, 21, 33, 34, 38–40

SSF Shortest Size First. 9

TCP Transmission Control Protocol. 4, 5

UDP User Datagram Protocol. 4, 5

52

	List of Tables
	List of Figures
	Introduction
	Artemis
	Contributions

	Background and Related Works
	Traffic Delivery In the Era of Datacenters
	Datacenter Workload and Traffic Characteristics
	Scheduling Deadline Flows

	Artemis Flow Scheduling System
	Artemis Overview
	Artemis Design Objectives
	Flow-Scheduling as a Deep Reinforcement Learning Problem in Artemis
	Artemis Architecture
	System Design
	Learning Process

	Evaluation
	Experimental Setup
	Datacenter Topology
	Methodology and System Configuration

	Artemis In Action: Workload A (variant 1)
	Artemis vs Earliest Deadline First
	Artemis vs Smallest and Largest Size-Deadline ratio First

	Artemis In Action: Workload A (variant 2)

	Conclusion and Future Work
	References
	Glossary

