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Abstract

Designing conformal and equipment-compatible radiation therapy plans is essential for
ensuring high-quality treatment outcomes for cancer patients. Intensity modulated radia-
tion therapy (IMRT) is a commonly-used method of radiation delivery for cancer patients,
wherein beams of radiation are individually contoured to cover a patient’s tumour cells
while avoiding healthy cells and organs. In IMRT for left-sided breast cancer, the goal is
to irradiate all cells in the breast tissue while avoiding the neighbouring, and extremely
radiation-sensitive, heart cells. To add to the complexity of this treatment, the entire dose
must be delivered while the patient is breathing, causing the location of the heart and
target organs to move and deform unpredictably.

The search for a plan that is of the highest quality for a specified set of parameters is
called treatment plan optimization. One method of treatment plan optimization that pro-
vides an optimal radiation distribution, even under the worst-case realization of a patient’s
motion uncertainty, uses a framework called robust optimization. A drawback of using this
robust optimization framework, however, is that it does not immediately output physically
deliverable IMRT plans. Rather, a subsequent, non-trivial post-processing phase must be
applied to the output intensity distributions in order to generate an equipment-compatible
plan; a process which can substantially degrade the treatment quality.

In this thesis, a holistic approach that combines enforcement of delivery constraints with
robust optimization is introduced. The process for creating deliverable plans is called di-
rect aperture optimization (DAO), and the combined model is called robust DAO (RDAO).
Novel modelling strategies for integrating the DAO requirements into a robust framework
are presented, leading to a large-scale difficult-to-solve mixed integer programming prob-
lem. To contend with the complexity of the problem, additional modelling approaches are
suggested for improving solution efficiency. These approaches include a hybrid heuristic-
optimization technique, which provides good quality, but non-optimal treatment plans.
Clinicians may use the output of this hybrid technique as is, or apply it as a warm start
for the RDAO model.

The models are implemented in C++ and CPLEX and results are presented, first using
a one-dimensional phantom, and then a three-dimensional clinical patient dataset. While
the full RDAO model is quite time-consuming to run, high-quality plans are ultimately
produced. These plans are both clinically deliverable and mitigate the risk of underdosing
a patient’s cancerous cells under motion uncertainty, demonstrating their value over plans
that did not account for motion uncertainty.
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Chapter 1

Introduction

Fundamental improvements in both patient imaging and radiation delivery technology have
led to an increase in utilization of radiation therapy for treating cancer patients (Bernier
et al., 2004). Today, radiation therapy is recommended for approximately 50% of all cancer
patients either in a curative capacity or in an effort to achieve local tumour control (Baskar
et al., 2012). Designing conformal and equipment-compatible radiation therapy plans is
essential for ensuring high-quality treatment outcomes for these patients.

In intensity modulated radiation therapy (IMRT), a commonly used method of radia-
tion delivery for cancer patients, beams of radiation are individually contoured to conform
to the patient’s tumour cells while avoiding healthy cells and organs. This level of cus-
tomization is a huge step forward in the world of patient-tailored medicine, however, it
comes at a significant cost in terms of time and planning complexity. Providing tools
which automate and optimize key decision-making elements of this planning process for
clinicians can lead, not only to better outcomes for patients, but also to improvements in
the overall efficiency of the treatment process.

This thesis explores optimization and modelling methodologies for IMRT devices, with
an emphasis on left-sided breast cancer treatments. Left-sided breast cancer patients re-
quire a unique set of considerations due to the complications that arise from the structural
anatomy, cardiac radiation exposure and breathing motion uncertainty within their treat-
ment region. In this chapter, the relevant background about the two major elements of the
treatment planning process, i.e., the IMRT device and the breast cancer treatment region,
are introduced. This introduction is followed by high-level overview of the math behind
the planning process, the methods for evaluating plan quality and a review of recent and
relevant literature. Finally, thesis contributions and structure are outlined.
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1.1 Intensity Modulated Radiation Therapy

Figure 1.1: Six IMRT beams con-
verge on a central target. The
higher, central doses are visually sig-
nified by the warmer red and orange
colours, while cooler blue and green
colours are used to indicate the ex-
ternal, lower doses. Image taken
from Vachani (2018).

Intensity modulation radiation therapy is a form of
external beam radiation therapy delivered using a
device called a linear accelerator (linac). The linac
shoots photon beams at the patient, leaving a contin-
uous deposit of dose throughout the patient’s tissue
(Nguyen and Zietman, 2008). Each beam deposits
the highest amount of energy at the surface layer
of the patient, gradually losing energy as it travels
towards (and then through) the target, or tumour.
Through a combination of beam shapes and angles, a
focused high-intensity centre is accumulated around
the tumour, so that the maximum dose is concen-
trated within the tumour region, rather than along
the external tissue (Vachani, 2018). This beam focal
point effect is demonstrated in Figure 1.1.

While the physics behind the radiation source
and photon acceleration chambers of a linac is well
beyond the scope of this thesis, the key elements of
the device are shown schematically in Figure 1.2a.
These elements operate largely behind the scenes
during treatment, whereas the patient-facing ele-
ments, such as the bench, the gantry and the collimator, are all visible during delivery, as
in Figure 1.2b.

The bench is a horizontal bed, on which a patient lies to receive treatment. The
placement of the patient is critical and various methodologies are used to ensure that the
patient is placed accurately and remains completely still throughout the treatment delivery.
These methods range from tattoos, to netting, to body molds. Whichever method is used,
the end result (and assumption for this work) is a presumed deterministic knowledge of
where the patient is located relative to the delivery device during treatment.

The gantry is the large arm which holds the delivery component of the device. The
gantry has the ability to rotate 360◦ around the bench, allowing the treatment to be
delivered from all angles.

The delivery component, which sits at the end of the gantry, is the collimator. The
collimator is not only the point of exit for the beam, but in an IMRT-enabled linac, it

2



(a) General linac schematic from Milette
(2008)

(b) Elekta Synergy R© delivery unit from
Princeton Neurological Surgery

Figure 1.2: Linac devices with IMRT delivery capabilities.

is often referred to as the multileaf collimator (MLC) since it houses pairs of radiation-
absorbing tungsten bits of metal, called leaves. These leaves are attached to linear motors
which extend inwards from either side of the mouth of the collimator, as in Figure 1.3. The
leaves effectively block out portions of the initially rectangular beam, while the remaining
negative space between the leaves form shapes called apertures.

In addition to the leaves, in a typical collimator, there are solid blocks of metal called
jaws positioned above the leaves, as shown in Figure 1.2a. Once the leaf positions for a
given aperture are chosen, these 4 solid sheets of metal can come in from each side of
the MLC, providing further shielding for the tiny gaps between closed leaves. Like leaves,
the jaws are attached to linear motors, and come in pairs in order to span the full mouth
of the collimator. The final panel in Figure 1.3 shows how jaw placement works without
interfering with the chosen beam-shape.

Figure 1.3: MLC leaves move towards the centre of the beam to form an aperture. Upon
completion, the peripheral parts of the leaves are covered with upper and lower jaws.

Preparing a patient for IMRT treatment typically requires three steps: (1) imaging
of the patient’s target region, (2) organ delineation, and (3) treatment strategy creation
(Romeijn and Dempsey, 2008).
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Imaging is typically performed using a computed tomography (CT) scan, which uses
radiation to create a 3D image of the patient (Milette, 2008). The delineation of the various
organs, such as the clinical target volume (CTV) and organs at risk (OARs) within these
images is typically performed by a radiation oncologist. Information from the delineation is
used to determine a treatment strategy, which includes the prescribed dose, the maximum
allowable dose to the OARs and the number of fractions over which a treatment plan is
to be delivered. Fractions are the number of repeat sessions required for total radiation
delivery, meaning the patients comes back to the clinic multiple times to receive their full
treatment. According to the American Cancer Society (2018), the number of fractions
typically ranges from 25-40, and the treatment time at each fraction is generally between
15 and 30 minutes.

1.1.1 Step-and-Shoot IMRT

One of the most straight-forward uses of the IMRT technology, and also the focus of this
thesis, is designing step-and-shoot treatment plans. In step-and-shoot IMRT delivery, the
linac is turned on to deliver a specified dose at each selected aperture shape and is shut off
and re-oriented before delivering the next aperture (here, aperture refers to both the shape
and the beam intensity delivered through that shape, as a convenient shorthand). A plan
for step-and-shoot treatment consists of 3 pieces of information:

1. A set of gantry angles

2. The corresponding set of aperture shapes for each angle

3. Beam intensities (or equivalently, beam duration at specified dose rates) for each
aperture

The primary drawback of using step-and-shoot planning is the requisite setup time prior
to each aperture delivery, wherein the gantry rotates to the predetermined angles and/or
the MLC is reshaped. Treatment time is an important consideration, seeing as clinics have
queues for treating cancer patients, and longer treatment durations can result in fewer
patients being treated. Long treatment times can also be physically uncomfortable for
patients, seeing as the treatments occur daily and require immobilization for the duration
of the delivery period. For these reasons, it is desirable to balance the quality of the
treatment with the number of apertures required for its delivery.

Alternative IMRT-based delivery methods typically use continuous delivery techniques
to speed up the treatment process. The sliding window method, for example, delivers
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dose to the patient in a single, unidirectional sweeping motion at each angle. Like step-
and-shoot delivery, sliding window delivery requires the beam to be turned off during
angle reorientation, however within each angle, the leaf orientation is dynamic, so the
treatment time may be quicker. A more extreme method of continuous delivery is called
volumetric modulated radiation therapy (VMAT). In VMAT, the angle orientation and
MLC orientation occur dynamically as the treatment is delivered over a 360◦ (or 720◦, or
1080◦, etc.) rotation of the gantry. The net result is that all angles are covered within
each rotation, without ever turning off the beam.

One weakness of these continuous motion treatments is a loss in optimality, as extra
restrictions are placed on leaf movement and sequencing. A second disadvantage, partic-
ularly for VMAT plans, is in the complexity of planning the treatments which can have
orders of magnitude more apertures than conventional step-and-shoot plans, each of which
must be pre-specified by the planner (Mahnam et al., 2017). Finally, not all clinics are
equipped with the technology to deliver these continuous plans, whereas step-and-shoot
enabled IMRT devices are more common.

In practice, the complications of continuous planning make step-and-shoot treatment
a viable and widely applicable mode of radiation therapy delivery. Additionally, many
advancements made within the field of step-and-shoot IMRT are readily applicable to
improving their continuous counterparts.

1.1.2 Traditional Step-and-Shoot Planning Methodologies

As outlined in Section 1.1.1, designing step-and-shoot plans requires the selection of beam
angles, apertures and intensities. Unfortunately, even with the simplifying assumptions,
solving the global problem, i.e., choosing the optimal combinations of all three of these
plan elements, becomes an intractably large combinatorial version of an already NP-hard
problem (Sultan, 2006). These factors have conventionally led to the division of efforts
across multiple smaller problems (Taşkın et al., 2010). More specifically, the planning
process is often approached in a three-phase method as follows (Gladwish et al., 2007,
Romeijn and Dempsey, 2008):

Phase 1. Beam-angles are selected

Phase 2. An idealized fluence map optimization (FMO) is solved

Phase 3. Apertures and intensities are chosen
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Phase 1 or beam angle selection has been recognized to be very complex, often relying
on empirical heuristics such as choosing equidistant angles rather than investigating every
potential angle placement. In general, up to 9 angles are selected for a generalized target,
although this number may vary considerably, depending on type of cancer being treated
(Bortfeld and Schlegel, 1993, Jiang et al., 2005).

Phase 2 or FMO determines a set of beam intensities for each beam angle which creates
an overall optimal shape for tumour conformity, with minimal harm to the surrounding
organs. This is an idealized linear optimization, as it assumes that there can be multiple
beam intensities at each of the given beam angles, without regard for creating feasible,
uniform aperture patterns. The resulting output at a given beam angle, looks something
like the first panel in Figure 1.4. While this optimization can provide a good abstraction
of the problem and insight to planners, it requires further, non-trivial processing to be
deliverable, while meeting the treatment goals. This is because it fails to account for
practical mechanical limitations, most notably, the requirement for the plan to consist of
a finite number of uniform apertures.

Figure 1.4: Simplified fluence map optimization divided into two uniform apertures.

The deliverability issues in Phase 2 are accounted for in Phase 3, which is the division
of the fluence map into a finite number of uniform apertures. A simplified diagram of
this process is captured in Figure 1.4. The image is rather deceptively simple, seeing
as the division requires either secondary non-trivial optimization, or more commonly, an
algorithmic step called leaf sequencing. Leaf sequencing consists of selecting both the
aperture shapes (which are a product of leaf placement, leading to the name) and the
intensities of the respective apertures. It can be implemented in a number of fashions,
with fluence being discretized initially, followed by aperture selection, or both parts of the
process being achieved simultaneously (Romeijn and Dempsey, 2008).

Regardless of how the decomposition is done, there is a potentially large loss of optimal-
ity between Phases 2 and 3 that comes about from running the FMO without full problem
information available. Frequently, the aperture selection is done by selecting deliverable
approximations of the FMO using rapid heuristics, which means that the delivered plan
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degrades significantly post-optimization. Even when leaf sequencing is run to optimality as
in Boland et al. (2004) and Taşkın et al. (2010), it can result in high numbers of apertures
and dose homogeneity concerns (Salari et al., 2011).

1.1.3 Direct Aperture Optimization

Combining Phases 2 and 3 of the traditional step-and-shoot planning methodologies leads
to the introduction of a method called direct aperture optimization (DAO). The DAO ap-
proach finds the globally optimal set of apertures without any intermediate stages. It does
this by integrating the device-specific requirements along with the planning requirements
into a single mixed-integer optimization problem.

DAO produces plans that are immediately deliverable, like the apertures shown in
Figure 1.5, meaning the plans do not undergo further processing or degrade in subsequent
phases. The drawback of using DAO is the introduction of new layers of complexity, to
an already difficult large-scale problem. In place of a linear FMO problem and a heuristic
or linearized leaf sequencing algorithm, DAO plans are the output of much more difficult
large-scale mixed integer programming (MIP) models.

Figure 1.5: Simplified direct aperture optimization containing two apertures

1.2 Radiation Therapy for Left-Sided Breast Cancer

Breast cancer is the most frequently diagnosed cancer in Canadian women (Canadian
Cancer Statistics Advisory Committee, 2018). It is presently the deadliest cancer to women
in developing regions, while just recently dropping to the second deadliest in developed
regions, after lung cancer (International Agency for Research on Cancer et al., 2012).
Breast cancer has been shown to be a good candidate for adjuvant radiation therapy, as
it is often detected in early stages, where a combination of breast-conserving surgery and
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(a) General IMRT delivery setup. The gantry
rotates the beam to a number of angles

(b) Axial cross-section of a breast cancer pa-
tient’s chest cavity, in tangential IMRT setup

Figure 1.6: Contrasting IMRT delivery setups

radiation therapy has been show to be an equally effective alternative to a mastectomy
(Canadian Cancer Statistics Advisory Committee, 2018, Miller et al., 2016).

Planning IMRT treatments for breast cancer patients differs from the planning in many
other regions of the body. For example, in breast cancer IMRT the tumour is typically
surgically removed prior to the treatment, to decrease risk of cancer recurrence. As a result,
the CTV, which typically includes a carefully delineated tumour volume (often with a small
uncertainty region around the tumour, to ensure coverage), in this case includes the entire
breast volume, meaning the whole structure must be fully irradiated. The Phase 1 angle
selection can also be largely simplified for breast cancer patients, seeing as effective plans
can be designed with just a pair of beam angles that run tangential to the body. As shown
in Figure 1.6, rather than choosing angles that surround the CTV as in Figure 1.6a, two
tangential angles are chosen, as in Figure 1.6b, such that they encompass the entire target
region, while keeping the bulk of the sensitive organs out of harms way (Kestin et al., 2000,
Purdie et al., 2011).

In left-sided breast cancer, in particular, even with this tangential setup, parts of the
heart are often still included in the treatment field. For this reason, apertures must be
chosen carefully to minimize overdosages, increasing the risk level associated with the pro-
cedure (Wang et al., 2012). Studies have shown that even at low doses, radiation to the
heart increases the risk of radiation-related heart disease; in correlation with volume of
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heart tissue exposed (Darby et al., 2010, Hooning et al., 2007). For this reason, cardiac
sparing must be made an explicit goal of left-sided breast cancer radiation therapy treat-
ment planning, second only to CTV coverage.

The final characteristic of breast cancer treatment is its most challenging feature; the
presence of unpredictable breathing motion throughout treatment. The motion occurs
due to the expansion and contraction of a patient’s lungs, leading to physical deformation
and volumetric changes in both the CTV and heart throughout treatment (Quirk et al.,
2014). These changes introduce potentially life-threatening uncertainty into the treatment
process, both in terms of overdosing the heart, or under-dosing the CTV.

1.2.1 Conventional Methods for Addressing Breathing Motion

There are a number of strategies for mitigating the impact of breathing motion. The
simplest and most conventional approach is the incorporation of a margin (sometimes
referred to as the skin flash in breast cancer treatment planning) (Conroy et al., 2015,
Keall et al., 2006, Purdie et al., 2011). The margin incorporates the full range of target
motion into the CTV, meaning a much larger volume gets irradiated as if it were all
part of the target. Margins provide the most conservative possible estimate in terms of
guaranteeing target coverage, but this comes at the price of a higher risk of unnecessarily
overdosing the sensitive organs (Conroy et al., 2015, Keall et al., 2006).

On the other end of the spectrum, there are methods such as breath hold, which use an
active breathing control device in order to keep the patient at a specified inspiration level
(typically 70-80% of max. inspiration) (Sixel et al., 2001, Wang et al., 2012). Keeping the
patient near maximum inspiration should lead to an idealized treatment environment, as
the heart is pushed the furthest distance away from the breast by the lungs, while motion
is simultaneously inhibited. Although breath-hold methods are theoretically as close as
possible to ideal treatment conditions on paper, they can be impractical for a number of
reasons, ranging from physical difficulties with the device, as not all patients can tolerate
the device, to extra time and medical resource requirements (Sixel et al., 2001).

1.2.2 Robust Optimization for Addressing Breathing Motion

Robust optimization can be used as a mathematical approach to immunize the treatment
plan against a patient’s breathing motion. Like a margin, this approach requires extra
work at the planning stages. Unlike the margin, however, it is based off realizations of
realistic motion scenarios, rather than an unrealistic aggregate of all possible scenarios.

9



Like with general IMRT planning, the input data for the robust methodology is delin-
eated patient images, as captured using CT scanning technology. Unlike general IMRT,
robust optimization uses four-dimensional computed tomography (4DCT), which collects
a set of CT images are taken over time, rather than a single static image. For robust opti-
mization for left-sided breast IMRT, this means capturing a patient’s complete breathing
cycle through a series of CT scans, resulting in a finite set of realizable breathing states.
Using these images, a discrete number of breathing phases are defined. The time spent at
each phase is then measured or estimated, and together, this information is used to define
a base or nominal breathing pattern.

It is reasonable to expect that the patient’s breathing pattern during treatment will
deviate from this pattern, but it is unlikely to do so at an extreme, as a patient must
still inhale and exhale throughout treatment (i.e., if a patient spent 50% of their nominal
breathing pattern at exhale, spending 55% in that phase during the realized treatment is
reasonable, but 95% is not). The maximum expected amount of deviation from this nomi-
nal breathing pattern defines the extreme points of the robust uncertainty set. Optimizing
over this uncertainty set is far less conservative than placing the uncertainty around the
location of the target region, itself, since the target is likely only in each of its extreme
positions, even conservatively, only for a fraction of the patient’s treatment time.

1.3 Mathematical Modelling of IMRT

Due to the inherent complexity of solving even the step-and-shoot problem, some fairly
standard simplifications are used to make the problem more manageable and appropriate
for mathematical modelling. The first is an abstraction of the beam into a grid of units
called beamlets as depicted in Figure 1.7. The height of a beamlet is equal to the height of
a leaf, whereas the width can be chosen based on the desired granularity of the solution,
although it is typically on the order of 1×1 cm2 (Romeijn and Dempsey, 2008).

Figure 1.7: The beam is broken down into a 2D grid of units called beamlets.
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For deterministic modelling, the dose delivered by each beamlet is assumed to be pro-
portional to the total beamlet intensity or duration, and have no impact on it neighbouring
beamlets. This means that a beamlet that is on for twice as long will give off twice the dose
to the tissue it reaches. There is, realistically, a stochastic nature to this dose deposition;
however, the effects have been found to be minimal enough to use the linear results with
a fairly high level of confidence.

The target region contains a volume of human tissue that must also be transformed
into a dataset for mathematical modelling. This transformation is done similarly to the
discretization of the beam, in that tissue is divided into a 3D grid of units called voxels
(volume pixels). The voxels segment the region, as shown in Figure 1.8, so that each
structure may be defined by a specified voxel set. Any voxels with shared boundaries are
allocated based on a priority queue; a process typically automated in imaging softwares.

Figure 1.8: A 2D slice of the treatment region, divided into a grid of units called voxels.

This problem definition can be taken one step further by defining a relationship between
the beam at a given angle and the voxels in the treatment region as a matrix. This
matrix describes the dosimetric influence that each beamlet at a specified angle has on
each voxel, and is therefore labeled a dose influence matrix. Figure 1.9 demonstrates the
visual interpretation a single entry in a dose influence matrix.

Figure 1.9: Dose received by voxel v when beamlet b is on, per unit time or beam intensity.

11



1.4 Depicting and Evaluating IMRT Plans

Once a treatment plan is generated, clinical metrics such as treatment time, CTV con-
formity, sparing of OARs and plan deliverability are used to assess plan quality. The
dosage-based goals, such as sparing OARs and achieving high CTV conformity, can be
summed up using a diagram called a dose volume histogram (DVH). Like the name im-
plies, a DVH is a cumulative plot that has the percentage of the prescribed dose on the
x−axis, and the percentage of volume receiving a specified dose on the y-axis. At a glance,
this diagram tells physicians whether or not an adequate dose will be delivered to the
CTV (e.g., will at least 99% of the CTV, by volume, receive at least 95% of the prescribed
dose?). Similarly, a prohibitively high volume of dose to large sections of OARs, like the
heart, can easily be detected. An ideal DVH would look like Figure 1.10.

Figure 1.10: In an idealized DVH, 100% of the CTV receives exactly 100% of the prescribed
dose while OARs receive 0%.

Plans may also be depicted from the beam’s perspective, in terms of the intensity of
dose delivered by each beamlet on a 2D grid called a fluence map (FM). In this thesis,
these maps are depicted in greyscale, with lighter shades corresponding to higher dose
intensities, as depicted in Figure 1.11. Both the DVH and FM diagrams are used in this
thesis to gain insights into generated plans.

Figure 1.11: A perfectly symmetrical fluence map, concentrated on a central target.
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1.5 Literature Review

The use of optimization to design radiation therapy treatment plans for cancer patients has
become a classical problem in the field of operations research (Romeijn and Dempsey, 2008).
While FMO has received the bulk of the attention in the radiation therapy literature over
the years, the leaf sequencing phase has become a major topic of interest as well (Bortfeld,
2006).

Some authors have chosen to segment the fluence maps into discrete fluence levels ini-
tially, and then afterwards to apply sequencing algorithms (Gladwish et al., 2007, Kamath
et al., 2003, Xia and Verhey, 1998). While others have found exact algorithms for leaf
sequencing when the goal of minimizing beam-on-time (i.e., the total duration of radiation
delivery) is selected (Langer et al., 2001, Siochi, 1999). A recent increase in efficiency in
leaf sequencing with the goal of beam-on-time minimization has come from noting the
similarity between the leaf sequencing component of the problem and polynomial-solvable
network flow problems, which has been leveraged to produce polynomial solvable leaf-
sequencing problems that minimize the total beam-on-time (Ahuja and Hamacher, 2005,
Boland et al., 2004, Taşkın et al., 2010). A more realistic objective for the leaf sequencing
stage of the problem is potentially minimizing the total apertures chosen or minimizing
the total treatment time, however, these objectives have been shown to lead to NP-hard
problems (Baatar et al., 2005).

The DAO approach was initially introduced using a simulated annealing algorithm to
generate the uniform apertures (Shepard et al., 2002). This work was later augmented by
a number of researchers who have built on the work using inexact, single-step solvers to
generate direct aperture plans (Broderick et al., 2009, Li et al., 2003, Milette, 2008). While
DAO remains much more difficult and time intensive to solve than FMO and its subse-
quent leaf-sequencing, progress has been made towards finding efficient, globally optimal
solutions here as well, more specifically on problems where the goal is to minimize the
beam-on-time of a treatment. Leveraging methods similar to the network models above in
the subproblems, column generation approaches to solving the global problem have been
introduced (Mahnam et al., 2017, Men et al., 2007, Romeijn et al., 2005, Salari and Un-
kelbach, 2013). While these innovations have been a remarkable step forward in DAO
technology, the field remains in its infancy and further work must be done to incorporate
the flexibility and advance methods of years worth of FMO research back into the DAO
framework.

Robust optimization as a method for handling uncertainty in radiation therapy opti-
mization for inter-fractional patient setup and organ motion uncertainty was proposed in
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Chu et al. (2005). Intra-fractional uncertainties in pre-calculated features such as the dose
influence matrix have also been addressed using robust optimization (Olafsson and Wright,
2006). The concept of applying robust optimization to mitigate intra-fractional uncertainty
associated with patient breathing patterns was introduced in Chan et al. (2006). This work
showed that a compromise could be provided between tumour elimination and organ spar-
ing even under motion uncertainty. Further work by (Bortfeld et al., 2008, Chan et al.,
2014, Mahmoudzadeh et al., 2013, 2015) have further solidified the robust model as a flexi-
ble and extensible model, that is amenable to including highly sophisticated objectives and
constraints. Work in Mahmoudzadeh et al. (2016) has showed that the robust optimization
can be solved very quickly using constraint generation methods, even with the additional
variables on top of the large-scale FMO problem. Bortfeld et al. (2008) show that robust
objectives can be formed in a similar manner to robust constraints, using an example of
worst-case maximum heart dose in left-sided breast cancer optimization.

The impact of DAO on respiration motion in breast cancer has been examined using
non-robust methodologies and a commercial planning software (Zhang et al., 2006). Simi-
larly, Ahunbay et al. (2007) use a commercial planning system to generate DAO plans for
breast cancer patients, but do not account for motion. In Ahunbay and Li (2007) motion
is accounted for using a gating system, not robust, along with a commercial DAO planning
system. Robust optimization in conjunction with DAO was used to mitigate the impact of
the so called tongue-and-groove effect that results from IMRT devices (Salari et al., 2011).
However, the uncertainty with regards to the tongue-and-groove effect differs quite a lot
from breathing uncertainty. Solving a hybrid robust direct aperture optimization (RDAO)
problem has been a topic of interest in recent years, however, due to the computational
complexity of each of the two methods, to our knowledge, approaches are limited and their
application to breast cancer, in particular, has yet to be examined.

1.6 Thesis Objectives

As DAO makes its way into off-the-shelf planning products and the field moves towards
continuous delivery methods, finding new ways to incorporate clinical constraints and
encourage scalability becomes increasingly important. To that end, this thesis aims to
provide the following:

1. A unifying MIP framework to combine robust and DAO models

2. Fast, high-quality heuristic estimations for the difficult-to-solve DAO problem

3. Novel modelling techniques to increase solution efficiency

14



1.7 Thesis Outline

The remainder of the thesis is organized as follows, Chapter 2: Methodology and Modelling
introduces the mathematical terminology used throughout this work, as well as explain-
ing the mechanics of DAO and RDAO modelling. Chapter 3: Efficiency Improvement
Techniques introduces the techniques designed to improve the solution time and bounds
for solving the DAO and RDAO problem. The results of applying these models, first to
a one-dimensional case, then a clinical case, are reported, and compared to their contin-
uous counterparts in Chapter 4: Results. Finally, the thesis is concluded in Chapter 5:
Conclusions, with a summary and recommendations for future work.
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Chapter 2

Methodology and Modelling

This chapter describes the mathematical tools used to model the robust direct aperture
optimization (RDAO) model. First, a fluence map optimization (FMO) planning approach
and an existing robust framework are introduced. Then, our proposed direct aperture
optimization (DAO) and angle-selection requirements are provided.

The chapter is broken down as follows: Section 2.1 introduces the application-specific
notation used throughout this thesis. Section 2.2 introduces the FMO model, which serves
as the base model for all subsequent formulations. Robust modelling strategies are in-
troduced in Section 2.3, and the integration and construction of various direct aperture
features is discussed in Section 2.4.

2.1 Notation

Any radiation therapy modelling constitutes two major components: the beam of radiation
and the region of interest. The beam of radiation is modelled as a set of b ∈ B beamlets,
where the index of beamlet b is dependent on both location within the multileaf collimator
(MLC) and angle of the MLC.

The region of interest comprises all structures, s ∈ S, within the patient’s body that
are exposed to the beam of radiation throughout the treatment. In the case of breast
cancer, this set includes two elements: the target clinical target volume (CTV), T , and the
heart, H. Each of these structures is broken up into a finite number of voxels, which may
be denoted by v ∈ Vs, for convenience. The prescribed level of dosage to each of the target
voxels v ∈ VT is denoted Lv.
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The dose received by each voxel v when beamlet b is active is captured by the influence
matrix Dv,b. For 4D planning techniques like robust optimization, the influence matrix
must also take on a third dimension, which represents phase. The three dimensional
parameter Dv,b,i captures the influence that each beamlet b (at a specified angle) has on
each voxel v during breathing phase i. Each phase i ∈ I also has an associated proportion
pi, which is the proportion of time that the patient spends in phase i, over the course of a
complete breathing cycle.

Throughout this thesis, sets are denoted by calligraphic font, variables and constants
are italicized and vectors are written in bolded text.

2.2 Nominal FMO Model

We first present the basic deterministic form of intensity modulated radiation therapy
(IMRT) which uses FMO and assumes no motion uncertainty. The resulting, idealized
plans consist of a set of beamlet intensities at each angle, which best conform to the shape
of the target, without compromising the organs at risk (OARs).

Decision variable:

wb represents the intensity of beamlet b.

Mathematical FMO model:

(M-FMO)

min
∑

s∈{T,H}

cs
|Vs|

∑
v∈Vs

∑
b∈B

∑
i∈I

piDv,b,iwb (2.1)

s.t.
∑
b∈B

∑
i∈I

piDb,v,iwb ≥ Lv ∀v ∈ VT , (2.2)

wb ≥ 0 ∀b ∈ B, (2.3)

where:

cs is the objective weight for each structure s.

The objective of our M-FMO model is to minimize the weighted average of the ex-
pected dose to each structure. By setting the CTV weighting to 0, the objective can be
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simplified to minimizing the average heart dose. The requirement of delivering the pre-
scribed dose to every voxel in the CTV is ensured by constraints (2.2). Since this is the
nominal model, the proportion of time spent in each breathing phase, pi, is assumed to be
known and without any uncertainty.

In addition to handling multiple breathing phases, the M-FMO model can handle
simpler forms of the FMO problem that are often tackled in clinic. For static treatments,
where organs are not moving, for example, the dose influence matrix has only two dimen-
sions. This is a simple case of the above model, where there is only one phase, meaning
|I| = 1 and p1 = 1.

2.3 Robust FMO Model

In general, robust optimization removes the assumption of parameter certainty. For this
problem, it is realistic to relax this assumption of certainty regarding the proportion of time
spent in each breathing phase, pi. Robust optimization can then be used to ensure that
even in the worst-case realization of this uncertainty, the CTV still receives its prescribed
dosage.

Formulation-wise, the robust setup looks very similar to the M-FMO model above, but
in constraints (2.2), the deterministic proportion value, p is substituted for an uncertain,
p̃ value. This p̃ sums to 1, and is bounded by a set of upper and lower deviations from the
nominal proportions, denoted as p̄ and p, respectively. Mathematically, these requirements
can be written,

pi − pi ≤ p̃i ≤ pi + p̄i ∀i ∈ I, (2.4)∑
i∈I

p̃i = 1. (2.5)

It can also be affirmed that because p̃i is a proportion of time in a breathing phase, the
following is also true,

0 ≤ p̃i ≤ 1 ∀i ∈ I. (2.6)

We denote the uncertainty set of p̃ as P , where,

P = {p̃ ∈ R|I||(2.4); (2.5); (2.6)}. (2.7)
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While the above requirements limit the total number of possible realizations of p̃, there
remain infinite possible breathing pattern realizations (with the exception of the trivial
case, in which p = p̄, since that uncertainty set only includes one element).

Subbing the new p̃ into constraints (2.2), yields an infinite number of robust constraints
of the form, ∑

b∈B

∑
i∈I

p̃iDb,v,iwb ≥ Lv ∀v ∈ VT , ∀p̃ ∈ P . (2.8)

Constraints (2.8) are intractable, but Chan et al. (2006) show that the equivalent
robust counterpart of these constraints is both tractable and linear, at the expense of
the introduction of more variables into the model. The robust counterpart is derived by
reformulating the left hand-side of constraints (2.8) as a separate minimization subproblem
for each v ∈ VT , as follows:

min
p̂

∑
i∈I

∑
b∈B

p̂iD
t
b,v,iwb

s.t.
∑
i∈I

p̂i = 1,

(pi − pi) ≤ p̂i ≤ (pi + p̄i) ∀i ∈ I.

(2.9)

The next step involves taking the finite dual of this subproblem, with dual variables
yi,v and subbing it back into the original model. Details of this derivation, are given in Ap-
pendix A. The resultant robust fluence map optimization (RFMO) model has |VT |×(|I|+1)
new variables and |VT | × |I| new constraints, in place of the |VT | nominal CTV dose con-
straints (2.2), and is formulated as follows:

New decision variable:

yi,v is the subproblem dual variable for the worst-case realization of phase i for voxel v.
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Mathematical RFMO model:

(M-RFMO)

min
∑

s∈{T,H}

cs
|Vs|

∑
v∈Vs

∑
b∈B

∑
i∈I

piDv,b,iwb

s.t.
∑
i∈I

[
p
i
y0,v − (p

i
+ p̄i)yi,v + (pi − pi)

∑
b∈B

Db,v,iwb

]
≥ Lv ∀v ∈ VT , (2.10)∑

b∈B

Db,v,iwb − y0,v + yi,v ≥ 0 ∀i ∈ I,∀v ∈ VT , (2.11)

y0,v URS ∀v ∈ VT , (2.12)

yi,v ≥ 0 ∀i ∈ I,∀v ∈ VT , (2.13)

wb ≥ 0 ∀b ∈ B.

Constraints (2.10), (2.11), (2.12) and (2.13) accomplish the same goal as (2.8), while
also being finite and linear. The objective for the M-RFMO model remains the same
as for the M-FMO model, as we are more concerned with minimizing an expected dose
to the heart, rather than the worst-case dose, seeing as a full treatment typically spans a
number of fractions, or treatment sessions.

2.4 Proposed Robust DAO Model

The M-FMO and M-RFMO models introduced in the previous sections account for
clinical requirements and delivery uncertainty, however, they do not accommodate the
delivery limitations that come about from IMRT delivery equipment. As a result, the
output plans, or fluence maps, are not deliverable by our linear accelerator (linac) device.
This section introduces deliverability constraints, to ensure that our models output realistic
plans. Deliverable plans are made up of a set of beams with uniform intensities, shaped
by the delivery device’s MLC leaves, called apertures.

The new DAO model will output deliverable plans with the following properties, that
were missing from previous models:

• An optimal plan with a preselected number of apertures

• An allocation of the apertures to each beam angle
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• The (feasible) placement of MLC leaves for each aperture

• The (uniform) beam intensity for each of the selected apertures

The rest of this section is structured as follow: the necessary steps for integrating the
integer DAO constraints into the previously introduced models are covered in Section 2.4.1.
Aperture uniformity requirements are then addressed in Section 2.4.2, followed by angle
considerations in Section 2.4.3. Leaf placement is addressed in Section 2.4.4, while Section
2.4.5 addresses additional requirements and modelling extensions. The full M-RDAO
model is then assembled in Section 2.4.6.

2.4.1 DAO-Specific Constants and Variables

With the introduction of DAO, the concepts of both relative beamlet location within the
vectorized beam and individual aperture contribution gain much more importance than in
the initial FMO modelling. This section addresses A) the necessary additional information
for tracking beam layout, and B) a variable adjustment that is needed to integrate aperture
separation into our models.

A) Beam Layout

As shown in Figure 2.1, there are varying levels of information about beamlet relationships
available to the model. For M-FMO and M-RFMO models, location within the beam
is unimportant for a given beamlet b, as the relevant dosage information is captured in
the dose influence matrix and beamlet intensities are optimized independently. In terms
of Figure 2.1, that means only layer (a), or beamlet index information, is required.

In DAO we need further information, such as which angle a beamlet belongs to, the di-
mensions of that angle and where a particular beamlet is situated relative to other beamlets
within that angle, in order to generate deliverable apertures. Graphically, this is shown in
Figure 2.1. Mathematically, we may define a set of angles, θ ∈ Θ, and their corresponding
beamlets, within the existing vector of beamlets b ∈ Bθ. We may also introduce sets of
row and column coordinates, Qθ and Kθ, respectively.

B) DAO-Adjusted Variables

In order to capture the more detailed, deliverable apertures, we also need to adjust the
wb decision variable used above. Now, rather than just being concerned with the intensity
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Figure 2.1: Different levels of detail required for the various DAO beamlet constraints.
(a) is just the beamlet indices, (b) has beamlet indices as well as angle association and
(c) maintains index, angle and row/column adjacency information. FMO methods only
require (a), but DAO requires (b) and (c).

of each beamlet, we also must consider the aperture a ∈ A to which a beamlet intensity
belongs. In this work, the total number of allowable apertures, |A|, is chosen prior to
optimization and will dictate the second dimension of a now two-dimensional wb,a decision
variable. This new decision variable, however, does not fit with our M-FMO and M-
RFMO models above, where each beamlet intensity was a single, independent decision.
Therefore, in our DAO models, the wb from the M-FMO and M-RFMO models is
replaced with an updated w′b, which is defined as a sum of the fluences across apertures as
follows:

w′b =
∑
a∈A

wb,a ∀b ∈ B. (2.14)

Using this update, all of the constraints introduced in the following sections can be
added directly into the original models with no further effort, to create complete DAO and
RDAO models.
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2.4.2 Uniformity Constraints

The DAO methodology requires that apertures be of a uniform dose, which means that
all beamlets that are active within a given aperture take on the same intensity value.
This reflects reality, as any exposed beamlets in a given aperture allow the beam to come
through for the same duration or dose-intensity.

Mathematically, this idea of uniformity relies on the concept of an on and off setting
for each beamlet. This requirement may be enforced through a set of binary variables,
denoted as x, which represent whether a single unit of the collimator is open (i.e., no leaf
is blocking the radiation) and delivering a specified intensity, or shut (blocked by a leaf).
This on-off decision is made on a per-beamlet basis, where each beamlet becomes defined
by two variables: an intensity variable, w as in the previous models, and a setting variable,
x.

When initially tasked with applying this uniformity constraint, it seemed natural to
want to multiply the variables to achieve the on and off effect. This led to the following
set of variables and constraints.

New decision variables:

xb,a indicates the active or inactive state of beamlet b in aperture a.

fa is the uniform intensity (or fluence) of all active beamlets in aperture a.

And the following set of non-linear constraints:

wb,a = faxb,a ∀b ∈ B, a ∈ A,
xb,a ∈ {0, 1} ∀b ∈ B, a ∈ A.

These constraints enforce all beamlets in aperture a to be 0 or have the same intensity,
fa. Unfortunately, introducing non-linearity into our mixed integer programming (MIP)
problem makes it even more difficult to solve, so the above constraints were not suited to
the problem at hand. Using the same variables we linearize the constraints, as follows:

23



wb,a ≤Mxb,a ∀b ∈ B, a ∈ A, (2.15)

wb,a ≤ fa +M(1− xb,a) ∀b ∈ B, a ∈ A, (2.16)

wb,a ≥ fa −M(1− xb,a) ∀b ∈ B, a ∈ A, (2.17)

fa ≥ 0 ∀a ∈ A, (2.18)

xb,a ∈ {0, 1} ∀b ∈ B, a ∈ A, (2.19)

where:

M is a very large number.

Constraints (2.16) and (2.17) force all wb,a to take on the intensity of fa, if beamlet b
in aperture a is open (xb,a = 1), while (2.15) along with non-negativity constraint (2.3)
from the original M-FMO model, force wb,a to zero, if the beamlet is closed (xb,a = 0).
Together these constraints enforce uniform apertures, by restricting intensities within each
aperture to only two values:

wb,a =

{
fa if beamlet b is active (xb,a = 1),
0 if beamlet b is inactive (xb,a = 0).

2.4.3 Aperture Selection

When applied to all apertures, the uniformity constraints above would allow beamlets
within a single aperture to span over multiple angles, so long as they are all relegated to
the same intensity value. Clearly, this is not possible since there is only one beam, so
apertures can only include beamlets from a single beam angle.

One way to mitigate this problem is by pre-selecting the number of apertures allowed
per angle. This means that if a plan with 6 apertures and 2 beam angles is desired, it may
be arbitrarily decided before optimizing the treatment that 3 apertures will be delivered
from each side, regardless of the relative complexity of the dose needed at either side.

Practically, the optimal allocation of beam angles per apertures is not known upfront,
so making this decision can result in suboptimal solutions. For this reason, we chose to
take a more flexible approach, which allows for the algorithm to choose how many aper-
tures to allocate to each angle. This means, in the example above, rather than enforcing
3 apertures at each angle, the algorithm may choose to divide things as 2 and 4, or 5 and
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1, depending on the relative benefit to the patient.

We model this angle-aperture allocation using the new variable:

ua,θ indicates whether or not aperture a is on at angle θ.

Along with the constraints:∑
b∈Bθ

xb,a ≤ |Bθ|ua,θ ∀a ∈ A, θ ∈ Θ, (2.20)∑
θ∈Θ

ua,θ = 1 ∀a ∈ A. (2.21)

Constraints (2.20) force beamlets to be off unless the whole angle is active, and con-
straints (2.21) restrict the number of active angles to 1 per aperture.

2.4.4 Island Removal

The constraints above enforce the beam requirements, however, they fail to address the
mechanical restrictions associated with beam modulation. Since the modulation is per-
formed by sets of opposing, linearly extending tungsten leaves, the model must output
beam setups that may be physically realized by this mechanism. Mathematically, this
means constraining against breaks in the leaves, which result in detached sections called
islands, shown in Figure 2.2.

(a) MLC leaves form a deliverable aperture (b) Undeliverable MLC setup with islands

Figure 2.2: Possible MLC realizations with the current DAO constraints

For the sake of exposition, we assume the beam is a |Q| row × |K| column rectangle at
each angle and that the leaves may traverse the entire span of the collimator from both the
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left and right sides. It is possible to implement non-uniform subsets of these constraints,
i.e., non-rectangular collimator shapes or traversals and differently shaped angles, however,
the notation becomes much messier.

We denote the variables using a dimension for each column, row, angle and aperture, for
clarity. In reality, these variables only need two dimensions (beamlet index b and aperture
a), since a beamlet index can be converted back and forth from the row, column, angle
domain to beamlet location domain. The mapping looks as follows [Q,K,Θ] → B, and
uses the formula b =

∑θ−1
θ′=0 |Bθ′ |+ |K| × (q − 1) + k, where |B0| = 0, an example of which

is depicted graphically in Figure 2.3.

Figure 2.3: Mapping beamlets to location indices. Assuming that this is the first angle
(θ = 1), we have b = |B0|+ |K| × (q − 1) + k = 0 + 6× (3− 1) + 5 = 17.

We next derive the island removal formulations for two potential types of MLC setup: in
case A) we assume that collimator leaves cannot extend past the centre of the collimator,
and in case B) we relax this assumption and formulate a more complex setup. Finally,
in part C) we introduce and compare our relaxed method with an alternate relaxation
approach.

A) Collimator Leaves Stop at the Centre

If we assume that leaves do not extend beyond the centre of the MLC, we can use the
existing variables to enforce the extra feature, as follows:

xq,k+1,θ,a ≥ xq,k,θ,a ∀k ∈ {1, · · · ,
⌊
|K|
2

⌋
− 1}, q ∈ Q, θ ∈ Θ, a ∈ A, (2.22)

xq,k,θ,a ≥ xq,k+1,θ,a ∀k ∈ {
⌊
|K|
2

⌋
+ 1, · · · , |K| − 1}, q ∈ Q, θ ∈ Θ, a ∈ A. (2.23)
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Constraints (2.22) restrict the left fingers, while constraints (2.23) restrict the right
fingers. They accomplish this restriction by ensuring that the binary variable closer to the
centre of the collimator is always greater than the proceeding variable in its row. What
this does, conceptually, is it requires all beamlets in a given row, on a given side to be
active after any one beamlet is activated. So if a beamlet on the middle of the left side is
on, the beamlet after it has to be ≥ 1, meaning it is also on. This prevents undeliverable,
discontinuous leaves from occuring, as in Figure 2.2b.

B) Collimator Leaves May Pass the Centre

Realistically leaves can extend past the centre of the MLC, as in Figure 2.4.

Figure 2.4: Right-handed collimator leaves (rows q ∈ {3, 4, 5}) extend past the centre

To restrict the leaves, the binary on-off constraints, xq,k,θ,a from the previous section,
along with two additional sets of binary variables, lb,a and rb,a can be used to represent the
continuous leaves extended from the left and right side of the collimator, respectively. As
with the uniformity constraint, every beamlet becomes further defined by four variables,
wb,a, xb,a, rb,a and lb,a.

The left leaf’s open position (not extended over a beamlet) can be defined as lb,a = 1,
and similarly, an open right leaf is indicated by rb,a = 1. If lb,a = 1 and rb,a = 1 the beamlet
is open, meaning it is on, or xb,a = 1. If either lb,a or rb,a = 0, the beamlet is closed, and
both sides cannot cover the same beamlet simultaneously, meaning they cannot both be 0
and lb,a + rb,a ≥ 1.

The formal new variable definitions are as follows:

lb,a indicates whether a left leaf in aperture a is blocking beamlet b (0) or open (1).

rb,a indicates whether a right leaf in aperture a is blocking beamlet b (0) or open (1).
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These constraints create continuous non-overlapping leaves:

lq,k+1,θ,a ≥ lq,k,θ,a ∀k ∈ K′, q ∈ Q, θ ∈ Θ, a ∈ A, (2.24)

rq,k,θ,a ≥ rq,k+1,θ,a ∀k ∈ K′, q ∈ Q, θ ∈ Θ, a ∈ A, (2.25)

xq,k,θ,a = −1 + lq,k,θ,a + rq,k,θ,a ∀k ∈ K, q ∈ Q, θ ∈ Θ, a ∈ A, (2.26)

lq,k,θ,a, rq,k,θ,a ∈ {0, 1} ∀k ∈ K, q ∈ Q, θ ∈ Θ, a ∈ A, (2.27)

where:

K′ = {1, ..., |K| − 1}, since we are enforcing pair-wise positions of beamlets, and have
one degree of freedom per row.

As a result of these constraints,

xb,a =

{
1 if lb,a = 1 ∪ rb,a = 1,
0 otherwise.

Constraints (2.24) force every beamlet to the right of an inactive collimator leaf on the
left-extending leaf to also be inactive. Constraints (2.25) enforce the same constraint for
opposing direction leaves. After making these leaf-sequencing choices, constraints (2.26)
set the on-off state of a given beamlet based on whether or not it is blocked by the MLC
leaves.

C) Comparison with an Alternate Past-Centre Approach

An alternative approach to the full MLC no islands constraint was proposed in a paper
about FMO leaf sequencing by Boland et al. (2004). Their method uses a similar framework
to our past-centre approach, except that their method requires an additional l and r
variable per row. This extra variable represents the “off” position of each leaf, and it gives
their formulation the latitude to reduce the number of leaf restriction constraints from
|K| − 1 per row, to a single constraint per row.

Rather than each lb,a and rb,a variable representing a beamlet, in this model, they each
indicate whether or not a row has ended, as illustrated in Figure 2.5. Their associated
constraints exploit the continuous nature of the MLC leaves by finding the index of the
last covered beamlet from each leaf from both directions, allowing the same apertures as
in the previous method to be defined.
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Figure 2.5: Same aperture as Figure 2.4, with modelling changes highlighted by darker
beamlets. The column of darker beamlets at the far sides of the MLC are the “off” setting
for each leaf. The inner darker beamlets are the active l and r variables

In Boland et al. (2004), the variable definitions are as follows:

lb,a indicates whether a left beamlet b in aperture a is the last in its row (1) or not (0).

rb,a indicates whether a right beamlet b in aperture a is the last in its row (1) or not (0).

These constraints are defined as follows:∑
k∈K′′

lq,k−1,θ,a = 1 ∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.28)∑
k∈K′′

rq,k,θ,a = 1 ∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.29)

xq,k,θ,a =
k−1∑
ι=0

lq,k+ι,θ,a −
k∑
ι=1

rq,k+ι,θ,a ∀k ∈ K, q ∈ Q, θ ∈ Θ, a ∈ A, (2.30)

where:

K′′ = {1, ..., |K|+ 1}, to account for the dummy “off” beamlets.

The difference in mechanisms of these two constraints can be observed by examining
how a single row is enforced. Below is the second row (q = 2) of Figures 2.4 and 2.5, which
has the 4th and 5th beamlets active, while all others are blocked.
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Proposed Island Removal Boland et al. (2004) Island Removal
k 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11
L 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 -
R 1 1 1 1 1 0 0 0 0 0 - 0 0 0 0 0 1 0 0 0 0 0
x 0 0 0 1 1 0 0 0 0 0 - 0 0 0 1 1 0 0 0 0 0 -

In practice, both types of constraints result in the same feasible set of x variables.
Empirically, however, our proposed formulation (2.24 - 2.27) was found to work more
effectively. This is likely due to the infeasibility introduced when attempting to propagate
values in the linear program (LP) relaxation of the (2.28) and (2.29), which is not seen in
the LP relaxation of (2.24) and (2.25). This could make it more difficult for the solver to
find feasible solutions; an effect that is demonstrated by an example in Appendix B.

2.4.5 Extensions for Aperture Continuity

The previous sections ensure that our output DAO plans can be feasibly delivered by the
IMRT equipment, however, in order to be integrated into clinical treatments, the plans
may also have to meet additional clinical standards. These standards include restricting
apertures shapes to eliminate forms of A) vertical and B) horizontal discontinuities.

A) No Vertical Breaks

Multiple separated groups of beamlets within each aperture can be undesirable, due to
leakage between adjacent closed leaves. It may also be practically difficult to deliver, as
some devices are mechanically unable to have opposing leaves within the same row meet,
requiring pairwise leaves to have at least a small gap in between them, to avoid collisions.
Luckily, these phenomena can be largely avoided by creating continuous segments that are
mostly covered by jaws.

If a clinician was presented with multiple grouping of apertures, as in Figure 2.6, for
example, they would typically, manually create separate apertures. This would increase
the total number of apertures by one. Since the total number of allowed apertures are
fixed, we can design our constraints to enforce the same principle by restricting each aper-
ture to be vertically continuous using a per-row activation constraint, in a similar fashion
to the continuous row constraints in the previous section. We require the introduction
of 2 × |Q| × |Θ| × |A| new binary variables, denoted j̄ and j, to represent the upper and
lower jaws, respectively (left and right jaws are not considered here, they can simply be
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(a) Vertically separated (b) First aperture (c) Second aperture

(d) Black shows jaw block (e) New jaw block ap. 1 (f) New jaw block ap. 2

Figure 2.6: Deliverable aperture with clinically unacceptable vertical break, separated to
two apertures. Images (d-f) use darker colour to show jaw coverage in (a-c).

calculated in post-processing stages). For convenience, we also add a summary variable j,
which indicates whether or not a row is active.

The new binary variables are defined as follows:

j̄q,θ,a indicates if the upper jaw at angle θ, aperture a is blocking row q (0) or open (1).

j
q,θ,a

indicates if the lower jaw at angle θ, aperture a is blocking row q (0) or open (1).

jq,θ,a indicates whether angle θ, aperture a, row q is blocked (0) or open (1).
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Constraints:

jq,θ,a = −1 + j̄q,θ,a + j
q,θ,a

∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.31)

jq,θ,a ≤
∑
k∈K

xq,k,θ,a ∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.32)

|K| × jq,θ,a ≥
∑
k∈K

xq,k,θ,a ∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.33)

j̄q,θ,a ≤ j̄q+1,θ,a ∀q ∈ Q′, θ ∈ Θ, a ∈ A, (2.34)

j
q+1,θ,a

≤ j
q,θ,a

∀q ∈ Q′, θ ∈ Θ, a ∈ A, (2.35)

jq,θ,a, j̄q,θ,a, jq,θ,a ∈ {0, 1} ∀q ∈ Q, θ ∈ Θ, a ∈ A, (2.36)

where:

Q′ = {1, ..., |Q| − 1}, as once again, pairwise comparison has a degree of freedom.

Here, constraints (2.32) enforce at least one beamlet to be on in the active rows, while
constraints (2.33) functions as an off switch if either jaw is blocking the row. Constraints
(2.34) and (2.35) force consistent jaw motion.

B) No Horizontally Disconnected Rows

There is a similar incentive to avoid difficult, leakage-prone setups such as leaf collisions
and disconnected rows. Leaf collisions may occur when the right leaves extend beyond
adjacent row left leaves, as in Figure 2.7a. If the linear leaf motors become even the tiniest
bit misaligned, these leaves may bump into each other during setup, so clinicians tend to
choose plans that mitigate this risk.

(a) Leaf collision (b) Singleton beamlet

Figure 2.7: Examples of undesirable pairwise row behaviour

Similarly, disconnected rows are those that have no vertical beamlet connection between
adjacent rows, leading to singleton beamlets and other horizontally separate segments, as
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in Figure 2.7b. Since dose uncertainty primarily arises around the edges of leaves, plans
with very small and separated sections will result in unwanted uncertainty . Works such
as Boland et al. (2004) have introduced preventative measures for avoiding collisions, but
their constraints still allow rows to become detached vertically.

To prevent all horizontal detachment, we propose a set of constraints that require all
active, adjacent rows to share at least one active beamlet. Starting at the left side, this
equation would be formulated as follows:

k∑
δ=1

xq,δ,θ,a ≤
∑
k∈K

xq,k,θ,a − 1 + (1− jq,θ,a) + (1− jq−1,θ,a)+
k∑
δ=1

xq−1,δ,θ,a

∀k ∈ K, q ∈ Q′′, θ ∈ Θ, a ∈ A,

where:

Q′′ = {2, . . . , |Q|}.

The equation may be simplified to:

jq,θ,a + jq−1,θ,a −
|K|∑

δ=k+1

xq,δ,θ,a ≤ 1 +
k∑
δ=1

xq−1,δ,θ,a ∀k ∈ K, q ∈ Q′′, θ ∈ Θ, a ∈ A. (2.37)

Similarly, the right side would look as follows:

jq,θ,a + jq−1,θ,a −
|K|−k∑
δ=1

xq,δ,θ,a ≤ 1 +

|K|∑
δ=|K|−k+1

xq−1,δ,θ,a ∀k ∈ K, q ∈ Q′′, θ ∈ Θ, a ∈ A.

(2.38)

The logic here is that any active row must have one active beamlet from its active
neighbouring row, before it reaches the total number of active beamlets in that row. Be-
cause these constraints are enforced from both the left and right sides, and we have already
restricted against gaps in the rows with the no-island constraints, there must be at least
one shared beamlet between each set of neighbouring rows for the constraints to be satis-
fied, as desired. The additional j terms are the edge cases, since where one or both of the
rows are off, the constraint must be relaxed.
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2.4.6 Full Robust Direct Aperture Model

Putting it all together from this section, we have the following complete model.

Note, for the M-DAO model, just sub out the M-RFMO model constraints in the M-
RDAO model, for the following:

(M-DAO)∑
b∈B

∑
i∈I

∑
a∈A

wb,apiDb,v,i ≥ Lv ∀v ∈ VT .
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(M-RDAO)

min
∑

s∈{T,H}

cs

|Vs|
∑
v∈Vs

∑
b∈B

∑
i∈I

∑
a∈A

piDv,b,iwb,a

s.t.
∑
i∈I

[
p
i
y0,v − (p

i
+ p̄i)yi,v + (pi − pi)

∑
b∈B

∑
a∈A

Db,v,iwb,a

]
≥ Lv ∀v ∈ VT ,∑

b∈B

∑
a∈A

Db,v,iwb,a − y0,v + yi,v ≥ 0 ∀i ∈ I, ∀v ∈ VT ,

wb,a ≤Mxb,a ∀b ∈ B, a ∈ A,
wb,a ≤ fa +M(1− xb,a) ∀b ∈ B, a ∈ A,
wb,a ≥ fa −M(1− xb,a) ∀b ∈ B, a ∈ A,∑
b∈Bθ

xb,a ≤ |Bθ|ua,θ ∀a ∈ A, θ ∈ Θ,

∑
θ∈Θ

ua,θ = 1 ∀a ∈ A,

lq,k+1,θ,a ≥ lq,k,θ,a ∀k ∈ K′, q ∈ Q, θ ∈ Θ, a ∈ A,
rq,k,θ,a ≥ rq,k+1,θ,a ∀k ∈ K′, q ∈ Q, θ ∈ Θ, a ∈ A,
xq,k,θ,a = −1 + lq,k,θ,a + rq,k,θ,a ∀k ∈ K, q ∈ Q, θ ∈ Θ, a ∈ A,
jq,θ,a = −1 + j̄q,θ,a + j

q,θ,a
∀q ∈ Q, θ ∈ Θ, a ∈ A,

jq,θ,a ≤
∑
k∈K

xq,k,θ,a ∀q ∈ Q, θ ∈ Θ, a ∈ A,

|K| × jq,a,s ≥
∑
k∈K

xq,k,θ,a ∀q ∈ Q, θ ∈ Θ, a ∈ A,

j̄q,θ,a ≤ j̄q+1,θ,a ∀q ∈ Q′, a ∈ A, s ∈ S,
j
q+1,θ,a

≤ j
q,θ,a

∀q ∈ Q′, a ∈ A, s ∈ S,

jq,θ,a + jq−1,θ,a −
|K|∑

δ=k+1

xq,δ,θ,a ≤ 1 +

k∑
δ=1

xq−1,δ,θ,a ∀k ∈ K, q ∈ Q′′, θ ∈ Θ, a ∈ A,

jq,θ,a + jq−1,θ,a −
|K|−k∑
δ=1

xq,δ,θ,a ≤ 1 +

|K|∑
δ=|K|−k+1

xq−1,δ,θ,a ∀k ∈ K, q ∈ Q′′, a ∈ A, s ∈ S,

wb,a ≥ 0 ∀b ∈ B, a ∈ A,
fa ≥ 0 ∀a ∈ A,
yi,v ≥ 0 ∀i ∈ I, ∀v ∈ VT ,
y0,v URS ∀v ∈ VT ,
xb,a ∈ {0, 1} ∀b ∈ B, a ∈ A,
ua,θ ∈ {0, 1} ∀a ∈ A, θ ∈ Θ,

lq,k,θ,a, rq,k,θ,a ∈ {0, 1} ∀k ∈ K, q ∈ Q, θ ∈ Θ, a ∈ A,
jq,θ,a, j̄q,θ,a, jq,θ,a ∈ {0, 1} ∀q ∈ Q, θ ∈ Θ, a ∈ A.
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Chapter 3

Efficiency Improvement Techniques

The M-RDAO and M-DAO models are extremely difficult-to-solve mixed integer pro-
gramming (MIP) models. There are, however, approaches that simplify the model without
reducing any of the plan quality. These approaches include symmetry elimination (Section
3.1), sampling (Section 3.2) and warm-starting techniques (Section 3.3).

3.1 Angle Symmetry Elimination

As explained in Section 2.4.3, the M-RDAO and M-DAO models take in the total number
of apertures as input, but allow for freedom in terms of selecting the number of apertures
allocated to each angle. This freedom leads to a larger decision space than another popular
alternative, where the total number of apertures per angle is the input. In this section,
methods for removing some of this redundancy are introduced, allowing our models to run
more efficiently, despite the lack of preallocation.

In Section 3.1.1, we describe the symmetry that exists within our models and how it
differs from the angle pre-allocated models. We then propose three methods for symmetry
elimination and discuss the pros and cons of each. First we describe the naive intensity or-
dering method (Section 3.1.2), then the general angle-based ordering is introduced (Section
3.1.3) and finally, a hybrid increase-decreasing ordering approach, intended specifically for
two-beam-angle problems, is outlined (Section 3.1.4). The three methods are compared in
Section 3.1.5
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3.1.1 Angle Symmetry

In the proposed models, if there are |A| apertures, there exists |A|! potential permutations
of each plan. Angles are selected based on the binary variable ua,θ, which is defined by:

ua,θ =

{
1 if angle θ is active in aperture a,
0 if angle θ is inactive in aperture a.

The sum of ua,θ is then restricted such that only one angle can be active per aperture.
Once the value of ua,θ have been chosen, the model behaves the same as the preallocated
models in terms of order uncertainty.

In contrast, for a preallocated model, if the number of apertures per angle, nθ, is
selected, then there are

∏
θ∈Θ nθ! permutations, i.e., there are nθ! ways to organize the

apertures within each angle.

To illustrate this behaviour with an example, in a case with 2 angles and 6 apertures,
in the proposed model, each plan could be arranged 6! = 720 different ways, between the
aperture allocation and ordering flexibilities. If 3 apertures were pre-allocated per angle,
each plan could only be arranged 3! × 3! = 36 different ways, which is clearly a much
smaller decision space.

3.1.2 Naive Intensity Ordering

One simple way to reduce symmetry is to ensure that the total dose in each successive
aperture is decreasing monotonically, as follows:∑

b∈B

wb,a ≥
∑
b∈B

wb,a+1 ∀a ∈ 1, . . . , |A| − 1.

These constraints order apertures as defined by each aperture’s location in the set of
apertures, A. These constraints are agnostic to angle order and placement as it deals in
absolute total intensities (i.e., the angle that comes up first will be that with the total high-
est intensity). As a result, the decision space is reduced, but there is a lack of information
regarding angle choice meaning all permutations must be searched.

When this same constraint is applied within each angle of the preallocated constraint,
however, it removes the symmetry, successfully eliminating all redundancies. Since it does
not work that well for the proposed model, further symmetry reduction strategies are
investigated.
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3.1.3 General Angle-Based Ordering

Another method of forcing a sequence is to reduce the permutations of allowable activa-
tions. In these constraints, angles can only grow increasingly large with time, based on the
location of the angle. Assuming angles have been labeled in some form of increasing order,
the resulting plan will be output in increasing order of angle, numerically.

This method effectively takes the problem size of the proposed model down to the size
of the (unreduced) preallocated model. It cannot, however, remove ordering redundancy,
leaving the problem with the

∏
θ∈Θ[

∑
a∈A ua,θ]! possible arrangements of a single solution

(the starts and ends of each allocation are not known, so the constraints in Section 3.1.2
cannot be applied to remove redundancy, as in the preallocated case). The ordering method
is formulated as follows:∑

θ∈Θ

θ × ua+1,θ ≥
∑
θ∈Θ

θ × ua,θ ∀a ∈ 1, . . . , |A| − 1.

To illustrate how this works, the an example with five apertures (|A| = 5) and three
angles (|Θ| = 3) is used.

Figure 3.1: Allowable realizations of a u variable, given the label assignment ordering
constraint. Binaries set to 1 are shaded in black, while allowable selections are grey.

Figure 3.1 shows an iterative use of these constraints. Starting with aperture 1, the u
value for a = 1, can set any of the three angles equal to 1. If arbitrarily, u11 = 1 is selected,
the set of constraints for a = 2 look as follows:

1× u2,1 + 2× u2,2 + 3× u2,3 ≥ 1× u1,1 + 2× u1,2 + 3× u1,3.

Subbing in the first aperture:

1× u2,1 + 2× u2,2 + 3× u2,3 ≥ 1× (1) + 2× (0) + 3× (0).
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Simplified:
1× u2,1 + 2× u2,2 + 3× u2,3 ≥ 1.

Once again, any angle can be chosen for aperture two, so if 2 is chosen arbitrarily, the
next aperture now gets restricted, as follows:

1× u3,1 + 2× u3,2 + 3× u3,3 ≥ 1× (0) + 2× (1) + 3× (0).

This simplifies to:
1× u3,1 + 2× u3,2 + 3× u3,3 ≥ 2.

Since only one angle may be chosen per aperture, it is clear from this constraint that
angle 1 is no longer an option for aperture a = 3, since each angle must exceed its proceeding
aperture. The constraints continue to propagate in this fashion.

3.1.4 Hybrid Increase-Decrease Ordering

One final method for sorting angles works by removing permutations in intensity and angle,
simultaneously, meaning there are no permutations possible. This method has the benefits
of both of the above methods in one, the caveat being that it does not scale as more angles
are added. This does, however, make it very well suited to the application at hand, as
tangential breast cancer radiation therapy only requires the two angles.

The constraints may be formulated as follows:∑
b∈B1

wb,a ≥
∑
b∈B1

wb,a+1 ∀a ∈ 1, . . . , |A| − 1, (3.1)∑
b∈B2

wb,a ≤
∑
b∈B2

wb,a+1 ∀a ∈ 1, . . . , |A| − 1. (3.2)

Constraints (3.1) specify that intensities in angle 1 (B1) must be ordered from greatest
to least, while constraints (3.2) specify that angle 2 (B2) must be ordered from least
to greatest. This eliminates all possible permutations, without capping the number of
apertures per direction, since only one angle can be active at any given time, and any
number of apertures generated can be sorted in angle 1-2 order, by increase then decrease,
respectively. This effect is demonstrated visually in Figure 3.2.

Unfortunately, when it comes to scaling this method, it is not obvious how to add a
third or higher number of angles, seeing as even if we know the desired angle order (e.g.,
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Figure 3.2: Visualization of angle/intensity sorting. Lighter colours represent higher beam
intensities.

1-3-2), we do not know where each angle starts and do not want to restrict its intensity
value, or starting point. This means leaving the flexibility for an angle to be set to 0, then
(potentially) any intensity greater than 0, then 0 again, which does not seem to be feasible
using sets of inequality constraints.

3.1.5 Ordering Method Summary

The above methods can each be useful in different scenarios, depending on the treatment
setup and features desired. These properties include how many angles the constraint can
handle, whether or not it restricts intensity-based permutations and angle-based permu-
tations and whether or not it still holds in the linear relaxation of the MIP problem. We
summarize the capabilities of each method in Table 3.1, below. Note that for the ordering
constraints that use total intensity, maximum intensity should be equally valid, having no
major impact on performance.

Symmetry Breaking Method
Properties Label Assignment Total Intensity Increase-Decrease
Max Angles Unlimited Unlimited 2
Sorts Intensities Yes No Yes
Sorts Angles No Yes Yes
Can be relaxed Yes No Yes

Table 3.1: Comparison of proposed symmetry reduction methods
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Since only two angles are required, using the increase-decrease method makes the most
sense as an addition to the M-RDAO model. Knowing that it still holds in a linear
relaxation is useful as well, however, adding more constraints to a linear model is likely
to slow down solution time, so it is less beneficial in a fluence map optimization (FMO)
setting than a direct aperture optimization (DAO) problem, where it more effectively cuts
down the decision space.

3.2 Sampling Techniques

Clinical datasets contain detailed computed tomography (CT) images of the patient’s body.
While these high-resolution scans are important for properly delineating organs they tend
to be prohibitively large for planning purposes. Not only do the datasets overwhelm
planning software at the highest resolutions, but large discrepancies between beamlet grid-
resolution and voxel size also lead to multiple neighbouring voxels having roughly the same
dose-influence values, introducing a fair amount of redundancy into the problem.

One way to reduce the problem size is by considering larger voxels, however the CT scan
resolution cannot be changed in post processing. An approximated method which achieves
nearly the same effect as granularity reduction is achieved by only considering every nth

voxel. More advanced sampling techniques such as varying aggression based on organ,
or region within an organ, or clustering voxels based on similarity as implemented using
k-means clustering in Mahnam et al. (2017), are also available, however, for the purpose
of this study, the downsampling methods were kept simple. The convention observed in
this work was an initial sampling at the granularity level set by clinics followed by more
aggressive downsampling (i.e., increasing the value of n) if the problem was still too large
to converge. The clinical sampling has previously been shown to yield roughly the same
distribution as considering every voxel at the granularity extracted from the CT scans in
Chan et al. (2014).

3.3 Warm Start Algorithm

Since the DAO methods are large MIP problems, they are very time consuming to solve.
In addition to being difficult, even finding a feasible solution can be non-trivial and often
at quite a large gap from optimality. For this reason, it is desirable to find good approxi-
mations for this problem, either as input to the larger model, or as a stand-alone result if
the output happens to be clinically acceptable.
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Generating fairly high-quality, feasible solutions can help, not only with the optimiza-
tion process, but also to give context for pre-optimization decisions, such as putting a
bound on the required number of apertures to achieve reasonably high quality, and even
early tradeoff assessment between plan quality and critical organ dose. In order to achieve
these objectives, a partially heuristic, partially optimization-based method for finding good,
feasible, direct aperture plans is developed. The method requires three steps, each of which
makes up a subsection of this section:

1. A version of the M-FMO or M-RFMO model, with efficiency improvements is run
to get an initial z∗FMO value (Section 3.3.1).

2. A modified M-FMO or M-RFMO model called the M-WS model is run to get a
set of beamlet intensities, wminmax (Section 3.3.2).

3. A gap-filling heuristic is run, to yield a feasible solution wws and objective function
value zws (Section 3.3.3).

After the algorithm is introduced, some limitations of the formulation are discussed in
Section 3.3.4.

3.3.1 Warm Start Step 1: Running the (R)FMO Model

The warm start algorithm starts by running the basic M-FMO or M-RFMO model,
corresponding to the ultimate type of DAO plan desired by the user (i.e., M-DAO or
M-RDAO). This can be achieved by using the models introduced in Sections 2.2 and 2.3,
respectively. While these models are continuous and therefore run fairly quickly, they are
being run as inputs for increasingly larger models. For this reason, it is desirable to ensure
that each individual model converges as quickly as possible. In this section, a constraint
generation method is proposed for speeding up each of the optimizations. It should be
noted that the two constraint generation techniques are not intended to be implemented
simultaneously. The first method, described in A) is tailored to the M-FMO model, while
the second, in B) is specific to the M-RFMO model.

A) Constraint Generation for FMO

One of the major factors in the difficulty of planning intensity modulated radiation therapy
(IMRT) plans is the size of the decision space. For the M-FMO model, a method of
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addressing this issue, that differs from sampling, is the iterative addition of voxels. Rather
than starting with the complete set of (optionally downsampled) voxels, the problem starts
with a subset and optimizes over said subset, only bringing in additional constraints with
large violations, with the goal of incrementally improving solutions.

We propose initiating the constraint generation with a master problem that only in-
cludes a constraint restricting the average dosage to the clinical target volume (CTV).

The master problem looks as follows:

min
∑

s∈{T,H}

cs
|Vs|

∑
v∈Vs

∑
b∈B

∑
i∈I

piDv,b,iwb

s.t.
∑
i∈I

∑
v∈VT

∑
b∈B

∑
a∈A

piDb,v,iwb,a ≥
∑
v∈VT

Lv,

wb ≥ 0 ∀b ∈ B.

At every iteration, one or a set number of voxel constraints may be added:∑
i∈I

∑
b∈B

∑
a∈A

piDb,v,iwb,s ≥ Lv ∀v ∈ {worst-case violated voxel from a previous iteration} .

The worst violation can be found in a simple subproblem, where the current plan’s dose
to each voxel is compared to that of the prescribed dose. When all voxels meet or exceed
the prescribed dose, the problem is at optimality.

B) Constraint Generation for RFMO

The robust problem tends to take several hours for full-sized clinical problem and can
take even longer with an objective change, as will be discussed in the upcoming section.
For this reason, we propose an efficient constraint generation approach to solving the
problem, which is based on Mahmoudzadeh et al. (2016). We propose a methodology that
solves the same problem as the M-RFMO model, using the M-FMO framework along
with a master-subproblem approach. In its essence, it satisfies the specification made in
constraints (2.8), that force every realization of p̃ ∈ P to be accounted, using an iterative,
rather than a transformative approach. The problem starts with a small subset of p̃
realizations, and more constraints with different p̃ values are only added as necessary.

In practice, this means that the master problem runs the optimization over a fixed
subset of Psub ∈ P , and at each iteration, we get a new, larger Psub, until, in the worst
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case, all |I|! corner-point realizations of P are in the master problem, or in practice, none
of the remaining realizations of p̃ lead to a CTV dose violation.

The master problem is built on the M-FMO model, but with nominal CTV constraints
(2.2) updated to represent robust corner points,

min
∑

s∈{T,H}

cs
|Vs|

∑
v∈Vs

∑
b∈B

∑
i∈I

piDv,b,iwb

s.t.
∑
b∈B

∑
i∈I

p̃iDb,v,iwb ≥ Lv ∀v ∈ VT , ∀p̃ ∈ Psub,

wb ≥ 0 ∀b ∈ B.

(3.3)

Mahmoudzadeh et al. (2016) proves that the maximum violation, p̃ calculation is separable
for each voxel, and can be done using a subproblem (which is also linear). For this work,
we propose an alternative, deterministic sorting approach as the subproblem, which finds
the same worst-case p̃ value, and maximum violation as Mahmoudzadeh et al. (2016), but
without requiring a linear program (LP) in the subproblem.

We achieve this by algorithmically calculating a worst-case p̃ at a given, potentially
optimal wb, at each voxel, v. This is doable, since each worst-case scenario is dependent
on the sequencing of phases, not on the wb values themselves. Conceptually, this method
relies on the idea that the worst breathing realization that can occur is the one that puts
the maximum allowable proportion of time in the phase that has the least payoff for CTV
dose, given a specified set of beam intensities.

In order to find this sequencing, first total dose to CTV voxel per phase, di,v, is calcu-
lated,

di,v =
∑
b∈B

Db,v,iwb ∀v ∈ VT . (3.4)

Then, for each v, di,v is ordered from least to greatest, in a variable which we will capture
as oi,v. The worst-case realization of p̃ for each voxel is then determined by distributing
the deviation based on ordering oi,v, and ensuring that it sums to 0. Since the worst-case p̃
is desired, the most upwards deviation is given to the phases with the least impact on the
CTV for each voxel, and the least is given to the phases with the largest impact. The set
of |I|! realizations of p̃ sequence-dependent worst-case vectors turns out to be the entire
set of corner points of the subproblem.

Similar to Mahmoudzadeh et al. (2016), we start the algorithm with a single set of
Psub values. However, for implementation purposes, we chose a p̃ value for each voxel
that corresponds to the worst-case di,v, if all values of wb are equal to 1. This is unlikely
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to reflect the real worst-case, but unlike using a nominal p, which is guaranteed to not
be an extreme point, these will account for potential worst-case sequencings. In further
iterations, the worst-case constraints are added for all constraints that lead to a violation
that is greater than 0.

The pseudocode for the worst-case calculation subproblem is as follows:

Algorithm 1 Worst-Case p̃ Generation Algorithm

1: . Inputs: dose-influence matrix (current voxel), beam fluences, prescribed dose
2: . (current voxel), nominal proportions, allowable upper and lower
3: . deviations from nominal proportions
4: . Outputs: worst case proportions (p̃), violation
5: . ————————————————————————————————————–
6: procedure WorstP PerVox(D,w,L, p, p̄, p)
7: . ————————– Sum and sort the dose to voxel per phase ————————–
8: I ← |p| . Number of breathing phases
9: B ← |w| . Number of beamlets
10: for i← 1 to I do . Calculate the dose delivered at each phase
11: d[i]← 0
12: for b← 1 to B do
13: d[i]+ = D[b][i]× w[b]

14: o[i] = sort(d[i] in i) . Sort the breathing phases by ascending size of d[i]
15: . ——————— Prepare to allocate the worst-case uncertainty ———————
16: room4excess ← 0
17: dose2voxel ← 0
18: for i← 1 to I do . Set up the allowable delta bounds
19: room4excess += p[i]

20: for i← 1 to I do . Maximize proportion of time in lowest payoff phases
21: j ← o[i]
22: room4excess -= p[j] . Largest upward delta bounded by lower delta
23: pDelta = min{p̄[j], room4excess}
24: room4excess -= pDelta . Ensures that everything sums to 0 in the end
25: p̃[j]← p[j] + pDelta . Final value is the change added to the nominal
26: dose2voxel += d[j]× p̃[j]
27: violation ←max{L− dose2voxel, 0}
28: return p̃, violation

45



3.3.2 Warm Start Step 2: An Optimization Formulation

The novel optimization component of the warm start algorithm was inspired by the sim-
ilarity between the segment uniformity constraints and a min-max optimization problem.
It operates in a similar method to the FMO problem, except with a min-max objective.
We introduce the warm start with the constraints from the M-FMO model, but it is easily
extendable to the M-RFMO model as well. The constraint generation algorithms still
apply to their corresponding warm start algorithms.

The warm start makes use of the DAO adjusted variable and a max intensity variable:

wb,a represents the intensity of beamlet b in aperture a.

mθ,a takes on the max intensity value at angle θ in aperture a.

The model looks as follows:

(M-WS)

min
∑
θ∈Θ

∑
a∈A

mθ,a + e1

∑
b∈B

∑
a∈A

wa,b

s.t.
∑

s∈{T,H}

cs
|Vs|

∑
v∈Vs

∑
b∈B

∑
i∈I

∑
a∈A

piDv,b,iwb,a ≤ e2 [z∗FMO] , (3.5)

∑
b∈B

∑
i∈I

∑
a∈A

piDb,v,iwb,a ≥ Lv ∀v ∈ VT , (3.6)

mθ,a ≥ wb,a ∀b ∈ Bθ, a ∈ A, θ ∈ Θ, (3.7)

wb,a ≥ 0 ∀b ∈ B, a ∈ A,

where:

e1 and e2 are weighting parameters.

[z∗FMO] is the objective value of a previously run M-FMO model.

Constraints (3.7) set force variable mθ,a to take on the maximum fluence per angle θ, per
aperture a variable, which then gets minimized in the first term of the objective function.
The secondary term, is the total beam intensity, which may optionally be penalized by
setting e1 ≥ 0. This may help with conformity, but needs to be tuned based on the
problem at hand.
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Finally, the [z∗FMO] value in (3.5) is a product of a previous optimization that gets
fed into the warm start optimization at hand. The weighting factor e2 is also a tuneable
parameter, but it must be greater than 1, to ensure the feasibility of the problem.

The robust version of the formulation above is identical, except with robust CTV dosage
constraints, instead of the nominal ones in (3.6).

3.3.3 Warm Start Step 3: Heuristic Gap Filling

The heuristic for filling in the beam is fairly simple. It sets all wminmax values to the same
value and fills in any rows to obey island constraints. The pseudocode for the algorithm is
as follows:

Algorithm 2 Warm Start Gap Filling Algorithm

1: . Inputs: beam fluences from warm-start algorithm part 1, row indices, column
2: . indices, angle indices, aperture indices
3: . Outputs: DAO compliant beamlet intensities (wws)
4: . ————————————————————————————————————–
5: procedure Fill Fluence(wminmax,Q,K,Θ,A)
6: . First, fill in the rows of the generated beam intensities:
7: for a← A do . For each aperture
8: for θ ← Θ do . And each angle
9: wMax ← max{wminmax[a][θ]} . Find the largest intensity at this aperture
10: for q ← Q do . Go through each row
11: ind ← index{wminmax[a][θ][q] > 0}
12: for k ← min{ind} to max{ind} do
13: wminmax[a][θ][q][k]← wMax . Fill in row
14: if Vertical and hasGap do
15: Fill in wminmax of top of gap until 1 unit overlap with bottom
16: Fill in wminmax vertical line at left-most aligned unit

17: . Next, sort w for symmetry-breaking constraint compatibility:
18: ord1 = sorta{wminmax[a][θ = 1][q] by sum{wminmax[a][θ = 1]}, descending} . Sort
19: ord2 = sorta{wminmax[a][θ = 2][q] by sum{wminmax[a][θ = 2]}, ascending}
20: for i = 1 to |ord1| do
21: wws[i][θ = 1] = wminmax[ord[i]][θ = 1]
22: wws[i+|ord1|][θ = 2] = wminmax[ord2[i]][θ = 2]

23: return wws
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If a vertical fill in of the algorithm is desired Vertical is set to true. The algorithm
naively prevents vertical gaps by filling in a vertical column between the two separate
partitions, always choosing the left-most if there are multiple options. If the two segments
don’t align, a straight line of beamlets is turned on in the upper part of the segment until
there is a single-beamlet of overlap.

There are more thorough ways of performing this vertical integration, but they require
sub enumerations of different options, which starts bringing overhead into the model.

The objective function of the total warm start algorithm, zws, is calculated based on
the output of this final heuristic, wws. The optimality gap of this warm-start algorithm
can then be calculated by:

100 ∗ (1− z∗FMO/z
ws).

3.3.4 Limitations of the Warm Start Method

While the warm start provides a good jumping-off point for future exploration there are
some limitations, that are not present in the original M-DAO model.

For one, the angle flexibility is no longer available, since in order to define the min-max
variable, mθ,a, a set number of angles must be made available per aperture. It is possible
that the optimization chooses less than the total allowable angles, i.e., sets some angles to
zero, and in that case, fewer angles may be needed in the final optimization (particularly if
there is a low optimality gap). As a rule of thumb, we chose to 1/|Θ| the number of warm
apertures as desired in the final DAO optimization when running the warm start, since up
to |Θ| × |A| apertures are output by the model, rather than the desired |A| apertures.

Another caveat of this warm start is the requirement for tuned parameters. Since there
is a heuristic component of filling in gaps in the apertures, it is unclear how much we want
to value uniformity over optimality, and at which point we will see diminishing returns in
the optimality bound. At some point, the M-WS model tends towards the FMO solution,
which will likely be much less uniform than competing options, and give a worse lower
bound.
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Chapter 4

Results

This chapter discusses the implementation and results of applying the proposed model
to patient datasets. The computational infrastructure used is discussed in Section 4.1.
Section 4.2 shows the results of the initial application of limited-feature versions of our
models to a one-dimensional phantom dataset as a proof of concept. Next, a clinical
patient dataset was used to run the fully-developed model and to explore the effects of the
improved techniques for this large-scale application. The results of this exploration are
presented in Section 4.3. Finally, computational results are reported in Section 4.4.

4.1 Computational Infrastructure

The initial modelling was done with a mix of MATLAB R2016b to generate dummy
datasets and run the code, and AMPL and Gurobi were used to run the optimization.
As soon as this proof of concept was working appropriately, the optimization portion was
recoded to be run using a C++ and CPLEX combination and used to validate results,
for the ease of future customization. All results reported in the following sections were
obtained using the C++ and CPLEX 12.7.1 combination.

The one-dimensional and linear fluence map optimization (FMO) were run locally on a
2.6 GHz Intel Core i5 computer with 8GB of memory. Since direct aperture optimization
(DAO) problems are complex mixed integer programming (MIP) problems which had to be
run for many days, they were run on a single node of the Centre for Advanced Computing
cluster at Queens University, with 2.2 GHz with 24 cores and 100 GB of memory.
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4.2 One-Dimensional Proof of Concept Study

We tested our preliminary M-RDAO model using a one-dimensional phantom consisting
of 151 voxels. Of the voxels, the first 50 make up the heart and the next 51 are occupied by
the clinical target volume (CTV). The remaining voxels represent air external to the body.
The voxels are each set to be 0.2 cm wide. The beam is also chosen to be a 1D array, with
its 56 beamlets spanning several voxels each, at 0.5 cm. The use of the phantom allowed us
to perform a simplified version of the study where movement is strictly lateral, the beam
is a single beamlet in depth and only one row of voxels is used, in place of a full set of
human organs. An even smaller-scale schematic of this toy setup is depicted in Figure 4.1.
As the patient inhales, the lung forces the CTV and heart apart.

Figure 4.1: A simplified representation of the 1D phantom left-sided breast cancer case.
The fully exhaled phase is shown directly underneath the beam, while subsequent inhale
phases are shown underneath.

The case was run with |I| = 4 phases. In each phase, the CTV moves forward a single
beamlet-width, while the heart only moves one unit backwards in the second phase and
then stays put. Since this phantom was only used to test the capabilities of the code, the
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motion was kept simple by design. The nominal four-phase p vector, from exhale to inhale,
was set to p = [0.5, 0.1667, 0.1667, 0.1667]. The p, p̄ were set to ±0.1 for each element.

The results of running the M-FMO, M-DAO and M-RDAO models on the above
case are shown in Figure 4.2. The M-RFMO model was run as well, to address dosing
problems in the nominal model, and is shown in Appendix C.1. Three apertures were
used to generate the M-DAO and M-RDAO model cases in 4.2. Theses models were
each also applied to the phantom with one and two apertures as well, the results of which
are depicted in Appendices C.2 and C.3. The desired CTV dose is normalized to 1, for
consistency in comparison across models.

The beamlet intensities, shown in Figure 4.2a are not uniform or deliverable, as is to
be expected from a FMO. In contrast, the beam intensities in 4.2d and 4.2g are each
deliverable in three distinct, uniform segments.

All three models perform very well in terms of nominal dose, with Figures 4.2b, 4.2e
and 4.2h not dipping below the blue CTV dose reference line at all. In contrast, in the
non-nominal realization of p̃ results in a very non-uniform delivery of the plan from the
M-FMO model towards the edges of the CTV, shown in Figure 4.2c. This fluctuation is
significant enough that a fair amount of the CTV gets underdosed. To a lesser, but still
significant effect, the M-DAO model also underdoses the CTV in sections towards the
edge, as shown in Figure 4.2f. These issues are rectified in Figure 4.2i, which stays above
the required dose, even under the non-nominal uncertainty realization.

We note that a primary difference between the robust and nominal plans is that robust
plans provide a higher dosage to the uncertain edges of the CTV, while the regular M-
FMO model tries to drive down this dosage, to conform as closely as possible to the
nominal breathing pattern.
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(a) FMO intensities (b) FMO nominal (c) FMO non-nominal

(d) DAO intensities (e) DAO nominal (f) DAO non-nominal

(g) RDAO intensities (h) RDAO nominal (i) RDAO non-nominal

Figure 4.2: The results of running the models on the 1D phantom. Figure (a),(d) and (g)
show the chosen beamlet intensities. In the models with apertures, the intensities allocated
to each aperture are indicated by colour. Figures (b),(e) and (h) show the prescribed dose
in blue, along with the nominal realized dose in red. Figures (c),(f) and (i) show the
prescribed dose in blue, along with the non-nominal realized breathing pattern in green.
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4.3 Clinical Left-Sided Breast Cancer Case Study

In this section, the application of the models to a clinical patient dataset is discussed. In
Section 4.3.1, a summary of the clinical data set is given. Next the plan evaluation tools
introduced in Section 1.4 are applied to the large-scale (1x the clinical sampling rate) plans,
with Section 4.3.2, showing the fluence map (FM) diagrams and Section 4.3.3, presenting
and discussing the corresponding dose volume histogram (DVH) diagrams.

4.3.1 Clinical Data

The patient data comes from a 4D-CT dataset, which was provided by the Princess Mar-
garet Cancer Centre, Toronto, Canada. The data considered contained |I| = 5 breathing
phases sorted from inhale to exhale. We define p = [0.5, 0.125, 0.125, 0.125, 0.125] and
uncertainty set is defined using p = p̄ = 0.1, i.e., the range around each value is ±0.1.

The treatment region consists of 33,592 CTV voxels and 42,342 heart voxels, (only 2,878
of which are exposed to the beam throughout treatment). The patient was prescribed a
dose of 42.4 Gy for the full CTV. The voxel dimensions in the 4DCT scan are 1 × 1 × 2
mm3, but clinical voxels are typically 4 × 4 × 4 mm3, so we start sampling at a rate of
4× 4× 2 = 32 voxels for every 1 CT voxel. This method was shown to work effectively in
Chan et al. (2014), without an overall loss in plan quality.

The two tangential angles were pre-selected in clinic, and the dose-influence matrix for
each angle, was pre-calculated using planning software and used as model input data for all
models. The beamlet grid has a resolution of 0.5×0.5 cm2 at each of these two angles. The
beamlets are oriented on a 40× 19 grid at each angle, for a total of |B| =1520 beamlets.

4.3.2 Fluence Map Visualizations

We began by running the continuous M-FMO and M-RFMO models on the large clinical
dataset, yielding the the FM diagrams in Figure 4.3. Note, these plots show the log of the
dose, in order to depict the whole treatment region - since the intensities vary greatly.

The plans look nearly identical in the images, however, their differing impacts will
become clear when examining their DVHs in the next section. Both plans are non-uniform
but can be seen to mostly cover the entire CTV region, with the exception of a few high-
intensity outliers.
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(a) FM of the FMO (b) FM of the RFMO

Figure 4.3: Depiction of the log-scale fluence map of the FMO and RFMO plan beamlet
intensities, respectively. The darkest beamlets represent b = 0, while the lighter beamlets
represent higher intensities.

The FM of the treatment of the M-DAO model is shown in Figure 4.4. In Figure 4.4a,
each of the apertures and the selected angles are shown. In Figure 4.4b, the consolidation
of these apertures into a single fluence map is depicted. The M-DAO was run without
any symmetry breaking constraints or aperture continuity constraints, however, a small M
bound in the uniformity constraint allowed it the model yield a gap of 7.46%.

The M-RDAO model similarly resulted in a set of apertures and an aggregated flu-
ence map. This problem was run with a non-restrictive M value, symmetry breaking
constraints, and then both with and without aperture continuity constraints. Logarithmic
base 10 plots were used to generate Figures 4.4c - 4.4f, since there was a large discrepancy
between aperture intensities in the robust output, which makes it difficult to visualize all
the apertures. In Figure 4.4c, the model chose not to fill the second and third aperture
over its optimization period. A similar result is found in Figure 4.4e. These solver choices
are likely related to the rather large optimality gaps still present in the current solutions
(23.34% and 22.15%, respectively). The differing allocation effects would likely be reduced
if the solver were given more time to find a plan that is closer to optimality.
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(a) FM of the DAO (no continuity constraints) (b) Combined FM of the DAO

(c) FM of the RDAO (no continuity constraints) (d) Combined FM of the RDAO

(e) FM of the RDAO (with continuity constraints) (f) Combined FM of the RDAO

Figure 4.4: FM of the M-DAO and M-RDAO models applied to the clinical problem.
They are each combined into a single fluence map, for reference. Note: the robust models
were plotted on a log base 10 scale, to enhance visualization.
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4.3.3 DVH Results

In Figure 4.5, we compare the DVHs of the M-FMO and M-RFMO models when a
non-nominal breathing motion, or corner point of the uncertainty set is applied. We note
that while the DVH of the M-FMO model loses quality towards the edge of the DVH, the
M-RFMO model continues to deliver a high-quality dose throughout, and the full 100%
by volume region of the CTV recieves 100% of the dose.

Figure 4.5: DVH of the M-FMO v.s. M-RFMO model with non-nominal breathing.

While it is not a totally fair comparison, as our best M-RDAO model was much further
from optimality than the M-DAO model, we may also compare the DVH across the two
models. When the nominal breathing pattern is realized, as in Figure 4.6 , it is primarily
just evident that the CTV is receiving excessive dose in the M-RDAO model, due to the
optimality gap, with no immediately obvious gain.

Figure 4.6: DVH of the M-DAO v.s. M-RDAO model with nominal breathing.
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The benefits of the M-RDAO model are seen, however, when non-nominal breathing
patterns are realized. Figure 4.7 shows that the CTV will be underdosed when plans are
generated using the M-DAO model at a non-nominal realization, while the M-RDAO
model consistently ensures consistent coverage.

Figure 4.7: DVH of the M-DAO v.s. M-RDAO model with non-nominal breathing.

4.4 Computational Results

All clinical data was run with objective function weighting values, cs, set to cT = 0.4 and
cH = 0.6. These values were empirically found to produce a good balance between our
objectives of conformity and heart sparing. The following section demonstrates the results
in terms of the improvement methods outlined in Chapter 3, including symmetry breaking
4.4.1, sampling 4.4.2 and the warm-start method 4.4.3.

4.4.1 Angle Symmetry Elimination

Angle symmetry was tested out empirically in the models. It was found to perform poorly
in the FMO models, increasing run-time for the algorithm. It was however very beneficial
for the DAO based models. Due to time constraints and empirical advantage, symmetry
breaking constraints were used for all tests in which the uniformity constraint’s M value
was not heavily restricted (this is a more manual strategy for reducing the decision space).
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4.4.2 Sampling Techniques

We began by running the continuous M-FMO and M-RFMO models both quickly and
locally with our given objective function. To obtain more near-optimal solutions, we also
sampled more aggressively, increasingly the sample rate 3 times by a factor of 4; a choice
that does result in a loss of treatment quality, but allows us to better demonstrate our
methodology. The resultant values are of interest as they provide the lower-bound fluence
map solutions for their mixed integer DAO counterparts. The results of these runs are
summarized in Table 4.1.

Model Sample Rate PreProc. Time z∗ Avg T Avg H Max b
FMO ×1 0.11 24.96 19.0765 43.42 2.847 5.549e+04
FMO ×4 0.03 0.41 17.872 42.56 1.413 1.541e+05
FMO ×16 0.00 0.04 16.9693 42.4 0.01554 2.669e+05
FMO ×64 0.00 0.01 16.96 42.4 0 1.235e+07
RFMO ×1 0.51 537.33 19.2029 43.63 2.917 6.098e+04
RFMO ×4 0.10 36.54 18.0295 42.8 1.513 1.415e+05
RFMO ×16 0.03 0.57 17.0959 42.56 0.1208 2.09e+05
RFMO ×64 0.01 0.08 16.96 42.4 0 4.876e+05

Table 4.1: Continuous M-FMO and M-RFMO model results run on clinical datasets.
Note: times are reported in seconds. The preprocessing time (PreProc) is separated from
the optimization run-time (Time). Objective function value ( z∗), average dose to target
(Avg T ), heart (Avg H), and max planned beamlet intensity (Max b) are reported for each
plan.

As expected, the M-RFMO takes longer to run than the M-FMO model, and under
nominal assumptions, it delivers more dose to the heart and the CTV. The most aggressive
sampling method (×64) results in a perfect objective function, with 0 Gy going to the heart
and 42.4 Gy going to all included CTV voxels. This means that 16.96 is the lowest possible
objective value given our selected objective weightings. It also means that ×64 sampling
is a bit aggressive for this dataset. In reality, it is only hitting a small subset of the voxels,
as are all the sampled datasets to a degree, an effect that can be seen in the DVH in
Figure 4.8. For that reason, the higher sampling rates were used, not to suggest clinically
acceptable plans, but to demonstrate and compare model performance.

The maximum beamlet intensity is also reported in Table 4.1, to demonstrate that
if left unchecked in an M-FMO model, it does grow quite large, which would increase
treatment time. An entire treatment, including motion should be between 15-30 minutes.
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Figure 4.8: Depiction of the quality loss in the nominal FMO model, assuming a nominal
distribution, with more aggressive sampling. The figure is plotted on the clinically sampled
grid, so the clinically sampled dataset performs nearly perfectly. The remaining down-
sampled plans get worse as the sampling becomes more aggressive.

To give some context, the dose delivered by most machines is 300 to a maximum of 2400
MU/minute (Kalantzis et al., 2012). Monitor units (MU) are calibrated to 1 cGy, which
is .01 Gy, so we can deliver an upper limit of 24 Gy/minute. We need to give the patient
42.4 Gy of treatment over a set number of fractions. Treatments are divided into fraction
of 1.5 Gy at the low end (and up to 3 Gy at the higher end), so it should be safe to say
that this plan should require a maximum of 30 fractions (Baskar et al., 2012). In order
to deliver the lowest intensity in the above table, which is 55,490 Gy, we would require
55,490/30 = 1849.66 Gy to be delivered per fraction. At a maximum of 24 Gy/minute,
this would require roughly 77 minutes of beam on time per session. This is an hour and
17 minutes, in addition to setup time and beam reorientation. If we use a more realistic
dose-rate estimate of 600 MU/minute, each treatment would require the beam on time to
be longer than 5 hours. This is clearly unacceptable, and provides further incentive to
generate more uniform plans, rather than trying to decompose a fluence map as discussed
in section 1.1.2.

In an effort to strike a balance between up-keeping plan quality and aperture flexibility,
we chose to run our test cases with six apertures (total) for the M-DAO and M-RDAO
models. According to Jiang et al. (2005), allocating less than 3 apertures per angle has
been shown to negatively impact plan quality, whereas 3-7 apertures per angle was shown
to be ideal for avoiding diminishing returns. We also did not want to over-allocate angles,
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however, as choosing more, lower dose angles has been shown to increase the impact of
miss-calibration and leakages by Sudahar et al. (2012). Six apertures was also found to be
the median number of apertures required in the clinical breast cancer study presented in
Vicini et al. (2002).

Running the large-scale M-DAO and M-RDAO models proved to be extremely time
consuming, taking 2 weeks run-time only to remain beyond a 50% optimality gap. In some
cases the problem also ran out of memory. Table 4.2 shows direct aperture results along
with the closest optimality gap we have for them within a two-week run time limit.

Model Sample Total time z∗(R)FMO zBest Max b BOT Gap(%)

DAO ×1 2 Wks 19.0765 20.6143 100 573.1 7.46
DAO ×4 2 Wks 17.872 19.1858 100 589.9 6.85
DAO ×16 Memory 16.9693 17.8005 100 598.9 4.67
DAO ×64 28766.6 16.96 16.9794 100 595.9 0.11
RDAO ×1 2 Wks 19.2029 24.6657 111.39 245.7 22.15
RDAO ×4 2 Wks 18.0295 21.8619 117.16 223.4 17.53
RDAO ×16 2 Wks 17.0959 19.0686 60.46 250.8 10.34
RDAO ×64 2 Wks 16.96 17.1472 95.34 235.6406 1.09

Table 4.2: Six segment M-DAO and M-RDAO model results run on clinical datasets.
Note: times reported in seconds, unless indicated otherwise. Here, zBest is the objective
we achieved that is closest to the optimal before the algorithm timed out or finished. BOT
stands for beam-on-time, a clinical metric. Gap is the gap between zBest and z∗(R)FMO, a
lower bound on the best possible objective function value for the MIP problem.

4.4.3 Warm Start Algorithm

Since the models can easily run for 2 weeks each, sometimes without making any noticeable
progress, particularly for the more complex M-RDAO models, we turned to our proposed
improvement methods. It is possible to get fairly good problem approximations in very
little time with the warm start method, described in detail in Section 3.3.

To motivate the need for a warm start, Table 4.3 shows the exact same M-RDAO
model set-up being run on a warm started problem, versus without the start. In two
weeks time, the two larger problems stayed beyond a 50% optimality gap. This is notewor-
thy, seeing as we know based on our warm-start methods that there are far better plans
available.
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Model Sample Time z∗(R)FMO zWarm z GapWarm(%) Gap(%)

RDAO ×1 2 Wks 19.2029 24.6657 43.8719 22.15 56.23
RDAO ×4 2 Wks 18.0295 21.8619 44.0599 17.53 59.08
RDAO ×16 2 Wks 17.0959 19.0686 19.8256 10.34 13.77
RDAO ×64 2 Wks 16.96 17.1472 17.1783 1.09 1.27

Table 4.3: Non-warm start 2 week objective values (z), v.s. the warm-started ones (zWarm)
reported above for the M-RDAO model reported in Table 4.2. Better solutions are bolded.

A complete set of warm start solutions are shown in Table 4.1. Note, the gap-filling
heuristic component of the warm start completes in fractions of a second, and the initial
optimization for the lower bound is shown in Table 4.1, so the only times reported in this
table are for the warm start min-max phase of the optimization. It should also be noted
that the warm start reported objectives in Table 4.4 is the calculated objective of the
M-DAO and M-RDAO models with the warm start + heuristic wb,a values. This value
may be further adjusted downwards by CPLEX, since the heuristic does not reduce the
CTV dose, even if the heuristically-added new beamlets now lead to overdosing the CTV.
CPLEX will use these values to find a basis, then adjust them until we are at a corner
point in the solution space.

A sample output of the warm start algorithm is depicted in Appendix D. These outputs
show a low-fidelity version of the FM and DVH plots which are used to assess and build
on the given plan.

The continuous model ran quickly enough that the non-robust constraint generation
proved to be unnecessary. Since MIP problems do not respond well to add-hock row
generation algorithms, it was not actually used after implementation. In the robust case,
however, constraint generation proved very useful for running both M-RFMO and the
robust warm start model for the larger size models.

The impact of the constraint generation of the regular M-RFMO model is shown
in Table 4.5. As expected, for smaller problem sizes, the constraint generation does not
provide much benefit, as you have to solve essentially the same problem several times. At
larger sizes, however, the constraint generation starts really paying off. The effect of the
column generation start was larger in the warm start models, to the extent that none of
the warm starts were run with the regular robust without column generation as it took on
the order of 10 times longer to run.
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Model Sample AC? Time z∗(R)FMO zws zDAOadj Max b Gap(%) Iter

wDAO ×1 No 48.77 19.0765 27 - 134.5 29.36 -
wDAO ×4 No 9.02 17.872 22.1 21.7696 40.14 19.14 -
wDAO ×16 No 1.65 16.9693 20.54 20.3110 45.08 17.36 -
wDAO ×64 No 0.39 16.96 17.71 17.1475 67.73 4.221 -
wDAO ×1 Yes 177.17 19.0765 26.19 25.2713 47.11 27.16 -
wDAO ×4 Yes 9.02 17.872 22.1 21.7696 40.14 19.14 -
wDAO ×16 Yes 1.65 16.9693 20.54 20.3110 45.08 17.36 -
wDAO ×64 Yes 0.38 16.96 17.85 17.5028 67.73 5.001 -
wRDAO ×1 No 94.51 19.2029 27.44 - 135.7 30.02 5
wRDAO ×4 No 22.96 18.0295 22.64 - 96.37 20.37 6
wRDAO ×16 No 2.8 17.0959 21.32 - 123.4 19.82 6
wRDAO ×64 No 0.48 16.96 17.86 17.7350 90.66 4.834 3
wRDAO ×1 Yes 699.96 19.2029 27.37 25.1077 129.7 42.55 9
wRDAO ×4 Yes 226.02 18.0295 23.41 117.16 120.5 22.98 5
wRDAO ×16 Yes 64.08 17.0959 20.83 20.4170 64.02 17.93 5
wRDAO ×64 Yes 6.6 16.96 17.91 17.6558 82.07 5.59 3

Table 4.4: Warm start plans run on clinical datasets. Note: times are reported in seconds.
The prescribed dose is 42.4 Gray. e1 = 0.005, e2 = 1.1. In cases where the MIP model
was run following the warm start, the adjusted objective function value (zDAOadj) is listed.
Here, AC stands for aperture continuity, which indicates whether or not the continuous
aperture constraints have been enforced.

Model Sample PreProc. Time (s) Obj Iter Avg T Avg H Max b
RcgFMO ×1 0.10 85.96 19.2029 8 43.63 2.917 6.097e+04
RcgFMO ×4 0.02 13.95 18.0295 9 42.8 1.513 1.418e+05
RcgFMO ×16 0.01 0.93 17.0959 12 42.56 0.1208 2.09e+05
RcgFMO ×64 0.01 0.11 16.96 8 42.4 4.2e-05 6.114e+05
RFMO ×1 0.51 537.33 19.2029 - 43.63 2.917 6.098e+04
RFMO ×4 0.10 36.54 18.0295 - 42.8 1.513 1.415e+05
RFMO ×16 0.03 0.57 17.0959 - 42.56 0.1208 2.09e+05
RFMO ×64 0.01 0.08 16.96 - 42.4 0 4.876e+05

Table 4.5: The M-RFMO model was run using the general robust versus the constraint
generation algorithm. The quicker run times of the two are bolded. Iter stands for the
number of iterations or optimizations run for the constraint generation problems.
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Chapter 5

Conclusions

Providing optimized treatment plans for breast cancer patients is vital for obtaining high
post-treatment quality of life. In this thesis, practical solutions are proposed for real-world
inhibitors of integrating advanced mathematical modelling into modern intensity modu-
lated radiation therapy (IMRT) devices. These inhibitors include target region motion
uncertainty, as well as mechanical delivery constraints.

The proposed methodology centres around combining previously proposed robust flu-
ence map optimization (RFMO) frameworks, which can be used to account for breathing
motion during left-sided breast cancer treatment, with novel direct aperture optimization
(DAO) techniques, which incorporate deliverability requirements, into a single, holistic
mixed integer programming (MIP) model. This unified robust direct aperture optimiza-
tion (RDAO) model provides a way to immunize against uncertainty without worrying
about downstream losses of quality, which arise in the conventional approaches that leave
deliverability to post-processing heuristics.

This thesis outlines contributions to three aspects of the RDAO problem. The first
contribution is in providing the unifying framework which aligns the goals of robust and
DAO models, as discussed above. The second contribution is with regards to providing
fast, high-quality heuristic estimations for this difficult-to-solve MIP problem. Then, as
a final contribution, methods for simplifying the decision space are provided and tested
against the initial model.

The proposed RDAO framework primarily hinges on the partitioning of RFMO decision
variables into multiple, separately-deliverable beam apertures. After this substitution has
been made, the two models can be integrated into one. Proposed constraints for enforcing
DAO requirements, including uniformity constraints, angle selection, island removal and
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optionally, vertical beam continuity are added on top of existing robust constraints. This
combination of constraints forms a large MIP problem, which is solvable on a small-scale
2D phantom model, but would often run for weeks without proper convergence on larger
clinical datasets.

The slow convergence time of the large-scale model, motivated the secondary contribu-
tion that is a heuristic approach to estimating a DAO solution. This mini-max framework
was inspired by the uniformity constraints in the DAO model, since mini-max constraints
have a tendency to flatten the decision space, in a manner that is analogous to the con-
strained uniformity. This framework provides a rapid, DAO-like solution, but must be
post-processed heuristically to provide a true DAO or RDAO plan. This heuristic makes
the problem highly nonlinear and difficult to tune.

To get more from the heuristic solution, it was incorporated into the third contribution,
which is decision space simplification. Rather than evaluating the heuristic approach on
its own, it was applied as a warm start to the existing DAO and RDAO models. The
warm start cut down the decision space, often saving days or weeks of time. Furthermore,
symmetry breaking constraints were introduced for improving MIP convergence time and
constraint generation methods were introduced for speeding up the continuous parts of the
problem.

Future opportunities for research lie in applying decompositions techniques to this large-
scale model. Column generation approaches have been popular in the literature; however,
the binary structure of the subproblem does lend itself to other methods of separation,
which require fewer additional variables, such as logic based benders approaches.

Some lower hanging fruit in terms of future research might come from examining the
impact of the weighting variable M , within the uniformity constraint, as the idea of incor-
porating a “very large number” into the optimization, naturally leads to the question “how
large is large?”, and thus far, that question remains unanswered. More effective sampling
methodologies such as k-mean clustering or adjusting the aggressiveness of sampling based
on organ location could be another simple way to increase algorithm effectiveness in the
future. Parallelizing the code is another option for speeding up the MIP results, although
many clinics do not have the infrastructure to implement that sort of approach, making it
less practical.

Finally, analyzing the effectiveness of the heuristic approach on larger-scale problems
such as volumetric modulated radiation therapy (VMAT) could be an interesting avenue
for future research. The beam-filling algorithm could be improved with some fairly straight
forward tweaks, with minor time penalties, such as iteratively evaluating connection options
before selecting one, and the development of stricter weighting calibration rules.
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Appendix A

Step-by-Step Construction of the
Robust Counterpart

In Bertsimas et al. (2011), it is shown that a polyhedral uncertainty set can be converted
to a linear dual, by first breaking down the problem into a problem and subproblem, and
then taking a dual of the subproblem an placing it back into the main problem.

A.1 The primal subproblem

This process starts with the following constraint, with a polyhedral uncertainty set P :∑
b∈B

∑
i∈I

p̃iDb,v,iwb ≥ Lv ∀v ∈ VT , ∀p̃ ∈ P .

Since there are an infinite number of sets of p̃ in P , this formula represents an infinite
number of constraints. But in reality, the only concern is that the lowest possible value
of the left hand side is still higher than the minimum prescribed dose to each voxel, for a
given intensity set wb. That way, the left hand side of the constraint can be reformulated
as a minimization problem with variable p̂i, as follows:

min
{p̂∈P}

∑
i∈I

∑
b∈B

p̂iD
t
b,v,iwb ≥ Lv ∀v ∈ VT . (A.1)

Since each voxel’s worst case is independent, the inner optimization with variable p̂i may
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be inspected independently with separate constraints for each voxel, v. This does holds
because the problem will still be bounded by the same worst-case p̂i, regardless of whether
the problem is separated or kept together. The worst-case p̂i is that which causes the
maximum violation, so if at optimality an individual constraint could cause a larger vio-
lation than 0, that would be the current worst-case p̂i, and the solution would not be at
optimality, contradicting the initial condition.

For the subproblem derivation, wb can be assumed to be held constant, an assumption
that can be dropped by the end of the derivation. The separated derivation is as follows,
first we rewrite the equation A.1 as,

min
p̂

∑
i∈I

∑
b∈B

p̂iD
t
b,v,iwb

s.t.
∑
i∈I

p̂i = 1,

(pi − pi) ≤ p̂i ≤ (pi + p̄i) ∀i ∈ I.

(A.2)

For convenience, we may assign Mi =
∑

b∈BD
t
b,v,iwb:

min
p̂

∑
i∈I

p̂iMi

s.t.
∑
i∈I

p̂i = 1,

(pi − pi) ≤ p̂i ≤ (pi + p̄i) ∀i ∈ I.

(A.3)

Expanded:
min
p̂

p̂1M1 + p̂2M2 + · · ·+ p̂IMI

s.t. p̂1 + p̂2 + · · ·+ p̂I = 1,

p̂i ≤ pi + p̄i ∀i ∈ I,
p̂i ≥ pi − pi ∀i ∈ I.

(A.4)

A.2 The dual subproblem

Taking the dual of this problem yields the following:
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max y0 +
∑
i∈I

(pi + p̄i)yi +
∑
i∈I

(pi − pi)yI+1+i

s.t. y0 + yi + y|I|+i = Mi ∀i ∈ I,
y0 URS,

yi ≤ 0 ∀i ∈ I,
y|I|+i ≥ 0 ∀i ∈ I.

(A.5)

Flipping the sign on y ≤ 0 variables and replacing Mi back with the original constraints
we get:

max y0 −
∑
i∈I

(pi + p̄i)yi +
∑
i∈I

(pi − pi)yI+1+i

s.t. y0 − yi + y|I|+i −
∑
b∈B

Dt
b,v,iwb = 0 ∀i ∈ I,

y0 URS,

yi, y|I|+i ≥ 0 ∀i ∈ I.

(A.6)

We can further simplify the equations using the equality:

y|I|+i =
∑
b∈B

Dt
b,v,iwb − y0 + yi ∀i ∈ I, (A.7)

(note: (15) use the equivalent of yi = y0 +y|I|+i−
∑

b∈BD
t
b,v,iwb ∀i ∈ I for their derivation,

to a similar effect).

The number of variables are then reduced by subbing the equality into the lower bound
constraint as follows: ∑

b∈B

Dt
b,v,iwb − y0 + yi ≥ 0 ∀i ∈ I. (A.8)

As well as into the objective function:

y0 −
∑
i∈I

(pi + p̄i)yi +
∑
i∈I

(pi − pi)(
∑
b∈B

Dt
b,v,iwb − y0 + yi). (A.9)

74



Which can be rewritten as:

y0 +
∑
i∈I

−(pi + p̄i)yi + (pi − pi)(
∑
b∈B

Dt
b,v,iwb − y0 + yi). (A.10)

Which can be rearranged:

y0 +
∑
i∈I

−(pi + p̄i)yi + (pi − pi)yi + (pi − pi)(
∑
b∈B

Dt
b,v,iwb − y0). (A.11)

Then simplified:

y0 +
∑
i∈I

[
− (p

i
+ p̄i)yi + (pi − pi)(

∑
b∈B

Dt
b,v,iwb − y0)

]
. (A.12)

Further, factor out the extra y0, since sum pi is just 1 and y0 is constant:

y0 −
∑
i∈I

(pi − pi)y0 +
∑
i∈I

[
− (p

i
+ p̄i)yi + (pi − pi)

∑
b∈B

Dt
b,v,iwb

]
,

∑
i∈I

[
p
i
y0 − (p

i
+ p̄i)yi + (pi − pi)

∑
b∈B

Dt
b,v,iwb

]
. (A.13)

The final set of robust constraints which replace constraints (2.2) in the nominal model,
look as follows:

∑
i∈I

[
p
i
y0,v − (p

i
+ p̄i)yi,v + (pi − pi)

∑
b∈B

Db,v,iwb

]
≥ Lv ∀v ∈ VT ,∑

b∈B

Db,v,iwb − y0,v + yi,v ≥ 0 ∀i ∈ I,∀v ∈ VT ,

y0,v URS ∀v ∈ VT ,
yi,v ≥ 0 ∀i ∈ I,∀v ∈ VT .
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Appendix B

Island Restriction Constraints
Relaxation Example

In each iteration of branch and bound, a relaxed linear program (LP) version of the MIP
is solved. Both sets of island constraints produce the same feasible set of x, within that
relaxation, however, the version in Boland et al. (2004) leads to infeasibility when the l or
r values are rounded, or branched on, making it harder for the solver to find the associated
feasible solutions.

We demonstrate this problem on a set of feasible relaxations for a row of a |K| = 9
column MLC setup.

Proposed Island Removal Boland et al. (2004) Island Removal
k 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
L .9 .9 .9 1 1 1 1 1 1 .9 0 0 .1 0 0 0 0 0 0 -
R 1 .9 .9 .9 .8 .7 .6 .5 .4 - 0 .1 0 0 .1 .1 .1 .1 .1 .4
x .9 .8 .8 .9 .8 .7 .6 .5 .4 - .9 .8 .8 .9 .8 .7 .6 .5 .4 -

If we round both solution spaces, (we assume .5 is rounded up) we get 2 very different
solutions.

Proposed Island Removal Boland et al. (2004) Island Removal
k 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
L 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 -
R 1 1 1 1 1 1 1 1 0 - 0 0 0 0 0 0 0 0 0 0
x 1 1 1 1 1 1 1 1 0 - 1 1 1 1 1 1 1 1 0 -
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Note, that in the first island removal plan, solutions are internally consistent and propa-
gation of constraint changes leads to feasible systems. In the case of the Boland et al. (2004)
island constraints, the right hand constraints now violate the initial problem, as they no
longer sum to 1, so the solver will have to find a new solution with which to branch on.
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Appendix C

Further 1D Results

C.1 RFMO 1D Results

The results from the M-FMO model, as expected did not behave well under uncertainty.
To address this behaviour, the M-RFMO model addresses the uncertainty, as shown in
Figure C.1c. While the beamlet intensities in Figure C.1a and the nominal dose distribution
in Figure C.1b looks similar to the M-FMO model results previously shown in Figure 4.2c,
the non-nominal results in Figure C.1c set them apart, as there is no under-dosing of the
clinical target volume (CTV), even in the worst case realization of uncertainty.

(a) Beamlet intensities (b) Robust nominal (c) Robust non-nominal

Figure C.1: RFMO model run on the 1D phantom. Figure (a) is intensities. Figures (b),
(c) both show the prescribed dose in blue. The nominal realization is depicted in (b) in
red, whereas the non-nominal realization is depicted in green in (c).
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C.2 DAO 1D Results

(a) One aperture intensity (b) One aperture, nominal (c) One aperture, non-nominal

(d) Two aperture intensities (e) Two apertures, nominal (f) Two apertures, non-nominal

Figure C.2: DAO models with 1 and 2 apertures run on the 1D phantom. Parts (a) and
(d) show segment intensities. Figures (b), (c), (e) and (f) show the prescribed dose in blue,
along with its realized dose in red (for nominal) and green (for non-nominal).
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C.3 RDAO 1D Results

(a) One aperture intensity (b) One aperture, nominal (c) One aperture, non-nominal

(d) Two aperture intensities (e) Two apertures, nominal (f) Two apertures, non-nominal

Figure C.3: RDAO models with 1 and 2 apertures run on the 1D phantom. Parts (a) and
(d) show segment intensities. Figures (b), (c), (e) and (f) show the prescribed dose in blue,
along with its realized dose in red (for nominal) and green (for non-nominal).
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Appendix D

Warm Start Pre-Post Heuristic
Aperture

A single aperture example of a warm-start as depicted in the low fidelity C++ output.
The aperture changes places in the final plan, based on its total value, since the algorithm
is compatible with the no symmetry constraints, and the apertures must be distributed, as
only one aperture per angle is feasible in the final plan. Within the apertures the symbol
“M” represent a beamlet at the highest intensity in that particular beam, while “x” is any
lower value.

The heuristic is demonstrated first on a case with free vertical placement (Section D.1),
then on a case with no vertical gaps (Section D.2).
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D.1 Free Vertical Aperture

[Warm start, pre-heuristic]

Aperture 3, Angle 1 (Max 50.36)

-----------------------------------

1:

2: MM

3: MMM

4: MMM

5: M

6:

7:

8:

9: MMM

10: MMM

11: M M

12: MMM

13: MM

14: MM

15: MM MM

16: MMM

17: M

18: MM

19: MMMMM

20: MMMM

21: MMMM M

22: MM MMM

23: MM

24: Mx

25: MM

26: MM

27: MMx

28: MM MM

29: MMM

30: MM M

31: MMM

32: MMM

33: MM M

34: MMMM

35: MMM

36: MM

37:

38:

39:

40:

[Warm-start, post-heuristic]

Aperture 1, Angle 1 (Max 50.36)

-----------------------------------

1:

2: MM

3: MMM

4: MMM

5: M

6:

7:

8:

9: MMM

10: MMM

11: MMM

12: MMM

13: MM

14: MM

15: MMMMM

16: MMM

17: M

18: MM

19: MMMMM

20: MMMM

21: MMMMMMMM

22: MMMMMMMM

23: MM

24: MM

25: MM

26: MM

27: MMM

28: MMMMMM

29: MMM

30: MMMMMM

31: MMM

32: MMM

33: MMMM

34: MMMM

35: MMM

36: MM

37:

38:

39:

40:
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D.2 Restricted Vertical Aperture

[Warm start, pre-heuristic]

Segment 1, Angle 2 (Max 82.07)

-----------------------------------

1:

2:

3:

4: MM

5: MMM

6: Mx

7:

8: M

9: MMM

10: MMM

11: M

12: MMM

13: MM

14: MMM

15: MMM MM

16: MMM

17: M Mx

18: MM

19: x MM

20: MMM

21: M MMM

22: MMx MMM

23: MM

24: MM

25: MM

26: MMM

27: MMM

28: MMM

29: M MMMM

30: Mx MMMM

31: MMM MM

32: MMM

33: M M

34: MMM

35: MMM

36: MM

37: MM

38: MM

39:

40:

[Warm-start, post-heuristic]

Segment 6, Angle 2 (Max 82.07)

-----------------------------------

1:

2:

3:

4: MM

5: MMM

6: MM

7: M

8: M

9: MMM

10: MMMM

11: M

12: MMM

13: MM

14: MMM

15: MMMMMM

16: MMM

17: MMMMMMM

18: MM

19: MMMM

20: MMM

21: MMMMMMMM

22: MMMMMMMMM

23: MM

24: MM

25: MM

26: MMM

27: MMM

28: MMM

29: MMMMMMM

30: MMMMMMM

31: MMMMMMM

32: MMM

33: MMM

34: MMM

35: MMM

36: MM

37: MM

38: MM

39:

40:
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