
Simulation of Hydraulic Stimulation: Acoustic Wave Emission

in Fractured Porous Media Using Local

and Global Partition-of-Unity Finite Element

By

Mohammad Komijani

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Civil Engineering

Waterloo, Ontario, Canada, 2018

c© Mohammad Komijani 2018



.

Examining committee membership

The following served on the Examining Committee for this thesis. The decision of the Exam-

ining Committee is by majority vote.

External Examiner Dr. Thomas-Peter Fries

Professor and Head of the Institute of Structural Analysis,

Graz University of Technology

Supervisor Dr. Robert Gracie

Associate Professor, Department of Civil and

Environmental Engineering, University of Waterloo

Internal Member Dr. Sriram Narasimhan

Professor, Department of Civil and

Environmental Engineering, University of Waterloo

Internal Member Dr. Shunde Yin

Associate Professor, Department of Civil and

Environmental Engineering, University of Waterloo

Internal-external Member Dr. Maurice Dusseault

Professor, Department of Earth and

Environmental Sciences, University of Waterloo

ii



.

Author’s declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



.

Abstract

Hydraulic Fracturing (HF) is an effective stimulation process for extracting oil and gas from

unconventional low-permeable reservoirs. The process is conducted by injecting high-pressure

fluids into the ground to generate fracture networks in rock masses and stimulate natural frac-

tures to increase the permeability of formation and extract oil and gas. Due to the multiple-

and coupled-physics involved, hydraulic fracturing is a complex engineering process.

The extent of the induced fractures and stimulated volume and reactivation of natural faults

and fractures are some of the practical issues associated with hydraulic fracturing. Acoustic

Emission (AE) monitoring and analysis are used to probe the behaviour of solid materials in

such applications. The process of elastic wave propagation induced by an abrupt local release

of stored strain energy is known as acoustic, microseismic, and seismic emission (depending on

the context and the magnitude of the event). These emissions can be triggered by material

bifurcation-instabilities like slope slipping, fault-reactivation, pore collapsing, and cracking -

processes that are all categorized as localization phenomena.

The microseismic monitoring industry attempts to relate acoustic emissions measured by

geophones to the nature of the stimulated volume created during hydraulic fracturing. This

process is full of uncertainties and researchers have not yet focused on both explicitly modeling

the process of fracture reactivation and the accurate simulation of acoustic wave propagations

resulting from the localization. The biggest gap in the modeling literature is that most of the

previous works fail to accurately simulate the process of transient acoustic wave propagation

through the fractured porous media following the elastic energy release. Instead of explicitly
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modeling fracturing and acoustic emission, most previous studies have aimed to relate energy

release to seismic moment.

To overcome some of the existing shortcomings in the numerical modeling of the coupled

problem of interface localization-acoustic emission, this thesis is focused on developing new com-

putational methods and programs for the simulation of microseismic wave emissions induced by

interface slip instability in fractured porous media. As a coupled nonlinear mixed multi-physics

problem, simulation of hydraulic stimulation involves several mathematical and computational

complexities and difficulties in terms of modeling, stability, and convergence, such as the inf-sup

stability problems that arise from mixed formulations due to the hydro-mechanical couplings

and contact conditions. In AE modeling, due to the high-frequency transient nature of the

problem, additional numerical problems emerging from the Gibbs phenomenon and artificial

period elongation and amplitude decay are also involved.

The thesis has three main objectives. The first objective is to develop a numerical model

for simulation of wave propagation in discontinuous media, which is fulfilled in Chapter 2 of

the thesis. In this chapter a new enriched finite element method is developed for simulation

of wave propagation in fractured media. The method combines the advantages of the global

Partition-of-Unity Method (PUM) with harmonic enrichment functions via the Generalized Fi-

nite Element Method (GFEM) with the local PUM via the Phantom Node Method (PNM).

The GFEM enrichments suppress the spurious oscillations that can appear in regular Finite

Element Method (FEM) analysis of dynamic/wave propagations due to numerical dispersions

and Gibbs phenomenon. The PNM models arbitrary fractures independently of the original

mesh. Through several numerical examples it has been demonstrated that the spurious oscil-

lations that appear in propagation pattern of high-frequency waves in PNM simulations can

be effectively suppressed by employing the enriched model. This is observed to be especially

important in fractured media where both primary waves and the secondary reflected waves are

present.
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The second objective of the thesis is to develop a mixed numerical model for simulation

of wave propagation in discontinuous porous media and interface modeling. This objective

is realized in Chapter 3 of the thesis. In this chapter, a new enriched mixed finite element

model is introduced for simulation of wave propagation in fractured porous media, based on

an extension of the developed numerical method in Chapter 2. Moreover, frictional contact at

interfaces is modeled and realized using an augmented Lagrange multiplier scheme. Through

various numerical examples, the effectiveness of the developed enriched FE model over conven-

tional approaches is demonstrated. Moreover, it is shown that the most accurate wave results

with the least amount of spurious oscillations are achieved when both the displacement and

pore pressure fields are enriched with appropriate trigonometric functions.

The third objective of the thesis is to develop computational models for the simulation of

acoustic emissions induced by fracture reactivation and shear slip. This objective is realized in

Chapter 4 of the thesis. In this chapter, an enriched mixed finite element model (introduced

in Chapter 3) is developed to simulate the interface slip instability and the associated induced

acoustic wave propagation processes, concurrently. Acoustic events are triggered through a

sudden release of strain energy at the fracture interfaces due to shear slip instability. The

shear slip is induced via hydraulic stimulation that switches the interface behaviour from a

stick to slip condition. The superior capability of the proposed enriched mixed finite element

model (i.e., PNM-GFEM-M) in comparison with regular finite element models in inhibiting

the spurious oscillations and numerical dispersions of acoustic signals in both velocity and

pore pressure fields is demonstrated through several numerical studies. Moreover, the effects

of different characteristics of the system, such as permeability, viscous damping, and friction

coefficient at the interface are investigated in various examples.
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Chapter 1

Introduction
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In this chapter, an overview of hydraulic fracturing and acoustic emission modeling has

been provided. Different numerical methods for simulation of discontinuity and propagation of

fractures have been briefly introduced and discussed, followed by introduction of different time

integration methods for dynamic analysis. Subsequently, different crack instability criteria and

simulation methods have been explained along with interface modeling schemes. Numerical

methodologies for coupled hydro-mechanical simulation of fractured formations and induced

acoustic emissions have been discussed. In the last stage, research motivations, objectives, and

methodologies used to carry out the research have been elaborated.
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1.1 An introduction to Hydraulic Fracturing and induced

Acoustic Emission analysis and simulation

Extracting oil and gas from unconventional low permeable reservoirs has gained a lot of in-

terest for about a decade due to the significant development in the technology, especially the

possibility of drilling horizontal wells in formations. In conventional shale reservoirs oil and

gas migrate from the main source to more permeable limestone and sandstone formations and

therefore they are more convenient to extract. But in unconventional reservoirs oil/gas are

trapped in low permeable formation and therefore cracking is required for the extraction.

The natural oil and gas industry has been revolutionized by horizontal well drilling tech-

nologies that have significantly contributed to the efficiency and possibility of gas extraction

from shale. The natural gas domestic production of the United States has been increase from

65 % to 95 % in 2011 [3]. It is estimated that by 2035 US shale gas production will comprise

46 % of the total natural gas production worldwide [4]. Canada is the third largest producer

and the second largest exporter of natural gas according to the Government of Alberta [5].

Due to the complex multiple physics involved, the process of extracting oil and gas from

shale rocks is one of the most complicated engineering challenges but offers the prospect of cheap

and reliable supply of energy for the next decades [1]. The process of hydraulically stimulating

tight formations such as shales by increasing their permeability through making networks of

discontinuity (i.e., cracks) in them is called Hydraulic Fracturing (HF) [1]. The production of

natural gas and oil can be stimulated by pumping in huge amount of high pressure fluid to

increase the permeability of the formation by cracking and thereby easing the transport of the

trapped oil and gas.

The development of effective engineering solutions for more efficiently extracting gas and

oil from unconventional low permeable reservoirs is partially dependent on availability of reli-
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able numerical models and softwares that can simulate the process of hydraulic fracturing from

crack network generation to micro-seismicity (MS) emission due to cracking and/or activation

of weak discontinuities and reactivation of natural fractures due to pressurizing. Many envi-

ronmental concerns exist about the process of hydraulic fracturing, including the extent of the

development of the induced hydraulic fractures and reactivation of the pre-existing cracks due

to pressurizing that can alter the pattern of the in-situ stresses and pore fluid pressure [129].

All the mentioned issues necessitate more detailed investigation of the process of HF through

developing more accurate computational programs that can accommodate more of the compli-

cated/coupled mechanics of the problem.

The main problem in developing accurate simulators for HF is the significant amount of un-

certainties that are involved. Many models have been introduced for HF over past few decades

that either include many remarkable simplifications or focus on few aspect of the problem

(toughness or viscosity dominated crack propagation, material inhomogeneity and anisotropy,

poroelastic coupling, etc.). Moreover, the scarcity of the field data such as in-situ stress is

another complicated limitation [1]. The environmental risks of the shale gas development has

been quantified in [2] based on integrated assessment models.

Different coupled mechanics and physics involved in modeling HF in a porous media include:

the viscous flow of the driving fluid within the hydraulic fracture, the flow of the pore fluid in

the formation, the deformation of solid skeleton of the porous media around the fracture, the

leak-off of the hydraulic fluid from the fracture to the surrounding porous media, propagation

of the strong discontinuities due to the change of the stress pattern in the form of crack and/or

shear band propagation, and microseismic emission due to fracturing and fault reactivation

[127]. To define the problem of interest in this research, a schematic picture of a typical frac-

tured formation under hydraulic fracturing/stimulation and induced acoustic emission has been

exhibited in figure 1.1.
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Fig. 1.1: A schematic figure of a typical fractured formation under hydraulic fractur-
ing/stimulation and induced acoustic emission.

One of the biggest challenges in the simulation of hydraulic fracturing is the hydro-mechanical

coupling between the fluid flow within the fracture with the pore fluid flow in surrounding me-

dia and deformation of the solid skeleton. The prescribed couplings result in a system of fully

coupled differential equation from different physics and scales [127]. The convergence, stabil-

ity, and accuracy of the solution can involve many practical challenges in large scale problems

specially when nonlinear effects such as contact forces and complex constitutive relations and

deformations are included [43]. Some other phenomena can contribute to the complexity and

practical limitations of the problem. For instance, the leak off between the fracturing fluid and

the surrounding pore pressure can be very challenging to model as many stochastic events can

affect its behaviour [6]. Moreover, the lack of field data typically makes the problem much more

complicated. Another challenging aspect is the lag between fluid front and the fracture front in

the propagation process and how to model it. Besides, different asymptotic fields and singular

behaviours near crack tip need to be accounted for to come up with more accurate results [48].

The problem of microseismic emission due to dynamic fracturing or slope instability (which

is attributed to release of strain energy) is of great importance in probing the behaviour of
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solids and geological formations. This part of HF stimulation has not been well treated in the

open literature to date, and has not been dealt with very clearly, specifically, and accurately

from the continuum mechanics and elastodynamics point of view [71].

Transient wave emission happens in the process of shear rupturing and tensile fracturing

due to localization and release of strain energy [139]. Although several numerical models have

been developed to model failure processes, only a limited number of works investigate acoustic

wave emission phenomenon and still most of them suffer from very significant simplifications

and assumptions that can result in inaccurate data and loss of important mechanics [71]. In

fact acoustic emission is a high-frequency transient mechanical wave that is attributed to the

abrupt release of energy due to failure [63]. Seismic (or microseismic) emission in geomaterials is

triggered due to localization behaviour, fracturing, and sliding of preexisting natural fractures

and fault surfaces along each other. The damage evolution characteristics can be evaluated

based on the measurement of wave emission by developing correlations between the source of

seismicity (damage behaviour) and the acoustic wave captured at particular points (geophone

locations) [132].

Developing a continuum mechanics-based model, that can more realistically and accurately

simulate stimulation and propagation of mechanical waves in porous media, can be very promis-

ing in prediction and analysis of HF induced seismicity that is deemed a big environmental and

safety concern in the fracking industry [1]. Improved simulations can provide great insight into

the relationship between MS and HF. Also, seismic and acoustic analysis can be very effective

tools for improving understanding about various characteristics of the fracture network evolu-

tion through the stimulation processes. Acoustic emissions can be detected and recorded via

geophones that are located through the field near the ground surface. Many valuable informa-

tion about the stimulated zone (e.g., damage evolution and fault reactivation characteristics and

location) can be obtained through conducting inverse analysis on the recorded signals [63, 66].
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1.2 Numerical Methods for crack modeling

An important portion of HF simulation is to model fractures (both stationary and evolving)

in a continuum media. Different numerical schemes can be used to model strong discontinuity

(crack) in problems. Here a brief introduction is provided about different numerical methods

that have been used in the scope.

1.2.1 The Element Deletion Method

The Element Deletion Method (EDM) is the simplest method of modeling crack propagation

in the context of regular/conventional FEM. Some commercial softwares such as LS-DYNA

[16]remove the mass of the damaged elements that no longer have load bearing potential. In

this method the damaged/fractured area is modeled by deleting elements and there is no need for

explicitly representing a strong discontinuity in the domain. In EDM the deleted elements have

zero stress and zero material resistance. There is a spurious mesh dependency involved in the

nature of this method as the released energy due to deleting an element depends on the element

size. In this method, the constitutive damage equation is scaled to reduce the mesh dependency

of the energy release due to element deletion [17]. The energy dissipation in the element based

on the elastic-softening constitutive model is then equated to the fracture energy required for

propagation of the crack through the element. No information about the element orientation

and shape is included in the analysis which is a drawback in the method. Nevertheless, the

EDM is used in some applications because of the simplicity of the implementation.

1.2.2 Boundary Element Method

The Boundary Element Method (BEM) has been first introduced in the pioneering work of

Cruse and Rizzo [13] for elastodynamics problems. The main advantage of BEM over FEM

is that the discretization is needed to be implemented only on the boundaries that will result

in a reduction in dimensionality of the problem. Besides, in BEM very accurate solutions can

be obtained due to including a mathematical representation of the physics involved through a
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fundamental solution. However, there is a very important practical setback in using BEM and

it is the need of having a Fundamental Solution (FS) that represents the response of infinite

domain of material under point force. The application of BEM may be infeasible in problems

where the FS is not known. Crack propagation problem has been investigated in the framework

of the BEM in [14].The maximum stress is considered as crack tip stability criteria. The cohesive

crack models have also been implemented in the context of BEM by consideration of additional

boundary elements for cohesive fictitious crack tip region that satisfies the softening constitutive

separation-traction law [15]. However, in this method the crack path needs to be known a priori.

1.2.3 The Interelement Crack Method

In the interelement crack methods the discontinuity in the domain due to cracks is modeled

by displacement jump along element edges. The crack trajectory is restricted to inter-element

bounds and therefore the problem of mesh dependence of the solution and/or requirement for

continuous remeshing may arise. Two main categories exist based on this approach. In the

methodology proposed by Xu & Needleman [18] the elements are considered separated from the

beginning. The interelement edges are connected via cohesive traction-separation forces. On the

other hand, Ortiz & Camacho [19] introduced a modified approach in which the separation of the

elements at edges may happen only when the nucleation criteria is met. After fragmentation

an explicit frictional contact model is used to solve the multibody elastodynamics problem.

This method has been shown to be adaptable in simulating crack nucleation and branching

[17]. However, the main shortcoming of this method is the restriction of the crack path to the

interelement edges which contributes to the mesh-dependency of the method. The problem of

mesh-dependency can be rectified to some extent by using classical finite element approaches

that employ automatic mesh generation, however, the process of continuous re-meshing during

crack propagation can be computationally expensive and rather slow.
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1.2.4 The eXtended Finite Element Method

To overcome the shortcoming of the conventional finite element methods and to avoid the bur-

den of the need for continuous remeshing in the process of crack propagation, based on the

general concept of the Partition-of-Unity Finite Element Method (PUFEM) developed in the

pioneering work of Melenk and Babuška [20], the idea of locally enriching the conventional finite

element approximation with additional functions for modeling discontinuity within the element

has been developed by Belytschko and Black [24] and Moës, Dolbow, and Belytschko [26] set-

ting up the framework of the eXtended Finite Element Method (XFEM). In this method, the

elements that are fully cut by a discontinuity are enriched using a step (or Heaviside) function

enabling sudden jumps in displacement fields within elements.

To embed the singularity of the stress field at the crack tip zone in the framework of the linear

elastic fracture mechanics, and to satisfy the zero-opening/jump condition at the crack tip of

the elements that are partially cut by a discontinuity, some asymptotic type enrichment basis

functions are used in the displacement interpolation of the elements in which the crack tip is

located inside the element [26]. The distinction between the XFEM and the GFEM (Generalized

Finite Element Method) is ambiguous in the literature; at their core, both methods are identical

as they involve using local and/or global enrichment of a finite element basis [27]. In this

research, the term XFEM will be used to refer to a FEM locally enriched with the Heaviside

step function to model the discontinuities of fractures and so would include the GFEM model

of Gupta et al. [28]. The term GFEM will be reserved for global enrichment using harmonic

functions.

1.2.5 Phantom Node Method

Phantom Node Method (PNM) is an XFEM variant in which a cracked element is represented

by superposition of two intact elements with original real and additional fictitious/phantom

nodes [29], as schematically illustrated in Figure 1.2. PNM formulation can be reached by rear-
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Fig. 1.2: Decomposition of a cracked element into two superimposed paired elements with
original real and additional phantom nodes in the PNM. Original real nodes and additional
phantom nodes are shown by solid and hollow circles, respectively.

rangement of XFEM element interpolations with step function enrichment [30]. The Phantom

Node Method was proposed in [29] to model discontinuities and is essentially the same as the

earlier method proposed by Hansbo and Hansbo [31] for modeling strong and weak disconti-

nuities inside an element. Each of the superimposed elements is used to model a different side

of the original fractured element, leading to a discontinuous approximation for displacement

field. The advantage of the Phantom Node formulation over that of the original XFEM is that

an implementation of the PNM requires fewer modifications to an existing FEM code than

a comparable XFEM implementation [29]; however, in principle the two formulations should

yield equivalent results for small displacement analysis [32]. It is noted that most XFEM codes

have also crack-tip enrichment functions. As such, the PNM is similar to an XFEM with pure

jump enrichment.

In the context of the PNM, the discontinuous variable (e.g., displacement filed, u) in a

cracked element is interpolated through the following distribution function:

u(x, y) = H(−f(x, y))
∑
I∈S1

(
NI(x, y)uI

)
+H(f(x, y))

∑
I∈S2

(
NI(x, y)uI

)
(1.1)

where NI is the shape function for node I and uI denotes the associated real or phantom degree

of freedom. f(x, y) is the level set function to locate the fracture, in the way that f(x, y) = 0

specifies the fracture surface. H(·) is the Heaviside function [32], and S1 and S2 are the sets of

original real and additional phantom nodes associated with the superimposed elements 1 and

2, respectively, as shown in Figure 1.2.
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1.2.6 Discrete Element Method

The discrete Element Method (DEM) was first developed for particle-like materials such as

rocks. The method is based on modeling the interaction of blocks/elements using contact

forces and was proposed by Cundall and Hart [38]. Normal contact stiffness accounts for nor-

mal interaction and inter-penetration constraint and shear contact stiffness is introduced into

the formulation to allow for rotation of blocks [71]. The main problem that can arise in DEM

is the contact detection between all neighboring elements. Inspection of all the elements for

the potential contact requires huge amount of calculation and the computational burden can

be prohibitive in large scale problems [17]. Body based search is the most common algorithm

to search for possible contact conditions in the vicinity of a given discrete element. The search

algorithm need to be repeated after a number of iterations to check whether or not the inter-

active elements are still in contact [1].

After detection of contacts the next step is to determine contact forces. The Penalty Method [43]

is usually used to specify the interpenetration and associated contact forces. However, Lagrange

Multiplier-based methods [124, 123] are more accurate because they can exactly satisfy the

normal geometric penetration constraint through introduction of a new unknown parameter

representing contact force between discontinuous faces. Simulation of crack propagation in

DEM is very similar to the Interelement Crack Method [19]. In DEM crack growth trajectory

is mostly confined to interfaces of elements. Damage evolution is simulated through debonding

of links between elements. The main shortcoming of DEM is the mesh dependency of the

algorithm [17] and restriction of the crack path to interfaces of elements that can affect the

possibility of shear failure modeling [71], shear band propagation simulation and determination

of actual crack path.
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1.2.7 Phase Field Method

Discrete crack models (e.g., XFEM, interelement method, etc) are very commonly-used in frac-

ture simulations. In all these methods cracks are treated as strong discontinuities in the domain

and are modeled through consideration of displacement jump at element edges or introducing

step function-type enrichments in the framework of the local PUFEM. Tracking the discrete

discontinuities has been proven to be very burdensome and tedious [17], in three-dimension, in

particular.

Recently, a new alternative branch has been introduced and developed based on specifying a

damaged area in the domain via a phase-field function that denotes the extent of the damaged

zone and smooths the boundary of the crack over a small zone [39]. The magnitude of the

phase-field functions changes gradually over the domain which implies a spacial variation from

fully damaged to undamaged state. Hence, there is no need to specify discontinuity in displace-

ment field of the domain to model crack evolution [40]. In this method the fracture energy is

approximated using the phase-field function over the domain and the total Lagrangian energy

functional of the system is represented in the form of the contributions of kinetic energy, elastic

energy, and fracture energy [41]. The mentioned Lagrangian energy is represented in terms of

the displacement field and the phase field. Afterwards, the Euler-Lagrange equations are used

to arrive at the strong form equations of motion. Then the developed equations can be solved to

obtain the displacement field as well as the phase field. The distribution of the phase-field value

over the domain represents the extent/location of the fractures. The value of this phase-field

is equal to unity away from the crack and is equal to zero at the core of the crack [41].
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1.3 Numerical Time integration methods

In the preceding section different numerical methods and strategies have been introduced and

discussed for crack simulation. In the numerical simulation using discrete methods the spa-

tial domain is typically discretized using interpolation functions resulting to semi-discretized

algebraic equations as below

[M ]
{

∆̈
}

+ [C]
{

∆̇
}

+ [K] {∆} − {F} = 0 (1.2)

where [M ], [C], and [K] are inertia, damping, and stiffness matrices, and {∆} and {F} are the

vector of unknowns and force vector, respectively.

Due to the time dependency of the discrete nodal values a time integration method needs to be

implemented. Different methods have been proposed and used over years for time integration.

In general, time integration methods can be divided into two categories; Explicit and implicit

schemes. A time integration is implicit if its solution process requires a factorization of an

’effective stiffness’ [74] and is explicit otherwise.

Each type of integration has its own advantages and disadvantages. The main advantage of

explicit time integration is that in general less computational effort is needed compared to

implicit methods especially when diagonal mass, i.e. lumped mass, is considered in which the

coupled system of algebraic equations reduce to fully decoupled one-by-one equations that does

not require any matrix inversion in the solution process [82]. Besides, in nonlinear problems,

explicit methods do not require iterative schemes, such as Picard or Newton-Raphson method

for each time step, and the converged solution of the vector of unknowns in each time step can

be concluded in only one iteration by explicitly integrating the second-order time derivative of

the vector of unknowns [74].

It is noted that the accuracy of the nonlinear solution in explicit methods is another issue that
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needs to be considered separately. However, explicit time integrations always requires a specific

maximum amount for time step size for the solution to be stable [83]. In general, the biggest

advantage of implicit time integration is its unconditionally stable characteristic. However, in

some cases (especially in the problems that involve steep gradients, such as wave propagation)

very small time steps are needed for accuracy [32]. In those problems, because of the necessity

of small time increments from physical point of view, implicit time integrations are not worth

their computational cost. Therefore, in wave propagation problems explicit time integration

are of more interest.

Here, for the sake of completeness, we represent some of the commonly used time integration

methods:

1.3.1 Temporal element method

Finite difference-based time integration methods are based on truncation of Taylor series expan-

sion for displacement, velocity, and acceleration and finding the results using time marching.

The finite element approach has been used for discretization over time in a similar fashion as

spatial discretization [87]. Different approaches have been used for finite element discretization

over time using different types of interpolation functions. Here, a weighted residual temporal

element method is explained based on the finite element discretization.

The semi-discretized finite element equations can be developed based on finite element

analysis over spatial domain [87]. To discretize the mentioned equations (Eq. 1.2) over time

using temporal finite elements the weighted residual method is employed as below:

∫ ti+1

ti−1

W
(

[M ]
{

∆̈
}

+ [K] {∆} − {F}
)
dt = 0 (1.3)

where W is a weight function.

A three-node one-dimensional temporal element with quadratic shape functions is used to

interpolate the variables and forces over time. The mentioned parameters are interpolated over
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time using the nodal values of the preceding, current, and the next time step. The nodal values

and force vector are interpolated as:

{∆} = Ni−1 {∆i−1}+Ni {∆i}+Ni+1 {∆i+1} (1.4)

{F} = Ni−1 {Fi−1}+Ni {Fi}+Ni+1 {Fi+1} (1.5)

where the subscripts i − 1, i, and i + 1 represent the previous, current, and next time step,

respectively.

The quadratic finite element interpolation functions are:

Ni−1 = −0.5(r)(r − 1), Ni = (r + 1)(r − 1), Ni+1 = 0.5(r)(r + 1) (1.6)

where

r =
t− ti
∆t

, ti−1 ≤ t ≤ ti+1 (1.7)

Using the chain rule, the second order derivative of the vector of unknowns can be obtained

according to (1.4):

{
∆̈
}

=
1

(∆t)2
(∆i−1 − 2∆i + ∆i+1) (1.8)

Substituting (1.4) and (1.8) into the element level weighted residual form of the semi-discretized

motion equation (i.e., Eq. (1.3)) and integrating over time, one can come up with the fully

discretized motion equation as:

[M + λK∆T 2] {∆i+1} = [2M − (0.5− 2λ+ γ)K∆T 2] {∆i}+

[−M − (0.5 + λ− γ)K∆T 2] {∆i−1} − (0.5 + λ− γ)∆T 2 {Fi−1}−

(0.5− 2λ+ γ)∆T 2 {Fi} − λ∆T 2 {Fi+1} (1.9)
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where

λ =

∫ 1

−1
0.5Wr(r + 1)dr∫ 1

−1
Wdr

, γ =

∫ 1

−1
0.5W (r + 0.5)dr∫ 1

−1
Wdr

(1.10)

As can be seen in (1.9), the fully-discretized equation of motion is developed in the form of

a factorization of an effective stiffness. Therefore, the temporal element method is basically an

implicit time integration scheme, and the nodal values of the next time step can be determined

through the solution of a linear system of equations based on the converged values of the current

and the previous time steps.

1.3.2 Newmark’s implicit integration

In the Newmark’s family of time integration the variables and their time derivatives are ap-

proximated as [88]:

{∆}i+1 = {∆}i + ∆t
{

∆̇
}
i
+

1

2
∆t2

{
∆̈
}
i+γ{

∆̇
}
i+1

=
{

∆̇
}
i
+ ∆t

{
∆̈
}
i+α{

∆̈
}
i+α

= (1− α)
{

∆̈
}
i
+ α

{
∆̈
}
i+1

(1.11)

α and γ are the parameters that determine stability and accuracy of the method. The ordinary

semi-discretized equations of motion (Eq. 1.2) can be reduced to algebraic fully-discretized

equations by making use of (1.11).

[K̂]i+1 {∆}i+1 =
{
F̂
}
i,i+1

(1.12)

where

[K̂]i+1 = [K]i+1 + a3[M ]i+1, (1.13){
F̂
}
i,i+1

= {F}i+1 + [M ]i+1 {A}i , Ai = a3 {∆}i + a4

{
∆̇
}
i
+ a5

{
∆̈
}
i

(1.14)

16



Parameters that appear in the above equations are defined as:

a1 = α∆t, a2 = (1− α)∆t, a3 =
1

β∆t2
, a4 = a3∆t, a5 =

1

γ
− 1, γ = 2β (1.15)

As seen, the Newmark’s time integration procedure requires a factorization of an effective

stiffness matrix, i.e. K̂, and therefore the scheme is an implicit time integration method [74].

1.3.3 Central difference explicit method

As mentioned before, a time integration method is implicit if its solution process results in a

factorization of an effective stiffness matrix. Otherwise, it is called explicit. Among all explicit

time integrations, the ”central difference method” is still very widely-used in dynamic analysis

of vast variety of problems. Central difference method has the largest time increment stability

limit of any second-order accurate explicit method [83]. Unlike implicit methods, in explicit

schemes the time integration process is performed explicitly starting from the values of the

acceleration vector. The acceleration is obtained form the solution of the following equation

[M ]
{

∆̈i

}
=
{
F ext

}
i
−
{
F int

}
i

(1.16)

Once the second time derivative of the unknown vector is obtained for the current time step, the

first order derivative vector (velocity) in the half step may be calculated through direct/explicit

integration in the framework of the central difference method [25]:

{
∆̇
}
i+1/2

=
{

∆̇
}
i
+ (ti+1/2 − ti)

{
∆̈
}
i

(1.17)

Subsequently, the unknown vector (displacement) can be evaluated in the next time step in

terms of the half-step velocity obtained in the preceding stage.

{∆}i+1 = {∆}i + (ti+1 − ti)
{

∆̇
}
i+1/2

(1.18)
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Hence, the vector of unknown parameters of the problem may be evaluated at each time step via

a direct integration from the second order time derivatives. In the case in which diagonal mass

matrix is used, there is no need to solve any system of equations as a fully-decoupled system

would be developed in (1.16). However, the mentioned central difference explicit method is

only conditionally stable. The critical time step (for undamped systems) is calculated through

an eigen-value procedure over (1.16) as follows [25]:

∆tcritical = 2/ωmax, (1.19)

where ωmax is the maximum natural frequency of the semi-discretized system of motion equation

that can be calculated from the standard eigenvalue procedure.

1.3.4 Dissipative explicit methods

The central difference explicit method is a non-dissipative scheme [74]. Therefore, the numeri-

cal simulation may be very inaccurate because of the dispersion error created by high-frequency

modes. To treat this problem, many dissipative time integrations have been introduced and

used in order to numerically damp the high-frequency oscillations [82]. The main challenge in

developing the dissipative time integration methods is that the numerical damping/dissipation

of the scheme needs to be large enough to reduce the spurious oscillations in high frequency

modes, and concurrently, be able to maintain good accuracy of low-frequency range [83].

Noh and Bathe [83] recently introduced a new two-step dissipative explicit time integration

method for the solution of wave problems. They show that by consideration of specific values

for integration constants the method has good potential of damping high-frequency modes

while resulting in acceptable accuracy in low-frequency span. In other words, the spectral

radii analysis demonstrates that the proposed time integration results in imposing numerical

dissipation in high-frequency range, while for the low-frequency range the spectral radii remains

close to unity resulting in very little numerical dissipation.
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1.4 Crack propagation conditions

Analytical solution of cracked media based on the concept of the Linear Elastic Fracture Me-

chanics (LEFM) results in asymptotic behaviour in the stress field and singularity of the stress

at the crack tip. Irwin [46] represented that the asymptotic behaviour of stress field at crack

tip is governed by a parameter which depends on the geometry of the crack and the applied

force, named the Stress Intensity Factor (SIF). The SIFs KI , KII , KIII , correspond to three

crack behaviour modes known as mode I (opening), mode II (sliding), and mode III (tearing).

Williams [47] used the Airy stress function to obtain the asymptotic behaviour of the stress

field in the vicinity of the crack tip in polar coordinate system (r, θ) centered at the crack tip.

The Airy stress function satisfying the biharmonic equation (i.e., equilibrium equation) may be

represented as:

Φ = rλ+1 {C1sin(λ+ 1)θ + C2cos(λ+ 1)θ + C3sin(λ− 1)θ + C4cos(λ− 1)θ} (1.20)

Without consideration of any particular boundary condition at crack faces, the basis compo-

nents of the displacement field associated with (1.20) are:

ψu,λ = rλ {sin(λθ), cos(λθ), sin(λ− 2)θ, cos(λ− 2)θ} (1.21)

where λ is a constant power-law parameter.

To produce the asymptotic (i.e., singular) behaviour of the stress field with finite strain energy

in the vicinity of the crack tip, the power-law component has the limitation: 0.5 ≤ λ < 1. For a

traction free crack, λ = 0.5, the enrichment basis (1.21) is equivalent to the classic basis which

is used in regular crack tip enrichment in XFEM [48].

In HF, for the general power-law crack tip asymptotic behaviour with consideration of the effect

of fluid pressure on crack faces in obtaining the constants involved in the stress function (1.20),
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the asymptotic basis functions have been considered to be [48]:

Ψu,λ = rλ {sin(λθ), cos(λθ), sin(λθ)sin(θ), cos(λθ)sin(θ)} (1.22)

The above HF asymptotic basis functions reduce to (1.21) for (λ = 0.5).

λ = 0.5 is associated with a crack in a homogeneous material under the assumption of the clas-

sical linear elastic fracture mechanics. Therefore, in HF literature/terminology it is attributed

to the state of toughness dominated regime, in which the LEFM relations are retrieved with

ignoring the effect of internal crack fluid as boundary conditions on the crack faces in developing

the basis functions. On the other hand, λ =
2

3
is attributed to the state of viscosity dominate

regime in which the applied fluid pressure to the crack faces is in equilibrium with the far field

in-situ stress in normal direction, and the energy dissipation primarily occurs due to flow of a

viscose fluid inside the crack.

The SIF has been widely used as a crack propagation criteria in the context of LEFM [26].

Based on this crack tip stability criterion, crack propagation starts when the mode I SIF due to

external force reaches a critical value which is the fracture toughness that is a material property.

In general, two types of criteria exists for brittle crack tip stability; the first one is point-wise

and the second one is energy-based:

1. Maximum hoop stress: This criteria has been proposed by Erdogan and Shi [49] based

on two main hypotheses:

a. crack propagation originates from the tip in radial direction.

b. The crack propagation direction is perpendicular to the maximum tensile hoop stress

(which is not necessarily the maximum principle stress in the vicinity of the crack tip).
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2. Strain energy release rate: In this criterion, crack propagates when strain energy release

per unit length of crack growth reaches a specific value. The crack extension occurs in a direc-

tion in which the energy release is maximum [51].

The crack propagates when stress intensity factor reaches a particular critical value of material

toughness. This propagation criteria has been extended to the case of orthotropic material in

[50]. In this method an equivalent fracture toughness is developed for anisotropic material as a

function of fracture toughness values along principle axes of orthotropy and the circumferential

angel with respect to the material orientation axis.
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Fig. 1.3: Illustration of the fracture process
zone [43]. Fig. 1.4: Traction-separation relations.

1.5 Cohesive crack model

Linear Elastic Fracture Mechanics (LEFM) is applicable only when the fracture process zone

at crack tip is small in comparison to the size of the specimen [93]. The cohesive crack model

is a simple implementation of lumping the damaged zone at the crack tip area over a line. The

level of damage is represented and modeled by cohesive traction-separation relation (softening

law) which mimics elastic softening damage models.

The cohesive crack model was first proposed by Dugdale [59] and Barenblatt [60]. The cohesive

zone is defined between two crack point/tips named the real crack tip (i.e., physical tip) and

fictitious tip (i.e., mathematical tip). The real crack tip is the point that separates the cohesive

zone from the traction free crack faces and the fictitious tip is the point which is placed at the

cohesive zone tip and separates the cohesive zone from the rest of the un-cracked body [61]. The

cohesive traction at the fictitious tip is equal to the maximum tensile strength of the material

ensuring the nonsingular behaviour of the stress distribution at crack tip area. This is one of

the main motivations in developing the cohesive crack models to avoid non-physical singular

stress magnitude at the tip that arises in LEFM. Figures (1.3) and (1.4) provide schematic

representation of the fracture process zone and different traction-separation laws, respectively.
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The cohesive crack models have been used to simulate crack propagation in different solution

contexts. In some approaches based on the conventional finite element methods the crack ex-

tension is only restricted to the inter-element edges. Cohesive zones are considered between

each two neighboring elements providing the possibility of the simulation of crack extension,

crack branching, and fragmentation (see for instance, [18], [19]). To avoid the requirement for

continuous re-meshing and to model arbitrary discontinuity and extension in a domain, the

cohesive crack model has been extensively implemented in the frame work of local partition of

unity finite element (or XFEM) [61].

Moës et al. developed a computational scheme for modeling crack growth based on cohesive

traction-separation constitutive model in crack tip region in the framework of XFEM [61].

Based on the non-singular stress field at the crack tip field in cohesive zone, instead of point-

wise quantities they used an energetic considerations for crack tip stability behaviour. They

considered that the mode I stress intensity factor vanishes at the mathematical tip (cohesive

zone tip) to ensure the non-singular stress pattern in that area. This way the summation of

the stress intensity factors due to the external load and the cohesive forces are set to zero. The

crack propagation angle, on the other hand, is determined based on the linear elastic fracture

mechanics assumptions, as unlike the load-displacement stability path in crack propagation

problems, the crack path is much less sensitive to the size effect (ductility) [61].

In [61] non-singular asymptotic enrichments have been embedded in the element displacement

interpolations. It has been shown that the load-deflection curve of the fracturing beam has

significant dependency on the fracture energy and size of the specimen (i.e., ductility). It has

been demonstrated that for the specimens with lower ductility number the load deflection path

exhibits very sharp limit-point behaviour; while in the case of more ductile materials (with

larger cohesive zone) the load-deflection path due to crack propagation process is unique and

much more stable. It is mentioned that ductile specimens tend to develop longer cohesive zones

and at the limit when the ductility approaches zero the cohesive zone shrinks to a point (crack
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tip) and in that case the linear elastic fracture mechanics is recovered for very low ductility

numbers (brittle materials). In the mentioned work ([61]) the authors also show that in order to

obtain reasonably smooth results the cohesive length needs to be covered by sufficient number

of elements, otherwise severe oscillations appear in load-deflection (equilibrium) curves in the

case of quasi-static crack propagation analysis.

The numerical model proposed in [61] for modeling crack growth using cohesive model has been

extended in the work of Zi and Belytschko [62] by introducing a new crack tip element. In this

work, all the elements (including the elements containing the crack tip) are enriched only by step

function. Hence, no blending of local partition of unity is required. In the proposed approach

of this work the partially cracked element that contains the crack tip is divided into two parts,

i.e., cracked and un-cracked. To ensure the continuity of the un-cracked part, only the cracked

part is enriched using the signed distance function by allocating the enriched degrees of freedom

only to appropriate nodes.
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1.6 Frictional contact simulation

Many engineering applications involve interface analysis of embedded surfaces. Geological dis-

continuities such as natural fractures and faults are usually under frictional contact condition

between crack faces due to confining in-situ stresses. The problem of interface instability un-

der compressive confining pressure field frequently arises in geostructures. Different types of

interface instabilities may take place in geological formations such as tensile fracturing, shear

rupturing, axial splitting, and shear banding [52, 53].

Through the literature, different numerical approaches have been used for modeling contact,

including penalty methods and Lagrange multiplier methods [55]. A brief introduction has been

provided below on some contact simulation numerical approaches.

1.6.1 Penalty method for contact problems

In penalty method, the normal contact constraint (no inter-penetration state) is imposed to

the crack faces by considering normal contact stiffness between the interacting surfaces. The

inter-penetration between the discontinuity faces can then be controlled by the magnitude of

the stiffness constant assumed which is known as the penalty parameter [54]. This way, a non-

linear constitutive model is introduced in the local contacting part of the system between the

inter-penetration and the normal contact force exerted to the discontinuity faces in opposite

directions. Obviously, the accuracy of the normal contact constraint satisfaction is directly

dependent on the magnitude of the contact stiffness (i.e., penalty parameter). The larger the

magnitude of the penalty parameter, the better the contact constraint is satisfied. Nevertheless,

very large contact stiffness magnitudes can result in high conditioning number of the total stiff-

ness matrix of the system and the results obtained from an ill-conditioned system of equations

can be inaccurate [43].
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1.6.2 Lagrange multiplier method for contact problems

In the Lagrange multiplier approach the normal contact constraint is directly introduced into

the variational energy equation (Lagrangian) of the system by consideration of an additional

energy potential that is attributed to the variation of the energy of normal gap (penetration)

and the contact force acting normal to the interface which is known as the Lagrange multiplier

[56]. In this approach, since the variational energy contribution of normal contact forces is

directly introduced to the system of equations, the normal contact constraint is thus accurately

(i.e., implicitly) satisfied in the resulting solutions.

In this method due to the existence of the variational form of Lagrange multiplier parameter,

the normal contact force is indeed one of the unknown parameters [57]. Therefore, in addition to

regular displacement and pressure parameters, the normal contact force needs to be interpolated

using finite element shape functions in one dimensional elements along the contact interfaces,

resulting in more computational cost. Due to the introduction of a new unknown parameter,

in this method, the dimension of the total stiffness matrix will be affected and existence of zero

diagonal terms can result in complexity of the solution of the system of equations [43].

1.6.3 Augmented Lagrange multiplier method for contact problems

The Lagrange multiplier method introduced in the previous section can enforce the contact

constraint accurately but due to the saddle point structure, the resulting system of equations

is more difficult to solve. In the penalty method, the contact constraint can be enforced by

assuming a very large value for the penalty method. However, consideration of a very large

magnitude for the contact stiffness can result in ill-conditioning of the total stiffness matrix.

To remedy the mentioned issues that arise in the penalty method and the Lagrange multiplier

method, alternative solutions have been developed based on combinations between these two

conventional concepts of contact simulation which are known as augmented Lagrange multiplier
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methods [57]. In this thesis, an Uzawa-type augmented Lagrange multiplier method will be

used to enforce frictional contact condition. The contact constraint is satisfied through an

iterative process by trying to minimize inter-penetration of discontinuity surfaces by updating

the Lagrange multiplier (normal contact force) through a successive/sequential algorithm [43].

Hence, unlike the regular Lagrange multiplier method, in an augmented Lagrange multiplier

technique the normal contact force (Lagrange multiplier) is not an unknown variable of the

governing equations. The augmented Lagrange multiplier method consists of two loops. The

Lagrange multipliers are kept constant in the inner loop while solving the governing equations.

Then the Lagrange multipliers are updated in the outer loop to enforce the contact normal

constraint (normal gap) to be within a specified tolerance [57].
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1.7 Modeling of Hydraulic Fracturing

The process of hydraulic fracturing has a wide range of applications in engineering. HF is

the main stimulation process in extracting hydrocarbons from low permeable unconventional

reservoirs [1]. In HF a viscous fluid is used to pressurize the crack faces and generate the crack

propagation energy. In fact, the applied pressure changes the stress pattern in the media and

therefore, crack propagation or shear failure (fault reactivation) takes place once the crack tip

or interface instability criteria are met.

A significant amount of effort has been spent in trying to model hydraulically driven fractures

to date. Based on the plane strain assumption and radial hydraulic fracturing, Perkins-Kern-

Norgren [7] and Geertsma and de Klerk [8] developed analytical solutions in their pioneering

works. Afterwards, numerical models were developed first for fracture propagation simulation

with dry cracks based on the Linear Elastic Fracture Mechanics (LEFM) [9, 10]. The mentioned

models do not considered nonlinear effects of the crack tip zone. More recent works consider

the effect of nonlinear material behaviour at the damaged Fracture Process Zone (FPZ) in the

vicinity of the crack tip. Based on the FEM with mesh adaptation technique, Schrefler, Secchi,

and Simoni [11], and Secchi, Simoni, and Schrefler [12] modeled the hydraulic cohesive crack

growth in saturated porous media.

1.7.1 Hydraulic Fracturing based on partitioned solution between

fluid flow inside the fracture and deformation of the surround-

ing media

Hydraulic fracturing simulation has been conducted in different ways with different assump-

tions. Boone and Ingraffea [42] developed a computational model based on a combination

between Finite Element and Finite Difference method to simulate hydraulically-driven fracture

propagation in poroelastic materials. The method is based on a partitioned solution using FEM

for poroelastic equations in surrounding media and Finite Difference Method for solving the

28



fluid flow within the fracture. In this model the flow is assumed to be laminar, steady-state,

and fully-developed between parallel surfaces. This approach is suitable for modeling hydraulic

fracturing in low-permeable formations in which the fluid pressure within the fracture behaves

as an inter-facial force on fracture faces without having a direct effect on pore fluid pressure

of surrounding media [43]. This model is valid for fast crack propagation in low permeable

porous media and has been widely used in hydraulic fracturing simulations as partitioned solu-

tion [44, 45]. In this approach the mass conservation equation for fluid flow inside the fracture

is as below:

∂q

∂s
+
∂w

∂t
+Q0 = 0 (1.23)

where w is the fracture opening, q is the flow flux along the fracture defined by curve linear

coordinate s, and Q0 is the fluid leak off from the fracture to the surrounding porous media.

Fluid flux in the fracture is traditionally represented by fluid equilibrium equation which is

obtained using the lubrication/permeability equation of the fluid inside the crack as:

q = − w3

12µf

∂P

∂s
(1.24)

where µf is the viscosity of the fluid and P is the fluid pressure acting on crack faces, and w is

the crack aperture.

The mentioned fluid flow equation is solved using the finite difference method based on a pre-

specified value for fracture length. It is noted that in [44] instead of the commonly-used finite

difference scheme a one dimensional finite element method is used to solve the flow equation

inside the crack. In this work, conventional finite element shape functions of one dimensional

elements are used to interpolate the pressure field along a finite element and variation of pressure

parameter is used as the test function to develop the weak form of the fluid flow equation. The

length and opening of the crack is solved through an iterative procedure. The method can be

extended to the case of permeable porous media by including some experimental relations for

the fluid leak-off behaviour [6].
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1.8 Acoustic emission in hydraulic fracturing

1.8.1 Introduction to microseismic/acoustic emission

Seismic monitoring has been first introduced as a tool for mine design prediction [67]. After-

wards, the idea of evaluating the microseismic emission was adopted for tracking the evolution

of underground damage zone especially in studying fracture zone induced by pressurizing in

hydraulic fracturing [68].

A number of works have been reported on quantitative evaluations of acoustic behaviour in

formations. Very recently, Lisjak et al. [71] developed a computational tool for investigation

of acoustic emissions in brittle rocks by conventional FEM/DEM analysis. In this work, a co-

hesive law is assumed between elements similar to the discrete inter-element method proposed

in the pioneering works of Xu and Needleman [18] and Camacho and Ortiz [19]. However, the

main shortcoming of the method they used is that the crack trajectory is restricted only to the

inter-element paths. Furthermore, they have not been able to model microseismic emission due

to fault reactivation such as slippage along pre-existing discontinuities.

It is important to note that due to the large amounts of in-situ stresses in geological forma-

tions, the main source of significant microseismicity in hydraulic fracturing is sliding of fracture

surfaces along each other under frictional contact, rather than tensile fracturing. Moreover,

in [71], similar to most of the other works reported on the topic [72], the seismic behaviour

has been evaluated through developing relation between the change of the local energy due to

localization and the induced seismic moment (event magnitude).

In most of the works reported on microseismic analysis the models fail to simulate the pro-

cess of mechanical wave propagation through the domain following the energy release at the

source/localization area. Therefore, many of the mechanical features of the response such

as the attenuation of wave due to the viscous behaviour of poroelastic body and interaction
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of the mechanical wave patterns with discontinuities and faults in the process of propagation,

and also the wave reflection, scattering, and coalescence phenomenon are all completely ignored.

All these shortcomings can affect the accuracy and reliability of the results provided by similar

models (e.g., [72, 73]). Basically, the biggest gap in the topic of induced microseismic/acoustic

emission analysis is that the models developed to date concentrate on the source of the gen-

eration of wave emission and energy release (still with many assumptions and simplifications)

and typically do not simulate the process of transient mechanical wave propagation through a

multi-physics discontinuous domain which can raise many challenging computational issues in

terms of numerical modeling and solution.

1.8.2 Physics of mechanical waves

An elastic medium shows two types of dynamic responses to external stimulations due to excita-

tion of inertia effects. The first type is vibration response which happens in the form of harmonic

motions that comprise low-frequency components/modes. This type of dynamic response occurs

under low-frequency loads. The second type is wave propagation which is a dynamic response

with high-frequency modes [76], and is induced when there is high-frequency contents in the

dynamic excitation. Wave propagation phenomenon falls into two categories, namely, time-

harmonic waves and transient waves [74]. In elastodynamics, the general wave type response

in displacement field is represented in terms of two wave functions; compressional/pressure and

shear waves. The pressure wave function (P wave) is the trace of the symmetric part of the

deformation gradient (i.e., volumetric strain) and its physical interpretation involves the volu-

metric change in elastic body. On the other hand, the shear wave (S wave) is attributed to the

antisymmetric part of the deformation gradient which represents the rotation field in the me-

dia. It is noted that, unlike the P wave which has a scalar potential, S wave is a vector function.

In wave propagation in saturated porous media, two compressional waves, namely, slow and
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fast P waves exist, as theoretically shown by Biot [89]. The slow P wave is highly-attenuated

and is attributed to volumetric (i.e., compressional) wave propagation when fluid and solid

portions are nearly out of phase [90].

1.8.3 Wave propagation simulation

Although the finite element method is known to be a very effective tool for solution of boundary

value problems in mechanics, the accuracy and applicability of conventional finite element ap-

proximations in solving the problems that involve particular non-smooth or abruptly changing

distributions in spatial (or time) domain is still a challenge.

It is well-known that the conventional finite element method is not appropriate for the solution

of wave propagation problems [74]. For the numerical analysis of time harmonic wave propaga-

tion the accuracy of the solution descends significantly as the wave number increases resulting

in more oscillations per element. In fact, the polynomial shape functions are not able to suit-

ably interpolate the actual variation of the oscillatory distribution of the variables within the

element in the case of larger wave numbers (i.e., short wave length). Therefore, finer meshes

are required to capture the rapid variation of the parameters inside elements [78].

Firstly, in wave propagation problems with small wave length very fine meshes are required to

obtain reasonable results. So, in large scale problems with short waves the numerical solution’s

time and effort may be prohibitive because of the requirement for very fine meshes in the entire

domain of propagation.

Secondly, for transient waves the solution may exhibit severe non-physical spurious oscillations

related to the Gibbs phenomenon [79]. These oscillations are generated due to numerical disper-

sions that come from numerical period elongation and amplitude decay [74]. This phenomenon

can significantly affect the propagation velocity and the numerical errors become larger as the
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wave travels farther in the domain. Therefore, in the case of the existence of high-frequency

components in external stimulation, a very fine mesh is required to capture the variations. The

conventional polynomial shape functions used in regular finite elements are not able to inter-

polate the rapid spatial change in the element, and spurious oscillations are generated due to

numerical dispersion.

Spectral methods (see reference [75]) have been developed and used to solve the problem of

wave propagation in the frequency domain based on using higher-order polynomials or harmonic

interpolation functions. Spectral methods are not practically applicable for complex geometries

because of using global basis functions that need to be consistent with the geometry and the

boundaries. To remedy this problem, the idea has been extended to the spectral finite element

method, see [77], in which the interpolations based on trigonometric basis functions are imple-

mented in the element level. However, in spectral finite element method the governing equations

are transformed to the frequency domain based on the Discrete Fourier Transformation [77]

and then the discrete finite element equations are developed using harmonic basis functions

and the solution is obtained in the frequency domain. The results are then transformed back

to the time domain. These transformations can be computationally expensive and tedious.

The main drawback of the spectral methods in the simulation of localization-induced acous-

tic emission is that the inducing source of wave propagation (localization) needs to be modeled

in the time domain. Consequently, the entire coupled problem needs to be solved concurrently

in the time domain. This issue makes the use of spectral methods inefficient and problematic

for the problem.

The idea of embedding basis functions, that appear in general analytical solution of a par-

ticular problem, as enrichment functions in the conventional FEM interpolations has been first

expressed and developed in the pioneering work of Melenk and Babuška [20] as the partition-

of-unity finite element method (PUFEM). Many new enriched finite element formulations have
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been developed and used over past few years in the framework of PUFEM, such as the enriched

finite element models that have been proposed for crack modeling (see for example, [26, 61] and

also section 1.2.).

To solve wave propagation problems more accurately, the idea of spectral methods and

PUFEM have been combined in developing new enriched finite element formulations [78, 79]

that can model wave problems in the time domain without the burden of transformation to the

frequency domain which is encountered in regular spectral methods.

To solve one-dimensional multi-scale wave propagation problems, Kohno et al. [78] devel-

oped a new enriched finite element method by taking advantage of both spectral and partition

of unity methods. Harmonic basis functions (that appear in the solution of wave problems) are

used in this work to enrich the regular finite element interpolations and make the discretization

more likely to more accurately interpolate the variables inside finite elements.

The numerical method proposed in [78] was extended to multi-dimensional wave problems

in the work by Ham and Bathe [79]. Through various numerical illustrations they showed that

the high-frequency spurious oscillations can be significantly inhibited by including enough num-

ber of trigonometric enrichment functions. The possibility of the simulation of wave problems

in the time domain can noticeably decrease the high computational costs that are typically

involved with the spectral methods that need transformations between the time and frequency

domains. Most importantly, the possibility of solving the wave propagation problems in the

time domain makes this enriched FEM model very appropriate for the simulation of induced

acoustic emission.

The numerical dispersion and error in wave propagation analysis using finite element meth-

ods may emanate from both spatial and time discretizations. Although the Central Difference

Method is still a widely-used time integration scheme in structural dynamics, the use of this
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method in wave propagation can lead to inaccurate results for high-frequency modes as the

central difference method is a non-dissipative explicit time integration which introduces no nu-

merical damping [83].

A significant amount of effort has been spent in trying to remedy the problem of high-

frequency spurious modes in wave propagation using appropriate time integrations. Several

dissipative time integration methodologies have been developed to suppress the spurious oscil-

lations using numerical damping, such as explicit time integration proposed by Newmark [80],

and Chung and Lee [82]. The problem with using dissipative time integrations is that their

ability in suppressing the high-frequency spurious modes can significantly affect the accuracy

of low-frequency modes at the same time due to the introduced numerical damping.

Noh and Bathe proposed a new second-order two-step dissipative explicit time integration [83].

In this work it has been demonstrated that using particular values for some explicit time integra-

tion parameters, it is possible to suppress high-frequency spurious oscillations and concurrently

maintain good accuracy for low-frequency modes in the case of having numerical damping.

Nevertheless, suppressing the high-frequency spurious oscillations in the case of sharp waves

seems not quite possible with only using dissipative time integrations, since the main cause

of spurious oscillations in transient waves is the Gibbs phenomenon which is related to the

spatial discretization. Therefore, to have more accurate results in the entire frequency spec-

trum (i.e., low-frequency as well as high-frequency) the enriched finite element formulations

developed for wave propagation problems (e.g., [79]) can be more practical, despite the rela-

tively high computational cost that is typically involved with them. However, the mentioned

enriched finite element methods are capable of modeling wave propagation in continuous media.

To the best of the author’s knowledge, to date, there is no work reported on using the

mentioned enriched finite element models for simulation of wave problems in domains with

strong and/or weak discontinuities. One of the main objectives of this PhD research is to develop
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a new enriched finite element model for wave propagation in domains with discontinuities.

The developed enriched finite element model can then be used for induced acoustic emission

simulation in the process of hydraulic stimulation.
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1.9 Motivations

The purpose of this research is to develop an improved understanding of the relation between the

mechanics of acoustic emissions and fault reactivation during hydraulic stimulation. Through-

out the literature there is a limited number of works on the mechanics of acoustic wave emission

during HF, most of which fail to investigate the process of transient wave propagation in the

media, and instead only focus on relating the amount of energy release at the damaging zone to

seismic moment. The seismic event magnitude is estimated using an evaluation of the seismic

energy released at the source location and therefore, the entire process of the propagation of

seismic wave (shear or pressure waves) through the multi-physics porous discontinuous media

is completely ignored.

It is noted that the simulation and analysis of the propagation process is of great importance in

obtaining realistic and reliable results for the emission pattern and acoustic behaviour. There-

fore, developing new mathematical and computational models that can simulate the entire

process, from shear failure to propagation of induced acoustic waves, in a discontinuous porous

media seems very necessary and practical to better understand the mechanism of hydraulic

stimulation-induced microseismicity. However, some of the main challenges in developing nu-

merical models for the problem are as below:

1. Seismic behaviour is a coupled problem of crack reactivation and induced wave propa-

gation due to reactivation. Therefore, there are two main aspects to this problem that need

to be simulated. The mainstream of the solutions for wave propagation simulation is spectral

methodologies in frequency domain. However, the other aspect of the problem which is the

process of crack reactivation/propagation has nothing to do with the frequency domain, and

unlike the wave propagation part, needs to be solely modeled in time domain. To handle this

issue, in this PhD research we develop an enriched mixed finite element methodology that can

solve the entire coupled problem of fault reactivation-induced wave propagation concurrently
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and exclusively in time domain.

2. Due to the dynamic hydro-mechanical coupling of the governing equations, nonlinear

interface simulations, and also high-frequency transient components of the response, some nu-

merical stability and convergence issues are expected in the solution process of the problem.

These issues stem from inf-sup stability conditions in mixed formulations, numerical dispersions

related to the Gibbs phenomenon, and ill-conditioning problems that can arise in enriched and

mixed formulations [74].
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1.10 Research Objectives and Methodologies

In this section, the research objectives and methodologies to accomplish the objectives are

represented.

1: Develop a numerical model for simulation of wave propagation in discontin-

uous media

The studied domain of the problem is basically a discontinuous media that consists of strong

discontinuities (cracks) in the displacement field. The Phantom Node Method (PNM) is used

to model multiple fractures in two-dimensional domains independently of the original mesh

topology. In regular FEM, spurious period elongation and amplitude decay results in signifi-

cant errors in the wave pattern and propagation velocity. To remedy this problem, fundamental

harmonic basis functions are used to enrich the standard FEM approximation space. In order

to model wave propagation in a fractured domain a new numerical method (i.e., PNM-GFEM)

that combines a local Partition-of-Unity (i.e., PNM) and global Partition-of-Unity (that in-

cludes harmonic wave functions) is developed. This objective is realized in Chapter 2 which is

based on the following journal article:

Komijani M., Gracie R., An Enriched Finite Element Model for Wave Propagation in Frac-

tured Media, Finite Elements in Analysis and Design, 125: 14-23, 2017.

2: Develop a mixed numerical model for simulation of wave propagation in

discontinuous porous media and interface modeling

To simulate slip instability at the interface, and to model normal and frictional interactions

between fracture faces, an augmented Lagrange multiplier technique is implemented to simulate

the frictional contact behaviour at the interface of discontinuities. The PNM-GFEM method

is extended to solve wave propagation problems in porous media. The governing conservation

of the linear momentum of the solid-fluid mixture is coupled with the continuity equation for

the fluid and solved through a newly developed enriched mixed finite element model called

39



PNM-GFEM-M. This objective is accomplished in Chapter 3 which is based on the following

journal paper:

Komijani M., Gracie R., Enriched Mixed Finite Element Models for Dynamic Analysis of

Continuous and Fractured Porous Media, Computer Methods in Applied Mechanics and Engi-

neering, 343: 74–99, 2019.

3: Develop computational models for simulation of acoustic emissions induced

by fracture reactivation and shear slip instability.

The developed PNM-GFEM-M model is implemented and used to simulate induced acoustic

emission propagation due to fracture reactivation under hydraulic stimulation. Since the forma-

tions are typically subjected to high in-situ compressive stresses, frictional contact behaviour

is modeled to account for the interaction of pre-existing crack faces and their probable slippage

and/or propagation. This objective is realized in Chapter 4 which is based on the following

journal paper:

Komijani M., Gracie R., Sarvaramini E., Simulation of Induced Acoustic Emission in Frac-

tured Porous Media, Engineering Fracture Mechanics, DOI: 10.1016/j.engfracmech.2018.07.028,

2018.
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Chapter 2

Enriched finite element models for

wave propagation simulation in

fractured media
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This chapter is based on the following journal article:

Komijani M., Gracie R., An Enriched Finite Element Model for Wave Propagation in Fractured

Media, Finite Elements in Analysis and Design, 125: 14-23, 2017 [32].

In this journal paper I was the first author and was responsible for the writing of the article;

the paper was edited by Dr. Gracie. I also developed the mathematical and computational

formulation and the numerical code.

This chapter addresses objective 1 of the thesis.
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2.1 Introduction

In this chapter a new numerical method has been developed in the context of enriched finite

element methods (FEMs) to analyze wave propagation in fractured media. The method com-

bines the advantages of global enrichment with harmonic functions via the Generalized FEM

(GFEM) with the efficacy of the Phantom Node Method (PNM), an eXtended FEM (XFEM)

variant, to model cracks independently of the mesh. The GFEM enrichment suppresses the

spurious oscillation that appear in regular FEM analysis of transient wave propagations due to

numerical dispersion and Gibbs phenomenon. For use in explicit simulations, a mass lumping

methodology has been introduced with a critical time step size that is both similar to that of

the underlining FEM and independent of the location of the fracture. Through three examples,

the developed PNM-GFEM is demonstrated to more accurately model wave propagation in

fractured media than either the FEM or the PNM/XFEM.

Wave propagation in fractured media is an important phenomenon in many applications

from non-destructive tests to hydraulic fracturing. In many instances, simulations of acoustic

emission in fractured media (from the reactivation of existing fractures) are artificially damped

and/or the stress fields are smoothed due to the presence of spurious oscillations. These non-

physical oscillations are produced ahead and behind emitted waves. The need to smooth stress

fields and/or to use artificial damping points to some of the remaining challenges, due to

the spurious waves, in traditional FEM-based simulations. There are many examples of the

simulation of dynamic fracture using eXtended Finite Element Method (XFEM) [95, 96]. The

XFEM and its variants (e.g., the Phantom Node Method [31, 29]) are often the preferred

methods for the simulation of the fractures in cases where the path of the fracture is not known

a priori [26, 27, 97]. In many instances, artificially damping and stress smoothing are required

to obtain meaningful and/or stable results. In this article, we revisit the use of the FEM-based

methods (such as XFEM) for the simulation of wave propagation problems in fractured media

and propose an improved Phantom Node Method without spurious oscillations, based on the

Generalized FEM (GFEM) enrichment functions recently proposed [79].
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Finite element analysis is an effective tool to investigate transient initial boundary value

problems. However, the piecewise continuous polynomials used to interpolate the unknown

functions have been found to be inadequate in the problems where there are sudden or abrupt

changes in the solution. For instance, in the case of transient wave propagation, FEM solution

often contains spurious oscillations. These non-physical oscillations degrade the results, includ-

ing the wave propagation velocity, which is important in application such a microseismic wave

simulation, where the waves travel long distances.

The origin of these non-physical oscillations is related to the Gibbs phenomenon. However,

in fractured bodies the effect of the spurious oscillations can be more significant because of

the interaction of wave pattern with cracks and also interaction/superposition of the primary

emitted waves with secondary waves reflected from discontinuities (e.g., the cracks). The origin

of spurious oscillations, therefore, do not stem directly from the coarseness of the meshes in

explicit or implicit simulations. In the case of high-frequency transient waves, the spurious

oscillations observed in regular FE models cannot be effectively removed by refining the mesh;

mesh refinement does affect the frequency of the spurious oscillations ahead or behind the wave

front. It is worth mentioning that mesh refinement can be effective in decreasing the numerical

dispersions and error in the case of time-harmonic waves (but not high-frequency transient

waves)[79].

This problem has in part motivated the development of the spectral element method ([98],

[99]) and the spectral finite element method ([100], [101]), which overcome the issue of spurious

oscillations through the use of harmonic basis functions. Spectral finite element models are

formulated in the frequency domain and therefore requires a transformation of the governing

equations to the frequency domain. The equations are then solved in the frequency domain,

and the results are then back transformed to the time domain. This makes the spectral finite

element procedure less practical for problems that need to be solved in the time domain, such

as dynamic crack propagation problems.

An alternative, yet related approach, to the spectral element method was proposed in [78],
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where an enriched harmonic and conventional low-order polynomials interpolations are used

to model multi-scale wave propagation in one-dimensional problem. The general idea of em-

bedding appropriate basis functions, with characteristics that appear in the solution of the

problem, as enrichments to the traditional finite element interpolations was established in the

pioneering work of Melenk and Babuška [20] on the Partition of Unity Method (PUM). Based

on the general approach of the PUM, Ham and Bathe [79] extended the approach in [78] to

solve the problem of time-harmonic and transient wave propagation in multiple dimensions; it

was demonstrated that the spurious oscillations that appear with the conventional FEM can

be effectively suppressed by the proposed enriched FEM in the simulation of wave propagation

in continuous domains. To date these enriched finite element methods have not been applied

to problems involving discontinuous domains that contain arbitrary cracks.

In Song et al. [29] an XFEM variant, the Phantom Node Method (PNM), was proposed to

model discontinuities and is essentially the same as the earlier method proposed by Hansbo and

Hansbo [31]. In the PNM, cracks are treated by reformulating elements which contain a fracture

as two superimposed elements with additional nodes, called Phantom Nodes. Each of the

superimposed elements is used to model a different side of the original fractured element, leading

to a discontinuous approximation. The advantage of the Phantom Node formulation over that

of the original XFEM is that an implementation of the PNM requires fewer modifications to

an existing FEM code than a comparable XFEM implementation; however, in principle the

two formulations should yield equivalent results for small displacement analysis. Despite the

numerous publications on XFEM and its variants (including GFEM), there is no work in the

published literature addressing the spurious oscillation from numerical dispersion that appear in

the concurrent simulations of wave propagation and fracture. Here we study a Phantom Node

Method, enhanced by a global enrichment using harmonic basis functions, to more effectively

simulation wave propagation in fractured media.

Due to the high strain-rates that generally accompany dynamic fracture explicit time in-

tegration is often preferred. Therefore, a mass-lumping strategy is presented for the GFEM
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enriched Phantom Node Method proposed here, so that the proposed method can be applied

efficiently.

A note on terminology: the distinction between the XFEM and the GFEM is ambiguous

in the literature; at their core, both methods are identical as they involve using local and/or

global enrichment of a finite element basis [27]. In this article, the term XFEM will be used to

refer to a FEM locally enriched with the Heaviside step function to model the discontinuities

of fractures and so would include the GFEM model of Gupta et al. [28]. The term GFEM will

be reserved for global enrichment using harmonic functions as proposed in [79].
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2.2 Mathematical formulation

2.2.1 Governing equations

Consider a two-dimensional elastic medium, Ω, defined in terms of a Cartesian coordinate

system Oxy. Let ux(x, y, t) and uy(x, y, t) be the displacement components in x and y directions,

respectively, as a function of time, t. Assuming small displacements, the symmetric strain-

displacement relations are

εxx = ux,x εyy = uy,y γxy = ux,y + uy,x (2.1)

The constitutive equations can be written in Voigt notation as:


σxx

σyy

σxy

 =


C11 C12 0

C21 C22 0

0 0 C33



εxx

εyy

γxy

 (2.2)

where σxx, σyy, and σxy are the component of the Cauchy stress tensor, and C11 through C33

are the elastic coefficients.

The variational form of the governing partial differential equations are developed from

Hamilton’s principle, i.e.,

δ

∫
t

(K −H +R)dt = 0 (2.3)

where δH, δK, and δR are the variation of the elastic strain energy, the kinetic energy, and the

work done by the external loads, respectively:

δH =

∫
Ω

σ : δεdΩ (2.4)
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δK =

∫
Ω

ρu̇ · δu̇dΩ (2.5)

δR =

∫
Ω

δu · ρbdΩ +

∫
Γ

δu · t̄dΓ (2.6)

where σ is the Cauchy stress tensor, ε is the symmetric strain tensor, u is the displacement

vector, ρ is density, b is the body force vector, and t̄ is the applied traction vector. As for the

integration domains, Ω indicates the overall volume of the system and Γ is the portion of the

boundary over which the traction is imposed, i.e., the Neumann boundary.

Substituting (4.1) and (4.2) into the variational form of the energy equation (2.3), the weak

formulation of the governing motion equations can be obtained as:

∫
Ω

(
[C11ux,x + C12uy,y] δux,x + [C33(ux,y + uy,x)] δUx,y

)
dΩ =

=

∫
Ω

(−ρüx + ρbx)δuxdΩ +

∫
Γ

(t̄x)δuxdΓ (2.7)

∫
Ω

(
[C21ux,x + C22uy,y] δuy,y + [C33(ux,y + uy,x)] δuy,x

)
dΩ =

=

∫
Ω

(−ρüy + ρby)δuydΩ +

∫
Γ

(t̄y)δuydΓ (2.8)

2.2.2 Element interpolation using the Generalized and Phantom

Node Methods

The GFEM interpolation of the displacement field [79] within the continuous elements for wave

propagation analysis is
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u(x, y, t) =
∑
I

NI

(
uI(0,0) +

n∑
kx=1

[cos(
2πkxx

Λx

)uCx

I(kx,0) + sin(
2πkxx

Λx

)uSx

I(kx,0)]+

m∑
ky=1

[cos(
2πkyy

Λy

)u
Cy

I(0,ky) + sin(
2πkyy

Λy

)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[cos(
2πkxx

Λx

+
2πkyy

Λy

)uC+
I(kx,ky) + sin(

2πkxx

Λx

+
2πkyy

Λy

)uS+
I(kx,ky)+ (2.9)

cos(
2πkxx

Λx

− 2πkyy

Λy

)uC−I(kx,ky) + sin(
2πkxx

Λx

− 2πkyy

Λy

)uS−I(kx,ky)]
)

where NI are the regular FE shape functions, uγI(kx,ky) with the corresponding superscript are

the nodal degree of freedom associated with local node number I, n and m are the cutoff

numbers for enrichment functions in x and y directions, respectively, and Λx and Λy are wave-

lengths, which are assumed to be equal to the element sizes in x and y directions, respectively.

It is noted that the superscripts have been used in the above formulation to refer to degrees of

freedom associated to each enrichment function.

The above enriched finite element interpolation can be represented in a more compact form

as:

U(x, y, t) =
∑
I

(
NIuI(0,0) +

n∑
kx=1

[NIφ
Cx

(kx,0)u
Cx

I(kx,0) +NIφ
Sx

(kx,0)u
Sx

I(kx,0)]+

m∑
ky=1

[NIφ
Cy

(0,ky)u
Cy

I(0,ky) +NIφ
Sy

(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[NIφ
C+
(kx,ky)u

C+
I(kx,ky) +NIφ

S+
(kx,ky)u

S+
I(kx,ky)+ (2.10)

NIφ
C−
(kx,ky)u

C−
I(kx,ky) +NIφ

S−
(kx,ky)u

S−
I(kx,ky)]

)
where φγ(kx,ky) with the corresponding superscript represents the trigonometric enriched basis

functions shown in (2.9).
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To model wave propagation in discontinuous media, the Phantom Node Method [31, 29] is

combined with the GFEM approximation (3.16). In the PNM approach, any element containing

a discontinuity is replaced by two superimposed continuous elements with real and phantom

nodes [29]. Let the signed distance function f(x, y) define the surface of discontinuity, such

that f(x, y) = 0 specifies the discontinuous surface.

Taking advantage of both the GFEM and the PNM, the displacement field for cracked

element is approximated by

u(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψI(0,0)uI(0,0) +

n∑
kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+

m∑
ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)
+

H(f(x, y))
∑
I∈S2

(
ψI(0,0)uI(0,0) +

n∑
kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+ (2.11)

m∑
ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)
where ψI(0,0) = NI and ψγI(kx,ky) = NIφ

γ
(kx,ky), and H(·) is the Heaviside function. S1 and

S2 are the set of nodes associated with each of the two superimposed elements; each of the

two superimposed elements contain original real nodes and phantom nodes. In the context of

GFEM, both the real and phantom nodes have conventional and enriched degrees of freedom.

The discontinuous element interpolation (3.17) can be written in more compact matrix form
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as

ux(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψI(x, y)uIx(t)

)
+H(f(x, y))

∑
I∈S2

(
ψI(x, y)uIx(t)

)
(2.12)

uy(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψI(x, y)uIy(t)

)
+H(f(x, y))

∑
I∈S2

(
ψI(x, y)uIy(t)

)
(2.13)

where ψI is the set of conventional and enriched basis functions for node I given by

ψI =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(2.14)

and uIx and uIy are the vectors of corresponding conventional and enriched degrees of freedom

for node I in the x and y directions, respectively, i.e.,

u>Ix = [uIx(0,0), u
Cx

Ix(1,0), ..., u
S−
Ix(n,m)] (2.15)

u>Iy = [uIy(0,0), u
Cx

Iy(1,0), ..., u
S−
Iy(n,m)] (2.16)

In total, node I has 2(1 + 2n)(1 + 2m) degrees of freedom. The most appropriate choice for m

and n depends on the amount of high-frequency oscillations that appear in each problem. In

transient problems with sharper wave fronts, more enrichments are required. Beyond the com-

putational cost of more DOFs, ill-conditioning also becomes more problematic as the number

of enrichements is increased. Based on our investigations up to this point, the most effective

computation schemes are achieved using n = m = 1 or 2.
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2.3 Semi-discrete Equations

The element level semi-discretized enriched finite element equations can be developed by sub-

stituting the PNM-GFEM approximation (2.12), and the virtual displacements δux = ψI and

δuy = ψI into the variational form of the governing equations of motion (2.7-2.8), giving:

nnode∑
J=1

(
[M e]11

IJ ü
e
Jx + [M e]12

IJ ü
e
Jy + [Ke]11

IJu
e
Jx + [Ke]12

IJu
e
Jy

)
= Fe

Ix, (I = 1, ..., nnode) (2.17)

nnode∑
J=1

(
[M e]21

IJ ü
e
Jx + [M e]22

IJ ü
e
Jy + [Ke]21

IJu
e
Jx + [Ke]22

IJu
e
Jy

)
= Fe

Iy (I = 1, ..., nnode) (2.18)

where nnode is the number of nodes in each of the two superposed elements 1 and 2, and includes

both original real and phantom nodes. It is noted that for the cracked elements, the numerical

integration is performed separately over the active areas of each of the two superposed elements.

To evaluate the finite element integrals a sub-domain integration scheme is employed [26]. Due

to the introduction of the Heaviside function in the PNM-GFEM approximation, it is only

necessary to integrate over the active portion of each superimposed element. Let A1 and A2

denote the mutually exclusive activated areas (where the displacement approximation is not

equal to zero) of superposed elements 1 and 2, respectively. If A is the total area of the original

element then A = A1 + A2.

In an element crossed by a crack, the definitions of [M e]IJ , [Ke]IJ , Fe
Ix, and Fe

Iy in (2.17)

and (2.18) are as follows, for each of the superimposed elements 1 and 2:

[M e]11
IJ =

∫
Ae

ρψ>I ψJdΩ, [M e]12
IJ = [0],

[M e]21
IJ = [0], [M e]22

IJ =

∫
Ae

ρψ>I ψJdΩ (2.19)
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[Ke]11
IJ =

∫
Ae

(
C11(ψ>I ),x(ψJ),x + C33(ψ>I ),y(ψJ),y

)
dΩ, (2.20)

[Ke]12
IJ =

∫
Ae

(
C12(ψ>I ),x(ψJ),y + C33(ψ>I ),y(ψJ),x

)
dΩ, (2.21)

[Ke]21
IJ =

∫
Ae

(
C21(ψ>I ),y(ψJ),x + C33(ψ>I ),x(ψJ),y

)
dΩ, (2.22)

[Ke]22
IJ =

∫
Ae

(
C22(ψ>I ),y(ψJ),y + C33(ψ>I ),x(ψJ),x

)
dΩ, (2.23)

Fe
Ix =

∫
Ae

(
ρ(bx)ψ

>
I

)
dΩ +

∫
se

(
t̄xψ

>
I

)
dΓ, (2.24)

Fe
Iy =

∫
Ae

(
ρ(by)ψ

>
I

)
dΩ +

∫
se

(
t̄yψ

>
I

)
dΓ, (2.25)

where e is either 1 or 2 for the superimposed elements one and two, respectively, and se is the

portion of superimposed element e on the traction boundary Γ.
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2.4 Mass Lumping Technique

In wave propagation problems short-term transient and high strain rate phenomena are often

of interest. In such applications, explicit time integration methods are typically preferred over

implicit schemes, given the comparatively less computational cost and memory requirement.

Hence, developing an appropriate mass lumping strategy for the present enriched finite element

method is important for practical applications. Enriched finite element methods introduce

additional mathematical degrees of freedom at each node and so it is not possible to distribute

the entire mass of the element to the element nodes as is done with conventional finite elements.

Hence, the straight forward diagonal mass lumping is not optimal for GFEM.

Few works have discussed the development of a lumped mass matrix for enriched finite

element models. Among these works, Menouillard et al. [85] introduced a lumped mass matrix

for the elements enriched by the step function in the context of the eXtended Finite Element

Method, in which the lumped mass matrix is developed such that an exact representation of

the kinetic energy is conserved under rigid body motion. It was shown that using their lumped

mass matrix, the critical time step does not tend to zero as the discontinuity gets close to

the boundaries of the cracked element. Furthermore, the aforementioned lumped mass matrix

yields an XFEM with a critical time step that is of the same order of magnitude as that for the

FEM. In the present study, a similar methodology is adopted to develop a lumped mass matrix

for the PNM-GFEM model.

The coefficients of the lumped mass matrix are defined such that the discrete kinetic energy

associated with a velocity field proportional to each enrichment function is exactly reproduced.

We wish to derive an expression for the lumped mass for enriched degrees of freedom uγI(kx,ky)

associated with enrichment ψγ(kx,ky). To simplify the discussion we will derive the lumped mass

coefficients for the x-direction only. The components for the y-direction are readily derived

using a similar process and furthermore leads to the same lumped mass coefficient.
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Consider the following velocity field defined over a bilinear element

u̇x = v̄xφ
γ
(kx,ky) (2.26)

v̄x is the enriched degree of freedom corresponding to a particular enrichment function. The

exact kinetic energy of the element is

T =
1

2

∫
Ae

ρ[v̄xφ
γ
(kx,ky)]

2dΩ (2.27)

where Ae is the active part of the superimposed element in the case of an element cut by the

crack.

An enriched approximation of the form (2.12) exactly interpolates (2.26) when u̇γx(kx,ky) =

v̄x [1, 1, 1, 1]> (for a four-node quadrilateral element) and all other degrees of freedom associated

to other enriched basis functions are zero. In such a case the discrete kinetic energy computed

using a lumped mass matrix would be

T h =
1

2
(mγ

1(kx,ky) +mγ
2(kx,ky) +mγ

3(kx,ky) +mγ
4(kx,ky))v̄

2
x (2.28)

where mγ
I(kx,ky), I = 1..4, are the coefficients of the the lumped mass matrix associated with

enriched degree of freedom uγIx(kx,ky). To find mγ
I(kx,ky), the kinetic energies of the continuous

and discrete systems are equated, i.e., we set (2.28) equal to (2.27), giving

4∑
I=1

mγ
I(kx,ky) =

∫
Ae

ρ[φγ(kx,ky)]
2dΩ (2.29)

or equivalently

mγ
I(kx,ky) = αI

∫
Ae

ρ[φγ(kx,ky)]
2dΩ,

4∑
I=1

αI = 1 (2.30)

where αI is a weighting coefficient that determines what percentage of the mass is assigned to

node I. The last question to be answered is how to best distribute the mass to the four nodes

of the element. The simplest way is to assume that the mass is distributed equally to each node
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(αI = 1/4). A more fair distribution is adopted in which the weighting coefficient is given by

αI =
1

A

∫
A

NIdΩ (2.31)

where the integral is over the whole element area and not just over the active part of the element

as in (2.29) and (2.30). It is noted that when the density ρ of the element is constant and when

adjacent sides of the element are perpendicular then

mγ
I(kx,ky) =

ρ

4

∫
Ae

[φγ(kx,ky)]
2dΩ (2.32)

It is noted that while (2.32) was derived for the x-direction degrees of freedom, it can also

be shown to be valid for the y-direction degrees of freedom.
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2.5 Results and discussion

In this section, the developed enriched finite element method is implemented to solve different

types of transient wave propagation problems in discontinuous domains. The studied domain is

a 1.5m× 1.0m media in a state of plane-stress and is made of a material with ρ = 8000kg/m3,

E = 200GPa, and ν = 0.3, unless stated otherwise.

2.5.1 Benchmark study-Impact problem

The problem of an impact simulated by prescribing a constant velocity boundary condition

to the edge x = 0 is known to be a good benchmark problem to examine the accuracy of a

developed finite element method [79]. To examine the power of the enriched finite element

model of this work to solve transient wave propagation in a fractured domain, a mesh of 30×20

bilinear elements is considered. A tilted crack of length 0.2236m centered in the middle of

the plate and at the angle of 63.5◦ with respect to the horizontal direction is modeled. Figure

2.1 shows the configuration of the domain along with the discontinuity. In this figure the

velocity profile shown was obtained using PNM-GFEM (n = 2 and m = 0) at time t = 72.8µs.

As seen, in this figure, the wave front has not yet reached the face of the discontinuity, and

therefore, the result is the same as for the continuous domain evaluated in [79]. It is noted

that the high frequency spurious oscillations that are well-known to appear ahead of the wave

front in regular FE/PNM analysis have been significantly inhibited by including the enriched

trigonometric basis functions. The result of conventional finite element analysis of the problem

at t = 184µs is depicted in Figure 2.2. Due to the interaction of the wave and the crack, a

discontinuous velocity profile is obtained. Also, the reflected wave from the contact-free crack

face is noticeable in the snap shot. As can be seen, very strong non-physical oscillations appear

ahead of both primary and reflected wave fronts. The result of PNM-GFEM analysis of this

problem is shown in Figures 2.3 and 2.4 with cutoff numbers n = 1 and n = 3, respectively.

Comparing the results it is clear that, the more enriched basis functions that are considered,

the smaller the magnitude of the spurious oscillations. Using a cutoff number n = 3, the
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Table 2.1: A normalized error estimation (eL2) for PNM-GFEM for various values of the cutoff
number.

Cutoff number Normalized error (eL2)(%)
0 10.03
1 3.826
2 3.084
3 2.05

non-physical oscillations are dramatically suppressed throughout the domain.

The reduction in the spurious oscillations in the wave patterns of the PNM-GFEM with

increasing the cutoff number is illustrated in Figures 2.5 through 2.8, which show the velocty

field as the wave is reflected from the crack surface. The expected solution is a step function

wave front in the velocity field. As seen in these figures, the non-physical spurious oscilla-

tions (numerical dispersion) in both primary emitted and reflected waves are suppressed more

and more effectively, as the cutoff number increases. Figure 2.9 presents the convergence of

PNM-GFEM solution to step-function-type transient wave propagation response of the impact

problem. In this figure, the vertical axis shows the percent error in velocity magnitude (the

difference between the obtained result and the benchmark step-function-type response) at the

peak of the highest amplitude oscillation. As seen, the error due to the non-physical spurious

oscillations decreases with an increase in the cut-off number. To further illustrate the conver-

gence of the PNM-GFEM, Table 2.1 reports estimates of the normalized (L2) error for various

values of the cutoff number, in which a very fine meshed PNM-GFEM and a cut-off number

of 4 is used as a reference solution. As seen, the numerical error decreases upon increasing the

number of enriched basis functions.

2.5.2 Wave Propagation - Single Crack Example

The problem of wave propagation induced by a sinusoidal stimulation at the free end of a plate

containing a vertical crack of length 0.2m along x = 0.75m is examined by considering a 40×20

4-node element mesh. A prescribed displacement is applied to the boundary x = 0 as below:
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Fig. 2.1: Solution of impact of a cracked plate (x-velocity) at t = 72.8µs, using PNM-GFEM
with cutoff number n = 2, before the wave front hits the crack.

ūx(t) =

 0.03 sin( π
2τ
t)[m] if t 6 2τ ;

0 if t > 2τ .
(2.33)

where τ = 10−5 s.

Figure 2.10 illustrates the domain, the location of the crack, and the wave pattern at t = 70µs

before the wave front hits the crack. Figures 2.11 and 2.12 illustrate the x-displacement field at

time t = 188µs calculated using the PNM and PNM-GFEM, respectively. By comparing these

two figures it is apparent that the high frequency spurious oscillations which appear in the PNM

results are significantly reduced by using the PNM-GFEM with n = 1,m = 0. In the PNM

results, significant high-frequency spurious oscillations appear ahead of the primary wave that

propagates around the crack and from the wave reflected from the crack surface. These spurious

oscillations pollute the PNM results. In contrast, in the PNM-GFEM results the non-physical

oscillations are suppressed, leading to more accurate solutions. The mentioned non-physical
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Fig. 2.2: Solution of impact of a cracked plate (x-velocity) at t = 184µs, using conventional
PNM.
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Fig. 2.3: Solution of impact of a cracked plate (x-velocity) at t = 184µs, using PNM-GFEM
with n = 1.
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Fig. 2.4: Solution of impact of a cracked plate (x-velocity) at t = 184µs, using PNM-GFEM
with a cutoff number n = 3.

Fig. 2.5: Illustration of high-frequency spurious oscillations in wave pattern obtained using
conventional PNM.
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Fig. 2.6: Illustration of the convergence process of the PNM-GFEM to oscillation-free results
using cutoff number n = 1.

Fig. 2.7: Illustration of the convergence process of the PNM-GFEM to oscillation-free results
using cutoff number n = 2.
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Fig. 2.8: Illustration of the convergence process of the PNM-GFEM to oscillation-free results
using cutoff number n = 3.

Fig. 2.9: Convergence behaviour of PNM-GFEM upon increasing the number of enrichment
basis functions.
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Fig. 2.10: Illustration of x-displacement at t = 70µs, using PNM-GFEM with a cutoff number
n = 1, before the wave reaches the crack.

oscillations can be further suppressed by including more enrichment functions (i.e., increasing

the cutoff number) in the finite element calculation. As seen in Figure 2.13 by using a cutoff

number n = 2, the oscillations are further reduced.

Figure 2.14 shows that the wave pattern obtained using the standard PNM and the PNM-

GFEM for different mesh sizes. As seen, mesh refinement is not effective in suppressing the

spurious oscillations observed when using the standard PNM. The use of meshes with smaller

elements changes the frequency of the spurious oscillations in the PNM results; however, signif-

icant numerical error still exists. The numerical error is also apparent in the reduction of the

peak amplitude of the wave in the PNM results. As can be seen in the last figure (obtained

using PNM-GFEM), the peak magnitude of the wave pulse is 0.03 m, which is equal to the am-

plitude of the external displacement stimulation/ analytical solution (see equation 33). Thus,

the developed PNM-GFEM is used the spurious oscillations ahead of both primary emitted

and secondary reflected waves are effectively eliminated; these spurious oscillations cannot be

eliminated effectivily in the standard PNM using mesh refinement. This result is analogous to

that reported in comparisons between the GFEM and the FEM in [79].
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Fig. 2.11: Illustration of x-displacement at t = 188µs, using conventional PNM.

Fig. 2.12: Illustration of x-displacement at t = 188µs, using PNM-GFEM with n = 1.
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Fig. 2.13: Illustration of x-displacement at t = 187µs, using PNM-GFEM with (n = 2).

Fig. 2.14: Illustration of x-displacement at t = 188µs for different mesh sizes as a function of
x; the y-coordinate is perpendicular to the plane of the figure.
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Fig. 2.15: Illustration of x-displacement at t = 200µs, using conventional FEM.

2.5.3 Wave Propagation - Multiple Crack Example

To illustrate the behaviour of the developed computational model for wave propagation problem

in the case of a media with multiple cracks, a 1.5m× 1m domain and a 30× 20 elements mesh

is considered. The cracks are placed at 63.5◦ with respect to the horizontal direction and are

0.2236m in length, as shown in figures 2.15 and 2.16. A displacement stimulation is imposed

on the boundary x = 0 of the form of (2.33) with τ = 1.8× 10−5s.

Figure 2.15 shows the wave profile obtained using conventional PNM at time t = 200µs.

Strong spurious oscillations are observed ahead of both primary and reflected waves. To demon-

strate the ability of the developed enriched FE model to reduce non-physical oscillations, Figure

2.16 depicts the wave pattern of the same problem solved using PNM-GFEM with cutoff num-

ber n = 1,m = 0 at time t = 200µs. It is clear that the oscillations have been significantly

reduced by using enriched FEM.
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Fig. 2.16: Illustration of x-displacement at t = 200µs, using enriched FEM with (n=1).

2.5.4 Numerical study of the Critical Time Step in Explicit method

using consistent and lumped mass matrices

In this section the ability of the mass lumping technique, described in Section 2.4, to yield a

critical time step size for an explicit analysis using a second order central difference method is

in a reasonable range is demonstrated. The case of wave propagation in a fractured domain is

considered. The geometry of the domain and the location of the fracture is shown in Figure 2.15

and is meshed by a 20× 10 bilinear elements. The standard Eigenvalue procedure is employed

to obtain the critical time step of the central difference explicit method, as described in [85].

The critical time step for the intact fracture-free domain and fractured domain are reported in

Tables 2.2-2.4 for the cases of the consistent and lumped mass matrix. In the results presented

in Tables 2.2 and 2.3 only enrichments in the x-direction has been considered (i.e., m = 0).

In Table 2.4 the critical time step has been reported for the case of multi-axial enrichment for

various values of n and m. As can be seen, in the case of the consistent mass matrix, the critical

time step decreases significantly, when a discontinuity is introduced into the domain via the

Phantom Node Method, in comparison with the value obtained for the original intact domain.

The critical time step for the intact domain is 7.8 times larger than that of the fractured
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domain, even when no harmonic enrichments are used (m = n = 0). Furthermore, as harmonic

enrichments are add, i.e., as n and m increase, the critical time step decreases precipitously and

the discrete system of equations become ill-conditioned. The critical time step sizes when the

consistent mass matrix is used are very small, so small, that the computational cost of using the

Phantom Node Method with GFEM enrichment with high cutoff numbers may be prohibitive

for practical problems.

The critical time steps computed using lumped mass matrices are noticeably larger than

the corresponding values obtained using the consistent mass matrix, whether the domain is

fractured or not. The critical time step obtained for fractured domains is almost the same as

that of intact continuous domains. Furthermore, the critical time step size for the lumped mass

matrix simulations, doesn’t decrease as rapidly as the number of GFEM enrichment terms, n

or m, increases as occurs when the consistent mass matrix is used in the simulation.

It was not possible to simulate wave propagation using a consistent mass matrix when

n ≥ 3 due to the ill-conditioning of the consistent mass matrix. To overcome the problem of

ill-conditioning in implicit analysis, Strouboulis et. al. [86] proposed an iterative approach

based on perturbing the diagonal terms of the original ill-conditioned matrix and then iterating

until the resulting error is negligible. As an alternative Ham and Bathe [79] used a weighted

summation of the consistent and lumped mass matrix as the inertia matrix of the problem in

which the coefficient of lumped mass matrix is very small. The total mass diagonal scaling

method is used in their work for developing a lumped mass matrix. Although the applicability

of the simple diagonal scaling mass lumping can be questionable in the context of GFEM, their

proposed scheme seems to be efficient (compared to the aforementioned iterative method), since

a very small magnitude is used as the multiplier of the lumped mass matrix. It seems likely

that the lumped mass matrix proposed here may be of value in addressing the ill-conditioning

problem found in implicit time integration, as considered in [79] . However, it is clear that the

problem of ill-conditioning does not occur in the case of the diagonal kinetic energy-consistent

lumped mass matrix of the present work.

70



Table 2.2: A comparison between the critical time steps of cracked and original intact domains
using the enriched FE model for various values of the cutoff number n (m = 0) for the consistent
mass matrix.

n Intact (consistent mass) Cracked (consistent mass) Ratio
0 7.5514× 10−6 9.5158× 10−7 7.9
1 2.1477× 10−6 2.8374× 10−7 7.6
2 1.0631× 10−6 5.6114× 10−8 18.9
3 6.4145× 10−7 ill-conditioned mass matrix −−
4 1.4928× 10−7 ill-conditioned mass matrix −−

Table 2.3: A comparison between the critical time steps of cracked and original intact domains
using the enriched FE model for various values of the cutoff number n (m = 0) for the lumped
mass matrix.

n Intact (lumped mass) Cracked (lumped mass) Ratio
0 1.4306× 10−5 1.4297× 10−5 1
1 4.1965× 10−6 4.1964× 10−6 1
2 2.2177× 10−6 2.0676× 10−6 1.07
3 1.4810× 10−6 1.3919× 10−6 1.06
4 6.6043× 10−7 6.6130× 10−7 0.99

Table 2.4: A comparison between the critical time steps of cracked and original intact domains
using the multi-directional enriched FE model for various values of the cutoff numbers n and
m.

n m Intact (lumped mass) Cracked (lumped mass)
0 0 1.4306× 10−5 1.4297× 10−5

1 0 4.1965× 10−6 4.1964× 10−6

0 1 5.3399× 10−6 5.2151× 10−6

1 1 3.3994× 10−6 3.2607× 10−6

2 2 1.6999× 10−6 1.2673× 10−6
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2.5.5 Role of Crack Location in Element

To assess the effect of the crack’s location on the critical time step size a 0.1× 0.1[m] bilinear

rectangular element is considered. The interpolation of the variables inside the element are

represented by enriched FEM with cutoff numbers n = 1 and m = 0. A vertical crack is

assumed to divide the element into two superimposed elements. Figure 2.17 depicts the critical

time step as a function of the location of the crack within the element. ∆tcr is the critical

time step of the PNM-GFEM model. The results are normalized using the critical time step

of the same element without any crack ∆t0cr. The normalized critical time step sizes are shown

as a function of Ae1/A0, where Ae1 is the active area of the superposed element 1 and A0 is

the total area of the element. As shown in this figure, the critical time step obtained using

the proposed lumped mass matrix for the PNM-GFEM model decreases to a finite value as the

crack approaches the element edge. This is in contrast to the critical time step obtained using

the consistent mass matrix, which tends to zero as the crack approaches the element edge. This

result further emphasizes the advantages of using the lumped mass matrix proposed here.
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Fig. 2.17: A comparison between the critical time step obtained using the consistent and lumped
mass as a function of the crack’s location in the element.

2.6 Chapter Conclusions

A new enriched finite element method has been developed to more accurately simulation wave

propagation in discontinuous (fractured) domains. The numerical method combines the Phan-

tom Node Method (PNM) to model fractures and the Generalized Finite Element Method

(GFEM) to accurately model wave phenomena. Global harmonic enrichment functions have

been embedded into the framework to more accurately simulation wave profiles and to reduce the

effect of numerical dispersion and spurious oscillations. The general idea of the Phantom Node

Method has been adopted to the capture discontinuous displacement in the fractured media,

in which a cracked element is replaced by two superimposed regular elements with additional

phantom nodes. Through three numerical examples it was demonstrated that the spurious

oscillations that appear in propagation pattern of high-frequency waves in PNM simulations

can be effectively suppressed by including harmonic enrichment functions (PNM-GFEM). This

is observed to be especially important in fractured media where both primary waves and the
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secondary reflected waves are present. A specific kinetic energy-consistent lumped mass matrix

was proposed for the PNM-GFEM leading to superiour performance in explicit simulations. It

was demonstrated that when a consistent mass matrix is used, the critical time step size in

explicit time integration simulations tends to zero as the fracture location tends toward the

edge of an element and the PNM-GFEM struggles with ill-conditioning problems. In contrast,

it was demonstrated that when the proposed lumped mass matrix is used, the critical time

step size is both finite (even when a crack lies along an element edge) and of the same order

of magnitude of that of the underlying FEM, and ill-conditioning problems are mitigated. The

PNM-GFEM is a promising method for the simulation of wave phenomena in fractured media.
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Chapter 3

Enriched mixed finite element models

for dynamic/wave propagation analysis

of continuous and fractured porous

media
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This chapter is based on the following journal article:

Komijani M., Gracie R., Enriched Mixed Finite Element Models for Dynamic Analysis of Con-

tinuous and Fractured Porous Media, Computer Methods in Applied Mechanics and Engineer-

ing, 343: 74–99, 2019 [36].

In this journal paper I was the first author and was responsible for the writing of the article.

The paper was edited by Dr. Gracie. I also developed the mathematical and computational

formulation and the numerical code.

This chapter addresses objective 2 of the thesis.
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3.1 Introduction

Enriched Finite Element Models are presented to more accurately investigate the transient and

wave propagation responses of continuous and fractured porous media based on mixture theory.

Firstly, the Generalized Finite Element Method (GFEM) trigonometric enrichments are intro-

duced to suppress the spurious oscillations that may appear in dynamic analysis with the regular

Finite Element Method (FEM) due to numerical dispersion/Gibbs phenomenon. Secondly, the

Phantom Node Method (PNM) is employed to model multiple arbitrary fractures independently

of the mesh topology. Thirdly, frictional contact behaviour is simulated using an Augmented

Lagrange Multiplier technique. Mixed Lagrangian interpolants, bi-quadratic for displacements

and bi-linear for pore pressure, are used for the underlying FEM basis. Transient (non-wave

propagation) response of fractured porous media is effectively modeled using the PNM. Wave

propagation in continuous porous media is effectively modeled using the mixed GFEM. Wave

propagation in fractured porous media is accurately simulated using a mixed GFEM-enriched

Phantom Node Method (PNM-GFEM-M). The developed mixed GFEM portion of the model

is verified through a transient consolidation problem. Subsequently, the ability of the enriched

FEM models to capture the dynamic response of fractured fully-saturated porous media under

mechanical and hydraulic stimulations is illustrated. The superior ability of the PNM-GFEM-

M to inhibiting spurious oscillations is shown in comparison against the regular finite element

solutions of some impact problems. It is demonstrated that by embedding appropriate enrich-

ment basis functions in both displacement and pore pressure fields the results obtained are more

accurate than those obtained using standard finite element approximations or approximations

in which only the displacement is enriched.

Analysis of porous media is of importance in a wide range of applications from reservoir

engineering to biological materials. Accurate simulation of coupled behaviour of fluid and

solid in geomechanics is essential in improving the reservoir performance and ensuring wellbore

stability[102]. In a similar fashion, biomechanical analysis of tissues such as the brain, bones,
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and cells involves coupled behaviour of solid skeleton and a pore fluid [103, 104, 105, 106].

Investigations of coupled hydro-mechanical problems has a relatively long history going back

to the pioneering works of Terzaghi [107] and Biot [108].

Dynamic analysis is important in applications such as liquefaction, induced seismicity, and

earthquake analysis, in which inertia effects are of significance. In coupled analysis of porous me-

dia, different approaches have been developed to model the hydro-mechanical response. Fully-

dynamic three-field models (u−w−p) have been used to solve the problem based on the solution

for solid skeleton displacement, u, the displacement of the fluid relative to the solid matrix,

w, and the fluid pore pressure, p [109, 110]. In some other works, based on the assumption

that the relative acceleration of fluid with respect to the total mixture is negligible, a simpler

two-field formulations (u− p) had been developed [111]. Alternative formulation based on the

same assumption has lead to (u − w) models, in which pore pressure is eliminated instead of

the relative displacement of fluid with respect to the solid skeleton [112, 113] . Two-field u− p

models of porous media have been noted to be more appropriate for modelling saturated porous

material up to earthquake frequencies [114].

Previous research efforts in dynamic/wave propagation analysis of porous media have em-

phasized the hydro-mechanical response of continuous domains. However, in many applications,

such as the analysis of naturally fractured rock masses, we encounter discontinuous domains

which contain pre-existing or induced cracks and/or faults. The analysis of microseismic emis-

sion due to the reactivation of natural fractures in geological formations under high in-situ

stresses is of practical importance in the evolution of hydraulic fracturing operations, which

has not been dealt with sufficiently in the literature so far.

The dominant approach in seismic analysis has been to solve wave propagation in frequency

domain [115] with the assumption that the simulation domain is continuous and does not con-

tain any fractures; in spite the fact that the coupled problem of micro-seismic emission due
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to fault reactivation has to be partially modeled (in localization/crack propagation phase) in

the time domain. Therefore, developing new and efficient time domain-based computational

methods and tools to simulate the dynamic hydro-mechanical response of porous systems that

include discontinuities seems to be necessary and practical.

In the area of fractured porous media analysis, Remij et al. [116] present an enhanced

local pressure model for simulation of fluid-driven fractures in porous media using partition-of-

unity finite element to impose strong discontinuity of displacement and pressure fields across

the fracture. In this work, fracture propagation due to internal flow is modeled by a cohe-

sive traction-separation law. Nikolic et al. [117] proposed a discrete beam lattice model for

simulation of localization in a fluid-saturated poro-plastic media. Localized failure of media is

embedded through discontinuities located in cohesive links enabled by the proposed discrete

model which can capture the fracture process zone initiation and the localization mechanisms.

Armero and Callari [119] performed an analysis of strong discontinuities in displacement in

a poroplastic solid. They considered continuous pressure field across the material discontinu-

ity with discontinuous pressure gradient leading to discontinuous fluid flux across the crack.

They used an enhanced strain finite element formulation to represent the normal and shear

displacement jumps along the discontinuity. Réthoré et al. [118] developed a numerical model

for dynamic propagation of shear bands in saturated porous media. They used the partition

of unity property of finite element to introduce discontinuity in the domain in the context

of XFEM. Using cohesive shear tractions they simulated nucleation and propagation of shear

bands based on Tresca-like and a Coulomb criterion.

Another approach for simulation of fracture in porous media has been the phase field mod-

eling. Christian Miehe and Steffen Mauthe [120] proposed a macroscopic framework for a

continuum phase field modeling of fracture in porous media. The main idea in this approach is

to regularize the discrete crack based on a constitutive balance equation. The approach over-

comes difficulties associated with the computational realization of sharp discontinuities which is
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involved in discontinuity modeling and specifying the trajectory of fracture once it propagates.

The multi-physics coupling of porous media is accommodated through a modular concept for

linking of the diffusive crack modeling with the hydro-poro-elastic response of the porous bulk

material. Lee et al. [121] employed phase field approach for proppant-filled fractures in porous

media to solve for displacements, phase field, pressure, and proppant concentration though a

continuum model. The coupling to the pressure equation is imposed via a fixed-stress iteration.

A diffraction equation is used to obtain the pressure and the phase-field variable serves as an

indicator function that distinguishes between the fracture and the reservoir. In this context,

some damage localization models have also been proposed for porous media. Mobasher et al.

[122] proposed a damage-poroelastic model for analyzing the localization of porous media in

geomechanics applications. The mesh-dependency problem of local damage models has been

rectified by introducing a non-local model. However, these earlier works that are proposed

to model fracture in porous media did not address the topic of accurate simulation of wave

propagation in multi-physics media.

To model arbitrary fractures independently of mesh topology and to rectify the requirement

for continuous re-meshing in the process of crack propagation Moës et al. [26] developed the

concept of the eXtended Finite Element Model (XFEM). XFEM is based on the general idea

of the Partition of Unity Finite Element Method [20]. As a continuation, Song et al. [29] intro-

duced and developed the idea of Phantom Node Method (PNM) to model discontinuities. The

model is in essence the same as the earlier method proposed by Hansbo and Hansbo [31]. In

the PNM, discontinuity in displacement is achieved by reformulating elements, which contain

a fracture as two superimposed intact elements with additional computational nodes, called

Phantom Nodes. Each of the superimposed elements is used to represent a different side of

the original cracked element, resulting in a discontinuous interpolation for displacement. The

most important feature and advantage of the PNM is that its implementation requires fewer

modifications to an existing FEM code compared to XFEM. To date the PNM has only been

applied to classical applications in structural mechanics. Here we extend its application to
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fractured porous media.

Owing to the direct satisfaction of the natural boundary conditions through integral form

of the weak formulation (divergence theorem), the finite element method is known to be a very

effective tool for solving boundary-value problems. However, the piecewise continuous poly-

nomials used to interpolate the unknown functions have been found to be inadequate in some

problems, including transient wave propagation [79]. In the case of transient wave propaga-

tion, FEM solution may show spurious oscillations. These non-physical oscillations degrade the

accuracy of the results, including the wave propagation velocity, which is important in appli-

cation such as microseismic wave simulation, where the waves travel long distances. Here, this

problem is treated through introduction of harmonic enrichments.

An enriched finite element method was proposed in [78], where enriched harmonic and con-

ventional low-order polynomials interpolations are used to model multiscale wave propagation

in one-dimensional problems. The general idea of embedding appropriate basis functions, with

characteristics that appear in the analytical solution of the problem, as enrichments using the

partition of unity property of the FE interpolants was developed in the pioneering work of

Melenk and Babuška [20]. For more detailed information about enriched finite element meth-

ods one can also refer to [21, 22, 23]. Based on the general idea of the Partition of Unity

Method (PUM), Ham and Bahte [79] extended the approach of [78] to solve the problem of

time-harmonic and transient wave propagation in multiple dimensions; it was demonstrated

that the spurious oscillations that appear with the conventional FEM can effectively subside

by the proposed enriched FEM in the simulation of wave propagation in continuous domains.

Very recently, a GFEM-enriched PNM model was proposed by Komijani and Gracie [32] to

extend the enriched FE model developed in [79] to the case of fractured media. Their enriched

FE model, the PNM-GFEM, combines the advantages of the trigonometric enrichments intro-

duced in [79] and the Phantom Node Method. Using the PNM-GFEM, problem of transient
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wave propagation in fractured media is simulated in various cases of high-frequency/impact

mechanical loading conditions. Through several numerical illustrations it was demonstrated

that the high-frequency non-physical spurious oscillations can be dramatically suppressed in

both primary emitted waves and reflected waves from the fracture surfaces.

To date these enriched finite element models have not been applied to any coupled multi-

physics problem with or without discontinuities, such as fractured porous media. The purpose

of the present article is to extend the use of the PNM-GFEM enriched FE model introduced in

[32] to the case of fractured saturated porous media. GFEM trigonometric functions are used

to enrich the displacement field of solid skeleton and pore pressure field to model transient wave

propagation response of porous media more accurately. The PNM is employed in a combined

fashion to simulate discontinuities in the displacement fields as well as pore pressure field in

the case of impervious crack faces. The dynamic behaviour of fractured porous media is inves-

tigated through several numerical examples for different mechanical and hydraulic loading types.
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3.2 Mathematical Formulation

A porous media is composed of a fluid filled solid matrix. The fluid phase can flow through

the connected voids of the solid matrix. The behaviour of a porous media is governed by the

interaction of fluid and solid phases. In this work, the governing equations are obtained from

Biot’s mixture theory based on the concept of volume fractions for each phase in a representa-

tive elementary volume.

3.2.1 Governing Equations

Consider a two-dimensional poroelastic medium, Ω, defined in Cartesian coordinate Oxy. Let

ux(x, y, t) and uy(x, y, t) be the displacement components of the total mixture in x and y

directions, respectively, as a function of time, t. Assuming infinitesimal deformation, the linear

strain-displacement relations are

εxx = ux,x εyy = uy,y γxy = ux,y + uy,x (3.1)

The constitutive equations for the solid matrix can be written in Voigt notation as:


σ′xx

σ′yy

σ′xy

 =


C11 C12 0

C21 C22 0

0 0 C33



εxx

εyy

γxy

 (3.2)

in which σ′xx, σ
′
yy, and σ′xy are the components of the effective stress tensor acting on the solid

skeleton, and C11 through C33 are the elastic coefficients.

The relative motion of the fluid phase with respect to the total mixture is denoted by

wi(x, t); it is assumed that the relative acceleration of the fluid phase with respect to the entire
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mixture is negligible, i.e., ẅi = 0. The momentum balance of the total mixture is:

O · σ − ρü+ ρb = 0 (3.3)

in which ü is the acceleration of the total mixture, σ is the total stress, ρ is the average mixture

density, and b is the body force acting on the mixture.

The average density of the mixture is defined as a linear combination of solid and fluid

phases

ρ = n′ρf + (1− n′)ρs (3.4)

in which ρf and ρs are the density of fluid phase and solid grains, respectively, and n′ is the

porosity of the media, defined as the ratio of the porous volume to the total volume of the

mixture.

The total stress acting on the mixture is defined as

σ = σ′ − αppI (3.5)

where p is the fluid pore pressure, I is the identity tensor, σ′ denotes the effective stress acting

on the solid skeleton, and αp is Biot’s coefficient.

A generalized Darcy relation can be derived from conservation of momentum of the fluid

phase. Neglecting the relative acceleration of the pore fluid with respect to the total mixture,

the momentum equation for the fluid phase is:

−Op+R− ρf ü+ ρfb = 0 (3.6)

in which R denotes the lumped/averaged viscous drag force acting on the fluid. The drag force

may be defined by the Darcy seepage law

ẇ = −kfR (3.7)
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in which kf denotes the permeability tensor of the porous media.

The Eulerian continuity equation for the fluid phase is:

O · ẇ + αO · u̇+
ṗ

Q
= 0 (3.8)

in which 1/Q = (α − n′)/Ks + n′/Kf , and Ks and Kf are the bulk moduli of solid and fluid

phases, respectively.

The relative velocity of fluid phase with respect to the mixture, w, can be eliminated from

(4.8) using (4.6) and the Darcy seepage law (4.7) leading to [114]

O · kf [−Op− ρf ü+ ρfb] + αO · u̇+
ṗ

Q
= 0 (3.9)

Equations (4.3) and (4.9) along with the strain-displacement relations (4.1) and effective stress-

strain constitutive equations (4.2) are solved together with boundary and initial conditions to

find the displacement and pore pressure fields.

3.2.2 Weak Formulation

Consider a 2D domain Ω with boundary Γ. Boundary Γ comprises of Γu, Γt, Γp, and Γw, which

are the boundary surface for prescribed displacement, traction, pore pressure, and out-flow flux

of pore fluid, respectively. Domain Ω contains internal discontinuities (i.e., fractures) denoted

by Γd. Using Galerkin’s method the coupled system of equations (4.3) and (4.9) are transformed

into a weak formulation using appropriate test functions, δu and δp.

The admissible spaces of the displacement and pore pressure fields are defined as below:

U =
{
u(x, y, t)|u(x, y, t) ∈ H1,u(x, y, t) = ū(t) on Γu,u discontinuous on Γd

}
(3.10)
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U0 =
{
δu(x, y, t)|δu(x, y, t) ∈ H1, δu(x, y, t) = 0 on Γu, δu discontinuous on Γd

}
(3.11)

P =
{
p(x, y, t)|p(x, y, t) ∈ H1, p(x, y, t) = p̄(t) on Γp, p discontinuous on Γd

}
(3.12)

P0 =
{
δp(x, y, t)|δp(x, y, t) ∈ H1, δp(x, y, t) = 0 on Γp, δp discontinuous on Γd

}
(3.13)

The resulting weak form of the initial boundary value problem is

∫
Ω

σ : δε dΩ+

∫
Ω

ρü·δu dΩ−
∫

Γt

t̄·δu dΓ−
∫

Ω

ρb·δu dΩ+

∫
Γd

t̄d ·δ[[u]] dΓ = 0,∀δu ∈ U0 (3.14)

∫
Ω

Oδp · kfOp dΩ +

∫
Ω

Oδpkf · ρf ü dΩ +

∫
Ω

δp αp O · u̇ dΩ +

∫
Ω

δp 1/Q ṗ dΩ−

∫
Ω

Oδpkf · ρfb dΩ +

∫
Γw

δp(ẇ · nΓ) dΓ−
∫

Γd

δp[[ẇ]] · nΓd
dΓ = 0,∀δp ∈ P0 (3.15)

in which [[u]] denotes the jump in the displacement field across the discontinuity surfaces and

[[ẇ]] represents the discontinuity of fluid flux into the crack interface in both sides of the dis-

continuity. t̄d denotes the internal applied traction (e.g., contact force) on the surfaces of the

internal discontinuity Γd. In this work natural boundary conditions are imposed on the internal

interface, Γd. For the mechanical problem, the tractions on the crack surfaces are non-zero

when contact is modeled or zero (traction free) when contact is not modeled. For flow problem,

the fluid flux perpendicular to the fracture surfaces is zero for impermeable fractures. In the
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case of permeable fractures, there is no discontinuity in the pore pressure field and therefore no

natural boundary condition needs to be considered on Γd.
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3.3 Enriched Mixed Finite Element Formulation

In this section, the discretization of the weak form (4.10)-(4.11) using the PNM-GFEM interpo-

lations [32], the implementation of frictional contact using an Augmented-Lagrangian approach,

the integration of the semi-discretized equations using a Generalized Newmark implicit method

are discussed.

3.3.1 GFEM interpolation

Spurious waves due to the Gibbs phenomenon can be suppressed/reduced in FEM simulations of

transient wave propagation in continuous domains by GFEM enrichment with appropriate func-

tions. Inspired by the exponential- (or trigonometric-) type nature of the analytical solutions

of wave problems, Ham and Bathe [79] proposed the following interpolation for displacement

u(x, y, t) =
∑
I

(
NIuI(0,0) +

n∑
kx=1

[NIφ
Cx

(kx,0)u
Cx

I(kx,0) +NIφ
Sx

(kx,0)u
Sx

I(kx,0)]+

m∑
ky=1

[NIφ
Cy

(0,ky)u
Cy

I(0,ky) +NIφ
Sy

(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[NIφ
C+
(kx,ky)u

C+
I(kx,ky) +NIφ

S+
(kx,ky)u

S+
I(kx,ky)+ (3.16)

NIφ
C−
(kx,ky)u

C−
I(kx,ky) +NIφ

S−
(kx,ky)u

S−
I(kx,ky)]

)
in which φγ(kx,ky) with the corresponding superscript denotes the following trigonometric enriched

basis functions:

φCx

(kx,0) = cos(
2πkxx

Λx

), φSx

(kx,0) = sin(
2πkxx

Λx

),

φ
Cy

(0,ky) = cos(
2πkyy

Λy

), φ
Sy

(0,ky) = sin(
2πkyy

Λy

)
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φC+
(kx,ky) = cos(

2πkxx

Λx

+
2πkyy

Λy

), φS+
(kx,ky) = sin(

2πkxx

Λx

+
2πkyy

Λy

)

φC−(kx,ky) = cos(
2πkxx

Λx

− 2πkyy

Λy

), φS−(kx,ky) = sin(
2πkxx

Λx

− 2πkyy

Λy

)

In the above enriched FE formulation NI are the conventional Lagrangian shape functions,

uI(0,0) are the conventional nodal degrees of freedom, uγI(kx,ky) with the associated superscript

(Cx, Cy, Sx, Sy, ...) are the enriched nodal degree of freedom corresponding to the local node

number I, kx and ky are the wave numbers, n and m are the cutoff numbers for enrichment

functions in x and y directions, respectively, and Λx and Λy are wavelengths, which are assumed

to be equal to the element sizes in x and y directions, respectively. It is noted that the cut-

off numbers n and m are user-defined parameters and would vary between different problems.

In the case of highly-transient waves or time-harmonic waves with short wave lengths, higher

cutoff numbers may be required to obtained more accurate results. The excitation of different

wave lengths can be modeled using different cutoff numbers, which facilitates the possibility

of modelling waves with wavelengths smaller than the element size. It is important to note

that considering higher cutoff numbers than 2 may lead to severe ill-conditioning problems.

However, based on our experience so far, cutoff numbers of 1 or 2 is sufficient in many cases.

To model the dynamic/wave propagation response of fracture media, the Phantom Node

Method [32] is combined with the above GFEM approximation (3.16). The PNM is employed

to facilitate the modelling of the discontinuities and GFEM enrichments are used to more

accurately model wave propagation, compared to what can be achieve with regular FEM ap-

proximations. As illustrated in Figure 3.1, a cracked element containing a discontinuity is

represented by two superimposed intact elements (i.e., overlapping paired elements) with real

and additional phantom nodes [29]. The location of the discontinuity inside an element is de-

fined by a level set function such that f(x, y) = 0 specifies the discontinuous surface. In this

work the level set is the signed distance function to the crack [29]. Displacements in fractured
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elements in the PNM-GFEM are approximated by

u(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψI(0,0)uI(0,0) +

n∑
kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+

m∑
ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)
+

H(f(x, y))
∑
I∈S2

(
ψI(0,0)uI(0,0) +

n∑
kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+ (3.17)

m∑
ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑
kx=1

m∑
ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)
in which ψI(0,0) = NI and ψγI(kx,ky) = NIφ

γ
(kx,ky), and H(·) is the step function. S1 and S2 are the

set of nodes corresponding to each of the two superimposed elements; each of the two superim-

posed elements contain original real nodes and additional phantom nodes. In the framework of

GFEM, both the real and phantom nodes have conventional and enriched degrees of freedom.

For cracked elements, the wavelengths Λx and Λy are taken to be equal to the length of the su-

perimposed paired elements (i.e., regular elements with real and additional phantom nodes) in

x- and y-directions, respectively. This is because while only part of each superimposed element

is used to model one side of the crack, the displacement and pressure fields are interpolated

using nodal degrees of freedom located at the nodes on both sides of the crack.

90



Fig. 3.1: Decomposition of a mixed cracked element into two superimposed elements, in which
the underlying Lagrangian interpolants for the displacements and pore pressure are bi-quadratic
(Q9) and bi-linear (Q4) shape functions, respectively. Real and phantom nodes with displace-
ment degrees of freedom are shown using solid and hollow rectangles, respectively. Real and
phantom nodes with pore pressure degrees of freedom are shown using solid and hollow circles,
respectively.

3.3.2 Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-

M)

The PNM-GFEM approach is extended to the modelling of dynamic transient response of

discontinuous porous media, in which discontinuities in both the displacement and pore pressure

fields across the fracture surfaces occur. This is accomplished using an approximation analogous

to (3.17) for the pore pressure.

It is noted that the employed trigonometric enrichment functions in [79] are not exclu-

sively derived for linear elastic case and have been originally proposed in [78] for multi-scale

electromagnetic and radio-frequency wave propagation in plasmas. Any type of transient or

time-harmonic wave can be represented by exponential (or trigonometric) basis functions based

on the Fourier concept and analytical solutions of waves. Hence in [78] the fundamental trig

wave functions have been embedded in finite element interpolations as enrichments to mimic

the transient/harmonic wave responses. In poroelastic case the response is a combination of

diffusion and elastic wave process and the wave-type transient behaviour in displacement field

is accompanied by a transient response in pore pressure field. Therefore, there is a coupled

transient physics in both displacement and pore pressure variables that can be represented by

harmonic functions (i.e., fundamental wave packages).
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As illustrated in Figure 3.1, the underlying element for our approximation is a mixed el-

ement, with a bi-quadratic (nine node) approximation for the displacements and a bi-linear

(four node) approximation for the pore pressure. The mixed element is replaced by two su-

perimposed elements: superimposed element 1 (SE1) and superimposed element 2 (SE2). The

nodes and corresponding displacement and pressure degrees of freedom of SE1 with f((X) ≤ 0)

are inherited from the underlining element, while nodes of SE1 with f((X) > 0) are additional

phantom nodes with corresponding additional displacement and pressure degrees of freedom.

In a similar way, the nodes of SE2 with f((X) > 0) are inherited from the underlining element,

while nodes of SE2 with f((X) ≤ 0) are additional phantom nodes.

Displacement field discretization

For a cracked element in a porous media, the displacement components in x and y directions

are interpolated based on the discretization introduced above, in a more compact form as:

ux(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ1
I(x, y)uIx(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ1
I(x, y)uIx(t)

)
(3.18)

uy(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ2
I(x, y)uIy(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ2
I(x, y)uIy(t)

)
(3.19)

in which ψ1
I and ψ2

I are the arrays of conventional and enriched basis functions of node I for

the displacement components in x and y directions, respectively. uIx and uIy are the vectors

of corresponding conventional and enriched mixture displacement degrees of freedom of the

porous media for node I in the x and y directions, respectively, as shown below.

ψ1,2
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(3.20)

u>Ix = [uIx(0,0), u
Cx

Ix(1,0), ..., u
S−
Ix(n,m)] (3.21)

92



u>Iy = [uIy(0,0), u
Cx

Iy(1,0), ..., u
S−
Iy(n,m)] (3.22)

The Lagrange interpolation functions (ψI(0,0) = NI) are taken to be bi-quadratic shape functions

(Q9).

Pore pressure field discretization

When the pore pressure in the cracked element is discontinuous, as when the crack faces are

impervious or when the fluid pressure in the fracture is different than in the bulk, pore pressure

is approximated by PNM type approximation.

Following the general idea of PNM-GFEM, the pore pressure approximation in discontinuous

(pressure) elements is

p(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ3
I(x, y)pI(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ3
I(x, y)pI(t)

)
(3.23)

in which ψ3
I denotes the set of conventional and enriched interpolation functions for the pore

pressure variable (i.e., the third unknown field of the problem), and pI is the vector of cor-

responding regular and enriched, phantom or real pore pressure degrees of freedom for node

I.

ψ3
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(3.24)

It is noted that the Lagrange interpolation functions (ψI(0,0) = NI) for the pore pressure filed

are bi-linear shape functions (Q4).

3.3.3 Semi-discretized mixed FE equations

Substitution of the prescribed interpolation functions for the displacement fields (4.12)- (4.13)

and pore pressure field (4.17) in the governing weak form (4.10)-(4.11) results in a semi-
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discretized system of equations, which at the element level is

nnode∑
J=1

(
[M e]11

IJ ü
e
Jx + [Ke]11

IJu
e
Jx + [Ke]12

IJu
e
Jy + [Ke]13

IJp
e
J

)
= Fe

Iux , (I = 1, ..., nnode) (3.25)

nnode∑
J=1

(
[M e]22

IJ ü
e
Jy + [Ke]21

IJu
e
Jx + [Ke]22

IJu
e
Jy + [Ke]23

IJp
e
J

)
= Fe

Iuy , (I = 1, ..., nnode) (3.26)

nnode∑
J=1

(
[M e]31

IJ ü
e
Jx + [M e]32

IJ ü
e
Jy + [Ce]31

IJ u̇
e
Jx + [Ce]32

IJ u̇
e
Jy+

[Ce]33
IJ ṗ

e
J + [Ke]33

IJp
e
J

)
= Fe

Ip, (I = 1, ..., nnode) (3.27)

in which nnode is the number of nodes in each of the two superposed elements 1 and 2, and

includes both original real and phantom nodes. It is noted that for the cracked elements, the

numerical integration is performed separately over the active areas of each of the two super-

posed elements. To evaluate the finite element integrals a sub-domain integration scheme is

employed [26].

In an element crossed by a crack, the definitions of [M e]IJ , [Ce]IJ , [Ke]IJ , Fe
Iux

, Fe
Iuy

, and Fe
Ip

in (4.19), (4.20), and (4.21) for each of the superimposed elements, i.e., e= 1 or 2, are

[M e]11
IJ =

∫
Ae

ρ(ψ1
I)
>ψ1

JdΩ, [M e]31
IJ =

∫
Ae

ρfkf (ψ
3
I)
>
,xψ

1
JdΩ (3.28)

[M e]22
IJ =

∫
Ae

ρ(ψ2
I)
>ψ2

JdΩ, [M e]32
IJ =

∫
Ae

ρfkf (ψ
3
I)
>
,yψ

2
JdΩ (3.29)

[Ke]11
IJ =

∫
Ae

(
C11(ψ1

I)
>
,x(ψ

1
J),x + C33(ψ1

I)
>
,y(ψ

1
J),y

)
dΩ, (3.30)

[Ke]12
IJ =

∫
Ae

(
C12(ψ1

I)
>
,x(ψ

2
J),y + C33(ψ1

I)
>
,y(ψ

2
J),x

)
dΩ, (3.31)
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[Ke]13
IJ =

∫
Ae

−αp(ψ1
I)
>
,x(ψ

3
J)dΩ, (3.32)

[Ke]21
IJ =

∫
Ae

(
C21(ψ2

I)
>
,y(ψ

1
J),x + C33(ψ2

I)
>
,x(ψ

1
J),y

)
dΩ, (3.33)

[Ke]22
IJ =

∫
Ae

(
C22(ψ2

I)
>
,y(ψ

2
J),y + C33(ψ2

I)
>
,x(ψ

2
J),x

)
dΩ, (3.34)

[Ke]23
IJ =

∫
Ae

−αp(ψ2
I)
>
,y(ψ

3
J)dΩ, (3.35)

[Ke]33
IJ =

∫
Ae

kf

(
(ψ3

I)
>
,x(ψ

3
J),x + (ψ3

I)
>
,y(ψ

3
J),y

)
dΩ, (3.36)

[Ce]31
IJ =

∫
Ae

αp(ψ
3
I)
>(ψ1

J),xdΩ, (3.37)

[Ce]32
IJ =

∫
Ae

αp(ψ
3
I)
>(ψ2

J),ydΩ, (3.38)

[Ce]33
IJ =

∫
Ae

(ψ3
I)
>(ψ3

J)
1

Q
dΩ, (3.39)

Fe
Iux =

∫
Ae

(
ρ(bx)(ψ

1
I)
>
)
dΩ+

∫
ste

(
t̄x(ψ

1
I)
>
)
dΓt +

∫
sde

(
t̄dx(ψ1

I)
>
)
dΓd, (3.40)

Fe
Iuy =

∫
Ae

(
ρ(by)(ψ

2
I)
>
)
dΩ+

∫
ste

(
t̄y(ψ

2
I)
>
)
dΓt +

∫
sde

(
t̄dy(ψ2

I)
>
)
dΓd, (3.41)
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Fe
Ip =

∫
Ae

kfρf

(
(ψ3

I)
>
,xbx + (ψ3

I)
>
,yby

)
dΩ−

∫
swe

(
ẇ · nΓw(ψ3

I)
>
)
dΓw (3.42)

in which e is either 1 or 2 for the superimposed elements one and two, respectively, and ste, s
d
e,

and swe are the portions of superimposed element e on the traction boundary Γt, discontinuity

surface Γd, and fluid flux boundary Γw, respectively. t̄dx and t̄dy are the components of contact

tractions in x and y directions, respectively.

The semi-discretized coupled hydro-mechanical poro-elastic finite element equations (4.19),

(4.20), and (4.21) can be rewritten in a more compact form as:

[M ]
{

∆̈
}

+ [C]
{

∆̇
}

+ [K] {∆} = {F} (3.43)

where {∆} = {ux uy p}> is the vector of unknown nodal values for displacement and pore

pressure degrees of freedom in the porous media, and {F} =
{
Fux Fuy Fp

}>
is the vector of

mechanical forces and flow fluxes.

3.3.4 Fully Discrete Equations

To establish the fully-discretized governing algebraic equations, the Generalized Newmark time

integration schemes G22 and G11 are employed for displacement and pore pressure degrees of

freedom, respectively. The following relations link the unknown values for displacement and

pore pressure at time step (i+ 1) to the corresponding values at time step (i)

üi+1 =
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi (3.44)

u̇i+1 =
γ

β∆t
(ui+1 − ui)− (

γ

β
− 1)u̇i −∆t(

γ

2β
− 1)üi (3.45)

ṗi+1 =
1

θ∆t
(pi+1 − pi)− (

1

θ
− 1)ṗi (3.46)

96



where γ, β, and θ are the integration parameters that are all considered to be 0.7 in the

numerical examples of the present work. The integration constants are typically chosen in the

range of [0 1]. For unconditional stability of the time integration θ and γ need to be greater

than or equal to 0.5 and β should be greater than or equal to 0.25(0.5 + γ)2.

For a prescribed set of initial and boundary conditions and surface tractions on the crack

faces, which may include contributions from friction and contact forces, the substitution of (4.23-

4.25) into (4.22) leads to a linear system of equations of the following form for the displacement

and pressure degrees of freedom ∆i+1 at time ti+1 in terms of known displacement and pressure

degrees of freedom ∆i at time ti.

A∆i+1 = R (∆i, t̄, t̄d, q̄) (3.47)

in which the right hand side R is function of the degrees of freedom at time ti, the external

applied traction t̄, the crack surface tractions t̄d, and the boundary flux q̄ = ẇ · nΓ. In the

next section, the calculation of the crack surface tractions stemming from friction and contact

is discussed.
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3.4 Augmented-Lagrangian frictional contact simulation

Geomechanical porous systems experience high in-situ confining stresses due to the overbur-

den and horizontal stresses leading to large contact and frictional forces acting along natural

fractures and faults. A considerable amount of attention has been given to how to enforce

interfacial constraints in the context of the partition-of-unity FEM; a number of contact simu-

lation methodologies and appropriate spacial and interfacial interpolation strategies have been

developed leading to smoother and more stable contact results [123, 124, 125]. In this work, an

augmented Lagrange multiplier approach is adopted to enforce the normal contact constraint

via an iterative method.

When frictional contact between crack surfaces is incorporated into the model, it is conve-

nient to rewrite the weak form (4.10) as

∫
Ω

σ : δε dΩ +

∫
Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ−
∫

Γd

λ̄NδgNdΓ−

∫
Γd

λ̄T δgTdΓ = 0 (3.48)

in which λ̄N , gN , λ̄T , and gT are the normal contact traction, the normal inter-penetration, the

tangential contact frictional traction, and the tangential displacement jump across the contact

surface, respectively. It is noted that the inter-penetration (gN) has been defined with a positive

sign. Here λ̄T is the friction stemming for a stick-slip friction model.

The normal contact and tangential frictional force/Lagrange multiplier fields are interpo-

lated using one-dimensional elements along the discontinuity as:

λ̄N = Ñλ̄N and λ̄T = Ñλ̄T (3.49)

in which Ñ are linear one-dimensional Lagrangian shape functions and
(
λ̄N , λ̄T

)
are the vec-
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tors of Lagrange multipliers degrees of freedom. The nodes of the Lagrange multiplier mesh

are chosen using the Vital Vertex Method [124, 125].

At each time step, ∆i+1 and
(
λ̄N , λ̄T

)
i+1

, given the solutions ∆i and
(
λ̄N , λ̄T

)
i

at ti,

are sought using an iterative process. The iterative process starts (k = 0) with an initial

guess for the vector of Lagrange multipliers
(
λ̄N , λ̄T

)k=0

i+1
=
(
λ̄N , λ̄T

)
i
. Given

(
λ̄N , λ̄T

)k
i+1

at

iteration k, the linear system of equations (3.47) is solved for ∆k
i+1, from which the normal

interpenetration gkN and tangential slip gkT of the crack at each node of the Lagrange multiplier

mesh are computed. If the norm of gkN is greater than a prescribed tolerance then the Lagrange

multiplier nodal vector (normal contact forces) are updated using

λ̄
k+1
N = λ̄

k
N + dλ̄

k
N , and dλ̄

k
N = KNg

k
N (3.50)

in which KN is an arbitrary rebounding stiffness value.

In the case of frictional contact, a similar iterative update procedure is implemented to

obtain the frictional (i.e., tangential) contact nodal forces. Sliding occurs, gT > 0, if the

tangential frictional contact force, λ̄T , required to prevent slip exceeds λ̄maxT = λ̄Nµf , otherwise

a state of stick exists and the associated tangential slip, gT , should be 0. When frictional contact

is modelled, the iterative process is also conditioned on the norm of the tangential slip gT at

Lagrange multiplier nodes in a state of stick being less than a prescribed tolerance. When this

condition is not satisfied, the Lagrange multiplier nodal vector associated with the stick-slip

friction is updated using

 λ̄
k+1
T = λ̄

k
T +KTg

k
T if λ̄T < λ̄max,k+1

T (Stick Condition)

λ̄
k+1
T = λ̄max,k+1

T otherwise (Slip Condition)
(3.51)

in which λ̄max,k+1
T = λ̄k+1

N µf and KT is an arbitrary rebounding stiffness.

By repeating the iterative process at each time step, the normal inter-penetration at the
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crack location approaches zero as the vector of Lagrange multiplier, λ̄k+1
N , converges to the real

magnitude of the contact force at the interface of the crack. In a similar way, the frictional

contact forces converge to those satisfying the stick-slip condition. Once convergence of the

iterative procedure is achieve, the solution algorithm proceeds to the next time step.
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Table 3.1: Material properties of the porous media.

E(Pa) ν ρs(kg/m
3) ρf (kg/m

3) n′ kf (m
3s/kg) Kf (Pa) Ks(Pa)

14.516× 106 0.3 2000 1000 0.3 1.0194× 10−6 2.1× 109 1× 1020

3.5 Results and discussion

In this section, different types of dynamic and transient wave propagation problems are sim-

ulated in poroelastic domains. The domain of analysis is assumed to be a two-dimensional

poroelastic media with hydro-mechanical properties given in Table 4.1, unless stated otherwise.

A unit thickness is assumed in the out-of-plane direction.

3.5.1 Verification study - Consolidation

To verify the accuracy and reliability of the developed enriched finite element model in solving

dynamic transient poroelastic problems, the results obtained using the enriched FE model of

the present work (with n = 1) is compared with some available results from the literature. To

this end, as shown schematically in Figure 3.2 a vertical column of small width is considered

under uniformly applied external traction on its top surface. The side walls and the bottom

are assumed to be impervious and there is normal displacement restriction on them. The

upper boundary is drained ( there is essential boundary condition for p, i.e., p=0 ) and under

compressive normal uniform traction of 3 kN/m2. The width and length of the porous column

are 0.1m and 10m, respectively, and a one dimensional coordinate system is set on the domain

with its origin at the bottom of the vertical column. Sixty rectangular Q4 elements with bi-

linear polynomial interpolations have been considered to model this problem. Figures 3.3 and

3.4 show the velocity and pore pressure time histories of the transient response in the domain

for particular control points on the column. As seen in these figures, a very close agreement is

observed between the results of the numerical model of this work and those reported in [109].
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Fig. 3.2: A schematic picture of the porous column used for the validation study.
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Fig. 3.3: A comparison study of the proposed enriched FE model with [109] on the variation of
point velocity over time for vertical column of porous media.
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Fig. 3.4: A comparison study of the proposed enriched FE model with [109] on the variation of
pore pressure over time for vertical column of porous media.

3.5.2 Dynamic response of fractured porous media under external

traction-

To investigate the effect of discontinuity on the dynamic response of porous media, a 1m×0.1m

poroelastic domain discretized by 30×10 Q4 mesh is considered. The domain contains a vertical

crack of length 0.06m centered at x = 0.5m. The crack faces are assumed to be hydraulically

impervious. Simulations with and without crack surface contact are modeled and are compared

to the case of a continous intact domain. A uniform traction is imposed on the left side of the

domain (x = 0) as:

t̄x(t) =

 3000× t
0.1

[N/m2] if t 6 0.1s;

3000 if t > 0.1s.
(3.52)

The top, bottom, and right edges of the domain are assumed to be impervious and the

normal displacements to these edges are constrained. The left edge of the domain is fully

drained. The domain, crack geometry, and the boundary conditions are shown in Figure 3.5.

In this problem long term dynamic response is investigated, which is comprised of lower

frequency components. This is in contrast with the early time dynamic response, which is com-
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Fig. 3.5: A schematic figure of the porous media of section 4.5.1.

prised of higher frequency components. In the case of the former long term dynamic behaviour,

the regular (uneriched) PNM model can be employed to accurately model the porous media.

Figure 3.6a illustrates the x-displacement contour of fractured domain at t = 0.16 s when

contact between the crack faces is modeled. As seen in this contour plot, the contact no-

interpenetration constraint is satisfied across the crack faces. On the other hand, as expected,

neglecting the contact condition along the fracture faces results in a discontinuous displacement

field, results for which are shown in Figure 3.6b. Neglecting the contact traction results in a

higher magnitude of peak displacement in the field compared to the case in which the contact

problem is accounted for. Figure 3.6c illustrates the differences between the response of the

fractured porous media along the center-line, y = 0.05, with and without contact modeled along

the crack faces. When contact is modeled the displacements normal to the crack are continuous,

whereas when contact is not modeled the displacements are discontinuous across the crack.

Figures 3.7a, 3.7b, and 3.8 illustrate, respectively, the pore fluid velocity contour in x-

direction, pore fluid velocity streamlines, and normal strain in the x-direction (εxx) at t =

0.08s using 90 × 60 Q4 mesh. As seen in Figures 3.7a and 3.7b, because of the existence

of an impervious crack, the streamlines go around the fracture and the velocity of the fluid

perpendicular to the fracture at the interface of the discontinuity is zero (no fluid flux goes

through the fracture). As seen in Figure 3.8 the strain magnitude at the fracture surface region

is zero due to the traction-free interface assumption.

To further demonstrate the effect of the existence of crack on the hydraulic response of

porous media, Figures 3.9a and 3.9b illustrate the pore pressure distribution through the frac-
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Fig. 3.6: x-displacement under external uniformly distributed loading on the left edge at (t =
0.16 s).

tured and intact domain, respectively. In the case of fractured domain it was assumed that the

crack faces were completely impervious. As seen, the discontinuity in the pore pressure across

the fracture is clear in Figure 3.9b while Figure 3.9a exhibits a continuous distribution for pore

pressure. Moreover, due to the impermeability of crack faces, the maximum pore pressure of

the domain (behind the crack) is higher than that of the intact media with no crack after the

pore fluid begins to be discharged from the domain through the drained surface (left edge).

This phenomenon happens due to the trapping of the pore fluid behind the fracture in the

discharge process which makes the fluid discharge slower compared to the case with no crack.

Figure 3.10 shows the time history of the pore pressure at a particular point in the domain

(x = 0.5667 m, y = 0.05 m) behind the fracture. The impermeability of crack faces results in

higher peak pressure in the cracked domain compared to the intact media. Due to the existence

of drained hydraulic boundary condition at the left edge, as the system moves forward the pore

pressure gradually tends to zero in steady state condition.
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(a) Velocity contour in x-direction.
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Fig. 3.7: Pore fluid velocity at t = 0.08s.

Fig. 3.8: Strain contour (εxx) at t = 0.08s.
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Fig. 3.9: Pore pressure distribution under external uniformly distributed loading on the left
edge at (t = 0.16 s).
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Fig. 3.10: Time history of pore pressure at point (x = 0.5667 m, y = 0.05 m) for cracked and
intact domains.

3.5.3 Dynamic response of fractured porous media under point in-

jection

To investigate the transient response of fractured porous media under hydraulic stimulation, a

1m by 1m domain (illustrated schematically in Figure 3.11) is considered under point injection

at the center of the domain. The system is discretized by a 10 × 10 Q4 rectangular mesh.

The boundaries are fully drained and are assumed to be traction-free with no displacement

constraints. The problem is solved for the cases of discontinuous and intact domain. For the

case of discontinuous media a vertical crack of 0.6m length is embedded at x = 0.65m. The

problem is investigated under impervious as well as permeable crack face conditions. Contact
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Fig. 3.11: Schematic picture of porous media under point injection.

constraints are considered for the cases in which there exists a crack. Due to the diffusive nature

of this hydraulically-stimulated problem, regular PNM is used for the simulation.

To asses the effect of the hydraulic loading rate on the dynamic response of the system, two

types of point injection rates are considered as:

• Case 1 (rapid injection):

q̄(t) =

 0.01× t
1×10−4 [m3/s] if t 6 1× 10−4s;

0.01 if t > 1× 10−4s.
(3.53)

• Case 2 (slow injection):

q̄(t) =

 0.01× t
100×10−4 [m3/s] if t 6 100× 10−4s;

0.01 if t > 100× 10−4s.
(3.54)

Figures 3.12a and 3.12b illustrate the early responses of the pore pressure at the mid-point

of the domain as a function of time for two different injection rates into fractured and intact

(continuous) domains. For the case of rapid injection, a peak-pressure point exist in the pore

pressure time history. After the peak-pressure, the pore pressure abruptly drops-off before
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gradually increasing to a steady-state value. The pressure peak in the high injection rate simu-

lation are a result of the initially undrained behaviour of the porous media. In contrast, under

slow injection the pore pressure increases in a nearly monotonically way towards a steady-state.

The pore pressure response of an intact domain under both rapid and slow injection are also

illustrated in Figures 3.12a and 3.12b. In both cases, the pore pressure response of the in-

tact domain falls beneath that of the fractured domain. This behaviour is reasonable, since

the cracks were assumed to be impervious and so the effective hydraulic conductivity of the

fractured domain is less than that of the intact (continuous) domain. As a means to further

verify the PNM and contact implementations, the simulated hydraulic response of the fractured

media with fully-permeable crack surfaces is also included in Figure 3.12b. The responses of

the fractured media with fully-permeable crack surfaces and contact is almost identical to that

of intact domain, as would be expected.

3.5.4 Dynamic response under point injection in porous media with

multiple fractures

To demonstrate the applicability of the developed model in hydro-mechanical simulation of

porous media with multiple fractures, Figure 3.13 exhibits the pore pressure contour of a do-

main with three cracks as shown in the figure. The domain is considered to be under Case

2 type of point injection as represented in the preceding example in section 3.5.3. In the

example PNM is used to introduce impermeable fractures. The domain is discretized by a

20 × 20 Q4 rectangular mesh. To specify the geometry of the fractures of this model the

starting and finishing points of the cracks are given. For the vertical crack: (xstarting =

0.3m, ystarting = 0.2m) and (xfinishing = 0.3m, yfinishing = 0.8m); for the first sloping crack:

(xstarting = 0.5m, ystarting = 0.1m) and (xfinishing = 0.67m, yfinishing = 0.4m); and for the second

sloping crack: (xstarting = 0.67m, ystarting = 0.6m) and (xfinishing = 0.5m, yfinishing = 0.9m).

Figure 3.13 shows a snapshot of pore pressure distribution at t = 0.055s. As expected, the
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(b) Case 2 point injection (slow injection)

Fig. 3.12: Pore pressure time history under point injection.

figure shows a discontinuous distribution for the pore pressure due to the impermeability as-

sumption on crack faces.

3.5.5 Stick-slip frictional contact behaviour of fractured porous me-

dia

To examine the ability of the developed FE model to simulate frictional contact phenomenon

in porous media a 1m× 0.1m domain with a tilted crack is considered, as schematically shown

in Figure 3.14. The crack faces are assumed to be impervious. A time dependent traction of

the following form is applied on the left side (x = 0) of the domain.

t̄x(t) =

 3000× t
0.1

[N/m2] if t 6 0.1s;

3000 if t > 0.1s.
(3.55)

Top, bottom, and right boundaries are assumed to be impervious and normal displacements

are restricted. The left edge is hydraulically open. In this problem long term dynamic response

is investigated, which is comprised of lower frequency components. This is in contrast with

the early time dynamic response, which is comprised of higher frequency components. In the
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Fig. 3.13: Pore pressure distribution under point injection at t = 0.055s in porous media with
multiple fractures.

case of the former long term dynamic behaviour, the regular (uneriched) PNM model can be

employed to accurately model the porous media.

To simulate different frictional contact behaviour, from full-slip to perfect-stick conditions,

four different friction coefficients of µf = 0.00, µf = 0.05, µf = 0.10, and µf = 0.50 are exam-

ined. Results for each of these coefficients are shown in Figures 3.15a, 3.15b, 3.15c, and 3.15d,

respectively. Figure 3.15e shows the variation of x-displacements as a function of x along the

center-line (i.e., y = 0.05) for different friction coefficients. As the friction coefficient increases

the magnitude of the displacement discontinuity decreases. As can be observed, by increasing

the friction coefficient magnitude from 0 to 0.5, the contact behaviour of the system changes

from the condition of fully-slip to perfect-stick response.

3.5.6 Wave propagation in porous media: Regular vs enriched FE

In this section the ability of the proposed PNM-GFEM-M model in simulating transient wave

propagation is assessed for the case of velocity impact problem in continuous and fractured

porous media. The results are compared with regular FEM/PNM simulations to demonstrate
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Fig. 3.14: Schematic picture of porous media with inclined crack.
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Fig. 3.15: x-displacement under frictional contact.
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the capability of the developed enriched FE model in suppressing the high-frequency spurious

oscillations in both displacement and pore pressure variables. In the numerical simulations of

this section, bi-quadratic (Q9) and bi-linear (Q4) polynomials are used as shape functions for

interpolation of the displacement and pore pressure fields, respectively.

Impact problem in continuous media

The fixed-velocity impact phenomenon is known to be a good benchmark problem to examine

the accuracy of a developed finite element method for wave propagation[79]. To demonstrate

the ability of the developed enriched finite element model in solving the problem of transient

wave propagation in porous media a poroelastic domain of 6m×0.1m is considered. An impact

mechanical load is applied on the left edge of the domain and is imposed in the form of a

fixed velocity boundary condition of u̇x = 1m/s. All the boundaries are considered to be fully-

drained and with displacement restrictions normal to the domain. The considered domain, the

boundary conditions, and the loading are exhibited schematically in Figure 3.16.

The impact problem investigated here is similar to the benchmark problem for evaluating

the accuracy of dynamic finite element analysis for non-porous media [79]. In the case of non-

porous media, it is known that the velocity response is a step function with no oscillations.

In the case of porous media, we are not aware of the existence of an analytical solution for

this problem. However, it’s expected that the velocity response of the solid matrix will be

similar to the non-porous media case, but that the response will be a step-like function with a

steep but non-infinite slope. The slope of the step-like function is expects to decrease as the

wave propagates due to diffusion of the fluid in the porous media. The expected behaviour of

the pore pressure is also non-oscillatory. The compressive wave in displacement/velocity field

stimulates pore pressure at the wave front. The induced pore pressure at the velocity front

is then expected to decay over time due to diffusion. Hence, it is physically sensible to see a

moving pulse, free from oscillations in the pore pressure during the wave propagation.

For a 20 × 2 mesh, Figures 3.17 and 3.18 illustrate the time histories at the center of the
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Fig. 3.16: Schematic picture of porous media under velocity impact loading.

domain at (x = 3m, y = 0.05m) for x-velocity and pore pressure, respectively. Comparing

the results of conventional/unenriched FEM with those obtained using the GFEM model of

this work demonstrates the shortcoming and deficiency of regular/conventional FE models and

also, the requirement for employing enriched/unconventional finite element models for wave

propagation analysis of porous media. As can be seen in both figures, the velocity and pore

pressure curves exhibit high-frequency non-physical spurious oscillations over time in the case

of conventional FEM. However, the oscillations (numerical dispersions that appear due to the

Gibbs phenomenon) can be significantly suppressed by employing the GFEM model. In other

words, using the GFEM model for porous media results in much more accurate wave patterns

in both velocity and pore pressure fields. In Figure 3.17 it can be observed that using the

GFEM model leads to a velocity-time profile that is very close to the step-function response,

which is the analytical solution of this impact problem.

It is very important to note that in Figure 3.18 the results of the GFEM model have been

provided for different types of enrichments for the displacement field (u) and pore pressure field

(p). As seen in this figure, the most accurate results for pore pressure wave pattern are obtained

when both displacement and pressure fields are enriched using trigonometric basis function in

the context of GFEM. The GFEM models that are enriched only in the displacement field

exhibit relatively more oscillations compared to the GFEM models that are enriched for both

displacement and pore pressure. Moreover, increasing the cutoff number of enriched basis func-
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loading. Conventional FEM Vs the developed GFEM model of this work with different types
of enrichment for displacement and pore pressure fields.

tions embedded in the GFEM model leads to the wave results with fewer spurious oscillations

and subsequently to more accurate solutions. Figure 3.19 shows the wave propagation results

of pore pressure for a longer period of time. In this case, the effect of wave reflection from

boundaries are observed. As seen, when using the conventional FEM model the non-physical

oscillations exist for primary emitted wave (the very first pulse) as well as the waves reflected

from the boundaries (the second pulse onward). The effect of physical damping/dissipation

(which is attributed to the viscous pore fluid) is apparent from the attenuation of the pressure

pulse as the wave travels. Also it is observed that the spurious oscillations tend to gradually

subside over time due to this attenuation.

Figure 20 demonstrates a convergence study of regular FE approach for the impact problem.

Different mesh resolutions are considered to simulate the wave propagation response. As seen,

the conventional FEM approach shows noticeable numerical dispersions and oscillations even

for highly refined meshes. However, the refined regular finite element solutions are converging

(qualitatively) to enriched finite element result (see Figure 3.18). In Figure 3.20 the regular
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Fig. 3.18: Time history for pore pressure at the mid point of the porous media with Kf =
1.0194×10−6 under impact loading. Conventional FEM Vs the developed GFEM model of this
work with different types of enrichment for displacement and pore pressure fields.
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Fig. 3.19: Time history of pore pressure at the mid point of the porous media under impact
loading with wave reflection from the boundaries. Conventional FEM Vs the developed GFEM
model of this work.
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Fig. 3.20: Convergence study of conventional FE approach for pore pressure at the mid point.

FEM model with the highest mesh resolution (400× 2 elements) has 12015 degrees of freedom

while in Figure 3.18 the GFEM model with the coarsest mesh resolution (20× 2 elements with

n = 1) has 1435 degrees of freedom. Although the number of degrees of freedom in regular FEM

simulation is more than 8 times higher than that of the enriched GFEM model, the enriched

model provides more accurate (spurious oscillation-free) results. Moreover, the computational

cost of the simulation using the mentioned enriched GFEM model is proportionally lower than

that of the regular FEM simulation.

Role of Permeability

To assess the effect of the permeability parameter on wave propagation response of porous

media, Figure 3.21 shows the pore pressure time history of the same problem for a lower

permeability/diffusivity porous media case (Kf = 1.0194 × 10−7). As seen, lower values for

permeability results in higher peak pore pressures. Moreover, regular FE analysis of porous

media with lower permeability shows even relatively less oscillations compared with the pre-
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Fig. 3.21: Time history of pore pressure at the mid point of the porous media under impact
loading with wave reflection from the boundaries with Kf = 1.0194× 10−7. Conventional FEM
Vs the developed GFEM model of this work.

ceding case with Kf = 1.0194 × 10−6 since the hydraulic behaviour is closer to undrained, as

the permeability decreases.

To have a better intuitive understanding to the effect of permeability on transient wave

propagation response of porous media, Figures 3.22 through 3.25 show the wave propagation

responses for pore pressure and velocity variables at the mid point of the media for various

values of permeability. Comparing the figures reveals the crucial effect of diffusivity value on

wave propagation behaviour. As is clear in the figures, decreasing the permeability of porous

media results in the reduction of the frequency of pressure wave/pulse. Also, the long-term

pore pressure is dependent on permeability. In other words, for low permeability media (Figure

3.24) there is a positive non-zero steady-state pore pressure. Whereas for the higher perme-

ability cases (Figures 3.22 and 3.23) the pressure keeps its periodic trend of the wave pulse in

which the peak value is monotonically decreasing. Moreover, the results show the highest rate

of attenuation/dissipation for the lowest permeable case.
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Fig. 3.22: Time history of pore pressure under
impact loading for Kf = 1.0194× 10−6.
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Fig. 3.23: Time history of pore pressure under
impact loading for Kf = 1.0194× 10−7.
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Fig. 3.24: Time history of pore pressure under
impact loading for Kf = 1.0194× 10−8.
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Impact problem in fractured media

To demonstrate the transient wave propagation response in a cracked porous media under im-

pact loading (the same velocity impact loading of the earlier example is considered) and to

investigate the interaction of hydro-mechanical wave pulse with fracture, a cracked poroelastic

domain of 3m× 0.5m with kf = 1.631× 10−6m3s/kg is considered. Contact constraints across

the fracture are satisfied through the ALM technique and the crack face are assumed to be

impervious. The domain is discretized by a 20 × 10 rectangular mesh. A 0.3m long nearly

vertical crack, inclinded at an angle of 3.6 × 10−2 radians, is embedded in the media centered

at x = 1.1m.

Figures 3.26a and 3.26b exhibit wave pattern for pore pressure distribution using the conven-

tional PNM and the enriched PNM-GFEM-M model of this work (n = 1 for both displacement

and pore pressure variables), respectively. As observed in these figures, in the case of the

conventional PNM, the wave pattern (at a particular time) is noisy and asymmetric owing to

numerical dispersions emerging from the regular polynomial interpolations used in conventional

FEM. To be more clear, the interaction of the wave pulse and the impervious crack (when the

wave front hits the crack surface) results in very abrupt and sharp spacial variation in the pore

pressure distribution in the vicinity of the fracture. These sharp variations cannot be captured

and modeled accurately using conventional interpolations, resulting in very severe numerical

dispersion as seen in Figure 3.26a. Furthermore, the small amount of asymmetry introduced

into the problem, by slightly inclining the fracture, leads to very asymmetric solution. Unlike

the regular PNM, as seen in Figure 3.26b, using the developed PNM-GFEM-M leads to much

more accurate and tangible results for the pore pressure contour of the interaction between the

wave pulse and the crack. In addition, the PNM-GFEM-M solution is nearly symmetric, as

would be expected for a nearly symmetric problem.
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Fig. 3.26: Pore pressure signal in fractured porous media under impact loading at t = 0.0092s.

3.6 Chapter Conclusions

A two-variable (u − p) mixed Finite Element Model (FEM) has been developed for dynamic

and wave propagation analysis of continuous and fractured porous media. General idea of the

Phantom Node Method (PNM) is employed to introduce strong discontinuity of displacement

and pore pressure across the crack faces. Trigonometric enrichments are included in the context

of the Generalized Finite Element Method (GFEM) to rectify the problem of numerical dis-

persion that can appear in transient wave propagation simulation of porous media. This way,

a new GFEM-enriched PNM mixed finite element model (i.e., PNM-GFEM-M) is developed

for coupled dynamic hydro-mechanical simulation of saturated porous media. To satisfy the

no-interpenetration condition along the crack faces and to simulate the frictional contact in

stick/slip regimes, an Augmented Lagrange Multiplier Method is implemented.

Through various numerical examples, the effectiveness of the developed enriched FE model

over conventional approaches is demonstrated. It has been demonstrated that the high-frequency

numerical dispersions that may appear in regular FEM/PNM wave results (that are attributed

to the Gibbs phenomenon) can be successfully suppressed in the hydro-mechanical wave propa-

gation solutions of porous media using the enriched mixed FE model of this work. Moreover, it

was shown that the most accurate wave results with the least amount of spurious oscillations are

achieved when both the displacement and pore pressure fields are enriched with trigonometric

interpolations; the larger the cutoff number for enrichments, the better the spurious oscillations

are inhibited.
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Lastly, some interesting hydro-mechanical features of the dynamic response of porous media

are documented. When fluid is rapidly injected into a porous media, a non-monotonic response,

characterized by a peak-pressure point in the injection pressure time history, is observed. This

is in contrast to the monotonically-increasing trend of the injection pressure time history ob-

served when fluid is injected slowly.

The developed Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-M) is a promis-

ing model for the simulation of hydro-mechanical wave phenomena and transient dynamic

behaviour in both continuous and fractured porous media. It is worth mentioning that the

proposed computational approach can be extended to moving cracks in applications like 3D

hydraulic fracturing by adding suitable crack propagation criterion and evolving the disconti-

nuities by replacing the regular element with superimposed elements with additional phantom

nodes at the locations where failure occurs and fracture advances.

The present article does not concentrate on the computational efficiency of the method for

large-scale problems. Given the significant spurious oscillations which appear in the regular

FE simulations (even with highly-refined meshes) of high-frequency waves or time-harmonic

waves with small wavelengths and the notable capability of the presented enriched FE method

to more accurately simulate the wave problems, a future investigation should address the cost-

effectiveness of the enriched scheme for large-scale problems.
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Chapter 4

Induced acoustic emission simulation in

fractured porous media
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This chapter is based on the following journal article:

Komijani M., Gracie R., Sarvaramini E., Simulation of Induced Acoustic Emission in Fractured

Porous Media, Engineering Fracture Mechanics, DOI: 10.1016/j.engfracmech.2018.07.028, 2018

[37]

In this journal paper I was the first author and was responsible for the writing of the article.

The paper was edited by Dr. Gracie and Dr. Sarvaramini. I also developed the mathematical

and computational formulation and the numerical code.

This chapter addresses objective 3 of the thesis.
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4.1 Introduction

Acoustic/microseismic emissions (AE) in naturally fractured porous media are the result of

local instability along internal interfaces and the sudden release of strain energy stored in

the rock matrix. This rapid release of energy, stimulates high-frequency components of the

dynamic response of the rock mass, inducing mechanical wave propagation. In this article

an enriched finite element model is employed to concurrently simulate the interface instability

and the induced wave propagation processes in a fractured porous media. Harmonic enrichment

functions are used in the context of the Generalized Finite Element Method (GFEM) to provide

more spurious oscillation-free results for wave propagation/dynamic response. To model the

fractures, the Phantom Node Method (PNM) is employed with the GFEM. The frictional

contact condition at material interfaces is modeled using a stable augmented Lagrange multiplier

approach. Through various parametric studies it is shown that i) decreasing the permeability

leads to an increase in the frequency and a decrease in the amplitude of the acoustic signal; ii)

increasing viscous damping leads to narrower frequency spectrum and decreased magnitude of

the emitted acoustic signal; iii) increasing damping leads to a transition from transient wave

propagation to diffusion dominated response; iv) increasing interface friction leads to more

pronounced stick-slip behavior and higher amplitude AE-without interface friction there is no

AE. Lastly, the numerical illustrations demonstrate the superior capability of the enriched

model over regular finite element models in providing non-physical spurious high-frequency

oscillation-free, AE solutions.

The process of elastic wave propagation induced by an abrupt local release of stored strain

energy is known as an Acoustic Emission (AE) [63]. Acoustic emissions are generated by

bifurcation-instabilities such as fault reactivation, pore collapse, and fracture, i.e., localization

phenomena. As a result, AE monitoring and analysis are often used to probe the behaviour

of solid materials in engineering applications such as, concrete structures [64, 65] and masonry

bridges [66], and also geological formations, particularly in mining and hydraulic fracturing

applications [126, 127]. For example, during hydraulic fracturing, microseismic monitoring is
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often conducted to determine the extent and orientation of the fracture network created [129].

A series of experimental and numerical investigations have been conducted by Carpinteri and

his coworkers on analysis of damage and fracturing behaviour in solids and the associated in-

duced acoustic emissions (see for instance, [130, 131, 132, 133]). Analysis of acoustic emissions

induced by localization involves many uncertainties and researchers have not yet focused on

both explicitly modeling the fracturing/damage process and the simulation of associated in-

duced acoustic wave propagation (specially in shear failure type). In this article, a specially

designed enriched mixed-finite element model is employed to study both fracture reactivation

due to hydraulic perturbations in a porous media and the resulting AEs. Using this model,

the key system characteristics (e.g., friction, permeability, etc.) governing the nature of the

emitted AEs are elucidated.

Recent attempts to correlate fracturing/slip and microseismic emission do not explicitly

simulate transient acoustic wave propagation through the media following the release of elastic

energy, e.g., Tang et al. [134, 135] used a quasi-static approach to relate the energy released

by damage to the magnitude of acoustic events. Such approaches do not account for the prop-

agation and interactions of emitted waves with discontinuities, attenuation, nor other wave

reflection and coalescence phenomena.

Another class of acoustic emission simulation methods make use of the particle-based Dis-

crete Element Method (DEM), in which the rock mass is represented as a collection of parti-

cles/blocks connected together by contact/cohesive forces. Localization and nucleation of frac-

tures is modeled by breakage of the cohesive bonds between particles. Based on this method-

ology, Hazzard and Young [72] proposed a technique for the simulation of acoustic emission

under nucleation (i.e., bond breakage) in rock. The radiated acoustic energy from the source

was estimated by measuring the change in kinetic energy upon failure of the bond; however,

wave emission and propagation were not directly simulated. In a similar fashion, Lisjak et al.

[71] investigated acoustic emissions using DEM with non-porous deformable blocks, where AEs
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were related to an energy release through cohesive tension (not shear) tractions between blocks;

while an explicitly time integrated dynamic model was used, the accuracy of the wave forms and

wave propagation was not the focus of the study. It is important to note that most microseis-

micity induced in applications like hydraulic fracturing is due to shear failure and sliding along

pre-existing discontinuities [68]. Other versions of DEM have also been proposed for studying

acoustic emission signals induced by damage, e.g., Carpinteri and his coworkers [69, 70] em-

ployed three-dimensional lattice models based on truss-like Discrete Element Method to study

AEs in a prismatic concrete specimen subjected to compressional loads. They demonstrated

good correlations between numerical results and AE data obtained from experimental tests.

There is a limited number of semi-analytical elastodynamics solution of AEs induced by

sudden fracture nucleation, for example the models of Andreykiv et al. [136, 137, 138] for

the AE due to the nucleation of penny-shaped fractures under modes I and III. None of the

available analytical or semi-analytical solutions specifically address AE due to failure in shear

(mode II) (i.e., microseismicity) under compression, where contact forces and frictional be-

haviour influence the AEs. Furthermore, there is a lack of solutions for AE in porous media

due to reactivation of fracture or fracture nucleation.

Analysis of porous media spans applications from the geomechanics of reservoirs [102] to

biomechanical analysis of tissues and cells [106, 141]. It is common in such models to assume

that the fluid flow is transient but the solid evolves quasi-statically. There has been less em-

phasis on dynamic simulation of fracture in porous media; the focus to date has been on the

modeling of fracture propagation rather than the simulation of the waves emitted from the

cracks. For example, recently Cao et al. [142] simulated the stepwise process of fracturing

in porous media and the associated fluid pressure oscillations using the standard FEM and

Réthoré et al. [118] modeled the dynamic propagation of shear bands in saturated porous me-

dia. However, these earlier works did not address the topic of simulation of wave propagation

nor acoustic emission.
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Accurate simulation of wave propagation using standard finite element approaches is prob-

lematic, as the polynomial basis functions used have been shown to be insufficient in some

dynamic simulations [74]. Conventional finite element solutions of wave phenomena are well-

known to contain spurious wave forms, which often cannot be efficiently eliminated using mesh

refinement in transient and time-harmonic waves with short wave lengths [79]. Furthermore,

numerical dispersions can significantly affect wave propagation velocity. Enriched General-

ized Finite Element Methods (GFEM) have been developed to inhibit the spurious oscillations

[78, 79]. Recently, Komijani and Gracie [32] extended these models to wave propagation in

fractured media by combining the GFEM approach with the initial discretization-independent

fracture/discontinuity modeling ability of the Phantom Node Method (PNM) of [29]. The

enriched model (PNM-GFEM) combines the benefits of the two methods and minimizes the

non-physical oscillations observed in regular dynamics simulations of fractures.

It is noted that in addition to the weak form-based finite element methods, a new class of

numerical methods, i.e., Extended Particle Difference Method (EPDM) [33, 34, 35], has been

developed recently to model strong/weak discontinuities independently of the initial discretiza-

tion, which may be used as an alternative for the finite element methods. The EPDM is a

strong form-based numerical solution of the governing equations with the particle derivative

approximation. In addition to the increase of computational efficiency that is achieved by avoid-

ing numerical integration of the weak form, one of the notable features of the EPDM is that,

unlike the weak form-based methods, there is no need for employing an additional boundary

tracking scheme such as the level set method, which makes the method very suitable for moving

boundary problems.

This article presents the application of an extension of the PNM-GFEM method to acous-

tic wave emission simulation in fractured porous media. The media is modeled using mixture

theory of poroelasticity [107, 108]. The solution of the governing system of equations is ap-
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proximated using a mixed enriched finite element method (PNM-GFEM-M). The frictional

contact at the interface of the fractures is simulated using an augmented Lagrange multiplier

technique. Fracture instability is initiated via a perturbation source like fluid injection near

the discontinuity, causing a stick to slip transition and leading to a sudden release of energy.

Acoustic emissions, triggered through a sudden release of strain energy at the discontinuity

interface due to shear failure, are simulated. It is shown that the PNM-GFEM-M results in

more spurious-oscillation-free AEs compared to standard finite element approaches because it

suppresses numerical dispersions of acoustic signals in both velocity and pore pressure fields.

Using this simulation tool, the role of permeability, viscous damping, and contact friction on

AEs is more clearly illustrated.
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4.2 Mathematical Formulation

The differential equations governing the interaction of solid and fluid phases in porous media

are obtained from Biot’s mixture theory based on the concept of volume fractions for each phase.

4.2.1 Governing Equations

A two-dimensional poroelastic medium, Ω in Cartesian coordinate Oxy is considered. Let

u(x, y, t) denote the displacement vector of the total mixture. For the sake of completeness,

the well-established formulation of mixture theory of poroelasticity is given below.

The linear strain-displacement relation in infinitesimal deformation is

ε =
1

2
(Ou+ (Ou)T ) (4.1)

The constitutive equation for the solid matrix is given by:

σ′ = C : ε (4.2)

in which σ′ is the effective stress tensor acting on the solid skeleton, andC is the elastic stiffness

tensor.

The relative motion of the fluid phase with respect to the total mixture is denoted by wi(x, t).

To arrive at a two-field model, it is assumed that the relative acceleration of the fluid phase with

respect to the total mixture is negligible, i.e., ẅi = 0. It is noted that this assumption has been

shown to be valid and more appropriate for loading conditions up to earthquake frequencies for

modeling the saturated porous material [114, 43]. The momentum balance of the total mixture

is:
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O · σ − ρü+ ρb = 0 (4.3)

in which ü denotes the acceleration of the mixture, σ is the total stress, ρ is the average mixture

density, and b is the body force acting on the mixture.

The average density of the mixture is defined as a weighted summation of solid and fluid

phases densities

ρ = n′ρf + (1− n′)ρs (4.4)

in which ρf and ρs are the density of fluid phase and solid skeleton, respectively, and n′ is the

porosity of the media.

The total stress of the mixture is defined as a combination of the stress acting on the solid

phase and the pore pressure:

σ = σ′ − αppI (4.5)

where p is the fluid pore pressure, I is the identity tensor, σ′ denotes the effective stress acting

on the solid skeleton, and αp is Biot’s coefficient.

Neglecting the relative acceleration of the pore fluid with respect to the mixture, the gen-

eralized Darcy relation can be obtained from conservation of momentum of the fluid phase:

−Op−R− ρf ü+ ρfb = 0 (4.6)

in which R is the averaged viscous drag force acting on the fluid defined by the Darcy seepage

law:

ẇ = kfR (4.7)
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where kf is the permeability tensor of the porous media.

The Eulerian continuity equation of the fluid phase can be written as:

O · ẇ + αO · u̇+
ṗ

Q
= 0 (4.8)

in which 1/Q = (α − n′)/Ks + n′/Kf , and Ks and Kf are the bulk moduli of solid and fluid

phases, respectively.

The relative velocity of the fluid phase with respect to the mixture (i.e., w) may be elimi-

nated from (4.8) using (4.6) and (4.7) resulting in

O · kf [−Op− ρf ü+ ρfb] + αO · u̇+
ṗ

Q
= 0 (4.9)

Equations (4.3) and (4.9) are the governing differential equations of the problem for the un-

known displacement and pore pressure fields[114].

4.2.2 Weak Formulation of the Governing Differential Equations

Consider a porous media Ω with boundary Γ. Boundary Γ comprises of Γu, Γt, Γp, and Γw,

which represent the boundary surfaces for prescribed displacement, traction, pore pressure, and

out-flow flux of fluid, respectively. Domain Ω contains internal interfaces denoted by Γd.

A weak formulation of the coupled system of equations (4.3) and (4.9) may be developed

using appropriate test functions, δu and δp. The problem to be solved is to find u(x, y, t) ∈ U

and p(x, y, t) ∈ W such that

∫
Ω

σ : δε dΩ+

∫
Ω

ρü·δu dΩ−
∫

Γt

t̄·δu dΓ−
∫

Ω

ρb·δu dΩ+

∫
Γd

t̄d ·δ[[u]] dΓ = 0,∀δu ∈ U0 (4.10)
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∫
Ω

Oδp · kfOp dΩ +

∫
Ω

Oδpkf · ρf ü dΩ +

∫
Ω

δp αp O · u̇ dΩ +

∫
Ω

δp 1/Q ṗ dΩ−

∫
Ω

Oδpkf · ρfb dΩ +

∫
Γw

δp(ẇ · nΓ) dΓ−
∫

Γd

δp[[ẇ]] · nΓd
dΓ = 0,∀δp ∈ W0 (4.11)

in which U ,W , U0, and W0 are appropriate function spaces. The jump in the displacement field

across the discontinuity surface is denoted by [[u]], and [[ẇ]] is the discontinuity of fluid flux

into the crack interface from either crack face. t̄d denotes the internal applied traction (e.g.,

contact force) on the internal discontinuity Γd.
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Fig. 4.1: Decomposition of a cracked element into two superimposed paired elements with
original real and additional phantom nodes in the PNM. Original real nodes and additional
phantom nodes are shown by solid and hollow circles, respectively.

4.3 Finite Element Formulation

4.3.1 Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-

M)

To model a discontinuity in the displacement and pore pressure fields within a fractured element,

the Phantom Node Method (PNM) [29] is employed to achieve a discontinuous interpolation of

the fields. This is accomplished using two superimposed paired elements with original real and

additional fictitious/phantom nodes. In this framework, to model discontinuity, any element

cut by a crack is replaced by two superimposed continuous elements with real and additional

phantom nodes as shown schematically in Figure 4.1. Also, based on the general idea of

PNM-GFEM method [32], trigonometric enrichment basis functions [79] are used to enrich the

approximation functions to suppress the non-physical numerical dispersions that can appear in

dynamic response of regular FEM solutions.

Displacement field discretization

For a cracked element in a porous media, the PNM-GFEM [32] interpolation is employed to

approximate the displacement in the x and y directions, i.e.,

ux(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ1
I(x, y)uIx(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ1
I(x, y)uIx(t)

)
(4.12)
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uy(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ2
I(x, y)uIy(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ2
I(x, y)uIy(t)

)
(4.13)

in which H(·) is the step function and S1 and S2 are the sets of nodes corresponding to each of

the two superimposed elements. Each of the two superimposed elements contains original real

nodes and additional phantom nodes. The location of the discontinuity inside an element is

defined by a level set function such that f(x, y) = 0 specifies the discontinuous surface. ψ1
I and

ψ2
I are the arrays of conventional and enriched basis functions of node I for the displacement

components in x and y directions, respectively. Vectors of corresponding conventional and

enriched displacement degrees of freedom for node I in the x and y directions are respectively

denoted by uIx and uIy, as shown below.

ψ1,2
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(4.14)

u>Ix = [uIx(0,0), u
Cx

Ix(1,0), ..., u
S−
Ix(n,m)] (4.15)

u>Iy = [uIy(0,0), u
Cx

Iy(1,0), ..., u
S−
Iy(n,m)] (4.16)

In the above formulation ψI(0,0) = NI denote regular Lagrangian interpolation functions and

ψγI(kx,ky) = NIφ
γ
(kx,ky) are the GFEM interpolation functions in which φγ(kx,ky) with the corre-

sponding superscript denotes the following trigonometric basis functions:

φCx

(kx,0) = cos(
2πkxx

Λx

), φSx

(kx,0) = sin(
2πkxx

Λx

),

φ
Cy

(0,ky) = cos(
2πkyy

Λy

), φ
Sy

(0,ky) = sin(
2πkyy

Λy

)

φC+
(kx,ky) = cos(

2πkxx

Λx

+
2πkyy

Λy

), φS+
(kx,ky) = sin(

2πkxx

Λx

+
2πkyy

Λy

)
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φC−(kx,ky) = cos(
2πkxx

Λx

− 2πkyy

Λy

), φS−(kx,ky) = sin(
2πkxx

Λx

− 2πkyy

Λy

)

Pore pressure field discretization

Following the general idea of the PNM-GFEM, in the case of impervious crack faces (i.e.,

discontinuous pore pressure field), the pore pressure approximation in fractured elements is

p(x, y, t) = H(−f(x, y))
∑
I∈S1

(
ψ3
I(x, y)pI(t)

)
+H(f(x, y))

∑
I∈S2

(
ψ3
I(x, y)pI(t)

)
(4.17)

in which ψ3
I denotes the set of conventional and enriched interpolation functions for the pore

pressure variable, and pI is the vector of corresponding regular and enriched, phantom or real

pore pressure degrees of freedom for node I.

ψ3
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(4.18)

4.3.2 Discretized mixed finite element equations

Semi-discretized system of equations can be developed by substitution of the specified dis-

placement interpolation functions (4.12)-(4.13) and pore pressure field (4.17) in the weak form

(4.10)-(4.11):

nnode∑
J=1

(
[M e]11

IJ ü
e
Jx + [Ke]11

IJu
e
Jx + [Ke]12

IJu
e
Jy + [Ke]13

IJp
e
J

)
= Fe

Iux , (I = 1, ..., nnode) (4.19)

nnode∑
J=1

(
[M e]22

IJ ü
e
Jy + [Ke]21

IJu
e
Jx + [Ke]22

IJu
e
Jy + [Ke]23

IJp
e
J

)
= Fe

Iuy , (I = 1, ..., nnode) (4.20)

nnode∑
J=1

(
[M e]31

IJ ü
e
Jx + [M e]32

IJ ü
e
Jy + [Ce]31

IJ u̇
e
Jx + [Ce]32

IJ u̇
e
Jy+
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[Ce]33
IJ ṗ

e
J + [Ke]33

IJp
e
J

)
= Fe

Ip, (I = 1, ..., nnode) (4.21)

in which nnode is the number of nodes in each of the two superposed elements 1 and 2, and

includes both original real and fictitious/phantom nodes. In an element crossed by a crack, the

definitions of [M e]IJ , [Ce]IJ , [Ke]IJ , Fe
Iux

, Fe
Iuy

, and Fe
Ip in (4.19), (4.20), and (4.21) for each

of the superimposed elements, i.e., e= 1 or 2, are given in the Appendix.

The semi-discretized coupled hydro-mechanical poro-elastic finite element equations (4.19),

(4.20), and (4.21) can be rewritten in a more compact form as:

[M ]
{

∆̈
}

+ [C]
{

∆̇
}

+ [K] {∆} = {F} (4.22)

where {∆} = {ux uy p}> is the vector of unknown nodal values for displacement and pore

pressure degrees of freedom in the porous media, and {F} =
{
Fux Fuy Fp

}>
is the vector of

mechanical forces and flow fluxes.

The G22 and G11 generalized Newmark implicit schemes are employed for time integration

of displacement and pore pressure degrees of freedom, respectively. To this end, the values of

the first- and second-order time derivatives of the variables at time step (i+ 1) are represented

in terms of the corresponding values of the variables at the current time step (i) and unknown

values of the variables at time step (i+ 1) through the following relationships:

üi+1 =
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi (4.23)

u̇i+1 =
γ

β∆t
(ui+1 − ui)− (

γ

β
− 1)u̇i −∆t(

γ

2β
− 1)üi (4.24)

ṗi+1 =
1

θ∆t
(pi+1 − pi)− (

1

θ
− 1)ṗi (4.25)
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where γ, β, and θ are the integration parameters that are set to be 0.7 in the numerical

examples of the present work. The integration constants are usually chosen in the range of [0

1]. To preserve the unconditional stability condition of the time integration θ and γ need to

be greater than or equal to 0.5 and β should be greater than or equal to 0.25(0.5 + γ)2 [43].

However, it is clear that because of the highly-transient feature of wave propagation, sufficiently

small time steps need to be considered in dynamic simulations to obtain converged results.
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4.4 Interface simulation

Geomechanical formations experience huge amounts of overburden and horizontal in-situ stresses

leading to significant normal and frictional contact forces acting along natural and induced frac-

tures and faults. In the context of the partition-of-unity finite element a noticeable amount

of research has been dedicated to the imposition of inter-facial constraints [123, 124, 125]. In

this work, a stable augmented Lagrange multiplier approach is adopted to enforce the frictional

contact via an iterative method.

Accounting for the contact force contributions, the weak form (4.10) is transformed as:

∫
Ω

σ : δε dΩ +

∫
Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ−
∫

Γd

λ̄NδgNdΓ−

∫
Γd

λ̄T δgTdΓ = 0 (4.26)

Normal contact traction, normal inter-penetration, tangential contact frictional traction, and

tangential slip across the interface are denoted by λ̄N , gN , λ̄T , and gT , respectively.

One-dimensional elements are used along the interface to interpolate the contact force/Lagrange

multiplier fields:

λ̄N = Ñλ̄N and λ̄T = Ñλ̄T (4.27)

Here, Ñ denotes linear one-dimensional Lagrangian shape functions, and
(
λ̄N , λ̄T

)
are the vec-

tors of Lagrange multiplier degrees of freedom for normal and friction contact forces. To ensure

the stability of the interface contact solution, the nodes of the Lagrange multiplier mesh are

chosen using the Vital Vertex Method [124, 125].

At each time step, ∆n+1 and
(
λ̄N , λ̄T

)
n+1

are sought using an iterative procedure. The

iterative process starts (k = 0) with an initial guess for the vector of Lagrange multipliers
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(
λ̄N , λ̄T

)k=0

n+1
=
(
λ̄N , λ̄T

)
n
. Given

(
λ̄N , λ̄T

)k
n+1

at iteration k, the linear fully-discretized system

of equations is solved for ∆k
n+1, from which the normal interpenetration gkN and tangential slip

gkT of the crack at each node of the Lagrange multiplier mesh are calculated. The Lagrange

multiplier nodal vectors are updated if the gap norms surpass a defined tolerance. In the case

of frictional contact, interface slippage occurs, gT > 0, if the tangential frictional contact force,

λ̄T , required to prevent slip exceeds the limit λ̄maxT = λ̄Nµf (µf is the friction coefficient).

Otherwise the interface is in the stick state.
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Table 4.1: Material properties of the porous media.

E(Pa) ν ρs(kg/m
3) ρf (kg/m

3) n′ kf (m
3s/kg) Kf (Pa) Ks(Pa)

14.516× 106 0.3 2000 1000 0.3 1.0194× 10−6 2.1× 109 1× 1020

4.5 Results and discussion

In this section, the simulation of acoustic wave emission due to sudden release of strain energy

(in shear mode) at interface location is carried out. The domain of analysis is assumed to be

a two-dimensional isotropic-homogeneous poroelastic media with hydro-mechanical properties

given in Table 4.1, unless stated otherwise. Based on the magnitudes considered for the bulk

moduli of solid skeleton and pore fluid, the material is compressible. However, the material

behaviour can get close to incompressibility condition by decreasing the permeability magni-

tude. It is worth mentioning that the numerical model developed in this paper is a general

computational scheme for simulation of acoustic emissions induced by shear slip on material

interfaces and can be employed for different types of materials with different inhomogeneity

and anisotropy conditions and randomness in material and geometry characteristics (e.g., ran-

domly distributed cracks). A unit thickness is assumed in the out-of-plane direction. It is noted

that proportional damping in the form of µ1[M ] + µ2[K] is assumed to describe the physical

attenuation of waves in the solid phase of the media, in which µ1 and µ2 are the damping

coefficients corresponding to the mass and stiffness matrices of the solid phase, respectively.

It is important to mention that, to the best of the authors’ knowledge there is no analytic

nor experimental data in the literature on induced acoustic wave propagation under interface

instability (shear failure) with frictional contact condition. Therefore, no comparison could be

carried out between the results of this study with other data. However, the general framework

of the employed numerical method in this work (i.e., PNM-GFEM) has been well-established

in a couple of papers previously published by the first and the second authors of this article;

the accuracy and validity of the method in modeling wave propagation problems in fractured

media have been verified through several convergence and comparison studies (see [32, 36]).
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4.5.1 Acoustic emission simulation due to shear failure of an inter-

face

Simulation of acoustic signal

To have a better intuition about how local release of strain energy can trigger acoustic emission

in a medium, a two-dimensional domain of 1m by 0.5m is considered. A sloping crack of length

0.36m orientated at the angle θ = 560 with respect to the horizontal direction is embedded in

the medium and frictional contact state is considered at the interface. The friction coefficient is

assumed to be µf = 0.6 along the embedded interface. The domain is discretized using 30× 10

rectangular elements. The porous medium is subjected to a bilateral confining stress, imposed

by compressive tractions of t̄ = 10kN/m2 acting of the left and top edges of the domain.

The geometry of the medium and the fracture, boundary conditions and the imposed loads are

shown in figure 4.2. All the edges are assumed to be hydraulically drained. The simulation

starts by the release of the friction/tangential contact constraint at the interface to induce an

acoustic response through the release of energy stored in the system due to the initial in-situ

stresses. Damping coefficients of the solid phase are assumed to be µ1 = 0.01, µ2 = 0.01.

The time steps size for the implicit time integration scheme is ∆T = 2 × 10−4s. To inves-

tigate the dynamic response of the system, time histories of the problem variables at point

(x = 0.9667, y = 0.25) are recorded. Figure 4.3 shows the x-velocity signal due to the release

of friction at the interface using regular PNM and enriched PNM-GFEM. The enriched model

gives a more oscillation-free acoustic signal. As seen in Figure 4.3b, the non-physical oscillations

that appear in regular PNM simulation of the velocity signal are effectively inhibited using the

enriched model (i.e., PNM-GFEM-M model).

The pore pressure time signal of the acoustic emission is shown in figure 4.4 for regular and

enriched finite element simulations. It is clear in this figure that using the enriched FE model

results in acoustic data which is free of high-frequency oscillations at the signal’s peak.
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Fig. 4.2: A schematic figure of fractured porous media of section 4.5.1.
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Fig. 4.3: Time history of x-velocity at point (x = 0.9667, y = 0.25) using regular and enriched
PNM models.
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Fig. 4.4: Time history of pore pressure signal at point (x = 0.9667, y = 0.25) using regular and
enriched models.

Figure 4.5 illustrates the effect of damping coefficients on the acoustic response of the

system. The results are obtained by changing the damping coefficients of the solid phase.

Enriched models are used with (n = 1). As seen in this figure, the high-frequency components

of the signal are dissipated very quickly by increasing the physical damping of the solid skeleton.

To have a better understanding about the spectral/frequency contents, a Fast Fourier Trans-

form (FFT) is employed to acquire the frequency spectrum of the signal, as shown in figure

4.6. The high-frequency components of the signal are dissipated by increasing the damping

coefficients. However, unlike the magnitude spectrum, the peak frequencies of the spectrum

(i.e., frequencies associated with peak magnitudes) do not seem to be significantly affected by

the damping magnitudes of the solid skeleton.
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Fig. 4.5: Effect of the damping values on the time history of acoustic signal at point (x =
0.9667, y = 0.25).
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Fig. 4.6: Frequency domain response of the acoustic signal of figure 4.5.
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Effect of permeability on the acoustic signal

To assess the effect of the permeability of porous media on acoustic response, the case study

shown schematically in Figure 4.2 is considered. Figures 4.7 and 4.8a show, respectively, plots

of x-displacement and x-velocity versus time at point (x = 0.9667, y = 0.25) for various values

of permeability. As seen in these figures, the lower the permeability the smaller the peak am-

plitudes of the acoustic signal. This behaviour can be attributed to the inversely proportional

correlation between permeability and viscous damping in porous media which results in more

energy dissipation in low-permeability materials. Also, as seen in the figures, the dynamic be-

haviour of lowest permeable domain cases exhibits the highest frequencies in the induced signal.

This can be explained by the fact that the behaviour of the lower permeable domain is more

undrained. Figure 4.8b gives a close-up of the time history presented in figure 4.8a. By de-

creasing the amount of permeability (i.e., getting close to material incompressibility condition)

the time signal (mixed finite element solutions in general) gets more vulnerable to numerical

dispersions and prone to showing spurious oscillations. As observed in figure 4.8b, the non-

physical oscillations that are stimulated in regular finite element simulation of the low-permeable

case can be eliminated through the enriched finite element model (i.e., PNM-GEFM-M) with

(n = 1).

Acoustic wave pattern

To visualize the pattern of an acoustic wave propagation under shear failure, a porous domain

of size 3m× 3m is considered. A single fracture is embedded at the center of the domain which

is 0.1m in length and is orientated at the angle of 45o with respect to the horizontal direction.

The friction coefficient of the interface is assumed to be µf = 0.6 and the damping coefficients

of the solid phase are µ1 = µ2 = 0.001. Confining tractions of t̄ = 10kN/m2 and t̄ = 5kN/m2

are imposed at the left and top surfaces, respectively. The domain is discretized using 90× 90

rectangular elements. Simulation starts at t = 0.0s by releasing the friction condition at the

interface. Figure 4.9 demonstrates consecutive snapshots of x-velocity contours at some time
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Fig. 4.7: Time history of x-displacement for various values of permeability.
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Fig. 4.8: Time history of x-velocity acoustic signal for various values of permeability.
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steps. Transient propagation pattern of the acoustic wave emission due to the induced abrupt

slip at the interface (which is followed by a sudden release of accumulated-strain-energy) is

transparent in the figures.

To have a better visual intuition about the wave propagation pattern, figure 4.10 shows

the absolute velocity (i.e.,
√

(u̇x)2 + (u̇y)2) contours of the same problem at several time steps

after the acoustic emission is triggered, using a 180× 180 mesh resolution. Symmetric pattern

of the wave propagation with respect to the shear failure (fracture) direction is apparent in

the snapshots. Due to the attenuation of the porous media (in both phases), the velocity

magnitude decays as the wave travels in the medium. Figure 4.11 shows the wave pattern at

time t = 0.0047s in a three-dimensional perspective from a different (angled) view.

Role of material damping

To investigate the effect of material viscous damping on the microseismic response in porous

media, figure 4.12 illustrates acoustic wave propagation pattern in a 6m × 6m domain with a

fracture of length 0.2m located at the center of the domain and with an orientation of 45o from

the horizontal direction. Confining tractions of t̄ = 10kN/m2 and t̄ = 5kN/m2 are applied at the

left and top surfaces, respectively. In this case, lower damping coefficients (µ1 = µ2 = 0.00005)

are considered for the analysis compared to those assumed in the previous example. Comparing

the results obtained for µ1 = µ2 = 0.001 in figure 4.10 and µ1 = µ2 = 0.00005 in figure 4.12

shows that in the case with higher viscous damping the wave contours are overly-diffusive with

very smoothly varying front. Unlike the case with high attenuation, the wave impulse in the

low viscosity domain has a highly-transient pattern with a sharp wave front due to the high-

frequency components of the dynamic response. It is noted that the high-frequency contents

get dissipated by increasing the physical damping of the system which contributes to more

diffusive wave patterns and results in losing the highly-transient behaviour and the sharp wave

front.
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(a) t = 0.0008s (b) t = 0.0023s

(c) t = 0.0030s (d) t = 0.0038s

(e) t = 0.0045s (f) t = 0.0053s

(g) t = 0.0060s (h) t = 0.0068s

Fig. 4.9: x-velocity contour of acoustic wave propagation under shear failure.
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(a) t = 0.0015s (b) t = 0.0022s

(c) t = 0.0030s (d) t = 0.0037s

(e) t = 0.0045s (f) t = 0.0052s

(g) t = 0.0060s (h) t = 0.0067s

Fig. 4.10: Absolute velocity contours of acoustic wave propagation under shear failure with
viscous damping coefficients µ1 = µ2 = 0.001 .
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Fig. 4.11: Absolute velocity wave pattern of acoustic emission at t = 0.0047s.

Microseismic emission from multiple cracks and coalescence of waves

We consider the domain that was assumed in the previous example with the same loading

condition and characteristics. In this case two identical sloping cracks (with the same length

and direction as the previous example) are embedded in the medium as shown in figure 4.13.

The process of concurrent acoustic emissions from the fractures, and interaction of the emitted

waves are illustrated in figure 4.13 through snapshots of the velocity contours in some time

steps.

To show the versatility of the method in modeling multiple randomly-distributed cracks,

figure 4.14 illustrates the AE patterns induced by shear slip on discontinuities at t = 0.005s.

The same in-situ stress and boundary conditions as the previous example are considered and

the poroelastic domain is assumed to be 3× 3m.

Discretization sensitivity

In this part the discretization-sensitivity of the developed model in simulation of induced AEs is

assessed. To this end, a porous media of size 3×3m is considered with a single fracture of length

0.2m located at the center of the domain. The same in-situ stress and boundary conditions

152



(a) t = 0.0050s (b) t = 0.0100s

(c) t = 0.0200s (d) t = 0.0300s

(e) t = 0.03500s (f) t = 0.0400s

(g) t = 0.0450s (h) t = 0.0500s

Fig. 4.12: Absolute velocity contours of acoustic wave propagation under shear failure with
viscous damping coefficients µ1 = µ2 = 0.00005 .
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(a) t = 0.0050s (b) t = 0.0100s

(c) t = 0.0150s (d) t = 0.0200s

(e) t = 0.0250s (f) t = 0.0300s

Fig. 4.13: Absolute velocity contours of acoustic wave propagation due to double shear failures
and interaction of emitted waves.
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Fig. 4.14: AE wave pattern induced by shear slip instability of multiple randomly-distributed
fractures at t = 0.005s.

and material properties as the previous example are assumed. Figure 4.15 demonstrates AE

wave patterns at t = 0.01s using different mesh sizes. As seen, the amplitude of the wave

pulse is dependent on the mesh resolution, and the results are convergent by refining the mesh.

It is important to note that in simulation of the shear slip instability (i.e., frictional contact

behviour at the interface) and the corresponding acoustic wave propagation, sufficiently refined

meshes ar required to obtain results with acceptable precision.

4.5.2 Acoustic emission due to injection-induced slip instability

A 1m by 0.5m porous medium discretized by 30× 10 rectangular elements is considered. The

domain is assumed to be under the effect of a bilateral confining tractions of 2kN/m2 on the

left and top edges. A 0.36m long inclined crack is embedded at the angle of θ = 560 with

respect to the horizontal direction. The friction coefficient is assumed to be µf = 0.8. Damping

coefficients of the solid skeleton are considered as µ1 = 0.1, µ2 = 0.1. The domain, the fracture,

and applied loads are depicted in figure 4.16. A PNM-GFEM-M model with n = 1 is used with
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(a) 80× 80 elements (b) 135× 135 elements

(c) 180× 180 elements (d) 200× 200 elements

Fig. 4.15: Mesh-sensitivity study of an AE wave pattern.
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Fig. 4.16: A schematic figure of fractured porous media under confining tractions and point
injection at the middle, considered in section 4.5.2.

time step size of ∆t = 1ms.

The simulation commences by applying a constant fluid flux injection of q = 0.1m3/s at the

center of the domain at t = 0.0s. Prior to applying the injection, strain energy is stored in the

system due to the initial stress caused by confining tractions and the frictional contact at the

interface of the fracture.

Due to injection of the fluid, a sudden slip between fracture faces occurs along the interface.

This abrupt transition from a stick condition to a slip situation induces an AE response- the

rapid release of strain energy results in the stimulation of inertia effects. Figure 4.17 depicts

the acoustic signal at point (x = 0.9667, y = 0.25) induced by the injection perturbation. As

seen in this figure, in the case in which there is no frictional resistance/contact at the fracture

interface (i.e., when µf = 0.0), no acoustic behaviour is observed in the dynamic response of the

system, which is quite rational and expected. In the case of µf = 0 (no friction and therefore no

stick condition under the in-situ stresses), unlike the frictional contact case, there is no sudden

transition from a stick to a slip state. This is why no acoustic response is seen in the case of

frictionless interface.
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Fig. 4.17: Acoustic signal at point (x = 0.9667, y = 0.25), induced due to a sharp switch from
stick to slip condition at the fracture interface under injection.

4.6 Chapter Conclusions

Acoustic emission (AE) induced by shear failure and slip along fractures in porous media

is simulated and the role of permeability, interface friction and other system characteristics

on the AE are studied. To model interface (e.g., fracture or fault) in continua, Phantom

Node Method (PNM) is used in conjunction with global Generalized Finite Element Method

(GFEM) harmonic enrichment functions to solve dynamic/wave propagation problem. A seis-

mic emission is triggered by the sudden release of strain energy, which occurs due to an abrupt

switch from a stick to a slip condition (localization) in the form of interface snap-through in-

stability/bifurcation. The required perturbation for instability stimulation at the interface is

provided through an external excitation such as fluid injection in the vicinity of the fracture

under confining stresses and frictional contact conditions.

Effects of mechanical characteristics such as viscous damping parameters of the solid phase,
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permeability of porous media, and interface friction on AE are assessed based on the numerical

simulations performed using the proposed computational model. It should be noted that there

was no available data in the literature to use for conducting comparison studies over the results

obtained for AEs by the developed method of the present paper. Therefore, further research

studies (numerical and experimental) should be carried out as scientific supports for the conclu-

sions of this paper. Based upon the simulation results of the method introduced in this paper,

it is found that the acoustic response in lower permeability cases shows higher frequency and

lower amplitude signals. Increasing the damping magnitude significantly affects the spectral

contents of the acoustic signal by attenuating the high-frequency components and decreasing

the corresponding magnitudes. By increasing damping, the acoustic emission pattern changes

from the state of very transient wave propagation to overly-diffusive (diffusion-dominated) re-

sponse. Also, it is shown that the magnitude of induced acoustic signal is directly dependent

on the friction coefficient at the interface. The superiority of the enriched mixed finite element

model in simulation of acoustic waves and suppressing the spurious oscillations in pore pres-

sure and velocity time signals that appear in acoustic simulation using regular finite element

approach is also demonstrated.

As shown throughout the article, the proposed PNM-GFEM-M numerical model is a very

promising computational approach for simulation of localization-induced acoustic/seismic waves

in fractured porous media. However, many items need to be tackled in future studies to move

towards more practical acoustic emission simulations. In this study we mostly focused on

showing the capability of the numerical scheme in simulation of acoustic waves induced by

local abrupt release of energy in porous media and did not concentrate on interface constitutive

modeling of failure and weakening. This article does not focus on the effectiveness of the

methodology in terms of computational costs for large-scale problems. Hence, future research

works should focus on solving large scale problems in practical applications like earthquakes and

microseismic monitoring in hydraulic fracturing. Lastly, since in many practical applications

AEs are triggered and propagated in three-dimensional spaces, the extension of the current 2D
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model to 3D would be of great practical value.
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Chapter 5

Conclusions, Publications, and Future

works
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5.1 Conclusions

In this PhD thesis a new computational method has been introduced, developed, and imple-

mented in the context of the Partition-of-Unity Finite Element Method (PUFEM) to simulate

the coupled problem of fracture instability/reactivation and induced acoustic/microseismic wave

emission in porous media under frictional contact condition in applications like Hydraulic Frac-

turing (HF).

HF is a very common means of stimulation for unconventional reservoirs to increase the ef-

ficiency of oil and gas extraction from tight formations by increasing the permeability through

creating networks of fractures by hydraulic pressurization via injection of fracturing fluid deep

into the ground. HF is one of the most challenging engineering problems due to the complex and

coupled physics involved and also very high level of uncertainties that exist around it because

of the indeterministic features of the problem. Moreover, HF has remained poorly understood

from the mechanics point of view and most of the research work reported on the related topics

either suffer from very extensive simplifications and assumptions or focus on very specific tiny

aspects of the problem without accounting for other coupled features involved.

Reactivation of natural faults and fractures (microseismicity and acoustic emission) and

contamination of aquifers and underground water are two important environmental concerns

about HF. An abrupt switch from stick to slip condition and shear/tensile rupturing may hap-

pen at the fracture interfaces due to the change in stress pattern under pressurizing through

fracturing fluid injection in applications like HF. Also, the behaviour of formations and frac-

tures can be probed by analyzing the acoustic emissions induced during hydraulic stimulations.

The biggest challenge in simulation of acoustic emission due to fracture/material instability is

to come up with a coupled numerical solution that can concurrently handle the localization and

the resulting induced acoustic emission.
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It is noteworthy that the dominant approach in accurate simulation of wave propagation is

to use spectral methods in the context of the frequency domain solutions. However, the local-

ization (or slip instability) aspect of the problem has to be solely and exclusively modeled in

time domain as it physically has nothing to do with the frequency domain. To rectify and treat

this difficulty, in this PhD research a new enriched finite element model has been developed and

implemented based on a combination between the local and global PUFEMs. The local effect

of shear failure or slip-instability is modeled using the Phantom Node Method (PNM) in the

framework of the local PUFEM. Also, to more accurately model acoustic wave emission in time

domain, fundamental harmonic basis functions that appear in spectral analysis and analytical

solutions of waves are embedded in the finite element interpolations as enrichment functions in

the context of the global PUFEM or Generalized Finite Element Method (GFEM).

Using the proposed approach, the coupled problem of discontinuity reactivation and acoustic

wave emission and propagation can be simulated entirely and concurrently in the time domain.

The developed numerical model is named mixed GFEM-enriched PNM or PNM-GFEM-M.

The availability of accurate computational tools like the one developed in this research can

help to improve understanding about the behaviour of naturally fractured formations under

hydromechanical stimulations. Also, numerical models can be very effective in developing re-

alistic correlations between the characteristics of the fracturing/damaging zone and acoustic

signals recorded at specific locations of the field through inverse analysis (or trained neural

network algorithms) which can be of exceptional practical values in microseismic monitoring

and acoustic emission industry.

Being a coupled nonlinear mixed multi-physics problem, there are several mechanical and

computational complexities and difficulties involved in this project in terms of accuracy, stabil-

ity, and convergence issues. The numerical difficulties stem from the high-frequency transient

feature of wave propagation and also the coupled physics and interface modeling aspects in-

volved in the problem.
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In Chapter 1 an introduction to the problem of interest has been given. Also, discussions

have been provided about different solution methods and computational challenges and diffi-

culties that arise in fracture, contact, and wave propagation simulation.

Chapter 2 describes a new enriched finite element model for simulation of wave propagation

in fractured media. The method is based on a combined advantages of a local PUFEM (i.e.,

PNM) to model discontinuity and global PUFEM (using trigonometric enrichments) to model

transient wave phenomena. Different numerical examples are used to illustrate the capability

of the developed enriched finite element method in more accurate simulation of wave propaga-

tion in fractured media in comparison with conventional finite element models. The examples

and the numerical methods provided in the chapter are identically published through a journal

paper.

In Chapter 3 the computational method is extended to the case of multi-physics porous

media. In this case the displacement fields as well as the pore pressure are interpolated us-

ing enrichment function. Moreover, the frictional contact condition at interfaces is modeled

through an augmented Lagrange multiplier method. The developed mixed enriched finite ele-

ment method is shown to be very effective in suppressing the spurious oscillations emerging from

the Gibbs phenomenon and numerical dispersions that are attributed to the LBB condition in

coupled problems. The methodology and numerical examples of the chapter are disseminated

through a journal article.

Chapter 4 investigates the use of the developed enriched mixed finite element model (i.e.,

PNM-GFEM-M) in simulation of coupled problem of shear failure – acoustic emission wave

propagation in fractured porous media. Through several numerical examples, velocity and pore

pressure wave patterns induced by release of strain energy due to sudden change from stick to

slip condition at interfaces are illustrated. Also, the effects of different system parameters such
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as permeability, viscous damping coefficients, and friction coefficient of the interface on the

induced acoustic signals are assessed. It is shown that the properties of the porous media and

also the discontinuity have significant influences on the characteristics of the received acoustic

signals and can drastically alter the frequency contents and the type of the AE response. The

provided results of this chapter are identically reported through a journal article.
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5.2 Publications

In this section the list of peer-reviewed journal papers and conference articles emanated from

this PhD research is given.

5.2.1 Journal papers

• Komijani M., Gracie R., Enriched Mixed Finite Element Models for Dynamic Analysis of

Continuous and Fractured Porous Media, Computer Methods in Applied Mechanics and Engi-

neering, 343: 74–99, 2019.

• Komijani M., Gracie R., An Enriched Finite Element Model for Wave Propagation in Frac-

tured Media, Finite Elements in Analysis and Design, 125: 14-23, 2017.

• Komijani M., Gracie R., Sarvaramini E., Simulation of Induced Acoustic Emission in Frac-

tured Porous Media, Engineering Fracture Mechanics, DOI: 10.1016/j.engfracmech.2018.07.028,

2018.

•Komijani M., Gracie R., Nonlinear thermo-electro-mechanical dynamic behaviour of FGPM

beams, Composite Structures, 150: 208-218, 2016.

• Sarvaramini E., Dusseault M., Komijani M., Gracie R., A Non-local Plasticity Model of

Stimulated Volume Evolution During Hydraulic Fracturing, International Journal of Solids and

Structures, accepted for publication, 2018.

5.2.2 Conference presentations

• Komijani M., Gracie R., Microseismic Wave Simulation using GFEM-enriched Phantom

Node Method, 14th U.S. National Congress on Computational Mechanics, Montreal, Canada,
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2017.

• Komijani M., Gracie R., An enriched finite element method for wave propagation analysis

in discontinuous domain, 24th International Congress of Theoretical and Applied Mechanics,

Montreal, Canada, 2016.

• Komijani M., Gracie R., Nonlinear Thermo-Electro-Mechanically Induced Vibration of

FGPM Beams, 25th Canadian Congress of Applied Mechanics, London, Ontario, Canada, 2015.
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5.3 Future works

In this section several recommendations are provided as potential topics for extension and con-

tinuation of the research that has been reported in this PhD dissertation.

• Verification of the numerical results provided in this thesis with other analytical, semi-

analytical, hybrid, and numerical methodologies that may be introduced in future for modeling

of the problem.

• Validation of the numerical results with future field data. It is highly recommended to set

up some experimental facilities and instruments to conduct real tests even in laboratory scale

to study and record acoustic signals induced due to shear instability and failure.

• This research is mainly focused on developing a new computational scheme for simulation

of acoustic wave emission induced by shear instability in porous media. However, more detailed

investigations are required on improving the cost effectiveness of the approach and decreasing

the computational expenses particularly in large scale domains.

• This thesis mostly concentrates on showing the capability of the numerical method in

simulation of acoustic waves induced by local abrupt release of energy in multi-physics media

and did not particularly and extensively deal with interface constitutive modeling of failure

and weakening. It would be worthwhile to conduct substantial research works in future to

include more elaborate models to account for the nonlinear complicated physics of localiza-

tion/fracturing, and mechanics of the interface behaviour.

• Extending the current two-dimensional computer model to three-dimensional can be of

great practical value.
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Appendices

Appendix A
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in which e is either 1 or 2 for the superimposed elements one and two, respectively, and ste, s
d
e,

and swe are the portions of superimposed element e on the traction boundary Γt, discontinuity

surface Γd, and fluid flux boundary Γw, respectively. t̄dx and t̄dy are the components of contact

tractions in x and y directions, respectively.
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